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4
Chasing the peak: optimal statistics

for weak shear analyses

Weak gravitational lensing analyses are fundamentally limited by the intrinsic distribution of
galaxy shapes. It is well known that this distribution of galaxy ellipticity is non-Gaussian,
and the traditional estimation methods, explicitly or implicitly assuming Gaussianity, are not
necessarily optimal.

We aim to explore alternative statistics for samples of ellipticity measurements. An op-
timal estimator needs to be asymptotically unbiased, efficient, and robust in retaining these
properties for various possible sample distributions. We take the non-linear mapping of grav-
itational shear and the effect of noise into account. We then discuss how the distribution
of individual galaxy shapes in the observed field of view can be modeled by fitting Fourier
modes to the shear pattern directly. This allows scientific analyses using statistical informa-
tion of the whole field of view, instead of locally sparse and poorly constrained estimates.

We simulated samples of galaxy ellipticities, using both theoretical distributions and data
for ellipticities and noise. We determined the possible bias ∆e, the efficiency η and the ro-
bustness of the least absolute deviations, the biweight, and the convex hull peeling estima-
tors, compared to the canonical weighted mean. Using these statistics for regression, we have
shown the applicability of direct Fourier mode fitting.

We find an improved performance of all estimators, when iteratively reducing the residu-
als after de-shearing the ellipticity samples by the estimated shear, which removes the asym-
metry in the ellipticity distributions. We show that these estimators are then unbiased in the
absence of noise, and decrease noise bias by more than ∼ 30%. Our results show that the
convex hull peeling estimator distribution is skewed, but still centered around the underlying
shear, and its bias least affected by noise. We find the least absolute deviations estimator to
be the most efficient estimator in almost all cases, except in the Gaussian case, where it’s still
competitive (0.83 < η < 5.1) and therefore robust. These results hold when fitting Fourier
modes, where amplitudes of variation in ellipticity are determined to the order of 10−3.

The peak of the ellipticity distribution is a direct tracer of the underlying shear and unaf-
fected by noise, and we have shown that estimators that are sensitive to a central cusp perform
more efficiently, potentially reducing uncertainties by more than 50% and significantly de-
creasing noise bias. These results become increasingly important, as survey sizes increase
and systematic issues in shape measurements decrease.

M. Smit, and K. Kuijken
Astronomy & Astrophysics, Volume 609, A103 (2018)
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4.1 Introduction
Since the first gravitational shear detections (Tyson et al. 1990), the statistical analysis of
weak gravitational lensing effects has become recognized as a competitive cosmological tool.
With the advent of precision cosmology, meaningful interpretations of statistical agreement
or tension between various models and datasets become increasingly important.

Weak gravitational lensing produces slight magnification and distortion effects by bend-
ing the paths of light rays. Although analyses of the former have produced important scientific
results (e.g., Hildebrandt et al. 2009, Van Waerbeke et al. 2010) and it has in fact been demon-
strated that combined analyses can give better constraints (Hildebrandt et al. 2011, Ford et al.
2012), most scientific information has come from the analysis of weak shear distortions. To
access that information, one has to be able to (1) measure the shapes of lensed background
sources accurately, (2) understand the intrinsic distribution of these shapes and the effects of
shear and noise on statistical inference, and (3) obtain the statistical power to probe the subtle
perturbations of this distribution by weak shear.

For the first part, a multitude of shape measurement methods have been explored, among
which are foremost methods based on surface brightness moments (e.g., Kaiser et al. 1995,
Rhodes et al. 2000) and model fitting methods (e.g., Kuijken 1999, Bernstein & Jarvis 2002,
Hirata & Seljak 2003, Refregier & Bacon 2003, Kuijken 2006, Miller et al. 2007, Kitching
et al. 2008), with various alternative or combined approaches (Bernstein & Armstrong 2014,
Herbonnet et al. 2017, Zhang et al. 2015).

Community-driven projects for optimal and robust shape estimates (Heymans et al. 2006,
Massey et al. 2007, Bridle et al. 2010, Kitching et al. 2012, Mandelbaum et al. 2015) have
led to a further decrease in measurement variances and a better understanding of remaining
systematic effects and biases (e.g., Voigt & Bridle 2010, Bernstein 2010, Kacprzak et al.
2012, Melchior & Viola 2012, Refregier et al. 2012).

For the last part, the last two and a half decades have also known dramatic improvements
in statistical power. Surveys that are finished, ongoing, and planned such as COSMOS1

(Leauthaud et al. 2007), CFHTLenS2 (Heymans et al. 2012b), RCSLenS3 (Hildebrandt et al.
2016), KiDS4 (de Jong et al. 2013), DES5 (Dark Energy Survey Collaboration et al. 2016),
LSST6 (Ivezić et al. 2019), Euclid7 (Laureijs et al. 2011) steadily increase in size (sky cov-
erage and depth) and imaging quality, including a significant improvement in understanding
and correcting for systematic effects (e.g., Heymans et al. 2012a,b, for CFHTLenS).

This increasing statistical power is necessary to overcome the inference limit set by the in-
trinsic galaxy shape distribution, known as shape noise. Unlike many forms of noise, such as
measurement uncertainties that are often dominated by Poisson processes, there is no reason
that the ellipticities of background galaxies follow a Gaussian distribution. In fact, studies of
galaxy morphologies (Lambas et al. 1992, Rodríguez & Padilla 2013) suggest that late type
galaxies may exhibit a roughly uniform axis ration distribution.

This departure from Gaussianity is clearly demonstrated in Section 4.2, when comparing

1http://cosmos.astro.caltech.edu/
2http://www.cfhtlens.org/
3http://www.rcslens.org/
4http://kids.strw.leidenuniv.nl/
5http://www.darkenergysurvey.org/
6https://www.lsst.org/
7http://www.euclid-ec.org/
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the shape distribution of the CFHTLenS shape measurements catalog (Heymans et al. 2012b,
Figure 4.2) to a simulated Gaussian distribution (Figure 4.1). This implies that commonly
used Gaussian estimators, such as the (weighted) mean estimate of the central peak of the
distribution or the variance for its width, are not necessarily optimal for the inference of the
underlying gravitational shear.

For example, if the tails of the ellipticity distribution decline more slowly than the Gaus-
sian exp

(
−x2

)
, then more elliptical galaxies contribute more shape noise. There have been

many weighting and clipping schemes suggested to minimize biases and uncertainties in
weak shear inference (Bonnet & Mellier 1995, Van Waerbeke et al. 2000, Bernstein & Jarvis
2002). Alternative approaches include distribution symmetrization (Zhang et al. 2017), or
using ensembles of galaxies in Bayesian analyses or nulling techniques (Bernstein & Arm-
strong 2014, Herbonnet et al. 2017), so that the step of individual shape measurement before
inference of the underlying shear is bypassed.

In this article, we explore an alternative approach by reviewing statistical estimators that
are more suited to a distribution with a pronounced central cusp and slowly declining tails.
Estimator optimality would include a low or vanishing estimator bias and a high accuracy by
a low spread in estimates. These aspects should be robust for various possible distributions,
as samples of background galaxies are comprised of different populations.

We then highlight the use of these estimators in fitting the shear pattern in the field of view
with Fourier modes (Fourier Mode Fitting, FMF). This approach provides an alternative to
smoothed gridding and locally sparse and therefore poorly constrained estimates. It provides
statistical information constrained by the whole field of view, and incorporates fluctuations
in background number densities and estimated measurement uncertainties automatically. For
subsequent scientific analyses, the Fourier model allows for relatively straightforward, ana-
lytic approach to fundamental quantities, such as a power spectrum or mass density recon-
struction.

We note that we focus on the statistical inference from samples of measured shapes, for
various possible intrinsic shape distributions, that is, the propagation of shape noise. This is
a single but fundamental step in improving the accuracy and fidelity of weak lensing analy-
ses. We do not perform a subsequent cosmological analysis, which would require addressing
other well-known sources of bias and systematic effects. These include for example selection
and detection biases (e.g., Hirata et al. 2004, Miller et al. 2013, Jarvis et al. 2016) among oth-
ers on the instrumental and computational side. Other sources include physical effects that
affects the interpretation of the measured signal, such as the effects of baryons, or the redshift
distribution and intrinsic alignments of lensed background galaxies background sources. The
shear signal we recover in this paper would represent a combined signal, which would then
need to be interpreted.

The remainder of this paper is organized as follows. We will briefly review the necessary
definitions of galaxy shapes and the weak lensing formalism in Sect. 2, referring the reader
to excellent reviews such as Bartelmann & Schneider (2001), Schneider (2006), Hoekstra &
Jain (2008), for more in-depth approaches. We review the necessary statistical framework
in Sect. 3, where we discuss galaxy shape distributions and statistical estimators, including
definitions for efficiency and bias, before expanding on FMF. In Sect. 4 we describe the
various possible simulations and data, and analysis methods. In Sect. 5 we discuss the results
and the scientific implications. Section 6 gives a summary of our conclusions.
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Figure 4.1: Gaussian ellipticity distribution and corresponding axis ratio distribution. Top: a 2D his-
togram of ellipticities. Middle: histogram of the absolute ellipticity |e|. Bottom: histogram of the ellipse
axis ratio q.

4.2 Weak lensing
Gravitational lensing is the effect of curved space-time on the paths of light rays from distant
sources to the observer as they pass through the gravitational potential of foreground struc-
tures. This geometrical effect leads to a displacement of point sources on the projected plane
of the sky. The differential effect on images I(x, y) of extended sources leads to magnification
and distortion effects, know as the convergence κ and the shear γ = γ1 + iγ2, directly related
to the surface mass density. This is commonly described as a coordinate transformation x′

y′

 =

 1 − κ − γ1 −γ2

−γ2 1 − κ + γ1


 x

y

 , (4.1)

resulting in the lensed image I(x′, y′).
Weak lensing magnification analyses (e.g., Hildebrandt et al. 2009, Van Waerbeke et al.

2010) require the intrinsic (distribution of) source sizes or magnitudes. In weak shear anal-
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Figure 4.2: Ellipticity and axis ratio distributions of the CFHTLenS catalog. Top: a 2D histogram of
ellipticities. We note that the ring-like feature at e ≈ 0.8 is due to noisy outliers forced to a maximum e
by the shape measurement pipeline, but see also Figure 4.8. Middle: histogram of the absolute ellipticity
|e|. Bottom: histogram of the ellipse axis ratio q.

yses, the focus lies on the net distortion or reduced shear g = g1 + ig2 ≡ (γ1 + iγ2)/(1 − κ): x′

y′

 = (1 − κ)

 1 − g1 −g2

−g2 1 + g1


 x

y

 , (4.2)

where the transformation is written as a multiplication of (1 − κ) (which leads to the magni-
fication) and a traceless distortion matrix describing the alignment of lensed sources in the
foreground potential.

The distortion effect of weak lensing shear on images of background galaxies depends
on their intrinsic shape distribution. While galaxies often have complex morphologies, it is
adequate to describe images by their quadrupole brightness moments or their ellipticities, and
the respective response to weak shear distortions.

A common definition of the shape of an image with elliptical isophotes is the ellipticity
e = e1 + ie2, defined as the reduced shear needed to create this image from an image with
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circular isophotes (Bernstein & Jarvis 2002, Kuijken 2006). This gives an axis ratio q = b
a as

q =
1 − |e|
1 + |e|

⇔ |e| =
1 − q
1 + q

=
a − b
a + b

, (4.3)

and position angle θ via
e = |e| (cos 2θ + i sin 2θ) . (4.4)

As an example, we compare a Gaussian (e1, e2) distribution to the distribution observed
in the CFHTLenS shape measurement catalog in Figures 4.1 and 4.2.

This complex notation gives a most straightforward formulation of the resulting ellipticity
ẽ, after transforming an image with ellipticity e by a distortion g, by Seitz & Schneider (1997)

ẽ =
e + g

1 + g∗e
for |g| ≤ 1 , (4.5)

with g∗ the complex conjugate of g.

Figure 4.3: Top: the non-linear mapping of ellipticities (with |e| ≤ 1) by an exaggerated gravitational
shear of g = 0.33 + 0.11i. Bottom: the asymmetry introduced in the ellipticity distribution, highlighted
for the e1-component.

The non-linear effect of gravitational shear on the ellipticity parameters is shown in the
top panel of Figure 4.3. Through statistical estimation, we can attempt to infer from an
ensemble of galaxy shapes the underlying shear, if we assume the intrinsic ellipticity distri-
bution P(e) to be centered around zero ellipticity. In other words, one assumes no preferred
direction on the sky.
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This non-linear response to weak shear distortions gives rise to the asymmetry in the
observed ellipticity distribution, as shown in the bottom panel of Figure 4.3. The shifted
central peak of the distribution is unaffected by this non-linearity and therefore a direct tracer
of g.

The canonical approach is a weighted mean µ, where weighting schemes attempt to min-
imize systematic effects from noise, size and brightness. As observed by Seitz & Schneider
(1997), the expectation value 〈ẽ〉 does not depend on P(e) in the absence of noise. The mean
of an ensemble of measured ellipticities is then an asymptotically unbiased estimator for the
underlying shear g.

In the presence of noise, however, these estimations suffer from unavoidable biases in the
estimated shear (Melchior & Viola 2012, Kacprzak et al. 2012). Furthermore, the variance of
an estimator such as the mean, or more generally, the scale of the estimator distribution, does
depend on the intrinsic ellipticity distribution P(e). Informally put, the smaller the estimator
variance, the more ‘trustworthy’ the estimates and the more efficient the estimator. A more
efficient estimator reduces the uncertainties in and therefore the error bars or confidence
intervals of parameter estimates.

The smearing of the sheared distribution by noise affects central value estimations, but
the peak location itself is still an unbiased tracer of the shear.

4.3 Statistical framework
In this section, we discuss various estimators, after reflecting upon estimator properties, such
as bias, efficiency, and robustness, and their interpretation. We then propose ways to apply
this to fitting individual Fourier modes to a shear field.

4.3.1 Bias, efficiency and robustness

We will use the term bias, or ∆e, when referring to the difference between the central value of
an estimator, such as the expected value or mean 〈ê〉, and the population parameter e. We will
use the term residuals, or ri = ei − ê, when talking about the differences between one sample
estimate and the elements of that sample, that is, the individual measurements ei = ei,1 + iei,2.

We note that we write ri = ei − ê for simplicity throughout this paper, but we employ
Equation 4.5 to calculate the residuals, unless specifically noted otherwise. The absolute
residual ellipticity of a single measurement with respect to the sample estimate is then the
norm |ri|.

The difference ∆e = 〈ê〉 − e, commonly referred to as simply the bias of the estimator, is
formally called the mean-bias µ∆e. An estimator is then called asymptotically mean-unbiased,
if for an increasing number of estimations ê, the mean estimate µê converges toward the pa-
rameter value of the underlying population. This is commonly simply referred to as unbiased.
Here we have changed notation from 〈ê〉 to µê, to emphasize the method of determining the
central value of a set of estimates.

We do this, because there are other possible definitions of unbiasedness, such as median-
unbiasedness, in which case the median estimate M(ê) converges toward the true parameter
value. By the central limit theorem, it is often appropriate to assume an asymptotically normal
distribution of the estimator ê (not to be confused with the distribution P(e) of the population
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parameter e), when the number of estimations increases. This validates the general use of
mean-unbiasedness. In practice, sample sizes needed for convergence toward a normal es-
timator distribution can be very large and one should take care when assuming asymptotic
normality when making statistical inferences from a few measurements.

The efficiency of an estimator can be defined in terms of its variance. For unbiased
estimators, this variance is bounded from below by the Cramér-Rao lower bound (Rao 1945,
Cramér 1946), which in short means that there is an absolute maximum efficiency that can
be obtained. For some distributions, such as the Gaussian distribution, this limit can be
calculated analytically8. In other cases, it is useful to define a relative efficiency

ηê =
σ2

0

σ2
ê

, (4.6)

where σ2
0 is the variance of a comparison estimator, such as the mean. Then, if for example

ηê > 1, the estimator has a lower variance than the mean and is therefore more efficient in
finding the central value of the population parameter distribution. An estimator that achieves
the Cramér-Rao lower bound for all possible parameter values is for this reason also known
as a minimum variance estimator.

Again, if the assumption of asymptotic normality is not appropriate, another definition
of the scale of distribution of the estimator can be used instead of the variance, such as the
median absolute deviation (MAD). In such cases, care should be taken with the coverage of
that scale, which is simply the percentage of estimates with lower residuals than the scale. In
case of a Gaussian distribution, the standard deviation has a coverage of 68.3%. The MAD
has, by definition, a coverage of 50%.

To avoid comparing apples with oranges, we will use chosen percentiles as scale, so the
coverage is defined. For instance, we define the 68.3% scale s68.3 as the residual value for
which 68.3% of the estimates has an equal or lower residual. In case of asymptotic normality,
s2

68.3 will converge to the same value as the estimator variance.
We note that we can do this, since in our simulations the true population parameter value

e is known9. In general, the coverage of a definition of scale is not known, confusing the
interpretation of any relative efficiency.

In conclusion, we define the efficiency of an estimator ê, relative to the mean µe, at a
certain percentile coverage p, as

ηê;p =
s2
µe;p

s2
ê;p

. (4.7)

Finally, we label an estimator ê as robust (in a qualitative manner), when ê retains low or
zero bias and high efficiency in a wide range of possible distributions. A robust estimator is
desirable, since it makes the choice of estimator for a parameter with unknown distribution
more objective. As an example, the mean is optimally efficient in case of a Gaussian param-
eter distribution, but since the mean has low resistance against departures from Gaussianity
(such as outliers), it is not the most robust.

8We will omit a more detailed discussion, since it’s applicable only to certain distributions and not (directly)
relevant to this discussion.

9More accurately, the underlying shear g is known.
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Since we work with relative efficiencies, a conclusive statement about robustness is not
straightforward. We will therefore use robustness to indicate that an estimator is equally or
more efficient than the Gaussian estimator in most or all cases.

4.3.2 Estimators
We have explored various alternatives for well known estimators, which are optimal under
Gaussian assumptions, like the mean and variance. By definition, the mean êµ, or µe, mini-
mizes the variance of the residuals, which makes it a least squares estimator.

In general, optimization estimators are solutions ê that minimize a loss function

S ê =
∑

i

ρ (ei; ê) , (4.8)

such as ρ = r2
i = (ei − ê)2 for the mean.

For this paper, we considered two other optimization estimators, the least absolute devi-
ations estimator (LAD) and the biweight (BI) estimator, and an ordering estimator, namely
convex hull peeling (CHP). In section 4.3.3, we describe Fourier mode fitting (FM), using a
LAD regression approach.

Least absolute deviations

LAD is an optimization approach where the loss function to be minimized is the sum of the
absolute deviations, instead of the commonly used least squares minimization:

S LAD =
∑

i

|ri|. (4.9)

In the one dimensional case, this is the median. In more than one dimension, we talk
about the marginal median, when in each dimension the median is taken independently, or
the spatial median, when minimizing the sum of the distances of measurements to a point. In
many practical cases10, the spatial median is unique, contrary to the marginal median, which
can have multiple solutions. This is one of the reasons we used the spatial median throughout
the rest of the paper.

Another reason is that e1 and e2 should not be seen as independent parameters of the
shape. An ellipticity is defined by an absolute elongation |e| and a position angle θ. The latter
is defined within the context of a chosen frame of reference and therefore so are e1 and e2.
In other words, using the marginal median would introduce an artificial anisotropy, as can be
seen in Figure 4.4.

In concreto, for a set of (ei,1, ei,2) measurements, the mean êµ as an estimator for the net
reduced shear g1 + ig2 minimizes the squared residuals

S µ =
∑

i

(ei,1 − g1)2 + (ei,2 − g2)2. (4.10)

A LAD estimate minimizes the absolute residuals,

S LAD =
∑

i

√
(ei,1 − g1)2 + (ei,2 − g2)2 , (4.11)

10Formally speaking: when the norm is strictly convex.
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Figure 4.4: Comparison of the marginal median (left) to the spatial median, or LAD estimation (right).
Plotted are the estimation biases ∆e for 106 simulation runs, shown as a density in grayscale. Over-
plotted are arbitrary contours of increasing density (equal in both plots), to highlight the anisotropy in
P(∆e). Since e1 and e2 depend on the choice of reference frame, the marginal median introduces an
artificial anisotropy. For the LAD estimations, the residual distances |ri| do not depend on the choice of
reference frame.

which reduces the effect of outliers on the estimate. In one dimension, the LAD estimate
arises as the central value maximum likelihood estimator of the Laplace distribution, which
has a central cusp and more slowly declining tails.

There is no general analytic solution for LAD optimization. LAD can however be formu-
lated as a linear optimization problem for which several iterative methods exist (e.g., simplex-
based methods, Barrodale & Roberts 1973). In practical weak shear analyses, convergence is
generally rapid.

The biweight

An alternative optimization approach is a bi-square weighted loss function (Beaton & Tukey
1974), called the biweight for short, given by

∇S BI =
∑

i

ri

(
1 −

( ri

k

)2
)2

= 0 for |ri| < k , (4.12)

where ri = (ei − ê) are again the residuals and k is a tuning parameter, usually determined by
(an estimate of) the scale of the measured distribution.

A robust choice for k is the median absolute deviation (MAD), setting k = c ·MAD, where
c = 6.0 is optimal for estimation of location for a broad range of distributions (Mosteller &
Tukey 1977). A common approach is iteratively correcting an initial estimate M0 by the
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normalized sum in Equation 4.12:

Mn+1 = Mn +

∑
i ri,n

(
1 −

( ri,n

k

)2
)2

∑
i

(
1 −

( ri,n

k

)2
)2 , (4.13)

which can be interpreted as a normalized weighting of the residuals. In this case, the weight
of a certain measurement increases toward the (current) central estimate, which makes this
estimator a useful complement to the mean and LAD estimators.

In turn, a robust choice for M0 is the (spatial) median. Note that measurements with
residuals |ri,n| ≥ k have effectively zero weight, although these points are not ‘clipped’ from
the sample, since the residuals can change with each iteration. Convergence usually requires
few iterations.

Convex hull peeling

The convex hull of a set of points X in Rn can be defined as the intersection of all convex
sets in Rn that contain X. Informally put, the convex hull is the smallest subset of points that
‘surrounds’ the rest of the set (see Figure 4.5).

Figure 4.5: The method of CHP. The left panel shows a scatter plot with two outliers. The arithmetic
mean is shown as a gray, solid line and the dotted line represents the mean without the two outliers. The
middle panel shows the convex hull of the set of points, which is then removed from the set. The right
panel shows the final result after repeating the process, until the final set of points is equal to its own
convex hull.

There exist various algorithms for determining the convex hull (e.g., Preparata & Shamos
1985). For this paper, we used Delaunay triangulation based on the divide-and-conquer
method (Lee & Schachter 1980).

In the process of CHP, the convex hull of a set of data points is determined and subse-
quently ‘peeled’ from the set, after which the process is repeated (Figure 4.5). When the
remaining set of points is equal to its own convex hull, the final estimate is determined from
these points, for example using the mean or LAD. This makes CHP an ordering approach,
much like obtaining the familiar median for the one-dimensional case by sorting the data,
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instead of optimization11. Among other aspects, it shares the resistance of the median against
outliers.

In this paper, we are interested in the use of CHP in the two-dimensional case of (e1, e2)
measurements in the complex plane, but CHP can be used in higher dimensions as well (see
e.g., Lee 2007, for applications to SDSS quasar data).

Weighting and collinearity

When using real data, a weighting of ellipticity measurements is necessary to avoid or mit-
igate effects, such as noise or intrinsic size and ellipticity, that would confuse or bias the
estimation of the underlying shear. For LAD and biweight optimization, weighting schemes
are readily introduced, analogous to the weighted mean. For CHP, we suggest a possible
weighting scheme, analogous to the one-dimensional weighted median, as follows.

The convex hull comprises a set of points in the (ei,1, ei,2)-plane, with wi the associated
weights, given by the measurement pipeline. The minimum weight on the convex hull is then
subtracted from these weights, after which all points with updated weight wi = 0 are peeled
from the sample. Note that this removes at least one point per iteration, but can lead to point-
by-point peeling and large computation times. A solution with lesser precision but increased
speed would be given by binning the weights in discrete steps.

We also note a possible collinearity problem of multiple ellipticity measurements with
finite precision coinciding. In that case, triangulation has no solution. By combining these
points into one measurement by combining the weights, this problem is resolved.

4.3.3 Fourier mode fitting
One can model a signal, in our case a varying ellipticity, over a one-dimensional range
−L < x < L, writing that signal as a linear superposition of waves, or (Fourier) modes,
An · cos (knx ± φn), where An and φn are the amplitude and phase of the signal mode respec-
tively, and kn ≡

nπ
L are the wave numbers of the modes, showing the periodicity over the range

2L.
It is useful to rewrite this model linearly in its coefficients an · cos (knx) + bn · sin (knx),

where amplitude and the phase are now given by A2
n = a2

n + b2
n and via bn

an
= tan (φn).

This one-dimensional model is readily extended to two dimensions, by considering that
each coefficient depends similarly on y. This gives us αmn;± = cos (kmx ± lny) and βmn;± =

cos (kmx ± lny), or
e(x, y) =

∑
m,n amn cos (kmx) cos (lny)

+ bmn cos (kmx) sin (lny)

+ cmn sin (kmx) cos (lny)

+ dmn sin (kmx) sin (lny) ,

(4.14)

where the wave numbers km and ln represent the spatial frequencies in the x and y directions,
respectively. In two dimensions, we make a terminological distinction between a full Fourier
mode, as given by Equation 4.14, and the individual waves comprising it. The amplitude of
the fluctuations in ellipticity are now given for each mode in m, n by a2

mn + b2
mn + c2

mn + d2
mn.

11Indeed, in one dimension, both approaches to the median are the same.
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This linear model is fitted in a relatively straightforward manner to a sample of measured
or simulated ellipticities. In the absence of noise and for a well-behaved field of view, each
wave component of a Fourier mode is independent and can be fitted separately. We will
discuss the effect of noise in Section 4.5.2.

Applying statistics

To apply these statistics to a shear field consisting of discrete Fourier modes, which by con-
struction is centered around e = 0, the ellipticity measurements should be properly weighted
by the model of the Fourier mode under consideration. We considered the information car-
ried by an ellipticity measurement, which is proportional to the value of the fitted model M,
where M(x, y) can for instance be a single wave like cos (kmx) cos (lny), or a full mode.

Measurements close to the nodes of a wave carry the least information, whereas measure-
ment close to extrema, or antinodes, carry the most amplitude information. We considered
that each ellipticity measurement ei theoretically infers an estimate of the amplitude A, where
A ∈ {amn, bmn, cmn, dmn} by Âi = ei ·M−1. In the case of Gaussian variations around the model,
that is, measurement error distribution, the information scales as the inverse variance of that
distribution, and therefore as the square of the model:

Â =

∑
M2 · e

M∑
M2 =

∑
M · e∑
M2 , (4.15)

where we recover the well known analytic LSQ form. This can be seen as an inverse variance
weighting based on the model-to-noise ratio. For different error distributions, one can allow
a general scaling of the information with the model by Mn, and therefore

Â =

∑
Mn−1 · e∑

Mn . (4.16)

For application with our proposed weighting scheme for CHP, it is instructive to view the
multiplication by weights as shifting the data points, so the central data point(s) or CHP value
matches the amplitude to be estimated. For this purpose, it is practical to write Equation 4.16
as

Â =

∑
|M|n−1 · sgn(M) · e∑

|M|n−1 ·

∑
|M|n−1∑

Mn , (4.17)

where the (e1, e2) data points are first shifted by sgn(M), and then weighed by |M|, be-
fore the weighed estimate is normalized as usual. We show this in Figure 4.6, where we
plot the (e1, e2) values, the same (e1, e2) points shifted by sgn(M), with in this case M =

cos (kmx) cos (lny), and then the associated distribution of the weights |M| over the complex
ellipticity plane as normalized 2D histograms.

4.4 Simulations and data
For this paper, we tested various forms of P(e), using samples of random ellipticities, assumed
to be centered around zero, which we sheared by Eq. 4.5. We have used several approaches
to obtaining these samples.
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Figure 4.6: Ellipticity distribution of a superposition of 9 Fourier modes over the complex (e1, e2) plane,
where we show how we recover a single (e1, e2) amplitude, indicated by the dotted lines. Left: the
Fourier modes, centered around (0, 0) (normalized number counts). Middle: the (e1, e2) points shifted
by sgn(M), with M the model of the amplitude (normalized number counts). Right: the resulting
distribution of weights over (e1, e2), showing a shift toward the amplitude under consideration.

Firstly, we simulated a uniform q distribution, which seems to fit real data adequately
(e.g., Lambas et al. 1992, Rodríguez & Padilla 2013), without assuming any physical mech-
anism that would explain this distribution.

Secondly, we modeled background galaxies as randomly orientated triaxial ellipsoids,
and derived the projected ellipticities following Stark (1977), using axis ratio distributions
fitted to observed ellipticity distributions (Lambas et al. 1992).

In both cases, we compared our results to samples with added Gaussian noise, using real
data shape measurement error distributions to simulate the effect of noise.

Thirdly, we sampled real data, using shape measurement catalogs from weak lensing
observations.

Finally, we compared these various ellipticity distributions and the results from each esti-
mator to results in case when P(e) follows a Gaussian distribution. We examined the behavior
of bias and efficiency of each estimator under the effect of noise, the input shear and the sam-
ple size.

4.4.1 Simulated ellipticity distributions

Uniform samples

We produced random samples with a uniform q-distribution, as an ideal version of the ob-
served distribution of spiral galaxies in for example Lambas et al. (1992), Rodríguez & Padilla
(2013), henceforth referred to as a uniform sample. We used an axis ratio cut-off of q ≈ 0.2
to account for a finite galaxy thickness, following Lambas et al. (1992), which gives rise to
standard deviations in each ellipticity component of σe ≈ 0.25, comparable to the samples
drawn from data.

The resulting axis ratio and ellipticity distributions are shown in Figure 4.7



Hoofdstuk 4: Optimal statistics for weak shear 83

Figure 4.7: Ellipticity distributions for a uniform axis ratio distribution. Top: a 2D histogram of ellip-
ticities. Middle: histogram of the absolute ellipticity |e|. Bottom: histogram of the ellipse axis ratio q.
A cut-off near q ≈ 0.2 is suggested by observations and produces standard deviations in each ellipticity
component of σe ≈ 0.25, comparable to most survey shape measurement catalogs.

Projected ellipsoids

A triaxial ellipsoid with axes ã ≥ b̃ ≥ c̃ ≥ 0 can be described by

(cx)2 +

(cy
b

)2
+ (z)2 = constant , (4.18)

with b = b̃/ã and c = c̃/ã. As given by Stark (1977), such an ellipsoid is seen as an ellipse in
projection, given by

( j/ f )x′2 + 2(k/ f )x′y′ + (l/ f )y′2 = constant , (4.19)
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where (x′, y′) are the coordinates in the projection plane and

f ≡ c2 sin2 θ sin2 ϕ + (c/b)2 sin2 θ cos2 ϕ + cos2 θ , (4.20a)

j ≡ c2(c/b)2 sin2 θ + c2 cos2 ϕ cos2 θ + (c/b)2 sin2 ϕ cos2 θ , (4.20b)

k ≡ ((c/b)2 − c2) sinϕ cosϕ cos θ , (4.20c)

l ≡ c2 sin2 ϕ + (c/b)2 cos2 ϕ , (4.20d)

with ϕ and θ the first two orientation angles of the ellipsoid.
For simulations of projected ellipsoids, we assumed Gaussian distributions for b and c,

following Lambas et al. (1992). For elliptical galaxies, we used b = 0.95 and c = 0.55
with standard deviations σb = 0.35 and σc = 0.2. For disk galaxies, we used b = 1.00 and
c = 0.25 with standard deviations σb = 0.13 and σc = 0.12.

The axis ratio was then recovered via

q =

√√√√√√√ j + l −
√

( j − l)2 + 4k2

j + l +

√
( j − l)2 + 4k2

, (4.21)

and the ellipticity through Equation 4.3. The orientation angles of the ellipsoids were ran-
domly distributed. The resulting axis ratio and ellipticity distributions are shown in Figure
4.8.

We will refer to these simulated samples as disk and elliptical samples. We also used
combined samples with a disk to elliptical ratio derived from the CFHTLenS catalog. (See
Table 4.1.)

4.4.2 Data: CFHTLenS
We used data from Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS, Heymans
et al. 2012b). The CFHTLenS survey analysis combined weak lensing data processing with
THELI (Erben et al. 2005, 2009, 2013), shear measurement with lensfit (Miller et al. 2007,
2013, Kitching et al. 2008), and Bayesian photometric redshift measurement (BPZ, Benítez
2000, Coe et al. 2006) with PSF-matched photometry (Hildebrandt et al. 2012). A full sys-
tematic error analysis of the shear measurements in combination with the photometric red-
shifts is presented in Heymans et al. (2012b), with additional error analyses of the photometric
redshift measurements presented in Benjamin et al. (2013).

For our analyses, we selected 4.2 million objects that are well determined and resolved
(lensfit fitclass = 0, non-zero lensfit weight, star_flag = 0, CLASS_STAR ≤ 0.5). We ex-
cluded objects that lie within a mask, with the exception of large, conservative masks around
relatively faint stars and stellar haloes (MASK ≤ 1, see Erben et al. 2013).

The CFHTLenS shape catalog is not an exact representation of the ellipticity distribution
of the observed galaxy population, as it includes measurement noise present in any real data
set. Selecting sources on lensfit weight w or signal-to-noise ratio νSN could on the other hand
introduce selection biases in the galaxy population we wanted to to study. We decided to
use two sets of sources: the complete set, described above, to optimally sample the complete
source population, and a conservative subset with w ≥ 15 and νSN ≥ 20, to reduce the
uncertainty in observed ellipticity, at the possible cost of a bias in the selection.
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Figure 4.8: Ellipticity and axis ratio distributions for distribution of projected ellipsoids. Left: disk
galaxies. Right: elliptical galaxies. Top: a 2D histogram of ellipticities. Note that the ring-like feature
in the left panel is the result of a finite disk thickness. Middle: histogram of the absolute ellipticity |e|.
Bottom: histogram of the ellipse axis ratio q.

For both sets, we split these sources by BPZ spectral type into red (TBPZ < 1.5) and blue
(1.5 < TBPZ < 3.95) galaxies, with a further division between Sbc (1.5 < TBPZ < 2.5) and
Scd (2.5 < TBPZ < 3.95). We found that our conservative selection reduced the number
of galaxies to roughly 25%, almost independent of spectral bin for TBPZ < 3.1. For higher
spectral types, the subset decreased linearly to roughly 10% for the highest spectral bin, which
was an indication that our selection did indeed introduce a modest sample bias.

Table 4.1 gives an overview of the selected CFHTLenS data, while Figure 4.9 shows the
respective distributions.

We drew random subsets from the selected CFHTLenS ellipticities, which we then sheared
by Eq. 4.5. This introduced the implicit assumption that, after the bias corrections described
in Heymans et al. (2012b) and Miller et al. (2013), the central ellipticity was zero, and these
random subsets were approximately drawn from an unsheared, noise-free background galaxy
population.

4.4.3 Simulated noise
In any realistic shape measurement catalog, ellipticities not only have shape noise due to
a finite intrinsic distribution, but suffer from measurement uncertainties as well. For this
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Table 4.1: Overview of the CFHTLenS data used. Column 1 gives the division between BPZ spectral
type (red: TBPZ < 1.5, blue: 1.5 < TBPZ < 3.95, Sbc: 1.5 < TBPZ < 2.5, Scd: 2.5 < TBPZ < 3.95).
Column 2 gives the number N of objects selected. Column 3 gives the 1D Gaussian ellipticity standard
deviation σe, using both ellipticity components after bias correction. In parentheses, we give N and σe

for sources with w ≥ 15 and νSN ≥ 20.

Color N σe

All 4216334 (912828) 0.286 (0.242)

Red 553633 (151939) 0.267 (0.242)

Blue 3662701 (760889) 0.289 (0.242)

Sbc 870295 (219929) 0.294 (0.262)

Scd 2792406 (540960) 0.288 (0.232)

reason, we wanted to study the effect of noise or our simulated, noiseless ellipticity samples.
Measurement uncertainties depend primarily on pixel noise and therefore vary with image

size and brightness. This means that errors on the ellipticities are not drawn from a single
distribution. To mimic the effect of a skewed composite error distribution for our simulated
samples, we randomly sampled the CFHTLenS weight w.

Miller et al. (2013) calculated an approximately inverse-variance weight using the width
of the ellipticity likelihood surface by

w =

[
σ2

ee2
max

e2
max + 2σ2

e
+ σ2

pop

]−1

, (4.22)

where σ2
e is the variance in ellipticity of the likelihood surface, σ2

pop is the ellipticity variance
of the galaxy population, and emax is a maximum ellipticity, to reflect a finite edge-on disk
thickness.

Using emax = 0.804 from Miller et al. (2013) and refining σ2
pop ≈ 0.242 using the

CFHTLenS catalog itself12, we obtained a distribution in ellipticity variance σ2
e for each

w. From this, we produced noise by assuming a Gaussian distribution with the ellipticity as
mean and σ2

e as variance.

Estimation of errors

To assess errors on bias and efficiency from our simulations, we simply divided our sim-
ulations randomly in smaller subsets and determine the statistical variations, assuming t-
distributions. While this approach may seem to lack finesse compared to a full bootstrap, the
significance of our results is high enough for a proof of concept.

12Miller et al. (2013) cite σ2
pop = 0.255 as prior, but this would lead to a negative σ2

e for the maximum weight in
the CFHTLenS catalog.
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Figure 4.9: Ellipticity and axis ratio distributions for CFHTLenS blue (left), red (right). Top: a 2D
histogram of ellipticities. Note that the ring-like feature at e ≈ 0.8 is due to noisy outliers forced to
a maximum e by the shape measurement pipeline, but see also Figure 4.8. Middle: histogram of the
absolute ellipticity |e|. Bottom: histogram of the ellipse axis ratio q.

4.5 Results

4.5.1 Central value estimation
For each sample type, we produced 104 random samples of 100 ellipticities, which we dis-
torted by an absolute reduced shear of g = 0.2, and determined relative efficiencies and
possible biases. We then assessed the effect of varying the shear and the sample size.

Asymmetry and bias

Ideally, an estimator should be unbiased in the absence of noise. For the mean, this is the case
(Seitz & Schneider 1997), but since the effect of shear on intrinsic ellipticities in non-linear,
the resulting, observed ellipticity distribution P(ẽ) is asymmetric, or skewed, which can lead
to mean-biases for various estimators.

In Figure 4.10, we show this effect on the CHP estimator for g = 0.3 in two directions.
The distribution of the CHP estimator is clearly skewed, as shown by the convex hulls plotted,
when the coverage within the current hull is equal to approximately13 38.3%, 68.3%, 86.6%,

13CHP is a discrete and not a continuous process, but this effect is negligible for 104 estimates.
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and 95.4%. We note that this leads to a mean-biasedness, according to definition, but the
center of the estimator distribution P(êCHP) seems significantly less biased. In other words,
the CHP estimator seems ‘CHP-unbiased’.

A solution to this skewness in the estimator distribution, in the absence of noise, is it-
eratively improving estimates by correcting the observed ellipticities P(ẽ) by the estimated
shear, using Equation 4.5, and then determining the updated residuals. We call this process
of iteratively correcting the sample by the current estimate ‘de-shearing’ (or ‘de-g’). Figure
4.10 shows how this symmetrized the estimator distribution P(ê), and slightly improved the
efficiency as well (see section 4.5.1). The latter seemed to be the case even for the mean êµ
as estimator, but the difference was not statistically significant.

Figure 4.10: The skewed êCHP distribution as an example of the effect of asymmetry in a sheared
ellipticity distribution. Plotted are the estimation biases ∆e for 105 simulation runs, shown as a density
in grayscale. Over-plotted are the convex hulls at approximately 38.3%, 68.3%, 86.6%, and 95.4%
coverage. The mean of the distribution is shown as a white plus. Top: estimation biases ∆eCHP for
samples with an underlying shear of g = −0.21 + 0.21i (left) and g = 0.3 (right). Note that these
estimator distributions are effectively mean-biased, because they are skewed, but still centered around
∆e = 0, as indicated by the CHP estimation of the distributions. Bottom: ∆eCHP for the same samples,
after iteratively de-shearing the samples until the final CHP estimate vanishes. These iterations remove
asymptotic mean-bias and increase efficiency.

In presence of noise, the mean is a biased estimator (Melchior & Viola 2012). Given that
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in reality systematic noise is always present, a form of bias is unavoidable, since the noise
distribution is different14 from the (skewed) ellipticity distribution (See Figure 4.3). This
means that our method of de-shearing would introduce a noise bias for precisely the same
reason, since we would not properly correct the asymmetry in the distribution.

We compared the results for simulated projected ellipsoids with and without simulated
noise in Figure 4.11 to assess the effect. In the appendix, we quantified the observed multi-
plicative bias in the form

efit = (1 + m)ein , (4.23)

where e stands for e1,2, and summarize the results in Table 4.2.
Without de-shearing, only the mean is a mean-unbiased estimator. We noted that all

estimation methods could be made mean-unbiased in the noise-free case, when including de-
shearing, but showed a mean-bias in the presence of noise, as expected. For the biweight
estimator êBI, this was (within statistical significance) the same bias as for the mean. For the
LAD and CHP estimators êLAD and êCHP, the biases were significantly reduced, up to ∼ 30%,
to below percent level for realistic weak shear.

Figure 4.11: Estimator mean-bias as a function of input shear for realistic combinations of simulated
disk and elliptical samples, using projected ellipsoids. From left to right: all estimators without noise,
without noise after iteratively de-shearing the samples, all estimators with noise, and with noise and
after iteratively de-shearing the samples. Color coding: êµ (red), êLAD (blue), êCHP (green) and êBI

(yellow).

This decrease in bias can be explained by realizing that the observed, sheared ellipticity
distribution is skewed, but the location of the central peak of intrinsically round background
sources is still an unbiased estimator of the underlying shear (which can be deduced from
Equation 4.5 and Figure 4.3). It is the bias in determining the location of this peak that
introduces the bias in the shear estimate. Likewise, the effect of noise changes the observed
ellipticity distribution, but does not affect the location of that peak. Estimators that are more
sensitive to a central cusp or peak in the distribution and less to high ellipticities in the tail,
such as êLAD and êCHP, will therefore introduce a lower mean-bias.

We compared these results to the mean-bias in the upper panels of Figure 4.10 and the
observation that the central peak of the estimator distribution is in fact located at ∆e ≈ 0.
We found that the mean-bias arose due to the asymmetry in the estimator distribution and the
CHP-bias vanished, unaffected by noise.

14Intrinsically, the effect of noise is symmetric, but the effect on a sample of sheared ellipticities depends on the
shape measurement pipeline, as noted in Melchior & Viola (2012).
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Estimator efficiencies

In Tables 4.3, 4.4, and 4.5 in the appendix, we summarized the full results for the relative
efficiencies of each estimator. We applied de-shearing and note that this improves the effi-
ciencies marginally at a similar marginal cost to the bias. We determined relative efficiencies
for coverages of 25%, 50%, and 75%, corresponding to the MAD and the first and third quar-
tiles, and 38.3%, 68.3%, 86.6%, and 95.4%, which would correspond to steps of 0.5σ in case
of a Gaussian distribution with variance σ2.

In Figure 4.12, we plot these results for a few distributions, namely Gaussian, uniform
q, a combination of disk and elliptical projections and the conservative CFHTLenS catalog
samples. We also plot the results for the samples with added noise and the full CFHTLenS
samples.

Figure 4.12: Relative efficiencies each estimator plotted at different coverages. From left to right:
Relative efficiencies in case of a Gaussian P(e) distribution, the CFHTLenS catalog P(e) distribution, a
combination of disk and elliptical distributions using projected ellipsoids, and a uniform q distribution.
Color coding: relative efficiencies for êLAD (blue), êBI (yellow), and êCHP (green). Solid lines: simulated
samples without noise or using the CFHTLenS conservative subset. Dashed lines: including noise or
using the complete CFHTLenS set.

Not all estimators reached asymptotic normality. Especially CHP converged slower to-
ward normality in the tails of the distribution, that is, at higher coverage. For LAD, this is
noticeable mostly for the uniform q distribution.

The biweight is the most robust, as its relative efficiency doesn’t vary much across dis-
tributions. The biweight relative efficiency is however quite low, which means that this esti-
mator offers little improvement. Even when P(e) follows a Gaussian distribution, ηBI is not
significantly better or worse than the traditional mean.

Our results show that estimator efficiency is independent of input shear. This is the case,
when we define the individual estimate biases similarly to the residuals, as noted in Section
4.3.1, that is, not as the difference ê − g, but as the extra shear needed over the input shear g
to reach this difference, as determined by Equation 4.5:

∆e =
ê − g

1 − g∗ê
, (4.24)

with g∗ the complex conjugate of the input shear g of the simulations. Using that definition,
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this independence is demonstrated Figure 4.13.

Figure 4.13: Efficiency for an arbitrary estimator and sample type versus input shear, ranging from
g = 0.05 (left) to g = 0.35. Upper: simple difference ê− g between estimates and input shear, with s68.3

over-plotted. Lower: ∆e, as defined by Equation 4.24, with s68.3 over-plotted.

As an aside: since the mean of the CHP estimator is displaced from the center, this
necessarily increases the distribution scale. A more proper way to compare the scale with
symmetric distributions would be comparing the surface within the convex hull at a certain
coverage, as s2 is a measure of the (circular) surface around ê inside that scale. In this sense,
efficiency is a figure of merit. We have not done so in this paper, which means the ηCHP are
slightly underestimated, but not significantly.

In Figure 4.14, we show the results for different samples sizes. In Table 4.6 in the ap-
pendix, we summarize the quantitative results. In the limit of very small sample sizes, the
difference between the various estimators is expected to vanish. We note that a potential
improvement over the mean estimator remains even for a sample size of N = 10.

Figure 4.14: Relative efficiencies η68.3 plotted against sample sizes. From left to right: Relative effi-
ciencies in case of a Gaussian P(e) distribution, the CFHTLenS catalog P(e) distribution, a combination
of disk and elliptical distributions using projected ellipsoids, and a uniform q distribution. Color cod-
ing: relative efficiencies for êLAD (blue), êBI (yellow), and êCHP (green). Solid lines: simulated samples
without noise or using the CFHTLenS conservative subset. Dashed lines: including noise or using the
complete CFHTLenS set.
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4.5.2 Fourier mode fitting

For samples of a combination of disk and elliptical distributions using projected ellipsoids,
we produced 103 random square fields with 103 simulated ellipticities. For comparison, the
average number of selected sources in a CFHTLenS field is roughly 2.5 · 104, ranging from
9525 to 37767, or 5.3 · 103, ranging from 2111 to 9525 for the more conservative sample.

Using Equation 4.5, we distorted these intrinsic ellipticities by the total shear pattern of
one or more full modes (as defined in Equation 4.14), then applied simulated measurement
noise (as described in Section 4.4.3) as a final step.

We fitted amplitudes per individual wave using LSQ, LAD and CHP, and per mode using
LSQ and LAD by simultaneously fitting all four amplitudes. We then determined relative
efficiencies and possible biases of the recovered amplitudes in the same way as in Section
4.5.1.

In Figure 4.15, we show the fitted shear field for a single realization, using in this case
104 simulated ellipticities. We fitted 16 different modes individually, using LSQ and LAD,
and 64 individual amplitudes using LSQ, LAD, and CHP, and found the amplitude residuals,(
O

(
10−3

))
, to be two orders of magnitude less than the input values, which were constrained

to g ≤ 0.25 for peak values at positive interference. Residuals in |e| for this realization varied
between ±0.075 for LSQ,±0.066 for LAD and ±0.14 for CHP.

Figure 4.15: Shear field residuals when fitting 16 different modes, using simulated projected ellipsoids
as intrinsic shapes, and including additional Gaussian noise. From left to right: input shear, LSQ fit and
residuals, LAD fit and residuals, CHP it and residuals. Upper and lower row show e1 and e2 respectively.
The color scale is the same in all plots for comparison and ranges between −0.247 ≤ e1,2 ≤ 0.247.
Residuals for this realization vary between ±0.075,±0.066 and ±0.14, respectively.

Bias and efficiency

The results from Sections 4.5.1 and 4.5.1 carry over to estimates of Fourier amplitudes for
LSQ and LAD. We found fitted values with standard deviations of the order of 10−3 for
individual amplitudes. In Figure 4.16, we show the consistency of the fitted values.

Over plotted in Figure 4.16 are the best-fitting mean-bias, defined similar to Equation
4.23 as

aest = (1 + m)ain , (4.25)
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Figure 4.16: Consistency of the estimated Fourier amplitudes as defined in Equation 4.14. Plotted
are the input amplitudes amn, bmn, cmn, dmn versus their estimates (Section 4.3.3) for LSQ (left), LAD
(middle) AND CHP (right). Top row: only simulated intrinsic shapes based on projected ellipsoids.
Bottom row: the same, with added noise. Over plotted are the best-fitting mean-bias, as defined in
Equation 4.25.

where a stands for amn, bmn, cmn, and dmn as defined in Equation 4.14. The uncertainties are
too small to be visible. In Table 4.7 in the appendix, we give the quantitative results.

Similar to the results shown in Figure 4.11, LSQ underestimates Fourier amplitudes by a
few percent in the presence of noise. For LAD, we found an improvement on bias by ∼ 20%
in the presence of noise, when iteratively de-shearing the sample. Likewise, fitting for LAD
without de-shearing slightly overestimated the amplitudes, again comparable to Figure 4.11.

We note that in this case, adding noise did not seem to have a significant effect when
fitting per mode. In most cases, we did notice a significant increase in bias when fitting per
single amplitude. We did not see a change in bias between LSQ per mode and per amplitude.

We also found a slightly higher relative efficiency of η68.3 = 1.09 ± 0.07 for LSQ and
η68.3 = 1.47±0.09 for LAD, when fitting per mode, with or without added noise. It is not sur-
prising that a model with four parameters (amplitudes) fits the estimates better than a model
with one parameter, but the difference of this effect between LSQ and LAD is noteworthy.

Since CHP doesn’t fit a model to the data, but rather orders the (e1, e2) data points, there
is no straightforward way to fit four amplitudes simultaneously with the necessary weighting
(Section 4.3.2). We have not explored this option further in this paper.

The CHP estimator performs consistently, that is, convergent around the input values, but
with a significant lower efficiency than for central value estimation of a cloud of (e1, e2) data
points (Section 4.5.1). This is to be expected, since CHP is particularly sensitive to a (central)
cusp in the distribution of data points. By shearing the intrinsic ellipticities by a model that
varies over the field of view, as shown in Figure 4.6, this peak will be smeared out, decreasing
the effectiveness of CHP.

In conclusion, CHP is consistently the most sensitive to the central cuspiness of a dis-
tribution. The results of this section do serve as a proof of concept for applying alternative
statistics to an observed field of weak shear measurements.
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4.6 Conclusions and summary

4.6.1 Optimal estimators

Our main conclusion is that to evaluate a statistical estimator, one must be willing to look
beyond the canonical terms of mean-bias and the Gaussian variance as efficiency. We have
shown that these commonly used meta-analysis instruments do not always properly reflect
how well weak shear estimator values are constrained around the true underlying shear values.

By discussing the statistical definitions and observing the behavior of estimators for var-
ious ellipticity distributions, we have proposed ways of comparing various estimators moti-
vated by statistical theory. The conclusions of that comparison are as follows:

Since the central peak of the intrinsic ellipticity distribution P(e) is an unbiased tracer
of the underlying shear, we find that the LAD and CHP estimators are less biased and more
efficient than the standard mean.

When iteratively de-shearing the ellipticity sample by the estimated shear, the LAD es-
timator can reach a sub-percent bias for typical weak shear values, including noise. LAD is
generally the most efficient of all estimators considered, potentially reducing uncertainties by
more than 50% for samples simulated using a model of projected triaxial ellipsoids.

The CHP estimator is in terms of its mean-bias less affected by noise, as compared to
the mean and, to a lesser extend, LAD. In fact, since the estimator distribution P(ê) is not
symmetric, the actual center of that distribution, as opposed to the mean of that distribution,
is unbiased in the presence of noise, within statistical significance. This makes CHP an im-
portant consideration, but it is less straightforward for adaptation for regression and requires
careful assessment of uncertainties. Furthermore, CHP is computationally more demanding.
In the presence of Gaussian noise, CHP is slightly less efficient than the mean (Figure 4.12,
panels 3 and 4), but defining efficiency in terms of a figure of merit can reduce this drawback
compared to the gain in bias, as proposed in Section 4.5.1.

4.6.2 Direct Fourier mode fitting

Applying different statistics to fitting individual Fourier modes to the shear field directly, we
found results consistent with our previous conclusions.

We have shown that the Fourier amplitudes can be recovered with sub-percent accuracy
and a minimal bias, which is an important proof of concept. Since the periodic variations in
underlying shear effectively smooth the central peak of the intrinsic ellipticity distribution,
the gain in efficiency is slightly less for LAD and significantly less for CHP. It is possible
that an alternative to our weighting scheme for FMF with CHP could improve results. At this
point, the method of CHP seems more applicable to samples of expected (roughly) constant
shear, for example when measuring tangential shear around a gravitational lens candidate in
bins of distance.

We have also shown that the shear field can be recovered reliably, with residuals an the
order of magnitude less than the variations of the shear over the field of view for LSQ and
LAD, using 103 sources, which is conservative compared to a typical single CFHTLenS field.
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4.6.3 Future considerations and possible applications
We have discussed alternative statistics for inference of shear from samples of background
sources with various intrinsic ellipticity distributions, proposing methods that could improve
biases and uncertainties arising from the shape noise. It is important to consider our results
within the broader context of other sources of systematics, as mentioned in our introduction.

Firstly, our results for shape noise assume trustworthy shape measurements, not only per
source, but also considering the effect of systematics in the shape measurement pipelines
on the reproduced ellipticity distribution as a whole: the recovery of a central peak, the
distribution of outliers, among others. Examples are the effect of constraining ellipticities to
a certain ‘physical’ maximum (e.g., emax = 0.804 for lensfit, Miller et al. 2013), as we see
in Figure 4.2, or conversely, the unphysical outliers with |e| > 1.0 arising from dividing two
noisy quantities (often when correcting for the point spread function, or PSF), affecting the
tails of the distribution. Any features in the recovered shape distribution could affect bias
and efficiency of the statistic used. Optimizing statistics will place more stringent demands
on shape measurements than performing excellent ‘on average’. Even methods that avoid
individual shape measurements (Bernstein & Armstrong 2014), an ensemble inferred reduced
shear could improve by considering the intrinsic shape distribution. Secondly, even with an
accurately measured shape distribution, there will remain sources of systematic error in other
steps of a cosmological analysis, as noted in our introduction. These effects still form a
necessary part in a weak lensing analysis, but leave our statistical conclusions unaffected.

As survey sizes and image qualities increase, so will the demands on constraining sys-
tematic effects to a sub-dominant level, as described in for example Kuijken et al. (2015)
and Mandelbaum et al. (2018) for the KiDS DR2 and HSC DR1, respectively. At the same
time, it will be interesting to see measured ellipticity distributions converge as more sources
are observed with higher signal-to-noise and measured with higher fidelity, due to increased
depth of imaging, image quality and PSF control.

For now, we have given a proof of concept for alternative statistics in two cases: a sam-
ple of ellipticities with one underlying shear and the recovery of individual Fourier modes
of the shear variation over a field of view. The first part has important applications when
inferring a shear profile around lenses, both in recovering an accurate, less biased estimate
and smaller error bars or confidence intervals. For the second part: since the amplitudes are
well constrained by fitting individual Fourier modes, this provides a possible method toward
estimation of the power spectrum. Furthermore, the shear field can be recovered in terms of
its Fourier amplitudes, providing a powerful analytic model for mass reconstruction, without
the need for smoothed gridding and incorporating variations in background source densities
and estimated measurement uncertainties.
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4.A Bias estimations
In Table 4.2 are given the mean-bias and CHP-bias for each estimator, with and without
de-shearing. This multiplicative bias m is defined by Equation 4.23 as efit = (1 + m)ein.

4.B Efficiency estimations
In Tables 4.3, 4.4, and 4.5, we summarize the full results for the relative efficiencies of each
estimator. We determine relative efficiencies for coverages of 25%, 50%, and 75%, corre-
sponding to the MAD and the first and third quartiles, and 38.3%, 68.3%, 86.6%, and 95.4%,
which would correspond to steps of 0.5σ in case of a Gaussian distribution with variance σ2.

For easy reference, we also indicate how much the scale of the estimator distribution
would improve, in percentages of the scale of the distribution of the mean estimator,

∆sp =
sê,p

sµ
− 1 (in %) (4.26)

Since a higher efficiency means a smaller scale and therefore a more ‘trustworthy’ estimate,
this is an intuitive, albeit rough indication of the change in error bars.

4.C Estimations from Fourier mode fitting
In Table 4.7 are given the mean-bias and efficiencies of the LSQ estimator, per mode and
per individual amplitude, LAD estimator with and without de-shearing, per mode and per
individual amplitude, and the CHP estimator, per individual amplitude. The mean-bias is
again given in terms of a multiplicative component m as defined in Equation 4.25.
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Table 4.2: Results for bias estimations for each estimator, with and without de-shearing. We have used
simulated projected ellipsoids as intrinsic ellipticities, with and without added noise. Estimation bias is
given in terms of a multiplicative component m as defined in Equation 4.23. Numbers in parentheses
reflect the standard uncertainty in the last digit.

Estim. mµ mCHP

Simulated ellipticities

Mean -0.0003(4) -0.0007(7)

de-g 0.0006(6) 0.0004(4)

LAD 0.0172(4) 0.0154(5)

de-g -0.0000(2) -0.0005(2)

CHP 0.0097(2) 0.0052(5)

de-g 0.0000(2) 0.0001(2)

BI 0.0426(7) 0.0421(9)

de-g -0.0002(6) 0.0002(5)

Added noise

Mean -0.0404(7) -0.040(1)

de-g -0.045(2) -0.045(2)

LAD 0.0114(6) 0.011(1)

de-g -0.0308(8) -0.031(1)

CHP 0.0053(5) 0.004(1)

de-g -0.030(1) -0.028(2)

BI 0.0066(8) 0.007(1)

de-g -0.040(1) -0.040(2)
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Table 4.3: Results for scales of fixed coverage for LAD. For each sample distribution, the relative
efficiencies η are given first, and the (more intuitive) relative change in estimator distribution scale is
given second, in percentages of the distribution scale of the mean. Numbers in parentheses reflect the
standard uncertainty in the last digit.

Distribution η25 η38.3 η50 η68.3 η75 η86.6 η95.4

∆s25(%) ∆s38.3(%) ∆s50(%) ∆s68.3(%) ∆s75(%) ∆s86.6(%) ∆s95.4(%)
Simulated ellipticities

Gaussian 0.79(3) 0.79(3) 0.81(3) 0.83(2) 0.84(3) 0.81(2) 0.83(3)
+12(2) +12(2) +11(2) +9(1) +9(2) +11(1) +10(2)

Uniform q 7.2(4) 6.1(3) 5.4(1) 4.55(9) 4.3(1) 3.69(9) 3.22(6)
-63(1) -59.4(8) -56.9(5) -53.1(5) -51.7(7) -48.0(6) -44.3(5)

Elliptical 2.7(1) 2.5(1) 2.4(1) 2.26(8) 2.20(9) 2.07(8) 1.88(7)
-39(2) -36(2) -35(1) -34(1) -33(1) -31(1) -27(1)

Disk 6.3(3) 5.8(2) 5.5(2) 5.1(2) 4.9(1) 4.7(1) 4.3(1)
-60.1(9) -58.5(8) -57.3(6) -55.6(7) -54.7(7) -53.9(7) -52.0(7)

Combined 5.4(2) 5.0(3) 4.9(2) 4.6(2) 4.4(1) 4.1(1) 4.0(2)
-57.2(8) -55(1) -55(1) -53.6(8) -52.2(7) -50.8(7) -50(1)

Added noise
Uniform q 1.37(7) 1.38(5) 1.37(5) 1.38(3) 1.37(3) 1.33(3) 1.29(4)

-15(2) -15(2) -14(2) -15(1) -14(1) -13(1) -12(1)
Elliptical 1.19(6) 1.18(5) 1.20(6) 1.17(3) 1.18(4) 1.19(3) 1.16(4)

-8(2) -8(2) -9(2) -8(1) -8(1) -8(1) -7(2)
Disk 1.48(8) 1.49(7) 1.54(7) 1.55(6) 1.57(5) 1.59(5) 1.52(4)

-18(2) -18(2) -19(2) -20(1) -20(1) -21(1) -19(1)
Combined 1.55(5) 1.53(6) 1.51(8) 1.53(5) 1.51(5) 1.48(6) 1.46(5)

-20(1) -19(2) -19(2) -19(1) -19(1) -18(20 -17(1)
Full CFHTLenS data

All 1.17(6) 1.19(4) 1.19(3) 1.21(3) 1.20(2) 1.20(3) 1.12(3)
-8(3) -8(1) -8(1) -9(1) -8.6(9) -9(1) -6(1)

Red 1.32(7) 1.33(6) 1.35(5) 1.26(4) 1.24(5) 1.19(5) 1.19(8)
-13(2) -13(2) -14(1) -11(1) -10(2) -8(2) -8(3)

Blue 1.28(4) 1.24(5) 1.24(4) 1.20(3) 1.18(3) 1.19(5) 1.19(8)
-12(1) -10(2) -10(1) -9(1) -8(1) -8(2) -8(3)

Sbc 1.23(5) 1.19(3) 1.19(5) 1.18(2) 1.17(3) 1.18(3) 1.13(6)
-10(2) -8(1) -9(2) -7.8(6) -7.4(9) -8(1) -6(2)

Scd 1.21(4) 1.20(4) 1.21(4) 1.18(4) 1.16(3) 1.19(6) 1.12(7)
-9(2) -9(2) -9(2) -8(1) -7(1) -8(2) -6(3)

Conservative selection of CFHTLenS data
All 1.82(7) 1.77(6) 1.72(4) 1.67(5) 1.70(3) 1.65(2) 1.67(6)

-26(1) -25(1) -24(1) -23(1) -23.3(7) -22.2(4) -23(1)
Red 1.8(1) 1.68(9) 1.66(7) 1.64(6) 1.64(6) 1.66(6) 1.58(6)

-26(3) -23(2) -22(2) -22(1) -22(1) -22(1) -21(2)
Blue 1.73(4) 1.63(5) 1.62(5) 1.65(4) 1.64(6) 1.64(5) 1.61(9)

-24.0(8) -22(1) -21(1) -22(1) -22(1) -22(1) -21(2)
Sbc 1.63(8) 1.6(1) 1.59(6) 1.55(4) 1.52(4) 1.49(4) 1.47(7)

-22(2) -22(2) -21(2) -20(1) -19(1) -18(1) -18(2)
Scd 1.8(1) 1.75(9) 1.70(6) 1.67(4) 1.6(4) 1.65(3) 1.55(5)

-25(3) -24(2) -23(1) -22.6(9) -21.9(9) -22.1(7) -20(1)
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Table 4.4: Results for scales of fixed coverage for the biweight. For each sample distribution, the
relative efficiencies η are given first, and the (more intuitive) relative change in estimator distribution
scale is given second, in percentages of the distribution scale of the mean. Numbers in parentheses
reflect the standard uncertainty in the last digit.

Distribution η25 η38.3 η50 η68.3 η75 η86.6 η95.4

∆s25(%) ∆s38.3(%) ∆s50(%) ∆s68.3(%) ∆s75(%) ∆s86.6(%) ∆s95.4(%)
Simulated ellipticities

Gaussian 0.99(6) 1.02(6) 1.00(4) 1.03(4) 1.02(5) 1.03(4) 1.05(4)
+0(3) -1(3) -0(2) -1(2) -1(2) -1(2) -2(2)

Uniform q 1.2(1) 1.16(5) 1.19(2) 1.14(3) 1.12(2) 1.14(5) 1.17(6)
-10(3) -7(2) -8.2(8) -6(1) -6(1) -6(2) -7(2)

Elliptical 1.4(2) 1.3(1) 1.31(8) 1.31(8) 1.30(6) 1.34(9) 1.32(3)
-14(5) -13(2) -13(3) -13(2) -12(2) -14(3) -13(1)

Disk 1.6(1) 1.60(7) 1.52(6) 1.49(6) 1.49(6) 1.49(5) 1.46(4)
-20(3) -21(2) -19(2) -18(2) -18(2) -18(1) -17(1)

Combined 1.54(8) 1.5(1) 1.5(1) 1.46(5) 1.47(6) 1.47(5) 1.45(8)
-19(2) -19(3) -18(3) -17(2) -17(2) -17(1) -17(2)

Added noise
Uniform q 1.09(6) 1.11(5) 1.11(7) 1.09(4) 1.09(5) 1.09(6) 1.10(4)

-4(2) -5(2) -5(3) -4(2) -4(2) -4(2) -5(2)
Elliptical 1.23(8) 1.26(9) 1.23(9) 1.248) 1.23(8) 1.24(6) 1.22(4)

-10(3) -11(3) -10(3) -10(3) -10(3) -10(2) -9(2)
Disk 1.25(6) 1.24(9) 1.24(7) 1.23(4) 1.23(4) 1.23(6) 1.19(4)

-10(2) -10(3) -10(2) -10(1) -10(2) -10(2) -8(1)
Combined 1.23(7) 1.25(6) 1.24(7) 1.26(6) 1.26(7) 1.2397) 1.22(6)

-10(2) -10(2) -10(3) -11(2) -11(2) -10(3) -9(2)
Full CFHTLenS data

All 1.06(7) 1.06(4) 1.05(3) 1.10(3) 1.09(3) 1.08(3) 1.06(2)
-3(3) -3(2) -2(2) -5(1) -4(2) -4(1) -3.1(8)

Red 1.1(1) 1.10(8) 1.09(5) 1.08(5) 1.08(6) 1.08(6) 1.1(1)
-5(6) -5(3) -4(2) -4(2) -4(3) -4(3) -4(5)

Blue 1.09(3) 1.06(4) 1.05(7) 1.08(5) 1.10(5) 1.10(7) 1.07(8)
-4(1) -3(2) -3(3) -4(2) -5(2) -5(3) -3(4)

Sbc 1.12(9) 1.08(7) 1.07(6) 1.06(3) 1.07(4) 1.06(4) 1.03(5)
-5(4) -4(3) -3(3) -3(1) -3(2) -3(2) -2(2)

Scd 1.02(4) 1.03(4) 1.05(4) 1.05(4) 1.04(5) 1.06(8) 1.02(9)
-1(2) -1(2) -3(2) -2(2) -2(2) -3(4) -1(4)

Conservative selection of CFHTLenS data
All 1.22(6) 1.23(3) 1.21(4) 1.19(5) 1.22(5) 1.22(3) 1.21(7)

-10(2) -10(1) -9(2) -8(2) -9(2) -9(1) -9(3)
Red 1.12(5) 1.10(5) 1.12(5) 1.11(4) 1.11(4) 1.15(6) 1.14(50

-6(2) -5(2) -5(2) -5(2) -5(2) -7(2) -6(2)
Blue 1.27(8) 1.22(7) 1.23(8) 1.23(7) 1.23(5) 1.23(5) 1.21(6)

-11(3) -9(3) -10(3) -10(3) -10(2) -10(2) -9(2)
Sbc 1.14(6) 1.2(1) 1.14(7) 1.13(3) 1.13(4) 1.15(7) 1.15(4)

-6(2) -7(5) -6(3) -6(1) -6(2) -7(3) -7(1)
Scd 1.3(1) 1.3(1) 1.30(9) 1.28(8) 1.25(8) 1.26(6) 1.28(4)

-14(4) -14(4) -12(3) -12(3) -10(3) -11(2) -11(1)
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Table 4.5: Results for scales of fixed coverage for CHP. For each sample distribution, the relative
efficiencies η are given first, and the (more intuitive) relative change in estimator distribution scale is
given second, in percentages of the distribution scale of the mean. Numbers in parentheses reflect the
standard uncertainty in the last digit.

Distribution η25 η38.3 η50 η68.3 η75 η86.6 η95.4

∆s25(%) ∆s38.3(%) ∆s50(%) ∆s68.3(%) ∆s75(%) ∆s86.6(%) ∆s95.4(%)
Simulated ellipticities

Gaussian 0.38(3) 0.38(1) 0.38(1) 0.39(2) 0.38(1) 0.37(1) 0.38(2)
+62(6) +62(3) +63(3) +61(3) +63(2) +63(2) +63(5)

Uniform q 15(2) 11.1(9) 8.9(5) 6.5(5) 5.6(4) 4.4(3) 3.3(3)
-74(2) -70(1) -66.6(9) -61(1) -58(1) -53(1) -45(2)

Elliptical 2.3(2) 2.03(8) 1.80(7) 1.58(5) 1.51(6) 1.31(8) 1.13(8)
-33(2) -30(1) -25(1) -21(1) -19(2) -13(3) -6(3)

Disk 6.8(7) 6.0(5) 5.4(2) 4.6(1) 4.3(1) 3.8(2) 3.2(2)
-62(2) -59(2) -57.1(9) -53.5(6) -51.6(8) -49(1) -44(2)

Combined 5.8(3) 5.0(1) 4.7(2) 4.1(1) 3.8(1) 3.4(1) 2.7(2)
-59(1) -55.4(6) -53.8(8) -50.4(7) -48.8(9) -45(1) -39(2)

Added noise
Uniform q 0.85(4) 0.84(3) 0.86(4) 0.85(4) 0.84(3) 0.80(3) 0.77(40

+7(2) +9(2) +8(3) +8(2) +9(2) +12(2) +14(3)
Elliptical 0.65(5) 0.65(6) 0.64(4) 0.66(3) 0.64(3) 0.64(3) 0.64(4)

+24(5) +24(6) +25(4) +24(3) +25(3) +25(3) +25(4)
Disk 0.88(7) 0.89(6) 0.88(4) 0.90(3) 0.90(3) 0.88(4) 0.87(6)

+7(4) +6(4) +6(3) +6(2) +5(1) +6(2) +7(4)
Combined 0.91(6) 0.92(6) 0.89(5) 0.91(3) 0.89(4) 0.88(5) 0.86(4)

+5(3) +4(4) +6(3) +5(2) +6(2) +6(3) +8(2)
Full CFHTLenS data

All 0.75(4) 0.76(3) 0.77(2) 0.76(2) 0.77(2) 0.75(3) 0.71(2)
+16(3) +14(2) +14(2) +15(1) +14(1) +16(2) +19(1)

Red 0.81(7) 0.84(7) 0.84(4) 0.77(4) 0.76(5) 0.72(4) 0.72(4)
+11(5) +9(4) +9(2) +14(3) +15(4) +18(3) +18(3)

Blue 0.81(3) 0.79(3) 0.77(3) 0.75(4) 0.76(3) 0.73(3) 0.68(6)
+11(2) +13(2) +14(2) +15(3) +14(3) +17(2) +21(5)

Sbc 0.80(4) 0.78(3) 0.77(3) 0.76(3) 0.74(2) 0.71(3) 0.68(4)
+12(3) +14(2) +14(2) +15(2) +16(2) +18(2) +21(4)

Scd 0.79(5) 0.75(3) 0.74(2) 0.73(3) 0.72(4) 0.72(3) 0.67(5)
+12(3) +15(2) +16(2) +17(2) +18(3) +18(3) +22(5)

Conservative selection of CFHTLenS data
All 1.18(5) 1.14(4) 1.08(5) 1.00(5) 0.99(4) 0.96(4) 0.89(5)

-8(2) -6(1) -4(2) 0(3) 0(2) +2(2) +6(3)
Red 1.3(1) 1.21(8) 1.15(5) 1.05(5) 1.02(5) 0.99(5) 0.89(8)

-13(3) -9(3) -7(2) -2(2) -1(2) 0(2) +6(5)
Blue 1.09(5) 1.02(6) 1.03(7) 0.99(5) 0.96(5) 0.97(5) 0.93(9)

-4(2) -1(3) -1(3) +1(3) +2(3) +2(3) +4(5)
Sbc 1.1(1) 1.1(1) 1.0(1) 0.98(5) 0.95(5) 0.91(4) 0.88(4)

-4(5) -3(5) -1(5) +1(2) +3(3) +5(2) +7(2)
Scd 1.11(9) 1.11(4) 1.06(6) 1.00(6) 0.97(5) 0.94(5) 0.85(6)

-5(4) -5(2) -3(3) 0(3) +1(3) +3(2) +8(3)
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Table 4.6: Results for η68.3 for different sample sizes. Numbers in parentheses reflect the standard
uncertainty in the last digit.

Distribution Estimator N = 10 N = 22 N = 46 N = 100 N = 215 N = 464

Simulated ellipticities

Gaussian LAD 0.80(3) 0.76(2) 0.80(3) 0.83(2) 0.79(3) 0.78(3)

BI 1.01(3) 1.06(3) 1.03(2) 1.03(4) 1.03(5) 1.07(5)

CHP 0.71(2) 0.50(1) 0.44(1) 0.39(2) 0.33(2) 0.29(1)

Uniform q LAD 1.84(6) 2.78(5) 3.6(1) 4.55(9) 5.8(2) 6.6(4)

BI 1.16(9) 1.14(4) 1.20(3) 1.14(3) 1.17(4) 1.18(9)

CHP 1.30(5) 2.19(7) 3.6(2) 6.5(5) 12.3(5) 22(2)

Combined LAD 2.94(7) 3.5(2) 4.2(1) 4.6(2) 4.9(1) 5.1(2)

BI 1.47(7) 1.46(7) 1.45(4) 1.46(5) 1.56(6) 1.53(8)

CHP 2.03(9) 2.8(2) 3.6(2) 4.1(1) 5.1(2) 6.0(4)

Added noise

Uniform q LAD 1.08(3) 1.27(7) 1.32(6) 1.38(3) 1.41(4) 1.33(4)

BI 1.09(3) 1.08(7) 1.15(4) 1.09(4) 1.08(4) 1.14(8)

CHP 0.9(8) 0.93(6) 0.93(3) 0.85(4) 0.74(4) 0.66(4)

Combined LAD 1.28(5) 1.42(3) 1.53(5) 1.53(5) 1.51(6) 1.56(5)

BI 1.24(4) 1.23(5) 1.26(3) 1.26(6) 1.25(7) 1.24(8)

CHP 0.98(9) 1.04(4) 0.98(8) 0.91(3) 0.78(4) 0.70(4)

CFHTLenS data

All LAD 0.91(2) 1.11(5) 1.16(4) 1.21(3) 1.15(3) 1.21(5)

BI 1.05(2) 1.07(4) 1.10(6) 1.10(3) 1.08(3) 1.09(8)

CHP 0.77(4) 0.83(6) 0.82(4) 0.76(2) 0.66(2) 0.65(4)

Subset LAD 1.39(4) 1.59(6) 1.59(5) 1.67(5) 1.74(4) 1.80(4)

BI 1.17(3) 1.18(6) 1.22(5) 1.19(5) 1.21(6) 1.19(3)

CHP 1.07(4) 1.12(6) 1.04(3) 1.00(5) 0.99(4) 0.98(6)
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Table 4.7: Results for amplitude estimations for FMF, using different estimators (LSQ, LAD, CHP) and
models (per mode or per amplitude). Estimation bias is given in terms of a multiplicative component
m as defined in Equation 4.25. Efficiencies are determined relative to LSQ per individual amplitude.
Numbers in parentheses reflect the standard uncertainty in the last digit.

Estimator m η68.3

Simulated ellipticities

LSQ per mode 0.001(1) 1.14(6)

amplitude 0.000(1) N.A.

LAD per mode 0.0166(6) 4.6(3)

amplitude 0.046(1) 1.31(4)

de-g per mode 0.0006(6) 5.4(4)

amplitude 0.022(1) 1.61(5)

CHP per amplitude 0.043(2) 0.83(5)

Added noise

LSQ per mode -0.024(1) 1.09(7)

amplitude -0.023(2) N.A.

LAD per mode 0.014(1) 1.47(9)

amplitude 0.032(2) 0.98(7)

de-g per mode -0.018(3) 1.55(9)

amplitude -0.007(2) 1.14(8)

CHP per amplitude 0.015(2) 0.41(3)


