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In Conclusion

Creative processes, especially in engineering, suffer from the problem that user
preferences are not easily formalizable. Creativity is suppressed when engineers
are very experienced, causing them to become less inclined to try novel solutions.
In contrast, a lack of experience makes it nearly impossible to find solutions at
all but leaving the task of creation to machines takes away responsibility from us
humans, which is not practical and raises many ethical questions.

Co-creative processes between humans and artificial intelligence can help to inspire
beyond the user’s own intuition. This work realized co-creative processes between
humans and an artificial agent based on state of the art methods of evolutionary
optimization and machine learning. By measuring similarity and diversity based
on a solution’s expression or behavior, multi-solution optimization creates a highly
diverse set of solutions, both in their morphology as well as their interaction
with the environment. The latter, whether it is a robotics or fluid dynamics
simulation, determines not only whether a solution has a high quality but also
offers alternatives when a quality metric is hard to specify. The co-creative system
is able to create diverse solution sets in an efficient manner and capture human
preferences.

Chapter 1 discussed that humans need to keep control of decisions made by
AI systems. It grounded this thesis in the tension field between the Hegelian
idea of creativity and engineering design. The communication paths of Jung’s
extraverted intuition, as opposed to introverted intuition, served as an inspiration.
Increasing transparency by externalizing the creative process is one way to increase
the explainability of decisions where ultimately AI systems are involved.
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6. IN CONCLUSION

Chapter 2 analyzed formalisms of human creativity. The components of co-
creative stage theories were connected to cognitive psychological traits, affecting
human creativity. This analysis determined, which components of the process
could be turned into an artificial system. The considerations, merged with those
from literature, were converted to a list of requirements for the process. State of
the art co-creative processes were then described. Finally, a formal model for a
co-creative system based on divergent search methods was defined. The model
supports humans with varying degrees of experience.

Chapter 3 connected ecologic effects in natural evolution to evolutionary multi-
solution optimization. With the first research question (I) in this chapter, it was
determined that solutions are best compared using their phenotype or behavior,
not their genome. Niching methods that are common in evolutionary computation
were discussed. Only by maintaining a collection of solutions can we differentiate
between solutions’ similarity. A description of genome, phenotype and behavior
in natural evolution and their effects on diversity were discussed. These concepts
were then projected back into the encodings used in evolutionary computation.
Specifically, the terms phenotypic and ecologic expression were distinguished. The
effects of neutrality and sensitivity of such multi-level encodings provided an answer
to the research question. It is the phenotype, specifically morphology and behavior,
that hold the key to a concept diversity that is easily understood by humans. QD
algorithms fill a gap in evolutionary computation, by providing a mechanism for
‘indirect, high-level recombination’. Values for phenotypic features, found in known
solutions, are recombined in QD’s archive to produce new solutions, but without
the necessity of an explicit recombination operation.

Answering the second research question (II), it was determined that QD algo-
rithms produce the highest phenotypic diversity compared to other multi-solution
optimization methods. Three main multi-solution paradigms, multiobjective opti-
mization, multimodal optimization and phenotypic niching (the main contribution
of QD algorithms), were compared. A simplified archive was introduced that made
it possible to compare genetic and phenotypic niching. QD was shown to create a
much more diverse set of solutions. By not explicitly defining phenotypic features,
and instead learning them from the data set generated by QD, solution diversity
was increased even more. The treatment of the first research question already
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provided insight into why QD is such a powerful method and the answer to the
second question confirmed this.

The next part in this chapter treated the question (III) whether we can learn
more diverse solution sets when learning phenotypic niching from data instead
of using predefined features. By taking advantage of convolutional autoencoders,
phenotypic space could be compressed into two dimensions, increasing QD’s solution
set diversity. This removed the necessity for users to predefine phenotypic features,
which can be difficult to determine as well as be prone to be influenced by a
human creator’s biases. This data-driven phenotypic niching approach, named
Auto-Voronoi-Elites (AutoVE, see Fig. 3.15), has never been applied to shape
optimization before. Indeed, data driven techniques lead to more diverse sets of
artifacts.

The data-driven approach was further analyzed by asking what the limitations
of generative models are in terms of the possible diversity of the solutions they
create (research question IV). It turns out that generative models are better used
as similarity models, providing niching spaces for multi-solution algorithms, rather
than be used as an encoding. In this work only bootstrapped techniques were
evaluated, to prevent initial biases and to simulate the problem of initial creativity.
It was shown that generative models are usable to create a configurable resonance-
dissonance trade-off, by evaluating their expressiveness when extrapolating away
from known solutions. This extrapolation is only possible when using the models
as niching space, not as search space.

Chapter 4 introduced two methods to help increase the data efficiency of QD
algorithms. First, the question (V) was answered, whether behavioral features can
be modeled in a surrogate-assisted way by sampling based on optimality alone.
By connecting Bayesian optimization applied to QD with a model for phenotypic
diversity, it was shown that the optimal hypersurface can be modeled, both in
terms of its coordinates in phenotypic similarity as well as solutions’ quality. Only
now a full surrogate-assisted version of QD exists.

The second question (VI) treated a special case of neural encodings. An evaluation
was performed to determine, whether the behavior of artifacts, robots in this case,
with neural encodings can be modeled. It was shown that simulation-free behavioral
prediction was possible by sampling outputs of neural networks and using this
in a behavioral kernel for statistical models. This method removes the need for
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6. IN CONCLUSION

most evaluations of such an encoding and allow comparisons between solutions
with different structures. The hope is that this helps to more easily choose such
an encoding, which can create very complex morphologies and behaviors.

Chapter 5 discussed various ways to integrate QD into the co-creative process,
using the design by shopping paradigm, where the user selects solutions presented
to them. Results need to be presented to the user in a concise way, as QD can
create very large solution sets.

First, the question (VII) whether QD results can be summarized using representa-
tives was answered. Evidence that QD solution sets often consist of genetic clusters
allowed compressing them into a smaller set of representative prototypes. An
unsupervised clustering method combined with dimensionality reduction allowed
such a compression of the set into a small number of dimensions. The set could
now be presented to the user as prototypes.

Second, the prototypes were used to influence QD after humans select their
preferred ones. This influence was analyzed for two domains in research question
VIII. After the user selects their preferred solutions, QD is restarted from the set
of selected prototypes. QD runs based on these ‘seeds’ produce solution sets that
are more similar to the user’s preferred prototypes. QD tends to drift away from
the preferred region in genetic space.

Therefore, an evaluation was performed to determine, whether selected prototypical
genomes can be modeled with a statistical model (IX), and whether we can constrain
the search space by penalizing the objective function (X). Gaussian process models
were created to predict the coordinates of new solution in the similarity space.
This allowed defining a selection metric, which compares how far a solution has
drifted from preferred solutions as opposed to non-preferred solutions. The metric
was turned into a penalty and applied to QD’s objective function. This biased
QD to move towards the user’s preference hypervolume, the space that contains
preferred solutions. Two different encodings in the same domain were used to show
that the drift penalty was able to constrain the solutions, genetically. However,
due to the fact that the constraints are only applied to parameters, or genes, not
to the phenotype, QD still produced unexpected solutions, especially when an
encoding contains a high amount of neutrality and sensitivity.
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Therefore, finally, the constraints were applied on a phenotypical level (XI). By
modeling the high-dimensional space of pictures of geometrical shapes with a
convolutional variational autoencoder, a phenotypic similarity space was created.
The phenotypic drift penalty was applied to QD, creating the final co-creative
process called HyperPref, in which the phenotypic preference hypervolume can be
discovered. This was demonstrated on a 2D spline domain.

Introduced Methods. The following table shows an overview of all methods
introduced in this work.

Table 6.1: Method Overview.

Method Description
VE Produces diverse set of high performing solutions using archive de-

fined by phenotypic features, fixed number of niches, independent
of archive dimensionality and without fixed niche boundaries.

AutoVE VE adaptation that automatically extracts archive descriptors by
bootstrapping and updating a generative phenotypic model.

SPHEN Bayesian interpretation of MAP-Elites that uses GP models and
a sampling strategy to fill an archive with only a small number
of real objective evaluations. Predicts archive descriptors while
piggybacking on sampling strategy.

PHD Distance kernel/metric based on phenotypes.
UDHM Preference model.
PRODUQD Interactive version of QD. User influences QD by selection of

archive members. Influence is imposed using a penalty applied to
the objective based on genetic drift.

HyperPref Version of PRODUQD that influences QD based on phenotypic
drift.

Final Words This work gave insights into the matter of creativity in engineering,
the importance of phenotypic diversity, reflecting on the formulation of optimization
algorithms for the real world, bringing the user back into the loop, learning what
the user wants, but providing as much creativity as possible within the user’s
selection. An informed and challenged engineer can make better design decisions
and in this context we can and should develop algorithms.
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6. IN CONCLUSION

Creators can use the Hegelian co-creative methods introduced in this thesis to
discover their preferences, supported by a ‘creative’ machine. The machine helps
humans interactively reflecting upon themselves as an objective participant, an
artificial Other, a concept that is necessary, according to Sartre and Elkaïm-Sartre
(1946). It helps to shape a process that is in line with the idea on creativity that
was described by Hegel (1842) and uses communication paths used in extraverted
intuition, the term coined by Jung (1923).

The formal model and the implementations of this model provide input for genera-
tive learning as well as the active learning community, combining concepts from
both. The model can potentially support all levels of user expertise. The contribu-
tions of this work consist not only of answers to the research questions, but also of
a body of methods that was shown on various peer reviewed conferences, in the
community of evolutionary computation as well as computational creativity.

Surely, this work can be continued ad infinitum. The combination of QD and
generative models is actively being explored in the scientific community. The
aspects of interpolation and extrapolation w. r. t. known examples and features of
those examples might provide us with insights on the true strength and limits of
generative models. Although they produce convincing results, the question remains
whether in the end they limit our possibilities. Only using data-driven solution
generators might in the end hinder, not advance engineering solutions.

Cooperation between humans and artificial intelligence begs the question who
or what bears the responsibility to take decisions that impact our society. Com-
putational co-creativity allows us to evaluate these questions that can have a
large impact on a society that depends more and more on AI, and less on human
responsibilities. Yet, in the end, humans are the agents responsible for decisions
(see Sartre and Elkaïm-Sartre (1946)).

To answer the question posed in Section 2.3.2, in contrast to the ‘parameters tell
the design story’ hypothesis by Bradner et al. (2014), the results from this thesis
quantitatively and qualitatively show that design stories, in terms of diversity, are
told by examples (see Sartre and Elkaïm-Sartre (1946)) and their phenotypical
features, not parameters. The objective of divergent search methods should be to
provide new insights to the engineers. Parameters provide a computational search
space but also contain implicit biases. Only a continuous analysis of phenotypes
and behavior of solutions can provide new insights in an accessible manner.
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I believe that in AI and optimization research, a larger emphasis should be put on
the process of creativity and optimization. The optimization community oftentimes
relies on the assumption that we can fully formalize our objectives and preferences.
I do not believe this to be true. Instead, we might loosen this assumption and
design methods, algorithms, and processes, that instead of giving us solutions, give
us insight into the problems we try to solve and our preferences that grow with
those insights.
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