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1
Introduction

In his dialogue Parmenides (129B), Plato lets his master Socrates state:

"... nor, again, if a person were to show that all is one by partaking of one, and at the
same time many by partaking of many, would that be very astonishing. But if he were to show
me that the absolute one was many, or the absolute many one, I should be truly amazed."

In Plato’s Theory of Forms, it is argued that our empirical, sensible observations can
only be of the many possible different reflections of an insensible, unique universal Form, an
absolute and unchanging concept, outside the limits of our physical space-time.

If any branch of the natural sciences is restricted, in its quest for a truthful description of
reality, by the glimpses granted by the Universe, it is astronomy. Astronomers may improve
their instruments and statistical techniques, but cannot set up a controlled experiment on most
celestial objects, change their position in our Milky Way or follow the billion year evolution
of a singular object beyond ‘momentary’ observations lasting mere centuries or decades. In
Plato’s well known metaphor, we can only see the shadows on the wall of the cave and hope
to discover the true reality outside it.

Plato’s contemplations were of a metaphysical nature, and the comparison with astron-
omy would end here, but it should be noted that it is no coincidence that astronomy was part
of the quadrivium, four arts (the other three being arithmetic, geometry, and music) required
for admittance to his Akademia.

This thesis modestly attempts to combine scientific research, by which we mean the afore-
mentioned description of our universe, with theoretical considerations of the statistical meth-
ods used for that research, or how we can derive that description from the reflections that we
see. In this work, we focus on the matter distribution in groups and clusters of galaxies, and
consider the intricacies of the method of weak gravitational lensing that we use, respectively.

This introduction starts with a conceptual overview in section 1.1, after which we give a
more mathematical and technical summary of these subjects in section 1.2. Section 1.3 then
gives a short outline of the scientific chapters.
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2 Chapter 1: Introduction

1.1 Now you see me...

Astronomy is one of the oldest natural sciences. The mysteries of the night sky have captured
the imaginations of ancient civilizations since prehistoric times1.

One of the oldest stories of observations and interpretations is that of the Pleiades, “Seven
Sisters” in Greek mythology, an open star cluster designated as M45, which may have in-
spired humans for 100,000 years (Norris & Norris 2021). The cluster consists of more than
1000 confirmed members, of which formally2 ten can be seen by the naked eye (Kyselka
1993, Norris & Norris 2021), but in practice, only six3 are visible to most people with good
visual acuity in a dark night. Examples are Galileo’s depiction of the Pleiades in his Sidereus
Nuncius (1610), where he indicates six visible stars among 36 observable through his tele-
scope, and the Greek Aratus of Soli in the third century BC, who reported that “only six
[sisters] are visible to the eyes” (Krupp 1991). In Greek mythology, this is explained by one
of the sisters (Merope) hiding from their pursuer Orion, the hunter. It is very likely that the
cluster was observed and named, before the story was associated with it (Hard 2004), so why
tell a story about seven sisters, when only six are seen?

Might this be an example of confirmation bias, that is, an observer interpreting what is
seen in a way that ‘fits the story’ best, thereby confirming preexisting theories or beliefs? Is
this mythological story adjusted, so it could fit the observations? This explanation is contra-
dicted by the strong similarity, suggesting a common origin, of stories on a “lost sister” or
“daughter”4 among many cultures around the globe, even those that had not been in contact
for 100,000 years (e.g. Aboriginal Australian cultures predating European contact, Burnham
1978, Gibson 2017).

An alternative hypothesis is posed by Norris & Norris (2021), who calculate from data
of the Hipparcos satellite (Van Leeuwen 2009) that, because of the proper motion of Pleione,
that star was 100,000 years in the past 8.4 arcminutes away from the much brighter Atlas,
an angular distance that is more than a quarter or a full moon. Nowadays, the two are so
close, that the glare from Atlas prevents Pleione from being seen by the naked eye under
most circumstances.

If this hypothesis is true, then there is no mystery to the story of a “lost sister”. That
‘mystery’ is supposed by us, because the cultural stories surrounding M45 do not match our
observations, but they matched observations at the time the root story might have originated
in Africa. This would mean that such an observer’s bias would be ours.

1.1.1 Observations and bias

This thesis focuses on systematic effects, statistics and subsequent interpretation. In the
context of the latter, we have already used the terms confirmation bias, a predisposition to
prior beliefs, and observer’s bias, an indication of limitations in the available information or
perspective, and therefore categorized under information bias. In our interpretation of the
general term, a bias is a discrepancy between an observation or interpretation, and the ‘truth’.

1At least, that is our current interpretation of some artifacts, sites and their orientations.
2Using a criterion of an apparent ‘visual magnitude’ brighter than six (mV < 6).
3In fact, the Greek interpretation includes Atlas, the father of the sisters, among those six, reducing the number

of visible sisters to five in that cultural version.
4Or occasionally indeed two.
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Every student has heard of the Copernican Revolution, the changing of our view of the
universe from geocentric, revolving around Earth, to heliocentric, revolving around the Sun.
The Ptolemaic geocentric model, in basis a set of circles with the Earth as center, upon which
moved the Sun and planets, had known problems in its description of reality. Some of these,
the observed change of speed and retrograde motions of objects such as planets, where the
direction of motion on the sky seems to reverse, could not be explained without adding ad-
justments that compromised the philosophical elegance of the basic system. See Figure 1.1.

One such an adjustment was the addition of epicycles, little circles that themselves moved
over the larger, basis circles. Another was the introduction of equants, extra points beside
Earth, around which objects moved at constant angular speed, while moving around other
points, the deferents, with constant distance (i.e. circles).

Figure 1.1: Representation of a planetary motion in the Ptolemaic geocentric model. The planet moves
in a small epicycle. The center of that epicycle, shown as a small dot · , moves in turn in a circle around
the deferent, shown as ×, and with constant angular speed around the equant, shown as a bullet • . This
image has been acquired in the public domain.

Copernicus presented the heliocentric model in 1543 as a mathematically much more
elegant model and a better description of reality, explaining for instance retrograde motion
as a natural consequence of the Earth’s motion. However, an empirical model needs not only
describe observations, but also predict them, and a major source of criticism for Copernicus’s
model was the need of many more epicycles to match new observations. The reason for this
was the continued use of circles as a basis model. It was not until Kepler’s laws of planetary
motions in 1609, that circular orbits where replaced by elliptical ones, removing the need for
epicycles and equants altogether.

As such, Copernicus’s original heliocentric model is one of the most famous examples of
model bias, a discrepancy that arises because the model is intrinsically not suited to describe
the situation. Model bias is a recurring point of interest throughout this work. In chapter 2,
we assess the assumption that we can model groups of galaxies that lie close to each other
as separate objects, ignoring the influence they have on each other. In chapters 2, 3, and 5,
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we discuss how we can model the center of groups of galaxies, as mis-centering can have a
severe impact on our results.

In astronomy, one of the best known biases is the Malmquist bias, the fact that intrinsically
brighter objects are easier to detect and therefore can be seen to a greater distance (Malmquist
1925). Looking back through our Universe, greater distance also means earlier times, so the
Malmquist bias can create a false impression of evolution. If one doesn’t account for this
effect, the sample is said to suffer from selection bias. We consider a variant of this effect in
chapter 2, where we estimate how many observed sources in the background of a supergroup
of galaxies might actually be faint, instead of far away, and belong to the structure, throwing
off our calculations.

In chapter 4 and 5, we discuss statistical bias, where it is not limitations in information or
physical models that causes a biased result, but our interpretation of calculations. A statistic
is nothing more than the result of an algorithm, usually a calculation, performed on a sample
of values. The arithmetic mean is the best known example. We then interpret the meaning of
this result. This a form of descriptive statistics, that aims to describe features of a population
or a sample of that population, such as an ‘average value’ that best represents the sample.

As a well known example, when discussing salaries of the ‘average’ working citizen in
a country, we have to take into account that there is a strict minimum wage (even if that
minimum is zero), but not a maximum, with executives of large concerns or soccer players
earning millions or even tens of millions. When the average income of a country is discussed,
the median income is much more descriptive of the population and the mean can give a
seriously biased interpretation of the people’s prosperity.

The calculations performed are correct in themselves. The results just don’t give an ac-
curate description of reality. In chapters 4 and 5, we compare several descriptive statistics,
or estimators, on samples of galaxy ellipticities. While these methods are all mathemati-
cally correct, they may not be equally appropriate to be used in a description of the matter
distribution.

1.1.2 Dark matter
Astronomy studies many objects that cannot be observed directly, not even with a telescope,
or not yet. The dark patches one sees when looking at the band of the Milky Way at night,
known as The Great Rift, used to be thought of as emptiness, until observations (Barnard
1906) proved that they were actually obscuring dust clouds, that can nowadays be observed
directly in infrared. In contrast, black holes, by their nature, can never be observed directly5,
only indirectly by energetic phenomena just outside their event horizon.

Before this century, planets outside our solar system were too small to be observed di-
rectly, until the observation of Fomalhaut b (Kalas et al. 2008) by the Hubble Space Telescope
(HST). Before that, their existence could be deduced indirectly, e.g. from the regular dim-
ming of the star they orbit when they pass in front of it, or the ‘wobble’ in the star’s motion
from their gravitational interaction. This requires the exoplanet to be sufficiently large or
massive and our view of its orbit to be more or less from the side. This biased early samples
of exoplanet candidates to massive planets, orbiting their star very closely.

In the same manner, one of the biggest mysteries in the universe to date (and a major
subject of this thesis) was discovered: dark matter. The first indication of unseen matter came

5Which is why they are often called black hole candidates, as their nature cannot be confirmed by direct imaging.
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from observations of stellar motions in our own Milky Way, from which Lord Kelvin deduced
in 1884 that there must be many more stars than could be seen, so that “many of our supposed
thousand million stars, perhaps a great majority of them, may be dark bodies” (Kelvin 1904).
Kapteyn (1922) first coined the term “dark matter” to explain the distribution of stars and
velocities, as seen from the solar neighborhood. Although it is sometimes mentioned that
the work of Oort (1932) confirmed the hypothesis of Kapteyn, it was shown that these and
similar works suffered from one or both of selection or model bias and that these works did
not prove the need for dark matter (Kuijken & Gilmore 1989), but the concept was born.

Arguably the first real evidence for dark matter came from the work of Zwicky (1933),
who studied the orbital motions of galaxies in the Coma cluster. Zwicky concluded from their
large velocities that the visible mass, the known matter of stars, gas and dust, also known as
baryonic matter, was not enough by a factor of more than 400 to keep them in place, instead
of flying off. (Schwarzschild 1954) also found the mass-luminosity ration of the Coma cluster
to be “bewilderingly high”.

Freeman (1970) and Bosma (1981) found a similar effect when studying the rotation
curves of spiral galaxies. If there was no mass beyond the disk, one would expect the rota-
tional velocity to fall off the further one observed from the central mass distribution. How-
ever, the observed rotation curves remained flat far beyond the visible disks. Rubin (1983)
made the connection to Zwicky’s dark matter and discussed the implications for the geometry
of the universe.

So far, the arguments for the existence of this unknown dark matter came from dynamical
considerations. A next fundamental discovery came from observations of the Cosmic Mi-
crowave Background (CMB), first observed by Penzias & Wilson (1965) and mapped by the
COBE satellite (Mather 1982). The CMB can be thought of as an afterglow of the Big Bang,
created when the hot ionized plasma in the universe cooled down sufficiently to recombine
into the matter we see today. From observations by the WMAP satellite, Spergel et al. (2003)
and Hinshaw et al. (2007) showed that of the total matter in the universe, less than 20% was
in the forms of baryons, and the rest was dark matter.

In fact baryonic and dark matter together only provide ∼ 30% of the matter-energy content
of the universe, while ∼ 70% of the content of the universe is energy6. In this thesis, we use
cosmological values consistent with results from the Planck satellite (Planck Collaboration
et al. 2014), with 4.9% ordinary matter, 26.6% dark matter and 68.5% energy. So far, the
nature of and observations of dark matter elude us, as elementary particle physics have no
conclusive theoretical explanation and our instruments have not yet been able to detect it. We
know it’s there and we know it interacts through gravity, but so far there doesn’t seem to be
any interaction with electromagnetic radiation or baryonic matter.

The curvature of space-time

As dark matter can only be observed indirectly by its gravitational interactions, it follows that
we rely on indirect methods to study the total distribution of all matter. Our method to study
this distribution makes use of gravitational lensing, an effect of the curvature of spacetime,
most accurately7 predicted by Einstein’s theory of general relativity (e.g. Eddington 1920,

6In fact, the nature of this energy is also ‘dark’, i.e. unknown and unobserved, possibly in the form of a cosmo-
logical constant Λ, a term first used by Einstein (1917)

7Classical theory, already by Newton in 1704, also predicts the bending of light rays, but is off by 50%.
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Figure 1.2: The curvature of spacetime causes the light rays from a source in the background (blue) to
deflect from a straight line. An observer perceives an image (red) displaced from the position of the
source.

Chwolson 1924).
In the general relativistic description, the geometry of spacetime is determined by the

presence and state of energy and matter. More simply put, spacetime is bent due to a concen-
tration of mass, an effect that we experience as gravity. Because light rays travel along the
shortest path available, this path is no longer straight in a curved geometry (see Fig. 1.2). This
makes gravitational lensing a direct probe of the geometry of the universe and the distribu-
tion of all matter, without the need to make assumptions about the astrophysical or dynamical
state of observed phenomena.

The first observations of gravitational lensing were made by Dyson et al. (1920), during
the solar eclipse on the 29th of May, 1919. Around this time, it was discovered that our Milky
Way was just one of hundreds of billions (Lauer et al. 2021) of galaxies, that form the building
blocks of the universe (Slipher 1915, Curtis 1917). Zwicky (1937) suggested that galaxies
would be massive enough8 lenses to make this effect easier to observe, and numerous enough
to be likely candidates to be lensed. Measurement of this variant, aptly called galaxy-galaxy
lensing, was first attempted by Tyson et al. (1984) and finally detected by Brainerd et al.
(1996).

This thesis focuses on lensing by more massive structures, like groups and clusters of
galaxies, first detected by Tyson et al. (1990). Perhaps one of the most powerful examples of
gravitational lensing as a way to probe the matter distribution independent of astrophysical
assumptions is given by the bullet cluster (Clowe et al. 2006, see Fig. 1.3).

The bullet cluster system actually consists of two clusters of galaxies that have passed
through each other, the smaller cluster moving at higher velocity to the right being considered
the ‘bullet’. The groups of galaxies of these clusters can pass collisionlessly through each
other and appear unaffected, but the intracluster gas, where most of the known, baryonic
mass in these clusters resides (Clowe et al. 2006), lags behind. Their reconstruction of the

8Typical luminosities of bright galaxies like our own Milky Way are 100 billion times the luminosity of the Sun,
L? ∼ 1011L�.
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Figure 1.3: Left. A reconstruction of the matter distribution (green contours) using gravitational lensing
compared to the X-ray emission of the hot gas (color scale), where most of the visible, baryonic matter
of this system resides. Right. The same reconstruction, now compared to the location of the galaxies
that make up the two subclusters. These images show that most of the total matter does not reside where
most of the baryonic matter is observed, a clear indication that the major part is ‘dark’ and collisionless.
Originally published in Clowe et al. (2006).

matter distribution using weak gravitational lensing clearly show that most of the total matter
does not reside where most of the baryonic matter is observed, a clear indication that the
major part is ‘dark’.

1.2 Weak gravitational lensing
In this section, we introduce the mathematical framework of gravitational lensing, as well as
the principles of weak lensing we have used in our work. We also present the central concepts
to our statistical approach and our tests for systematic effects. We introduce terminology and
notation conventions used in this thesis.

1.2.1 The basics of gravitational lensing
We start with an analytic derivation of the framework of weak lensing, the main observables
and concepts that then form the basis for the research in this thesis. We refer the reader to
excellent reviews such as Bartelmann & Schneider (2001), Schneider (2006), Hoekstra &
Jain (2008), Bartelmann & Maturi (2017), for more in-depth approaches.

As the lensing effect is caused by rays of light being deflected by the curvature of space-
time due to mass inhomogeneities along their path, we consider how a mass overdensity acts
on the light rays from distant sources behind it. Figure 1.4 shows a simple representation of
a gravitational lens system.

For the purposes of this work, the extent of the lensing mass along the line of sight,
compared to the distances from observer to lens and from lens to background source, is
negligible. In this so-called thin-lens approximation, we can describe the path of light by
straight line segments. In this representation, we use angular-diameter distances Dl from
observer to lens, Dls from lens to background source9, and Ds from observer to background

9More accurately, the distance to the source plane perpendicular to the line of sight from observer to lens, but in
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Figure 1.4: Representation of a gravitational lens system, showing the displacement of a source at
position S (x, y) to an image at position I(x′, y′), where we take the origin of the source plane collinear
with the positions of the lens L and the observer O. Based on Smit et al. (2021).

source.
The deflection angle ~̂α is determined by the gradient of the gravitational potential Φ per-

pendicular to the path of light, integrated along that path:

~̂α = −
2
c2

1
Dl

∫
~∇θ Φ dl , (1.1)

where ~∇θ is the two-dimensional gradient in angular coordinates perpendicular to the line of
sight and the angular-diameter distance factor of D−1

l arises from the conversion of physical
to angular coordinates in the case of small angles.

This leads to an angular displacement, as seen from the observer and again using the
small-angle approximation (see Fig. 1.4)

~α = −
Dls

Ds
~̂α , (1.2)

this approximation, these are the same.
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also called the reduced deflection angle, relating the observed position ~θ of a distant point
source to its unlensed position ~β by the lens equation

~β = ~θ − ~α. (1.3)

Under the thin-lens approximation, the deflection of light rays by the lensing mass is then
described by ~α = ~∇θ ψ, where

ψ =
2
c2

Dls

DlDs

∫
Φ dl (1.4)

is the two-dimensional, dimensionless, lensing potential. In this way, the deflection angle can
be related to the density of the lensing mass and to observable distortion of sources in the
background, as follows, starting with the latter.

The differential effect of the deflection of light on the images I(x, y) of background galax-
ies, which are extended sources, can to first order be described as a coordinate transformation,
by taking the derivatives in the lens equation (1.3) of the original position β with respect to
the observed position θ. Substituting ~∇θ ψ for ~α, we obtain the Jacobian of the lens mapping,(

x′

y′

)
=

(
1 − ψ11 −ψ12
−ψ21 1 − ψ22

) (
x
y

)
, (1.5)

with

ψi j =
∂2ψ

∂θi∂θ j
, (1.6)

resulting in the lensed image I(x′, y′), which is the key observable in our work.

Critical surface mass density and convergence

To interpret the effect on the source image, we note that the linear, symmetric coordinate
transformation in eq. 1.5 can be decomposed in three parts, namely the identity I and two
perturbations, consisting of an isotropic part describing a magnification, and an anisotropic,
traceless part, describing a shearing of the image:

I −
1
2

(ψ11 + ψ22)I +

(
− 1

2 (ψ11 − ψ22) −ψ12

−ψ21
1
2 (ψ11 − ψ22)

)
(1.7)

To relate ψi j to the density of the lensing mass, we start with the isotropic term, which is
half the Laplacian of the lensing potential: 1

2 (ψ11 +ψ22) = 1
2∇

2
θ ψ. Using equation 1.4 and the

thin-lens approximation, introducing a factor of D2
l due to conversion between angular and

physical coordinates, we obtain

1
2
∇2
θ ψ =

1
c2

DlDls

Ds

∫
4πGρ dl , (1.8)

which is a dimensionless quantity. Defining the surface mass density as

Σ ≡

∫
ρ dl (1.9)



10 Chapter 1: Introduction

and gathering the remainder of the right-hand side into

4πG
c2

DlDls

Ds
≡ Σ−1

cr , (1.10)

with Σcr called the critical surface mass density, we find that the isotropic term can be written
as

κ ≡
1
2
∇2
θ ψ =

Σ

Σcr
, (1.11)

where we recognize κ as a normalized dimensionless surface mass density. Recognizing that
∇2
θ ψ = ~∇ · ~α is the divergence of the deflection of the light rays, or the manner in which those

light rays converge due to the lensing effect, κ is simply called the convergence.

Shear and intrinsic ellipticity

The shear matrix in eq. 1.7 has two independent components γ1 = 1
2 (ψ11 − ψ22) and γ2 =

ψ12 = ψ21, with γ ≡ γ1 + iγ2 called the complex shear. Eq. 1.5 then becomes(
x′

y′

)
=

(
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

) (
x
y

)
. (1.12)

This transformation leads to magnification and distortion of the light distribution of back-
ground sources. Weak lensing magnification analyses (e.g. Hildebrandt et al. 2009, Van Waer-
beke et al. 2010, Hildebrandt et al. 2011) require the intrinsic (distribution of) source sizes
or magnitudes. In weak shear analyses, the focus lies on the net distortion or reduced shear
g = g1 + ig2 ≡ (γ1 + iγ2)/(1 − κ):(

x′

y′

)
= (1 − κ)

(
1 − g1 −g2
−g2 1 + g1

) (
x
y

)
, (1.13)

where the transformation is written as a multiplication of (1 − κ) and a distortion matrix
describing the alignment of lensed sources in the foreground potential.

The effect on a circular source is a shearing into an ellipse with axis ratio q = b
a , where

q =
1 − |g|
1 + |g|

⇔ |g| =
1 − q
1 + q

=
a − b
a + b

, (1.14)

and position angle ϕ via
g = |g| (cos 2ϕ + i sin 2ϕ) . (1.15)

See Fig. 1.5.
This gravitational distortion cannot be measured directly in practice. Galaxies that are

used as background sources, have an intrinsic shape distribution and we can only measure the
combined effect of their intrinsic shape and a weak lensing distortion. While galaxies often
have complex morphologies, it is adequate to describe images by their quadrupole brightness
moments or their ellipticities, and their respective response to weak shear distortions. A
common definition10 of the shape of an image with elliptical isophotes is the ellipticity ε =

10An alternative definition of ellipticity is often denoted as |χ| = 1−q2

1+q2 , related to the geometrical eccentricity, and
called polarization (e.g. Seitz & Schneider 1995, Viola et al. 2014, and section 1.2.2).
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Figure 1.5: The effect of shear on an intrinsically round source. The g1 component stretches the image
horizontally or vertically. The g2 component stretches the image diagonally.

ε1 + iε2, defined as the reduced shear needed to create this image from an image with circular
isophotes (Bernstein & Jarvis 2002, Kuijken 2006).

The complex notation gives a most straightforward formulation of the ellipticity ε that
results after transforming an image with intrinsic ellipticity ε I with a distortion g. As shown
by Seitz & Schneider (1997),

ε =
ε I + g

1 + g∗ε I for |g| ≤ 1 , (1.16)

with g∗ the complex conjugate of g.
The intrinsic shape distribution is called shape noise and assuming no preferred direction

on the sky, should average to zero:
〈
ε I

〉
= 0. Seitz & Schneider (1997) showed that, for eq.

1.16, the mean11 〈ε〉 does not depend on the intrinsic shape distribution P(ε I). Each back-
ground shape measurement ε is then an unbiased, albeit very noisy, estimate of the reduced
shear g, but only in the absence of further sources of noise, that would alter the observed
distribution of ε.

11Or, in fact, any n−th moment 〈ε〉n.
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In practice, there are always sources of error that manifest as ‘noise’ in the observed
ellipticity values, such as pixel noise of the detector, systematic distortions in the optical
system and limitations in modeling algorithms.

1.2.2 The measurement of shapes

While the basis of weak gravitational lensing is given in analytic detail, in practice one has
to deal with many systematic effects, when measuring the main observable, the shapes of
background sources. As many of these effects depend on specific telescopes, instruments,
pipelines and surveys, the most detailed and technical descriptions are given in the corre-
sponding (series of) papers.

Here we aim to give the reader, as a frame of reference for this thesis, a qualitative
overview of a selection of effects, that will be analyzed in more detail in chapters 2 and
3. For a more detailed treatise, we point the reader to the references given there and in the
following sections.

Images and distortions

At the observer’s end in the schematic of Fig. 1.4, the light rays pass through the atmo-
sphere, in case of ground-based observations, and through the telescope optics, before being
registered by the detector of the instrument. The response of this total optical ‘system’ to
the received signal is called the point spread function (PSF), its Fourier transform being the
optical transfer function. It describes the image of a point source.

The PSF causes a pattern of ellipticity distortions that varies over the field of view, and
can be modeled using the images of stars (which are unresolved and can therefore be treated
as point sources). The correction is then a deconvolution. This can be done on a single image,
if there are enough stars in the field of view to properly sample the PSF pattern.

Observations which have relatively few stars, typically at high galactic latitude, can be
corrected using dense stellar fields as reference. Hoekstra (2004) modeled the time-invariant
spatial pattern of the PSF by averaging many fields. To properly take the temporal variations
into account, a principal component analysis (PCA) can be used (e.g. Jarvis & Jain 2004,
Schrabback et al. 2007, 2010). We employ this technique in the weak lensing analysis of
imaging data taken with the Advanced Camera for Surveys (ACS) on the HST in chapter 2.

In this way, the term PSF is used as a catchall, and the resulting distortions are oftentimes
corrected for in a similar fashion: a correction for the combined PSF pattern, without the need
to identify individual causes. As pointed out by Jarvis et al. (2008), a physical model for a
known contribution to the PSF may be more accurate than an average or a PCA derived from
noisy data. In this context it is worth noting, that both Jarvis & Jain (2004) and Schrabback
et al. (2007) interpret their first principal component to indicate telescope focus.

The turbulence of the atmosphere causes a blurring of the image called seeing. If ex-
posure times are long enough, the direct effect on the ellipticity or the PSF is negligible
(Heymans et al. 2012a). It is usually the dominant factor in the size of the PSF for ground
based observations and therefore effectively sets the limit on the angular resolution of the
observations, which in turn limits the number statistics of resolved background sources that
can be used for lensing. To give some examples: the seeing of the Wide Field Imager (WFI)
data used in chapter 3 varies between 0.75′′ and 1.35′′ with a median of 1.0′′, whereas the
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median seeing conditions for the Canada-France-Hawaii Lensing Survey (CFHTLenS, Hey-
mans et al. 2012b) and the Kilo-Degree Survey (KiDS, de Jong et al. 2013) Data Release 3
(KiDS-450, de Jong et al. 2017) used in chapters 4 and 5 are 0.72′′ (Erben et al. 2013) and
0.66′′ (Hildebrandt et al. 2017), respectively.

Observations from space are not limited in resolution by seeing, but are diffraction-
limited, the fundamental physical limit due to diffraction determined by the telescope aper-
ture size and the wavelength observed. The resulting diffraction pattern makes the PSF more
complex. An important type of artifact seen in space-based observations is caused by the
deterioration of the instrument CCDs, due to constant exposure to cosmic rays, outside the
protective atmosphere. This causes a charge-transfer inefficiency (CTI), leading to trails in
the CCD readout direction. These trails will affect the measured PSF and shear patterns and
need to be corrected for, as is done in e.g. Rhodes et al. (2007), Massey et al. (2010) and in
chapter 2.

A final aspect we mention here concerns the translation from instrument (CCD) response
to image. The dominant source of noise in the image is pixel noise, mainly due to sky
background Poisson noise and CCD readout noise. This increases uncertainties in shape
measurements and causes measurement bias in the derived shapes, as the dependence of
ellipticity on pixel values is non-linear (see e.g. Refregier et al. 2012, Melchior & Viola
2012, Kacprzak et al. 2012).

Pixel noise can be compensated by increasing exposure time. As a CCD image is quan-
tized on a rectangular grid, an observed field of view is built from a set of dithered exposures.
The final image is obtained by stacking these exposures, thus obtaining a longer total expo-
sure time and a higher signal-to-noise ratio. A disadvantage of using such a stacked image,
is that the individual exposures have their own PSF patterns, which are then also stacked. Es-
pecially in areas of the final, stacked image that are not covered by all individual exposures,
due to edges or gaps in the CCD mosaic, the resulting PSF pattern may be discontinuous12.
We assess this effect in chapter 3. Shape measurement methods such as the lensfit pipeline
presented in Miller et al. (2013) model the full set of single exposures instead.

Measurement and bias

Given the necessary control of systematics, and the fact that the modeling of these systematics
and the intended source ellipticity measurements are based on noisy images, the development
of accurate and robust shape measurement methods has been and still remains a major invest-
ment in the field of weak lensing (see e.g. Mandelbaum 2018). Community-driven projects,
such as the Shear Testing Programme (STEP, Heymans et al. 2006, Massey et al. 2007), and
the GRavitational lEnsing Accuracy Testing challenges (GREAT, Bridle et al. 2010, Kitch-
ing et al. 2012, Mandelbaum et al. 2015), have led to a decrease in measurement bias and
variances and a better understanding of remaining systematic effects and biases.

In this thesis, we explore three particular methods, based on surface brightness moments
or model fitting. In chapter 2 and 3, we make use of the KSB method (Kaiser et al. 1995). In
chapter 3, we compare KSB and the Shapelets method (Refregier 2003, Refregier & Bacon
2003). In chapter 4 and 5, we make use of the shear catalogs of CFHTLenS and KiDS-450,
both derived with lensfit (Miller et al. 2007, Kitching et al. 2008).

12This problem is confounded when the single exposure times become short enough for the atmosphere to con-
tribute to the PSF ellipticity pattern.
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KSB describes images by their second order brightness moments in angular coordinates

Qi j =

∫
θiθ jW(θ)I(θ)d2θ∫

W(θ)I(θ)d2θ
(1.17)

with I the surface brightness and W is a certain weight or window function. This gives three
independent quadrupole moments, Q11, Q22, and Q12 ≡ Q21. KSB determines the complex
polarization

χ = χ1 + iχ2 =
Q11 − Q22 + 2iQ12

Q11 + Q22
. (1.18)

This polarization is related to the eccentricity and is clearly zero for a circular source. How-
ever, it differs from the definition of the ellipticity ε given in section 1.2.1, which can be
defined in terms of the second order brightness moments as

χ = χ1 + iχ2 =
Q11 − Q22 + 2iQ12

Q11 + Q22 + 2
√

Q11Q22 − Q2
12

, (1.19)

and the two definitions are related through

χ =
2ε

1 + |ε |2
(1.20)

This means that 〈χ〉 is a biased estimator of g, as it depends explicitly on the distribution of
intrinsic shapes χI (Schneider & Seitz 1995). However, in the limit of weak shear, where
κ � 1 and γ � 1, we have γ ≈ g ≈ 〈ε〉 ≈ 1

2 〈χ〉. Besides this statistical bias, one has to
consider the model13 bias from approximations in the PSF correction and noise bias due to
the non-linear combination of noisy estimates of Qi j.

In the Shapelets formalism, the light distribution of a source is expanded in the orthonor-
mal basis set of Gauss-Hermite functions. This allows for a flexible model and has the ad-
vantage that the behavior of these basis functions under simple transformations (such as an
applied shear or smearing by a PSF) is well understood. A PSF model P can then be con-
structed from the shapelet expansions of bright stars in the image. In the implementation of
Kuijken (2006), which we use in chapter 3, sources are described as intrinsically circular,
with an expansion

C ≡ c0C0 + c2C2 + c4C4 + . . . , (1.21)

with Cn circular shapelet basis functions (with n always even) and cn free parameters. This
circular model is then transformed by a distortion

D ≡ 1 + ε1S1 + ε2S2 + δ1T1 + δ2T2 , (1.22)

where Si and Ti are the first-order shear and translation operators, as given by Refregier
& Bacon (2003). The free translation δ is needed to ensure an optimal centroid fitting. (We
remind the reader that for a method using surface brightness moments, like KSB, the centroid
is derived from the first order brightness moments.) This model is then convolved by the
PSF model and the resulting model M = P · D · C is then fitted to the observed sources.

13In this form also called method bias, see Viola et al. (2014).
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This forward convolution with P is numerically more stable than deconvolving noisy source
images and allows for a propagation of pixel noise, to ensure accurate uncertainty estimates
σεi . Velander et al. (2011) showed the advantage of the shapelet flexibility, when measuring
higher order distortions in diffraction limited HST images. Besides the noise bias due to
fitting a (non-linear) model to noisy images, one has to consider model bias, as the shapelet
basis functions are chosen for their elegant transformation properties, and are not realistic
representations of galaxy shapes. This mismatch is diminished if one allows the expansion
to go to higher order, but in reality the flexibility of the shapelets becomes a weakness, as we
start fitting noise. In practice, we use a cutoff in the shapelet expansion, which in itself may
introduce another (mild) model bias.

Lensfit is a Bayesian model-fitting method, using a galaxy model consisting of Sérsic
(1963, 1968) bulge and disc components. Besides using the same or similar free parameters
like the aforementioned methods, including the ellipticity ε, galaxy size and flux, and galaxy
centroid, this pipeline also fits the ratio of bulge to disc, partly discriminating between late
and early type galaxies (Miller et al. 2013, Fenech Conti et al. 2017). The log-likelihood (or
goodness-of-fit) then has the form

logL = −
∑

i

(
yi − S

[
fBbi + (1 − fB)di

])2

2σ2
i

(1.23)

with S the galaxy flux, bi and di the bulge and disc components and fB the bulge fraction.
It uses pixel-based models of the PSF, which allows for discontinuities between CCDs in
the CCD mosaic and uses the full information of all single exposures containing the source.
The posterior likelihood is then marginalized over the parameters that are not of interest,
using assumed prior distributions, leaving a likelihood surface as function of ε1 and ε2. The
aim is to alleviate possible model bias by using an adequate set of priors for the parameters
to be marginalized over. To avoid a poorly constrained likelihood, in particular a cutoff in
the ellipticity is needed, εmax = 0.804 for CFHTLenS (Miller et al. 2013) and ε ≈ 1 for
KiDS-450 (Fenech Conti et al. 2017), which introduces a bias due to truncation that needs to
be calibrated and can lead to visible signatures that affect the most elliptical ε (e.g. Smit &
Kuijken 2018, chapter 4).

In conclusion, each pipeline has its own strengths and biases, that are addressed per indi-
vidual cause, just as is recommended by Jarvis et al. (2008) for the modeling of the PSF. The
remaining discrepancies with the ‘true’ reduced shear g, are modeled as a similar catchall,
first order approximation εest = (1 + m)εtrue + c, with εest the estimated ellipticity, c a constant
additive bias, and m a multiplicative measurement bias. c may in general be readily corrected
for, if it’s not position dependent, which is most likely the result of an undersampled PSF
(Van Uitert & Schneider 2016). Usually, m is determined using simulations and is depen-
dent on observed properties, such as source brightness and size. These correlations are weak,
making estimates of m on a source-by-source basis very noisy. The correction is then done
on a sample basis. For instance, if source weights for the measured ellipticities, based on the
estimated uncertainties by the pipeline, are wi and the estimated multiplicative biases are mi,
one generally corrects the estimated lensing signal by a factor (1 + K)−1, with K of the form

K =

∑
i wimi∑

i wi
, (1.24)

using the same sample of sources (e.g. Viola et al. 2015, Dvornik et al. 2017).
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1.2.3 The inference of weak shear

Given a catalog of robust, reliable shapes εi, the final measured distribution P (εi) is modified
from the theoretical form P (ε) (eq. 1.16), due to measurement noise, even if the individual
measurements are unbiased. At this point, it is instructive to review our definition of bias in
a statistical context. An estimate or measurement is said to be unbiased, if the estimator or
measurement algorithm is expected to yield the ‘true’ value.

The measurements or estimates can still be noisy, i.e. individual shape measurements εi

may have residual discrepancies with the true values ε (as a function of
(
ε I , g

)
, eq. 1.16).

The distribution of estimates (realizations, measurements), however, should be ‘centered’,
in some statistical sense, around that true value, for the measurement method to be called
unbiased.

Usually, this definition of center is taken to be the mean or expected value, and the esti-
mator (or measurement algorithm) is said to be mean-unbiased, if for an increasing number14

of estimations, the mean estimate converges toward the value of interest of the underlying
population. Note that we discuss here the distribution P (ε̂) of an estimator ε̂ of the ellipticity
ε, that has its own distribution P (ε).

This unavoidable alteration of the sheared ellipticity distribution P (ε) means that the
mean, the first moment 〈εi〉, is no longer an unbiased tracer of g. This can partly be un-
derstood, by considering that the unbiasedness of 〈ε〉 stems from the fact that the ellipticity
distribution before the effect of gravitational shear is irrelevant, while the effect of noise, from
whatever source other than intrinsic shape noise, is applied after the shear. Since that noise
distribution will be (roughly) centered around (0, 0), whether it be from noisy measurement
or natural fluctuations in an isotropic universe, the observed distribution will be skewed low
(see Fig. 1.6).

Figure 1.6: Left and middle: the non-linear mapping of ellipticities (with |ε ≤ 1|) by a reduced shear of
g = 0.33 + 0.11i. Right: the noncommutative geometry of ε space. In blue, the resulting ellipticity εa→b

when applying a reduced shear gb to an intrinsic ellipticity ε I
a. In red, the resulting ellipticity εb→a when

applying a reduced shear ga to an intrinsic ellipticity ε I
b. Based on Smit et al. (2015).

At the same time, given that the intrinsic galaxy ellipticity distribution is confined to∣∣∣ε I
∣∣∣ < 1 and that any g < 1 will not cause a ε ≥ 1, the ellipticity ‘space’ we consider is a

14Since we technically take the limit to infinity, the central limit theorem justifies the use of the mean as measure
of center of the estimator distribution, and for the use of the shorthand ‘unbiased’ for mean-unbiased.
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highly non-Euclidean, bound but infinite15 manifold (Bernstein & Jarvis 2002, see Fig. 1.6).
One should therefore not speak of a linear difference εb − εa between two ellipticity values
εa and εb, but the excess shearing (defined by eq. 1.16) needed to transform εa into εb. Yet
measurement pipelines such as the KSB and shapelets implementations used in chapters 2
and 3, allow for values ε � 1, and the lensfit implementation in chapters 4 and 5 effectively
truncates ellipticity space − again, even if the measurements are noisy but unbiased.

In chapters 4 and 5, we investigate the consequences for the inference of the underlying
shear signal g.

Estimators and bias

Both observations (e.g. Lambas et al. 1992, Rodríguez & Padilla 2013, Smit & Kuijken 2018)
and realistic theoretical models (see e.g. chapter 4) show that the intrinsic distribution of
galaxy ellipticities is strongly non-Gaussian, but sharply peaked. For any realistic noise dis-
tribution, the shape of P (ε) is changed, but the location of this peak is still an unbiased tracer
of the underlying shear. This is a powerful option, if we can accurately determine this loca-
tion.

We considered several estimators as alternatives to the mean, less sensitive to outliers
and/or more sensitive to a centrally peaked distribution. While the principle of the ‘right’
estimator for a distribution is an appealing one, in practice no estimator is generally unbiased,
as noise distributions vary and are dependent on instrument and shape measurement pipeline.

1.2.4 Results and interpretation
And then, when one has a catalog of unbiased ellipticity measurements and an estimator that
gives an unbiased (but still noisy) value for g, begins our interpretation of the reality we have
partly inferred from the shadows on the wall.

To relate the lensing signal to the matter distribution, we rely on accurate estimates of
e.g. the distances D involved (see Fig. 1.4) or the center of the structure of interest. But
let’s assume here for a moment, to regain some lightweightedness in this introduction, that
such other necessities are of little consequence, i.e. the uncertainties and biases caused are of
subdominant16 effect: in our interpretation, we will then inevitably compare our results to an
expectation, a preconceived model of the universe, in order to understand it. So, what are we
actually looking at?

For instance, we have considered a single lensing event by a group or cluster of galaxies,
where in practice, light rays travel to a constantly changing potential, due to the large scale
structure of the universe. This leaves a statistical imprint, called cosmic shear, first detected
by (Bacon et al. 2000, Van Waerbeke et al. 2000, Wittman et al. 2000). This field of grav-
itational lensing in itself provides a complement to cosmological parameter determinations
derived from observations of e.g. the CMB (see e.g. Kilbinger 2015, for a review). For our
study of lensing by groups or clusters of galaxies, this cosmic shear signal is an additional
form of noise, i.e. we detect the signal from the cluster and the cosmic shear together (Hoek-
stra et al. 2011). In some cases, such as the supergroup observed in Smit et al. (2015, chapter

15By infinite, we mean that we can apply any g < 1 to any ε I < 1 an infinite, discrete amount of times, and still
retain ε < 1.

16But they are most certainly not, as will be discussed in chapters 2, 3, and 5.
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2), there are even known matter overdensities in the background, that need to be taken into
consideration.

In fact, background galaxy shapes can also be coherently affected by a mechanism known
as intrinsic alignment (IA) that is not due to lensing at all. This is because background
galaxies that reside in the same potential, have their intrinsic orientations influenced in the
same way, for instance due to tidal forces or angular momentum (e.g. Crittenden et al. 2002).

This effect is then further confused by the lensing effect of such a potential on even more
distant background galaxies, introducing a (negative) correlation between the intrinsic shapes
of galaxies and the shear experienced by galaxies (e.g. Hirata & Seljak 2004).

And, coming full circle to the start of this introduction, we study the shapes of the compo-
nents of background galaxies that are visible to us, even though the vast majority of matter is
dark and could be misaligned with the visible shapes. For our work, these effects are assumed
to average out, only slightly increasing uncertainties, but we mention them here in reflection
on the bigger picture.

This thesis is therefore not a road map to climb out of the cave. It does intend to provide
a possible foothold, when contemplating that long climb.

1.3 Thesis outline

This thesis covers four studies into weak gravitational lensing, consisting of a theoretical con-
sideration of the statistics of weak shear inference, and three separate studies of weak lensing
by galaxy groups or clusters, exploring various aspects that obscure direct observations of
gravitational shear.

1.3.1 Mass distribution in an assembling super galaxy group at z = 0.37

Chapter 2 is based on Smit et al. (2015) and presents a weak gravitational lensing analysis of
supergroup SG1120−1202 (Gonzalez et al. 2005), consisting of four distinct X-ray-luminous
groups that will merge to form a cluster comparable in mass to Coma at z = 0. This super-
group was discovered in the Las Campanas Distant Cluster Survey (Gonzalez et al. 2001) and
has been studied in a series of papers (Gonzalez et al. 2005, Tran et al. 2008, 2009, Kautsch
et al. 2008, Freeland et al. 2011, Just et al. 2011, Smit et al. 2015, Monroe et al. 2017).

The member groups lie within a projected separation of 1 to 4 Mpc and within ∆v = 550
km s−1, which is comparable to distances in the bullet cluster system (Tucker et al. 1995,
Markevitch et al. 2002, Clowe et al. 2004), and as such, form a unique protocluster to study
the matter distribution in a coalescing system.

We studied the weak gravitational distortion of background galaxy images by the matter
distribution in the supergroup with high-resolution HST/ACS imaging. To robustly assess
the systematic image distortions and artifacts present in these images, we used the shape
measurement methodology for HST/ACS imaging outlined in (Schrabback et al. 2010), based
on KSB+ (Erben et al. 2001).

We compared the reconstructed projected density field with the distribution of galaxies
and hot X-ray emitting gas in the system and show that the projected mass distribution closely
follows the locations of the X-ray peaks and associated brightest group galaxies. Since the
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groups show no visible signs of interaction, our findings support the hypothesis that we ob-
serve the groups before they merge into a cluster.

We derived halo parameters for the individual density peaks, finding velocity dispersions
between 355+55

−70 and 530+45
−55 km s−1 and masses between 0.8+0.4

−0.3 × 1014 and 1.6+0.5
−0.4 × 1014 h−1

M�, consistent with independent measurements.

1.3.2 Weak lensing by very low redshift groups: analysis of systematics
and robust shape measurements

In chapter 3, we studied the weak gravitational lensing signal from 79 low redshift groups
(0.05 < z < 0.0585) from the 2dF Percolation-Inferred Galaxy Group catalog (2PIGG, Eke
et al. 2004), based on the Two-degree-Field Galaxy Redshift Survey (2dFGRS, Colless et al.
2001), and observed with the Wide Field Imager (WFI) as part of the Zürich Environmental
Survey (ZENS, Carollo et al. 2013). These groups cover two orders or magnitude in mass,
with velocity dispersion 38 . σ . 691 km s−1, inferred mass 1012 . M . 1014 h−1 M�, and
bJ luminosity 1.1 × 1010 . L . 5.9 × 1011 h−2 L�. The aims of this work were twofold.

Firstly, these groups covered a mass range that had not been studied extensively yet at
the time of this research, filling a niche in the mass spectrum. Most weak lensing studies
had been into large scales, up to those of clusters and superclusters, and into small scales, the
lensing by individual galaxies. On intermediate scales, there were results in the high mass
group regime (see e.g. Mandelbaum et al. 2006, Leauthaud et al. 2010) and Hoekstra et al.
(2001) reported the first measurements of light galaxy groups in the CNOC2.

Secondly, this research could be a suitable pathfinder for the Kilo-Degree Survey (de Jong
et al. 2013), which has an extensive overlap with the 2dFGRS and this sample. Given the low
redshift and low median mass of these groups, which translate to a weak gravitational lensing
signal, this work focused extensively on understanding possible systematics in wide-field
imaging data, shape measurements methods and the statistical effect of outliers.

And important part of the analysis of systematics was estimating the effect of stacking
of exposures on PSF correction and shape measurements, comparing the shapes of stars and
sources detected in varying number of exposures and sources detected on multiple parts of
the CCD array, due to being present in overlapping fields of view.

To asses the robustness of shape measurements, we compared two different pipelines,
namely KSB+ (Erben et al. 2001), based on surface brightness moments, and shapelets (Kui-
jken 2006), considered a model fitting method. The results were statistically consistent.

We analyzed the effect of outliers in shape measurements of the inference of the weak
shear signal, by comparing the commonly used weighted mean of a sample of ellipticities to
the estimated obtained by convex hull peeling (CHP). The results were comparable in this
respect as well.

Finally, we derived estimates for the velocity dispersion by fitting the lens profile for a
singular isothermal sphere (SIS), and estimates for the mass and concentration of the groups,
by fitting a Navarro, Frenk & White profile (NFW, Navarro et al. 1996), in good agreement
with the dynamical estimates from 2PIGG.

1.3.3 Optimal statistics for weak shear analyses
Chapter 4 is based on Smit & Kuijken (2018), the first of a set of papers (with chapter
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5 describing the second), and continues the analysis of optimal methods for inferring the
gravitational shear from a sample of measured ellipticities of background galaxies.

This way of determining the shear signal is fundamentally limited by the intrinsic dis-
tribution of shapes that galaxies exhibit. It is well known that the distribution of galaxy
ellipticities is non-Gaussian (e.g. Lambas et al. 1992, Rodríguez & Padilla 2013), and tradi-
tional estimation methods, explicitly or implicitly assuming Gaussianity, lead to noise biases
(e.g. Kacprzak et al. 2012, Melchior & Viola 2012), possibly of the order of a few percent.
This makes them comparable or even dominant to other sources of uncertainty in the pro-
cess, such as biases in shape measurement, uncertainty in the lensing geometry introduced
by photometric redshift probability distributions, or selection biases.

An optimal estimator is, from a principled point of view, more objective and better suited
than corrections to an approach that is known to mismatch the sample distribution. In this
work, we refine our method of CHP and complement that method and the canonical weighted
mean (or weighted least squares or L2 estimator) by the least absolute deviations (LAD or L1)
estimator and the biweight estimator (Beaton & Tukey 1974). We also allowed for a range
of possible ellipticity distributions, comparing a Gaussian distribution with a flat axis ratio
distribution, an ellipticity distribution from projected ellipsoids and the ellipticity distribution
in the CFHTLenS shear catalog(Heymans et al. 2012b).

We analyzed the biases, relative efficiencies and robustness of these estimators. We con-
clude that the LAD estimator is the most robust when applied to our simulations, reducing
noise bias by more than ∼ 30%, while increasing efficiency by a factor of 5 in the ideal case,
and a factor of 1.2 when applied to CFHTLenS data.

We applied these methods to fitting of Fourier modes to the pattern of ellipticities in a
simulated image, as a proof of concept.

1.3.4 AMICO galaxy clusters in KiDS-DR3: the impact of estimator
statistics on the luminosity-mass scaling relation

In chapter 5, based on Smit et al. (2021), we apply the findings of the analysis described
in chapter 4 on data from the third KiDS data release (KiDS-450, de Jong et al. 2017). We
use the shape measurements of background sources around 6925 clusters found in KiDS-
450 using the Adaptive Matched Identifier of Clustered Objects (AMICO, Bellagamba et al.
2011, Radovich et al. 2017, Bellagamba et al. 2018) and compare the results obtained with
the weighted LAD and mean estimators.

The high signal-to-noise ratio of the shear signal allows us to study the scaling relation
between the r-band cluster luminosity L200, and the derived lensing mass M200. We show the
results of the scaling relations derived in 13 bins in L200, with a tightly constrained power law
slope of ∼ 1.24 ± 0.08.

We observe a small, but significant relative bias of a few percent in the results of the
two regression methods, which is in excellent agreement with our findings in chapter 4. The
efficiency of LAD is at least that of the weighted mean, relatively increasing with higher
signal-to-noise shape measurements, a further confirmation of our previous results. As such,
LAD regression provides a robust consistency check for shear inference, which has been and
still remains a major investment in the field of weak lensing, while increased computation
times remain feasible.


