
Discovering the preference hypervolume: an interactive
model for real world computational co-creativity
Hagg, A.

Citation
Hagg, A. (2021, December 7). Discovering the preference hypervolume: an
interactive model for real world computational co-creativity. Retrieved from
https://hdl.handle.net/1887/3245521

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3245521

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3245521

ch
ap

te
r

4
Efficiency

QD is able to produce many solutions with diverse behaviors. However, the algo-
rithms in this class perform many evaluations, making them unsuitable for design
problems that need computationally expensive or real world evaluation.

In this chapter, two of the problems QD algorithms have in computationally
expensive domains are addressed. Although QD has been reformulated to use
efficient surrogate models for the objective function by Gaier et al. (2017), expensive
features are not calculated in an efficient way. The second issue arises in e.g. neural
encodings that, due to structural dissimilarities and a high degree of sensitivity,
cannot be modeled well.

In order to fulfill the efficiency requirements C1 (“Search should efficiently generate
a diverse set of novel, functional solutions”) and C2 (“Search should efficiently
sample complex design spaces”) from Table 2.3, the following research questions
are answered in this chapter:

Research Questions

V Can we model behavioral features in a surrogate-assisted way by
sampling based on optimality alone? (requirements C1 and C2)

VI Can we model neural encodings’ behavior ex situ by sampling their
outputs and using a behavior-kernel? (requirement C2)

The main insight highlighted in this chapter is that we can predict behavioral
features from two domains, fluid dynamics and robotics, using statistical models.
Using the models, the efficiency of QD can be increased.

What now follows is an extension of previous work on increasing the efficiency of
QD applied to shape optimization in an expensive fluid dynamics domain.

83

4. EFFICIENCY

4.1 Surrogate Modeling of Phenotypic Features

In order to create diverse solution sets in expensive domains, the feature dimensions
along which QD’s archive is defined have to be calculated in an efficient manner.
Research question V (“Can we model behavioral features in a surrogate-assisted
way by sampling based on optimality alone?”) is answered in this section for a
fluid dynamics optimization domain. Airflow features serve as behavioral features
in this context, showing whether we can fulfill requirements C1 and C2, which
were mentioned in the introduction to this chapter.

To decrease the number of expensive objective evaluations, approximative surrogate
models can replace the evaluation of the objective function close to optimal solutions
(see Jin (2011) for a review of this group of methods). To sample the design space
effectively and efficiently for training samples, Bayesian optimization (BO) is used,
which is explained in the next subsection. This section is based on earlier work by
Hagg et al. (2020).

Surrogate models, oftentimes used in a Bayesian context (see Section 4.1.1)
are based on similarity, the distance of candidate solutions to known examples.
Similarity-based surrogate models have been used in such varied domains as: shape
optimization in fluid dynamics (see Ong et al. (2003) and Daniels et al. (2018)),
the discovery of new drugs (see De Grave et al. (2008)), the placement of hospital
trauma centers (see Wang et al. (2016)), and even for the optimization of other
machine learning methods (see Snoek et al. (2012) and Stork et al. (2017)).

4.1.1 Bayesian Optimization

BO is a strategy that is used to efficiently find optima of an expensive objective
function (see Fig. 4.1). Given a prior6 over the objective function, evidence from
known samples is used to select the next best observation. The assumptions are
encoded in a so-called covariance function. This decision is based on an acquisition
function that balances exploration of the design space, sampling from unknown
regions, and exploitation, choosing samples that are likely to perform well. The
example shows an upper confidence bound (UCB) acquisition function. UCB was

6Priors usually consist of general assumptions on the mathematical description of the objective
function. One such assumption is that a function is smooth: if points are close together, their
function value is similar.

84

4.1 Surrogate Modeling of Phenotypic Features

introduced by Auer (2002) and uses the uncertainty information from a random
process to make decisions with an exploitation-versus-exploration trade-off. It is
described by the function

UCB(x) = µ(x) + κσ(x),

which is a balance between exploitation (µ(x), the predicted (mean) objective
value of the model), and exploration (σ(x), the model’s uncertainty), weighted
by κ. The surrogate model becomes more accurate in optimal regions when more
samples are evaluated and added.

fit
ne

ss

expected function
confidence bounds

a) surrogate model

parameter space

upper confidence boundknown samples
next best sample

fit
ne

ss

b) acquisition
function

parameter space

fit
ne

ss

c) sampling

parameter space

d) model
 update

fit
ne

ss

parameter space

Figure 4.1: In Bayesian sampling, a statistical model serves as a surrogate for
an expensive evaluation function. The model predicts function values as well as a
confidence value on its prediction (a). Confidence is low depending on the distance
to the next known sample in the model. The model’s confidence value is included in
the sampling process. An acquisition function (b), which takes into account both
values, presents an ‘optimistic’ prediction about possible optimal locations. The
sampling decision is based on a maximization of the acquisition function (c). After
sampling, the model is updated, taking into account the new sampled location (d).

The most common surrogate models used are Gaussian process (GP) regression
models, introduced by Rasmussen (2004). More information on GP regression is
given in Appendix C.

4.1.2 Surrogate-Assisted Quality Diversity

QD became applicable to expensive optimization problems after the introduction
of surrogate-assisted illumination (SAIL) by Gaier et al. (2017). In this Bayesian
interpretation of QD, an archive is created based on UCB sampling. Surrogate

85

4. EFFICIENCY

models, like GP models, cannot easily be based on phenotypes or behavior due to the
high dimensionality of the artifacts. Furthermore, the models have to be able to deal
with a large diversity of solutions, for example using a hierarchical decomposition
of the parameter space (see Hagg (2017) and Stein et al. (2015)).

In SAIL, a GP regression model predicts the performance of new solutions based
on the genetic distance to previous examples, serving as a surrogate (replacement)
for expensive evaluation. The distance is modeled using the squared exponential
(covariance) function, which has two hyperparameters: the length scale (or sphere
of influence) and the signal variance, which are found by minimizing the negative
log-likelihood of the process.

Algorithm 7 SAIL and its extension SPHEN
1: procedure SAIL/SPHEN(f(),p())
2: Set budget, σ
3: Set X ,p,F ← ∅
4: X ′ ← Sobol(dim(X))
5: while |X | < budget do
6: (F ′,p′)← evaluate(X ′, f(), p())
7: (X ,p,F)← (X ∪ X ′,p ∪ p′,F ∪ F ′)
8: (Mp,Mf)← train(X ,p,F)
9: fs()← predict(X ,Mf)
10: ps()← UCB(X , 20,Mp)
11: Aa ←MAP-Elites(X , f()/fs(), ps(), σ)
12: X ′ ← Select(Aa)
13: end while
14: ps()← UCB(X , 0,Mp)
15: A ←MAP-Elites(X , f()/fs(), ps(), σ)
16: end procedure

SAIL is explained in more detail in Alg. 7, as it is both used and extended in this
work. The extension (red elements) is explained in the next section.

First, a space-filling sequence is used to fill the initial population (line 4). Then, as
long as the evaluation budget is not fully consumed, the population is evaluated
to extract its performance and feature values (line 6). The features are calculated
based on the expressed phenotype, or behavior, of a solution. A surrogate model,
usually a GP regression model, is trained to predict new solutions’ performance

86

4.1 Surrogate Modeling of Phenotypic Features

values (line 8). The surrogate-assisted performance function ps() consists of
a UCB acquisition function (see Section 4.1.1) with a large exploration factor
κ = 20. MAP-Elites (see Alg. 2) generates an acquisition archive based on
the populations’ genomes (the search space), the feature function f(), and the
surrogate-predicted performance function ps() in line 10. After MAP-Elites fills
the acquisition archive which contains ‘optimistic’ solution candidates, a random
selection of those candidates (line 12) is analyzed in the expensive evaluation
function to form additional training samples for the GP model.

This loop continues until the evaluation budget is exhausted. Then, the UCB
exploration factor κ is set to 0 in a final MAP-Elites run to create an archive that
now contains a diverse set of solutions that is predicted to be high-performing (line
15). SAIL needs a budget orders of magnitudes smaller than MAP-Elites because
it can exploit the surrogate model without ‘wasting’ samples. SAIL, however, is
constrained to features that are cheap to calculate, like shape features that can be
determined without running the expensive evaluation.

With SAIL it became possible to use performance functions of expensive optimiza-
tion domains. But the strength of QD, to perform niching based on behavior,
cannot be applied when determining those behaviors is expensive. Phenotypic
features describe phenomena that can be related to complex domains, like behav-
ioral robotics, mechanical systems, or computational fluid dynamics (CFD). Only
when we can predict those expensive features efficiently, the road to productive
phenotypic niching is opened up. Only then can we generate phenotypically diverse
solution sets in engineering.

4.1.3 Surrogate-Assisted Phenotypic Niching

To be able to handle expensive features, surrogate-assisted phenotypic niching
(SPHEN) is introduced (see Fig. 4.2, Alg. 7 including red elements). By building
on the insight that replacing the performance function with a surrogate model
decreases the necessary evaluation budget, the exact features are replaced with
surrogate models as well.

The initial training sample set X ′, used to form the first seeds of the acquisition
map, is produced by a Sobol sequence in the design space (see Fig. 4.2a and line 4
in Alg. 7). Due to the lack of prior knowledge in black-box optimization, using
space-filling sequences has become a standard method to ensure a good coverage

87

4. EFFICIENCY

a sample design space (genomes) b train all surrogates

c maximize acquisition archive

d get samples
e maximize final archive

ac
qu

isi
tio

n
(U

C
B)

va
ria

nc
e

pe
rfo

rm
an

ce

feature models

performance model
genomes feature 1

fe
at

ur
e

2

predicted feature 1

pr
ed

ic
te

d
fe

at
ur

e
2

pe
rfo

rm
an

ce
pe

rfo
rm

an
ce expensive

evaluation

budget
depleted?

no
yes

+

Figure 4.2: Surrogate-assisted Phenotypic Niching. An initial sample set
(a) is evaluated. Surrogates are trained to predict performance and features (b).
Surrogate-assisted MAP-Elites is used to produce an acquisition map, balancing
exploitation and exploration with the UCB of the performance model. Feature
models predict the niche of new individuals (c). New samples are selected from
the acquisition archive (d). After the evaluation budget is depleted, the surrogate
models are used to generate the final archive, ignoring model confidence (e).

of the search domain. The initial set is evaluated, for example in a computational
fluid dynamics simulator (line 6).

Performance values (p) and phenotypic features (F) of those samples are derived
from the results, or, in the case of simpler non-behavioral features, from the
solutions’ expression or shape themselves. The key issue here is to check the range
of the initial set’s features. Since it is unknown what part of the phenotypic space
will be discovered in the process, the initial set’s feature values only give us a first
hint of the reachable space. A space-filling sampling technique used in the design
space is not necessarily space-filling in feature space.

After collecting performance and feature values, the surrogate models are trained
(see Fig. 4.2b and line 8). The GP models limit the number of samples to around
1000, as the training and prediction becomes quite expensive. A squared exponential
covariance function is used and the (constant) mean function is set to the training
samples’ mean value. The covariance function’s hyperparameters, length scale and

88

4.1 Surrogate Modeling of Phenotypic Features

signal variance, are deduced using the GP toolbox GPML’s (see Rasmussen and
Nickisch (2010)) conjugate gradients based minimization method, which is run for
1000 iterations.

Importantly, MAP-Elites (Alg. 2) does not receive feature and performance func-
tions directly, but instead, the feature model Mf predicts feature locations through
the predicted feature function fs() and the performance model Mp is used as part
of a predicted performance function ps() using UCB with κ = 20 (lines 9 and 10).
MAP-Elites creates the acquisition map, a version of the archive that contains
an ‘optimistic’ set of proposed samples. It does so by optimizing the UCB of
the performance model only. Feature models assign samples to their niches (see
Fig. 4.2c).

Notably, in the surrogate-assisted version of MAP-Elites the confidence of feature
models is not taken into account. The reasoning behind this is that, although
the search takes place in a high-dimensional space, QD only has to find the elite
hypervolume (see Vassiliades and Mouret (2018)), or prototypes (see Hagg et al.
(2018)), the regions consisting of high-performing solutions. Only the performance
function can guide the search towards the hypervolume. Taking into account the
feature models’ confidence intervals adds unnecessary complexity to the modeling
problem. SPHEN’s goal is to be able to only predict features for high-performing
solutions, so we let feature learning ‘piggyback’ on this search.

After having received back the acquisition archive, a selection of samples from
the acquisition archive is taken using a space-filling algorithm like Sobol (see
Fig. 4.2d). The samples are then evaluated to continue training the surrogate
models. This process iterates as long as the evaluation budget is not depleted.
Finally, MAP-Elites is used to create a prediction map, ignoring the models’
confidence altogether (see Fig. 4.2e) by setting κ = 0, which is filled with diverse,
high-performing solutions (Alg. 7, line 15).

SPHEN extends SAIL by replacing the direct calculation of phenotypic features
with the predictions of a surrogate model. Before SPHEN is applied to an expensive
CFD domain, its performance is compared to MAP-Elites and SAIL in a simpler,
inexpensive domain.

89

4. EFFICIENCY

4.1.4 Quantitative Comparison

SPHEN is compared to SAIL and MAP-Elites in terms of how many precise
function and feature values have to be calculated. It is important to evaluate how
accurate the feature models are when trained with a performance-based acquisition
function. Only then is SPHEN applied to an expensive domain. To be able
to calculate all performance and feature values, we optimize the same free-form
deformed, eight-sided polygons as were shown in Fig. 3.11.

QD optimization is run without (MAP-Elites) and with surrogate model(s) (SAIL,
SPHEN) on the polygon domain. This way all ground truth performance and
feature values can be calculated in a feasible amount of time. The shape features
are expected to be easier to learn than the flow features of the airflow domain.
SPHEN is expected to perform somewhere between SAIL and MAP-Elites, as it has
the advantage of using a surrogate model but also has to predict two phenotypic
features. However, since the ultimate goal is to be able to use QD on expensive
features, SPHEN will be the only possibility to achieve this.

Budgets Comparing MAP-Elites, SAIL and SPHEN in a fair manner is not
straightforward, although the surrogate-assisted algorithms have a very similar
structure. The budget, the number of precise function evaluations, can be defined
in two manners. Because SAIL was introduced to reduce the number of function
evaluations for expensive performance functions, it was compared with MAP-Elites
based on the number of precise performance evaluations (PE) by Gaier et al. (2017).
However, due to the introduction of expensive feature evaluations, the number of
precise phenotypic feature evaluations (PFE) has to be taken into account. Here,
SAIL will quickly consume the budget.

The (maximum) PE and PFE budgets of all algorithms used in the following
comparison are listed in Table 4.1. The PE budget is the same for all algorithms,
except MAP-Elites, as it was already shown that it needs many more PE than
SAIL (see Gaier et al. (2017)). MAP-Elites receives a budget of 65,536 generations
multiplied with the number of children per generation. The choice to restrict the
PE instead of the PFE budget makes it easier to compare results to previous
work.

90

4.1 Surrogate Modeling of Phenotypic Features

Table 4.1: Maximum budget for MAP-Elites, SAIL, budget-reduced SAILr and
SPHEN in experiments.

Parameter MAP-Elites SAIL SAILr SPHEN
MAP-Elites generations 4096 1024 64 1024
MAP-Elites children 16 32 16 32
acquisition iterations - 64 64 64
budget per iteration - 16 16 16
total PE 65,536 1024 1024 1024
total PFE 65,536 2,098,192 65,536 1024

The fixed maximum PE budgets yield the PFE budgets shown in the last row of
Table 4.1. It is easy to see how SAIL is intractible when using expensive features,
as it needs 2,098,192 PFE to reach the GP model’s maximum number of 1024
samples. By reducing the budget (SAILr) to at most the number of PFE used
by MAP-Elites, we can both reestablish a more feasible number of PFE as well
as maintain some kind of comparability. This is accomplished by reducing the
number of generations and children in the internal (MAP-Elites) loop in SAILr. It
is not useful to reduce the budgets even more because for a ‘fair’ comparison, the
number of PFE within the inner loop would have to be reduced to 1024/64 = 16,
which would amount to a single MAP-Elites generation.

A comparison is now possible by showing the results for all PFE budgets (16, 1024,
65,536, and 2,098,192), as far as they are practically attainable.

Parameterization The initial sample set of 16 examples as well as the selection
of new samples (16 in every iteration) is created using a pseudo-random Sobol
sequence. In QD, the phenotypic archive allows us to find many diverse solutions
but in order to fill the archive, it needs to be ensured that we can sweep through
the searched genetic space multiple times. The σ value is therefore quite high. The
mutation operator adds a value drawn from a Gaussian distribution with σ = 10%
of the parameter range.

Misclassification in SPHEN Due to the expected inaccuracy of the feature
models, solutions will be misclassified. Misclassification will decrease the accuracy
of the niching mechanism. Fig. 4.3 shows a niching archive at a resolution of 32x32
and the true performance and feature archive. Holes appear due to misclassification,

91

4. EFFICIENCY

which is why SPHEN is trained on a higher resolution map. The archive is a
reduction to a resolution of 16x16. Most niches are now filled. In this experiment
all archives have a resolution of 16x16 solutions.

0.8

0.85

0.9

0.95

1.00

Pe
rfo

rm
an

ce

area

ci
rc

um
fe

re
nc

e Pred.
32x32

True
32x32

Pred.
16x16

True
16x16

Figure 4.3: Predicted and true SPHEN maps on symmetry domain, trained in
32x32 resolution (left), then reduced to 16x16 resolution to remove holes (right).

Results The mean number of filled archive niches and performance values for
five replicates are shown in Fig. 4.4. SAIL and SPHEN find about the same number
of solutions using the same number of PE. Notably, the mean performance of
SPHEN’s solutions is higher than that of SAIL.

0.8

1.0

MAP-Elites SAIL SAIL (reduced) SPHEN

Pe
rfo

rm
an

ce

area

ci
rc

um
fe

re
nc

e MAP-Elites SAIL SAIL (reduced) SPHEN

16 1024 6.5E4
PE

0

20

40

60

80
filled %

0.88

0.92

0.96

1.00
performance

16 1024 6.5E4 16 1024 16 1024

16 256 1024

2.1E6 6.5E4 6.5E4 2.1E6
PFE PE PFE

prediction RMSE

PFE
0

0.1
0

0.1
0

0.1

2,098,192 PFE65,536 PFE 1024 PFE65,536 PFE

symmetry

area

circumference

p1=2e-3
p2=3e-2
p3=5e-4

p5=2e-5
p6=2e-5

p4=3e-6

p1
p2
p3

p4
p5
p6

Figure 4.4: Comparison of MAP-Elites, SAIL and SPHEN based on performance
evaluations (PE) and performance/feature evaluations (PFE). Experiments were
repeated five times to produce the mean percentage of the archive’s filled and mean
performance values. Prediction errors are included on the right and example archives
at the bottom. The experiments include SAIL with a budget reduced to the number
of PFE used in MAP-Elites.

92

4.1 Surrogate Modeling of Phenotypic Features

In domains with expensive feature evaluations, the performance and PFE need to
be taken into account. Due to the number of necessary feature evaluations, SAIL
needs more than two million PFE to perform almost as well as SPHEN, which
only needs 1024 – over three orders of magnitude less and still more than an order
of magnitude less than MAP-Elites. Since in expensive real world optimization
problems we cannot expect to run more than about 1000 function evaluations, due
to the infeasibly large computational investment, the efficiency gain of SPHEN
is substantial. If the number of PFE of SAIL is lowered to the same budget as
MAP-Elites and given more time to search the iteratively improving surrogate
model before running out of the budget of 65,536 PFE (see Table 4.1), SAIL
still takes a big hit. It is not able to balance out quality and diversity. The
example prediction maps are labeled with the number of PFE necessary to achieve
those maps. Although new training examples are not sampled to improve the
feature models specifically, their root mean square error (RMSE) ended up at
0.012 and 0.016 respectively. Finally, SPHEN is compared to the three alternative
configurations on the null hypothesis that they need the same number of PFE to
reach an equally filled archive or equal performance. Significance levels, calculated
using a two-sample t-test, are shown in Fig. 4.4. In all cases, the null hypothesis is
improbable (p < 0.05), although for the comparison of filled levels to SAIL it is
rejected with less certainty.

The acquisition function of SAIL needs no adjustments. SPHEN and SAIL search
for the same elite hypervolume, which is only determined by the performance
function.

4.1.5 Use Case: Wind Nuisance in Architecture

The previous section showed that both performance as well as feature models can
be predicted using an optimality-based acquisition function. The implementation
of an efficient divergent search method, SPHEN, produces a diverse and high-
performing set of solutions with the help of simple statistical models. To put
SPHEN to a real test, however, at least one of the features should describe the
behavior of a solution in an expensive domain. Fluid dynamics is commonly used
as a use case in optimization studies. The problem of wind nuisance in the built
environment combines this expensive domain with a typical setting for human-
computer co-creation, where not all preferences can be formalized. Co-creating

93

4. EFFICIENCY

diverse solutions in this domain can uncover a large potential of solutions that, in
real world design processes, lead to better alternatives to current design.

The polygon domain that was described in Section 3.3.3 is used again (see Fig. 3.11).
One of the features is replaced by wind nuisance. It is defined in building norms
in NEN 8100 (2006), described by Janssen et al. (2013), and uses the wind
amplification factor measured in standardized environments, with respect to the
hourly mean wind speed. In a simplified two-dimensional setup, we translate
this problem to that of minimizing the maximum airflow speed (umax). The
performance metric is defined as the inverse over the normalized maximum velocity
in the flow: p(x) = 2

(1+umax(x)) − 1 and is calculated with a fixed flow input speed
in the simulation. The value for umax only needs to be kept within a nuisance
threshold, which is set to umax ≤ 0.12.

The closed form encoding from the polygon domain is used to produce two-
dimensional shapes that are then placed into a CFD simulation. To put emphasis
on the architectural nature of the domain, two features are used: area and airflow
turbulence. The chaotic behavior of turbulence provokes oscillations around a
mean flow velocity, which influences the maximum flow velocity.

Both features are not optimization goals. Rather, it is to be analyzed how the
size of the area and turbulence are related to each other, under the condition of
keeping the flow velocity low. Shapes should be produced that are combinations
between their appearance (small to large) and their effect on the flow (low to high
turbulence). Concretely, at the lowest and highest values of area and turbulence,
regular intuitive shapes should be generated by the algorithm such as slim arrow-
like shapes for low turbulence and area, or regular polygons for high turbulence
and area. However, for area/turbulence combinations in between, the design of
the shape is not unique and will possibly differ from intuition.

Lattice Boltzmann Method Viscous fluid dynamics systems are described by
the Navier-Stokes equations, which is a set of partial differential equations. The
Lattice Boltzmann method (LBM) is an established tool for the simulation of
fluid dynamics (see Krüger et al. (2017)). Instead of directly solving the Navier-
Stokes equations, the method operates a stream and collide algorithm of particle
distributions derived from the Boltzmann equation. In this contribution, LBM
is used on a two-dimensional grid with the usual lattice of nine discrete particle
velocities. At the inlets and outlets, the distribution function values are set to

94

4.1 Surrogate Modeling of Phenotypic Features

equilibrium according to the flow velocity. The full bounce-back boundary condition
is used at the solid grid points corresponding to the polygon. Although there
are more sophisticated approaches for the boundaries, this configuration is stable
throughout all simulations. In addition, the bounce-back boundary condition
is flexible, as the boundary algorithm is purely local with respect to the grid
points.

As an extension of the Bhatnagar-Gross-Krook (BGK) collision model by Bhatnagar
et al. (1954), a Smagorinsky subgrid model (see Gaedtke et al. (2018)) is used to
account for the under-resolved flow in the present configuration. A more detailed
description of the underlying mechanisms can be found in Krüger et al. (2017).
The results of the two-dimensional domain do not entirely coincide with results
that will be found in three dimensions, caused by the difference in turbulent energy
transport, which was shown by Tennekes (1978).

t = 24000 t = 26000 t = 28000 t = 30000

inlet outlet inlet outlet inlet outlet inlet outlet

Figure 4.5: Airflow around a circular polygon shape at four different time steps.

The simulation domain consists of 300× 200 grid points. A bitmap representation
of the polygon is placed into this domain, occupying up to 64 × 64 grid points.
As the Lattice Boltzmann method is a solver of weakly compressible flows, it is
necessary to specify a Mach number (0.075), a compromise between computation
time and accuracy. The Reynolds number is Re = 10, 000 with respect to the
largest possible extent of the polygon. For the actual computation, the software
package Lettuce by Krämer et al. (2020) is used, which is based on the PyTorch
framework (see Paszke et al. (2019)), allowing easy access to graphics processing
unit (GPU) functionality. The fluid dynamics experiment was run on a cluster with
four GPU nodes, each simulation taking ten minutes. Fig. 4.5 shows the airflow
around a circular polygon at four different, consecutive time steps. Brighter colors
represent higher magnitudes of airflow velocity. Throughout the 100,000 time steps
of the simulation, maximum velocity and enstrophy are measured. The enstrophy,
a measure for the turbulent energy dissipation in the system with respect to the

95

4. EFFICIENCY

resolved flow quantities (see Gassner and Beck (2013) and Krämer et al. (2019)),
increases as turbulence intensity increases in the regarded volume.

Validation and Prediction of Flow Features The maximum velocity umax
and enstrophy E are measured every 50 steps. A running average is employed
over the last 50,000 time steps. To test whether the simulations indeed converge
to a stable value, they are tested with different shapes (nine varied-size circles
and nine deformed star shapes) and calculate the moving average of the enstrophy
values, which is plotted in Fig. 4.6. The value converges to the final feature value
(red).

0 5E4 1E5
sim. steps

1

2

En
st

ro
ph

y

0
enstrophy data running avg.dt=5E4 feature output

Figure 4.6: Enstrophy values during simulation of circles and stars. The running
average of the last 50,000 time steps converges to the final feature output.

The two small shape sets are used to validate the two measures. Increasing the
radius of the circles set should lead to higher umax and E, as more air is displaced
by the larger shapes. The stars set is expected to have larger umax and E for the
more irregular shapes. This is confirmed in Fig. 4.7.

Next, the prediction accuracy for the flow feature values is evaluated using a GP
model. Although GP models are often called ‘parameter free’, this is not entirely
accurate. The initial guess for the hyperparameter’s values, before minimization of
the negative log-likelihood of the model takes place, can have large effects on the
accuracy of the model. The log-likelihood landscape can contain local optima. A
grid search is performed on the initial guesses for length scale and signal variance.
Using leave-one-out cross validation, GP models are trained on all but one shape,
after which the accuracy is measured using the mean absolute percentage error

96

4.1 Surrogate Modeling of Phenotypic Features

0.5

1

1.5

2

0.08

0.1

0.12

0.14

0.16
En

st
ro

ph
y

u m
ax

Figure 4.7: Enstrophy and maximum velocity of circles and stars.

(MAPE), giving a good idea about the magnitude of the prediction error. The
process is repeated until all examples were part of the test set once. The MAPE
on umax was 2.4% for both sets. The enstrophy was harder to model, at 4.9% and
10.3% for the respective sets, but still giving us confidence that these two small
hypervolumes can be modeled.

Resulting Shapes The objective is to find a diverse set of airflows using a
behavioral feature, turbulence, and one shape feature, the surface area of the
polygon. This should answer the question how the size of the area and turbulence
are related to each other and which shapes do not pass the wind nuisance threshold.
The same budget for SPHEN is used as listed in Table 4.1, with the exception of
allowing 4096 generations in the prediction phase. The enstrophy and velocity are
normalized between 0 and 1 using a predetermined value range of E ∈ [0.15, 1.1]
and umax ∈ [0.05, 0.20].

The resulting archive in Fig. 4.8 shows that turbulence and surface area tend to
increase the mean maximum airflow velocity, as expected. A small selection of
airflows is shown in detail. Due to the chaotic evolution of turbulent and transient
flows, a static snapshot of the velocity field provides only limited information about
the flow structures. Therefore, dynamic mode decomposition (DMD) is used to
extract and visualize coherent structures and patterns over time from the flow field
(see Demo et al. (2018) and Schmid (2010)).

Especially those shapes at the extrema of area and turbulence align with the
aerodynamic expectations. At low turbulence intensity, the shapes tend to be slim
and long with respect to the flow direction (shapes A and B). High turbulence

97

4. EFFICIENCY

0.20
0.17
0.14
0.11
0.08
0.05 u

wind nuisance
threshold 0.12

max

Structure of airflow
around selected shapes

BA

C D

E F

G H

I

(not reachable)

A, B, C and D are within
wind nuisance threshold

area

tu
rb

ul
en

ce
A

B

C
D

E

F

G

H

I

Figure 4.8: A diversity of shapes and airflows that shows which designs conform to
the wind nuisance threshold. The dominant DMD mode shows the structure of the
airflow around nine selected shapes. A, B, C and D are within the wind nuisance
threshold.

levels at small shape areas are achieved if the shapes are oriented perpendicularly
to the flow (shape E). Pentagons or hexagons evoke high turbulence levels at large
areas (shapes H and I). However, impressively, there is an enormous variety of
nuances in between these extrema with non-intuitive shapes, enabling the designer
to determine a shape for given flow parameters down to a lower turbulence bound
for each area value. Furthermore, the algorithm also suggests known tricks to
manipulate the flow. Side arms are an appropriate measure to vary the turbulence
intensity in the wake (shapes C, D, E, and G). Indentations or curved shapes
redirect the flow and extract kinetic energy similar to turbine blades (see Dorschner
et al. (2017)), which can be observed in shape D. Conclusively, for the highest and
lowest area and turbulence values, SPHEN matches the expectations, while for the
shapes in between, SPHEN exceeds expectations by introducing unusual shape
nuances, which encourage further investigation.

98

4.1 Surrogate Modeling of Phenotypic Features

predicted true

performance shape feature

E GDC F HA B I0

1
behaviorial feature

E GDC F HA B I0

1

E GDC F HA B I0

1

Figure 4.9: RMSE of performance and feature models.

The accuracy of the surrogate models is shown in Fig. 4.9. The RMSE of the
models is 0.06, 0.01 and 0.10, respectively. A non-parametric hypothesis test is
performed to determine the rank correlation between pair-wise comparisons using
either the predicted or true values. In evolutionary computation, only the rank
correlation is important, because values are compared only pair-wise within the
evolutionary process.

The rank correlation coefficient by Kendall and Gibbons (1990) is used (τ). In
contrast to Pearson correlation, this measure only considers ordinal correlation,
i.e., the ranks of two compared sets of samples. Kendall correlation is therefore
a good measure to estimate the accuracy of a model when used in rank-based
evolutionary optimization methods. The coefficient τ amounts to one when all
comparisons lead to the same outcome and to minus one when all comparisons lead
to the exact opposite outcome. If in this experiment, τ equals one, the surrogate
models produce the same outcome as using the true values. In this case, τ amounts
to 0.78, 1.00 and 0.73. The models are therefore accurate enough for rank-based
selection.

In this real world optimization case, SPHEN is able to produce a diverse set of
solutions. The surrogate models are able to both predict performance as well as
diversity.

4.1.6 Conclusions

This section gave evidence for a positive answer to research question V (“Can
we model behavioral features in a surrogate-assisted way by sampling based on
optimality alone”), fulfilling requirements C1 (“Search should efficiently generate
a diverse set of novel, functional solutions”) and C2 (“Search should efficiently
sample complex design spaces”). Behavioral surrogate models can be trained by

99

4. EFFICIENCY

piggybacking upon an acquisition function that selects samples based on optimality
alone.

In the polygon domain, both surrogate-assisted algorithms are able to find a
large variety of solutions. When features do not have to be modeled, they show
similar performance, although SAIL converges much sooner. However, when
taking into account the number of feature evaluations, SPHEN clearly outperforms
SAIL as well as MAP-Elites. Modeling features does not lower the performance
of a prediction map. In terms of solution performance, both surrogate-assisted
algorithms are outperformed by MAP-Elites in the simple domain, but SPHEN
clearly beats MAP-Elites by requiring less evaluations. The feature models become
more accurate even when sampling only to improve the performance model.

When designing diverse airflows, one SPHEN run took 23 hours, producing 494
different flow profiles. With SAIL, obtaining the same result would have taken over
five years, which is not feasible in practice. Although MAP-Elites outperformed
SAIL in the simple polygon domain, and might have outperformed it in the airflow
domain as well, it still would have taken two months to calculate with uncertain
results. Fig. 4.8 shows the structure in the airflows that can appear in this problem
domain. Variations (area) of the object we want to design as well as their effect
on the environment (turbulence) can be efficiently created. Even when only using
two phenotypic features, the nuances between the variations give us an idea which
shapes do not pass the wind nuisance threshold and which ones do. With this we
could continue the design process based on our new intuition.

Expensive features can be efficiently predicted. As such, phenotypically diverse
solution sets can be efficiently generated, even in expensive domains such as
CFD.

4.2 Surrogate Modeling of Neural Behaviors

Evolutionary encodings can have a non-closed form or even be indirect, including e.g.
neural representations. Research question VI (“Can we model neural encodings’
behavior ex situ by sampling their outputs and using a behavior-kernel?”) is
answered to fulfill requirement C2 (“Search should efficiently sample complex
design spaces”) for neural representations.

100

4.2 Surrogate Modeling of Neural Behaviors

Besides having to deal with expensive numerical fitness evaluations, neural repre-
sentations, commonly used in the robotics domain, have the need to run physics-
enabled simulations or real world experiments. Iterative optimization requires
many of these evaluations to reach a satisfactory solution.

A prerequisite for similarity-based surrogate models is that a distance metric is
defined for the encoding of a solution. Surrogate models are therefore usually
applied to solution representations that encode a fixed number of parameters.
Recently, more complex non-closed form encodings have been developed that
do not have a constant input space. A prime example of such encodings are
compositional pattern producing network (CPPN) (see Stanley (2006)), that
encodes complex shapes or behaviors indirectly. In neuroevolution (see Stanley
and Miikkulainen (2002)), the topology of neural networks can be evolved. Genetic
programming (see Koza (1994)), evolves the topology of graphs, trees representing
computer code, or mathematical equations. The non-uniform input space of these
encodings frustrates typical ways of measuring distance as the dimensionality and
even the meaning of these dimensions varies from one individual to the next (see
Figure 4.10).

two neural topologies

|| , ||

genomes cannot be compared

input 1
output 1

weights

input 2
output 2
output 3

Figure 4.10: Two networks with different topologies cannot be compared based on
their genomes.

A second problem arises when the quality of a solution depends on interaction with
its environment. This behavior might vary greatly even if the parameterization
of the encoding is only minimally changed. If a similarity-based model would be
trained to predict the quality of such an encoding, a parameterization that is close
to a training example would be assigned a similar fitness, although its actual fitness
might be very different.

To enable surrogate-assisted optimization of neural encodings, the idea of measuring
distances not of the encoding, the genome, but rather of their expression, the

101

4. EFFICIENCY

phenotype, is investigated in this section (based on Hagg et al. (2019)). The
phenotype may include morphological as well as behavioral aspects and can
therefore give us more information about how similar two individual solutions are
than the genome alone (see Stork et al. (2019)). The main insights are that (1)
regardless of a network’s internal composition, the size of the output in relation to
the input is constant, and (2) the relation between input and output describes the
behavior, and is thus a useful proxy for similarity between networks. To measure
the difference in the behavior of two networks, the same input sequence is used on
the networks. The difference in the output sequence can then be compared using
a standard metric, like Euclidean distance.

By using randomly selected, but fixed input sequences, actual simulations are
not necessary to get the output sequence. Instead, the input/output relation is
sampled and uses the ad hoc difference in the output sequences of two individuals
to measure their distance. This distance measure can now be used to build a
similarity-based surrogate model.

4.2.1 Related Distance Kernels

Similar to phenotypic distances, semantic distances are used in genetic programming
by Moraglio et al. (2012). These semantic distances can be defined as a distance
of the outputs of population members, determined with the same measure that is
used in the fitness function. Semantic distances are applicable where the fitness
function can be computed as a distance between the optimal target vector and
the candidate outputs, such as in supervised classification or symbolic regression.
In these cases, the semantic distance has a fitness distance correlation of exactly
one and can be utilized to construct specific mutation and crossover operators,
rendering the problem uni-modal.

Phenotypic distances have also been employed in a surrogate modeling context.
Hildebrandt and Branke (2015) suggested a phenotypic distance for dynamic
job shop scheduling problems. Their definition of phenotypic distance compares
individual solutions according to the results of evolved dispatching rules on a small
set of test situations. Unlike semantic distances, their phenotypic distance is not
identical to the measure used in the actual fitness function. This is necessary in the
context of surrogate modeling for expensive fitness functions: if they are expensive
to compute, it would also be expensive to use the same evaluation to compute a

102

4.2 Surrogate Modeling of Neural Behaviors

distance between candidates. Such an approach would render the construction of
the surrogate model itself expensive, which defeats its very purpose.

Zaefferer et al. (2018) compared different genetic and phenotypic distances for
surrogate models in symbolic regression. Here, the underlying measure is not
identical to that used in the fitness function. Specifically, the fitness function
considers fixed coefficients in the symbolic expression. These coefficients are
otherwise optimized during an actual fitness evaluation, which may become costly.
In both of these cases, the phenotypic distance was reported to yield better
results than genetic distances (see Hildebrandt and Branke (2015); Zaefferer et al.
(2018)).

Doncieux and Mouret (2010) discussed the use of behavioral similarity in evolu-
tionary robotics to employ a diversity measure for a multiobjective optimization
approach. They compared different distances based on the states, outputs and
trajectories given concrete robot tasks. The authors outlined that using these
behavioral distances as a second objective in multi-objective optimization is able
to enhance the overall performance.

A first approach utilizing a surrogate model for evolving neural networks given
complex control tasks was discussed by Gaier et al. (2018). An evolutionary algo-
rithm was combined with a surrogate model based on a hereditary distance, which
is defined in the context of neuroevolution of augmenting topologies (NEAT) as
compatibility distance. The approach is able to significantly improve the evaluation
efficiency. Stork et al. (2019) also investigated surrogate models for neuroevolution.
They examined simple classification tasks and compared a phenotypic distance
measure to genetic distances in surrogate-assisted Cartesian genetic programming
(CGP) (see Miller et al. (1997)). The use of a phenotypic distance was shown to
be very promising in terms of evaluation efficiency.

4.2.2 Sampled Phenotypic Distance

The networks that are investigated here are results of optimization runs with fixed
network topologies. This allows a comparison of the efficiency of models based
on both genetic and phenotypic distance measures. To define a genetic distance
the vector of weights of the neural networks is considered. Let w = [w1, w2, ..., wj]
be a weight vector of length j, then the genetic distance is calculated by the

103

4. EFFICIENCY

related weights of two samples: d(w,w′), with d being an appropriate distance
metric.

The disadvantage of genetic distance measures is their lack of applicability when
changing topologies are considered. If in these cases no clear concept to compare
genetic changes exists (as applied by Gaier et al. (2018)), the genetic distance
comparison is difficult, misleading and even destructive (see Stork et al. (2019);
Doncieux and Mouret (2010)). The ability to compare non-uniform topologies
makes phenotypic distances a valuable technique, especially in cases when typical
distances are not a viable option.

in 1

-1

0

1

in
 2 out 3

in 1
out 1

in 2
out 2
out 3

out 2out 1

b) neural controllers
 with 3 outputs

a) 4 fixed 2D inputs

-1 0 1

]k=4

3 outputs

out 3out 2out 1

c) 4 sampled 3D outputs

in 1
out 1

in 2
out 2
out 3

k=4

Figure 4.11: Sampling the phenotype with fixed inputs (a) to compare two
individual networks (b). The fixed input strings are inserted into the networks to
calculate the phd outputs (c).

The phenotype displays the behavior of a neural network given a certain set
of inputs. For example, in the case of neural networks used as controllers for
robots the phenotype can be defined as the control commands that are issued in
response to different sensor inputs. Phenotypic distance is defined as follows: Let
s = [s1, s2, ..., sk] be the vector of inputs with length k, then o = [o1, o2, ..., ok×z]
is the associated processed output vector, or phenotype, for a neural network
with length k × z, where z is the number of neural network output neurons. The
phenotypic distance is employed by calculating the difference in the outputs of two
samples: d(o,o′). Fig. 4.11 illustrates the sampling of phenotypes and Fig. 4.12
shows a comparison of both distances.

The phenotypic distance is always task sensitive, i.e., a comparison of two samples
requires the definition of an adequate input vector s. It needs to fulfill two
requirements in the context of model-based optimization:

104

4.2 Surrogate Modeling of Neural Behaviors

|| , ||

phenotypic distance

|| , ||

genetic distance

norm of two phenotypic
output vectors

norm of two
weight vectors

w w’
o o’

Figure 4.12: Weight models are based on weight vectors for fixed-topology networks.
Phenotypic distance models are based on fixed-length sampled phenotypic output
vectors for any-topology networks. The L1 norm (Manhattan distance) is used here
for interpolative modeling.

a) The input should be representative for the underlying task, i.e., in case
of robot control it should follow the given sensor ranges and/or depict a
trajectory of states present in the task.

b) The dimensionality of the phenotype needs to be considered, the length of
the input vector for generating the phenotypes might significantly affect
the modeling performance as well as the computation time for querying the
networks.

Given a carefully selected input vector, the phenotypic distance should be able to
provide an impression of how the behaviors of two candidate networks compare to
each other. A possible disadvantage of this definition of a phenotypic distance is
that depending on the underlying task, the real behavior cannot be defined by the
output of the neural network controller alone. This is in line with the discussion
in Section 3.1.2. A full description of a behavior can only be obtained through its
ecologic expression, by inserting a solution into its environment and measuring
its entire influence and interaction with the environment. For example, a robot is
influenced by the structure of the environment and its own body. Two robots with
different controllers and phenotypes, one that uses four legs for movement and
another that uses three legs, might behave the same if the fourth leg is disabled
due to damage. This use case was introduced by Doncieux and Mouret (2010),
utilizing an effect of neutrality.

The ultimate task is to obtain a representative set of samples of the input/output
relationship which is descriptive enough to capture the behavioral differences and
so allow the construction of surrogate models.

105

4. EFFICIENCY

4.2.3 Evaluation

It needs to be determined, whether reasonable surrogate models can be trained
based on a diverse set of phenotypic vectors, and whether the models have a
comparable performance to genetic models. The main question answered in
this evaluation is, whether we can correctly predict the pair-wise ranks of the
performance of neural controllers. Due to the use of surrogates in an evolutionary
context, it is only interesting to be able to correctly select the better-performing
neural controller.

For this, model-free optimization algorithms are used that optimize the weights of
fixed topology neural networks for robot control. Then, a QD archive of several
hundred diverse neural networks is created based on these starting points. Different
genetic and phenotypic surrogate models are then produced based on a subset of
these networks, and their performance tested by predicting the performance of the
remainder of the networks.

Robot controllers are designed for the multi-modal maze problem depicted in
Figure 4.13. The environment consists of multiple rings and openings (Figure 4.13a).
The robot begins in the center of the maze and needs to find a path to exit the maze.
In the context of QD, it is not interesting to find the best solution to escape it.
Instead, it needs to be established to what degree the behavior of neural network
controllers can be sampled, and how accurate the derived performance model
is. This problem is much more fundamental and difficult than predicting fitness
alone. To produce this data set of as many different high-performing behaviors
as possible, an archive consisting of robot controllers that reach every point in
the maze in the shortest path possible (b) is created. To force a diversity of
ending positions, a grid-like diversity measure is defined (c). At the end of the
optimization, every niche should contain a robot that was able to reach it using a
short path. This way the distance measures can be evaluated over a diverse set of
optimal behaviors.

Simple feed forward controllers (see Figure 4.11) consisting of either two or five
hidden neurons are sought that traverse the maze. Evaluation is performed using
the simulation that was created by Mouret (2011a). The robot is equipped with
three laser sensors that are able to detect the distance to the nearest walls, and
are set at 45 degree angles around the front (d). In addition, each robot has a
home beacon that detects the direction of its start position.

106

4.2 Surrogate Modeling of Neural Behaviors

c. diversitya. environment

start

final position
b. quality

high fitness
low fitness

range finder
home orientation

start

d. robot sensors

position x

po
sit

io
n

y

Figure 4.13: Evaluation takes place in a maze environment (a) with a robot
starting in the center. The distance of the path of a robot to its final position defines
its quality (b), whereby a diversity measure allows us to train robots to reach all
niches in the archive (c). Robots can sense the orientation quadrant of the start
position and use three range finders to perceive the distance to the nearest wall (d).

Data Generation Data sets are generated to test the quality of the surrogate
models. To that end, the data of model-free optimization experiments is recorded.
Here, optimization is performed with the MAP-Elites algorithm. It is not only
used to find good solutions, but it is also intended to find as many diverse and
high-performing solutions as possible. Here, niches are defined as bins in the grid
shown in Figure 4.13.

x

y

-6

-4

-2

0

2

4

6

8

lo
g

(d
ist

an
ce

)

Figure 4.14: Distance archive generated by MAP-Elites (lower distance equals
higher fitness). Each niche in the archive contains a robot controller that is optimized
towards reaching that niche via the shortest path possible.

Figure 4.14 shows an example distance archive after 5000 generations, with almost
every niche filled with a high-performing controller. The distance values naturally

107

4. EFFICIENCY

grow the further they are from the center. A number of controllers end up
driving around the maze in circles, which explains the high distance values in some
niches.

For this experiment, 20 different MAP-Elites runs were produced for each exper-
iment configuration, each with a different random number generator seed. This
leads to 40 data sets (20 for each number of hidden neurons). Each data set
is produced by roughly 900 neural network controllers. For each of those, nine
different data sets were created: one with the weights, and eight with phenotypes
of different sizes (4, 8, 16, 32, 64, 128, 256, 512). Note that the phenotypes are
derived from the two outputs of the networks, that is, if the network is fed with four
input samples, eight phenotype values are observed. Each of the 900 controllers
can now be described either by its weights, or by a phenotype output vector.

The nine different data sets are now used to model the (ranked) performance of
neural controllers. Again, it is only of interest to correctly predict the pair-wise
ranks of the performance in this evolutionary context. During modeling, the data
sets are split as follows: 400 controllers are used to train a model, the remainder
is used to test the model quality. It must be considered that the observed values
y will be log-scaled before modeling, as the data contains strong outliers which
might deteriorate the models.

GP Model The GP model is created using the R-package CEGO (which can be
found at Zaefferer (2019)) as follows. For MLE, the optimization of the likelihood
is performed via the locally biased variant of the dividing rectangles (DIRECT)
algorithm, which was proposed by Gablonsky and Kelley (2001). It is configured
to stop after 2000 likelihood evaluations, or when the relative decrease in function
values between iterations drops below 10−16. Regularization of the model is turned
on, to potentially account for noise in the data or ill-conditioned kernel matrices.
The model uses the Manhattan distance.

Comparison Baseline: Linear Model A linear regression model is included
as a benchmark for the GP model. Like the GP model, the linear model is trained
with the genetic or phenotypic data. Since the generated data is potentially very
high dimensional, some form of variable selection is needed to generate reasonable
models. A forward selection approach via the Aikake information criterion (AIC)
(see Venables and Ripley (2002)) fulfills this need, starting from a model that only

108

4.2 Surrogate Modeling of Neural Behaviors

consists of an intercept. The most complex linear model may include main effects
for all variables, but no interactions or higher order terms are considered.

Results and Discussion To judge the quality of the models, the rank correlation
coefficient by Kendall and Gibbons (1990) is used. Figure 4.15 shows the Kendall
correlation achieved by each of the models. Firstly, it can be observed that the
GP model outperforms the linear model in most cases, as expected. Secondly,
the variants based on phenotypic data are able to perform at least as well as
the weight models, if the number of elements in the phenotype vector is at least
32 or more. The larger phenotype vectors do not seem to yield much further
improvement.

4
8

16
32
64

128
256
512
22

nhidden=2

ctrl

nhidden=5

**

ctrl

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
rank correlation rank correlation

4
8

16
32
64

128
256
512
22

4
8

16
32
64

128
256
512
52

4
8

16
32
64

128
256
512
52

in
pu

t
di

m
en

sio
na

lit
y

linear

GP

linear

GP

weight model phd model

Figure 4.15: The model quality in terms of correlation (x-axis), for linear and GP
models and different input spaces, and different numbers of hidden neurons (nhidden).
Here, the numbers at the start of each y-axis label denote the dimensionality of the
input vector for the corresponding model (number of weights or length of the phd
sampling string). Green fill color indicates a model based on the weights or genome,
the white fill color indicates phenotypic models. The y-axis labels on the right-hand
side indicate p-values from a statistical test that compares each of the GP models
against the model marked with ctrl (*: p < 0.05,**: p < 0.01,***: p < 0.001).

The observations are confirmed by applying statistical tests for each number of
hidden neurons. A first experiment is run to evaluate the global presence of
significant differences via the non-parametric rank-sum test by Kruskal and Wallis

109

4. EFFICIENCY

(1952), which yields p-values of less than 10−8 in both cases, indicating that
differences are present. Afterwards, the non-parametric many-to-one comparison
test by Conover and Iman (1979) is performed, comparing each of the GP models
against a single model, the control group. The chosen control group is the most
complex model with phenotype data of dimensionality 512. The implementations
of the employed tests are taken from the stats and the PMCMRplus R packages (see
R Core Team (2018); Pohlert (2018)): kruskal.test and kwManyOneConoverTest.
The respective cases with indications for significant differences are marked on the
right-hand side of each plot in Figure 4.15. The statistical test largely confirms
the visual evaluation. No evidence for differences is found between the control
group and the model with the genetic weight data. Only models with phenotypic
data of a dimensionality of 16 or less is deemed to be different from the control
group.

Importantly, the results suggest that phenotypic surrogate models can be used
instead of those based on the genome. The phenotypic data is largely unaffected
by the number of hidden neurons, and, hence, the number of weights. Where
standard models would struggle to compare the weights of differently structure
networks, a phenotypic comparison would still be possible.

The baseline linear model shows some peculiar behavior. The model’s performance
drops off for models with phenotype vectors of more than 256 elements. This
behavior can be largely explained with the number of coefficients selected by the
AIC forward selection procedure, as shown in Figure 4.16. Clearly, the selection
procedure will not select more than n variables. The required number of variables
seems to increase non-linearly with the dimensionality of the data.

Notably, the GP model does not show such a performance drop, and in fact
performs quite well even for the very high dimensional phenotype vectors. This
may be counter-intuitive at first: GP regression is usually not suggested for
high-dimensional data. But there are two possible reasons that could explain
this behavior. Firstly, an isotropic model was used, which avoids the complex
optimization of fitting numerous kernel parameters (θ). Secondly, there may be a
correlation in the observed phenotypes. Increasing the number of samples used
to generate the phenotype vector will not only increase the dimension, but also
the density in the sampled space. In that sense, a new phenotype observation
is likely to be quite similar to the large set of existing observations it is added

110

4.2 Surrogate Modeling of Neural Behaviors

model coefficients

nhidden=2

0 100 200 300 400
model coefficients

0 100 200 300 400

nhidden=5

48
16
32
64

128
256
512
22

48
16
32
64

128
256
512
52

in
pu

t
di

m
en

sio
na

lit
y

(weight model) (weight model)

weight model phd model

Figure 4.16: The number of linear model coefficients selected via forward selection
based on AIC. Green fill color indicates a model based on the weights or genome,
the remainder are based on phenotype data.

to. Essentially, it is assumed that the latent dimensionality of the data is much
lower.

To verify this, a principal component analysis (PCA), introduced by Pearson
(1901), of the input data is considered (that is, excluding the dependent variable).
For each of the data sets, a PCA was performed on the weight data, as well as on
the phenotype data. In each case, the number of principal components required to
explain 90% of the variation in the data set was recorded. This number is shown
in Figure 4.17.

2 4 6 8 10 14 5 10 20 30
48

16
32
64

128
256
512
22

principal components # principal components

nhidden=2 nhidden=5

48
16
32
64

128
256
512
52

in
pu

t
di

m
en

sio
na

lit
y (weight model) (weight model)

weight model phd model

Figure 4.17: For each data set, the number of principal components required to
explain 90% of the variation in the data. This only concerns the respective input
data of the surrogate models, the observed output (i.e., quality of the controller) is
not considered here. Green fill color indicates weight or genome data, the remainder
is based on phenotypic data.

111

4. EFFICIENCY

There are two interesting observations here. Firstly, the number of components
levels off for the largest phenotype vectors. The median stays at seven (nhidden =
2) and nine (nhidden = 5), despite data sets with several hundreds of variables.
It seems that this confirms the assumption that the additional columns due to
higher-dimensional phenotype vectors actually describe a much lower-dimensional,
latent space. Secondly, the number of principal components for the weights are
much larger, yet, this does not coincide with better models based on the weight
data.

4.2.4 Conclusions

This section gave evidence for an answer to research question VI (“Can we model
neural encodings’ behavior ex situ by sampling their outputs and using a behavior-
kernel?”), fulfilling requirement C2 (“Search should efficiently sample complex
design spaces”) for neural encodings that are highly non-linear, sensitive and
neutral. Phenotypic data, sampled from neural encodings, can serve as a kernel
for surrogate modeling. Models based on phenotypic data can perform at least
as well as those based on genetic data. This holds both for a baseline, linear
model, and a non-linear GP model. The analysis further indicates that even high
dimensional phenotypes with several hundreds of observations can yield sound
models. A principal component analysis reveals that these high-dimensional data
sets can be very well reproduced with only very few components. A much larger
number of components is required for the genetic data.

This success of a phenotypic model is promising. A model based on genomes
becomes infeasible if the compared networks have different structures or topologies.
This can happen in the context of evolutionary algorithms that change the struc-
ture and size of the solution encoding, e.g. in surrogate-assisted neuroevolution.
Measuring behavior of neural networks without using actual simulations not only
seems to be possible, but also a practical way to compare networks.

Phenotypic distances can be used successfully as kernels to build surrogate models
that predict the fitness of networks with varying sizes and topologies. Whereas
previous approaches to construct surrogate models of neural networks with non-
uniform structure rely on the peculiarities of the evolutionary algorithm (see Gaier
et al. (2018)), the presented work is independent of the optimization approach. In
fact, a phenotypic distance approach to modeling is independent even of encoding:

112

4.3 Chapter Summary

a neural network grown with NEAT, a fixed topology network optimized with
particle swarm optimization, and a controller evolved with genetic programming
could all share the same surrogate model.

As the PCA showed, as well as the diminishing returns for models with more
phenotype samples, a lower-dimensional data set may suffice to produce good
models. Creating better, more condensed phenotype samples with less redundant
information is hence of interest for future work, to reduce the load of distance
calculations.

Being able to successfully model the performance of a neural encoding by observing
its behavior provides a computationally efficient and effective approach for surrogate
modeling of varying-length representations. Modeling the behavior of networks
avoids some complexities that are caused by genetic comparisons. Surrogate-
assisted optimization of non-uniform representations allows a much more diverse
set of solutions to be calculated with a limited number of real evaluations.

4.3 Chapter Summary

This chapter introduced a method that increase the efficiency of QD algorithms
when using expensive phenotypic features for niching. It was shown that behavioral
airflow features can be learned by piggybacking on Bayesian optimization, acquiring
samples only according to uncertainties in the prediction of their performance.
The resulting surrogate-assisted QD method, SPHEN, needs orders of magnitudes
less exact evaluations than methods that do not or only partially use surrogate-
assistance. This answers research question V (“Can we model behavioral features
in a surrogate-assisted way by sampling based on optimality alone?”). Efficiently
generating phenotypically diverse solution sets is necessary to the application of
divergent search in problem domains common to engineering.

Furthermore, neural representations were modeled through their behavior using
phenotypic sampling. This method allows building kernels for GP models based
on behavioral distance. Although the application of phenotypic distance-based
kernels has to be analyzed in future work, evidence was given for a positive answer
to research question VI (“Can we model neural encodings’ behavior ex situ by
sampling their outputs and using a behavior-kernel?”).

113

4. EFFICIENCY

Both methods enable phenotype-based multi-solution optimization methods to be
used as an efficient divergent component in co-creative processes.

114

