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1.1 Alzheimer’s disease
Epidemiology

The number of people living with dementia worldwide was estimated at 50 million 

in 2018, and it is likely to rise to about 152 million in 2050 (World Alzheimer report 

2018). Alzheimer’s disease (AD) is the most common form of dementia, accounting 

for about two third of all dementia cases (World Alzheimer report 2018). AD is a 

neurodegenerative disease that is clinically characterised by memory loss and declined 

cognitive functioning. As the disease progresses, these behavioural characteristics 

get more severe, up until the point that patients are in need for 24h care. Typical 

AD neurodegeneration starts within the hippocampal area and later spreads out to 

subcortical brain regions and the medial temporal lobe (Jack et al., 1997; Pini et al., 

2016). As the disease progresses further, the atrophy also extents to the frontal areas 

of the brain (Thompson et al., 2003).

Diagnosis

In the global action plan against dementia, the World Health Organization has 

specified improved diagnostics as a key area (WHO, 2017). The clinical characteristics 

of AD manifest relatively late in the disease, and it can only be reliably diagnosed at 

a stage where irreversible damage has already taken place (Jack et al., 2013). At an 

earlier phase, the clinical symptoms are often difficult to discriminate AD from normal 

ageing, or other types of dementia (Sperling et al., 2013). For this reason, these clinical 

symptoms cannot be used for a timely diagnosis of AD. There is need for reliable AD 

diagnosis at the beginning of the disease, or ideally before the onset of the disease 

(Frisoni et al., 2017). This would provide patients with a prognosis so they can prepare 

for their future trajectory. In addition, early phase AD diagnosis is important for 

drug research, because early phase AD patients might still be susceptible for drugs 

(Scheltens et al., 2016). 

1.2 Biomarkers
To enable timely diagnosis of AD, there is a need for biomarkers. A number of AD 

biomarkers have already been proposed. Well-known biomarkers are the proteins 

B-amyloid and tau (Hardy & Selkoe, 2002), measured in cerebrospinal fluid (CSF) or 

in the brain using PET scans. The global use of these methods is still limited because 

of their invasive nature and the high costs associated with PET scanning. Recent 
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1innovations have enabled measurement of tau levels via plasma, thereby reducing 

invasiveness and costs, but this method has not yet been validated for diagnosis 

in diverse clinical populations (Palmqvist et al., 2020). In addition, many magnetic 

resonance imaging (MRI) related biomarkers have been proposed. MRI scans visualise 

neurodegeneration, which is a key feature of AD. Importantly, MRI scans are non-

invasive, which is advantageous for day-to-day clinical use.

Anatomical MRI

An important MRI AD biomarker is grey matter atrophy (Frisoni et al., 2010). Grey 

matter consists of neuronal cell bodies, and neuronal loss in AD is responsible for 

memory loss and cognitive decline. The location and degree of grey matter atrophy 

can be accurately visualised with anatomical MRI scans. Anatomical MRI scans improve 

AD diagnosis over cognitive testing only (Liu et al., 2011), and they are included in 

diagnostic criteria for the most prevalent non-Alzheimer dementias as well (McKeith et 

al., 2005; Rascovsky et al., 2011; Roman et al., 1993), reflecting its value for differential 

diagnosis. Furthermore, grey matter atrophy enables early AD diagnosis, because 

atrophy in the temporal lobe starts before clinical symptoms occur (Jack et al., 2013). 

Consequently, medial temporal lobe atrophy is used as a marker for mild cognitive 

impairment (MCI), the clinical phase that precedes AD, and it is used to predict which 

MCI patients will convert to AD (Cuingnet et al., 2011; Misra et al., 2009).

Diffusion MRI

Brain damage caused by AD is not limited to grey matter atrophy. It also comprises 

decreased structural integrity in the white matter (Bozzali et al., 2002; Douaud et 

al., 2011), which can be visualised with diffusion MRI scans. White matter consists 

of myelinated axons that transport neuronal signal between grey matter areas. 

These white matter pathways make up the brain’s structural networks, and they are 

disrupted in AD (Mito et al., 2018). Furthermore, white matter lesions increase the 

risk of developing AD (Prins et al., 2004). For these reasons, diffusion MRI scans might 

complement anatomical MRI scans in the diagnosis of AD.

Resting state functional MRI

In addition to the structural changes, observed in both grey and white matter, AD is 

also characterised by changes in brain function, measured with resting state functional 

MRI (fMRI). These changes include decreased activation in the default mode network 

(Rombouts et al., 2005), altered FC between brain regions (Agosta et al., 2012; Allen 

et al., 2007; Binnewijzend et al., 2012), and decreased amplitude of low frequency 
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fluctuations (Han et al., 2011), reflecting decreased intensity of spontaneous brain 

activity. FC may already be altered in early stages of AD, even before the presence of 

brain atrophy and cognitive decline (Buckner et al., 2005; Sheline and Raichle, 2013). 

For these reasons, resting state fMRI scans may add complementary information to 

structural and diffusion MRI scans, which may further improve AD diagnosis.

1.3 Individual classification of 
Alzheimer’s disease
Average group differences vs individual classification

The MRI AD biomarker research discussed in previous paragraphs is mostly based on 

average group differences, as found in case-control studies. Average group differences 

are not necessarily useful at the individual level. Many AD biomarkers are present in 

healthy ageing as well (Salat et al., 1999), and show too much overlap between AD 

patients and healthy elderly to accurately discriminate AD at the individual level. 

The focus of MRI AD biomarker research has therefore shifted from the detection 

of average group differences towards individual classification (Rathore et al., 2017). 

Individual classification studies usually combine multiple biomarkers that together 

yield high classification accuracy.

Statistical learning

Statistical learning is a powerful framework for individual classification studies (Klöppel 

et al., 2008). First, it comprises statistical methods that enable the incorporation 

of many features into one classification model. This is essential for MRI-based 

classification studies, because MRI scans yield many features. Second, it incorporates 

cross-validation. That is, classification models are fitted on training data, and validated 

on a held-out data set. Cross-validation protects for overfitted models, yielding 

models that better generalise to out of sample data. In this way, statistical learning 

enables development of MRI-based classification models that can discriminate AD at 

the individual level, which is necessary for clinical practice.

Multimodal MRI

Thus far, most MRI-based AD classification studies have used models with only one type 

of feature. For example, anatomical MRI scans were used to measure only grey matter 
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1density features (Beheshti et al., 2016) or only hippocampal shape features (Gerardin 

et al., 2009). However, these different types of anatomical MRI features possess 

complementary information, and combining them increases AD classification accuracy 

(Bron et al., 2015; Wolz et al., 2011; Westman et al., 2013). Moreover, different types 

of MRI scans contain complementary information as well, and combining these into a 

multimodal MRI model improves AD classification accuracy even further (Schouten et 

al., 2016). In this thesis we will derive multiple types of feature from a single MRI scan, 

and we will combine multiple MRI modalities.
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1.4 Aims and outline
The overall aim of this thesis is to develop and evaluate MRI-based models for individual 

AD classification. These models take MRI features as input, and yield AD probability 

scores as output. We will develop these models for a wide variety of MRI features, and 

we will compare those models on AD classification accuracy. This provides information 

on which MRI features are most informative for AD classification. Furthermore, we will 

study combinations of features to try to improve accuracy. To this end, we will use 

statistical learning techniques, because they enable incorporation of many features, 

and they focus on optimising classification accuracy. In chapter two, anatomical 

MRI scans are used to calculate multiple structural features that are thought to be 

informative for AD. These features will be compared on AD classification accuracy, and 

they will be combined into a single model. It is hypothesised that the combination 

outperforms the separate features. In chapter three, a similar approach will be used 

for resting state fMRI scans. We will use several approaches to calculate FC, and we 

will derive indirect FC measures, like FC dynamics and graph measures. Again, these 

features are compared on AD classification accuracy, and they will be combined into 

a single model. Also here, it is hypothesised that the combination outperforms the 

separate features.

In order to be clinically useful, AD classification models should generalise well to clinical 

populations. This is complicated for two reasons. First, research samples that are used 

to develop the models are often homogeneous, only containing clinically diagnosed 

AD patients and healthy elderly controls. In contrast, clinical populations are more 

diverse. They include patients with varying stages of AD progression, as well as MCI 

patients and preclinical patients that experience memory complaints. In addition, 

clinical populations include patients with non-AD dementia types as well. Second, MRI 

scans suffer from technical between-scanner variation (Ewers et al., 2006; Takao et al., 

2014; Zhu et al., 2011). An AD classification model that is trained with MRI data from 

one scanner, is not necessarily useful for MRI data from another scanner. To be clinically 

useful, AD classification models should be applicable to diverse patient populations, 

and they should be robust to between-scanner variation. In chapter four we will 

evaluate whether MRI-based models for individual AD classification also discriminate 

AD in a diverse clinical population. To this end we will train AD classification models on 

a single-centre data set consisting of AD patients and controls, using features derived 

from both anatomical MRI, diffusion MRI and resting state fMRI scans. Next, we will 

use these models to assign AD scores to patients from a multi-centre memory clinic 
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1data set including AD patients, MCI patients and patients with subjective memory 

complaints. We expect that AD patients will receive higher AD scores than MCI 

patients and patients with subjective memory complaints.

In chapter five we will evaluate MRI’s predictive accuracy for future cognitive decline. 

To this end we use the baseline multimodal MRI scans of the memory clinic data set 

outlined above, to predict two-year follow-up cognitive decline.




