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A
Evolutionary Algorithms

This appendix is based on previous published work by Asteroth and Hagg (2015).
In EA, an approximative solution to an optimization problem is iteratively found.
In each iteration, a set of solution candidates, called a population is maintained
in a stochastic procedure. This procedure consists of 4 basic steps (see Fig-
ure A.1):

1. evaluation – assignment of a real valued fitness to the candidates

2. selection – survival of the fittest candidates

3. crossover – recombination to produce offspring

4. mutation – randomized changes to the individual offspring

evaluationselection

mutationcrossover

initialization

Figure A.1: Four basic steps of an EA.

In this repeated procedure the balance between exploitation, the refinement of
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A. EVOLUTIONARY ALGORITHMS
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Figure A.2: Structure of the population

individuals with high fitness, and exploration, the search for new solutions, possibly
through a part of the search space that has lower fitness, plays a crucial role.

Members of the population are called individuals (see Figure A.2). Each is
represented by its genotype, which here can be considered a one-dimensional array.
The array’s cells are called loci and their value a gene. All genes of the individual
make up its genome, an instance of the genotype. Before the individual is assigned
a fitness the genome is first mapped to its phenotype (1:1 or n:1 mappings are
possible).

Individuals from the current population survive and breed based on their fitness
and therefore the fitness function must provide sufficient information to direct
the search towards an optimum. Formally, the fitness function is a function from
phenotype space P to the positive real numbers R+.

f : P → R+

While in classical optimization algorithms, search is driven by the gradient of an
error function, in EA a gradient is not necessary but fitness must still represent
some distance to the solution.

The exploration rate plays a crucial role for the convergence speed and approxi-
mation quality. During the selection process, exploration happens if individuals
with submaximal fitness survive. If on the other hand exploitation is high, the
search will converge very fast but will get stuck in local extrema. This problem
does not occur when exploration is high, but the convergence speed will then be
much lower.
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A.1 Selection

A.1 Selection

A balance between refining good individuals and nurturing promising ones has to
be found. Good solutions are often combinations of building blocks found in less fit
individuals, therefore diversity plays a central role. On the other hand, selection
must assure the survival of the fittest individuals, otherwise, the search will be
more or less undirected. Common search strategies include:

• fitness proportionate selection, such as roulette wheel selection or stochastic
universal sampling

• rank-based selection, e.g. linear ranking or tournament selection

A.2 Crossover

A new population of children is created by recombining the selected individuals.
This breeding process is done by crossover of genomes. The process is highly
dependent on the genotype, the representation of the individuals. Simple strategies
for crossover include:

• N -point crossover : two genomes form two children. Between crossover-points,
genes are taken from alternating parents, as shown in Figure A.3

• uniform crossover : for all loci, choose a gene from either parent with a given
probability (usually dependent on the fitness)

• arithmetic crossover : calculate the offspring’s genes by arithmetic combina-
tion of the parents genes

Usually two parents are chosen for crossover, though it is possible to create offspring
from more parents. A crossover rate (CR) defines the probability of an individual
to undergo crossover, otherwise it is copied to the next generation.

A.3 Mutation

After individuals are selected as parents and recombined by crossover, there is a
certain probability for mutation of the offspring. For binary genes it is an obvious

163



A. EVOLUTIONARY ALGORITHMS

Parent A

Parent B

Child A

Child B

Figure A.3: Four-point crossover

option to flip values with a certain probability. For real valued genes a random
value can be drawn from some distribution (e.g. Gaussian) and added to the gene.
In many cases it is better to permutate a genome. For example, if the genome
encodes a TSP tour it is better to permutate two cities than to randomly mutate
one city because by random mutation the vast majority of variants will become
invalid.

The idea behind mutation is to introduce new information into the population.
Thus a high mutation rate corresponds to a high exploration rate. A balance
between exploration and exploitation has to be found.

Another important secondary parameter is the mutation distance s. This distance
represents the strength (and therefore also amount of disruption) a single mutation
can provoke. In case of a Gaussian mutation on a real number, this distance would
be controlled by changing the σ of the underlying distribution.

A.4 Diversity Management

Precautions must be taken to prevent premature convergence and ensure exploration
to take place even after convergence to local suboptimal extrema. In particular if
the search space contains disconnected regions, it is necessary to sustain diversity
in the population. Techniques to implement this include

• niching, in crowded regions the probability to reproduce is lower
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A.5 Representation

• speciation, only “similar” solutions are recombined

Niching prevents all individuals from populating only the region around one
particular extremum by fitness sharing.

fitnessshared = fitness
|close individuals|

Niching allows for dissimilar solutions to be recombined. While this is desired since
it ensures exploration it usually results in less fit individuals if two solutions from
dissimilar regions/optima are combined. A solution to this problem is speciation
which allows only similar individuals to be recombined. This can be implemented
by dividing the population into species (using some metric). Each species is
assigned a number of children according to their fitness and these are created solely
from individuals of the corresponding species.

A.5 Representation

The representation of a possible solution is probably the most important deciding
factor, whether an EA will find a solution quickly or at all. The fitness of an
individual must represent the distance to a solution in some way or other. For
mutation to work best, minor changes in the genome should result in minor changes
to the fitness value, otherwise the search conducted by an EA will be rather erratic
and convergence will be slow.
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T-Distributed Stochastic Neighborhood Em-
bedding

Commonly used for visualization, the dimensionality reduction method t-SNE
has been shown to be capable of retaining the local structure of the data, as well
as revealing clusters at several scales. It does so by finding a lower-dimensional
distribution of points Q that is similar to the original high-dimensional distribution
P. The similarity of data point xj to datapoint xi is the conditional probability
(pj|i for P and qj|i for Q, Eq. B.1), that xi would pick xj as its neighbor if neighbors
were picked in proportion to their probability density under a Gaussian distribution
centered at xi. The Student-t distribution is used to measure similarities between
low-dimensional points yi ∈ Q in order to allow dissimilar objects to be modeled
far apart in the archive (Eq. B.1).

pj|i = e

−‖xi−xj‖2

2σ2
i∑

k 6=i

(
e

−‖xi−xk‖2

2σ2
i

) , qj|i = 1 + ‖yi − yj‖2)−1∑
k 6=i(1 + ‖yi − yk‖2)−1)

(B.1)

The local scale σi is adapted to the density of the data (smaller in denser parts).
The parameter σi is set such that perplexity of the conditional distribution equals
a predefined value. The perplexity of a distribution defines how many neighbors
for each data point have a significant pj|i and can be calculated using the Shannon
entropy H(Pi) of the distribution Pi around xi (Eq. B.2).

Perp(Pi) = 2−
∑

j
pj|ilog2pj|i (B.2) KL(P‖Q) =

∑
i 6=j

pij log(pij
qij

) (B.3)
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Using the bisection method, σi are changed such that Perp(Pi) approximates
the preset value (commonly 5–50). The similarity of xj to xi and xi to xj is
absorbed with the joint probability pij . A low-dimensional archive is learned that
reflects all similarities pij as well as possible. Locations yi are determined by
iteratively minimizing the Kullback-Leibler divergence of the distribution Q from
the distribution P (Eq. B.3) with gradient descent.
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Gaussian Process Regression

To perform interpolation or regression on a given data set, GP models (introduced
by Rasmussen (2004)) assume that the underlying data is sampled from a Gaussian
process – a process that generates points that are distributed in a Gaussian fashion,
and are correlated in a local and smooth fashion. For an in-depth introduction to
GP regression and its application in model-based optimization, refer to Forrester
et al. (2008). What follows is a summarized explanation.

The models assume that the objective function is smooth: the closer a candidate
is to a known example, the closer their function values will be to each other. Here,
the training data of the model is denoted as a set of n solutions X = {x(i)}i=1...n

in a k-dimensional search space. The corresponding n observations are denoted
with y = {y(i)}i=1...n. For an unknown point in our search space, x∗, Gaussian
process regression intends to estimate the unknown function value ŷ(x∗). In its
core, the model assumes that the observations at each location x are correlated via
a kernel function. Kernel functions of the following type are considered here:

k(x,x′) = exp ( −θd(x,x′)) . (C.1)

This essentially expresses the correlation of two samples x a x’, based on their
distance d(x,x′), and a kernel parameter θ ∈ R+. Kernel parameters are usually
determined by Maximum Likelihood Estimation (MLE), that is, they are chosen
such that the data has the maximum likelihood under the resulting model. MLE
usually involves a numerical optimization procedure. The distance measure d(x,x′)
can potentially be any measure, though not all ensure that the kernel is positive
semi-definite, a common requirement. By using the Manhattan distance, the
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distance measure is less affected by issues related to high-dimensional data, see
Aggarwal et al. (2001). This distance is defined as:

dMan(x,x′) =
∑
|xi − x′i| (C.2)

Rather than a single parameter θ, a different θ can be used for each dimension i of
the input samples, enabling the model to estimate the influence of each individual
dimension on the observed values. However, in the interest of simplicity and
computational efficiency we opt for an isotropic kernel with a single θ.

Once the pairwise correlations between all training samples are collected in a
matrix K, the GP predictor can be specified with

ŷ(x∗) = µ̂+ kTK−1(y− 1µ̂), (C.3)

where µ̂ is another model parameter (estimated by MLE), k is the vector of
correlations between training samples X and the new sample x∗, and 1 is a vector
of ones. The error or uncertainty of the prediction can be estimated with

ŝ2(x) = σ̂2(1− kTK−1kT ), (C.4)

where σ̂2 is a further model parameter to be estimated by MLE.
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Acronyms

AI artificial intelligence.

AIC Aikake information criterion.

AutoVE Automatic Voronoi-Elites.

BFGS Broyden-Fletcher-Goldfarb-Shanno.

BGK Bhatnagar-Gross-Krook.

BO Bayesian optimization.

cAE convolutional autoencoder.

CFD computational fluid dynamics.

CGP Cartesian genetic programming.

CPPN compositional pattern producing network.

cVAE convolutional variational autoencoder.

CVT centroidal Voronoi tessellation.

DBSCAN density-based spatial clustering of applications with noise.

DIRECT dividing rectangles.

DL deep learning.

DMD dynamic mode decomposition.

DR dimensionality reduction.

EA evolutionary algorithm.
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Acronyms

ELBO evidence lower bound.

GAN generative adversarial network.

GM generative model.

GP Gaussian process.

GPU graphics processing unit.

HSP hierarchical spatial partitioning.

HyperPref interactive, co-creative process, determining the preference hypervol-
ume.

KL Kullback-Leibler divergence.

kPCA kernel principal component analysis.

LBM Lattice Boltzmann method.

LS latent search.

MAP-Elites multidimensional archive of phenotypic elites.

MAPE mean absolute percentage error.

MMO multi-solution, multi-local or multimodal optimization.

MOO multi-objective (or multicriteria) optimization.

NEAT neuroevolution of augmenting topologies.

NS novelty search.

NSGA-II non-dominated sorting genetic algorithm II.

NSLC novelty search with local competition.

PCA principal component analysis.

PD Pure Diversity.

PE precise performance evaluations.
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Acronyms

PFE precise phenotypic feature evaluations.

PRODUQD prototype discovery using quality diversity.

PS parameter search.

QD quality diversity.

ReLU rectified linear unit.

RLS restarted local search.

RMSE root mean square error.

SAIL surrogate-assisted illumination.

SDNN sum of distances to nearest neighbor.

SPD Solow-Polasky Diversity.

SPHEN surrogate-assisted phenotypic niching.

t-SNE t-distributed stochastic neighbourhood embedding.

UCB upper confidence bound.

UDHM user decision hypersurface model.

VAE variational autoencoder.

VE Voronoi-Elites.
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