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CHAPTER

The Preference Hypervolume

In this chapter I treat the question of how to integrate the user into the co-creative
process. The objective is to find the preference hypervolume, the part of solution

space that contains solutions preferred by the user.

This chapter consists of three parts. First, solutions are compressed into a smaller
set of representatives, which form a Jungian extraverted intuition for the human
(see Jung (1923)). Due to the nature of evolutionary algorithms, small genetic
variations tend to lead to a population consisting of genetic clusters, situated around
elite solutions. Evidence for this effect was provided by Vassiliades and Mouret
(2018). In Section 5.1.3, solutions are compressed using an unsupervised clustering
method and then presented to the user as prototypes. The communication of
prototypes to the human provides a Hegelian reflection (see Hegel (1842)). After
the user ‘shops’ for their preferred solutions, QD is restarted from the set of selected

prototypes.

The rest of the chapter is devoted to constraining QD directly, through genetic
constraints, and indirectly, through phenotypic constraints. In Section 5.2, QD
is given an inherent genetic bias towards moving closer to the selected solutions.
Finally, in Section 5.3, QD is given a phenotypic bias, which is more in line with
findings from previous chapters, producing results that are closer to the expected

outcome of a user’s selection.

In order to fulfill the requirements A1 (“The process should be iterative”), A2 (“The
process should be interactive and contain (at least one) objective participant”), A4
(“The process should capture design knowledge through designer interaction”) and

D1 (“Communication should be evocative through features such as visualization and
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5. THE PREFERENCE HYPERVOLUME

abstraction”) from Tables 2.1-2.4, the following research questions are answered

in this chapter:

Research Questions

VII Can QD results be summarized using representatives? (requirement
D1)
VIII Can QD be influenced by the user by their selected representatives
across domains? (requirements Al and A2)
IX Can selected prototypical genomes be modeled? (requirements A4
and D1)
X Can we constrain parameters by penalizing QD’s objective? (require-
ment A4)
XI Can we constrain phenotypes by penalizing QD’s objective? (require-
ment A4)

The main insights highlighted in this chapter are that QD results can be compressed
and modeled, the user can take influence on QD by selecting from that compressed
set, and user constraints provide more natural results by comparing phenotypic

instead of genetic selection.

5.1 Genetic Prototypes

Divergent algorithms can find a large number of possible solutions, but at the
same time this can hinder the engineer’s ability to select interesting designs. As
automated diversity gives too many solutions, their more concise presentation
makes QD more useful to designers. With the ability to efficiently create a diverse
set of solutions, the co-creative system is ready to communicate with the human.
Results need to be presented to the users in a concise way, enabling them to select

and influence the underlying search.

Instead of being presented with all solutions, in the design by shopping paradigm
(see Balling (1999) and Section 2.3.2) the users are offered a compressed version
of the solution set. Their selection is then used to influence the next divergent

stage.

Research questions VII (“Can QD results be summarized using representatives?”)
and VIII (“Can QD be influenced by the user by their selected representatives

across domains?”) are answered in this section. The interactive co-creative process
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5.1 Genetic Prototypes

introduced here uses genetic similarity to influence QD on a parameter level,

aligned with more classical approaches of interactive evolutionary systems.

Vassiliades and Mouret (2018) showed that the elite hypervolume, the part of the
parameter/genome space that contains QD solutions, is sometimes less spread
out than the elites are in behavior space. It can be hypothesized that although
phenotypic diversity might be high according to the phenotypic features used in
literature, QD still acts like a classical EA, producing species that are genetically
sensitive, covering a larger part of phenotypic space than of genetic space (see
Section 3.1.2). Evidence for this was originally found by Lehman (2012), reporting
on the benefit of pressure towards novelty. But when novelty produces such species,
a direct consequence is that in genetic space, the population will contain clusters
of individuals. So in order to compress the solution set produced by QD, it seems

obvious to find these clusters and pick one representative each.

According to prototype theory, objects are part of the same class based on similarity.
Wittgenstein (1953) questioned whether classes can be rigidly limited and implied
that there is such a thing as a distance to a class. Rosch (1975) introduced prototype
theory, stating that natural classes consist of a representatives and non-prototypical

examples, which can be ranked in terms of distance to the prototype.

In this section, which is based on work by Hagg et al. (2018), genetic prototypes
are determined with unsupervised clustering and are then used as seeds, or starting
points, for QD. Finally, the interaction between QD’s results and a user selection
is analyzed. A quantitative analysis is performed on a two-dimensional airfoil
optimization domain containing an inexpensive objective function, and a quali-
tative analysis is then completed on an expensive three-dimensional car mirror

optimization problem.

5.1.1 TUnsupervised Clustering

As shapes of optimal regions (the elite hypervolume) are not known beforehand, an
unsupervised clustering technique that can handle concave as well as convex clusters
is necessary to find them. The most commonly used density-based clustering
algorithm is density-based spatial clustering of applications with noise (DBSCAN),
proposed by Ester et al. (1996), which uses a maximum neighborhood distance € to
determine whether points belong to the core of a cluster or are a border point (see

Fig. 5.1). A core point of a cluster has more than n neighbors within a radius of .
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5. THE PREFERENCE HYPERVOLUME

A border point is still part of a cluster, as it is connected to a core point, but has
less than n neighbours. A point that is not reachable via a core point is considered
either to be noise or a point of another cluster. The technique is able to be applied
to data sets with different local densities and find clusters that are convex as well
as concave. The parameter € is found using the L-method by Salvador and Chan
(2003), which determines the best trade-off between the number of clusters and
the classification error. The minimum number of core points per cluster is set to

four.

) border point
o T @ core point
’ @ noise point (not part of cluster)

Figure 5.1: Density-based spatial clustering of applications with noise, introduced

by Ester et al. (1996). The minimum number of neighbors n for a core point is four.

High Dimensionality Clustering depends on a notion of distance between
points. The curse of dimensionality dictates that the relative difference of the
distances of the closest and farthest data points goes to zero as the dimensionality
increases (see Beyer et al. (1999a)). Often, the genome in evolutionary techniques
consists of many parameters, causing distance metrics like Euclidean distance to
become meaningless, which can happen for as few as 10-15 dimensions, shown
by Beyer et al. (1999b). Clustering methods using a distance metric break down
and cannot differentiate between points belonging to the same or to other clusters
(see Tomasev and Radovanovié¢ (2016)). DR methods are applied to deal with this
problem. Data is often located at or close to a manifold of lower dimension than the
original space. DR transforms the data into a lower-dimensional space, enabling the

clustering method to better distinguish clusters. Common DR methods are:

1. Principal component analysis (PCA), which uses eigenvector decomposition

to find axes that are aligned to highest variance in data (in order of variance

118



5.1 Genetic Prototypes

magnitude)).

2. An alternative to PCA, kernel principal component analysis (kPCA) (see
Schélkopf et al. (1997)), uses kernel” trick to transform n data points to

n-dimensional kernel space that allow linear separation.

3. Isomap (see Tenenbaum et al. (2000)), which is a non-linear method that

uses eigenvector decomposition on geodesic distances.

4. T-distributed Stochastic Neighborhood Embedding (t-SNE), see Maaten
and Hinton (2008), which is an iterative process that maps points to two-
dimensional space and keeps local neighborhood intact. It respects the local
structure of high-dimensional data while discovering global structure (clusters

at different scales). The method is explained in Appendix B.

5. Autoencoders (AE), proposed by Hinton and Salakhutdinov (2006), which

are symmetrical neural networks with a central neural bottle neck.

5.1.2 Evaluation of Dimensionality Reduction and Cluster-
ing

The DR methods are analyzed as to whether they improve the clustering behavior

of DBSCAN compared to applying clustering on the original dimensions.

The comparison needs to be robust w. r. t. differences in data dimensionality.
Therefore metrics that use distance as a direct measure are not used. For example,
the Silhouette index by Salvador and Chan (2003), a commonly used metric, when
applying to qualitatively equivalent datasets of various dimensionalities (shown in

Figure 5.2), converges to zero as the dimensionality increases.

Similar results were described by Tomasev and Radovanovié¢ (2016) in a survey
on metrics for clustering in high dimensional spaces. The authors compared
artificial datasets of different dimensionality but sampled from similar distributions
(Gaussian, with diagonal covariance matrix). The indexes were run both on ground
truth cluster configurations as well as k-means clustering. Taking into account the
robustness w.r.t. dimensionality and variance stability of the indices, the G index
is a good pick, according to Tomasev and Radovanovié (2016), as it is practically

independent of the dimensionality.

"non-linear function
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Figure 5.2: Silhouette index for a random cloud of samples in 1D to 20D. Two fixed
Gaussian clusters sampled with diagonal covariance, one unit (in one dimension)

apart from each other were used.

The G, metric G, indicates whether members of the same cluster are closer
together than members of different clusters. To this end, the index measures
discordance among pairs of distances. A pair of distances is said to be concordant
in case the distance between objects from the same cluster is lower than the
distance between objects belonging to different clusters. Therefore, a discordant
pair of distances signalizes that the intra-cluster structure, or ranking, is not well

separated. The index is calculated as follows:

T —1)

= 25_
G S

with S_ being the total number of discordant pairs in the data with respect to
the partitioning induced by the clustering algorithm and ¢ the number of data
points. G therefore is equal to the number of discordant pairs relative to the
total number of data point pairs in the set. The metric is robust w.r.t. differences
in dimensionality, shown by Tomasev and Radovanovié (2016). A low value (> 0)

indicates a high quality of clustering.

Evaluation A high-performing two-dimensional airfoil is optimized using free-
form deformation, with ten degrees of freedom (see Fig. 5.3). This classic design
problem is similar to the one defined by Gaier et al. (2017), but using a different
representation. The base shape, an RAE2822 airfoil, is evaluated in XFOIL?, at
an angle of attack of 2.7°at Reynolds number 106 (Mach number 0.5).

8web.mit.edu/drela/Public/web/xfoil/
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Figure 5.3: Two-dimensional airfoil encoding and features (Xup, Yup)-

The objective is to find diverse deformations, minimizing the drag coefficient cp

while keeping a similar lift force and area, described by Eq. 5.1-5.2

fit(z) = drag(x) x pe, (&) x pa(a) (5.1)

drag = —log(cp(x)) (5.2)

with A the area of the foil, and Eq. 5.3-5.4. The feature map, consisting of the x
and y coordinates of the highest point on the foil (X, and Y,,,, see Fig. 5.3), is
divided into a 25x25 grid, producing 625 solutions.

cr (x) 2
Pcr, (ZL') = Lo 7CL.<:E) < Lo (53)
1, otherwise .

— |A—AO|)7 (5.4)

pa(z) = (1 A

PCA, kPCA, Isomap, t-SNE, and an AE are compared using DBSCAN on the
latent spaces. All methods are used to reduce the dataset to a dimensionality of
two. This increases explainability to the end user as it lets them visually inspect
the results. The AE contains four consecutive, fully connect layers, consisting of
17, 7, 3, and 2 nodes. For t-SNE, perplexity is set to 50.

SAIL is evaluated 30 times on the two-dimensional airfoil domain. For every run
of SAIL, the dimensionality of the resulting predicted optima is reduced with the
various methods and the optima are clustered with DBSCAN. Table 5.1 shows that
t-SNE allows DBSCAN to perform about an order of magnitude better than using

other methods. Although t-SNE is not a convex method, it shows no variance,
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5. THE PREFERENCE HYPERVOLUME

indicating that it is quite robust. The number of clusters found is about twice as
high as using other methods, and since the cluster separation is of higher quality,

t-SNE is selected to reduce dimensionality in the rest of this evaluation.

Table 5.1: Quality of DR methods.

Original PCA kPCA Isomap t-SNE AE
mean G4 score 0.36 0.33 0.22 0.30 0.05 0.454

mean number of clusters 4 5 7 4 10 4

An example t-SNE/DBSCAN clustering result is shown in Fig. 5.4. The clusters
certainly contain solutions optically similar to their prototypes, yet some problem-
atic classifications can be distinguished. The representation contains too much

neutrality and/or sensitivity.

prototypes

Figure 5.4: Example set of clusters found using t-SNE and DBSCAN on the airfoil
domain. Prototypes are shown in green. Red boxes show problematic clusters, due

to the wide variety of shapes contained within the cluster.

5.1.3 Genetic Seeding

Prototype discovery using quality diversity (PRODUQD) (pronounced: [pro'dakt]),
which performs a representative selection of designs, enables engineers to make

design decisions more easily and to influence the search for optimal solutions.

A precise definition of PRODUQD can be found in Fig. 5.5 and Alg. 8. Initially,
the design space is explored with a QD algorithm (line 6). In this section SAIL

(see Alg. 7) is used, creating high-performing examples of designs.

A similarity space is constructed (line 7) using t-SNE (introduced by Maaten and
Hinton (2008)), because this was shown to be the most appropriate dimensionality

reduction method for this application (see Section 5.1.2). In this space, similar
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Figure 5.5: PRODUQD cycle. The design space is explored with QD (1). The

archive’s members’ genomes are projected into a low-dimensional similarity space

(2). In this space, classes are extracted (3) and one member of each class is chosen

as a representative prototype (4). The user then selects one or more prototypes (5).

The class members of all selected prototypes are used to seed the archive (6), after

which QD is applied again to update the archive.

Algorithm 8 Prototype Discovery using Quality Diversity.

1:
2
3
4
5:
6
7
8
9

10:
11:
12:

procedure PRODUQD

X « SoBoL(dim(X))

f < EVALUATE(X)

budget + budget /iterations

for 1 to iterations do
(X, fpreq) < QD(X, £, budget)
Xyed < DIMENSIONALITY-REDUCTION(X)
C < CLUSTERING(X,.cq)
p < PROTOTYPE(X,c)
Pset < SELECT(X(p), fprea(P)) > Performed by the user.
X < X(pser)

end for

13: end procedure

solutions are clustered (line 8) into classes using DBSCAN (see Section 5.1.1). A

prototype is extracted for every class (line 9) ?. The most representative solution

of a class is the member of a cluster that has the minimum distance to other

91n prototype theory, described by Rosch (1975), prototypes are those members of a class,

“with the most attributes in common with other members of the class and least attributes in

common with other classes”.
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members. The medoid is taken rather than a mean of the parameters, as the latter

could be located in a non-optimal or even invalid region of the design space.

The prototypes are presented to the user (line 10), offering them a concise overview
of the diversity in the generated designs. After the user selects one or more
prototypes, the affiliated class members are used as seeds for the next QD iteration,
serving as initial solutions in the acquisition and prediction maps (line 11). Initial-
izing QD with individuals from the chosen class forces it to start its search within
the class boundaries. Using a subset of untested solutions of a particular class
stands in contrast to SAIL, which focuses on searching the entire design space,
seeding both the acquisition and the prediction map with actual samples. Within
each QD iteration, the surrogate model is retrained whenever new solutions are

evaluated.

By clustering similar solutions into classes and representative prototypes, the
optimization process is guided by extracting seeds from the classes selected by the
user and reinserting them into QD as initial solutions for the next run, zooming in
on a particular region in design space. This ideation process explores the design

space while taking into account on-line design decisions.

5.1.4 Quantitative Analysis

To show PRODUQD’s ability to produce designs based on a chosen prototype, it
is replicated five times, selecting a different class in each run. In every iteration
of PRODUQD, ten iterations of SAIL are run to acquire 100 new airfoils. The
first iteration starts with an initial set of 50 samples from a Sobol sequence. Then,
the five classes containing the largest number of optima are selected, and the
algorithm is continued in separate runs for each class. After each iteration, the
prototype that is closest to the one that was selected in the first iteration is marked.
PRODUQD runs are compared to the original SAIL algorithm, using the same

number of samples, a total of 500.

The similarity (distance in two-dimensional t-SNE similarity space) of designs to
prototypes of optima found in four separate runs, selecting a different prototype
in each one, are shown in Fig. 5.6. The usage of seeds does not always prevent
the ideation algorithm of finding optima outside of the selection, but PRODUQD
produces solutions that are more similar to the selected prototype than SAIL. The
parameter spread in solutions found with PRODUQD is lower than with SAIL.
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a. distance to prototype c. fitness
0 1 2 -4.8 -4.4 -4.0 -3.6
SAIL [ T — - —
PRODUQD | —— m=mm——— ——
b. parameter spread d. prediction error
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3
SAIL | — -—
PRODUQD —— B s e S E——

Figure 5.6: PRODUQD produces designs that are more similar to the selected
prototype than using SAIL (the distance to prototypes is smaller). This is also visible
in the smaller parameter spread. The produced designs have similar performance

compared to SAIL’s and the surrogate model is equally accurate.

Yet the true fitness scores and surrogate model prediction errors of both SAIL and
PRODUQD are very similar.

iteration 1 iteration 2 iteration 3

O not selected O A A selected classes © @ O selected prototypes

Figure 5.7: The region around the selected class is enlarged in similarity space
and structure is discovered as more designs are added in later iterations. In each

iteration the archive is filled with solutions from the selected class.

Fig. 5.7 shows the similarity space of three consecutive iterations. The effect
of selection, zooming in on a particular region, can be seen by the fact that
later iterations cover a larger part of similarity space, close to the prototype that
was selected. Some designs still end up close to non-selected classes (in gray),
which cannot be fully prevented without using constraints. PRODUQD is able to
successfully illuminate local structure of the objective function around a prototype.

It finds optima within a selected class of similar fitness to optima found in SAIL
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using no selection, and is able to represent the solutions in a class in a more concise
way, using prototypes as representatives, shown by the decreased variance within

classes (see Fig. 5.6).

The performance of PRODUQD’s designs is comparable to SAIL while directing

the search towards design regions chosen by the user.

5.1.5 Qualitative Analysis

The second domain, a three-dimensional fluid dynamics problem from the automo-

tive industry, is used to show results in a qualitative manner.

In the domain employed for qualitative analysis, the side mirror of the DrivAer
car model (see Heft et al. (2012)) is optimized with a 51 parameter free-form
deformation (see Fig. 5.8). The objective is to find many diverse solutions while
minimizing the drag force (in Newtons) of the mirror. The numerical solver
OpenFOAM! is used to determine flow characteristics and calculate the drag
force. The feature map, consisting of the curvature of the edge of the reflective
part of the mirror and the length of the mirror in flow direction, is divided into a
16x16 grid.

DrivAer open source model

free form encoding

o control points : X e
Y degree of ; RISHA ' B

SHE0
freedom

4 w«v’mm
e
A curvature

'S, length

Figure 5.8: Three-dimensional mirror encoding and features (curvature and length).

10openfoam. org, simulation at 11 m/s.
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A two-dimensional feature map, consisting of the curvature and the length of the
mirror in flow direction (see Fig. 5.3), is illuminated from an initial set of 100 car
mirror designs from a Sobol sequence. After acquiring 200 new samples with SAIL,
a final archive is produced. From this set of solutions the two prototypes having
the greatest distance to each other are selected. Then, PRODUQD is continued in
two separate instances, sampling another 100 examples. Then the newly discovered
prototype that is closest to the one first selected is used to perform two more

iterations, resulting in a surrogate model trained with 600 samples.

. © Cb prediction
P .., selection
front ,.:. r paths 1
ron ‘-_... .: ‘*
--Iun'

......... CD Cp true
L [

prediction

~_true
i

curvature —»

length —

drag force [N] °
——) selected prototypes
T2 3 ° protop

Figure 5.9: Phylogenetic tree of two PRODUQD runs diverging after first iteration,
and predicted drag force maps (ground truth values are shown underneath).

The two resulting runs are shown in Fig. 5.9. Every branch in the phylogenetic tree
of designs represents a selected prototype and every layer contains the prototypes

found in an iteration. On average, 18 prototypes were found in each iteration.

Although the prototype selection does seem to influence the general shape of the
mirrors, the results drift away from the selection. A clear example is the similarity
between mirrors which are marked A and B in the figure. Although in the left run
(in green), the red prototype was deselected, mirror A does resemble it more than

it resembles the green prototype.

The predicted performance of the maps after the final selection is shown at the top.
Every resulting mirror was evaluated with OpenFOAM to receive their respective
ground truth fitness values. Ground truth fitness maps are shown underneath the
predicted maps. The surrogate model gives an accurate prediction of the drag

force, as the general fitness trends are captured in the maps.
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5.1.6 Conclusions

QD can produce a large array of solutions, possibly impeding an engineer’s ca-
pabilities of making a design decision. This section introduced computer-aided
ideation, using QD in conjunction with a state of the art dimensionality reduction
and a standard clustering technique, grouping similar solutions into classes and
their representative prototypes. These prototypes can be selected to constrain
QD in a next iteration of design space exploration by seeding it with the selected

class.

This section gave evidence for an answer to research questions VII (“Can QD results
be summarized using representatives?”) and VIII (“Can QD be influenced by the
user by their selected representatives across domains?”). Answering these questions
was necessary to fulfill requirements A1 (“The process should be iterative”), A2
(“The process should be interactive and contain (at least one) objective participant”)
and D1 (“Communication should be evocative through features such as visualization

and abstraction”).

QD results are summarized using representative genetic prototypes, answering
question VII in a positive manner. By using the fact that the population consists
of clusters in genetic space, unsupervised clustering on a dimensionality reduced
space can be used to determine how many prototypes are found by QD. The fact
that the QD archive contains a relatively small set of design classes provides more

evidence that is in line with the analysis by Vassiliades and Mouret (2018).

The similarity space can be used continuously as it is decoupled from the feature
map. This allows the diversity metric, the feature characterization, to change
between iterations, although the effects have not been analyzed here. Finally,
although the median solution might be most similar to all solutions within a class,

one indeed might choose the fittest solution of a class as its representative.

QD can be influenced by using selected classes as seeds, but the answer to question
VIII remains inconclusive. A problem persists with the resulting mirror shapes
drifting away from the selected prototypes, due to QD not being constrained. This
is probably due to the neutrality and sensitivity effects that were described in

Section 3.1.2. These problems are addressed in the next sections.
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5.2 Modeling User Selection Drift

In the last section, the initial overview of the design space produced by QD was
analyzed by clustering QD’s resulting genomes in an unsupervised manner, forming
design classes and prototypical representatives. Seeding the archive guides QD
towards the selected prototype. Yet, it is not sufficient to guarantee that QD only
produces solutions within their classes. In this section, based on work by Hagg et al.
(2019), the feasibility and accuracy of modeling the user’s selection and constraining
QD based on that model is evaluated for both a closed form encoding as well as
a neural encoding. I answer research questions IX (“Can selected prototypical
genomes be modeled?”) and X (“Can we constrain parameters by penalizing QD’s
objective?”). The model and constraints here will be applied to phenotypes in the

next section.

The unconstrained objective function still allows QD to find solutions within
non-selected regions. As a design process consists of many design decisions, it is
unclear how the seeding approach would be successful in that case. The subspace
that contains solutions fulfilling all of the user’s decisions becomes smaller and
more complex as more design decisions are added, but QD is divergent and will
discover solutions outside of the selection. QD has to be constrained by modeling

the user’s selection decisions.

The genome-based selection process is subject to another problem. When a sensitive,
non-linear phenotypic mapping is used or the phenotype’s behavior is reactive,
e.g. when evolving neural network controllers or producing shapes from neural
representations, as done by Clune and Lipson (2004), small changes in the genome
can lead to large changes in the phenotype/behavior. The designer expects that
the continuation of the design process will produce similar solutions. But when
using genetic similarity, such a non-linear mapping causes unexpected behaviors to
be discovered, which would be counterintuitive to the designer. Therefore, in this
section the user’s selection is modeled, which allows comparing candidate solutions

to the selected ones.
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5.2.1 User Decision Hypersurface Model

A user’s selection needs to be modeled to properly and continuously constrain
the optimization process. QD fills its niching archive based on the behavior or
phenotype of solutions (see Fig. 5.10a), but the search itself still takes place in
genetic space (see Fig. 5.10b). Explicit search constraints need to be defined on

the genome.

a. phenotypic archive A b. genotypic space R” c. similarity space
A . ‘T~ T s
~Ft fill axchive 7y ** 0% Do
% . o |e with QD . . N projection 7° | o‘;(:;;' P I
=1Ll < | 07 ° —_— ] 63‘*\._________.0__1
“I * ! train model 7 o oe
| o ‘ L o __oo_ / I R |
feature 1 e solutions QD found i user partition P
O candidate solution oselected S _
o deselected S
6 L2 norm

Figure 5.10: QD searches through genetic space R™ (b) to fill an archive A
of diverse, high-performing phenotypes (a) in a low-dimensional phenotypic (or
behavior) space. The genetic dimensionality n can be very high. By projecting the
archive’s members onto a low-dimensional similarity space (c), the user’s selection
can be modeled. The projection model T allows making comparisons of candidate

solutions to the user selection S on the hypersurface by using an L2 norm.

Shaham and Steinerberger (2017) and Hagg et al. (2018) showed that when the
dimensionality of genetic space is reduced with t-SNE, more structure in the
objective landscape can be discovered by clustering techniques that are based
on the notion of distance. This provides evidence that distances measured in
the similarity space resulting from t-SNE are more effective in describing genetic

similarity than those measured in the original genetic space.

The user’s decision is modeled in the similarity space. This space is created based
on a t-SNE mapping applied to solutions that have been placed in the QD archive.
This creates a snapshot of the space at the time in which a decision was made.
The set of members in the archive represent a hypersurface that unfolds in R™ as
new solutions are added to empty niches and moves through R™ as solutions in
niches are exchanged. Every niche in the archive can exclusively contain points of

a subspace of R™, but a particular instance of an archive can be mapped into a

130



5.2 Modeling User Selection Drift

lower dimensional space that retains the structure of the archive, while allowing to

measure distances on this approximation of the decision hypersurface.

The user decision hypersurface model (UDHM) is formalized as follows:

A={x1,...,xn},x € R" : QD archive with m points
‘H = span(.A) : decision hypersurface
T:A— A CR?: projection into similarity space
T -HCR" - H CR?: projection model
6 : RY = R : distance measure, e.g. L2 norm
S, S : selected/deselected solutions
P = {S,S} : binary selection partition
M = (T,6,P) : user decision hypersurface model

The span of the points in the archive A defines the decision hypersurface H that
is projected into similarity space R? using t-SNE (7). A dimensionality of d = 2
is chosen for visualization purposes and because the projection method, t-SNE,

has been robustly tested for this case.

The dimensionality reduction method, t-SNE, does not provide a model, but merely
maps high-dimensional points onto a lower-dimensional space. It is sensitive to
local optima of its cost function, and therefore is not guaranteed to produce the
same result in multiple runs. Due to this sensitivity and the performance cost of the

calculation, t-SNE’s mapping is turned into a predictive model using GP.

Separate GP models for each of the d similarity space coordinates result in the
projection model 7. The GP models are trained using the archive members based
on which a decision is made. The models describe the knowledge that was present
at that point in time. The models’ isotropic Matérn kernel is applied on the
coordinates of the model’s training samples in R?. The length scale priors to

training are set to the mean Euclidean distance between the samples in R%.

The projection model 7\', consisting of the two GP models, is used to penalize
the fitness of a solution based on its distance to selected solutions. The model
prevents unexpected drift that can be caused by changes that would arise due to

recalculation of the t-SNE mapping.
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5. THE PREFERENCE HYPERVOLUME

The user decides which solutions they would like to further investigate, represented
by the binary selection partition P (see Fig. 5.10c). The UDHM M, which contains
the projection model ’?, a metric § and the user’s selection P allows us to compare
candidate solutions to the user’s selection based on their genomes, in similarity
space. A decision metric can now be defined that determines whether a candidate

solution is closer to S or to S.

User Selection Drift In order to measure how close a solution is to the user
selection, a metric called user selection drift da, is introduced. It compares the
distance of a candidate solution x. to the set of selected S and to the set of

deselected examples S:

0s = min(d(T (x¢),S)) : min. distance to selected

b5 = min(6(T(x.),S)) : min. distance to deselected
<

1)
dm (Xc) = <

———0<d
(0s + d3)

1 : (normalized) user selection drift

The parameter dpq measures the distance ds between x. and the closest point
in 8, and distance g between it and the closest point in S (see Fig. 5.11). The
normalized user selection drift equals zero when it exactly matches a selected point
and equals to one when the candidate has the same coordinates as a deselected
point. The UDHM and user selection drift can be used to augment the objective

function with, for example, a penalty metric.

not selected dm (x) = 0.5
/ dM(x) = 0.8
\‘ @ selected not selected
m=02@0g o

Figure 5.11: User selection drift daq is based on the distance to the closest selected
point ds and the distance to the closest deselected point .
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5.2 Modeling User Selection Drift

Integration of Model To make use of the UDHM, PRODUQD is extended by
including the UDHM. The algorithm is formalized in Algorithm 9. The projection
model T is trained using the archive members’ genomes, the selection vector
(partition §) and the vector that contains the solutions that were not selected
by the user (partition (S)) in line 11. The user selection is turned into a penalty
function and the objective function is adjusted in line 12, according to the following

equation:

dp(x) : drift penalty
wp, : penalty weight

F'(x) = f(x) - (1 —wp - dp(x)) : adjusted objective (maximization)

The penalty, a value between zero and one, is used to penalize a solution’s fit-

ness.

Algorithm 9 PRODUQD with UDHM.
procedure PRODUQD/UDHM
X < SoBOL(dim(X))
f < EVALUATE(X)
budget « budget/iterations

(X, fprea) < QD(X, £, budget)

Xred + DIMENSIONALITY-REDUCTION(X)

C < CLUSTERING(X,cq)

p < PROTOTYPE(X,c)
10: Psel < SELECT(X(p), fprea(P)) > Performed by the user.
11: T TRAIN(X, €, Psel, "Pser) > Train user selection model based on

1:
2
3
4
5: for 1 to iterations do
6
7
8
9

archive member genomes, clustering and selection vector.
12: £+ (wp,T) > Use UDHM to penalize fitness.
13: X X(psel)
14: end for

15: end procedure

The UDHM determines how far a solution might be mutated away from a known
selected one by measuring the distance to solutions from the state of the archive
at the time the decision was made. The measurement is taken in similarity space,

in our case created by t-SNE. As this method compresses the parameters into
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5. THE PREFERENCE HYPERVOLUME

a lower dimensional space, the space is not homogeneous and measurements in
that space cannot be translated to a Euclidean measurement in parameter space.
Neither a simple threshold can be used to determine whether a candidate is closer
to one solution or the other, nor can it be assumed that there is a universal penalty
function that works in all domains and in all t-SNE projections. Therefore, a
simple linear penalty function is used, which is zero at points in S and equals
weight w, at a known point in S, to influence the objective function. The penalty
is used to scale the objective function. It is dependent on the range of the fitness
function values as well as the structure of the hyperspace. For this reason the
penalty has to be parameterized for each domain and task. A solution’s fitness is
penalized when it is unlikely to belong to S, but it will still be accepted when there
is no alternative solution, because in the conceptual phase of an engineering task
it is better to show alternatives in a niche than showing no solutions at all. By
showing the user selection drift per niche, they can be informed about its supposed

distance to the selection.

In the following section, the model is evaluated for a linear genome to phenotype
mapping as well as a nonlinear, reactive case. Both representations’ behaviors are

measured in a similar behavior space.

5.2.2 Experimental Setup

QD uses an objective function that is adjusted with a penalty based on UDHM.
Whether less user selection drift takes place than only using seeding needs to be
evaluated. This takes place in two tasks that are both defined in the same domain
using the same selection criteria, objective function and diversity measure. Because
design decisions are based on the way a solution is expressed in the problem domain,
which can be a shape or a behavior, the selection process that is introduced is

based on the behavior of solutions.

The domain that is encoded both in a geometric and a neural manner, has yet the
same phenotypic space. The multimodal maze presented in Fig. 4.13 is used again.
In this domain, solutions are expressed as paths through the maze but through

two different encodings.

The first task is a path planning problem in which the genome to phenotype
mapping is very simple (see Fig. 5.12c). A solution is encoded by a sequence of

seven (x, y) nodes that, when connected, form a path. The range of the node
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5.2 Modeling User Selection Drift

a. environment of robot b. sensors (inputs)

robot wall == range finder
home orientation
start start

c. planner task, closed-form encoding with parametric paths

phenotypic
expression resulting extended

— (x1.31) phenotype

(Xu 7yn)

d. controller task, neural encoding with Elman networks &@j

W
1| phenotypic lnddm output \/
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Figure 5.12: Closed form (c) and neural encoding using an Elman network (d) of

maze problem (a, b) with the same (extended) phenotypic space.

coordinates is limited between -200 and 200. Diversity is aligned to the maze
and the closed form encoding ensures that solutions showing the same phenotypic
behavior, e.g. take similar paths, are also similar in terms of their genomes. For
this task phenotypes and behavior are the same. Because a small change in the
genome causes a small change in the phenotype, behavioral similarity matches

genetic similarity and the UDHM should perform well.

In the second task (see Fig. 5.12d), optimization of neural robot controllers, small
changes in the genome lead to large changes in the phenotype due to the sensitive
encoding of the neural controller. Solutions are evaluated in the same maze as the
path planning task, using the simulation that was created by Mouret (2011a). A
robot is equipped with three range finders that are able to detect the distance to
the nearest walls, and a home beacon that identifies the quadrant in which the
direction to the start position of the robot lies. The sensory information is used as
an input to a neural network. The robot is controlled by a derivation of a recurrent

Elman network (see Elman (1990)) which controls two outputs: forward/backward
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5. THE PREFERENCE HYPERVOLUME

and rotational movement. The network contains five hidden neurons and five
context neurons, whereby the weights to the context layer are evolved as well, for
a total of 92 weights. The weights’ range lies between minus three and three. The

simulation is run for 1000 time steps.

The paths taken by the robots are not directly encoded in the genome, but result
from the interaction of the phenotype, the neural network, with the environment.
Therefore, similar controllers could display different behavior, which should make
the comparison of solutions by their genomes less effective. The task is thus useful
to show limits of the comparison in similarity space when using a non-linearly
coupled genome, phenotype and behavior. With this final task the limits of the

approach are tested.

The MAP-Elites archive is set to contain 900 (30 x 30) elites to ensure that the
original t-SNE implementation is able to converge within a relatively short time.
For larger archives it is recommended to use Barnes-Hut t-SNE (see Maaten (2014))
which is able to deal with much larger data sets. MAP-Elites is initialized with
2000 (planner) or 200 (controller) solutions. Each configuration is repeated six
times for all three exits to account for stochastic effects. The initial orientation of
the robot is changed by 60° steps starting at 30° between runs of the algorithm.
In the path planning task the population is initialized using a normal distribution
with a small o to ensure that most initial paths are within the center area of the
maze to prevent many invalid solutions. In the control task the controller weights
are chosen from a space-filling Sobol sequence. Each initial archive created with
a MAP-Elites run takes 8192 generations in the path planning task, and 2048 in
the control task. In every generation, 32 children are created through normally
distributed mutation with ¢ = 5% for the planning and o = 1% for the control task.

Parent selection is done by randomly choosing solutions from the archive.

The GP models for both coordinates use an isotropic Matérn kernel. The length
scale hyperparameter prior is set to the mean Euclidean distance between the
points in the archive in R™ (see Rasmussen (2004)). The length scale prior can
make or break the model’s ability to correctly compare solutions, as the training of
the GP models will not converge. When the length scale is too short, the penalty
will be too high for candidate solutions close to S. When the length scale is too

long, the penalty will be too low for those close to S.
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5.2 Modeling User Selection Drift

After filling the archive with an initial set of solutions, the user will select those
that escape the inner ring of the maze through a particular exit in the inner ring.
With a trained UDHM model, MAP-Elites is run for 4096 generations in the second
constrained iteration based on the user’s selection. The expectation is that the
solutions in the second iteration take the same exit as the one selected by the

user.

5.2.3 Selection on Hypersurface

Some example results from both tasks are shown here in more detail. Fig. 5.13
shows paths that are found by QD in the first iteration without user selection
in the path planning task (top row). Paths that do not get out are marked in
gray. The user selects the solutions that take the preferred exit in the inner ring
of the maze, in this case the lower left exit, marked in red. The hypersurface, or
similarity space, shows that solutions that are close together tend to take the same

exit.

maze archive hypersurface
before
selection

B correct

Y PR !
exit R A .

| |

wrong } }

exit [ ‘

I é I

| * |

T

| |

after . |
selection

Figure 5.13: Path planning task with closed form encoding before (top) and after
(bottom) selection of the 3rd exit. Left: example paths (every 5th). Center: end
points of paths in QD archive with color assigned depending on whether exit was

selected. Right: points projected onto the decision hypersurface.

An example archive that is produced after selection of the lower left exit and
continuing MAP-Elites for another 4096 generations is shown in the bottom row
of Fig. 5.13. MAP-Elites uses the adjusted objective function (Section 5.2.1),
resulting in an archive that is mostly filled by paths that take the chosen exit
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5. THE PREFERENCE HYPERVOLUME

(marked in green). The most right column of Fig. 5.13 shows the archive’s contents
projected onto the hypersurface before and after MAP-Elites has been adjusted for
selection. Solutions in the archive are well separated according to their behavior,
the exit they took in the inner ring, which is to be expected with a direct genome

to phenotype mapping.

maze archive hypersurface

before

exit T Y

wrong | @ o |

exit ® ° }

1@ o K [

| & e |

| |

after Lo ,f ,,,,, !
selection

Figure 5.14: Neurocontrol task with neural encoding before (top) and after
(bottom) selection of the 1st exit. Left: example paths (every 5th). Center: end
points of paths in QD archive with color assigned depending on whether exit was
selected. Right: points projected onto the decision hypersurface.

The solutions in the robot neurocontrol task are not as well separated on the
hypersurface (right column of Fig. 5.14). This is most likely due to the encoding’s
predicted degree of neutrality and sensitivity. The paths the robots take look
qualitatively different from the ones in the path planning task and the archive
does not fill up in the same way. Yet the user selection is still effective, as can
be seen by the archive being filled up almost entirely by solutions that take the

preferred exit (marked in green).

5.2.4 Influence of Penalty Weight on Drift

The penalty weight’s efficacy is evaluated with a mutation distance of 5% of the
range of the genes for 4096 generations. The percentage point improvement of
selected and deselected solutions that are found against baseline runs with the
weight set to zero is measured. Fig. 5.15 shows those runs for the planner and

control tasks, with six replicates per penalty weight setting.
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Figure 5.15: Influence of drift penalty weight on percentage of correct exits for the
closed form and neural encodings. Three exit selections were replicated six times,

totaling 18 runs.

The penalty derived from the UDHM behaves in a similar fashion for both tasks,
although the optimal weight is higher in the control task. Because the fitness
function range is the same for both tasks, the difference has to be fully explained
by the structure of the hypersurface. As was already visible in Fig. 5.14, the
solutions are not as well separated in the case of the control task. The linear
penalty function therefore has to be set to a more conservative, higher value, in
order for it to be effective. The optimal weight setting for this domain is equal
to 10 for the planning task and 120 for the control task, after which the effect of

increasing the penalty weight suffers from diminishing returns.

5.2.5 Comparing Seeding and Modeling

In this section, UDHM is compared against the QD seeding approach that was
introduced in the previous section. It is expected to have less user selection drift, as
it constrains QD to find solutions closer to those that were originally deselected by
the user. The amount of user selection drift should be correlated to the mutation
distance used in QD. Higher mutation distances should lead to more drift in the
unconstrained seeding approach as they will allow solutions to be mutated to such
a degree that they can jump over to the next basin of attraction. Because solutions
are not removed from the archive when only using an UDHM-adjusted objective
function, the random sampling in MAP-Elites will lead to discovering new valid
solutions less often than when seeding, as deselected solutions will still be picked

for mutation as often as selected ones.
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The user selection drift of the seeding and UDHM approaches and their combination
is evaluated by varying the QD mutation distance and evaluating the user selection
drift that was defined in Section 5.2.1. The higher the mutation distance, the larger
the drift is expected to be, especially when not using the UDHM to constrain QD.
Neither UDHM nor seeding can fully prevent discovering novel solutions that do
not fulfill the selection criterion, so drift should occur in both approaches, but it
should be lower for the UDHM model.

Path Planning Task with Closed Form Encoding As becomes clear from
the results of the planning task on the left of Fig. 5.16, using a UDHM in QD
enables suppressing user selection drift. Since PRODUQD starts its search at
all locations in S and S, the higher the mutation distance is, the more often a
deselected solution can mutate towards S. A large selection drift can be seen for
small mutation distances when only using the UDHM, because without seeding,
and with only a limited number of generations, the adjusted PRODUQD algorithm

can not mutate solutions far enough away from the deselected set.
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Figure 5.16: Median percentage of correct solutions and median user selection
drift in both tasks using UDHM, the seeding method and a combination of the two.
The baseline (dotted gray lines) uses no selection. The triangles show the 25%/75%
percentiles. Significance results from a two-sample Kolmogorov-Smirnov test are

shown with asterisks.

In the seeding approach, QD always starts exactly at the selection S. The approach

shows less drift for very small mutation distances because it simply does not get the
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5.2 Modeling User Selection Drift

opportunity to mutate away far enough to generate solutions that use a different
exit. It however does not find many new solutions, as on average, it ends up at
about the same number of correct solutions compared to not using selection at all
(33%), which is the expected value in a non-biased maze with three exits in the
inner ring. With increasing mutation distance, the seeding approach drifts away
from the user selection. The combination of the two approaches performs best, as
the search starts at the selected locations and is suppressed from moving too far

away.

none UDHM seeding combined

Closed form encoding

correct % 33 58 65 72

drift d g - 0.01 0.17 0.00
Neural encoding

correct % 33 60 44 60

drift d g - 0.03 0.48 0.02

Table 5.2: Median percentage of correct exits taken after running QD with selected
exit. Baseline results without selection under “none”. User selection drift is shown

as well.

The median values are shown in Table 5.2. Of all solutions found, 72% take the
correct exit. A two-sample Kolmogorov-Smirnov test was performed to show the
mutation distances at which the combined approach produces significantly different

results than the seeding approach.

Control Task with Neural Encoding The results for the non-linear and
reactive control task show a qualitatively different behavior. In this case, small
mutation distances are beneficial to all three user selection variants. It is not hard
to see why this can happen. If the weights to the output neuron that is controlling
rotational movement are a bit higher, the robot will rotate more in the beginning
of trajectory and might select another exit. A small change in a neural controller
might lead to the robot selecting a very different path. With increasing mutation
distance, the controllers move further away from the initial archive. The UDHM is
able to hold the selection much longer (up to a mutation distance of 0.1%), but
at some point it gives way to the pressure exerted by mutation. The combined

approach benefits only from the UDHM as it shows the same behavior.
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The mean values are shown in Table 5.2. The low mutation distances in this case
still allow jumping the gap between basins of attraction because of the non-linear
mapping of genome to phenotype and behavior. This explains why all approaches
perform worse than in the planning task. The combined approach performs best
but very similar to the UDHM alone.

Discussion The objective in the experiments does not contain any information
on what exit in the inner ring should be taken. Instead, the user can select the
preferred solutions. A combination of seeding and the UDHM leads to a robust
selection model within the adjusted PRODUQD algorithm. By capturing the
user’s selection in a model, as opposed to the seeding method, the UDHM adds
continuous control over the QD search and less user selection drift takes place.
The genome-to-phenotype mapping influences whether a small or large mutation
distance should be used in QD. In general, the mutation distance for an indirect,
neural genome-to-phenotype mapping has to be lower, as similar genomes are
more likely to produce dissimilar phenotypes. Constraining QD by adjusting the
objective function allows QD to find new solutions that still adhere to a user’s

selection.

5.2.6 Conclusions

This section gave evidence for an answer to research questions IX (“Can selected
prototypical genomes be modeled?”) and X (“Can we constrain parameters by
penalizing QD’s objective?”), fulfilling requirements A4 (“The process should
capture design knowledge through designer interaction”) and D1 (“Communication
should be evocative through features such as visualization and abstraction”). The
user’s selection can be modeled in relation to the presented hypersurface of high-
performing solutions and QD can be constrained through its objective function,

using these models.

User selection drift was introduced, which compares the distance of a candidate
solution to the sets of selected and deselected examples. The drift can be used to
penalize solutions that are too close to those that were explicitly not selected. A
user driven QD algorithm is formalized that adopts the penalty in its objective
function. A model-based constraint of QD is compared against an approach that

seeds the QD archive with the selected solutions.
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Evaluation was performed in a new multimodal benchmark domain. The tasks
defined in it allow the comparison of effects of using differently coupled repre-
sentations that are hard to quantify in a pure design task, but results can be
transferred back to a design case, as was shown by Hagg et al. (2018). Both tasks
demonstrate that QD can be influenced towards a user’s selection. The structure
of the decision hyperspace created using t-SNE is permissive to compare solutions
of various dimensionality. UDHM is most effective when combined with seeding.
Depending on the representation and the genome to behavior /phenotype mapping,
the mutation distances can be high or should be more conservative. UDHM,
especially when combined with the seeding approach, is able to influence QD to
discover new solutions that adhere to the user’s decision. Of course the occasional
misclassification by the user will cause unexpected behavior, and multiple selection
rounds might have to be applied. The introduced models open up the possibility
of using QD in an interactive optimization process; QD can be used within the

design by shopping paradigm.

5.3 Phenotypic Drift

The limits of the approach for nonlinear, neutral, sensitive and ecologic repre-
sentations introduces the necessity to measure similarity in a different way, not
based on the genome but rather on the phenotype or behavior itself. Finally, after
having introduced models and constraints to QD on a genetic level, here I answer
the final research question XI (“Can we constrain phenotypes by penalizing QD’s
objective?”). In this section, neural representations are used to compare solutions
and build a phenotypic similarity space. These neural representations enable using
the same phenomenon of search cues described in stage theories of creativity (see
Section 2.1.1).

5.3.1 Comparing Genetic and Phenotypic Models

In a two-dimensional shape domain, consisting of local interpolating splines as
defined by Catmull and Rom (1974), genetic and phenotypic models are compared.
The splines are encoded by a polar-coordinate-based genome (see Fig. 5.17). It
(see Fig. 5.17) consists of 16 parameters controlling the polar coordinate deviation

of the polygon control points. The first eight genes determine the deviation of
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the radius of the polygon’s control points, the second eight genes determine their
angular deviation. The polygon shapes are then transformed into their final shape
by using locally interpolating splines. By controlling the radius r and angle 6, a

large variety of convex and concave shapes can be created.

genome control points phenotype VAE input
—Ld0 H .,'.
12345678 7/dr
dl-|||||||||_>] /]
WLl gl e |
range dr = [0.1, 1] 5_.4/
range d6 = [-n/4, n/4]

Figure 5.17: Shapes are encoded with 16 polar control points that get transformed
into the final shape using locally interpolating splines. The shape is then discretized

to serve as the input to the latent model.

The encoding (see Fig. 5.17) is quite sensitive and contains many neutral solutions.

A triangle rotated by 120° is still the same shape.

input shapes genetic similarity ~ phenotypic similarity
space (t-SNE) space (t-SNE)

Figure 5.18: Genetic (16D) and phenotypic space (4096D) show the effect of

neutral and sensitive, non-linear mappings on a simple polygon encoding domain.

A shape set consisting of 4096 shapes is created. The input shapes are rotated
in 30° steps. The shape set therefore contains multiple neutral morphological

144



5.3 Phenotypic Drift

copies, except for the Pacman shapes. The shape set is projected into a latent
two-dimensional space usign t-SNE (Maaten and Hinton (2008)), applied to the
shape set’s genetic space, which is 16-dimensional, and phenotypic space, which is
4096-dimensional (64x64 pixels), see Fig. 5.18.

Similar (neutral) polygons get different positions assigned in the resulting genetic
similarity space, but are correctly positioned in phenotypic space. Neutrality is
therefore not an issue when similarity is measured in phenotypic space. Sensitivity
is noticeable as well. The shapes are oftentimes positioned close to other classes in
genetic space, although they are qualitatively in phenotypic space, which is much

better at separating the shape classes.

Phenotypic similarity is not dependent on the encoding. It creates a more natural

similarity space in which solutions can be compared.

5.3.2 The Preference Hypervolume

Building on PRODUQD, an interactive, co-creative process, determining the
preference hypervolume (HyperPref), is introduced (see Fig. 5.19 and work by Hagg
et al. (2020)). The central process consists of two alternating steps: I) the computer
initiates the process by producing a diverse set of high quality solutions and IT)
the users select the solutions they fancy, based on the phenotypic expression, after
which the computer updates the set of solutions that are preferred as well as

high-performing.

A closed form encoding needs to be created by the user first. Then, an initial
pool of random solutions is generated and evaluated using a user-defined objective,
which can be an optimality criterion or a more general factor about the appearance
of solutions, throwing a wider net for more ‘free’ thinking. The genomes are
then expressed into their phenotypes. A latent model is trained to compress
the phenotypes into a low-dimensional description. This allows us to determine
how similar solutions are and perform phenotypic niching despite of the high
dimensionality of the phenotypes. QD creates such a latent niching archive,
consisting of high-performing solutions (according to the user-defined objective

function) and triggers a first intuition of what good solutions can look like.

Users select their preferred solutions from the archive, and a snapshot of the

latent model and preferences is saved. The similarity metric is based on the latent
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Figure 5.19: Discovering the preference hypervolume with HyperPref. The co-
creative process (gray box) consists of computer-generated solution sets (step I)
that are influenced by the users’ selection (step II). A latent model is trained on
the phenotypes (1, 2) of a random set of solutions. The model predicts phenotypic
features (3) while creating diverse solutions using quality diversity (4), enhancing
the intuition of the user. The user can now select/deselect solutions. The selection
and a snapshot of the latent model form a constraint model. In the next iteration,
the selected solutions are extracted and a new population is created by adding small
mutations to the selection (5). The objective function is adjusted with a constraint
penalty and the process resumes at (1). The phenotypic latent model (not the
constraint model) is updated (2) and an intuition about what is high-performing

and within the user’s selection is expressed (4).

distance of new candidate solutions to the preferred and non-preferred solutions.
The metric determines whether a new candidate solution is (likely to be) part of
the preference hypervolume or not. The preferred solutions are used to create
a new set of initial solutions by perturbing the original solutions, augmenting
the data set with possibly new innovations. The preference hypervolume usually
consists of disconnected regions in the search space. By increasing the mutation
strength (the o of the normal distribution from which the amount of perturbation
is chosen), the search can be forced to be more explorative. With a low o, the

search is more exploitative.
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Note that in contrast to other work, the latent space is not directly used for the
search, but to compare phenotypic similarity of solutions. Although the latent
model would also allow this, it would constrain the search to the interpolated space
between selected solutions. This is only sensible when the first latent model from
which the users select solutions is trained on a representative set of feasible and
relatively high-performing solutions. Bootstrapping a model without a closed form
encoding is not feasible due to the vast dimensionality of phenotypic spaces. Instead,
in the proposed co-creative process, QD is the generator on which the model is
trained, not vice versa. We can speculate that using a closed form encoding, not
limiting the search to the latent space, will allow more innovative solutions to be
found once users constrain the search to their preferences, considering solutions

that would not be considered by the first model.

The computer updates the latent model, which now describes the similarities
within the preference hypervolume. By adjusting the objective function, adding
the constraint model, QD’s results are updated. This process can continue until
the users are satisfied. In contrast to previous work that used a combination of
NS (as opposed to QD) and AE, by Liapis et al. (2013a), QD uses an explicit
external objective. The proposed process searches for quality as well, and the
latent model is used not only as a way to enhance novelty but also to capture the

user’s choice.

Due to the evidence against using GM as a search space, which was shown in
Section 3.5, HyperPref only uses GM as a niching method and its latent space to
model the user’s preferences. The representations, QD’s search space, are kept in

their closed form.

5.3.3 Demonstration

Two use cases (see Fig. 5.17 and Fig. 5.20) demonstrate the capabilities of HyperPref.
In an artistic case, the users are looking to design a ninja star, starting from centrally
symmetric shapes. Another situation, which is closer to creative engineering, starts
out with unbalanced shapes with the aim to find wing profiles. The first objective
prefers solutions that are point symmetric through the center point of the shape.
The shape is sampled at n = 100 equidistant locations on its circumference, after

which the symmetry metric is calculated. It is based on the symmetry error Fj,
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the sum of Euclidean distances of all n/2 opposing sampling locations to the center
(see Section 5.3.1):

n/2
1
fr(x) = m:Es(x) = ; |25 — 2102

The second objective maximizes the distance between the center of mass and the

center of the bounding box around the shape.

point symmetry imbalance maximization
J

4’

j+n/2

® center of bounding box O center of mass

Figure 5.20

The shapes are converted into 128x128 pixel images to serve as training data to
a cVAE (see Fig. 3.20). The use of a ¢VAE creates a more evenly distributed
projection of the shapes onto the latent space. The second reason to use a
variational variant of an AE is that it allows sampling from the latent space, which
can be of use when interpolating between known shapes. However, this feature

will not be used within the scope of this work.

For simplicity, a two-dimensional latent space is used which only captures the
similarity of solutions based on the largest phenotypic variance. The shape genome
consists of 16 genes. QD produces 32 new child solutions for 1024 generations, by
using a normally distributed mutation operator with o = 10% of the parameters’

range as a generator of diversity. The archive holds 20 x 20 solutions.

The c¢VAE is trained on a GPU with 128 x 128 pixel representations of the shapes
and the ADAM training method (see Kingma et al. (2015)). The encoder consists
of two convolutional and non-linear (reLu) layers, eight filters of size three with a
stride of one. Training is performed with a learning rate of 0.001 and maximizes
the evidence lower bound, thereby minimizing the Kullback-Leibler divergence

between the original and the latent distribution.
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5.3 Phenotypic Drift

The solution set is updated using 64 perturbed (o = 10%) versions of the selected
shapes. The constraint penalty, which is multiplied with the original fitness
function, is based on the user selection drift that was introduced in Section 5.2.1,

with the minimal distance s of a candidate solution x to a selected solution and s

to a deselected solution:

p(z) = o

(s+5)

if

S

0.5),

S
(s+5)
otherwise

<0.5

Results Fig. 5.21 shows the initial computer-generated solution set on the

left.
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Figure 5.21: Top: starting with centrally symmetric shapes to design ninja stars.

Bottom: starting with unbalanced shapes to design wing profiles.

The diversity of the sets is clearly visible. A group of creators is simulated that
all have different preferred shapes (shown in the center). The selected shapes
are shown in blue. After selection, the computer updates the set, reflecting the
combination of the creators’ choices and the general objective (center of the figure).

This process of user selection is repeated once more. The resulting sets of ninja
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stars and wing profiles are shown in the second preference hypervolume on the

right.

Discussion The primary solution set contains a large and diverse number of
shapes, offering users inspiration and feeding their intuition about how shapes
could look like. With a specific goal in mind, namely designing ninja stars or wing
profiles, users and computers can co-create in an intuitive creative process. The
process offers reflection, by combining preferred shapes and zooming in on the
preference hypervolume. Only two steps are necessary to create shapes that are

close to what one could and would expect from such a creative process.

5.3.4 Conclusions

This section gave evidence for an answer to research question XI (“Can we constrain
phenotypes by penalizing QD’s objective?”), fulfilling requirement A4 (“The process
should capture design knowledge through designer interaction”). It was shown
how to combine the divergent search of QD to trigger the user intuition about
what solutions are possible and high-performing. This allows creators to select
shapes they prefer by shopping for designs. The machine reflects upon that
selection, incorporating the preferences through a constraint model and discovering
the preference hypervolume in an intuitive, co-creative manner. Rather than
hand-crafting the features on which the initial set is based, or finding them via
genetic similarity, they are generated by a variational autoencoder, trained on
the phenotypical expression of the solutions, rather than hand-crafted features or
genetic similarity. The constraint model is based upon a snapshot of that model

in combination with the set of selected and non-selected solutions.

The resulting creative process, which continuously visualizes and updates the
creators’ intuition, was demonstrated in a simple two-dimensional shape domain.
The updates can be fast, depending on the GPU used for training the cVAE and
the number of QD updates and cVAE prediction speed. The current bandwidth of
GPUs is such that the method is close to being on-line.

150



5.4 Chapter Summary

5.4 Chapter Summary

This chapter discussed methods to capture a user’s preferred shapes in the context of
a QD solution set. QD results were first summarized into representative prototypes
inside a genetic similarity space. This answered research question VII (“Can
QD results be summarized using representatives?”). The resulting prototypes
were shown to be usable in a co-creative process (PRODUQD) to influence a QD
algorithm to produce solutions that were similar to the preferred shapes. Evidence
was given for a positive answer to research question VIII (“Can QD be influenced

by the user by their selected representatives across domains?”).

The user selection was then modeled by using a Gaussian process model that
correctly predicts the similarity space coordinates of new candidate solutions.
This answered research question IX, “Can selected prototypical genomes be mod-
eled?”.

Explicit constraints could then be defined by the user implicitly by selecting
prototypes they prefer. The user’s influence was then shown on multiple domains.
The model of the user’s preferences was used to penalize new solutions accordingly,
by a simple adjustment to QD’s objective function. This answered research question

X, “Can we constrain parameters by penalizing QD’s objective?”.

The weakness of the approach is the dependency on the encoding and the inability to
take into account neutrality and sensitivity effects. Phenotypic space was therefore
modeled using a GM, which corrected the weakness. The model’s similarity space
was again used to influence QD results after the user’s selection. Finally, the
answer to research question XI, “Can we constrain phenotypes by penalizing QD’s

objective?”, is positive.
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