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1.1 Alzheimer’s disease
Epidemiology

The number of people living with dementia worldwide was estimated at 50 million 

in 2018, and it is likely to rise to about 152 million in 2050 (World Alzheimer report 

2018). Alzheimer’s disease (AD) is the most common form of dementia, accounting 

for about two third of all dementia cases (World Alzheimer report 2018). AD is a 

neurodegenerative disease that is clinically characterised by memory loss and declined 

cognitive functioning. As the disease progresses, these behavioural characteristics 

get more severe, up until the point that patients are in need for 24h care. Typical 

AD neurodegeneration starts within the hippocampal area and later spreads out to 

subcortical brain regions and the medial temporal lobe (Jack et al., 1997; Pini et al., 

2016). As the disease progresses further, the atrophy also extents to the frontal areas 

of the brain (Thompson et al., 2003).

Diagnosis

In the global action plan against dementia, the World Health Organization has 

specified improved diagnostics as a key area (WHO, 2017). The clinical characteristics 

of AD manifest relatively late in the disease, and it can only be reliably diagnosed at 

a stage where irreversible damage has already taken place (Jack et al., 2013). At an 

earlier phase, the clinical symptoms are often difficult to discriminate AD from normal 

ageing, or other types of dementia (Sperling et al., 2013). For this reason, these clinical 

symptoms cannot be used for a timely diagnosis of AD. There is need for reliable AD 

diagnosis at the beginning of the disease, or ideally before the onset of the disease 

(Frisoni et al., 2017). This would provide patients with a prognosis so they can prepare 

for their future trajectory. In addition, early phase AD diagnosis is important for 

drug research, because early phase AD patients might still be susceptible for drugs 

(Scheltens et al., 2016). 

1.2 Biomarkers
To enable timely diagnosis of AD, there is a need for biomarkers. A number of AD 

biomarkers have already been proposed. Well-known biomarkers are the proteins 

B-amyloid and tau (Hardy & Selkoe, 2002), measured in cerebrospinal fluid (CSF) or 

in the brain using PET scans. The global use of these methods is still limited because 

of their invasive nature and the high costs associated with PET scanning. Recent 
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1innovations have enabled measurement of tau levels via plasma, thereby reducing 

invasiveness and costs, but this method has not yet been validated for diagnosis 

in diverse clinical populations (Palmqvist et al., 2020). In addition, many magnetic 

resonance imaging (MRI) related biomarkers have been proposed. MRI scans visualise 

neurodegeneration, which is a key feature of AD. Importantly, MRI scans are non-

invasive, which is advantageous for day-to-day clinical use.

Anatomical MRI

An important MRI AD biomarker is grey matter atrophy (Frisoni et al., 2010). Grey 

matter consists of neuronal cell bodies, and neuronal loss in AD is responsible for 

memory loss and cognitive decline. The location and degree of grey matter atrophy 

can be accurately visualised with anatomical MRI scans. Anatomical MRI scans improve 

AD diagnosis over cognitive testing only (Liu et al., 2011), and they are included in 

diagnostic criteria for the most prevalent non-Alzheimer dementias as well (McKeith et 

al., 2005; Rascovsky et al., 2011; Roman et al., 1993), reflecting its value for differential 

diagnosis. Furthermore, grey matter atrophy enables early AD diagnosis, because 

atrophy in the temporal lobe starts before clinical symptoms occur (Jack et al., 2013). 

Consequently, medial temporal lobe atrophy is used as a marker for mild cognitive 

impairment (MCI), the clinical phase that precedes AD, and it is used to predict which 

MCI patients will convert to AD (Cuingnet et al., 2011; Misra et al., 2009).

Diffusion MRI

Brain damage caused by AD is not limited to grey matter atrophy. It also comprises 

decreased structural integrity in the white matter (Bozzali et al., 2002; Douaud et 

al., 2011), which can be visualised with diffusion MRI scans. White matter consists 

of myelinated axons that transport neuronal signal between grey matter areas. 

These white matter pathways make up the brain’s structural networks, and they are 

disrupted in AD (Mito et al., 2018). Furthermore, white matter lesions increase the 

risk of developing AD (Prins et al., 2004). For these reasons, diffusion MRI scans might 

complement anatomical MRI scans in the diagnosis of AD.

Resting state functional MRI

In addition to the structural changes, observed in both grey and white matter, AD is 

also characterised by changes in brain function, measured with resting state functional 

MRI (fMRI). These changes include decreased activation in the default mode network 

(Rombouts et al., 2005), altered FC between brain regions (Agosta et al., 2012; Allen 

et al., 2007; Binnewijzend et al., 2012), and decreased amplitude of low frequency 
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fluctuations (Han et al., 2011), reflecting decreased intensity of spontaneous brain 

activity. FC may already be altered in early stages of AD, even before the presence of 

brain atrophy and cognitive decline (Buckner et al., 2005; Sheline and Raichle, 2013). 

For these reasons, resting state fMRI scans may add complementary information to 

structural and diffusion MRI scans, which may further improve AD diagnosis.

1.3 Individual classification of 
Alzheimer’s disease
Average group differences vs individual classification

The MRI AD biomarker research discussed in previous paragraphs is mostly based on 

average group differences, as found in case-control studies. Average group differences 

are not necessarily useful at the individual level. Many AD biomarkers are present in 

healthy ageing as well (Salat et al., 1999), and show too much overlap between AD 

patients and healthy elderly to accurately discriminate AD at the individual level. 

The focus of MRI AD biomarker research has therefore shifted from the detection 

of average group differences towards individual classification (Rathore et al., 2017). 

Individual classification studies usually combine multiple biomarkers that together 

yield high classification accuracy.

Statistical learning

Statistical learning is a powerful framework for individual classification studies (Klöppel 

et al., 2008). First, it comprises statistical methods that enable the incorporation 

of many features into one classification model. This is essential for MRI-based 

classification studies, because MRI scans yield many features. Second, it incorporates 

cross-validation. That is, classification models are fitted on training data, and validated 

on a held-out data set. Cross-validation protects for overfitted models, yielding 

models that better generalise to out of sample data. In this way, statistical learning 

enables development of MRI-based classification models that can discriminate AD at 

the individual level, which is necessary for clinical practice.

Multimodal MRI

Thus far, most MRI-based AD classification studies have used models with only one type 

of feature. For example, anatomical MRI scans were used to measure only grey matter 
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1density features (Beheshti et al., 2016) or only hippocampal shape features (Gerardin 

et al., 2009). However, these different types of anatomical MRI features possess 

complementary information, and combining them increases AD classification accuracy 

(Bron et al., 2015; Wolz et al., 2011; Westman et al., 2013). Moreover, different types 

of MRI scans contain complementary information as well, and combining these into a 

multimodal MRI model improves AD classification accuracy even further (Schouten et 

al., 2016). In this thesis we will derive multiple types of feature from a single MRI scan, 

and we will combine multiple MRI modalities.
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1.4 Aims and outline
The overall aim of this thesis is to develop and evaluate MRI-based models for individual 

AD classification. These models take MRI features as input, and yield AD probability 

scores as output. We will develop these models for a wide variety of MRI features, and 

we will compare those models on AD classification accuracy. This provides information 

on which MRI features are most informative for AD classification. Furthermore, we will 

study combinations of features to try to improve accuracy. To this end, we will use 

statistical learning techniques, because they enable incorporation of many features, 

and they focus on optimising classification accuracy. In chapter two, anatomical 

MRI scans are used to calculate multiple structural features that are thought to be 

informative for AD. These features will be compared on AD classification accuracy, and 

they will be combined into a single model. It is hypothesised that the combination 

outperforms the separate features. In chapter three, a similar approach will be used 

for resting state fMRI scans. We will use several approaches to calculate FC, and we 

will derive indirect FC measures, like FC dynamics and graph measures. Again, these 

features are compared on AD classification accuracy, and they will be combined into 

a single model. Also here, it is hypothesised that the combination outperforms the 

separate features.

In order to be clinically useful, AD classification models should generalise well to clinical 

populations. This is complicated for two reasons. First, research samples that are used 

to develop the models are often homogeneous, only containing clinically diagnosed 

AD patients and healthy elderly controls. In contrast, clinical populations are more 

diverse. They include patients with varying stages of AD progression, as well as MCI 

patients and preclinical patients that experience memory complaints. In addition, 

clinical populations include patients with non-AD dementia types as well. Second, MRI 

scans suffer from technical between-scanner variation (Ewers et al., 2006; Takao et al., 

2014; Zhu et al., 2011). An AD classification model that is trained with MRI data from 

one scanner, is not necessarily useful for MRI data from another scanner. To be clinically 

useful, AD classification models should be applicable to diverse patient populations, 

and they should be robust to between-scanner variation. In chapter four we will 

evaluate whether MRI-based models for individual AD classification also discriminate 

AD in a diverse clinical population. To this end we will train AD classification models on 

a single-centre data set consisting of AD patients and controls, using features derived 

from both anatomical MRI, diffusion MRI and resting state fMRI scans. Next, we will 

use these models to assign AD scores to patients from a multi-centre memory clinic 
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1data set including AD patients, MCI patients and patients with subjective memory 

complaints. We expect that AD patients will receive higher AD scores than MCI 

patients and patients with subjective memory complaints.

In chapter five we will evaluate MRI’s predictive accuracy for future cognitive decline. 

To this end we use the baseline multimodal MRI scans of the memory clinic data set 

outlined above, to predict two-year follow-up cognitive decline.
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Abstract
Several anatomical MRI markers for Alzheimer’s disease (AD) have been identified. 

Hippocampal volume, cortical thickness and grey matter density have been used 

successfully to discriminate AD patients from controls. These anatomical MRI measures 

have so far mainly been used separately. The full potential of anatomical MRI scans for 

AD diagnosis might thus not yet have been used optimally. In the current study, we 

therefore combined multiple anatomical MRI measures in order to improve diagnostic 

classification of AD. For 21 clinically diagnosed AD patients and 21 cognitively normal 

controls we calculated i) cortical thickness, ii) cortical area, iii) cortical curvature, iv) 

grey matter density, v) subcortical volumes and vi) hippocampal shape. These six 

measures were used separately and combined as predictors in an elastic net logistic 

regression. We made receiver operating characteristic curves and calculated the area 

under the curve (AUC) to determine classification performance. AUC values for the 

single measures ranged from 0.67 (cortical thickness) to 0.94 (grey matter density). The 

combination of all six measures resulted in an AUC of 0.98. Our results demonstrate 

that the different anatomical MRI measures contain complementary information. A 

combination of these measures may therefore improve accuracy of AD diagnosis in 

clinical practice.

Keywords: Alzheimer’s disease, Anatomical MRI, Cortical thickness, Cortical area, 

Cortical curvature, Grey matter density, Subcortical volumes, Hippocampal shape, 

Classification 
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2.1 Introduction
Alzheimer’s disease (AD) is a neurodegenerative disorder that is characterised by both 

focal and global grey matter atrophy. Hippocampal atrophy is considered to be the 

hallmark of AD and it is therefore used as a clinical marker (Morra et al., 2009). Grey 

matter atrophy in AD patients frequently extends to other brain regions, including 

subcortical structures and the medial temporal lobe (Seeley et al., 2009; Rombouts 

et al., 2000; Jack et al., 2004). The location and degree of grey matter atrophy can be 

accurately visualised with anatomical magnetic resonance imaging (MRI) scans, which 

is used for the clinical diagnosis of AD (Frisoni et al., 2010). Studies using anatomical 

MRI scans have showed that AD patients have decreased volumes and altered shapes 

of the hippocampi compared to cognitively normal elderly (Thompson et al., 2004; 

Scher et al., 2007) and also the volumes of the putamen and thalamus are reduced in 

AD patients (de Jong et al., 2008). Moreover, reduced cortical thickness (Lerch et al., 

2005) as well as widespread grey matter atrophy have been demonstrated in patients 

with AD compared with controls (Karas et al., 2003).

However, the group differences found in case control studies are not necessarily useful 

in a clinical setting. Many AD markers have also been observed in healthy ageing 

(Salat et al., 1999). AD markers are only helpful in a clinical setting if they can accurately 

discriminate AD patients from non-affected subjects at the individual level. The focus 

of research on anatomical MRI biomarkers for AD has therefore shifted from the 

detection of group differences towards disease classification. Cortical thickness, MRI-

based morphometry (VBM) and the volume and shape of the hippocampus have been 

used to discriminate AD patients from controls with moderate to high classification 

accuracy. (Cuingnet et al., 2010; Davatzikos et al., 2011; Querbes et al., 2009). 

Thus far, these anatomical MRI measures have mainly been used separately to 

classify AD patients. However, the different measures may possess complementary 

information, and the combination of these measures could therefore increase AD 

classification accuracy compared to the separate measures. For example, voxel-based 

cortical thickness (VBCT) and VBM show different aspects of age-associated decline 

in grey matter (Hutton et al., 2009). Also, VBM, cortical folding and cortical thickness 

complement each other in showing neurodegenerative changes related to Parkinson’s 

disease (Pereira et al., 2012). Moreover, the combination of different anatomical MRI 

measures improves AD classification (Wolz et al., 2011; Westman et al., 2013; Bron et 

al., 2015).
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Furthermore, advances in statistical learning have facilitated the integration of different 

sources of information into a single predictive model (Zou & Hastie, 2005). This enables 

the incorporation of many predictors into one predictive model by selecting only the 

relevant information out of these many predictors. These techniques have already been 

applied in order to separate AD patients from controls or to separate MCI converters 

from MCI non-converters. (Cui et al., 2011; Dyrba et al., 2015a; Dyrba et al.; 2015b; 

Schouten et al., 2016; Trzepacz et al., 2014; Teipel et al., 2015; Wee et al., 2013; Zhang 

et al., 2013). It would therefore make sense to combine all anatomical MRI measures 

that have been shown to be discriminative for AD into a single model to improve 

sensitivity and specificity.

In this study we will use anatomical MRI scans from a group of AD patients and a group 

of cognitively normal controls and calculate several commonly used measures that are 

informative for AD. These measures are: i) cortical thickness, ii) cortical surface area, 

iii) cortical curvature, iv) grey matter density, v) the volume of the subcortical structures 

and vi) the shape of the hippocampus. We will combine all these measures into a 

single predictive model and calculate its classification performance. We hypothesise 

that the combination will outperform the separate measures.

2.2 Methods
Participants

Anatomical MRI scans were obtained from 21 probable AD patients (10 females) 

between ages 50 and 87 (M = 71.7, SD = 9.3) and 21 cognitively healthy controls (10 

females) between ages 57 and 80 (M = 68.0, SD = 7.5). The AD patients had an average 

score on the mini-mental state examination (MMSE) of 23 (SD = 2.4) and the cognitively 

healthy controls had an average score of 28 (SD = 1.5). All AD patients underwent a 

standardised dementia screening that included their medical history, informant-based 

history, physical and neurological examination, and an extensive neuropsychological 

assessment including the MMSE. Diagnoses were made in a multidisciplinary 

consensus meeting according to the core clinical criteria of the National Institute on 

Aging and the Alzheimer’s Association workgroup for probable AD (Mckhann et al., 

1984; McKhann, 2011). As control subjects, we included cognitively healthy elderly 

volunteers. This study was approved by the medical ethical committee of the Leiden 

University Medical Center, and all participants provided written informed consent.
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MR image acquisition

All participants were scanned on a Philips 3 Tesla Achieva MRI scanner in the Leiden 

University Medical Center. Three-dimensional T1-weighted structural scans were 

acquired with the following parameters: TR = 9.8 ms, TE = 4.6 ms, flip angle = 8, 140 

slices, voxel size = 0.88 x 0.88 x 1.20 mm.

Cortical thickness, area, and curvature

To calculate cortical thickness, cortical area, and cortical curvature we processed the 

T1-weighted images using the Freesurfer software package version 5.3.0 (Dale et al., 

1999; Fisch et al., 1999). First, intensity normalisation was applied to the brain-extracted 

image to create an image with relatively high contrast to noise ratio. This image was 

used to locate the boundary between grey and white matter. A triangular mesh was 

then constructed around the white matter surface. This triangular mesh consists of over 

160,000 vertices for each hemisphere. To create the grey matter surface, the mesh was 

deformed outwards so that it closely followed the boundary between grey matter and 

cerebrospinal fluid (CSF). Cortical thickness was calculated as the distance between 

the white matter surface and the grey matter surface for each vertex. The image was 

then registered to the Freesurfer common template, using the image’s cortical folding 

pattern. The neocortex was parcellated into the 68 neocortical regions (34 regions for 

each hemisphere) of the Desikan-Killiany atlas (Desikan et al., 2006). The thickness of 

each parcellation unit was calculated as the mean thickness of all the vertices within 

that parcellation. This yielded 68 cortical thickness features per subject. To calculate 

cortical surface area we summed the areas of the grey matter mesh triangles for each 

parcellation, which yielded 68 cortical area features per subject. Cortical curvature was 

calculated as the mean of the curvature values in the two principal directions of the 

surface. The curvature of a vertex in these directions was calculated as the inverse of 

the length of the radius of the osculating circles in these directions (Ronan et al., 2011). 

For each of the parcellations we averaged the curvature values of the vertices, which 

yielded 68 cortical curvature features per subject.

Grey matter density of the cortical structures

We calculated grey matter density using VBM in the FMRIB Software Library (FSL 

version 5.0.7; Ashburner et al., 2000; Smith et al., 2004). First, we segmented the brain-

extracted images into grey matter, white matter, and cerebrospinal fluid. Next, we 

created a study specific grey matter template in two steps. In a first run we affine-

registered the grey matter images to the ICBM-152 grey matter template and we 

averaged the resulting images to create a first-pass template. In a second run we non-
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linearly registered the grey matter images to the first-pass template and we averaged 

these images to obtain the final template at 2x2x2 mm3 resolution in standard space. 

Finally, we non-linearly registered the grey matter images to the final template and 

smoothed these images with a Gaussian kernel with sigma = 3 mm. The voxel values 

in these images range between 0 and 1, representing the percentage of a voxel being 

grey matter tissue. We averaged the voxel wise values within the 48 regions of the 

probabilistic Harvard-Oxford cortical atlas. We calculated the weighted averages of the 

regions, with voxels contributing to the average of a region based on their probability 

of being part of that region. This yielded 48 grey matter density values per subject.

Subcortical volumes

We calculated the volumes of the subcortical structures using the FMRIB’s Integrated 

Registration and Segmentation Tool (FIRST) in FSL (Patenaude et al., 2011). First, the 

whole-head images were affine registered to the non-linear MNI-152 template. In a 

second stage, initialised by the result of the first stage, we used a subcortical mask to 

achieve a more accurate and robust affine registration. The shapes of the subcortical 

structures were then modelled by deformable meshes and the boundary voxels were 

classified as being part of the subcortical structure using structural segmentation 

(Zhang et al., 2001). Finally, we corrected the subcortical volumes for intracranial 

volume as obtained by FSL. This yielded 14 subcortical volume features per subject 

(thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens for 

both hemispheres). 

Hippocampal shape 

To calculate hippocampal shape, we used the vertex analysis in FSL (Patenaude et 

al., 2011). The shape values represent the distance of a vertex on the hippocampal 

mesh of a specific subject to the mean location of that vertex within the whole sample. 

A negative value represents a decrease of the size of the hippocampus on that 

specific location for a subject relative to the mean sample. Vice versa, a positive value 

represents a relative increase of the size of the hippocampus on that location.  In the 

absence of a sufficiently detailed brain atlas of the human hippocampus we used a 

data-driven method to reduce the number of features. We ran a principal component 

analysis on the vertex shape values of both hippocampi and extracted only the 

first ten components, because these alone explained 86 percent of the variance in 

hippocampal shape values. This yielded ten hippocampal shape features per subject.
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Reference measures: whole brain atrophy and hippocampal volume

To provide a reference for the classification performance of the anatomical MRI 

measures, we also calculated two simple measures that are commonly used for clinical 

diagnosis of AD, whole brain atrophy and hippocampal volume (Frisoni et al., 2010). We 

used Freesurfer to calculate the ratio of total brain volume to intracranial volume as a 

measure of whole brain atrophy. We used FSL FIRST to calculate the volumes of the left 

and the right hippocampus. 

Statistical analyses

The features of the six anatomical MRI measures were used in an elastic net logistic 

regression to classify the subjects as either AD or control. Elastic net regression uses 

penalties to hinder the features from entering the regression model (Zou & Hastie, 2005; 

Friedman et al., 2012). Thus, only the most relevant predictors will enter the regression 

model, which is helpful if the number of features outnumbers the number of subjects. 

Elastic net regression uses a combination of an L1 (LASSO) (Tibshirani, 1996) and L2 

(Ridge) (Hoerl and Kennard, 1970) penalty. Therefore, two hyperparameters should be 

set: the α parameter determines the relative weight of the two different penalties and λ 

determines the size of those penalties. Elastic net logistic regression has been used for 

AD classification by Schouten et al. (2016), Trzepacz et al. (2014) and Teipel et al. (2015). 

We used cross-validation to ensure that we are not overfitting the prediction models. 

In our case there are two potential sources of overfitting. We could either include 

too many predictors in our logistic regression model or we could overestimate the 

classification accuracy by looping over all the values of the hyperparameters and only 

pick the best result. To ascertain that we are not subject to any of these two sources of 

overfitting we used a nested cross-validation approach (Krstajic et al., 2014). We used 

the inner loop of the nested cross-validation to fit the logistic regression model and the 

outer loop to tune the hyperparameters. For both the inner and outer loop we used 

10-fold cross-validation, thus using 90 percent of the subjects in the training set and 10 

percent in the test set, and repeating this 10 times such that all subjects were part of 

the test set once.

We plotted receiver operating characteristic (ROC) curves and calculated the area 

under the curve (AUC) as a measure of classification accuracy. We repeated the cross-

validation procedure 50 times to get a more reliable cross-validation error (Krstajic et 

al., 2014). We extracted the median AUC value instead of the mean, because we expect 

that the distribution of AUC values is skewed to the left due to a ceiling effect.
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First, we calculated the classification accuracy for each measure separately. Then we 

calculated the classification accuracy for the combination of all measures and for all 

pairs of two measures. We used two different methods to combine the features of 

different measures. In the first method we concatenated the features and we used 

the concatenated feature set for classification similarly as the single measures. 

Concatenation is commonly used to combine different sets of features for prediction 

(De Magalhães Oliveira et al., 2010; Westman et al., 2012). It might however not be the 

most optimal method for combination, because all sets of features are then weighted 

equally whereas some sets might be more predictive than others. Therefore, in the 

second method we used a weighted average of the single measure predictions in 

order to increase classification performance (Wolpert, 1992; Breiman, 1994). Measures 

that achieved a higher accuracy were given a larger weight. We used the inverse of 

the binomial deviance as a measure of accuracy. Binomial deviance is a continuous 

measure of prediction error and is therefore sensitive for small accuracy differences. 

We determined the measures’ weights for each subject individually. To avoid overfitting 

we used the binomial deviances within the training set to determine the contributions 

of the measures for the left out subjects. The weighted average was calculated for all 

the 50 cross-validation repetitions and the median result was presented.

2.3 Results
Figure 1 shows ROC curves for the classification of AD vs. cognitively normal controls for 

the six anatomical MRI measures separately, and for the combination of all six measures. 

The accompanying AUCs, representing a measure of classification accuracy, are shown 

in Table 1. Table 1 also presents the AUC values for the two reference measures: 

hippocampal volume and whole brain atrophy. The two reference measures perform 

reasonably well. Especially, the hippocampal volumes can discriminate well between 

AD patients and controls. Yet, the grey matter density of the cortical structures and 

the volumes of subcortical structures discriminate better than the reference measures. 

Cortical thickness, cortical area, cortical curvature, and hippocampal shape cannot 

improve over the reference measures. Most importantly however, the combination of 

all six measures outperforms the separate measures. The weighted combination of all 

measures discriminates somewhat better than the concatenated combination
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Figure 1.  ROC curves for discriminating AD patients from cognitively healthy controls. 
ROC curves are plotted for the six anatomical measures separately and for the two 
types of combinations of all six measures. 

Table 1. AUC values discriminating AD patients from cognitively healthy controls 
for the different anatomical MRI measures. Hippocampal volumes and whole brain 
atrophy are added for comparison, because these are fairly simple measures that 
are commonly used by clinicians to diagnose AD.  The other six measures are used 
separately and combined to discriminate the two groups. We used two methods for 
the combination. Both of them outperform the separate measures, and the weighted 
combination works best.

Anatomical MRI measures AUC

Reference: hippocampal volumes 0.87

Reference: whole brain atrophy 0.77

1) Cortical thickness 0.67

2) Cortical area 0.85

3) Cortical curvature 0.73

4) Grey matter density 0.94

5) Subcortical volumes 0.93

6) Hippocampal shape 0.74

All six measures: concatenation 0.95

All six measures: weighted combination 0.98



Chapter 2

26 27

To further investigate the additive value of combining different measures, we calculated 

the AUCs for all pairs of two measures, using both measure concatenation (Figure 2, 

left side) and weighed combinations (Figure 2, right side). The tall bars represent the 

single measure AUCs, like in Table 1. The short bars represent the additive value of a 

second measure. Note that the additive value can also be negative, when the addition 

of a second measure worsens the classification accuracy. Both for concatenation and 

weighted combinations, the AUC of a single measure often improves when a second 

measure is added. When using concatenation, the highest AUC values are obtained 

by combining grey matter density with either subcortical volumes or cortical thickness 

(AUC = 0.98), which is even higher than the concatenation of all six modalities.  Using 

weighted combinations, the highest AUC is obtained by combining grey matter density 

with subcortical volumes (AUC = 0.98), which is equal to the weighted combination of 

all six modalities.

Figure 2. AUC values for all the possible combinations of two measures using feature 
concatenation (left) and weighted combinations (right). The tall bars represent the 
single measure AUCs, which are the same as those in Table 1. The short bars represent 
the additive value of a second measure. The additive values are mostly positive. For 
example, when cortical area is concatenated with cortical thickness, the AUC increases 
from 0.67 to 0.71. However, sometimes the additive value a second measure is negative. 
For example, cortical area is on its self a better predictor (0.85) than concatenated with 
cortical thickness (0.71).
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These statistical models are primarily meant to predict class membership, and not to 

make claims about which features were most important to distinguish AD patients 

from controls. If a statistical model is built for prediction, rather than for explanation, 

one should be careful when interpreting the explanatory part of that model (Shmueli, 

2010). We elaborate more on this in the discussion section. Yet, to illustrate the content 

of the classification models we show the standardised beta values (averaged over the 

50 cross-validation repetitions) for the predictors of the grey matter density measure 

(Figure 3) and the subcortical volumes measure (Figure 4). We used these two measures 

for illustration, because they discriminate best between AD patients and cognitively 

normal controls. For regions with a negative beta value, low grey matter density values 

or low subcortical volumes increase the odds for AD. For regions with a positive 

beta value, high grey matter density values or high subcortical volumes increase the 

odds for AD. This might seem contradictionary, because we do not expect to see 

increased grey matter density values or increased subcortical volumes in AD patients. 

The interpretation of these effects could be something like: if that region is relatively 

unaffected (high grey matter density, or large subcortical volume) while some other 

regions are more affected, this is evidence in favour of AD. We plotted the regions 

in colour coding for the grey matter density measure (Figure 5) and the subcortical 

volumes measure (Figure 6).

The grey matter density classification model was mostly driven by decreased grey 

matter density within the cortical areas in the medial temporal lobes, and to a lesser 

extent in the occipital and frontal lobes. The regions with large weights include 

the orbitofrontal cortex, the subcallosal cortex, the insular cortex, and the inferior 

temporal gyrus. Most regions contribute to the classification model to a certain 

extent, suggesting that a global pattern of atrophy is predictive for AD. The subcortical 

volumes classification model was mostly driven by decreased sizes of the hippocampus, 

putamen and thalamus, and to a lesser extent by decreased sizes of the accumbens 

and the amygdala.
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Figure 3. Beta values for the cortical grey matter density estimates. The beta values 
represent the mean beta values over all the cross-validation folds of all the cross-
validation repetitions. The beta values are ordered according to size. Negative beta 
values are coloured blue, and positive beta values are coloured red. Most beta values 
are negative, and the meaning of those is that low grey matter density predicts 
toward AD. Some beta values are positive, which is counterintuitive, but could mean 
something like: if that region is relatively unaffected (high grey matter density) while 
some other regions are more affected, this is evidence in favour of AD. Note that 
grey matter density was only calculated for the cortical regions. The results for the 
subcortical volumes are presented in Figure 4.
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Figure 4. Beta values for the subcortical volumes. The beta values represent the mean 
beta values over all the cross-validation folds of all the cross-validation repetitions. The 
beta values are ordered according to size. Negative beta values are coloured blue, and 
positive beta values are coloured red. Most beta values are negative, and the meaning 
of those is that a small volume predicts toward AD. Some beta values are positive, 
which is counterintuitive, but could mean something like: if that region is relatively 
unaffected (large volume) while some other regions are more affected, this is evidence 
in favour of AD.
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Figure 5. The beta values from Figure 4 are presented here in colour coding. The 
‘cool’ regions correspond with the blue bars and the meaning of those is that low grey 
matter density predicts toward AD. The ‘hot’ regions correspond with the red bars 
and the meaning of those is that high grey matter density predicts toward AD. This is 
counterintuitive, but could mean something like: if that region is relatively unaffected 
(high grey matter density) while some other regions are more affected, this is evidence 
in favour of AD.

Figure 6. The beta values from Figure 5 are presented here in colour coding. The 
‘cool’ regions correspond with the blue bars and the meaning of those is that a small 
volume predicts toward AD. The ‘hot’ regions correspond with the red bars and the 
meaning of those is that a large volume predicts toward AD. This is counterintuitive, 
but could mean something like: if that region is relatively unaffected (large volume) 
while some other regions are more affected, this is evidence in favour of AD.
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2.4 Discussion
In this study we used different anatomical MRI measures to separate AD patients 

from controls. Our main finding is that the combination of the different anatomical 

MRI measures improves AD classification accuracy over each single measure. The 

combination of different anatomical MRI measures thus captures more information on 

grey matter loss than each of the measures separately, and AD classification benefits 

from this extra information through an automated classification algorithm. 

When used separately, all measures were sensitive to the detection of AD. We 

replicated early findings in which grey matter density values (Cuingnet et al., 2010) and 

the volumes of the subcortical structures (De Magalhães Oliveira et al., 2010) are highly 

discriminative for AD. However, the high classification accuracy of cortical surface area 

compared to cortical thickness is relatively surprising. Previous studies found that 

cortical grey matter atrophy is primarily reflected in cortical thinning rather than in a 

decrease of cortical area (Dickerson et al., 2009; Westman et al., 2012). 

We have used two different methods to combine the measures. The weighted 

combination of the measures showed higher accuracy than the concatenation of the 

measures. Due to a relatively small sample size, it is unclear whether this difference will 

generalise to other data sets, but it does demonstrate that the method that is used for 

the combination of the information can influence diagnostic accuracy.

The classification model for the grey matter density estimates (which were only 

calculated for the cortical regions) was mostly driven by decreased grey matter density 

within the medial temporal lobes, and to a lesser extent in the occipital and frontal 

lobes. These findings are in line with other observations of AD atrophy (Karas et al., 

2004; Frisoni et al., 2010; Risacher et al., 2010). The subcortical volumes classification 

model was mostly driven by decreased sizes of the hippocampus, putamen and 

thalamus, which is also in accordance to previous findings (Leung et al., 2010; de Jong 

et al., 2008). 

It should be noted that we have built predictive models, without the explicit goal 

to make explanatory models. We should therefore be careful when interpreting the 

explanatory part of our models (Shmueli, 2010). For example, we have forced sparsity 

in our models, which hinders potentially relevant features from entering the model. 

Furthermore, the effect of a feature is conditional on the effect of all the other features in 
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the model, and can therefore not be interpreted independently. Also, multicollinearity 

is not an issue for prediction models, but it can be problematic for the explanatory 

part of a model. These constraints should thus be taken into consideration when 

interpreting the content of the prediction models. For these reasons the effects do 

not denote one to one relationships between the feature and the probability of being 

classified as an AD patient, nor do they reflect mean differences between the groups.

We did not use non-linear effects or interaction-effects in our classification algorithm, 

which improves the reproducibility of our results. More complex classification models 

might further enhance the classification accuracy. For example, longitudinal AD studies 

have found that atrophy in some areas in the brain follows a non-linear trend (Chan et 

al., 2003; Fotenos et al., 2005). On the contrary, more complex classification algorithms 

can cause overfitting, resulting in a poorer classification performance (Hastie et al., 

2009). Neither did we use prior feature selection, because feature selection generally 

does not improve AD classification results (Chu et al., 2012) and avoiding this extra 

step eases the reproducibility of our results.

We have used the most up to date versions of Freesurfer and FSL to calculate the 

structural measures. Freesurfer and FSL have both been validated for the analysis of 

anatomical MRI scans for both healthy subjects and AD patients. Freesurfer is sensitive 

to detect cortical thinning in AD patients compared to controls (Redolfi et al., 2015). and 

it has good scan-rescan reproducibility (Tustison et al., 2014). The results of Freesurfer 

analyses do however differ between different Freesurfer versions (Groenschild et al., 

2012), but the most recent Freesurfer versions correspond better with the results of 

manual outlining (Clerx et al., 2015). The shape model that is used by FSL First to 

segment the subcortical structures has been trained on both healthy subjects and 

pathological brains (including AD patients) to reduce bias towards healthy brains 

(Patenaude et al., 2011). Furthermore, FSL First calculation of the subcortical volumes 

is roughly similar to the results of manual outlining for AD patients, MCI patients and 

controls from the ADNI data set (Mulder et al., 2014). FSL voxel-based morphometry 

(VBM) is relatively accurate because it makes use of a non-linear registration tool 

(Callaert et al., 2014). Furthermore, FSL VBM accurately detects hippocampal atrophy, 

but is biased towards detecting medial temporal lobe atrophy in AD patients (Diaz-de 

Grenu et al., 2014).
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In conclusion, we demonstrated that the combination of i) cortical thickness, ii) cortical 

area, iii) cortical curvature, iv) grey matter density, v) subcortical volumes and vi) 

hippocampal shape improves AD diagnosis. The added value of combining different 

anatomical MRI measures should be considered in AD scanning protocols. It is still 

common practice to only use the size of the hippocampus or a single measure of whole 

brain atrophy for AD diagnosis. Our results demonstrate that clinical AD diagnosis 

could benefit from calculating multiple measures from an anatomical MRI scan and 

incorporate these all in an automated analysis. Our results further suggest that the 

grey matter density of the cortical structures and the volumes of the subcortical 

structures are sufficient for optimal AD classification based on an anatomical MRI 

scan. These results might also be relevant to studies of early AD diagnosis and other 

neurodegenerative diseases studies. 

2.5 Acknowledgments
This study is supported by grant no. 016130677 of the Netherlands Organisation for 

Scientific Research (NWO). A. Hafkemeijer is sponsored by NWO grant no. 05613010. 

E. G. Dopper is sponsored by grants from the Dioraphte Foundation grant no. 09-

02-03-00, the association for Frontotemporal Dementia research and NWO grant no. 

05613018.





A comprehensive 
analysis of resting 
state fMRI measures 
to classify individual 
patients with 
Alzheimer’s disease
Published in NeuroImage, 2018; 167, 62-72.

Frank de Vos, Marisa Koini, Tijn M. Schouten, Stephan Seiler, 
Jeroen van der Grond, Anita Lechner, Reinhold Schmidt, Mark de Rooij, 
Serge A. R. B. Rombouts



Chapter 3

36 37

Abstract
Alzheimer’s disease (AD) patients show altered patterns of FC (FC) on resting state 

functional magnetic resonance imaging (fMRI) scans. It is yet unclear which resting state 

fMRI measures are most informative for the individual classification of AD patients. We 

investigated this using resting state fMRI scans from 77 AD patients (MMSE = 20.4 

± 4.5) and 173 controls (MMSE = 27.5 ± 1.8). We calculated i) FC matrices between 

resting state components as obtained with independent component analysis (ICA), 

ii) the dynamics of these FC matrices using a sliding window approach, iii) the graph 

properties (e.g., connection degree, and clustering coefficient) of the FC matrices, and 

iv) we distinguished five FC states and administered how long each subject resided in 

each of these five states. Furthermore, for each voxel we calculated v) FC with 10 resting 

state networks using dual regression, vi) FC with the hippocampus, vii) eigenvector 

centrality, and viii) the amplitude of low frequency fluctuations (ALFF). These eight 

measures were used separately as predictors in an elastic net logistic regression, and 

combined in a group lasso logistic regression model. We calculated the area under the 

receiver operating characteristic curves (AUC) to determine classification performance. 

The AUC values ranged between 0.51 and 0.84 and the highest were found for the FC 

matrices (0.82), FC dynamics (0.84) and ALFF (0.82). The combination of all measures 

resulted in an AUC of 0.85. We show that it is possible to obtain moderate to good 

AD classification using resting state fMRI scans. FC matrices, FC dynamics and ALFF 

are most discriminative and the combination of all the resting state fMRI measures 

improves classification accuracy slightly. 

Keywords: resting state fMRI, Alzheimer’s disease, classification, independent 

component analysis, dual regression, dynamic functional connectivity
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3.1 Introduction
Alzheimer’s disease (AD) is a neurodegenerative disorder characterised by widespread 

grey matter atrophy (Jack et al., 2004), specifically hippocampal atrophy is considered 

to be the hallmark of AD (Morra et al., 2009). In order to develop a cure, or to slow 

down the disease progression, it is essential to diagnose AD in an early stage (Prince 

et al., 2011).

AD patients differ in their pattern of functional connectivity (FC) as shown by resting 

state functional magnetic resonance imaging (fMRI) scans. They have decreased FC 

between the hippocampus and several regions throughout the neocortex (Allen et al., 

2007; Wang et al., 2006), reduced FC within the default mode network (Binnewijzend 

et al., 2012; Greicus et al., 2004), and increased FC within the frontal networks (Agosta 

et al., 2012). AD patients also have different large-scale FC matrices (Brier et al., 2012) 

and graph properties derived from these matrices (Sanz-Arigita et al., 2010; Supekar 

et al., 2008). In addition, AD patients differ in the dynamics of their FC and their dwell 

time in specific FC states (Jones et al., 2012). Furthermore, AD patients have less signal 

in the low frequency domain (0 - 0.1 Hz) of their resting state signal (Han et al., 2011).

These FC differences might exist in an early stage of AD, even before the presence of 

brain atrophy and cognitive decline (Buckner et al., 2005; Sheline and Raichle, 2013). 

For instance, cognitively normal elderly with increased amyloid binding, an important 

AD indicator, have decreased FC between the precuneus and several regions within 

the default mode network, and these effects are similar to those observed in AD 

patients (Sheline et al., 2010a). Carriers of the APOE ε4 gene, who are at genetic risk 

for AD, have reduced FC between the precuneus and the hippocampus (Sheline, et 

al., 2010b), and increased FC within the default mode network (Filippini et al., 2009). 

Resting state fMRI might be used for the diagnosis or even early detection of AD and 

it is important to investigate this potential (Buckner et al., 2005; Sperling, 2011). AD 

biomarkers can be evaluated using individual classification studies. Resting state fMRI-

based AD classification studies have progressed through the use of machine learning 

techniques. Machine learning techniques enable the incorporation of many predictors 

into one predictive model and they automatically select the relevant ones. So far, AD 

has been classified moderately to good using FC matrices (Challis et al., 2015; Chen 

et al., 2011; Schouten et al., 2016) and their graph properties (Khazaee et al., 2015), FC 

dynamics (Wee et al., 2016), FC within the default mode network (Koch et al., 2012) and 

the amplitude of low frequency fluctuations (ALFF; Dai et al., 2012). 
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It is not known which of these resting state fMRI measures is best for AD classification. 

Moreover, the combination of different resting state fMRI measures might improve 

AD classification (Dai et al., 2012; de Vos et al., 2016; Mesrob et al., 2012; Schouten et 

al., 2016; Sui et al., 2013). In this study, we will use a wide range of resting state fMRI 

measures in combination with machine learning techniques to classify AD patients and 

controls. These measures include FC with several resting state networks (RSNs), FC with 

the hippocampus, FC matrices and their graph properties, FC dynamics, FC states, 

and the ALFF within the resting state signal. We will determine the most accurately 

predicting measures and combine them to investigate whether this increases the 

classification accuracy.

3.2 Materials and methods
Participants

Our dataset consisted of 77 clinically diagnosed probable AD patients and 173 

cognitively normal elderly controls (see Table 1). The AD patients were scanned at the 

Medical University of Graz as a part of the prospective registry on dementia (PRODEM; 

see also Seiler et al., 2012). The inclusion criteria for PRODEM are: dementia 

diagnosis according to DSM-IV criteria (American Psychiatric Association, 2000), non-

institutionalisation or need for 24-hour care, and the availability of a caregiver who 

agrees to provide information on the patients’ and his or her own condition. Patients 

were excluded if they were unable to sign an informed consent or if co-morbidities 

were likely to preclude termination of the study. We used the baseline scans from 

the PRODEM study, and only included patients that were diagnosed with AD in line 

with the NINCDS-ADRDA Criteria (McKhann et al., 1984), and for which anatomical 

MRI and resting state fMRI scans were available. The controls were scanned at the 

same scanning site, over the same time period, with the same scanning protocol as a 

part of the Austrian stroke prevention study. The Austrian Stroke Prevention Study is a 

community-based cohort study on the effects of vascular risk factors on brain structure 

and function in elderly participants without a history or signs of stroke and dementia 

on the inhabitants of Graz, Austria (see also Schouten et al., 2016).

MR acquisition

All participants were scanned on a Siemens Magnetom TrioTim 3T MRI scanner. 

The anatomical T1-weighted images were acquired with the following parameters: 

TR = 1900 ms, TE = 2.19 ms, flip angle = 9°, and an isotropic voxel size of 1 mm. The 
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resting state fMRI session was conducted, acquiring 150 volumes with TR = 3000 ms, 

TE = 30 ms, flip angle = 90°, 40 axial slices, with an isotropic voxel size of 3 mm. 

The participants were instructed to lie still with their eyes closed, and to stay awake.

MRI preprocessing

The MRI data were preprocessed using the FMRIB Software Library (FSL, version 

5.0) (Jenkinson et al., 2012; Smith et al., 2004). For the anatomical MRI this included 

brain extraction, bias field correction, and non-linear registration to standard MNI152 

template (Grabner et al., 2006). For the resting state fMRI data this included brain 

extraction, motion correction, a temporal high pass filter with a cut-off point of 100 

seconds, and spatial smoothing. The mean framewise displacement as calculated 

by MCFLIRT from FSL (Jenkinson et al., 2002) ranges from 0.02 to 0.42 mm (mean 

= 0.10, SD = 0.06) for the control subjects, and from 0.03 to 0.55 mm (mean = 0.13, 

SD = 0.11) for the AD patients (p < 0.05). To control for head motion, we applied 

motion correction using MCFLIRT (Jenkinson & Smith, 2002), and regressed the 

motion parameters out of the fMRI data. Additionally, we used the FMRIB’s ICA-based 

Xnoiseifilter (FIX, version 1.06) to automatically identify and remove noise components 

from the fMRI data (Salimi-Khorshidi et al., 2014), thereby increasing the signal to noise 

ratio (Griffanti et al., 2016). For the spatial smoothing, we used a smoothing kernel with 

a full width half maximum of 3 mm. We performed minimal smoothing, because this is 

recommended prior to running an independent component analysis (ICA) in order to 

reduce the probability of finding spurious components (Jenkinson, 2015).

Table 1. Sample demographics

Controls AD1 patients X2

Gender (♂/♀) 74/99 (57% ♀) 31/46 (60% ♀) n.s.2

min - max mean ± SD min - max mean ± SD t-test

Age 47 - 83 66.1 ± 8.7 47 - 83 68.6 ± 8.6 p<0.05

Education (years) 9 - 18 11.5 ± 2.8 4 - 20 10.8 ± 3.2 n.s.

Disease duration (months) - - 2 - 156 26.7 ± 24.5 -

MMSE3 22 - 30 27.5 ± 1.8 10 - 28 20.4 ± 4.5 p<0.001

CDR4 - - 0.5 - 2 0.8 ± 0.3 -

GDS5 0 - 11 2.1 ± 2.1 0 - 10 2.6 ± 2.6 n.s.

1AD = Alzheimer’s disease, 2MMSE = mini-mental state examination, 3CDR = clinical dementia rating, 
4GDS = geriatric depression scale.
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Resting state fMRI measures

We calculated eight types of measures from the resting state fMRI data. For most 

of those eight types of measures we calculated more than one variety, resulting in a 

total of 31 measures. These resting state fMRI measures are listed in Table 2, along 

with the number of values they comprise. These values are used as predictors in the 

classification analyses. Figure 1 summarises the procedures used to calculate the 

resting state fMRI measures. A more elaborated description is written below.
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Table 2. List of resting state fMRI measures used for Alzheimer’s disease classifi cation

Resting state measure # of predictors

1: FC1 matrices
1a. 20 X 20 full correlation 190

1b. 70 X 70 full correlation 2415

1c. 20 X 20 sparse partial correlation 190

1d. 70 X 70 sparse partial correlation 2415

FC dynamics
2a. SD2 of 20 X 20 full correlation FC matrix 190

2b. SD of 70 X 70 full correlation FC matrix 2415

2c. SD of 20 X 20 sparse partial correlation FC matrix 190

2d. SD of 70 X 70 sparse partial correlation FC matrix 2415

3: FC states
3a. FC states of 20 X 20 full correlation FC matrix 5

3b. FC states of 70 X 70 full correlation FC matrix 5

3c. FC states of 20 X 20 partial correlation FC matrix 5

3d. FC states of 70 X 70 partial correlation FC matrix 5

4: Graph metrics
4a. Graph metrics of 20 X 20 full correlation FC matrix 124

4b. Graph metrics of 70 X 70 full correlation FC matrix 424

4c. Graph metrics of 20 X 20 partial correlation FC matrix 124

4d. Graph metrics of 70 X 70 partial correlation FC matrix 424

5: FC with resting state networks
5a. FC with visual network 1 190981

5b. FC with visual network 2 190981

5c. FC with visual network 3 190981

5d. FC with default mode network 190981

5e. FC with the cerebellum 190981

5f. FC with sensorimotor network 190981

5g. FC with auditory network 190981

5h. FC with executive control network 190981

5i. FC with frontoparietal network 1 190981

5j. FC with frontoparietal network 2 190981

6: FC with Hippocampus
6a. FC with left hippocampus 190981

6b. FC with right hippocampus 190981

7: Eigenvector centrality
Fast eigenvector centrality mapping 190981

8: ALFF3

8a. ALFF 190981

8b. fALFF4 190981

All resting state fMRI measures combined 2,876,251

1FC = functional connectivity, 2SD = standard deviation, 3ALFF = amplitude of low 
frequency fl uctuations, 4fALFF = fractional amplitude of low frequency fl uctuations.
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Figure 1. The procedures for calculating the eight resting state fMRI modalities.



Chapter 3

44 45

Functional connectivity matrices

For each participant, we calculated FC between RSNs. We used temporal concatenation 

ICA in FSL MELODIC (Beckmann & Smith, 2004) to obtain RSNs. First, we registered 

the functional data of all participants to standard space and concatenated them along 

the time dimension. We then performed a low and a high dimensional ICA on the 

concatenated data set, forcing a solution with 20 and 70 components respectively. The 

components of these two ICA solutions are shown in Figure S2 in the supplementary 

materials. We registered the resulting ICA component weight maps back to subject 

space, weighted them by the subject specific grey matter density maps, and multiplied 

them with the functional data. We then calculated the mean time courses for the 

components and used these for the FC analysis. We calculated both full and partial 

correlation matrices. For the partial correlation matrices, we used the graphical lasso 

algorithm (Friedman et al., 2008) implemented in MATLAB (MATLAB 2013a, The 

MathWorks Inc., Natick, MA, 2000).  We set the ƛ parameter at 100, because this setting 

works best in most cases for fMRI functional connectivity (Smith et al., 2011). For each 

participant, we thus calculated four FC matrices.  The two 20 by 20 matrices each 

contain (20 * 19)/2 = 190 unique elements, and the 70 by 70 matrices each contain (70 * 

69)/2 = 2415 unique elements. We used these elements as predictors for classification.

Dynamics of functional connectivity matrices

We also calculated the dynamics of the above-described FC matrices using a sliding 

window approach (Chang and Glover 2011; Hutchinson et al., 2013; Jones et al., 2012). 

We used a window size of 33 seconds, similar to Jones et al. (2012) and Rashid et al. 

(2014), because it was shown that time windows as short as 30 seconds can provide 

reasonably good connectivity estimates (Shirer et al. 2012). We shifted the windows 

one volume at a time, resulting in 140 windows (Jones et al., 2012; Rashid et al., 2014). 

Within each window we calculated the four FC matrices as described in the previous 

paragraph. Then we calculated the standard deviation of the FC matrices over all the 

windows. This resulted in four matrices of standard deviations for each subject, with 

equal size as the FC matrices. We used the elements of these matrices as predictors 

for classification.

Functional connectivity states

For each of the four types of FC matrices we distinguished five ‘FC states’ and 

administered how long each subject resided in each of these five states. Functional 

connectivity states are patterns of FC that reoccur in time across participants (Allen et 

al., 2012; Jones et al., 2012; Rashid et al., 2014). In order to determine the FC states, 
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we clustered the sliding window FC matrices using k-means clustering. So, for each of 

the four types of FC matrices we clustered the 250 (number of subjects) * 140 (number 

of windows) = 35000 sliding window matrices. We created k = 5 clusters like Jones et 

al. (2012) and Rashid et al. (2015) and we used the Manhattan distance criterion like 

Allen et al. (2012). Then, for each participant we counted the number of sliding window 

matrices that were assigned to each of the five FC states. The five frequency values for 

each of the four types of FC matrices were used as predictors for classification.

Graph metrics

For each of the four types of FC matrices we calculated commonly used graph metrics. 

We used both the original and the binarised version of the FC matrices. Binary links 

denote the presence or absence of connections, while the original values contain 

information about the connection strengths (Rubinov & Sporns, 2010). Current network 

methods cannot quantify the role of negative connections in network organisation 

(Rubinov & Sporns, 2010) and therefore we absolutised the negative links. We binarised 

the full correlation matrices by maintaining the 20% largest absolute correlations 

within each matrix (Khazaee et al., 2015). Since the sparse partial correlation matrices 

are sparse from itself, we did not apply a binarisation threshold, but binarised the 

matrices by transforming all values greater than zero to 1. We used the Brain 

Connectivity Toolbox (Rubinov & Sporns, 2010) available for MATLAB (MATLAB 2013a, 

The MathWorks Inc., Natick, MA, 2000) to calculate the graph metrics. For the original 

connectivity matrix, we calculated the connection strength, weighted betweenness 

centrality, and weighted clustering coefficient for every node in the network and the 

weighted characteristic path length and weighted transitivity for the entire network 

(Rubinov & Sporns, 2010). For the binarised connectivity matrix we calculated the 

connection degree, betweenness centrality, and clustering coefficient for every node 

in the network and the characteristic path length and transitivity for the entire network 

(Rubinov & Sporns, 2010). So, in total we calculated 10 different graph measures, six 

measures for every node and four measures for the entire network. This resulted in 

6*20 + 4*1 = 124 predictors for the 20*20 FC matrices and 6*70 + 4*1 = 424 predictors 

for the 70*70 FC matrices.

Whole brain functional connectivity with resting state networks

We calculated whole brain FC with 10 RSNs using the dual regression approach in FSL 

(Filippini et al., 2009). We used templates that were obtained using an independent 

data set to increase the reproducibility of our findings (Griffanti, 2016). We used the 

RSN templates that were obtained using an ICA by Smith et al. (2012). These RSNs 
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are freely available online (http://www.fmrib.ox.ac.uk/analysis/brainmap+rsns/PNAS_

Smith09_rsn10.nii.gz) as spatial maps in standard space. These 10 RSNs include three 

visual networks, the default mode network, the cerebellum, a sensorimotor network, 

an auditory network, an executive control network and two frontoparietal networks. 

Additionally, we included the white matter (WM) and cerebrospinal fluid (CSF) maps 

provided by FSL (Jenkinson et al., 2012; Smith et al., 2004) as confound maps. Those 

12 spatial maps (10 RSNs plus two confound maps) were then used in a dual regression 

analysis. First, for each subject, the 12 spatial maps were regressed (as spatial regressors 

in a multiple regression) into the subjects’ 4D space-time dataset. This results in a set 

of subject-specific time series, one for each spatial map. Next, those time series were 

regressed (as temporal regressors, again in a multiple regression) into the same 4D 

dataset, resulting in 12 subject-specific spatial maps, one for each RSN and one for 

each of the two confound maps. These subject-specific spatial maps represent whole 

brain FC with the RSNs. We used the voxel-wise whole brain FC results for the ten 

RSNs as predictors for classification.

Whole brain functional connectivity with hippocampus

For each participant, we calculated whole brain FC with the left and with the right 

hippocampus (Allen et al., 2007; Wang et al., 2006). We first calculated the time course 

of the hippocampus for each participant. To this end we segmented the hippocampus 

in the anatomical scan using FSL First. We eroded the segmented hippocampus with 

three voxel layers to ascertain that only hippocampus voxels were included. The eroded 

hippocampus was then affine registered to the functional data and we calculated the 

mean time course of the functional data within the hippocampus mask. Then, for each 

participant we regressed the time course of the hippocampus, along with the mean 

WM and CSF time courses as confound regressors, into the functional data using 

multiple regression. This resulted in a whole brain FC map with the hippocampus. We 

performed this analysis for both the left and the right hippocampus and used the two 

resulting whole brain FC maps as predictors for classification.

Eigenvector centrality

For each participant, we calculated an eigenvector centrality map. Eigenvector 

centrality attributes a value to each voxel in the brain such that a voxel receives a large 

value if it is strongly correlated with many other voxels that are themselves central 

within the network (Lohmann et al., 2010). We used the fastECM algorithm (Wink et al., 

2012; Binnewijzend et al., 2014) to calculate a whole brain eigenvector centrality map 

in standard space for each participant.
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Amplitude of low frequency fluctuations

We calculated ALFF (Biswal et al., 2010; Zang et al., 2007) and fractional ALFF (fALFF) 

(Zou et al., 2008) for each participant. We used the REST software package (Song et 

al., 2011) to calculated whole brain ALFF and fALFF maps. ALFF was defined as the 

power within the 0 - 0.1 Hz frequency band and fALFF was defined as the power within 

the 0 - 0.1 Hz frequency band divided by the power of the whole frequency spectrum. 

For standardisation purposes, we divided the voxels’ ALFF/fALFF values by the mean 

ALFF/fALFF within a subjects’ whole brain (Zang et al., 2007).

Statistical analyses

For each of the 31 groups of predictors of the eight resting state fMRI modalities 

we used an elastic net logistic regression model to classify the subjects as either AD 

or control. Elastic net regression is commonly used for neuroimaging classification 

studies (Teipel et al., 2017a; Nir et al., 2016; Trzepacz et al., 2016). We used the glmnet 

package (Friedman et al., 2010; Zou & Hastie, 2005) available for R (R version 3.1.2, R 

Core Team, 2014). Elastic net regression uses penalties to hinder the predictors from 

entering the regression model (Friedman et al., 2010; Zou & Hastie, 2005). Thus, only 

the most relevant predictors will enter the regression model, which is helpful if the 

number of predictors outnumbers the number of subjects. Elastic net regression uses a 

combination of an L1 (LASSO) (Tibshirani, 1996) and L2 (Ridge) (Hoerl and Kennard, 1970) 

penalty. Therefore, two hyper parameters should be set: the α parameter determines 

the relative weight of the two different penalties and λ determines the size of those 

penalties. Elastic net logistic regression has already been used for AD classification (de 

Vos et al., 2016; Schouten et al., 2016; Schouten et al., 2017; Teipel et al., 2015; Trzepacz 

et al., 2014). For the combined classification model, we concatenated the 31 groups 

of predictors, resulting in a combined set containing 2,876,251 predictors. These 

predictors were jointly included in the group lasso model (Simon et al., 2013) and we 

informed the group lasso with an index vector that indicates the group membership of 

the predictors. The group lasso is similar to the elastic net, but sparse with respect to 

groups of predictors. This improves interpretation of the combined model, because a 

modality is either entirely included or excluded from the prediction model. We used 

the SGL package (Simon et al., 2013) available for R (R version 3.1.2, R Core Team, 

2014).

We used cross-validation to ensure that we are not overfitting the prediction models. 

In our case there are two potential sources of overfitting. We could either include 

too many predictors in our logistic regression model or we could overestimate the 
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classification accuracy by looping over all the values of the hyper parameters and only 

pick the best result. To ascertain that we are not subject to any of these two sources 

of overfitting we used a nested cross-validation approach (Krstajic et al., 2014). We 

used the inner loop of the nested cross-validation to tune the hyper parameters and 

the outer loop to fit and test the logistic regression model. For both the inner and 

outer loop we used 10-fold cross-validation, thus using 90 percent of the subjects in 

the training set and 10 percent in the test set, and repeating this 10 times such that all 

subjects were part of the test set once.

We made receiver operating characteristic (ROC) curves and calculated the area under 

the curve (AUC) as a measure of classification performance. The AUC is invariant to 

the class distribution (Bradley, 1997; Fawcett, 2004), which is an advantage since the 

number of control subjects is larger than the number AD patients. We also calculated 

sensitivity, specificity and balanced accuracy values for those classification cut-offs that 

resulted in the highest balanced accuracy. We repeated the cross-validation procedure 

10 times to get a more reliable cross-validation error (Krstajic et al., 2014) and extracted 

the mean AUC value.

In order to statistically compare the AUC values, we used bootstrap tests for paired 

AUCs (Hanley and McNeil, 1983) implemented in the pROC package (Robin et al., 

2011) available for R (R version 3.1.2, R Core Team, 2014). For the comparison of the 

different resting state fMRI measures we used two-sided tests, because we have 

not formulated any directed hypotheses for these comparisons. To compare the 

combined model with the single measures we applied one-sided hypothesis tests, 

because we hypothesised that the combined model would outperform the single 

measures. We present uncorrected p-values and Bonferroni corrected p-values. The 

Bonferroni correction was applied separately to the inter measure comparisons and 

the comparisons of the single measures with the combined model.

3.3 Results
Classification results

Figure 2 shows the AUC values for the 31 different types of resting state fMRI measures 

and the combined model. Table 3 also presents values for sensitivity, specificity and 

balanced accuracy. The AUC values range between 0.51 and 0.84. The functional 

connectivity matrices (AUC values between 0.72 and 0.82) and the FC dynamics 
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(AUC values between 0.72 and 0.84) distinguish AD patients and controls quite well. 

Particularly the sparse partial correlations between the 70 ICA components (AUC = 0.82) 

and the standard deviations of these sparse partial correlations over time (AUC = 0.84) 

have high AUC values. Also, the ALFF measures are discriminative for AD. ALFF has 

an AUC value of 0.82, and fALFF has an AUC value of 0.69. The FC states (AUC values 

between 0.55 and 0.74) and the graph metrics (AUC values between 0.70 and 0.79) have 

reasonable classification accuracies. Functional connectivity with the 10 RSNs (AUC 

values between 0.52 and 0.71) mostly performs poorly, except for FC with the default 

mode network (AUC = 0.70) and the executive control network (AUC = 0.71). FC with 

the left (AUC = 0.59) and right (AUC = 0.51) hippocampus result in poor classification 

performances and Eigenvector centrality mapping results in moderate classification 

performance (AUC = 0.69). As shown in Figure 2 on the right, the combination of all 

the resting state fMRI measures using the group lasso model results in an AUC value 

of 0.85, which is higher than any of the measures used alone. Combining resting state 

fMRI measures thus seems beneficial, although the effect is small.

Figure 2. Area under the receiver operating characteristic curve (AUC) values for all 
the resting state fMRI measures. The wide bar on the right is the AUC value for the 
combination of all resting state fMRI measures. The error bars represent one standard 
error above and below the AUC values.
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Table 3. Alzheimer’s disease classifi cation performance for the resting state fMRI measures.

Resting state measure AUC1 Sensitivity Specifi city Balanced 
accuracy

1: FC2 matrices
1a. 20 X 20 full correlation 0.74 0.73 0.68 0.71
1b. 70 X 70 full correlation 0.72 0.62 0.77 0.69
1c. 20 X 20 sparse partial correlation 0.77 0.68 0.76 0.72
1d. 70 X 70 sparse partial correlation 0.82 0.79 0.71 0.75

FC dynamics
2a. SD3 of 20 X 20 full correlation FC matrix 0.74 0.67 0.74 0.7
2b. SD of 70 X 70 full correlation FC matrix 0.72 0.70 0.69 0.69
2c. SD of 20 X 20 sparse partial correlation FC matrix 0.80 0.76 0.76 0.76
2d. SD of 70 X 70 sparse partial correlation FC matrix 0.84 0.83 0.73 0.78

3: FC states
3a. FC states of 20 X 20 full correlation FC matrix 0.55 0.39 0.75 0.57
3b. FC states of 70 X 70 full correlation FC matrix 0.55 0.54 0.60 0.57
3c. FC states of 20 X 20 partial correlation FC matrix 0.68 0.60 0.71 0.66
3d. FC states of 70 X 70 partial correlation FC matrix 0.74 0.72 0.69 0.70

4: Graph metrics
4a. Graph metrics of 20 X 20 full correlation FC matrix 0.79 0.79 0.68 0.74
4b. Graph metrics of 70 X 70 full correlation FC matrix 0.70 0.74 0.61 0.68
4c. Graph metrics of 20 X 20 partial correlation FC matrix 0.73 0.75 0.65 0.70
4d. Graph metrics of 70 X 70 partial correlation FC matrix 0.74 0.72 0.69 0.71

5: FC with resting state networks
5a. FC with visual network 1 0.52 0.46 0.64 0.55
5b. FC with visual network 2 0.53 0.35 0.77 0.56
5c. FC with visual network 3 0.57 0.48 0.68 0.58
5d. FC with default mode network 0.70 0.67 0.66 0.67
5e. FC with the cerebellum 0.66 0.60 0.68 0.64
5f. FC with sensorimotor network 0.54 0.45 0.67 0.56
5g. FC with auditory network 0.60 0.68 0.52 0.60
5h. FC with executive control network 0.71 0.76 0.62 0.69
5i. FC with frontoparietal network 1 0.61 0.50 0.74 0.62
5j. FC with frontoparietal network 2 0.63 0.60 0.65 0.62

6: FC with Hippocampus
6a. FC with left hippocampus 0.59 0.51 0.66 0.59
6b. FC with right hippocampus 0.51 0.35 0.74 0.55

7: Eigenvector centrality
Fast eigenvector centrality mapping 0.69 0.66 0.66 0.66

8: ALFF4

8a. ALFF 0.82 0.71 0.82 0.76
8b. fALFF5 0.69 0.71 0.61 0.66

All resting state fMRI measures combined 0.85 0.86 0.71 0.79

1AUC = area under the receiver operating characteristic curve, 2FC = functional connectivity, 
3SD = standard deviation, 4ALFF = amplitude of low frequency fl uctuations, 5fALFF = fractional amplitude 
of low frequency fl uctuations.

Table 3. Alzheimer’s disease classification performance for the resting state fMRI 
Figure S1. Correlations between the 31 resting state fMRI measures. For each 
measure, we ran a principal component analysis (PCA) and we cross correlated the 
component scores of all the 31 first components..
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Figure 3. Statistical comparisons between the AUC values. The barplot contains 
the AUC values for the different resting state fMRI measures and the combined 
model, together with their standard errors. The matrix contains the results for the 
statistical comparisons between the AUC’s. The top right half of the matrix contains 
the uncorrected results. The bottom left half of the matrix contains the Bonferroni 
corrected results. The red coloured elements represent p values < 0.05.
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Combined classification model

Figure 4 shows the contribution to the combined model for each of the 31 resting 

state fMRI measures. The y-axis represents the sum of the absolute standardised beta 

values for all the predictors within a resting state measure. A high value represents an 

important role for that group of predictors within the combined model. In order to 

quantify the spread of the contributions we fitted the group lasso model repeatedly 

on 100 bootstrap samples. The 100 results are represented by the boxplots. In line 

with the results of the single modalities, the FC matrices and the FC dynamics largely 

contribute the combined prediction model. There is also some contribution of the 

FC states and the graph metrics. Remarkably, ALFF hardly contributes, despite its 

discriminative power when used alone. There is considerable spread in the contribution 

of the resting state fMRI measures as shown by the 100 bootstrap results. None of the 

resting state fMRI measures contributes to the group lasso model in each bootstrap 

sample. However, it remains clear that the FC matrices and FC dynamics are important 

for the combined prediction model, whereas the other resting state fMRI measures 

contribute minimally or not at all.

Figure 4. Importance of each resting state measure for the combined model. The 
combined model is fitted on 100 bootstrap samples to display the spread of the 
importance’s. The importance is quantified by the sum of the absolute beta weights of 
all the predictors within a resting state measure category.
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Supplementary analyses
Relation between different resting state fMRI measures

To explore relations between the resting state fMRI modalities, we calculated 

correlations between the 31 different resting state fMRI measures. These are presented 

in supplementary Figure S1. Straightforward calculation of correlation coefficients 

between the 31 resting state fMRI measures was not possible, because each resting 

state fMRI measure contains multiple predictors and the number of predictors is 

different for every measure. To overcome this problem, we ran a principal component 

analysis (PCA) for each of the 31 measures and cross correlated the component scores 

of all the 31 first components. Not surprisingly, resting state fMRI measures within the 

same modality are generally highly related. In addition, FC matrices, FC dynamics, FC 

states and ALFF appear to be related to each other.

Functional connections important for classification

To explore which of the ICA components were most important for AD classification, 

we plotted the mean beta values over all cross-validation folds and cross-validation 

repetitions for the FC matrices in supplementary Figure S3. Functional connectivity 

values between higher components have larger beta weights than FC values between 

lower components. Figure S2 shows that higher components are in fact real functional 

networks, whereas some lower components are noise components. This suggests that 

information on real functional networks was contributing to the classifier.

Percentage of non-zero parameters

For each resting state measure, we looked at the percentage of predictors that 

contributed to the classification model. Figure S4 shows the mean percentage of non-

zero parameters over all cross-validation folds and cross-validation repetitions for each 

resting state measure. The percentages are mostly over 20%, indicating that for most 

measures many predictors are included in the classification model.

Voxel-wise vs. averaging over regions

The AUC values for resting state fMRI modalities one to four are mostly higher than 

the AUC values for resting state fMRI modalities five to eight. One notable difference 

between these two groups is the number of predictors. The number of predictors 

within resting state fMRI modalities one to four ranges from five to 2415 per category, 

whereas resting state fMRI modalities five to eight are voxel-wise maps and they 

contain 190981 predictors per category. To explore the possibility that the number 
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of predictors influences the classification performance, we averaged the voxel-wise 

maps over the 70 components as obtained by the high dimensional ICA and reran the 

classification analyses with the reduced number of predictors. Figure S5 shows both 

the original AUC values and the AUC values after averaging over the 70 components. 

The differences are small and the ranges of the different cross-validation repetitions 

are most of the time overlapping. The low classification performance for some of these 

categories seems not to be caused by the large number of predictors.

Optimal value analysis for the number of ICA components

We investigated the optimal number of ICA components for our connectivity analyses. 

We ran ICA analyses for 5 to 100 components with steps of five. For each number 

of components, we calculated connectivity matrices with both full or sparse partial 

correlations, and the dynamics of these connectivity matrices. The results are plotted 

in Figure S6. Calculating only five components seems to be too few, but upwards of 

10 components the results are too diverse to draw conclusions on the optimal number 

of components.

3.4 Discussion
In this study, we determined the accuracy of different resting state fMRI measures for 

the individual classification of AD patients. We used machine learning techniques for 

efficient use of resting state fMRI measures in prediction models. FC matrices, FC 

dynamics, and ALFF show best discrimination between AD patients and control subjects. 

The combination of all the resting state fMRI measures improved the classification 

accuracy slightly, but not significantly. The FC matrices and the FC dynamics largely 

contribute to this combined model, whereas the other resting state fMRI measures are 

mostly redundant. This suggests that only FC matrices and FC dynamics need to be 

calculated to achieve optimal individual AD classification through a resting state fMRI 

scan.

FC matrices have been used successfully for AD classification before (Challis et al., 

2015; Chen et al., 2011). Our results add to this conclusion and furthermore show that 

FC as calculated with sparse partial correlation results in higher classification accuracy 

than FC as calculated with full correlation. Likely, this is due to the fact that sparse 

partial correlations provide better FC estimates than full correlations (Smith et al., 2011). 

In addition, FC between 70 components resulted in somewhat higher classification 
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accuracy than FC between 20 components. This is in line with the observation that 

high dimensional ICA solutions provide a more specific representation of functional 

regions, and consequently FC between these regions results in better AD classification 

(Dipasquale et al., 2015). The dynamics of the FC matrices resulted in higher 

classification accuracy than the FC matrices itself. FC dynamics as opposed to static FC 

is a relatively unexplored domain in AD, but it has been shown that AD patients differ 

in their FC dynamics compared to controls (Chen et al., 2016; Jones et al., 2012; Wee 

et al., 2016). ALFF resulted in good classification accuracy, similar to Dai et al (2012). 

However, it did not provide additive value over the FC matrices and the FC dynamics 

for the combined model. For this reason, ALFF does not seem to be necessary for an 

AD classification model. FC states and graph metrics had reasonable classification 

accuracies, but they did not provide additive value for the combined model either. 

Furthermore, these two measures are derived from the FC matrices and FC dynamics, 

which themselves have higher classification accuracies. Functional connectivity states 

and graph metrics thus require more work to calculate and they do not seem to be 

beneficial over the simpler measures.

FC with the ten RSNs resulted mostly in poor classification accuracies. Exceptions are 

FC with the default mode network and FC with the executive control network. This 

corresponds to studies reporting abnormal FC in these networks in AD patients (Agosta 

et al., 2012; Binnewijzend et al., 2012; Greicus et al., 2004). FC with the hippocampus also 

resulted in poor classification accuracy, despite abnormal hippocampal connectivity 

patterns observed in AD patients (Allen et al., 2007; Supekar et al., 2008; Wang et 

al., 2006). These effects are probably not sufficiently consistent for AD classification. 

Possibly this is due to the fact that the hippocampus is not persistently connected with 

the cortex, but follows a context dependent connectivity pattern (Huijbers et al., 2012).

Some settings we have not explored. We used an ICA to determine regions as input to 

the FC analysis (Allen et al., 2012; Hutchison et al., 2013; Jones et al., 2012; Rashid et al, 

2014), where others have used the automated anatomical labeling (AAL) atlas (Chen et 

al., 2011; Wee et al., 2016). We chose an ICA, because it is a data-driven approach that 

results in spatially independent components well suited for FC analyses. We used a 

group ICA and imposed the group components onto each subject (Dørum et al, 2017; 

Miller et al, 2016), because it is important to strive for the same parcellation in each 

subject in order to compare connectomes across subjects (Smith et al., 2013). We used 

the ICA components directly as nodes for the FC analysis. Others have used a follow up 

procedure to split ICA components into multiple nodes and use these nodes as input 
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to the FC analysis (Shirer et al, 2012; Jones et al., 2012; Shaw et al., 2015). We have 

not explored this option, but we obtained a similar result using the high dimensional 

ICA solution. When extracting a higher number of components, large networks split 

into multiple smaller networks. This can be observed in Figure S2. For example, 

component 1 of the 20 components solution splits into components 1, 6 and 13 of the 

70 components solution. For the calculation of FC dynamics, we used blocked sliding 

windows covering 11 volumes (33 seconds) and we shifted the windows one volume at 

a time (Jones et al., 2012). Other methods have been reported, using tapered windows 

(Allen et al., 2012; Wee et al., 2016), different window sizes (Chen et al., 2016; Wee et al., 

2016) and larger window shifts (Wee et al., 2016). Further, we quantified FC dynamics 

by calculating the standard deviations of the sliding window FC estimates. Alternatives 

are the dwell time in default mode network sub-configurations (Jones et al., 2012), 

graph measures obtained from the sliding window matrices (Wee et al., 2016), or higher 

order FC statistics that capture the covariance of the sliding window FC time series 

(Chen et al., 2016). We have not explored these methodological settings to study their 

effect on classification accuracy. For the analyses, we sticked to the default settings 

for that specific analysis as much as possible, and if there was no clear default setting, 

we based our choices on previous literature. We chose not to optimise the parameter 

settings within our study, because this would be computationally infeasible. Proper 

parameter optimisation must be performed using cross-validation, and in our case this 

would expand the cross-validation analyses considerably, because of the large number 

of predictors (~2 million) and the high number of parameters that can be optimised. 

In addition, the resting state fMRI scans used in this study covered 7.5 minutes, which 

is short for estimation of FC dynamics (Hindriks et al., 2016). It is not known whether 

classification accuracy improves with longer scan times.

For this study, we used only one sample to both train and test our prediction models. 

We have carefully used cross-validation techniques to prevent overfitting and obtain 

realistic accuracy estimates. Nevertheless, when applying these prediction models to 

other samples scanned at different scanner sites, we might find reduced classification 

accuracies, because these models are fine-tuned on the current sample. To evaluate 

the robustness of our classification models they have to be applied to a different 

sample. In addition, the current sample was not the result of random sampling from 

a prespecified population. The conclusions from the statistical tests that we have 

performed therefore only apply to the current sample.
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3.5 Conclusion
In conclusion, we demonstrated the use of resting state fMRI scans for individual AD 

classification. The optimal combination of resting state fMRI measures comprises FC 

matrices and FC dynamics. These results may direct future studies that use resting 

state fMRI scans for the classification of patients with preclinical AD or mild cognitive 

impairment.
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Figure S1. Correlations between the 31 resting state fMRI measures. For each 
measure, we ran a principal component analysis (PCA) and we cross correlated the 
component scores of all the 31 first components.
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Figure S2. The 20 and 70 components extracted from the low and high dimensional 
independent component analysis (ICA).
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Figure S3. Mean beta values for the functional connectivity matrices. Beta values 
are averaged over the multiple cross-validation folds and multiple cross-validation 
repetitions.
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Figure S5. The effect of averaging over regions. The original classification results 
(green) and the results when the voxel-wise data is averaged over the 70 ICA 
components (red). The boxplots represent the different cross-validation repetitions.

Figure S4. Mean percentage of non-zero parameters over all cross-validation folds 
and cross-validation repetitions for the 31 resting state fMRI measures.
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Figure S6. AUC values for the functional connectivity between ICA components (top), and 
functional connectivity dynamics (bottom) for a range of numbers of ICA components. 
The error bars represent one standard error above and below the AUC values.
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Abstract
Anatomical magnetic resonance imaging (MRI), diffusion MRI and resting state 

functional MRI (fMRI) have been used for Alzheimer’s disease (AD) classification. 

These scans are typically used to build models for discriminating AD patients from 

control subjects, but it is not clear if these models can also discriminate AD in diverse 

clinical populations as found in memory clinics. To study this, we trained MRI-based 

AD classification models on a single-centre data set consisting of AD patients (N = 

76) and controls (N = 173), and used these models to assign AD scores to patients 

with subjective memory complaints (SMC, N = 67), mild cognitive impairment (MCI) 

patients (N = 61), and AD patients (N = 61) from a multi-centre memory clinic data 

set. The anatomical MRI scans were used to calculate grey matter density, subcortical 

volumes and cortical thickness, the diffusion MRI scans were used to calculate fractional 

anisotropy, mean, axial and radial diffusivity, and the resting state fMRI scans were used 

to calculate functional connectivity between resting state networks and amplitude of 

low frequency fluctuations. Within the multi-centre memory clinic data set we removed 

scan site differences prior to applying the models. For all models, on average, the AD 

patients were assigned the highest AD scores, followed by MCI patients, and later 

followed by SMC patients. The anatomical MRI models performed best, and the best 

performing anatomical MRI measure was grey matter density, separating SMC patients 

from MCI patients with an AUC of 0.69, MCI patients from AD patients with an AUC 

of 0.70, and SMC patients from AD patients with an AUC of 0.86. The diffusion MRI 

models did not generalise well to the memory clinic data, possibly because of large 

scan site differences. The functional connectivity model separated SMC patients and 

MCI patients relatively good (AUC = 0.66). The multimodal MRI model did not improve 

upon the anatomical MRI model. In conclusion, we showed that the grey matter density 

model generalises best to memory clinic subjects. When also considering the fact that 

grey matter density generally performs well in AD classification studies, this feature is 

probably the best MRI-based feature for AD diagnosis in clinical practice.

Keywords: Alzheimer’s disease, Mild cognitive impairment, Subjective memory 

complainers, Anatomical MRI, Diffusion MRI, Resting state fMRI, Classification 
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4.1 Introduction
Early diagnosis of Alzheimer’s disease (AD) is important, because it enables patients and 

caregivers to prepare for disease progression (Prince et al., 2011). It is also beneficial 

for drug research, because early phase AD patients are more likely to be susceptible to 

medication (Cummings et al., 2016). Whereas the diagnosis of progressed AD is feasible 

(Frisoni et al., 2010), early identification of AD is still problematic (Frisoni et al., 2017).

Amyloid and tau pathology are hypothesised to occur early in AD (Jack et al., 2011) 

and tau-PET and amyloid-PET are hypothesised earliest AD biomarkers (Blennow and 

Zetterberg, 2018). However, for clinical studies magnetic resonance imaging (MRI) scans 

are advantageous, because they are often available, they are non-invasive and they are 

relatively cheap. Further, functional MRI (fMRI) measures have been hypothesised to 

change in early AD as well (Buckner et al., 2005; Sperling et al., 2011). 

MRI has been used to characterise brain changes that occur in AD. Most prominently, 

AD is characterised by grey matter atrophy, starting in the hippocampus (Morra et al., 

2010), and later extending to other brain regions, including subcortical structures and 

the medial temporal lobe (Jack et al., 2004; Seeley et al., 2009). The location and extent 

of grey matter atrophy can be determined using anatomical MRI. Brain alterations in 

AD patients also involves white matter integrity (Douaud et al., 2011), which can be 

shown by diffusion MRI. In addition, AD patients show altered functional connectivity 

(FC) between brain regions (Agosta et al., 2012; Binnewijzend et al., 2012), measured 

using resting state functional MRI (fMRI). 

However, these group differences are not necessarily useful in a clinical setting, since 

many AD markers have also been observed in healthy ageing (Salat et al., 1999). AD 

markers are only helpful in a clinical setting if they can accurately discriminate AD 

patients from non-affected subjects at the individual level. The focus of research on 

MRI biomarkers for AD has therefore shifted from the detection of group differences 

toward disease classification. MRI-based classification studies have progressed by 

using machine learning techniques, in which many predictors can be combined into 

one predictive model. This has led to good AD classification results for anatomical MRI 

(Cuingnet et al., 2011; Davatzikos et al., 2011; de Vos et al., 2016), diffusion MRI (Dyrba 

et al., 2013; Schouten et al., 2017) and resting state fMRI (Challis et al., 2015; Chen et al., 

2011; de Vos et al., 2018). Moreover, combining these three MRI modalities can further 

improve the classification accuracy (Schouten et al., 2016). 
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Although these results are promising, MRI-based classification models still have to 

surmount at least two problems. First, most MRI-based AD classification studies have 

used scans of AD patients and healthy elderly controls, and other studies have used 

scans of mild cognitive impairment (MCI) patients to predict AD conversion (see for 

an overview Rathore et al., 2017). These models are trained specifically for these 

classification problems, but it is not clear whether these models can also discriminate 

AD in diverse clinical populations as found in memory clinics. It is thus important to 

evaluate the generalisability of MRI-based AD classification models to diverse clinical 

populations. Second, MRI scans are susceptible to scanner effects (Ewers et al., 2006; 

Takao et al., 2014; Zhu et al., 2011). This is problematic when a classification model 

is trained with MRI scans from one scanner, and applied to MRI scans from another 

scanner. To be clinically useful, AD classification models should be robust to scanner 

effects.

We will study to which extent MRI-based AD classification models generalise to a 

diverse patient population. This study is novel on 2 important points. Firstly, we will 

apply an AD classification model to a group of memory clinic patients, who are prone 

to AD. This is more clinically relevant than classifying AD from healthy controls, but also 

much more challenging. Second, we will use both anatomical MRI, diffusion MRI and 

resting state fMRI scans. This enables a comparison between these imaging modalities, 

and the use of a multimodal MRI classification model. We will use two different data 

sets. The first data set consists of AD patients and healthy controls, and will be used for 

training MRI-based AD classification models. These classification models will then be 

applied to the second data set, that consists of a diverse patient population collected 

in four different memory clinics. The memory clinic data set contains AD patients, 

MCI patients and patients with subjective memory complaints (SMC). We expect that 

AD patients will have a higher likelihood of being classified as AD patient than both 

other groups. Furthermore, we expect this to be higher for MCI patients than for SMC 

patients, because MCI is often an early stage of AD.
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4.2 Methods
Participants

Training data

The training data were collected at the medical university of Graz in Austria, and 

consisted of 76 clinically diagnosed probable AD patients and 173 cognitively normal 

elderly controls (see Table 1). The AD patients were part of the prospective registry on 

dementia (PRODEM; see also Seiler et al., 2012). The inclusion criteria for PRODEM are: 

dementia diagnosis according to DSM-IV criteria (American Psychiatric Association, 

2000), AD diagnosis according to the NINCDS-ADRDA Criteria (McKhann et al., 2011), 

non-institutionalisation or need for 24-h care, and the availability of a caregiver who 

agrees to provide information on the patients’ and his or her own condition. Patients 

were excluded if co-morbidities were likely to preclude successful completion of the 

study. Informed consent was obtained from all patients and their caregivers. We only 

included patients for which anatomical MRI, diffusion MRI and resting state fMRI were 

available. The controls were scanned at the same scanning site, over the same period, 

with the same scanning protocol as the AD patients as a part of the Austrian stroke 

prevention study. The Austrian Stroke Prevention Study is a community-based cohort 

study on the effects of vascular risk factors on brain structure and function in elderly 

participants without a history or signs of stroke and dementia on the inhabitants of 

Graz, Austria (Schmidt et al., 1994; Freudenberger et al., 2016). Informed consent was 

obtained from all participants.

Memory clinic data

The memory clinic data (see Table 1) are part of the Leiden-Alzheimer research 

Nederland (LeARN) project (Handels et al., 2012; Jansen et al., 2017), and consisted 

of 61 possible or probable AD patients, 61 MCI patients and 67 SMC patients. The 

AD diagnosis was according to the NINCDS-ADRDA Criteria (McKhann et al., 2011), 

and the MCI diagnosis was according to the core clinical criteria for MCI due to AD 

(Albert et al., 2011). Subjects that did not meet the criteria for either AD or MCI were 

included in the SMC patient group. LeARN is a multi-centre collaboration of four 

memory clinics in the Netherlands; Leiden, Maastricht, Nijmegen and Amsterdam 

(see suppl. Table 1 for the demographics stratified over centre). The inclusion criteria 

for LeARN are: subjective and/or objective memory complaints, suspicion of having 

a primary neurodegenerative disease, a mini-mental State Examination ≥ 20, clinical 

dementia rating between 0 and 1 and the availability of a reliable informer or proxy 
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who visits or contacts the patient at least once a week. We only included patients 

for which anatomical MRI, diffusion MRI and resting state fMRI were available and 

excluded patients diagnosed with MCI not due to AD or dementia not due to AD (e.g., 

vascular dementia or frontotemporal dementia). Informed consent was obtained from 

both the patient and the informal caregiver.

MR acquisition

The subjects in the training data were scanned on a Siemens TrioTim 3T scanner at the 

Graz medical centre. The memory clinic subjects were scanned on a Philips Achieva 3T 

scanner at the Leiden University Medical Center, a Philips Achieva 3T scanner at the 

Maastricht University Medical Center, a Siemens TrioTim 3T scanner at the Nijmegen 

University Medical Center and a GE Signa HDxt 3T scanner at the VU university medical 

center in Amsterdam. The MRI sequence parameter settings are listed in Table 2.

Table 1. Sample demographics.

Training data Memory clinic data

Controls AD patients SMC MCI AD patients

N 173 76 67 61 61

Sex (♂/♀) 74/99 30/46 48/19 35/26 34/27

Age 66.1 ± 8.7 68.6 ± 8.6 63.2 ± 10.3 69.7 ± 8.3 72.5 ± 9.2

Years of education 11.5 ± 2.8 10.8 ± 3.2 11.2 ± 3.4 11.2 ± 3.4 10.6 ± 3.5

MMSE 27.5 ± 1.8 20.4 ± 4.5 28.2 ± 1.6 26.9 ± 2.3 24.0 ± 2.7

CDR - 0.82 ± 0.34 0.34 ± 0.25 0.53 ± 0.15 0.78 ± 0.25

GDS 2.0 ± 2.4 2.7 ± 2.6 3.7 ± 2.8 3.0 ± 2.4 3.2 ± 2.8

Descriptives are presented as frequencies for the categorical variables and as mean ± standard 
deviation for the other variables. AD = Alzheimer’s disease, SMC = Subjective memory 
complaints, MCI = Mild cognitive impairment, MMSE = mini-mental state examination, 
CDR = clinical dementia rating, GDS = geriatric depression scale.
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MRI preprocessing

The MRI data of all subjects were preprocessed using the FMRIB Software Library (FSL 

version 5.0; Jenkinson et al., 2012; Smith et al., 2004). For the anatomical MRI scans, 

we applied brain extraction and bias field correction. For the diffusion MRI scans, we 

applied brain extraction and eddy current correction. For the resting state fMRI data, 

this included brain extraction, motion correction, a temporal high pass filter with a cutoff 

point of 100 seconds, 3 mm FWHM spatial smoothing, and non-linear registration to 

standard MNI152 space. Additionally, we used ICA-AROMA to automatically identify 

and remove noise components from the fMRI time course (Pruim et al., 2015). ICA-

AROMA adequately removes motion related noise from fMRI data, without the need 

for removing volumes with excessive motion (Parkes et al., 2017).

Anatomical MRI features

We used both the FSL and Freesurfer software packages to analyse the anatomical 

MRI scans, because they have different approaches to calculate measures of grey 

matter atrophy. These approaches are complementary to each other, and combining 

them improves the accuracy of AD classification (de Vos et al., 2016).

Grey matter density

We used MRI-based morphometry (VBM; Ashburner et al., 2000) in FSL (Jenkinson et 

al., 2012; Smith et al., 2004) to calculate grey matter density. This includes segmentation 

of the brain-extracted images into grey matter, white matter, and cerebrospinal fluid 

(CSF), and non-linear registration of the grey matter images to the ICBM-152 grey 

matter template. We then calculated weighted averages of the voxel-wise grey matter 

density values within the 48 regions of the probabilistic Harvard-Oxford cortical atlas, 

yielding 48 grey matter density values per subject.

Subcortical volumes

We used the FMRIB’s Integrated Registration and Segmentation Tool (FIRST; 

Patenaude et al., 2011) to calculate the volumes of the subcortical structures and we 

corrected the volumes for intracranial volume. This yielded 14 subcortical volume 

features per subject (thalamus, caudate, putamen, pallidum, hippocampus, amygdala, 

and accumbens for both hemispheres).

Cortical thickness

We used the Freesurfer software package (Dale et al., 1999; Fisch et al., 1999) to 

calculate cortical thickness. This includes intensity normalisation of the brain-extracted 
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image to obtain an image with high contrast to noise ratio. This image is used to locate 

the boundaries between grey matter, white matter and CSF. Subsequently, a triangular 

mesh is constructed around the white matter surface, and this mesh is deformed 

outwards to create a grey matter surface that closely follows the boundary between 

grey matter and CSF. Cortical thickness is defined as the distance between the white 

matter surface and the grey matter surface. The image is registered to the Freesurfer 

common template using the image’s cortical folding pattern, and the neocortex is 

parcellated into the 68 neocortical regions (34 regions for each hemisphere) of the 

Desikan-Killiany atlas (Desikan et al., 2006). This yielded 68 cortical thickness features 

per subject.

Diffusion MRI features

We used the diffusion MRI scans to calculate fractional anisotropy (FA), mean diffusivity 

(MD), axial diffusivity (DA), and radial diffusivity (DR). First, we used DTIFIT in FSL 

(Jenkinson et al., 2012; Smith et al., 2004) to fit a diffusion tensor model at each voxel to 

calculate voxel-wise FA, MD, DA and DR images for each subject. Then we projected 

subjects’ FA, MD, DA and DR images onto the FMRIB58_FA mean FA image using 

tract-based spatial statistics (TBSS; Smith et al., 2006). Finally, we calculated weighted 

averages of the FA, MD, DA and DR values within the 20 regions of the probabilistic 

JHU white-matter tractography atlas, yielding 20 features for FA as well as MD, DA 

and DR.

Resting state fMRI features

Functional connectivity

Functional connectivity (FC) was calculated between resting state networks (RSNs) 

as obtained by an independent component analysis (ICA). First, we used only the 

training sample to obtain 70 RSNs using temporal concatenation ICA in FSL MELODIC 

(Beckmann & Smith, 2004). Then, for all subjects we registered the ICA component 

weight maps to subject space, weighted them by the subject specific grey matter density 

maps, and multiplied them with the functional data. Subsequently, we calculated the 

mean time courses for the 70 components and used these for the FC analysis. We 

calculated sparse partial correlations using the Graphical Lasso algorithm (Friedman et 

al., 2008), with ƛ = 100 (Smith et al., 2011). For each participant we thus calculated a 70 

by 70 sparse partial correlation matrix yielding (70 * 69)/2 = 2415 features.
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Amplitude of low frequency fluctuations

To calculate the amplitude of low frequency fluctuations (ALFF; Biswal et al., 2010; Zang 

et al., 2007), we used the REST software package (Song et al., 2011). ALFF was defined 

as the power within the 0 - 0.1 Hz frequency band. For standardisation purposes we 

divided the voxels’ ALFF values by the mean ALFF within a subjects’ whole brain (Zang 

et al., 2007). The whole brain voxel-wise ALFF maps consist of 139,712 values.

Correction for age

We regressed out the age effects from the features. To this end we first used the healthy 

controls from the training sample to estimate ‘normal’ age effects for all features. Then 

we used these estimated age effects to regress out the age effects for all subjects.

Correction for scan site within the memory clinic data

We corrected for scan site effects within the memory clinic data using ComBat (Johnson 

et al., 2007). ComBat is validated for anatomical MRI data (Fortin et al., 2018), diffusion 

MRI data (Fortin et al., 2017), and resting state fMRI data (Yu et al., 2018). ComBat fits 

a linear model of location and scale for each feature, making the assumption that sites 

have both an additive and multiplicative effect on the data. It uses empirical Bayes to 

improve the estimation of the model parameters. The model furthermore makes the 

assumption that the expected value of a feature can be modelled by both the site 

Table 3. MRI features

# of features

Anatomical MRI features

Grey matter density 48

Subcortical volumes 14

Cortical thickness 68

Diffusion MRI features

Fractional anisotropy 20

Mean diffusivity 20

Axial diffusivity 20

Radial diffusivity 20

Resting state fMRI features

Functional connectivity 2,415

Amplitude of low frequency fl uctuations 139,712
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effect, and biological and demographical factors. ComBat thus removes the unwanted 

site effects, while it preserves the variation that is associated with the biological and 

demographical factors. We included age, sex, years of education, clinical label, and 

MMSE score as factors in the ComBat model. 

We did not correct for scan site differences between the training data and the memory 

clinic data, because the training data consists of different clinical labels (healthy controls 

and probable AD) than the memory clinic data (SMC, MCI and possible/probable AD). 

It is therefore not possible to decide whether differences between these data sets 

should be attributed to scan site differences, or to differences in clinical groups.

Statistical analyses

The nine different MRI feature groups, along with the number of features per group 

are listed in Table 3. These feature groups were used separately in nine different AD 

classification models, and combined into an anatomical MRI, diffusion MRI, resting 

state fMRI and multimodal AD classification model. All features were normalised prior 

to the statistical analyses.

Penalised logistic regression within the training data

The training data was used to fit AD classification models. We used logistic regression 

to predict the true class of the subjects. In logistic regression, the outcome variable is 

dichotomous (0 for healthy controls and 1 for AD patients), and the predicted scores 

are continuous between 0 and 1. The subjects’ predicted scores are adopted as AD 

scores. To prevent overfitting, we used penalised logistic regression techniques that 

put penalties on the regression weights, such that only the most relevant features enter 

the regression model. For the separate feature groups, we used elastic net logistic 

regression (Friedman et al., 2010; Zou & Hastie, 2005), that uses a combination of an 

L1 (LASSO; Tibshirani, 1996) and L2 (Ridge; Hoerl and Kennard, 1970) penalty. The L1 

penalty tends towards sparse models, including only few features. The L2 penalty tends 

to include all features, but limits the size of their contributions. Two hyperparameters 

need to be tuned: the α parameter determines the relative weight of the two different 

penalties, and λ determines the size of those penalties. For the combined models we 

used group lasso logistic regression (Simon et al., 2013), which uses an L1 penalty on 

feature groups and an L2 penalty within the feature groups. The group lasso thereby 

improves interpretation of the AD classification model, because the L1 penalty on 

feature groups either entirely includes or excludes feature groups. For the group lasso 

we only need to tune λ: the size of the penalties.
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Cross-validation within the training data

To determine the performance of the AD classification models within the training 

data, we used nested cross-validation (Krstajic et al., 2014). Nested cross-validation 

takes into account two potential sources of overfitting. One could either include 

too many predictors, or overestimate accuracy by looping over all the values of the 

hyperparameters and only pick the best result. To ascertain that one is not subject 

to any of these two sources of overfitting, nested cross-validation uses an inner loop 

to tune the hyperparameters and an outer loop to train and test the AD classification 

model. For both the inner and outer loop we used 10-fold cross-validation. We 

repeated this procedure 10 times to reduce the variance resulting from the random 

partitioning of the subjects into folds.

Application to memory clinic data

To determine the performance of the AD classification models on the memory clinic 

data, we fitted AD classification models on the entire training data using optimal 

hyperparameter settings. These optimal hyperparameters were determined using a 

single tenfold cross-validation. The resulting regression models were directly applied 

to the MRI features of the memory clinic subjects. This yielded AD scores for the 

memory clinic subjects.

Model evaluation

To evaluate the results, we made receiver operating characteristic (ROC) curves and 

calculated the area under the curve (AUC) as a measure of classification performance. 

The AUC is invariant to the class distribution (Bradley, 1997), which is an advantage, 

because within the training data the number of control subjects is larger than the 

number of AD patients. Within the training data we compared the healthy controls 

with the AD patients, and within the memory clinic data we pairwise compared the 

SMC patients, MCI patients and AD patients. The four different patient comparisons, 

for the nine feature groups plus four combined models, yielded 52 comparisons in 

total. To test the AUC values against chance, we used a permutation procedure with 

10.000 permutations. We combined all 52 comparisons within the same permutation 

procedure to correct for multiple comparisons. For each permutation we permuted 

the subjects’ labels, and calculated the AUC value for all 52 comparisons. We only 

registered the maximum of those 52 AUC values, resulting in a permutation distribution 

of maximum AUC values. The 52 observed AUC values were compared with this 

distribution, yielding family-wise error corrected p-values.
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In addition, we calculated sensitivity, specificity, positive predictive values and negative 

predictive values. We used a cut-off score of 0.5, such that Subjects with Alzheimer’s 

scores below 0.5 were classified as the less severe disease category, and subjects with 

Alzheimer’s scores above 0.5 were classified as the more severe disease category. 

For example, in the comparison of SMC patients and MCI patients, the former is 

regarded as the less severe disease category and the latter is regarded as the more 

severe disease category. To evaluate the classification models in the memory clinic 

data, 0.5 is not necessarily the optimal cut-off score. For example, the SMC patients 

and MCI patients are not expected to receive Alzheimer’s scores close to either 0 or 1. 

Consequently, a cut-off score of 0.5 sometimes yields high sensitivity values and low 

specificity values, or the other way around. In these cases, other cut-off scores might 

result in a better balance between sensitivity and specificity. We have nevertheless 

used a fixed cut-off score of 0.5, because it eases the interpretation.

4.3 Results
Correction for scan site

We applied scan site correction to the four memory clinic centres (Fig. S1). Before 

correction, there are large site effects for the diffusion MRI features, moderate site 

effects for the anatomical MRI features, and no visible site effects for the resting state 

fMRI features. These site effects have been removed using the ComBat procedure, 

leaving no visible site effects between the four memory clinic centres afterwards. We 

did not correct for scan site differences between the training data and the memory clinic 

data, because the training data consists of different clinical labels (healthy controls and 

probable AD) than the memory clinic data (SMC, MCI and possible/probable AD). It is 

therefore not possible to decide whether differences between these data sets are due 

to scan site differences, or to differences in clinical groups. The differences between 

the training data and the corrected test data are largest for the diffusion MRI measures.

 

Classification results

The single feature classification models and the multiple feature classification models 

yielded individual AD scores for all participants (Fig. 2 and Fig. 3 respectively). To 

evaluate these classification models, we calculated AUC values (Table 4), sensitivity 

and specificity values (Table 5) and positive predictive values and negative predictive 

values (Table S2).
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Training data classification using single features

The median AD score for the AD patients is higher than those of the healthy controls 

for all single feature classification models (Fig. 2, top row). The AUC values for 

discriminating between AD patients and controls range between 0.79 for FC and 0.92 

for cortical thickness. These AUC values are all above chance level, showing that the 

classification models work well within the training data itself (Table 4, left side).

Memory clinic data classification using single features

All models, except for the ALFF model, assigned the highest median AD score to the 

AD patients, followed by the MCI patients and later followed by the SMC patients 

(Fig. 2, bottom row). The AUC values for the pairwise discrimination between these 

three groups are depicted in the right side of Table 4. The discrimination between 

SMC patients and MCI patients is above chance level for grey matter density and FC. 

The discrimination between MCI patients and AD patients is above chance level for 

grey matter density, subcortical volumes, and cortical thickness. The discrimination 

between SMC patients and AD patients is above chance level for grey matter density, 

subcortical volumes, cortical thickness, FA, MD, DA, and FC (Table 4, right side).

Training data classification using multiple features

In order to increase classification accuracy, the feature groups were combined into an 

anatomical MRI, diffusion MRI, resting state fMRI, and multimodal MRI model. For all 

combined classification models, the median AD score for the AD patients is higher 

than those of the healthy controls (Fig. 3, top row). The AUC values for discriminating 

between AD patients and controls are higher for the combined models than those for 

the single feature models. The multimodal model does however not improve upon the 

combined anatomical MRI model (Table 4, left side).

Memory clinic data classification using multiple features

The combined classification models were also applied to the memory clinic data. All 

models assigned the highest median AD score to the AD patients, followed by the 

MCI patients and later followed by the SMC patients (Fig. 3, bottom row). In contrast 

to the training data, the AUC values of the combined models are most often not higher 

than the AUC value of the best discriminating single feature group. The AUC only 

increases when combining the diffusion MRI features in order to classify SMC patients 

and MCI patients. For all other combined models, the AUC is either the same or lower 

(Table 4, right side).
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4Figure 1. Alzheimer’s disease scores for the feature groups. The top row shows the 
results on the training data, and the bottom row shows the results on the memory clinic 
data. The error bars represent the median AD score and the interquartile range. SMC 
= subjective memory complaints, MCI = mild cognitive impairment, ALFF = amplitude 
of low frequency fluctuations.

Figure 2. Alzheimer’s disease scores for the combined models. The top row shows 
the results on the training data, and the bottom row shows the results on the memory 
clinic data. The error bars represent the median AD score and the interquartile range. 
SMC = subjective memory complaints, MCI = mild cognitive impairment, ALFF = 
amplitude of low frequency fluctuations.
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Table 4. AUC values for the different MRI-based AD classifi cation models.

Training data Memory clinic data

MRI measure HC vs AD SMC vs MCI MCI vs AD SMC vs AD

Grey matter density 0.91*** 0.69** 0.70** 0.86***

Subcortical volumes 0.82*** 0.62 0.66* 0.76***

Cortical thickness 0.92*** 0.64 0.66* 0.76***

Combined anatomical MRI 0.94*** 0.69** 0.70** 0.85***

Fractional anisotropy 0.83*** 0.60 0.57 0.65*

Mean diffusivity 0.84*** 0.62 0.55 0.66*

Axial diffusivity 0.81*** 0.63 0.58 0.72***

Radial diffusivity 0.85*** 0.58 0.57 0.64

Combined diffusion MRI 0.87*** 0.65* 0.57 0.71***

Functional connectivity 0.79*** 0.66* 0.54 0.71**

ALFF 0.81*** 0.49 0.56 0.55

Combined resting state fMRI 0.85*** 0.62 0.56 0.68**

Multimodal MRI 0.94*** 0.68** 0.69** 0.84***

HC = healthy controls, AD = Alzheimer’s disease, SMC = Subjective memory complaints, 
MCI = Mild cognitive impairment, ALFF = amplitude of low frequency fl uctuations. 
*p<0.05, **p<0.01, ***p<0.001
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Feature group importance

In order to inspect the contribution of the feature groups to the combined models, we 

plotted their beta values (Fig. 4). The anatomical MRI model takes all three anatomical 

feature groups into account, and the largest weight is assigned to cortical thickness. 

The diffusion MRI model takes FA, DA and DR into account, and disregards MD. The 

largest weight is assigned to DR. The resting state fMRI model takes both FC and ALFF 

into account, but weighs FC more heavily. The multimodal MRI model relies mostly on 

the anatomical MRI features, but also includes the DR features.

Table 5. Sensitivity / specifi city values for the different MRI-based AD classifi cation models.

Training data Memory clinic data

MRI measure HC vs AD SMC vs MCI MCI vs AD SMC vs AD

Grey matter density 0.66 / 0.96 0.39 / 0.84 0.69 / 0.61 0.69 / 0.84

Subcortical volumes 0.51 / 0.91 0.46 / 0.78 0.70 / 0.54 0.70 / 0.78

Cortical thickness 0.70 / 0.95 0.25 / 0.91 0.54 / 0.75 0.54 / 0.91

Combined anatomical MRI 0.88 / 0.89 0.51 / 0.81 0.74 / 0.49 0.74 / 0.81

Fractional anisotropy 0.61 / 0.90 0.28 / 0.75 0.46 / 0.72 0.46 / 0.75

Mean diffusivity 0.57 / 0.92 0.11 / 0.96 0.20 / 0.89 0.20 / 0.96

Axial diffusivity 0.41 / 0.92 0.59 / 0.69 0.69 / 0.41 0.69 / 0.69

Radial diffusivity 0.62 / 0.94 0.11 / 0.90 0.21 / 0.89 0.21 / 0.90

Combined diffusion MRI 0.75 / 0.87 0.56 / 0.63 0.61 / 0.44 0.61 / 0.63

Functional connectivity 0.34 / 0.94 0.52 / 0.64 0.59 / 0.48 0.59 / 0.64

ALFF 0.39 / 0.96 0.25 / 0.79 0.25 / 0.75 0.25 / 0.79

Combined resting state fMRI 0.67 / 0.86 0.69 / 0.45 0.82 / 0.31 0.82 / 0.45

Multimodal MRI 0.84 / 0.88 0.56 / 0.81 0.84 / 0.44 0.84 / 0.81

HC = healthy controls, AD = Alzheimer’s disease, SMC = Subjective memory complaints,
MCI = Mild cognitive impairment, ALFF = amplitude of low frequency fl uctuations. 
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Figure 3. Content of the combined classification models that were fitted on the training 
data and applied to the memory clinic data. The top panel shows the standardised 
beta values of the features, and the bottom panel shows the sums of the absolute 
standardised beta values per feature group. These plots illustrate the importance of 
the feature groups for the combined models. The anatomical MRI model takes all 
three anatomical feature groups into account, the diffusion MRI model takes FA, DA 
and DR into account, the resting state fMRI model takes both functional connectivity 
and ALFF into account, and the multimodal MRI model relies mostly on the anatomical 
MRI features. ALFF = amplitude of low frequency fluctuations. 
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4.4 Discussion
In this study, we evaluated the generalisability of MRI-based AD classification models. 

To this end, we used a single-centre training data set consisting of AD patients and 

healthy controls, and a multi-centre application data set consisting of AD patients, 

MCI patients and SMC patients. First, we showed that within the training data there 

is good classification performance for both the anatomical MRI, diffusion MRI and 

resting state fMRI models. When a model was trained on one part of the training data, 

it generalised well to the other part of the training data. Second, we fitted models on 

the entire training data, and applied those models to the memory clinic data, resulting 

in AD scores for the memory clinic subjects. As expected, for all three MRI modalities, 

the AD patients were on average assigned higher AD scores than MCI patients, and 

the MCI patients were on average assigned higher AD scores than SMC patients.

There is however large variation in the performance of the different MRI models. The 

anatomical MRI models generalised best to the memory clinic data. Especially the 

grey matter density model could differentiate well between all three clinical groups. 

The cortical thickness model and the subcortical volumes model could differentiate 

between the AD patients and the other two groups, but not between the SMC patients 

and MCI patients.

The diffusion MRI models did not perform as well as the anatomical MRI models. 

Although classification performance was excellent within the training data for all 

diffusion MRI measures, there was limited generalisation to the memory clinic data. 

Possibly, this is due to the fact that white matter alterations in AD mostly occur in the 

late phase of the disease (Clerx et al, 2012). So, white matter changes might be already 

present in the probable AD patients from the training data, but these changes might 

not yet be as large in the MCI patients or possible AD patients from the memory 

clinic data. Another explanation might lie in the scan site differences for the diffusion 

MRI measures. It is known that technical variabilities across scan sites can have large 

effects on diffusion MRI scans (Zhu et al., 2011), and also in the current study the 

four memory clinic centres largely differed on the diffusion MRI measures. These site 

differences were removed as much as possible using the ComBat procedure (Fortin 

et al., 2017; Johnson et al., 2007), but they cannot be removed entirely. Furthermore, 

we did not remove scan site differences between the training data and the memory 

clinic data, because the subjects within the training data are not comparable with the 

memory clinic subjects with regard to their clinical labels. It is therefore not possible to 



Chapter 4

84 85

decide whether differences between these data sets should be attributed to scan site 

differences, or to differences in clinical labels. Yet, it is likely that scan site differences 

exist between the training data and the memory clinic data, and that possibly they have 

affected the AD scores of the memory clinic subjects. Diffusion MRI have nevertheless 

been used successfully in a multi-centre AD classification study (Dyrba et al., 2013). 

However, this study only used probable AD patients and healthy elderly controls, for 

which differences in white matter are expected to be larger. Furthermore, they used 

subjects from nine different scan sites, and they achieved the highest accuracy when 

training and testing was partly done on subjects from the same site. When they trained 

the model on subjects from eight scan sites, and applied this model on subjects from 

the ninth scan site, this resulted in lower accuracy.

Regarding the resting state fMRI models, there is a large difference between the FC 

model and the ALFF model. The FC model is somewhat inferior compared to the 

structural and diffusion MRI measures within the training data, but it generalises 

reasonably well to the memory clinic data. This model can differentiate between SMC 

patients and MCI patients, and between SMC patients and AD patients. The reasonably 

good generalisation performance of the FC model might partly be explained by the 

absence of large scan site differences. In addition, alterations in FC likely start in an early 

phase of AD (Buckner et al., 2005; Sperling et al., 2011), and this might explain why this 

model could distinguish reasonably well between SMC patients and MCI patients. FC 

has previously been shown to be successful for the classification of AD patients, MCI 

patients and controls in a multi-centre setting. However, this was only achieved after 

employing strict quality measures, including visual inspection of all the data (Teipel 

et al., 2017b). In the current study this was not much of an issue, possibly because we 

automatically removed noise components with ICA-AROMA (Pruim et al., 2015), and it 

has been shown that removing ICA based noise components from resting state fMRI 

data reduces scan site differences substantially (Feis et al, 2015). In contrast to the FC 

model, the ALFF model showed very poor generalisation performance. Although the 

classification performance was good within the training data, this model could not 

differentiate between any of the three groups within the memory clinic data. This result 

corresponds to the results of another multi-centre study, in which ALFF showed poor 

classification performance to classify SMC patients, amnestic MCI patients and AD 

patients (Teipel et al., 2018).

Combining the MRI features improved the accuracy within the training data, which is 

a replication of other studies that improved AD classification by combining different 
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MRI measures from the same imaging modality (de Vos et al., 2016, 2018; Westman et 

al., 2013), or combining multiple imaging modalities (Dai et al., 2012; Schouten et al., 

2016). More importantly, however, this improvement did not translate to the memory 

clinic data. Some features contributed largely to the combined models, because they 

had a beneficial effect on AD classification within the training data, but they worsened 

the results of the combined model on the memory clinic data, because those features 

did not generalise to the memory clinic data. For example, the combined resting state 

fMRI model included both FC and ALFF. Within the training data, this combination 

increased accuracy compared to both of these features alone. However, within the 

memory clinic data, this combination decreased accuracy compared to using only FC. 

Probably, this is caused by the poor generalisation performance of ALFF.

The classification accuracies within the memory clinic data were substantially lower 

than those within the training data for all MRI models. These differences can be caused 

by multiple factors, and we cannot explicitly attribute these differences to any of these 

different factors. A factor that has likely been important is the difference in clinical 

populations. It is easier to distinguish AD patients from healthy elderly controls, as in 

the training data, than to distinguish AD patients from MCI patients and SMC patients, 

as in the memory clinic data. In addition, the AD patients in the training data had lower 

average MMSE scores than the AD patients in the test memory clinic data. The AD 

patients in the training data were thus clinically more progressed than the AD patients 

in the memory clinic data. Other factors that might have caused a drop in accuracy 

from training to test set are scan site differences, differences caused by confounding 

variables (e.g., age, sex or education) and overfitting on the training data.

We have focused on MRI scans for the AD classification models, although MRI-visible 

structural and volumetric brain abnormalities occur relatively late in AD (Jack et al., 

2010). Amyloid and tau pathology are observable in AD patients well before any 

pathological change is detectable on a anatomical MRI scan (Jack et al., 2010). For 

clinical studies however, anatomical MRI scans are advantageous, because they are 

non-invasive and often available. In addition, there is evidence that functional changes 

as can be seen on a resting state fMRI scan might already occur in an earlier phase of 

the disease (Buckner et al., 2005; Sperling et al., 2011). Therefore, resting state fMRI 

might be sensitive for early detection of AD.

We have only studied AD classification, while memory clinics are confronted with non-

AD types of dementia as well. In future efforts, to create clinically valuable classification 
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models for more dementia types, it is important to also include non-AD types of 

dementia.

In conclusion, we studied the generalisation performance of single-centre MRI-based 

AD classification models to a multi-centre memory clinic data set. The anatomical 

MRI models generalised best to the memory clinic data, and grey matter density 

was the best performing anatomical MRI measure. The diffusion MRI models did not 

generalise well, possibly due to large scan site effects on the diffusion MRI measures, 

or because white matter alterations mostly occur in progressed AD (Clerx et al, 2012). 

The FC model showed reasonable performance for identifying prodromal AD stages, 

but it was still inferior to the grey matter density model. Moreover, the multimodal MRI 

model did not improve upon the anatomical MRI model.
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Supplementary table 1. Sample demographics for the memory clinic centers.

Memory clinic data

Leiden Maastricht Nijmegen Amsterdam

N 40 68 43 38

SMC / MCI / AD 12 / 13 / 15 31 / 24 / 13 16 / 13 / 14 8 / 11 / 19

Sex (♂/♀) 20 / 20 42 / 26 25 / 18 30 / 8

Age 70.9 ± 9.0 66.6 ± 11.6 71.6 ± 9.0 65.0 ± 7.5

MMSE 26.4 ± 2.5 27.5 ± 2.6 25.7 ± 2.8 25.4 ± 3.1

CDR 0.59 ± 0.30 0.52 ± 0.17 0.49 ± 0.37 0.63 ± 0.33

GDS 3.9 ± 3.3 3.3 ± 2.6 2.8 ± 1.8 3.5 ± 2.9

Descriptives are presented as frequencies for the categorical variables and as mean  _ standard 
deviation for the other variables. SMC = Subjective memory complainers, MCI = Mild cognitive 
impairment, AD = Alzheimer’s disease, MMSE = mini mental state examination, CDR = 
clinical dementia rating, GDS = geriatric depression scale.

Supplementary table 2. Positive predictive values / negative predictive values for the 
different MRI-based AD classifi cation models.

Training data Memory clinic data

HC vs AD SMC vs MCI MCI vs AD SMC vs AD

Grey matter density 0.81 / 0.88 0.61 / 0.69 0.65 / 0.64 0.76 / 0.79

Subcortical volumes 0.71 / 0.72 0.62 / 0.65 0.62 / 0.61 0.74 / 0.74

Cortical thickness 0.83 / 0.85 0.58 / 0.71 0.65 / 0.69 0.73 / 0.85

Combined anatomical MRI 0.88 / 0.78 0.66 / 0.70 0.61 / 0.59 0.77 / 0.78

Fractional anisotropy 0.75 / 0.73 0.51 / 0.50 0.59 / 0.62 0.60 / 0.62

Mean diffusivity 0.74 / 0.76 0.53 / 0.70 0.54 / 0.63 0.58 / 0.80

Axial diffusivity 0.67 / 0.70 0.64 / 0.63 0.55 / 0.54 0.69 / 0.67

Radial diffusivity 0.77 / 0.81 0.51 / 0.50 0.55 / 0.65 0.55 / 0.65

Combined diffusion MRI 0.81 / 0.71 0.59 / 0.58 0.52 / 0.52 0.62 / 0.60

Functional connectivity 0.63 / 0.69 0.58 / 0.57 0.53 / 0.53 0.62 / 0.60

ALFF 0.68 / 0.82 0.52 / 0.52 0.50 / 0.50 0.52 / 0.52

Combined rs-fMRI 0.76 / 0.67 0.57 / 0.53 0.57 / 0.54 0.63 / 0.57

Combined multimodal MRI 0.86 / 0.76 0.68 / 0.72 0.64 / 0.60 0.82 / 0.80

HC = healthy controls, AD = Alzheimer’s disease, SMC = Subjective memory complainers, 
MCI = Mild cognitive impairment, ALFF = amplitude of low frequency fl uctuations.
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Figure S1. The effect of scan site correction within the four Dutch memory clinic 
centres. The top row shows the feature values before scan site correction, the middle 
row shows the amount of scan site correction, and the bottom row shows the feature 
values after scan site correction. The matrix rows represent the features, and the 
matrix columns represent the subjects. Before correction there are large site effects, 
but after correction these site effects have largely disappeared. We did not apply 
scan site correction to the training data from Graz, because that data set consists of 
different clinical labels (healthy controls and probable AD) than the memory clinic data 
(SMC, MCI and possible/probable AD). It is therefore not possible to decide whether 
differences between these data sets should be attributed to scan site differences, or to 
differences in clinical groups.
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Abstract
Memory clinic patients want to get a prognosis of their future cognitive decline, 

but this cannot be accurately predicted using baseline cognitive tests. Magnetic 

resonance imaging (MRI) scans show brain abnormalities before the onset of cognitive 

decline, and can therefore possibly be used for a prognosis. We used a machine 

learning approach to study prediction accuracy of baseline multimodal MRI scans 

for two-year follow-up cognitive decline in memory clinic patients. At baseline, we 

included patients (N = 189) from a Dutch multi-centre memory clinic sample with either 

subjective memory complaints, mild cognitive impairment, or Alzheimer’s disease. At 

baseline, we acquired structural, diffusion, and resting state functional MRI scans, and 

the patients underwent neuropsychological testing, including the mini-mental state 

examination and six tests that measure specific domains of memory and executive 

functioning. Patients that returned for the two-year follow-up visit (N = 117) underwent 

neuropsychological testing again, and change scores were used as outcome measures. 

Anatomical MRI scans were used to calculate grey matter density, cortical thickness, 

and the volumes of subcortical structures; diffusion MRI scans were used to calculate 

fractional anisotropy, mean, axial, and radial diffusivity; resting state functional MRI 

scans were used to calculate a whole brain functional connectivity matrix. The MRI 

features were combined in group lasso regression models to predict change scores 

for each neuropsychological test separately. The patients showed significant average 

decline on the mini-mental state examination (MMSE, M = -1.2, SD = 3.9), the visual 

association test (M = -0.8, SD = 3.0), and the letter digit substitution test (M = -1.7, SD 

= 7.2), but not on digit span, Rey auditory verbal learning test, Stroop color and word 

test, and the trail making test. Two-year follow-up change was predicted above chance 

level for the MMSE (R2 = 0.07, p - Bonferroni corrected = 0.006), but not for the other 

neuropsychological tests. The MMSE change prediction model included features from 

all three MRI modalities. The prediction procedure was complicated by high sample 

attrition, and limited cognitive decline in the analysed sample. Nevertheless, we 

showed that baseline MRI scans are predictive for future cognitive decline, but the 

effect size is small, and hence it is not of direct clinical value.

Keywords: Alzheimer’s disease, Mild cognitive impairment, Subjective memory 

complainers, Anatomical MRI, Diffusion MRI, Resting state fMRI, Cognitive decline, 

Longitudinal
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5.1 Introduction
It is important to provide memory clinic patients with an expected course of their 

cognitive decline. This will reassure patients with positive prospects, and it will help 

patients with less fortunate perspectives to prepare for future decline. However, 

memory clinic patients vary largely, and predicting their cognitive decline based on 

their current clinical status yields inaccurate results (Eckerström et al., 2017; Wahlund 

et al., 2003). Magnetic resonance imaging (MRI) scans show brain abnormalities before 

the occurrence of clinical symptoms (Jack et al., 2013), and they can therefore be useful 

for prediction of future cognitive decline. For example, anatomical MRI scans predict 

cognitive decline in cognitively normal elderly (Dumurgier et al., 2017; Pacheco et al., 

2015) and in AD patients (Sona et al., 2013). 

However, attempts to predict cognitive decline in memory clinic patients using whole 

brain atrophy rate did not result in above chance accuracy (Sluimer et al., 2008). A 

single measure of global brain atrophy is probably not refined enough to capture 

the subtle atrophy patterns that precede cognitive decline. Region specific atrophy 

measures provide more precise information, and could therefore improve prediction. 

Indications for this can be found in AD classification studies, where AD classification 

improves when using region-wise atrophy information over using only global atrophy 

information (de Vos et al., 2016; Westman et al., 2011). In addition, brain atrophy can 

be quantified using several approaches (e.g., cortical thickness, grey matter density, 

and brain volume), and combining these approaches improves AD classification (de 

Vos et al., 2016; Westman et al., 2013). It is likely that prediction of cognitive decline in 

memory clinic patients will also benefit from using region specific atrophy measures, 

and multiple approaches to quantify atrophy.

Brain changes that precede cognitive decline are not limited to atrophy, they also 

include decreased white matter integrity (Gold et al., 2012), and altered functional 

connectivity (FC) patterns (Sheline et al., 2010a; Sheline et al., 2010b). Adding this 

information, by respectively using a diffusion MRI scan and a resting state functional 

MRI (fMRI) scan, could improve prediction of cognitive decline. In fact, multimodal MRI 

models improve AD classification accuracy over unimodal MRI models (Schouten et 

al., 2016). 

Multimodal MRI scans contain a wealth of information on brain structure and function, 

represented by a high number of features. Machine learning techniques are well 
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equipped to integrate high-dimensional data into a single model to make individual 

predictions. For example, MRI-based machine learning models separated AD patients 

from controls with high accuracies (Dyrba et al.; 2015b; Schouten et al., 2016; Wee et 

al., 2013), and even separated MCI converters from non-converters (Cui et al., 2011; 

Dyrba et al., 2015a; Trzepacz et al., 2014; Teipel et al., 2015). 

The current aim is to study prediction accuracy of baseline multimodal MRI scans 

for two-year follow-up cognitive decline in memory clinic patients. We will analyse a 

sample collected at four different memory clinics, consisting of patients with subjective 

memory complaints (SMC), mild cognitive impairment (MCI) patients, and AD patients.

5.2 Methods
The MRI data from the same sample of participants was used in our earlier work (de Vos 

et al., 2020). Therefore, we adopted its participants paragraph and the paragraphs that 

describe MR acquisition, MRI preprocessing, the calculation of MRI features, and scan 

site correction. The earlier work did however not use the follow-up data that includes 

the neuropsychological assessment data. Therefore, the paragraphs concerning those 

data, the missing value analysis, and the statistical analysis were newly written.

Participants

The participants were included as part of the Leiden-Alzheimer research Nederland 

(LeARN) project (Handels et al., 2012; Jansen et al., 2017). LeARN is a longitudinal 

multi-centre collaboration of four memory clinics in the Netherlands; Leiden, 

Maastricht, Nijmegen and Amsterdam, in which participants were followed for two 

years. At the baseline visit, the participants were scanned with an anatomical, diffusion 

and resting state fMRI scan, and they underwent a neuropsychological assessment. At 

the two-year follow-up visit they underwent the same neuropsychological assessment 

again. The inclusion criteria for LeARN are: subjective and/or objective memory 

complaints, suspicion of having a primary neurodegenerative disease, a mini-mental 

state examination ≥ 20, clinical dementia rating between 0 and 1, and the availability 

of a reliable informer or proxy who visits or contacts the participant at least once a 

week. At baseline, we included participants for which anatomical MRI, diffusion 

MRI and resting state fMRI were available, and we excluded participants that were 

diagnosed with MCI not due to AD or dementia not due to AD (e.g., vascular dementia 

or frontotemporal dementia). The AD diagnosis was made according to the NINCDS-

ADRDA Criteria (McKhann et al., 2011), and the MCI diagnosis was made according to 
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the core clinical criteria for MCI due to AD (Albert et al., 2011). Participants that did not 

meet the criteria for either AD or MCI were labeled as patients with subjective memory 

complaints (SMC). We included 189 participants at baseline, of whom 117 participants 

returned for the follow-up visit after two years. The data from these 117 participants 

were used for the statistical analysis (see Table 1 for the sample demographics).

Neuropsychological assessment

To measure cognitive decline, we used a standardised battery of cognitive tests that 

measure general cognitive functioning (mini-mental state examination), working 

memory (digit span, Rey auditory verbal learning test, and visual association test), and 

executive functioning (Stroop colour and word test, trail making test, and letter digit 

substitution test). These tests were administered by a (neuro)psychologist at baseline 

and at two-year follow-up (M = 24.9 months, SD = 2.4 months). To quantify cognitive 

decline, we subtracted the baseline test scores from the follow-up test scores, such 

that negative scores denote decline and positive scores denote improvement. 

Mini-mental state examination 

The mini-mental state examination (MMSE; Folstein et al., 1975) is a short but thorough 

examination of general cognitive functioning. It requires 5-10 minutes to administer 

and the score range is 0-30.

Table 1. Sample demographics

Baseline Two-year follow-up

N 117 117

Sex (♂/♀) 80/37 80/37

Age 66.7 ± 9.1 68.8 ± 9.1

SMC/MCI/AD/other 47/39/31/0 49/26/34/8

Mini-mental state examination 26.7 ± 2.8 25.5 ± 5.0

Clinical dementia rating 0.55 ± 0.29 0.62 ± 0.51

Geriatric depression scale 3.4 ± 2.8 3.0 ± 2.6

Descriptives are presented as frequencies for the categorical variables and as mean ± standard 
deviation for the other variables. SMC = Subjective memory complaints, MCI = Mild cognitive
impairment, AD = Alzheimer’s disease.
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Digit span

Digit span is a subtest of the Wechsler adult intelligence scale-III (WAIS-III; Wechsler, 

1997). The examinees are required to repeat strings of digits of increasing length 

in forward and reverse order. They get two tries for each string length, and the test 

continues until both tries of the same length are missed. The test is scored by summing 

the correct number of tries. We added the scores for the forward and reverse condition. 

Rey auditory verbal learning test

We used the first part of the Rey auditory verbal learning test (RAVLT; Rey, 1958), in 

which the same list of 15 words is orally presented in five trials. After each trial, the 

examinee is asked to recall these 15 words. We used the sum score of the five trials, 

resulting in a possible score range of 0-75.

Visual association test

The visual association test (VAT; Lindeboom et al., 2002) first presents the examinee 12 

cards with two objects (e.g., an ape with an umbrella), and then presents 12 cards with 

only one of those two objects (e.g., only an ape). The examinee is asked to name the 

missing object for each of these 12 cards. The test is scored by counting the number of 

correct recalled missing objects, resulting in a possible score range of 0-12.

Stroop colour and word test

The Stroop colour and word test (Stroop, 1935) presents the examinee coloured cards 

or cards with printed colour names. In three conditions the examinee is asked to name 

these colours as fast as possible. In the first condition the name of a colour is written in 

black ink, and in the second condition the card is coloured but contains no text. These 

two conditions serve as practice rounds for the third condition, which is incongruent. 

In this third condition, the name of a colour is printed in an inconsistent colour (e.g., 

the word ‘red’ printed in blue letters), and the examinee is required to name the colour 

of the ink instead of reading the word. For the analyses, we divided the total reaction 

time in the incongruent condition by the total reaction time of the second congruent 

condition.

Trail making test

The trail making test (TMT; Reitan, 1956) consists of two conditions in which 26 dots 

need to be connected by a line. In the first condition, the dots are numbered 1 to 26 

and they have to be connected in that same order. In the second condition they are 

numbered 1 to 13 and labeled a to m, and they need be connected as 1-a-2-b etc. For 
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the analyses, we divided the time it took to finish the second condition by the time it 

took to finish the first condition.

Letter digit substitution test

For the letter digit substitution test (LDST; Natu & Agarwal, 1995) the examinee is 

asked to substitute letters with numbers according to a key that links nine different 

letters with the numbers 1 to 9. The test is scored by counting the number of correct 

substitutions within 90 seconds.

MR acquisition

The participants were scanned at four different scan sites in the Netherlands. At the 

Leiden University Medical Centre and the Maastricht University Medical Centre, the 

participants were scanned on a Philips Achieva 3T scanner; at the Nijmegen University 

Medical Centre, they were scanned on a Siemens TrioTim 3T scanner; and at the VU 

university medical centre in Amsterdam, they were scanned on a GE Signa HDxt 3T 

scanner. The MRI sequence parameter settings are listed in supplementary Table 1.

MRI preprocessing

The MRI data was preprocessed using the FMRIB Software Library (FSL version 5.0; 

Jenkinson et al., 2012; Smith et al., 2004). For the anatomical MRI scans, we applied 

brain extraction and bias field correction. For the diffusion MRI scans, we applied 

brain extraction and eddy current correction. For the resting state fMRI data, this 

included brain extraction, motion correction, a temporal high pass filter with a cutoff 

point of 100 seconds, 3 mm FWHM spatial smoothing, and non-linear registration to 

standard MNI152 space. Additionally, we used ICA-AROMA to automatically identify 

and remove noise components from the fMRI time course (Pruim et al., 2015). ICA-

AROMA adequately removes motion related noise from fMRI data, without the need 

for removing volumes with excessive motion (Parkes et al., 2017).

Anatomical MRI features

Grey matter density

We used voxel-based morphometry (VBM; Ashburner et al., 2000) in FSL (Jenkinson et 

al., 2012; Smith et al., 2004) to calculate grey matter density. This includes segmentation 

of the brain-extracted images into grey matter, white matter, and cerebrospinal fluid 

(CSF), and non-linear registration of the grey matter images to the ICBM-152 grey 
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matter template. We then calculated weighted averages of the voxel-wise grey matter 

density values within the 48 regions of the probabilistic Harvard-Oxford cortical atlas, 

yielding 48 grey matter density values per participant.

Subcortical volumes

We used the FMRIB’s Integrated Registration and Segmentation Tool (FIRST; Patenaude 

et al., 2011) to calculate the volumes of the subcortical structures and we corrected 

the volumes for intracranial volume. This yielded 14 subcortical volume features per 

participant (thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and 

accumbens for both hemispheres).

Cortical thickness

We used the Freesurfer software package (Dale et al., 1999; Fisch et al., 1999) to 

calculate cortical thickness. This includes intensity normalisation of the brain-extracted 

image to obtain an image with high contrast to noise ratio. This image is used to locate 

the boundaries between grey matter, white matter and CSF. Subsequently, a triangular 

mesh is constructed around the white matter surface, and this mesh is deformed 

outwards to create a grey matter surface that closely follows the boundary between 

grey matter and CSF. Cortical thickness is defined as the distance between the white 

matter surface and the grey matter surface. The image is registered to the Freesurfer 

common template using the image’s cortical folding pattern, and the neocortex is 

parcellated into the 68 neocortical regions (34 regions for each hemisphere) of the 

Desikan-Killiany atlas (Desikan et al., 2006). This yielded 68 cortical thickness features 

per participant.

Diffusion MRI features

We used the diffusion MRI scans to calculate fractional anisotropy (FA), mean 

diffusivity (MD), axial diffusivity (DA), and radial diffusivity (DR). First, we used DTIFIT 

in FSL (Jenkinson et al., 2012; Smith et al., 2004) to fit a diffusion tensor model at 

each voxel to calculate voxel-wise FA, MD, DA and DR images for each participant. 

Then we projected participants’ FA, MD, DA and DR images onto the FMRIB58_FA 

mean FA image using tract-based spatial statistics (TBSS; Smith et al., 2006). Finally, we 

calculated weighted averages of the FA, MD, DA and DR values within the 20 regions 

of the probabilistic JHU white-matter tractography atlas, yielding 20 features for FA as 

well as MD, DA and DR.
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Resting state fMRI features

Functional connectivity was calculated between resting state networks (RSNs) as 

obtained by an independent component analysis (ICA). The ICA was previously run in 

our earlier work with 76 AD patients and 173 elderly controls (de Vos et al., submitted). 

We had used temporal concatenation ICA in FSL MELODIC (Beckmann & Smith, 2004) 

to obtain 70 ICA components. For the current study, we transformed the weight maps 

of these ICA components to subject space, weighted them by the participant specific 

grey matter density maps, and multiplied them with the functional data. Subsequently, 

we calculated the mean time courses for the 70 components and used these for the FC 

analysis. We calculated sparse partial correlations using the Graphical Lasso algorithm 

(Friedman et al., 2008), with regularisation parameter ƛ = 100 (Smith et al., 2011). For 

each participant we thus calculated a 70 by 70 sparse partial correlation matrix yielding 

(70 * 69)/2 = 2415 features.

Correction for scan site effects

We corrected for scan site effects using ComBat (Johnson et al., 2007). ComBat is 

validated for anatomical MRI data (Fortin et al., 2018), diffusion MRI data (Fortin et al., 

2017), and resting state fMRI data (Yu et al., 2018). ComBat fits a linear model of location 

and scale for each feature, assuming that sites have both an additive and multiplicative 

Table 2. MRI features

# of features

Anatomical MRI features

Grey matter density 48

Subcortical volumes 14

Cortical thickness 68

Diffusion MRI features

Fractional anisotropy 20

Mean diffusivity 20

Axial diffusivity 20

Radial diffusivity 20

Resting state fMRI features

Functional connectivity 2,415
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effect on the data. It uses empirical Bayes to improve the estimation of the model 

parameters. The model furthermore assumes that the expected value of a feature 

can be modelled by both the site effect, and biological and demographical factors. 

ComBat thus removes the unwanted site effects, while it preserves the variation that is 

associated with the biological and demographical factors. We included age, sex, years 

of education, clinical label at baseline, and MMSE score at baseline as factors in the 

ComBat model. To achieve most accurate removal of the scan site effects, we included 

all 189 participants that were available at the baseline visit in the ComBat procedure.

Missing value analysis

The data contained missing values. This was either due to drop out of the patients, 

or because patients were unable to execute a specific test. The missing values can 

either be missing completely at random (MCAR), representing the situation where 

missingness of data is unrelated to any variable, missing at random (MAR) where 

missingness of data is only related to the observed variables, or missing not at random 

(MNAR) where missingness of data is related to the values of the missing data itself. 

We used Little’s test (Little, 1988) to test the null hypothesis that the missing values 

are MCAR. If Little’s test rejects the MCAR hypothesis, the missingness is either MAR 

or MNAR, but there is no way of deciding between these two alternatives. Within 

Little’s test we included age, sex, years of education, and the baseline and follow-up 

measures of the seven cognitive tests.

Statistical analyses

The eight different MRI feature groups, along with the number of features per group 

are listed in Table 2. These feature groups were used jointly to predict cognitive 

decline. We studied prediction of decline for each neuropsychological test separately.

Group lasso regression

We used group lasso regression (Yuan and Lin, 2006) to predict cognitive decline. 

Group lasso is a form of penalised regression that takes the group structure of the 

predictors into account. It uses an L1 penalty (LASSO; Tibshirani, 1996) on the feature 

groups. This enforces sparseness by either entirely including or excluding a group 

of predictors, which facilitates the interpretation of the prediction model. It uses an 

L2 penalty (Ridge; Hoerl and Kennard, 1970) within the feature groups that tends to 

include all features of the included groups, but limits the size of their contributions. 

For the group lasso we need to tune the hyperparameter λ: which determines the size 

of the penalties.
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Nested cross-validation

We used nested cross-validation to determine the prediction error (Krstajic et al., 2014). 

Nested cross-validation takes into account two potential sources of overfitting: too 

liberally including predictors, and overfitting on the hyperparameter. To ascertain that 

one is not subject to any of these two sources of overfitting, nested cross-validation 

uses an inner loop to tune the hyperparameters and an outer loop to train and test the 

prediction model. For both the inner and outer loop we used 10-fold cross-validation. 

We repeated this procedure 10 times to reduce the variance resulting from the random 

partitioning of the participants into folds.

Model evaluation

To evaluate prediction performance, we calculated R squared (R2) values using the 

following formula 

where denotes the sums of squares of the residual error, SStot denotes the total sums of 

squares, y denotes the observed values, y denotes the predicted values, and y denotes 

the sample mean. An R2 of 1 indicates perfect model fit, whereas an R2 of 0 indicates 

that the model predicts no better than the sample mean. Negative R2 values occur 

when the model predicts worse than the sample mean. This result is counter intuitive, 

but can occur when using cross-validation and there is little to no relation between the 

predictors and the outcome variable (van Loon et al., 2020).

To test the R2 values against chance, we used a permutation procedure with 10.000 

permutations. We permuted the order of the participants’ true outcome, while 

maintaining the order of the participants’ predictions. For each permuted version of 

the data we calculated the R2 value, resulting in an empirical distribution of R2 values. 

To determine the p-value, we compared the observed R2 value to this distribution. The 

permutation procedure was executed separately for each outcome measure, and we 

applied the Bonferroni correction to correct for multiple comparisons.
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5.3 Results
Correction for scan site

Before correction, there are large site effects for the diffusion MRI features, moderate 

site effects for the anatomical MRI features, and no visible site effects for the resting 

state fMRI features. The site effects have been removed using the ComBat procedure, 

leaving no visible site effects afterwards (Fig. 1)

Missing value analysis

We included 189 participants at baseline, of whom 117 participants returned for 

the follow-up visit after two years. The data from these 117 participants were used 

for the statistical analyses. However, not all these 117 participants finished all 

neuropsychological tests at both time points. There were 112 available participants for 

the MMSE and the digit span test, 109 for the RAVLT, 111 for the VAT, 96 for the Stroop 

task, 88 for the TMT, and 89 for the LDST (Table 3). Little’s test indicated that the missing 

values are not missing completely at random, X2 (538) = 782.20, p < 0.001. In addition, 

we compared the baseline characteristics of the 117 participants that returned for the 

follow-up visit, and the 72 participants that did not. The results are presented in suppl. 

Table 2. The group that returned for the follow-up visit had of a higher percentage of 

male participants (p<0.05) and higher average scores on the digit span test (p<0.001), 

the Rey auditory verbal learning test (p<0.01), and the visual association test (p<0.01).

Cognitive decline

The participants showed a significant average decline on the MMSE, the VAT and the 

LDST, but not on the four other tests (Table 3).

MRI-based prediction of cognitive decline

Two-year follow-up decline in test scores was predicted above chance level for the 

MMSE (R2 = 0.07, p-corrected = 0.006; Fig 2, panel A). For the other neuropsychological 

tests, the R2 values are negative (see Table 4), indicating that the model predicts worse 

than the sample mean. This result is counter intuitive, but can occur when using cross-

validation and there is little to no relation between the predictors and the outcome 

variable (van Loon et al., 2020).

Contribution of MRI features to the prediction of MMSE decline

To determine the contribution of the different MRI feature groups to the prediction 

of MMSE decline, we counted the number of times that an MRI feature group was 
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Figure 1. Scan site correction for the MRI data. The top row shows the feature values before scan site 
correction, the middle row shows the amount of scan site correction that was applied, and the bottom 
row shows the feature values after scan site correction. The matrix rows represent the features, and 
the matrix columns represent the participants from the four different scan sites. Before correction 
there are large site effects, but after correction these site effects have largely disappeared.
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selected within the different prediction models (Fig 2, panel B). In total, we fitted 100 

prediction models (10 outer folds 10 cross-validation repetitions). All those prediction 

models selected the grey matter density features (100 times), and most prediction 

models selected the axial diffusivity (99 times) and FC features (99 times). Most 

prediction models thus selected features of all three scan types, which likely reflects 

the added value of multimodal MRI scans.

Table 4. Results for MRI-based prediction of cognitive decline

N R2 p p-corrected

Mini-mental state examination 112 0.07 0.001 0.006

Digit span 112 -0.06 0.26 1.00

Rey auditory verbal learning test 109 -0.03 0.08 0.56

Visual association test 111 -0.08 0.98 1.00

Stroop colour and word test 96 -0.08 0.90 1.00

Trail making test 88 -0.11 0.99 1.00

Letter digit substitution test 89 -0.09 0.24 1.00

Table 3. Neuropsychological test results at baseline and two-year follow-up

Baseline Two-year follow-up Change

N M ± SD M ± SD M ± SD

Mini-mental state examination 112 26.7 ± 2.8 25.5 ± 5.1 -1.2 ± 3.9**

Digit span 112 13.3 ± 3.3 13.5 ± 3.9 0.2 ± 2.8

Rey auditory verbal learning test 109 32.5 ± 11.0 32.0 ± 12.9 -0.5 ± 7.5

Visual association test 111 9.9 ± 3.1 9.1 ± 3.9 -0.8 ± 3.0**

Stroop colour and word test 96 1.9 ± 0.5 1.9 ± 0.6 0.0 ± 0.5

Trail making test 88 2.6 ± 1.4 2.8 ± 1.3 0.2 ± 1.3

Letter digit substitution test 89 39.8 ± 10.5 38.1 ± 13.0 -1.7 ± 7.2*

Two-sided paired sample t-tests were performed to test the average change in test scores 
against 0. The p-values are not corrected for multiple comparisons. *p<0.05, **p<0.01
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5.4 Discussion
The current aim was to study prediction accuracy of baseline MRI scans for future 

cognitive decline in memory clinic patients. We calculated features from anatomical 

MRI, diffusion MRI and resting state fMRI scans and used those in a machine 

learning approach to predict two-year follow up change scores on seven different 

neuropsychological tests. Change in general cognitive functioning as measured by 

the MMSE was predicted above chance level, but we could not predict change on 

the six other neuropsychological tests that measured specific domains of memory 

and executive functioning. The model that predicted change in MMSE score selected 

features from both the structural, diffusion and resting state fMRI scans. This might 

indicate the added value of multimodal MRI for the prediction of cognitive decline, 

and it would add to research that shows that there is complementary information in 

multimodal MRI scans for AD classification (Mesrob et al., 2012; Schouten et al., 2016). 

However, we only used multimodal MRI prediction models, and did not try unimodal 

Figure 2. Observed versus predicted change scores on the mini-mental state 
examination (MMSE) after a two-year follow-up period. Negative scores denote decline 
and positive scores denote improvement (panel A). MRI features used for the prediction 
of MMSE decline. The group lasso regression method selects groups of features for the 
prediction model. In total, 100 different prediction models were fitted during the cross-
validation procedure (10 outer folds  10 repetitions). The barplot shows the percentage 
of times that a certain MRI feature group was selected for the prediction model. The 
anatomical MRI features are presented in red, the diffusion MRI features are presented 
in blue, and the resting state fMRI features are presented in green. All prediction models 
contained the grey matter density features, and most prediction models contained the 
axial diffusivity and functional connectivity features (panel B).
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MRI prediction models. We have thus not statistically compared the prediction 

performances of the multimodal MRI model with unimodal MRI models. Therefore, 

it is not certain that there is significant added value in multimodal MRI over unimodal 

MRI for the prediction of cognitive decline. 

Furthermore, we did not inspect the contributions of specific brain regions or specific 

connections between brain regions. In the current study it is difficult to provide 

information on that scale, because of the high dimensionality of the MRI data. We 

have for example forced sparsity in the prediction models, which hinders potentially 

relevant brain regions from entering the model. Also, the effect of a brain region is 

conditional on the effect of all the other brain regions in the model, and can therefore 

not be interpreted independently. Furthermore, due to multicollinearity, otherwise 

important brain regions can become redundant in light of other brain regions, and 

consequently be left out the model. For these reasons we chose not to inspect the 

contribution of specific brain regions or specific connections between brain regions.

The effort of predicting cognitive decline has been complicated by a lack of observed 

cognitive decline in the analysed sample. At average, there was significant decline on 

the MMSE, the VAT and the LDST, but the amount of decline was little. For example, 

the average decline on the MMSE was only 1.2, whereas a change of at least 4 is 

considered to be a reliable change (Tombaugh, 2005). In the current sample only 14 

participants (12.5%) declined more than 4 points on the MMSE. For the digit span 

test, the RAVLT, the Stroop colour and word test and the TMT there was no significant 

average decline. 

Possibly, there was more actual cognitive decline, but it did not fully appear due to 

missing data. The number of missing values is large, and we showed that these missing 

values are not missing completely at random. The analysed part of the sample, as 

compared to participants that dropped out, had higher average baseline scores on 

three out of seven cognitive tests. In this case, missing at random would be the most 

fortunate scenario, in which the missing of the data points is independent of the 

actual value of that data point, and cognitive decline itself would not have caused 

dropout. However, this scenario is unlikely. For example, patients that decline more 

can be less motivated to further participate, or death may cause early dropout. 

Therefore, the missing values are most probable missing not at random. This scenario 

would affect the results most, because the observed cognitive decline would then 

be an underestimation of the cognitive decline within the entire sample. This makes 
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prediction of cognitive decline more difficult, and the predictive accuracy of baseline 

MRI that we observed would be an underestimation. Nevertheless, baseline MRI scans 

were predictive for MMSE change scores within the analysed part of the sample. It 

shows that baseline MRI scans do contain information on future cognitive decline, but 

the quality of the prediction is perhaps affected by the large amount of missing data. 

The lack of observed cognitive decline could also have been caused by practice effects. 

Neuropsychological tests are vulnerable to practice effects (Calamia et al., 2012), and 

these practice effects complicate the detection of cognitive decline (Machulda et 

al., 2013). Instead, we could have aimed to predict conversion from one diagnosis 

to another. Clinical diagnoses combine information on cognitive tests, with observed 

behaviour and biological markers, and therefore more reliably characterise cognitive 

status. However, the memory clinic patients in this sample vary in their initial diagnoses, 

and the follow-up period was only two years. Hence, the observed conversions are 

too few and too diverse to use for statistical analysis. Therefore, neuropsychological 

testing was more suitable to detect cognitive decline within the current data set.

In conclusion, we used baseline MRI scans of memory clinic patients to predict their 

two-year follow-up cognitive decline. We were able to predict decline in general 

cognitive functioning as measured by the MMSE, but we could not predict decline on 

specific domains of memory and executive functioning. Our procedure was extensive, 

because we used a wide range of measures from both anatomical MRI, diffusion MRI 

and resting state fMRI scans. Yet, the extent to which baseline MRI could predict future 

cognitive decline was limited. The prediction procedure has been complicated by a 

lack of observed cognitive decline, which was probably caused by the large number of 

participants that dropped out. However, drop-out is common to longitudinal studies 

among elderly, and it is not easy to prevent this. In addition, neuropsychological tests 

are vulnerable to practice effects, and it might be better feasible to predict future 

conversions to new clinical diagnoses. However, memory clinic patients have diverse 

clinical trajectories, and studying clinical conversions in this population requires a large 

number of participants and a sufficiently long follow-up period.
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6.1 Summary of results
In this thesis we studied magnetic resonance imaging based (MRI-based) Alzheimer’s 

disease (AD) classification. We derived a wide range of features from anatomical MRI, 

diffusion MRI and resting state functional MRI (fMRI) scans. This is important, because 

MRI scans contain a wealth of information that might help clinicians to improve AD 

diagnosis. However, anatomical MRI scans are usually only used to inspect specific 

AD characteristics like the size and shape of the hippocampus, and diffusion MRI and 

resting state fMRI scans are not at all used in clinical practice. We also studied the 

use of MRI scans for early identification of AD, and for future prediction of cognitive 

decline. This is important, because there is need for reliable AD diagnosis at the 

early symptomatic phase, or ideally even before the onset of the disease (Frisoni et 

al., 2017). This would provide patients with a prognosis so they can prepare for their 

future trajectory. In addition, early phase AD diagnosis is important for drug research, 

because early phase AD patients might still be susceptible for drugs (Scheltens et al., 

2016). 

We have tried to answer several hypotheses. In chapter two we used anatomical 

MRI scans to calculate multiple anatomical features, and used those to classify AD 

patients and healthy elderly controls. The grey matter density of the cortical structures 

and the volumes of subcortical structures yielded the highest classification scores. 

Moreover, combining multiple types of features increased accuracy. To put these 

results in perspective, we compared them with hippocampal volume and whole brain 

atrophy, because these are well established AD biomarkers. The combination of 

different anatomical MRI features yielded higher accuracies than these two simpler 

measures. This suggests that anatomical MRI scans contain more information than can 

be captured by simple measures only, and extracting this extra information benefits 

AD classification. These improvements are substantial, and might be considered for 

clinical use. 

In chapter three we took a similar approach to resting state fMRI scans. We used those 

scans to calculate multiple feature types, and to classify AD patients and healthy elderly 

controls. We calculated functional connectivity (FC) using multiple approaches, like 

large scale connectivity matrices and whole brain voxel-wise seed correlation analyses. 

In addition, we derived indirect FC measures, including FC dynamics and graph 

measures. We also quantified the amplitude of low frequency fluctuations that reflect 

neuronal signal. The FC matrices, FC dynamics and the amplitude of low frequency 
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fluctuations yielded the highest classification scores. Also here, The combination of 

different types of features increased accuracy.

In chapter four we evaluated our MRI-based models for individual AD classification 

in diverse clinical populations from various memory clinics. This is an important step 

towards clinical applicability, because it reflects the day-to-day challenge of clinicians. 

This effort is difficult for at least two reasons. First, our AD classification models are 

developed using only AD patients and healthy elderly controls, and therefore they 

do not capture the full heterogeneity found in diverse clinical populations. Second, 

MRI scans collected at different sites can be largely different due to different scanner 

vendors and scanner settings (Ewers et al., 2006; Takao et al., 2014; Zhu et al., 2011). 

Consequently, MRI-based AD classification models do not always translate well to MRI 

scans acquired from another scanner.

To evaluate our MRI-based AD classification models for diverse clinical populations, we 

trained them on a single-centre data set consisting of AD patients and controls, and 

used them to assign AD probability scores to AD patients, mild cognitive impairment 

(MCI) patients and SMC patients from a multi-centre memory clinic data set. We 

used models based on anatomical MRI, diffusion MRI and resting state fMRI scans. 

For all three MRI modalities, the AD patients were on average assigned higher AD 

probability scores than MCI patients, and the MCI patients were on average assigned 

higher AD probability scores than SMC patients. However, for some models the three 

clinical groups show large overlap in AD probability scores. The anatomical MRI 

models generalised best to the memory clinic data. Especially the grey matter density 

model could differentiate well between all three groups. However, the diffusion MRI 

model did not generalise well to the multi-centre memory clinic data set, probably 

due to large scanner site differences in the diffusion MRI data. The resting state fMRI 

model generalised reasonably well to the memory clinic data, but it was inferior to the 

anatomical MRI model. 

In chapter five we evaluated MRI’s predictive accuracy for future cognitive decline. 

To this end, baseline multimodal MRI scans were used to predict two-year follow-up 

cognitive decline. Change in general cognitive functioning as measured by the mini-

mental state examination (MMSE) was predicted above chance level, but the effect 

size was small. Change on six other tests, that measure specific aspects of memory 

and executive functioning, was not predicted above chance level. Our effort was 

complicated by a lack of observed cognitive decline. At average, there was significant 
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decline on only three out of seven cognitive tests, and the amount of decline for these 

tests was little. The lack of observed cognitive decline may have been caused by the 

large drop-out rate. Patients that decline more are probably more likely to drop out.

 

6.2 Strengths and limitations
Comprehensive comparison of MRI measures

A major strength of this thesis is the use of both anatomical MRI, diffusion MRI and 

resting state fMRI scans for AD classification. Moreover, for each scan type we used 

an extensive list of features. Especially for resting state fMRI scans we derived a 

large number of different features, including FC networks and its graph measures, 

the dynamics of these networks over time, FC within resting state networks, and the 

amplitude of low frequency fluctuations. For the purpose of AD classification, this has 

not been done as extensively before. This enabled a comparison between different 

MRI modalities, and between the different features per modality. Furthermore, we 

could combine all these different features, and we showed that they can complement 

each other for AD classification. Our results can aid researchers in choosing relevant 

MRI measures for AD research.

Extensive evaluation of generalisability

We took a careful approach to evaluate our AD classification models. Importantly, we 

used cross-validation to ensure that our models are not the result of overfitting. More 

specifically, we employed nested cross-validation. In nested cross-validation, there is 

an outer cross-validation loop that prevents ordinary overfitting. Ordinary overfitting 

is the practice of fitting too complex models that do not generalise to external data. 

Additionally, there is an inner loop that prevents over-hyping. Over-hyping is overfitting 

on the hyperparameter by trying out many different hyperparameter values and 

reporting the best result. Whereas overfitting is a problem that most researchers are 

aware of nowadays, over-hyping is still happening a lot, making results overoptimistic 

(Hosseini et al., 2020). We put effort in preventing both these types of overfitting to 

ensure that our results represent honest estimates of AD classification accuracy.

Although cross-validation uses ‘out of sample’ data for model evaluation, these data 

are still similar to the training data, because they originate from the same data set. 

Cross-validation does not ensure external validity beyond data similar to the analysed 

sample. In the case of MRI-based AD classification, there are two important issues 
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that can limit external validity. First, the patient population used for training a model 

might be too homogeneous. In chapter two and three we used data sets containing 

only diagnosed AD patients and healthy elderly controls. However, in a clinical 

setting, the patient group is more diverse, consisting of patients ranging from mild 

cognitive complaints to progressed dementia. Classification models trained on a too 

homogeneous sample might not generalise well to a clinically diverse sample. Second, 

MRI scans acquired at different MRI scanners can have different characteristics, due to 

different scanner vendors or due to different acquisition settings (Ewers et al., 2006; 

Takao et al., 2014; Zhu et al., 2011). The MRI scans used in chapter two and three were 

acquired at a single scan site, and the AD classification models might not generalise 

well to MRI scans from different scanners.

For these reasons, AD classification models should also be evaluated on external data. 

Therefore, in chapter four we evaluated external validity of our AD classification models 

on a multi-centre memory clinic data set. This data set was collected at four different 

scan sites, and consisted of clinically diverse patients. This evaluation is important for 

judging the clinical applicability of MRI-based AD classification models.

Classification methods

To create classification models, we used penalised logistic regression methods. 

These methods are well suited for MRI-based AD classification (Schouten et al., 2016; 

Teipel et al., 2015). They use penalties to hinder predictors entering the regression 

model. Predictors will only be included in the model if their added value for prediction 

outweighs the penalty. Consequently, only the most relevant predictors will enter the 

regression model (Friedman et al., 2010; Zou and Hastie, 2005). This is crucial for MRI-

based classification studies, because in these studies the number of predictors largely 

outnumbers the number of subjects. This comes with the risk of including too many 

predictors and overfitting the model.

Penalised logistic regression methods only include main effects of the predictors, and 

they only estimate (log)linear effects between the predictors and the outcome variable. 

Some other methods also include interaction effects or non-linear effects. These 

methods can potentially include more information, which could increase accuracy. 

For example, random forests (Breiman, 2001a) include both non-linear effects and 

interaction effects, and they generally show high classification accuracy (Fernández-

Delgado et al., 2014). An even more flexible method is deep learning. Deep learning 

is gaining increasing popularity, because it outperforms other classification methods 
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in a variety of tasks (LeCun et al., 2015), and more recently in medical image analysis 

(Esteva et al., 2017; Vieira et al., 2017). It is unclear whether deep learning is also 

beneficial for MRI-based AD classification. Due to its flexibility, it requires many 

subjects (e.g., thousands) to train the classification models, especially when there are 

many predictors. For MRI-based AD classification studies this is problematic, because 

they typically use many predictors while not many subjects are available. Nevertheless, 

deep learning was successfully applied to the ADNI data set for AD classification based 

on anatomical MRI scans. An accuracy of 99% was reported for classifying AD patients 

vs healthy elderly controls (Basaia et al., 2019). On the other hand, deep learning did 

not outperform penalised logistic regression in various MRI-based classification tasks, 

even though 9,300 MRI scans were used (Schulz et al., 2019). However, it was argued 

that this was due to using pre-engineered features, depriving deep learning of its main 

advantage - representation learning (Abrol et al. 2021).

In conclusion, it is yet unclear whether MRI-based AD classification could benefit from 

deep learning. However, it is certainly worth investigating more. Due to data sharing 

initiatives (e.g., ADNI; Jack et al., 2008) and publicly available large data sets (e.g., UK 

biobank; Alfaro-Almagro et al., 2018), it has become easier to apply deep learning to 

MRI data. 

Model interpretation

In this thesis we have mainly focused on the accuracy of our classification models, but 

less so on the content of these models. To some extent, we interpreted the models, by 

summarising which features were most important. However, the interpretation of these 

models has some limitations. For example, we have forced sparsity in our models, 

which hinders potentially relevant features from entering the model. Also, when highly 

correlated features are all informative, only one of those features is necessary for the 

model. Consequently, training the model on slightly different training sets can result 

in largely different models. Furthermore, the effects of the features are conditional on 

the effect of all the other features in the model, and should therefore be interpreted 

in that relative context. When many features are involved, this further complicates 

interpretation.

A focus on classification accuracy usually comes at the cost of interpretability. This is 

referred to as the distinction between ‘predicting’ and ‘explaining’ (Breiman, 2001b; 

Shmueli, 2010). In statistical modelling one normally chooses to focus on either one of 

these two goals. We choose to focus on ‘predicting’, because classification accuracy is 
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most important for individual patient classification. However, preferably the predictive 

mode provides some explanation as well (Ribeiro et al., 2016). This is important 

because clinicians are more willing to accept a model-based diagnosis if they know 

what the model bases its diagnosis on. Therefore, one should make accurate models, 

and subsequently try to make these models interpretable (Breiman, 2001b). This could 

increase the likeliness of AD classification models to be used by clinicians.

Sample sizes

In this thesis we used medium sized samples (N = 42 for chapter 2, N = 250 for chapter 

3, and N = 189 for chapter 4 and 5), which are considered small sample sizes for machine 

learning studies. Therefore, the uncertainty of the accuracy estimates is relatively high. 

For example, for sample sizes of 300 the discrepancy between accuracy measured by 

cross-validation and expected accuracy on new data is estimated between 4% and 

6% (Varoquaux, 2018). Consequently, it is difficult to evaluate small effect sizes. In this 

thesis, this is not a problem for comparing the accuracies against chance, because many 

reported AUC values were over .80, which is much higher than chance level. However, 

comparisons of accuracies against each other mostly concern small differences. For 

example, in chapter 2 the AUC values of the anatomical MRI measures range from 0.67 

to 0.94, and the AUC of the combined model is 0.98. In chapter 3 the AUC values of 

the resting state fMRI measures range from 0.51 To 0.85, and the AUC of the combined 

model is 0.85. The increases of the combined models over the single measures are 

small, and we can therefore not rule out that these increases are due to chance.

Still, we think it is useful that we have chosen these data sets for our analyses, because 

they have never been analysed in this context before. Most other AD classification 

studies have used the ADNI data set (Jack et al., 2008), and it is essential to use 

other data sets as well to not blind-stare on the results on the ADNI data set alone. 

Nevertheless, we acknowledge that our data sets are not large enough for firm 

conclusions, and we advise to replicate our results on a larger data set. This can be 

accomplished using either the ADNI data set, or large imaging population studies like 

the UK biobank (Alfaro-Almagro et al., 2018).
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6.3 Future research
Early phase AD identification

In this thesis we included clinically diagnosed AD patients. This diagnosis requires at 

least cognitive and behavioural symptoms, which are known to start in a late phase of 

the disease (Jack et al., 2013). Consequently, the included AD patients are relatively 

progressed. Brain changes, as observed on MRI scans, are known to start already before 

cognitive and behavioural symptoms occur (Jack et al., 2013). Therefore, MRI scans 

might be used to diagnose AD in an earlier phase. In fact, anatomical MRI scans have 

been used to predict future conversion to AD in MCI patients (Davatzikos et al., 2011).

In line with this thesis, MCI to AD conversion prediction could be improved by 

calculating multiple anatomical MRI measures, or by using multimodal MRI models. 

Also, this would enable a comparison between the three MRI modalities on predictive 

accuracy of AD conversion. In this thesis, anatomical MRI was unquestionably superior 

to diffusion MRI and resting state fMRI for AD classification. However, for the prediction 

of AD conversion, this may be different since resting state fMRI has been put forward as 

a potential early AD marker (Buckner et al., 2005; Sheline and Raichle, 2013). However, 

for MCI to AD conversion prediction this has not yet been investigated thoroughly using 

a wide range of resting state fMRI measures in combination with machine learning. In 

chapter 3 we presented the methodology for such a study.

Taking into account the heterogeneity of clinical populations

In this thesis we set the focus on classifying AD vs. healthy elderly controls. In chapter 2 

and 3 we developed AD classification models using only AD patients and healthy elderly 

controls. In chapter 4 we extended our focus, and applied these models to a memory 

clinic data set including SMC patients, MCI patients and AD patients. But still, this data 

set does not reflect the heterogeneity of clinical populations as seen in memory clinics. 

These populations consist of patients suffering from other dementia types as well, 

like frontotemporal dementia, Lewy body dementia or vascular dementia. In addition, 

some of these patients may experience their symptoms due to non-dementia causes, 

like depression, medication or alcohol abuse.

In order to be clinically useful, the full heterogeneity of clinical populations should be 

taken into account. Therefore, MRI-based AD classification should proceed from AD vs. 

control classification to classification of AD in a more diverse sample. This task is more 

complex, and requires larger data sets, including a wider variety of patient types.
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Combining MRI measures with other biomarkers

The goal of our studies was to extensively evaluate MRI scans for AD classification. We 

did not study the inclusion of other types of biomarkers in our models. In future efforts, 

our models can be extended with other biomarkers that are known to be predictive for 

AD. In a first step (cerebrospinal fluid) CSF markers, PET scans and cognitive measures 

could be added, because these are proven to be discriminative for AD (Jack et al., 

2016). In a second step one could add markers that are less discriminative, but could 

still be of additive value, like genetic markers (Genin et al., 2011) or metabolic markers 

(de Leeuw et al., 2017).

Scanner site differences

A challenge for MRI-based classification is the presence of scanner variability. It is 

known that technical variabilities across scan sites can have large effects on MRI scans. 

This is especially so for diffusion MRI scans (Zhu et al., 2011), but it is also the case 

for anatomical MRI (Takao et al., 2014) and fMRI (Feis et al., 2015). Consequently, MRI 

models based on scans from one scanner are not easily applied to MRI scans from 

another scanner. Partly, this problem can be solved by applying data harmonisation 

methods (Fortin et al., 2017; Fortin et al., 2018; Yu et al., 2018), as done in chapter 4 

and 5 in this thesis. However, this only works for scanner sites for which MRI scans are 

available when fitting the MRI-based classification model. The created model will not 

take into account scan site effects of other scanner sites. Consequently, the use of the 

model is limited to MRI scans of scanners that were used when creating the model.

To facilitate clinical usefulness of MRI-based classification, care should be taken to 

standardise MRI scan protocols as much as possible, such that later data harmonisation 

is not or less needed. This is difficult though, because standardisation is only possible 

to a certain extent, and limited by the type of scanner hardware. Moreover, as shown 

by the UK Biobank data, even when using identical hardware for MRI acquisition at 

each site, site is still an important confounder (Alfaro-Almagro et al., 2021). This shows 

the persistent character of scan site effects, and indicates the necessity to incorporate 

this effect in MRI-based classification models.
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6.4 Conclusion 
This thesis includes two important results. First, AD classification accuracy increases 

when combining multiple types of measures from a single MRI scan. This is the case 

for both anatomical MRI scans and resting state fMRI scans. For anatomical MRI scans, 

this implies that a combination of measures may increase accuracy of AD diagnoses 

in clinical practice. Usually, anatomical MRI scans are only used to inspect specific AD 

characteristics like the size and shape of the hippocampus, or to rule out other causes 

for symptoms like a brain tumour or other dementia types. This thesis shows that more 

information can be extracted from a single anatomical MRI scan, and this may add 

to clinical AD diagnosis. The same applies to resting state fMRI scans. Combining 

multiple types of measures from these scans increases AD classification accuracy. 

This result is not of direct clinical importance, but it is important for further research. 

Resting state fMRI scans have potential for early AD diagnosis (Viviano & Damoiseaux, 

2020), and to further investigate this potential we advise to combine multiple types of 

resting state fMRI measures.

Second, MRI-based AD classification models are not only useful for the data set that 

was used for training the model. They also generalise to some extent to heterogeneous 

patient populations, and to MRI scans acquired at different scan sites. This result is 

important, because MRI-based classification models are usually trained on a single-

centre data set, including only AD patients and healthy elderly controls. The external 

validity of these models was yet unclear. This result adds to the translation of MRI-

based AD classification to clinical practice.
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De ziekte van Alzheimer
In 2018 werd het wereldwijde aantal dementiepatiënten geschat op 50 miljoen, en 

naar verwachting zal dit aantal stijgen tot 152 miljoen in 2050 (World Alzheimer report 

2018). De meest voorkomende oorzaak van dementie is de ziekte van Alzheimer. 

Deze ziekte wordt gekenmerkt door geheugenverlies en achteruitgang in de 

cognitieve functies veroorzaakt door aantasting van de hersenen (neurodegeneratie). 

De neurodegeneratie begint al ruim voordat de eerste cognitieve symptomen van 

de ziekte van Alzheimer zich manifesteren. Daarom is het in kaart brengen van de 

neurodegeneratie geschikter voor het vroegtijdig stellen van de diagnose, dan te 

varen op de – later optredende – cognitieve symptomen. Kenmerkend voor de ziekte 

van Alzheimer is atrofie van de grijze stof. Deze atrofie bevindt zich in eerste instantie 

in de regio van de hippocampus. Later breidt het zich uit naar de rest van de hersenen.

MRI-scans
Neurodegeneratie van grijze stof kan goed in kaart worden gebracht met een 

anatomische magnetic resonance imaging (MRI)-scan. Anatomische MRI-scans 

worden om deze reden door artsen gebruikt voor het ondersteunen van een Alzheimer 

diagnose. 

Naast de atrofie van de grijze stof, worden bij de ziekte van Alzheimer ook de 

wittestofbanen aangetast. Wittestofbanen verbinden de grijzestofgebieden voor het 

overbrengen van informatie. In de grijzestofgebieden wordt informatie verwerkt, de 

witte stof is cruciaal voor de snelheid waarmee iemand die informatie kan verwerken. 

De wittestofbanen kunnen in kaart worden gebracht met een diffusiegewogen MRI-

scan. Dit type MRI-scan wordt niet gebruikt voor de klinische diagnose van de ziekte 

van Alzheimer, maar biedt wel aanvullende informatie over neurodegeneratie. Dit type 

scan zou een anatomische MRI-scan daarom kunnen aanvullen bij de diagnose van de 

ziekte van Alzheimer.

Daarnaast wordt bij de ziekte van Alzheimer de functionele connectiviteit tussen 

hersengebieden aangetast. De functionele connectiviteit tussen hersengebieden 
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wordt gedefinieerd als synchrone patronen van hersenactiviteit. Dit kan worden 

gemeten met een functionele MRI-scan. Dit type MRI-scan zou daarom ook bij kunnen 

dragen aan de diagnose van de ziekte van Alzheimer.

MRI-scans voor Alzheimerdiagnose
Omdat MRI-scans neurodegeneratie en verandering van hersenfunctie bij 

Alzheimerpatiënten goed in kaart kunnen brengen, kunnen zij potentieel gebruikt 

worden voor het vroegtijdig en nauwkeurig diagnosticeren van deze ziekte. In 

de klinische praktijk wordt tot nog toe alleen gebruikt gemaakt van anatomische 

MRI-scans om de diagnose te ondersteunen. Er wordt dan gekeken naar enkele 

kenmerken van de ziekte, zoals atrofie van de hippocampus en globale atrofie, maar 

deze kenmerken zijn op zichzelf niet onderscheidend genoeg voor een betrouwbare 

Alzheimerdiagnose. De ziekte van Alzheimer gaat echter ook gepaard met andere, 

subtielere veranderingen. Hoewel deze veranderingen op het oog niet makkelijk waar 

te nemen zijn, zou ook deze informatie uit een MRI-scan gebruikt kunnen worden om de 

Alzheimerdiagnostiek te verbeteren. Daarnaast zou een combinatie van verschillende 

typen MRI-scans tot een nog nauwkeuriger diagnose kunnen leiden.

MRI-scans voor Alzheimerclassificatie
In eerder Alzheimeronderzoek werden met name de gemiddelde verschillen in 

neurodegeneratie tussen Alzheimerpatiënten en gezonde ouderen in kaart gebracht. 

Er treedt bij normale veroudering ook neurodegeneratie op en deze overlapt deels 

met de neurodegeneratie die bij de ziekte van Alzheimer wordt gezien. Als er naar 

slechts één herseneigenschap wordt gekeken, is het door die overlap moeilijk om een 

nauwkeurig onderscheid te maken tussen Alzheimerpatiënten en gezonde ouderen. 

Daarom is de focus van het MRI-onderzoek in de afgelopen jaren verschoven naar 

classificatiestudies. Dit type onderzoek heeft als doel om met behulp van statistische 

technieken verschillende groepen zo nauwkeurig mogelijk van elkaar te onderscheiden, 

op basis van meerdere herseneigenschappen tegelijk. Dat maakt het mogelijk om van 

een enkele MRI-scan verschillende subtiele vormen van hersenatrofie te berekenen en 

deze allemaal mee te nemen in één classificatiemodel. Daarnaast kan informatie van 

verschillende typen MRI-scans gecombineerd worden in een multimodaal MRI-model.

In dit proefschrift worden eerst twee onderzoeken beschreven waarin met behulp 
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van bovengenoemde techniek een zo nauwkeurig mogelijk classificatiemodel wordt 

gemaakt voor de ziekte van Alzheimer. Vervolgens wordt in het derde onderzoek de 

klinische toepasbaarheid van deze modellen onderzocht. In het vierde onderzoek 

worden MRI-scans gebruikt om toekomstige cognitieve achteruitgang te voorspellen.

Combineren anatomische MRI-maten
In het eerste onderzoek gebruikten we anatomische MRI-scans om verschillende 

anatomische eigenschappen te berekenen en daarmee Alzheimerpatiënten van 

gezonde ouderen te kunnen onderscheiden. De dichtheid van de grijze stof van 

corticale hersengebieden en de volumes van subcorticale hersengebieden bleken 

hiervoor het meest geschikt. Het combineren van verschillende eigenschappen bleek 

de nauwkeurigheid van het classificatiemodel te verhogen. We vergeleken deze 

resultaten met een classificatie op basis van alleen het volume van de hippocampus 

en een globale maat voor hersenatrofie. Deze worden namelijk vaak gebruikt bij 

het diagnosticeren van Alzheimerpatiënten. Het combineren van verschillende 

anatomische MRI-maten leverde een nauwkeuriger classificatie op dan deze twee 

traditionele hersenmaten. 

Combineren functionele MRI-maten
In het tweede onderzoek gebruikten we eenzelfde benadering voor functionele MRI-

scans. We berekenden op verschillende manieren de functionele connectiviteit tussen 

hersengebieden om daarmee Alzheimerpatiënten van gezonde patiënten te kunnen 

onderscheiden. Ook in dit geval bleek een combinatie van verschillende maten het 

meest nauwkeurige classificatiemodel op te leveren. 

Klinische toepasbaarheid 
Alzheimerclassificatiemodellen 
In het derde onderzoek evalueerden we in hoeverre op MRI gebaseerde 

Alzheimerclassificatiemodellen toepasbaar zijn in de klinische praktijk. Dit is een 

uitdaging om tenminste twee redenen. Deze classificatiemodellen zijn namelijk 
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ontwikkeld om Alzheimerpatiënten van gezonde ouderen te onderscheiden, maar 

klinische populaties zijn heterogener. Patiënten kunnen milde cognitieve klachten 

hebben als gevolg van het voorstadium van de ziekte van Alzheimer, of als gevolg van 

een ander type dementie. Daarnaast gebruiken ziekenhuizen niet allemaal dezelfde 

MRI-scanners en de MRI-scanners kunnen verschillen in software-instellingen. Een 

Alzheimerclassificatiemodel dat is gemaakt met MRI-scans van ziekenhuis A is daarom 

niet per definitie toepasbaar op MRI-scans van ziekenhuis B.

We testten de Alzheimerclassificatiemodellen daarom op diverse patiëntgroepen uit 

geheugenklinieken van vier verschillende ziekenhuizen. We analyseerden modellen 

op basis van anatomische MRI-scans, diffusie MRI-scans en functionele MRI-scans. 

Alle drie de MRI-modaliteiten bleken de patiënten met de ziekte van Alzheimer 

boven kansniveau te kunnen onderscheiden van proefpersonen met andere 

geheugenklachten. De modellen op basis van anatomische MRI-scans bleken het 

beste te presteren en de diffusiegewogen MRI-modellen konden de verschillende 

proefpersonen het minst goed onderscheiden.

Voorspellen toekomstige cognitieve 
achteruitgang
In het vierde onderzoek onderzochten we of multimodale MRI-scans cognitieve 

achteruitgang over een periode van 2 jaar konden voorspellen. De scans bleken een 

verandering in het cognitief functioneren - gemeten met de MMSE - boven kansniveau 

te kunnen voorspellen. Verandering van cognitief functioneren gemeten met zes andere 

testen, die ieder een specifiek aspect van het geheugen en het executief functioneren 

meten, kon met de scans echter niet boven kansniveau voorspeld worden.

Conclusie
De eerste conclusie die uit dit proefschrift getrokken kan worden is dat het combineren 

van verschillende typen informatie uit eenzelfde MRI-scan de nauwkeurigheid van 

Alzheimerclassificatie kan vergroten. Dit geldt zowel voor anatomische MRI-scans als 

voor functionele MRI-scans. Voor anatomische MRI-scans heeft dit implicaties voor 

de klinische praktijk. Er wordt nu al gebruik gemaakt van anatomische MRI-scans ter 
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ondersteuning van een Alzheimerdiagnose, maar deze scans worden blijkbaar nog 

niet optimaal benut. Voor functionele MRI-scans heeft dit niet direct een klinische 

implicatie, want deze scans zijn (nog) niet geschikt voor een Alzheimerdiagnose. Dit 

type scan is echter veelbelovend voor vroegdiagnostiek, want de ziekte van Alzheimer 

gaat gepaard met een verschil in hersenfunctie voordat atrofie zichtbaar is. Daarnaast 

bleek dat MRI-classificatiemodellen tot op zekere hoogte kunnen worden gebruikt 

om Alzheimer te diagnosticeren binnen een heterogene patiëntpopulatie. Deze 

generalisatie naar de klinische praktijk ging het best met anatomische MRI-scans en 

minder goed met diffusiegewogen- en functionele MRI-scans. Verder blijken MRI-

scans in enige mate voorspellend te zijn voor toekomstige cognitieve achteruitgang.
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