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CHAPTER

Divergent Search

One widely-used method to generate diverse solutions is to rely on random or
semi-random search mechanisms to generate novel, unconventional ideas. Blind or
unbiased variation is often used as part of an evolutionary algorithm (EA) (see
Appendix A), which selectively retains perturbed solutions when indications exists
that they are useful, as was described by Simonton (2007). Some stage theories of
creativity, which were described in Section 2.1.1, contain a recombination step (see
Santanen et al. (2004) and Nijstad and Stroebe (2006)) that causes high cognitive
load in humans. To find more distant, novel, solutions, evolutionary computation
should be used as the driver of variation in creative processes (see Lehman et al.
(2020)). EA perform specifically well at finding ‘haphazard recombinations’ to
generate novel solutions. In a recent article, Miikkulainen (2020) described that
he expects evolutionary computation, combined with novel learning techniques,
to be the ‘next deep learning’. He pinpoints machine creativity as the upcoming

milestone in artificial intelligence.

In this chapter I discuss divergent evolutionary optimization techniques that form
the cornerstone of the objective participant in the process model introduced in
Section 2.4. In the divergent search paradigm, we do not look to find the best
solution, but instead find a diverse set of high-performing solutions. Diversity is the
result of a process that finds novel solutions and is usually measured and enforced
based on distance metrics on a set of descriptive feature dimensions. This chapter
discusses solution diversity as treated throughout the history of evolutionary
optimization algorithms. Three main paradigms are examined: multiobjective (or
multicriterion) optimization, multimodal optimization, and phenotypic niching
(also called quality diversity (QD)). The latter connects the concept of ecologic

niches in biology to evolutionary optimization. Common diversity metrics are
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3. DIVERGENT SEARCH

used to compare these diversity maintenance techniques, whereby understanding
the difference between genetic and phenotypic similarity helps us to create and
select these divergent algorithms for use in co-creative processes. The solution sets
that are created help to overcome the limits of our imagination (see Sartre and

Elkaim-Sartre (1946)), by showing a large variety of solutions.
In this chapter, the following requirements from Tables 2.1-2.4 are fulfilled:

e A3 (“The initial solution set presented to user should need as little guidance

from the user as possible”)
e A6 (“The process should contain evolutionary components”)
e B1 (“Solutions should be categorized”)
e B2 (“Knowledge should be organized hierarchically”)
e B3 (“User can filter knowledge base dynamically”)
e B4 (“Process should provide diverse perspectives on existing knowledge”)

e C1 (“Search should efficiently generate a diverse set of novel, functional

solutions”)
e (3 (“Search should identify regions of design feasibility and optimality”)

e C4 (“Search should support addition, removal and /or variation of constraints,

objectives and variable parameter bounds”)

e C5 (“Solution similarity should be based on their functional expression and

presented along meaningful feature dimensions”)
In order to achieve this, the following research questions need to be answered:
Research Questions

I Are solutions best compared using their genomes or their expressed
phenotype or behavior? (requirements B1, B2, B3, and C5)

IT What multi-solution optimization method produces the highest phe-
notypic diversity? (requirements A1, A6, B4, C1, C3, and C4)

IIT Can we produce more diverse solution sets when learning phenotypic
niching from data instead of using predefined features? (requirements
A3, B4, C1)

IV What are the limitations of generative models in terms of the possible
diversity of the solutions they create? (requirements A3, B4, C1)
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3.1 Extending the Phenotype

The main insight highlighted in this chapter is that in multi-solution optimization,
a focus on providing functional diversity can be achieved by applying diversity

maintenance based on artifacts’ morphological and behavioral similarity.

What follows now is a connection between research in natural evolution and ecology
on the importance of the phenotype, or expression of a genome, to evolutionary

encodings. This is taken from work by Hagg (2021).

3.1 Extending the Phenotype

In this and the next section, an answer to research question I (“Are solutions best
compared using their genomes or their expressed phenotype or behavior?”) is
sought. To achieve this, the manner in which solutions are encoded in (evolutionary)
computation needs to be discussed. Let us take a step back and analyze what ideas
from natural evolution, the origin and inspiration of evolutionary computation,

tell us about computational encodings.

The two key features of natural evolution are survivability (quality, fitness, or
optimality) and diversity. Quality is mainly driven by naturally occurring scarcity
of nourishment, weather and safe environments. Only creatures that are fit enough
will survive to create offspring. Mutations in genomes of the offspring of successful
creatures cause the population to diverge and explore possible genomes. Diversity
arises from the driving forces of random variation and protection by niching effects.
Evolutionary niches shield species from having to battle for nourishment with all
other species. Each species naturally converges to being fit enough within a niche,
becoming specialized on surviving in that niche, or even by constructing their own
niche (this last effect was described by Laland (2004)).

In classical EA, an emphasis is put on quality rather than diversity of outcome.
Diversity only serves as a means to a goal. In the context of engineering optimization
this makes sense. In the end we want solutions to perform as well as possible and
computational methods are better at maximizing the optimality of large solution
sets than human engineers are. Diversity measures like niching (see Schaaf et al.
(2003)) are used to prevent a population-based optimization algorithm from ‘getting
stuck’ in local optima, a sub-optimal region of the solution space. The population
within the algorithm is artificially spread out by the combination of a mutation

operator, which introduces random variations of the population, and a diversity
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3. DIVERGENT SEARCH

measure, subdividing the population between multiple attracting optima, as was
discussed by Asteroth and Hagg (2015). Oftentimes a recombination operator is
used as well to allow for jumps in the objective landscape, combining components

of existing solutions into new artifacts.

Niching is often tightly connected to the concept of speciation. Only individuals
that are located in or close to the same niche interact directly. These individuals
are likely to be more genetically compatible and produce offspring. In evolutionary
computation, speciation is often seen as a core property of artificial niching methods.
“Niching in evolutionary algorithms is a two-step procedure that a) concurrently
or subsequently distributes individuals onto distinct basins of attraction and b)
facilitates approzimation of the corresponding (local) optimizers”, as summarized
by Preuss (2006). Basins of attraction represent high fitness regions in the objective
function out of which there is no ‘escape path’ that does not go through a low fitness

region. A species will therefore ‘nest’ itself inside of a basin of attraction.

3.1.1 Genome, Phenotype and Behavior in Nature

Let us now look at the concept of fitness in an example from biology. A simple
fitness metric can be defined as the amount of grass in kilograms eaten per day.
This metric might be naive but it is not that different from the kind of naive
metrics often used in computational evolution, for example the amount of wind
resistance that is caused by an airplane wing or the number of crates stacked by a
robot per hour. The amount of grass a cow eats is many times larger than what a
cutworm is able to consume. Both species are specialized in their own niche, both
have reached a local optimum, but when using the proposed fitness metric, their
absolute fitness is vastly different. Yet, both species are in an evolutionary stable
niche and have been able to survive for long periods of time. We can derive that a
highly diverse set of solutions can emerge from natural evolution. In the example
above, neither solution is ‘preferred’, as there is no invisible engineer selecting

between those niches.

An ecologic niche can be seen as a basin of attraction in which only species with
certain properties can survive. A species that is effective at surviving in a niche
is less likely to adapt towards another basin, as it would first have to cross unfit
genetic states, although this is not impossible and is often seen in bird species that

migrate to islands and become fit with respect to another niche. This can lead
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3.1 Extending the Phenotype

to large changes in the behavior of a species, for example birds losing their flight
abilities due to genetic drift (see Wright et al. (2016)).

In computational evolution, a niche is often reduced to a basin of attraction in
the objective function over the genome, or encoding. This is very common in
benchmark comparisons between algorithms. However, this is a simplification
compared to natural evolution. A natural niche can be filled by different genomes.
It is not the cutworm alone that can eat grass. Cows can too. Both can digest
grass and therefore have similarities in their phenotype, the expressed morphology
(the ability to metabolize grass) and behavioral expression (searching grass for
nourishment) of a genome. Describing a niche by looking at the genome’s expression
seems to make more sense than concentrating on its genome alone. The expressed
genome, or phenotype, for example the number of jumps performed by a robot
biped controller (a behavior), or the amount of curvature in an aerodynamic shape
(shape morphology), surely is a closer description of the individual in terms of
what niche it can occupy, how successful it can be inside the niche and how it

achieves this success.

An example that entails more complex behavior is swimming. Even a genome that
does not provide the ability to ‘properly’ swim, like a fire ant’s, can cross rivers
through the expression of that genome. Fire ants achieve this through cooperation
with conspecifics by self-assembling into a raft, a population level behavior that
was observed by Mlot et al. (2011). Thus, a beaver and a fire ant, both having
genomes that occupy vastly different basins of attraction in genetic space, can
occupy the same ecologic niche according to certain features of their phenotype
(see Figure 3.1). They can both cross a river, so display behavioral similarity, and

can occupy similar niches, at least those that contain rivers.

An important insight is that a beaver does not swim the same way a colony of
fire ants does. The beaver’s body performs swimming motions whereas the fire
ants need to cooperate. But on a simplified descriptive level, the ability to cross
water, the behavior is the same. On the other hand, when we take ‘body size’ as
a description, a large body size will prevent the beaver from entering places fire
ants can reach. Fire ants and beavers can be distinguished in terms of the two
phenotypic diversity metrics. In one they fall into the same niche, in the other

they do not.
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Figure 3.1: Some phenotypic features, like the ability to traverse a river, put the
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fire ant and the beaver into the same phenotypic niche (rows). Features like body
size allows separation between the two species into separate niches (columns). Stink
bugs can enter confined spaces like ants do, but they cannot swim, putting them
into yet another niche. Both the morphology of the body as well as the behavior of

a species determine what niche it can occupy.

It is the interaction between a creature and its environment, the behavior, not the
genome, that ultimately defines a natural niche. Dawkins (1982) already posed that
behavior can be subsumed into the extended phenotype. Non-behaviorial phenotypic
traits influence the conditions under which a behavior can take place. A large
animal will not be able to occupy niches that need a small body. The morphology
of the species can limit or allow certain behaviors. Therefore, certain features
of the extended phenotype, be it behavioral or morphological, are important for

fitness and help to determine in what niche an individual can flourish.!

3.1.2 Encoding in Evolutionary Computation

What does the insight about the extended phenotype’s importance mean for
evolutionary computation? The distinction between genome and phenotype has
been a key inspiration for evolutionary computing, as was described in Sterelny
et al. (2001).

Solutions in evolutionary techniques are usually encoded as shown in Fig. 3.2. A

discrete set of n parameters, the genome, constitutes the n-dimensional search

1Laland (2004) took Dawkins’ idea one step further and introduces the idea of niche con-
struction. By influencing its environment, a creature can create its own niche. This introduced
the idea of evolution being a causally cyclical process. A creature creates a niche by acting on its
environment, its genome adapts to the niche, which in itself causes changes in the environment,
and so forth.
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Figure 3.2: Evolutionary representation, an interpretation based on work by
Whigham et al. (2017). A genome, consisting of a number of parameters is pheno-
typically expressed into an intermediate representation, e.g. a morphology. Through
its ecologic expression, the behavior or influence on its environment, a solution is in

a state where it can be evaluated using one or more fitness functions.

space in which solutions are evolved. Genomes are expressed into intermediate
representations, the phenotype, for example a shape or a neural network. But
the phenotype is not the full description of a solution. Only once the solution
is inserted into the application environment on which it is supposed to act or
interact with can we inform ourselves about its quality. One can argue that the
‘genome-to-phenotype mapping’?, the phenotypic expression, has to be extended
with a ‘phenotype-to-solution mapping’. From here on, separate terms for these
mappings will be used: the phenotypic and ecologic expression. The fitness or
quality of the phenotype is determined based upon a solution’s ecologic expression,

its interaction with the environment, or ecosystem.

Neutrality Although the expression function should ideally be one-to-one, it
often does not prevent multiple genomes to be mapped to the same phenotype.

The phenomenon of such a mapping is called genetic neutrality, which is akin to

2In evolutionary optimization, the term genotype is used instead of genome, although this
constitutes a divergence from the nomenclature used in biology. There, a genotype is often used
as a functional subset of a genome. In computer science, however, we do mean the mapping
between the entire genome to a phenotype. Hence, the decision is made to use the less ambiguous
biological term.
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3. DIVERGENT SEARCH

genetic neutrality in biology. In biology, a neutral mutation is understood to have
no effect on the survivability of a life form. In evolutionary computation, a neutral
mutation changes a genome in such a way that the phenotype is not changed.
From here on out let us refer to genetic variants that lead to the same phenotype

as neutral genomes (see Hu et al. (2011)).

(a) rotational neutrality (b) translational neutrality

8
de
N\

b=

Figure 3.3: Genetic neutrality. The same phenotype is expressed when rotating
the control points (numbered one through eight) by a % angle (left) or by translating

the control points as shown (right).

Fig. 3.3a shows an example of neutrality. For angles § = 0° and § = 45°,
phenotypically speaking, these shapes are the same. In this case, eight genomes all
point to the same phenotype. Similarly, Fig. 3.3b shows how, through translations

of the control points, a similar shape can appear based on different genomes.

A neutral genome-to-phenotype mapping (Fig. 3.4) can be highly non-linear.
Neutral individuals contain different genomes but produce the same phenotype. A

large change to the genome can lead to a small change in the phenotype.

genetic space phenotypic space neutrality sensitivity

different genomes similar genome
same phenotype different phenotypes

Figure 3.4: Due to genetic neutrality, different genomes (clarified by the use of
different colors in the genetic space) can expose a similar phenotype and be put
into the same phenotypic niche. Sensitivity can cause similar genomes to produce a

relatively large range of phenotypes.
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3.1 Extending the Phenotype

It is postulated that diversity maintenance in a neutral genetic space leads to lower
phenotypic diversity than when using phenotypic niching. To increase diversity in

phenotypic space, niching should be performed there.

Sensitivity A second effect arises when genomes are projected into phenotypic
space in a non-linear way, as shown in Fig. 3.4. A small change in the genome
can lead to large changes in the resulting phenotype (see Tarapore et al. (2016)).
This effect is coined sensitivity®. The more sensitive a representation is, the
larger phenotypic changes can be when applying small changes to the underlying

genome.

Take a simple spline representation. The spline shapes are determined by control
points. The shape of the spline can therefore extend beyond the control points’
locations, creating a shape that is ‘larger’ than the space determined by the control
points themselves. Fig. 3.5 shows three splines with very similar control point
locations. Only the center control point’s y value is varied, so the solutions are
very close to each other in genetic space. The small changes in control point
locations cause larger-scale changes in the phenotype. This, however, is not a mere
scale difference, as it is obvious (for us humans) to see the qualitative differences

between the solutions’ expressed shapes.

small perturbations in genome large, qualitative shape differences
X0 012

y0 1.0 9

x1

vl * D D * control points

x2 vyl =0.99 1.00 1.01

y2

Figure 3.5: Three fifth order spline interpolations that have similar genomes.

The locations of control points relative to each other are more informative for
predicting the final shape than their absolute locations. Hence, sampling the
parameter space, which determines the control points’ locations, does not give as
much control over the search in morphological space, as when a search takes place

in morphological space directly.

3This effect is connected to the concept of evolvability, described by Valiant (2009).
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The observation that (genetic descriptions of) species sometimes fill more than one
phenotypic niche is not restricted to non-closed form (non-parametric) or indirect
encodings. The latter usually refers to neural representations in robotics where
the mapping is highly non-linear and dependent on the environment. The effect
can happen in any mapping between genome and phenotype. Some evidence was
provided by Hagg et al. (2018), in which genomes are clustered in a low-dimensional

space. The resulting solution classes*

are not always mapped to a single phenotypic
niche. In complex optimization tasks, like aerodynamics, bifurcations (abrupt large
changes in the air flow when applying a small change to a shape within that flow)
are very common in real world turbulent flow, as was shown by Carroll and Mehra

(1982).

3.1.3 Conclusions

The evidence that neutrality and sensitivity occur in real world encodings and
applications implies that, if we want to find a functionally diverse set of solutions,
we need to search phenotypic or behavioral space, not genetic space. The concept
of the extended phenotype and the effects of genetic neutrality and sensitivity
provide evidence for an answer to research question I (“Are solutions best compared
using their genomes or their expressed phenotype or behavior?”). I postulate that
solutions are best compared using their expressed phenotype and behavior. To
provide more evidence, the next section introduces the available multi-solution

optimization paradigms after which, in Section 3.3, they are compared.

3.2 Multi-Solution Optimization Methods

In this section, three multi-solution paradigms are discussed to understand how
the concept of diversity has been used in evolutionary computation. There is a
myriad of arguments for diversity in optimization. The concept of diversity itself
is considered to be the goal (see Basto-Fernandes et al. (2013)) for a number of
reasons: generating alternatives for engineers to choose from, finding trade-offs
between features, learning properties of the decision space (innovization, see Deb

and Srinivasan (2006)), increasing robustness of optimization, allowing solutions

4Classes translate to species as defined by Basto-Fernandes et al. (2017).
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3.2 Multi-Solution Optimization Methods

to adapt to a changing fitness landscape (see Cully and Demiris (2017)), per-
forming model-based diagnostics, or crossing the reality gap between simulation
and reality (see Koos et al. (2012)). By understanding the functional diversity
of high-performing solutions, we can find more unexpected solutions that pro-
vide users of co-creative systems with relevant dissonance effects to expand their

intuition.

In this section, three multi-solution paradigms, depicted in Fig. 3.6, that have been

developed in the last decades are shown. The paradigms are compared in the next

section.
multi-objective multimodal phenotypic niching/
optimization optimization quality diversity
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Figure 3.6: Three multi-solution paradigms. The multi-objective paradigm finds
a Pareto front of non-dominating solutions along a number of objectives. The
multimodal paradigm diversifies solutions according to their genetic distance. The
phenotypic or quality diversity paradigm diversifies solutions in terms of pheno-

typic/behaviorial dimensions.

3.2.1 Diversity in Objective Space

In multi-objective (or multicriteria) optimization (MOO), the Pareto set of trade-
off solutions with respect to two or more objective functions is discovered (see
Fig. 3.6). One of the most successful methods is the non-dominated sorting genetic
algorithm IT (NSGA-II) that was introduced by Deb et al. (2002). The paradigm
does not control the diversity of the genomes or their expression, only the diversity
in objective space, by leveraging a crowding distance metric into the algorithm.
However, solutions are expected to be ‘different’ as they fulfill different trade-offs
between objectives. An assumption arises that the front consists of a diverse
set of solutions, all with different qualities in terms of the objective functions.

Genetic diversity has been established as an important factor in the success of
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3. DIVERGENT SEARCH

MOO algorithms, as was shown by Toffolo and Benini (2003) and Shir et al.
(2009). As Ulrich (2010) noticed: “sometimes it might be more important to find
a structurally diverse set of close-to-optimal solutions than to identify a set of

optimal but structurally similar solutions”.

Although MOO is arguably the first evolutionary technique that explicitly searches
for a set of solutions, the field has taken most effort to find the Pareto optimal set

and less into investigating the question of (phenotypic) solution diversity.

3.2.2 Diversity in Genetic Space

Computer science research up to the 1970’s had already developed interest in
population-based evolutionary approaches to optimization, but in that decade
specifically, a number of approaches that increase genetic diversity were introduced.
Arguably, genetic diversity was first used in evolutionary optimization not to find
different solutions, but to deal with the problem of premature convergence to local
optima. De Jong (1975) analyzed the problem of premature convergence to local
optima in genetic space in his doctoral thesis in 1975. He recognized the need to
integrate the concept of niches into the evolutionary optimization method. He
introduced crowding, where child solutions only replace the most similar parent
in the population, to improve performance on multimodal surfaces. Alternative
techniques are sharing, introduced by Holland (1975), where fitness values are
penalized due to proximity of other solutions, and clearing, introduced by Pétrowski
(1996), where the population is subdivided into subpopulations according to their

similarity in genetic space.

In the 1990s, multi-solution, multi-local or multimodal optimization (MMO) was
put into focus. This paradigm has the explicit goal to find a diverse set of high
quality locations in the search space, based on a single criterion (see Fig. 3.6). The
first metric that was intended to be used on benchmark problems was peak ratio

(see Ursem (1999)), the percentage of local optima that are found.

The field of MMO contains early work on restricted tournament selection to produce
multiple solutions by Harik (1995) and was later more established by methods
like basin hopping by Wales and Doye (1997), topographical selection by Toérn
and Viitanen (1992), restarted local search (RLS) by Posik and Huyer (2012)
and nearest-better clustering by Preuss (see Preuss (2010), Preuss (2012), Preuss
(2015), and Wessing (2015)).
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3.2.3 Diversity in Phenotypic Space

Section 3.1.2 gave evidence that it can make more sense to strive for diversity in
phenotypic and behavioral space. A direct search is usually infeasible, due to the
high dimensionality of the phenotypic space, or to the fact that it is not describable
in closed form and can only be sampled through numerical or physical simulation.
Instead, we can perform niching based on behaviorial or other phenotypic features.
This is the idea behind quality diversity (QD) 5.

QD produces a set of solutions that are diverse in terms of their extended phenotype,
yet still perform well. Instead of applying niching on the basis of genetic similarity,
QD considers the behavior of a solution in its environment (see Fig. 3.6), like
the average speed of a neural network controlled robot, the amount of turbulence
caused by a car, or the amount of curvature of the surface of a complex water
drain system, as the basis for niching. This enables QD to find unexpectedly
good solutions, or make the optimization process more robust with respect to
requirement changes. If one solution does not work well, engineers can take this

new knowledge into account when selecting an alternative solution.

The search still usually takes place in genetic space. The high dimensionality
of a closed form encoding, where we encode all points as separate parameters,
would result in a very high dimensional search space which is not tractable.
By intentionally confining the search into a lower dimensional representation,

tractability is regained, while phenotypic niching ensures solution diversity.

The idea of measuring similarity on the phenotype level is not new. Pétrowski
(1996) mentioned the possibility and the omni-optimizer by Deb and Tiwari (2008)
took a more narrow view on phenotypic space, describing it in terms of objectives
and constraint values. However, I argue that a fitness function should not be seen
as an inherent property of the extended phenotype but rather a metric on the

(implicit) goal of a creature or solution’s ability to survive.

The first optimization paradigm that embraced behavior-based niching is novelty
search (NS). In this new paradigm, Lehman and Stanley (2008) chose to ignore
fitness, which can be deceptive and trap a search in a local optimum. Instead,

they proposed to use behavioral similarity as an objective function and showed

5As in: diversity of qualities. Both quality diversity as well as illumination are used in the
field, although one could view the deeper concept to be phenotypic niching.
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that this can circumvent deceptive fitness functions, outperforming fitness-based
optimization. They posed that many points in the search space collapse to a small
set of simple behaviors, making novelty-based search feasible. NS introduces an

archive of past, novel solutions, that serve as a basis for measuring novelty.

The approach was evaluated by evolving controllers for a biped robot. The
controllers are able to use motor primitives of the robot’s six degrees of freedom to
assign poses, based on the inputs of two ground contact sensors only. The authors
introduced a novelty metric based on a fixed-horizon sequence of changes in the
horizontal coordinates of the robot’s center of gravity. To compare two controllers,
the sum of squared distances of both sequences was calculated. This way, robots
that fall down are assigned the same niche (due to the fixed horizon). NS therefore
ignores new solutions that fall down in the beginning and instead concentrates on
finding new solutions that follow different trajectories. The results show that NS
finds more biped controllers that do not fall down, and identifies better controllers
than fitness-based search alone. This shows that NS is not just an exhaustive
search method, but is able to ignore easy-to-reach local optima in a very hard

search space.

Lehman and Stanley (2011a) posed that the problem of deceptiveness resides in the
fitness function, based upon the fact that the underlying neuroevolution algorithm
they used provides (genetic) diversity management and is not able to circumvent
deceptiveness. The authors did acknowledge that removing the fitness function
entirely is a problem in optimization, as it cannot be determined when solutions

are fit or whether solutions are functional at all.

Phenotypic diversity allows us to judge different solutions in terms of how they
behave in their environment. This can help ignoring solutions that show similar

behavior and concentrate the search on novel behavior.

The introduction of NS led to further studying of the search for novel, non-optimal
solutions. Inspired by the work of Mouret (2011b) on the reconciliation of NS with
fitness, Lehman and Stanley (2011b) extended NS by adding a competitive factor.
They introduced novelty search with local competition (NSLC). It formulates fitness
and diversity as a bi-objective problem, treating both goals as equally important.
NSLC finds a diverse set of high quality optimizers by performing niching in
phenotypic space. Shown in applications for developing artificial creatures and

robot controller morphologies, NSLC only allows solutions that belong to the same
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phenotypic niche to compete. To this end it keeps track of an archive of niches.
Solutions are added if their phenotype is novel enough or better than that of a

similar solution.

For any new candidate solution, its novelty score is calculated by the average
Euclidean distance to a fixed number of k nearest individuals in the archive, where
k is determined experimentally, and distance is measured in phenotypic space.
Then, the candidate receives a local competition score, represented by the sum
of morphologically nearest individuals it outperforms. Both the novelty and local
competition scores are then used in an adapted version of the MOO algorithm
NSGA-II. The Pareto front that is produced consists of solutions that show the
trade-off between novelty and local competition. Parents for a new generation
are selected from the individuals in the front to produce new solutions that are
different from those saved in the archive and high-performing when compared to

similar solutions.

Although NSLC is shown to better exploit morphological niches than fitness- or
novelty-based optimization, a number of problems exist with the approach. For
one, the archive keeps growing, which makes the comparison of new candidates
ever more expensive. The reliance on NSGA-II also makes it difficult to scale
up to multiple diversity metrics. These problems were addressed by Mouret and
Clune (2012). They formulated multi-objective landscape exploration, which
works in a similar way, but emphasizes the aspect of exploring the landscape of
phenotypic traits with respect to their fitness. Phenotypic niching is performed
by collecting elites mapped by behaviorial traits. Combining this with the idea
of building behavior repertoires (see Cully et al. (2013) and Cully and Mouret
(2013)), a simplification of the multimodal QD algorithm, multidimensional archive
of phenotypic elites (MAP-Elites), was introduced by Mouret and Clune (2015). It

tlluminates the fitness landscape through the lense of phenotypic features.

Algorithm Description QD searches in genetic space for solutions to fill phe-
notypic niches (Figure 3.7). A low-dimensional phenotype space is defined by
selecting a number of phenotypic features, that can be based on behaviorial, mor-
phological, or other features. Solutions’ feature coordinates determine what niche
they are placed into. They compete only with the solution in that niche. The

archive represents the result of the QD algorithm.
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Figure 3.7: QD searches in genetic space but performs niching in a low-dimensional
phenotypic archive. Candidate solutions are assigned to the niche based on their
feature coordinates. These feature coordinates are calculated based on the expression
of a solution, albeit phenotypic or ecologic (see Fig. 3.2). Candidates are only placed

inside a niche if they improve its quality value.

QD algorithms follow the pattern described in Alg. 1. After initializing a population
of solutions and setting an evaluation budget, parents are selected based on a
scoring scheme. In NSLC, parents are selected from a separate population, whereas
in MAP-Elites they are selected from the archive itself. Offspring is created,
usually using mutation only. The performance of the children is evaluated and
their feature coordinates are calculated. The individuals can be added to existing
niches through local competition, or new niches can be created, depending on the

archive structure that is used. Finally, the selection scores are updated.

Algorithm 1 Quality Diversity

Define and formalize phenotypic descriptors

Initialize genetic population P

Initialize archive A

for iter = 1 — generations budget do
Select parents P to form new offspring based on scoring scheme
Evaluate performance and phenotypic descriptors of offspring
Add individuals (potentially) to niches in archive A
Update selection scores

end for

Cully and Demiris (2017) proposed a modular framework in which the main

features of a QD algorithm are described: the type of container or archive and the
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3.2 Multi-Solution Optimization Methods

procedure for selecting the parents of the next generation.

Archive The archive is the central object in QD. It is constructed based on
phenotypic features, and represents the current intuition of the diversity of high-
quality solutions to a problem. The archives used in the first QD algorithms
were either fixed (MAP-Elites) or unbounded (NSLC) (Figure 3.8). New archive
designs allow them to be more efficient, effective, compact and capable of long

term optimization.

NSLC MAP-Elites CVT-MAP-Elites HSP-MAP-Elites
A A A '}
+* #°® g
e
> > > >
=3 phenotypic dimension archive member e new candidate 4 local competition

Figure 3.8: The first two QD algorithms introduced an unbounded (NSLC) and
fixed-grid bounded (MAP-Elites) version of the phenotypic archive. The fixed grid
in the latter can be replaced with a Voronoi or a hierarchical subdivision of the

phenotype space. The feature space can also be subdivided in a hierarchical way.

The original definition of the grid, however, has a problem due to the growth of
the number of niches, which is exponential in the number of feature dimensions.
The ability of the MAP-Elites archive to deal with high-dimensional niching spaces
was improved by Vassiliades et al. (2017b). The equidistant grid is replaced
with a fixed number of predefined niches, independent of the dimensionality,
using centroidal Voronoi tessellation (CVT) (see Figure 3.8). Smith et al. (2016)
used hierarchical spatial partitioning (HSP), by which the speed of exploring the
niching space was shown to be increased. HSP organizes optimization results in
a hierarchical way, which would fulfill requirement B2 (“Knowledge should be

organized hierarchically”).

In work by Vassiliades et al. (2017b), the fixed extremes of the MAP-Elites archive
were expanded during the QD process which leads to changing niche composition
and possible removal of solutions. The now unbounded archive performs similarly
to the bounded version, without having to manually predefine the extremes/bounds

of the niching space.
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Figure 3.9: Hierarchical behavior repertoire. By building up a hierarchy of stacked
archives, each archive can be filled using compositions of primitives from another

layer.

The idea of using multiple archives was first introduced by Pugh et al. (2016), to give
QD more options to sidestep local optima. Taking this idea one step further, Cully
and Demiris (2018) introduced a hierarchical, stacked archive, where each layer
uses the layer beneath because a set of primitives can decompose the problem of
generating complex behaviors. This hierarchical organization of archives is another
way to fulfill requirement B2 (“Knowledge should be organized hierarchically”).
Finally, the archive can be decentralized and used in swarm robotics, as was done
by Hart et al. (2018), which allows to simultaneously evolve multiple behaviors

across multiple robots.

QD and its archive are similar to the idea of the morphological box by Zwicky
(1969). They allow new creations by combining known solution configurations.
Phenotypic features are an efficient method to represent the knowledge in the box,
fulfilling requirements B1 and C5. The archive allows indirectly finding combi-
nations of phenotypic feature, therefore it establishes an ‘indirect recombination’
operator, which makes the definition an explicit, encoding-dependent operation.

obsolete.

Selection Procedure To form new offspring, parents are selected from the
current set of solutions. Selection in MAP-Elites was originally introduced as an
unbiased operator. Individuals are randomly selected from the archive, whereby
each niche can be selected with equal probability. In NSLC the selection is based
on both novelty as well as local quality and takes place in the accompanying

population, not in the archive.

A number of alternative scoring schemes have been introduced as a basis for

selection. Pugh et al. (2015) set the probability of selecting a parent in MAP-
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Elites proportionate to the novelty of the solution within the niche of the parent.
The authors analyzed when this selection method makes sense by changing the
alignment (correlation) between the diversity and quality metrics. The higher
this alignment, the more effective the selection procedure is to fill the archive.
MAP-Elites can be adapted with this method to behave more like novelty search.
The selection procedure automatically reverts back to random selection as soon as

the archive is filled.

Another method to improve the speed at which MAP-Elites fills the archive is
curiosity-based selection. Curiosity represents the propensity of an individual
to generate offspring that gets successfully added to the archive. The metric is
defined by counting how often a niche produces offspring that is accepted into
the archive because of novelty or better performance. The niches that produce
more offspring, or which are more novel, or higher performing, are selected with
a higher probability. The method by Cully and Demiris (2017) is not only able
to fill the archive more quickly than random selection, but it often finds better
solutions in the niches. The selection method can have a significant impact on QD

performance, although random selection as a default performs well.

One of the main reasons QD performs well at not only finding diverse solutions,
but oftentimes even outperforms classical evolutionary optimization algorithms,
can be ascribed to the archive. In the archive, stepping stones, solutions that are
not high-performing themselves, can lead an evolutionary path to access high-
performing regions of the search space, as was shown by Meyerson and Miikkulainen
(2017).

Due to the decoupling of genetic search and phenotypic niching, QD supports
addition, removal and/or variation of constraints, objectives and variable parame-
ter bounds, fulfilling requirement C4, “Search should support addition, removal
and/or variation of constraints, objectives and variable parameter bounds” (Ta-
ble 2.3).

In QD, the archive becomes the central evolvable object. It can be seen as a
lattice, whose points move through genetic space as elites are replaced over time.
The QD algorithm used in this work is MAP-Elites, which is explained in detail

below.
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MAP-Elites MAP-Elites uses a fixed, discretized n-dimensional grid (Fig-
ure 3.7), with each dimension representing one phenotypic aspect. This prevents
comparisons becoming more expensive as the algorithm progresses and emphasizes
the phenotypic space. The number of features, which serve as diversity measures,
is limited by the fact that the niching space becomes exponentially larger when
adding dimensions. Contrary to NSLC, in MAP-Elites, parents are selected ran-
domly from the archive. There is no distinction between the population and the

archive, so it is updated in-place.

Algorithm 2 MAP-Elites (see Mouret and Clune (2015)). The population (X) in
the input is usually initialized using a space-filling sequence or random distribution.
1: function MAP-ELITES(X, d(), f(),0)
2 D« d(X)
3 f— f(X)
4 A+ (X,£,D)
5: while gens < mazGen do
6
7
8
9

X < RANDOMSELECT(dim(X))
X < MUTATE(X, 0)
D+ d(X)
: F + f(X)
10: A < REPLACE(A, X, f, D)
11: end while
12: return A

13: end function

MAP-Elites is shown in Alg. 2. It receives the following inputs: the initial
population’s genomes X, a descriptor function d() that defines which niche an
individual is assigned to, a fitness function f() to determine the quality of an
individual, and o which determines the size of mutations. The archive (which is
called ‘map’ in MAP-Elites) is filled with the initial solution set (line 4), after which
an iterative loop is executed for a number mazGen of generations. First, a random
set of individuals is selected from the map (line 6), which can either be performed
with a uniform random distribution or a space-filling sequence. Individuals are
mutated (line 7, see Alg. 3), usually with a normal distribution with standard

deviation o.

The phenotypic descriptors and fitness values are updated for the perturbed
individuals, which are then placed into the archive A using Alg. 4.
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Algorithm 3 Mutation.

1: function MUTATE(X, o)

2 for i =1 to |X| do

3 for j =1tondo

4 ! + z] + N(0,0)
5: end for

6 end for

7 return X

8:

end function

Algorithm 4 Replacement.

1: function REPLACE(A, X, f, D)
2 for i =1 to |D| do

3 n < DISCRETIZE(D;), D; € D > D; is assigned to niche ID n.
4 if exists(f(n)) && f(n) < f(i) then > Replace if ¢ improves niche.
5 A(n) « [xi, fi, Di]
6 end if

7 end for

8 return A

9:

end function

Phenotypic descriptors are discretized to determine which niche in the grid-shaped
archive they get assigned to. Then, the fitness value of a candidate is compared to
the fitness value of the current member of the niche (if the niche is not empty).
If the candidate improves the archive, it replaces (or gets assigned to) the niche.

After maxGen generations, the archive is returned to the user.

3.2.4 Conclusions

The evidence on research question I (“Are solutions best compared using their
genomes or their expressed phenotype or behavior?”) that was provided in the
previous section shows that the (extended) phenotype is a research object that
is worthwhile to investigate. Research in evolutionary computation has indeed
focused on the phenotype, specifically QD algorithms. QD algorithms fulfill
requirements B1 (“Solutions should be categorized”) and C5 (“Solution similarity

should be based on their functional expression and presented along meaningful
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feature dimensions”).

Solutions are best compared using their expressed phenotype or behavior, instead
of their genomes, due to the effects of neutrality and sensitivity in (evolutionary)
representations. Requirement B2 (“Knowledge should be organized hierarchically”)
can be fulfilled by using hierarchical archives. Features can usually be easily
switched, when their calculation can be done quickly, which partially fulfills
requirement B3 (“User can filter knowledge base dynamically”). Requirement B3

can also be fulfilled by changing feature dimensions in QD.

In the next section, the main paradigms from multi-solution optimization are

compared.

3.3 Comparing Divergent Search Methods

In this section, various techniques in multi-solution optimization are compared to
answer research questions I (“Are solutions best compared using their genomes
or their expressed phenotype or behavior?”) and II (“What multi-solution opti-
mization method produces the highest phenotypic diversity?”). The three main
paradigms in multi-solution, divergent search methods, MOO, MMO and QD, are
evaluated in terms of the diversity and performance of the solution sets they create.
A new niching archive is introduced that allows comparing genetic and phenotypic
diversity. State of the art diversity metrics are used in a new problem domain to
evaluate all paradigms after which recommendations are made when to use which

approach.

A number of survey and analysis articles have appeared in the last decade. In Basto-
Fernandes et al. (2013) a taxonomy for diversity in optimization was introduced.
Wessing and Preuss (2016) investigated how genetically diverse solution sets in
MOO are found and showed that quality indicators used in MOO can be applied
to MMO. Vassiliades et al. (2017a) compared two algorithms from MMO to two
QD algorithms in a robotics task, showing that clearing performance can be
comparable to that of QD. Finally, Li and Yao (2019) discussed 100 solution set
quality indicators in MOO and Tian et al. (2019) discussed diversity indicators
for MOO. A published scientific comparison between all three paradigms did not

previously exist.
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The algorithms that provide simple interpretations of diversity in objective space
(MOO), genetic space (MMO) and phenotypic space (QD) are selected for this
comparison, which answers the question which one of these interpretations of diver-
sity produces a larger diversity of shapes. In this section, which is based on work
by Hagg et al. (2020), a new, simple archive is introduced that allows comparing

genetic and phenotypic niching with the same algorithmic mechanism.

3.3.1 Niching with Voronoi Tessellation

To remove variations in the search dynamics when comparing different algorithms,
a simplified niching variant of NSLC and CVT-Elites is introduced. The Voronoi-
Elites (VE) algorithm is illustrated in Fig. 3.10. Selection pressure is applied
based on artifact similarity. In effect, VE tries to minimize the variation of
distances between artifacts in the (unbounded) archive. The Voronoi niches are
not predefined, niche generators do not have to coincide with the centroids and
boundaries of the archive are not fixed, as opposed to the CVT-Elites algorithm
by Vassiliades et al. (2017b). VE is explained in Alg. 5 and 6.

filled archive new candidate local competitio updated archive

+ o @ size: solution fitness ® new @ @ closest pair

Figure 3.10: Updating the Voronoi archive. The VE formulation allows for a
fixed number of archive members, independent of its dimensionality, which makes
runtimes more predictable. In this example, the maximum number of artifacts in
the archive is set to six. When a new candidate artifact is added, the pair of closest
artifacts is compared. The worse of the two is rejected or removed from the archive
and the artifact with higher fitness is kept or added to the archive. The borders
between niches are drawn here to illustrate the range of influence of each item in

the archive and how it changes after an update.

In the main procedure, the initial population of artifacts is created from a quasi-
random, space-filling Sobol sequence (see Sobol (1967)) in line 2. The population

is evaluated and its fitness values f and feature descriptors D determined based on
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Algorithm 5 Voronoi-Elites.

1: function VORONOI-ELITES(dim)
2 X < SoBoL(dim)

3 f,D < EVALUATE(X)

4 A+— AU (X,f,D)

5: for 1 to numGen do

6 X < TOURNAMENT(X, f)
7 X < MUTATE(X, o)

8 f,D < EVALUATE(X)

9 A— AU (X, f,D)

10: while |A| > maxzSize do

11: D « dist(D, D) > D contains pair-wise distances between rows in D
12: row, col < argmin(D) > Ignore diagonal in distance matrix D
13: if frow > feor, with f; € f then

14: r < col

15: else

16: T 4 row

17: end if

18: A+~ A\ A{(xr, fr,Dr)}

19: end while

20: end for

21: return A

22: end function

fitness and feature metrics, which have to be predefined by the user. The archive
A is filled with tuples of genomes X, their fitness values and feature descriptors.
For numGen generations, the following pattern is applied. From the population, a
set of parents is selected (with the same size as the population) using tournament
selection. The function in Alg. 6 compares the fitness values of random parent pairs
and selects the best performing parent. Then, the population is mutated by adding
a normally distributed random value with a preset o, shown in Alg. 3 (the same
operator as used in MAP-Elites). The new population is evaluated to determine the
new fitness and feature descriptor values. The archive A accepts all new solutions
until the maximum number of archive niches is surpassed. The new population is
assigned to the archive. The pair of elites that are phenotypically closest to each
other are compared, removing the worst-performing from the archive, as shown in

lines 10-19. By exerting selection pressure on the closest solutions, VE tries to
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equalize the distances between individuals.

Algorithm 6 Tournament Selection.

1: function TOURNAMENT(X, f)
2 W={}

3 for 1 to |X| do

4: a < random([1 : |X|]), b < random([1 : |X|])
5: if fo, > fp, with f; € f then

6 W<+ WU f,

7 else

8 W+ WU f

9 end if

10: end for

11: return W

12: end function

Notice that, when genetic parameters are used as archive dimensions, VE behaves
like an MMO algorithm by performing niching in genetic space. When phenotypic
descriptors are used, VE behaves like a QD algorithm. With MAP-Elites this
would theoretically be possible as well, yet the VE formulation allows for a fixed
number of archive members, independent of the archive’s dimensionality. This

makes convergence times (time until an archive is filled) more predictable.

3.3.2 Diversity Metrics

A large number of metrics is available to compare the diversity of a set of solutions
in optimization. Only those are considered that do not depend on precise domain
knowledge, because no knowledge about actual local optima is available in real
world applications. Three commonly used distance-based metrics are selected to

evaluate the experiments.

The sum of distances to nearest neighbor (SDNN) measures the size of a solution
set as well as the dispersion between members s of that set (see Wessing and Preuss
(2016)). The metric is based on the total minimum dissimilarity between individual
solutions, the nearest neighbors, in the set X (Eq. 3.1 and 3.2). Dissimilarity is

measured using a distance metric, like the Euclidean norm.
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d(s,X) = glég(dissimilarity(s7si)) (3.1)
SDNN(X) =Y (d(s;, X)) (3.2)
s;E€X

Solow-Polasky Diversity (SPD), introduced by Solow and Polasky (1994), measures
the effective number of species by using pairwise distances between the species in
the set X. To compute the metric, a matrix R has to be constructed, with entries
ri; = exp(—0d(s;,s;)). SPD is then calculated according to Eq. 3.3).

SPD(X)=1"R™ 11 (3.3)

If the solutions are similar with respect to each other, SPD tends to one. The
sensitive parameter @, which determines how fast a population tends to higher
values of SPD with increasing distance, needs to be parameterized for every domain.
It is set to one for genetic distances and to 100 for phenotypic distances in this

section.

Pure Diversity (PD) is used in high-dimensional many-objective optimization (see
Wang et al. (2016)). The metric is based on the minimum dissimilarity between
individual solutions in the set X (Eq. 3.1). Eq. 3.4 shows that the metric is defined
recursively. The PD value of a set X is equal to the maximum of the sum of its
value on all but one of the members and the minimum distance of that member to
the set. In the base case of the recursion, the set X contains only two members

and the recursion stops.

PD(X) = max(PD(X\ {si}) + d(si, X\ {si})) (34)

It does not have parameters, which makes it robust, and depends on a dissimilarity
measure, which is usually the L ;-norm to deal with higher dimensional similarity

spaces.

Publications in the field of QD have focused on a small number of metrics that do
not seem to be very usable and certainly not independent of the used algorithms.
The total fitness is used directly or through the QD-score by Pugh et al. (2015),

which calculates the total fitness of all filled niches in a phenotypic archive. To
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achieve this, the solutions from a non-QD algorithm are projected into a fixed
phenotypic niching space. This score is domain-dependent and does not allow
comparing QD algorithms that have different archiving methods. A comparison
between archives created from different features introduces a bias towards one of
the archives. The collection size indicates the proportion of the niching space that
is covered by the collection, but again can only be used on a reference archive, as
was done by Cully and Demiris (2017).

Archive-dependent metrics do not generalize well and introduce biases. Therefore, in
this work only distance-based diversity metrics are used. The high dimensionality of

phenotypic spaces is taken into account by using appropriate distance norms.

3.3.3 Evaluation

A simple polygon optimization domain is defined, in which the objective is to
create symmetrical polygon shapes. Shape is an important basic component of
design in art, architecture and engineering. On the one hand, shapes can serve as
a medium for artistic expression which can also carry semantic meaning (e.g. the
shape of a letter of a typeface) and on the other hand can help visualize an object
during the design process before it is built or produced. Since the phenotypes can
be expressed as binary bitmap images (Figs. 3.11b and 3.11c, resolution of 64x64
pixels), the Hamming (1950) distance is used in the diversity metrics to circumvent

the problem of high dimensionality.

Three phenotypic features describing the polygons are defined that can be used
either as criteria or as phenotypic features (Fig. 3.11d): the area of the polygon
A, its circumference [ and point symmetry P through the center. The polygon
is sampled at n = 1000 equidistant locations on the polygon circumference. The
sum of distances of all n/2 opposing sampling locations serves as a symmetry
error Es. The error on such a set of opposing samples X is calculated as shown in
Eq. 3.5.

n/2
1 .
fr(X) = HT(X)’ES(X) = E 1%, X 4n/2|], with x; € X (3.5)
S ]:1
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(a) genome (d) features (e) performance
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dR: [0.01, +1]
de: [- 11/4, + 11/4]

Figure 3.11: Free-form encoding of polygons. The genome (a) consists of 16
parameters that define angular and radial deformations (b). The range of possible
gene values differs for the dR and df genes. The phenotype is considered to be the
pixel representation of the polygon (c). Shown is a 20x20 phenotype, although 64x64
pixels are used throughout the experiments. Features and optimization criterion of

the polygon domain are shown in (d) and (e).

For every opposing pair, the difference in distance to the center location is calculated.
When the sum of these distance differences is zero, the shape is defined as fully

symmetric.

Genetic or Phenotypic Diversity The Voronoi tessellation used in VE makes
it easy to compare archives of different dimensionality by fixing the number of
niches. VE is applied as an MMO algorithm, performing niching in 16-dimensional
genetic space, and as a QD algorithm with a two-dimensional phenotypic space.
The number of niches is increased to determine when differences between genetic

and phenotypic VE appear (Fig. 3.12).

At 25 solutions, the approaches produce about the same diversity, but genetic
VE finds higher quality solutions. As the number of niches is increased, based on
where niching is performed (genetic or phenotypic space), the diversity in that
space becomes higher. Phenotypic VE beats genetic VE in terms of phenotypic
diversity, which gives us evidence that the answer to research question II should
tend towards preferring phenotypic niching over genetic niching. At the same time,
the average fitness values of genetic VE are higher than those of phenotypic VE,

although the difference gets lower towards 400 solutions.
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Figure 3.12: VE performed in 16D genetic and two-dimensional phenotypic space.
Top: genetic diversity (SDNN, SPD, and PD) and median fitness, bottom: phenotypic

diversity. The number of niches/solutions is increased (x-axis).

Comparison of Results The main question to answer is which paradigm pro-
vides the highest phenotypic diversity of shapes. VE, RLS (see Section 3.2.2) and
NSGA-II (see Section 3.2.1) are compared in multiple experiments. Throughout
these experiments the number of function evaluations and solutions is fixed. Five
replicates per configuration are produced. In NSGA-II the features are used as
optimization criteria, maximizing A and minimizing [. The true Pareto set con-
sists of circles with varying sizes. The number of generations is set to 1024 and
mutation strength to 10% of the parameter range. The probability of crossover for
NSGA-II is 90% and the probability of mutation is ﬁ = 0.0625%, with dof = 16
degrees of freedom. VE’s archive size is varied throughout the experiments. The
number of children (64) and population size is set to the same value. RLS uses
as many restarts as the size of the VE archive, and is restricted to the bounds of
the genome’s parameter ranges. Broyden-Fletcher-Goldfarb-Shanno (BFGS) (see
Broyden (1970), Fletcher (1970), Goldfarb (1970), and Shanno (1970)) is used as a
local search method. The initial solution set for VE and NSGA-II is created with
a Sobol sequence — the initial RLS solution is in the center of the parameter range

but RLS’ space-filling character assures a good search space coverage.

Phenotypic VE is compared to NSGA-II and RLS. When the genes dr, which
encode the radial deviation, are bounded between 0 and 1, and df, which encode
the angular deviation, are set between 4/ — 0.125 x 7, genetic neutrality can be

minimized. Neutrality is increased by expanding those bounds (Table 3.1). In
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contrast to VE, the phenotypic diversity of RLS’ solutions is expected to decrease
as genetic neutrality increases. Since there is no mechanism to distinguish between
similar shapes with different genomes, there is an increasing probability that
RLS finds phenotypically similar solutions. It is expected that the solution set
produced by RLS is more diverse than using NSGA-II, due to its space-filling

character.

Table 3.1: Parameter settings in order of increasing genetic neutrality.

case | angular min. | angular max. | radial min. | radial max. | neutrality
A 0 1 -0.05 0.05 -

B 0 1 -0.125 0.125 +

C -0.25 1 -0.25 0.25 ++

D -0.5 1 -0.5 0.5 +++

E -1 1 -1 1 ++++

It is expected that NSGA-II will easily find the Pareto set, which consists of
circles of various sizes, maximizing the area while minimizing the length of the
circumference, while QD should find a variety of shapes that can be any combination
of large and small A and [. I postulate: allowing all criteria combinations, instead

of using a Pareto approach, leads to higher diversity, while still approximating the

Pareto set.
SDNN (G)x10? SPD (G) x10? PD (G)x10" Median Fitness
. 15
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Figure 3.13: Genetic (top) and phenotypic (bottom) diversity, and median fitness.

Right of red marker: neutrality increases, using parameter bounds shown in Table 3.1.
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The number of solutions is set to 400. A result similar to Fig. 3.12 appears for
the standard algorithms in Fig. 3.13. While phenotypic diversity of VE is highest,
especially after the genetic neutrality threshold is crossed (at B), diversity of
NSGA-II is lowest, as is expected for this setup. Although the diversity of VE is
higher than that of RLS, the latter’s solutions are all maximally symmetric (see
fitness plots), for all settings of the encoding. This makes RLS more appropriate
when quality is more important than diversity. The results give us more evidence
to answer research question II. (Phenotypic) VE indeed provides a more diverse

solution set than any of the other paradigms.

The ground truth Pareto set can be calculated a priori, as we know that circular
shapes maximize area while minimizing circumference. The members of the Pareto
set adhere to the following genome: 71 =719 =--- =rg and 1 =0y = --- = 0s. To
create 100 shapes from the ground truth Pareto set, ten equidistant values for r

and 6 are combined.
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Figure 3.14: The ground truth Pareto set is shown over the entire parameter
range, with negative as well as positive values for the radial deformation. Bottom
left: closeness to Pareto set, measured as pixel errors. The six figures on the right

show example solution sets for low and high neutrality.
Part of the ground truth Pareto set is shown in Fig. 3.14. The distance to the

Pareto set is determined in phenotypic space, by measuring the smallest pixel error,

the sum of pixel-wise differences, between a solution and the Pareto set. We see
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that a number of solutions in VE and RLS are close to the Pareto set (Fig. 3.14
bottom left). Example results with low and high neutrality are shown on the
right. Solutions that are close to the Pareto set are shown in the brightest green
color. VE again seems to be more robust w.r.t. genetic neutrality, as it finds more
solutions close to the Pareto set in high-neutrality domains (bottom row) than
RLS. This provides us with even more evidence that QD should be the preferred
over MOO and MMO methods because we aim to generate a phenotypically diverse

solution set.

3.3.4 Conclusions

This section gave evidence for answers to research questions I (“Are solutions best
compared using their genomes or their expressed phenotype or behavior?”) and
IT (“What multi-solution optimization method produces the highest phenotypic
diversity?”), fulfilling requirements B4 (“Process should provide diverse perspectives
on existing knowledge”), C1 (“Search should efficiently generate a diverse set
of novel, functional solutions”), C3 (“Search should identify regions of design
feasibility and optimality”), and C4 (“Search should support addition, removal

and/or variation of constraints, objectives and variable parameter bounds”).

The highest phenotypic diversity is reached by comparing solutions based on their
phenotypes, using a QD algorithm instead of MMO or MOO. QD is less sensitive
to genetic neutrality than MMO. While the diversity of solution sets of QD and
RLS is higher than that of MOO, they both find some solutions close to the ground
truth Pareto set. The section included the introduction of the VE algorithm, which

allows the comparison between genetic and phenotypic niching.

The next section discusses the phenotypic features that are used in QD and

compares predefined features to those that are learned from data.

3.4 Phenotypic Features

Requirements A3 (“The initial solution set presented to user should need as little
guidance from the user as possible”) and B4 (“Process should provide diverse
perspectives on existing knowledge”) beg the question, whether we should use

predefined features or learn them from data. There certainly is a tension between
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explainable, predefined features and the need to maximize solution diversity. In
this section I therefore investigate research question III (“Can we produce more
diverse solution sets when learning phenotypic niching from data instead of using

predefined features?”).

3.4.1 Predefined Features

Phenotypic features can be viewed as the concretization of the idea of conceptual
spaces, a term introduced by Géardenfors (2004). The term formalizes concepts on
the basis of a geometric structure that consists of a number of quality dimensions,
basic features by which objects can be compared. The term is motivated by the

notions of conceptual similarity and prototype theory.

The phenotypic features used for niching can be based on solutions’ behavior,
as was done by Cully et al. (2015), morphology, by Gaier et al. (2018), or other
properties of the extended phenotype. For example, Cully et al. (2015) evolved an
intuition of well-performing neural controllers for a hexapod robot. By expressing
each robot controller, certain phenotypic traits can be measured, like the amount
of time each leg touches the ground, along which we perform phenotypic niching.
Each niche accepts only those controllers whose legs touch the ground in certain
temporal patterns. Within that niche, the best solutions compete to survive.
The resulting archive of locally well-performing behaviors provided the authors
with many different walking gait strategies, which allows quick switching between

strategies when necessary.

Selecting phenotypic features is very much a domain-dependent issue. Yet, we seek
to minimize the amount of guidance by the user in the generative stage. Some
work has been done on unsupervised and adaptive learning of features. A major
breakthrough in unsupervised determination of features are innovation engines.
The technique, introduced and applied on image generation by Nguyen et al.
(2015, 2016), uses a generative model (GM) to learn phenotypic features that are
‘interesting’. By training the network on 1000 image classes, its output confidence
can be used to determine whether an image generated by a QD algorithm is a
good representative of one of the classes. Similarly, the features used in the archive
are found using a deep neural network or autoencoder in an unsupervised manner
(see Cully and Demiris (2018) and Cully (2019)). Another idea is to measure how

well a network is able to compress an image. The better it is able to do this, the
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less interesting or novel an image is. Gaier et al. (2019) evolved indirectly encoded
images. They periodically trained an autoencoder on all images in the archive
thereby allowing themselves to measure a kind of novelty score represented by the
image reconstruction error. Higher errors indicate more novel images. If an image
is novel enough, it gets saved in the QD archive. The diversity metric is therefore

not only unsupervised, but adaptive as well.

In some cases, unsupervised descriptors might help us to find phenotypic features
that are hard to define in particular high-dimensional domains. This does rein-
troduce the issue of explainability, because there is no direct way to understand
what the features actually represent. We can only perform a posteriori analysis
on the deep neural networks, often only by using simple metrics, like a confidence
level on the classification output of the network. Using deep neural networks to
find features is not something that can be done in every domain, due to model’s
need of a large number of training examples. It is no coincidence that innovation
engines were introduced for images, a domain in which a large amount of data

generally is available.

It is important to take into account the cost of calculating the phenotypic descrip-
tors, which has to be performed for each candidate solution. In this respect, an
aspect that is based on e.g. morphology might be less expensive than one that is

based on behavior in a simulation.

3.4.2 Learning Features

We might not always want or be able to define phenotypic features that are as
influential as possible on diversity. Still, data-driven feature models can help
us discover features in more complex domains, although issues around cost and

explainability might prevent this.

Up to this point in this thesis, domain knowledge was used to construct a phenotypic
niching space with VE. Intuitively, the area and circumference seem like good
indicators for phenotypic differences in the used domain. But the comparison
between QD and MMO is not completely fair, as the latter does not get any domain
information. On the other hand, the features used in QD might not be the most

diversifying.
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Domain knowledge is now removed from QD and a phenotypic niching space is
constructed by using a well-known dimensionality reduction (DR) technique to
map the phenotypes to a latent space, as was done by Meyerson et al. (2016) and
Cully (2019). This data-driven phenotypic niching approach, named Automatic
Voronoi-Elites (AutoVE) and shown in Fig. 3.15, has never been applied to shape

optimization.
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Figure 3.15: Generative model and VE combined into a generative system in

(e
—

two phases. First, initialization: (1) an initial random set of genomes is generated
and (2) converted into shape bitmaps which are used to (3) train a GM. Second,
optimization loop: (4) VE iteratively updates the archive of candidates. Two setups
of this loop are compared: the VE performs search either in parameter space or in
the GM’s latent space.

An initial set of genomes is drawn from a space-filling Sobol sequence. The
genomes are expressed into their phenotypes, which are then used to train a GM.
A convolutional autoencoder (cAE), introduced by Hinton (1994), is used here
(Fig. 3.16).

The bottleneck in the cAE is a compressed, latent space that assigns every pheno-
type to a coordinate tupel. The encoder predicts these coordinates of new shapes
in the latent space, which are used as phenotypic features. VE is used to search
through genetic space and to produce phenotypes that expand and improve the
cAE archive.

The reasoning behind using VE as a QD algorithm is as follows. In the original MAP-
Elites used by Mouret and Clune (2015), the archive consists of a fixed grid of niches,
which leads to an exponential growth of niches with the number of phenotypic
feature dimensions. The creators of CVT-Elites, Vassiliades, Chatzilygeroudis,

Clune, and Mouret (Vassiliades et al.), dealt with this problem by predefining fixed
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Figure 3.16: A convolutional autoencoder that compresses information, like an
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image of a polygon, by providing a bottle-neck in the center. The network is trained
to reproduce the input at the output. The convolution operates on filters with a

3x3 size and a stride of one.

niches using a Voronoi tessellation of the phenotypic space. Due to their fixed
archive, both methods tend to reduce the genetic variance of the solution set in the
first iterations. Initial (random) samples tend to not cover the entire phenotypic
space and thus competition is harsher, leading to the excluding of many solutions
in the beginning. To maximize the number of available training samples for the
cAE, the VE algorithm is therefore more appropriate. In contrast, VE, introduced
in Hagg et al. (2020), does not precalculate the niches. It accepts all new artifacts

until the maximum number of niches is surpassed.

The cAE is retrained with the new samples. It consists of two convolutional layers
in the encoder and four transposed convolutional layers in the decoder. The filter
size is set to three pixels, the stride to two pixels, and the number of filters to
eight. The cAE is trained using ADAM, introduced by Kingma et al. (2015), with
a learning rate of 0.001 and 350 training epochs and a mean square error loss

function. Latent coordinates are normalized between zero and one.
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3.4.3 Evaluation

AutoVE is compared with VE using manual features, continuing the experiment
from Section 3.3.3. The number of generations (1024) is divided over two iterations
for AutoVE and the number of latent dimensions is set to two (to compare with

manual VE), five or ten.
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Figure 3.17: Phenotypic diversity and fitness of manually crafted features (VE)

compared to using an autoencoder (AutoVE) with two, five or ten latent dimensions.

Fig. 3.17 shows that the two-dimensional manual and autoencoded phenotypic
space (AutoVE 2D) produce similar diversity, whereby the quality of solutions from
AutoVE 2D is higher. The higher-dimensional latent spaces increase the solution
set diversity at the cost of fitness. This is to be expected, as lower-fitness optima
are protected in their own niches. Finally, the diversity of higher-dimensional
AutoVE is around 50% higher than that of any of the other tested methods
in this thesis. Using an autoencoder produces higher diversity than manually
defined features, making AutoVE a strong choice for high-diversity multi-solution

optimization.

3.4.4 Conclusions

This section gave evidence for an answer to research question III (“Can we produce
more diverse solution sets when learning phenotypic niching from data instead of
using predefined features?”), fulfilling requirement A3 (“The initial solution set
presented to user should need as little guidance from the user as possible”) and
indicating the approach’s usefulness in fulfilling requirement B4 (“Process should

provide diverse perspectives on existing knowledge”).
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More diverse solution sets can be produced when learning phenotypic niching from
data instead of using predefined features. An autoencoder was used to discover
phenotypic features in a shape optimization problem, showing that we do not need
to manually predefine features to get a highly diverse solution set, which increases
the evidence that QD is superior in terms of quality and diversity when compared
to MOO and MMO.

It is often easy to manually define two or three phenotypic descriptors, but human
imagination can run out of options quickly. Automatic discovery of phenotypic
features is a more attractive option for increasing solution diversity. Real world
multi-solution optimization and understanding solution diversity are important
steps towards increasing the efficacy and efficiency at which engineers solve prob-

lems.

Requirement A5 (“The process should be adaptable along the resonance-dissonance
dimension”) is not fulfilled yet. The resonance-dissonance trade-off is not config-
urable, although this can be accomplished by using e.g. the reconstruction error of

the cAE as a feature. This will be evaluated in the next section.

3.5 Limitations of Generative Models

The expectation of Miikkulainen (2020) that the combination of evolutionary
computation with deep learning techniques can lead to the next big jump in Al
development, machine creativity, begs the question how powerful GM actually are.
In this section, research question IV is answered: “What are the limitations of
generative models in terms of the possible diversity of the solutions they create?”.
In order to do this, a comparison is made between multi-solution evolutionary
search in the parameter space of a generative system and the search in the latent
space of a variational autoencoder (VAE), which were introduced by Kingma
and Welling (2014), that was trained with samples from the same system. A
generative system is described that produces two-dimensional shapes through
the manipulation of eight control points. The system is evaluated in multiple
scenarios, including one where it is forced to extrapolate away from solutions
that are describable by its latent feature dimensions. This analysis is necessary

to estimate, what effect requirement A5 (a resonance-dissonance trade-off should
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be configurable) would have on such a system. This is based on work published
in Hagg et al. (2021).

Deep generative models such as VAE find application in the context of optimization
for their ability to extract patterns from raw data, learn meaningful representa-
tions of artifacts and accurately produce more samples with the same properties.
Disentangled representation learning can furthermore equip a model’s latent space
with linearly separated factors of variation, revealing the underlying parameters of

a generative process (see Burgess et al. (2017)).

The feature compression networks can be used to compute descriptors for QD
algorithms. Defining similar descriptors by hand is a non-trivial task which requires
expertise and intuition and, depending on the domain, often cannot compete with
an automated solution. Evidence for this was already shown in Section 3.4. While
the advantage of learning from data lies in the recognition of complex patterns,
the expressiveness of the resulting GM is entirely dependent on the quality and
representativeness of the data samples provided. This is especially critical when
relying on such a model to produce novel examples and diverse sets of outputs.
In fact, artists who employ a generative adversarial network (GAN) in their work
often use a variety of strategies to actively diverge from the intended purpose of
these models and to produce outputs significantly different from the original data
(see Berns and Colton (2020)).

The evaluation is relevant in two scenarios: 1) when the generative process is
manually defined but a VAE is used to compare artifacts (e.g. distance/similarity
estimation), and 2) when only data is available and the underlying patterns
are unknown or too difficult to extract manually and have to be learned by an

appropriate model.

3.5.1 Variational Autoencoders

VAEs are a likelihood-based method for generative modeling in deep learning. They
follow the standard architecture of an autoencoder: a compressing encoder network,
mapping data samples to latent space, and a decoder network which is trained
to generate the original samples from the corresponding latent codes (Fig. 3.18).
A VAE can generate new samples by interpolating between training locations in

the latent space. While common autoencoders draw from an unrestricted range of
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latent code values, the latent space of a VAE is typically modelled to be a centered

isotropic multi-variate Gaussian (NV(0,1)).
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Figure 3.18: Left: variational autoencoder, center: sampling from latent space,

right: interpolated output.

The VAE training objective is to optimize a lower bound on the log-likelihood of the
data. A beta-annealing variant of the loss term is used to improve disentanglement
with improved reconstruction (see Burgess et al. (2017)). This variant of the
evidence lower bound (ELBO) calculates the loss function over the predicted

output x and the ground truth Z as follows:

ELBO(z,%) = C(z,&) + 3 - (KL(z,N(0,1)) — ) (3.6)

Eq. 3.6 consists of a reconstruction loss term, in this case the binary cross-entropy
C(+,+), and a regularization term, which penalizes a latent distribution that is not
similar to a normal distribution with 4 = 0 and o = 1. The regularization term is
calculated using Kullback-Leibler divergence (KL) and scaled by the parameter 3.
The annealing factor - is increased from zero to five during training to focus on
improving the distribution in latent space in the beginning of the training and then
gradually improve the reconstruction error. The internal latent space of a converged
model provides meaningful representations in which distances between data points
correspond to their phenotypic similarity. The VAE’s internal representation is

used to estimate the similarity of artifacts.

Previous work employed autoencoders for dimensionality reduction and the encod-
ing of behavioral descriptors in a control task (see Cully (2019)). In a robotics
domain, the approach allows robots to autonomously discover the range of their
capabilities, without prior knowledge. GM were used to distinguish parameter-
ized representations in shape optimization (in Section 3.4). They have also been

employed to automatically learn an encoding during optimization, using them
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as a variational operator (see Gaier et al. (2020)). Other GMs, like GANs, have
been used in latent variable evolution by Bontrager et al. (2018) to generate levels
for the video games Super Mario Bros. (see Volz et al. (2018)) and Doom (see
Giacomello et al. (2019)). A model’s latent space is searched with an evolutionary
algorithm for instances that optimize for desired properties such as the layout
or difficulty of a level. While some authors view the generated levels as novel,
none have studied exactly how novel or diverse of an output such a system can
produce. The first attempt at such a comparison was made in Section 3.4, but
here the comparison is made specifically between using a VAE as a generator and

as a method to perform niching in a QD algorithm.

3.5.2 Study Setup

When a VAE is used to generate artifacts, the diversity of its output is bound by
the expressiveness of its latent space. The objective of this section is to analyze
the generative capabilities of a VAE’s latent space and give empirical evidence for

its limitations.

This section outlines the details of the study’s subject matter, the generation of
two-dimensional shapes. It lists the general configurations of the VAE and VE
algorithm. Specific settings for experiments can be found in the experimental
setups below. The section explains how the two methods are combined to build
two versions of a generative system, one using VAE as a search space and one

using VAE only to compare solutions and provide a niching space for VE.

Shape Generation For this study, a focus is put on the generation of two-
dimensional shapes, an extension of the domain that was previously defined in
Section 3.3.3. The shapes in the extended domain are similar to a data set which
has been proposed for the evaluation for the quality of disentangled representations
(see Higgins et al. (2016)). The setup of the shape generating system in the
context of its later use with the VE algorithm is explained here. The shapes are
again generated by connecting eight control points which can be freely placed in a
two-dimensional space. Each control point is defined by two parameters, the radial
(dr) and angular deviation (df) from a central reference point, resulting in a total

of 16 parameters (Fig. 3.19b). These 16 parameters serve as genomes (Fig. 3.19a),
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encoding the properties of each individual and defining the parameter space of the
VE algorithm.

Key differences to the last domain are the final phenotype and the symmetry
calculation. To form a final smooth outline, the points are connected by locally
interpolating splines, as introduced by Catmull and Rom (1974), and Fig. 3.19¢).
A discretization step renders this smooth shape onto a square grid resulting in a
bitmap of 64 x 64 pixels (Fig. 3.19d).
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Figure 3.19: Generation of shapes: from (a) 16 genomes to (b) eight control points,
freely placed in two-dimensional space, to (c) a smooth interpolated spline and
(d) a final bitmap rendering. Quality evaluation: (e) the boundary of the shape is

determined and (f) the shapeAAZs symmetry is measured from its center of mass.

Fitness As a simple objective and fitness criterion, an adaptation of the point
symmetry metric that was used in Section 3.3.3 is used. To determine an artifact’s
quality, first, the boundary of the artifact is determined (Fig. 3.19¢). Second, the
coordinates of the boundary pixels are normalized to a range of minus one to one
in order to remove any influence of the shape’s size (Fig. 3.19f). Third, the center
of mass of the boundary is determined to serve as the center of point symmetry.
Fourth, the distances to the center of pixels opposite of each other w.r.t. the center
of mass are compared. Finally, fitness is calculated as the symmetry error E, the
sum of Euclidean distances of all n/2 opposing sampling locations to the center
(see Eq. 3.5). A maximally symmetric shape is one for which this sum equals

Zero.

VAE Configuration A convolutional variational autoencoder (¢VAE) with
beta-annealing loss term (see Burgess et al. (2017)) and its decoder is used as a

mapping network from latent codes to phenotype bitmaps (see Fig. 3.20). The
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Figure 3.20: Architecture of convolutional variational autoencoder.

model’s encoder network is made up of four downscaling blocks, each consisting of
a convolution layer (8, 16, 32 and 64 filters respectively; kernel size 7 x 7; stride
two) followed by a rectified linear unit (ReLU) activation function. The set of
blocks is followed by a final fully-connected layer. The decoder network inversely
maps from the latent space to bitmaps through five transposed convolution layers,
which have 64, 32, 16, 8 and 1 filters respectively, kernel size 7 x 7 and stride
two, except for the first layer which has a kernel size of 14 x 14. The last layer is
responsible for outputting the correct size (64 x 64 pixels). The weights of both
networks are initialized with the Glorot initialization scheme Glorot and Bengio
(2010). The regularization term scaling factor 5 was set to four and the annealing
factor v was increased from zero to five over the course of the training, to have the
training focus on improving the distribution in latent space in the beginning of
the training, and improving the reconstruction error later in the process. Each
model was optimized with the Adam optimizer, which was introduced by Kingma
et al. (2015), with a learning rate p = 0.001 and a batch size of 128.

VE Configuration VE starts with an initial set of samples, generated from
a Sobol sequence (see Sobol (1967)) in parameter space. Sobol sequences are
quasi-random and space-filling. They decrease the variance in the experiments
but ensure that the sampling is similar to a uniform random distribution and
easily reproduced. In all experiments, VE runs for 1024 generations, producing
32 children per generation. Children are produced by adding a small mutation
vector, drawn from a normal distribution centered around zero with o = 0.1, to
selected parent individuals. The selection is drawn at random from the archive.
The number of artifacts in the archive remains constant, identical to the initial

population size, over the entire experiment.
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AutoVE with a Convolutional VAE The GM in AutoVE, which was intro-
duced in Section 3.4.2, is simply replaced with a convolutional VAE to form a
generative system with the objective to produce point symmetric two-dimensional
shapes. The full generative process is illustrated in Fig. 3.15 and can be separated
into two phases: 1) initialization and 2) an evolutionary optimization loop. At
initialization time, a set of random genomes is drawn and translated into bitmaps,
their phenotypic counterpart. The VAE is trained to convergence on this set of
bitmap data. The learned latent space is then used in the following evolution-
ary process and the model’s encoder and decoder networks serve as mapping
functions between the phenotypic bitmap representations and the model’s latent

representations and vice versa.

In the evolutionary optimization loop, the VE algorithm iteratively updates the
archive and tries to increase the diversity as well as the quality of the archive
through local competition. To compare two candidates to each other, it relies on
the VAE’s lower-dimensional latent representations, which preserve semantically
meaningful distances. This optimization process is performed in two different search
spaces for the central comparison in this study: 1) parameter space (the explicit
genome encoding) and 2) the VAE’s latent space (the learned representation). This
allows evaluating the expressiveness of a VAE’s latent space and its capability to
generate a diverse set of artifacts in comparison to the full space of possibilities
which is reflected by the 16 predefined genetic parameters. The performance of
the two approaches is measured in terms of the produced set’s diversity. This
setup permits studying the limitations of the latent space of a VAE and comparing
it to the baseline diversity of searching for candidate solutions over the possible

parameters.

This setup can easily be adapted beyond the binary case to gray-scale images
represented by floating point values and to images with multiple channels. It
further might be extendable to accommodate three-dimensional volumes. As is
common in evolutionary computation, the difficulty may lie in mathematically

expressing the appropriate fitness functions and measures.

3.5.3 Experiments

It is commonly assumed that a GM, like a VAE, has good interpolative and

reasonable extrapolative capabilities, which makes itslatent space a potentially
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appealing search space. But how well a search in this space performs in terms of
generating a diverse output has not yet been adequately investigated. This section
provides a first evaluation and hopes to contribute to a better understanding of

GM latent spaces.

In the setup of the generative system the latent space of a VAE is used to search for
and generate two-dimensional shapes in the form of square bitmaps. The output
diversity of this process is compared to the baseline diversity of a search performed
on the explicit genome encoding (parameter space). The pure diversity (PD)
metric is used to measure diversity within a set of artifacts (see Section 3.3.2). By
calculating PD on a set of bitmaps, diversity can be measured directly, independent

of the representation in parameter space or the VAE’s latent space.

In this context, insight is gained into two questions: 1) how accurately can a VAE
represent a variety of shapes, that is to say how useful are its latent representations,

and 2) how well can a VAE generate unknown shapes?

All data sets in the first experiment consist of samples which have been produced by
varying two generating factors: scale and rotation (Fig. 3.21). In two experiments,

a series of corresponding tasks is evaluated:

(a) With a complete set of samples as a baseline data set the standard reconstruc-
tion error of the model is evaluated in order to determine the general quality

of latent representations.

(b) In the recombination task, a subset of artifacts in the center of the ranges
of values of both generating factors is left out, leaving sufficient examples at

either end of the ranges.

(c¢) In the interpolation task, the left-out subset of artifacts covers the complete
range of one of the two generating factors, while some examples at the end of

the range remain for the other.

(d) The extrapolation task consists of omitted samples at one end of values of one

factor of variation, which affects the complete range of the other factor.

(e) The expansion task focuses on generating artifacts beyond the two given

generating factors from the complete data set.

The VAE is expected to perform reasonably well in (b) recombining, (c) interpo-

lating between and (d) extrapolating beyond the available variations to reproduce
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the samples missing from the training data. In the expansion task (e), the VAE’s
latent space is expected to only produce artifacts of poor quality outside of the

generating factors present in the training data.
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Figure 3.21: (a) generative factors used to create data sets; (b—e) four tasks on
which to compare the performance of latent space search with parameter search, the
red rectangles indicate artifacts that either have been left out of a data set (b, c, d)

or are not available (e); (f) all base shapes used in this experiment.

Recombination, Interpolation and Extrapolation One baseline VAE is
trained on the complete shape set (Fig. 3.21a) (256 shapes, scaled by factors of 0.1
to 1.0 and rotated by zero to 7 in 16 steps each) and three additional models, each
one on the data set of one special task (b—d) with held-out samples. The VAEs are
trained for 3000 epochs, after which the models with the lowest validation error

are chosen. The validation error is calculated on 10% of the input data.

To determine whether the VAE can correctly reproduce, and thus properly represent,
the given shape, the models’ reconstruction error is measured. For the baseline
model this is done over the complete data set. For the task models (b—d) the
reconstruction error is calculated only on the held-out examples. The error is
defined as the Hamming distance between an input bitmap and a generated
bitmap, normalized by the total number of pixels. A high reconstruction error
would indicate that the model cannot properly generate the shapes and that its
latent space does not provide an adequate search space for VE. While generating
shapes to which there are no corresponding training examples, the reconstruction
errors of unseen shapes that can be created with recombination and interpolation

(b and ¢) are expected to be lower than for extrapolation (d).
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To determine the resolution of the models, the distances in the latent space between
the training examples for the baseline model and between the training and the
unseen examples for the task models (b—d) are measured. If the latter are of a
similar order of magnitude as the first, the models are able to distinguish unseen
shapes from the training examples and from each other. This would indicate that

the model’s resolution is high enough to provide features for VE.

This experiment was performed on each of five base shapes (Fig. 3.21f) and for
three different sizes of the VAE’s latent space (4, 8, and 16 dimensions), as it
is assumed that the model would not able to perfectly learn the two generating

factors. Over the resulting 15 runs, average results are reported.
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Figure 3.22: VAE validation losses during training.
Fig. 3.22 shows the reconstruction, KL and total -loss on the validation data
during training of the models. The training does not need much more than 1000

epochs to converge.
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Figure 3.23: Reconstruction errors and latent distances for tasks a—d. Two-sample
t-tests are performed comparing the reconstruction errors of the VAE’s prediction of
the training images to the recombination, interpolation and extrapolation data sets.

Comparisons are marked with dotted lines.
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Fig. 3.23 (left) shows the reconstruction errors for the training, recombination,
interpolation and extrapolation sets. All significant results (two-sample ¢-test,
p < 0.01) are marked with an asterisk. The error the models produce on the
training samples is significantly lower than when reproducing the recombination
and interpolation sets. As expected, the error on the extrapolated shapes is highest.
The latent distances between the shapes in the four sets are shown in Fig. 3.23

(right). The distance distributions are similar.

a. all shapes b. recombination  c. interpolation d. extrapolation

<> ground truth shapes reconstructed, training set <4 reconstructed, not in training set

Figure 3.24: Examples of samples and latent spaces produced by the VAE with a
latent dimensionality of eight (projected to two dimensions by t-SNE). Shapes in
yellow represent samples that were present in the data set, while blue ones were not
and have been generated by the model. Black outlines show the ground truth shapes,
the difference between the outlines and shapes accounts for errors in reconstruction.

Four exemplary latent spaces are shown in Fig. 3.24 from models with a latent
space dimensionality of eight, which has been projected to two dimensions with the
dimensionality reduction method t-distributed stochastic neighbourhood embedding
(t-SNE). This method was introduced by Maaten and Hinton (2008) and is further
described in Appendix B. The first latent space (a, left) corresponds to the baseline
model, trained on the complete training set. The other visualizations (b, ¢, and d)

show the three tasks in which some shapes were omitted.

Expansion The last task, expansion (e), cannot be treated as per the previous
experiment, because an a priori ground truth shape set ‘outside of latent space’
cannot be properly defined. Instead, the two search spaces (parameter search (PS)
and latent search (LS)) are compared using AutoVE (see Fig. 3.15). It is measured
which one of the two search spaces produces the most diverse set of artifacts using

the PD metric. The experiment is split up into two configurations.
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In the first configuration (R), both of the compared search approaches start from
the same random initial set of genomes, which is common in many optimization
problems. The size of the set is increased to 512, as this experiment poses a more
difficult optimization problem. The genomes are translated into bitmaps, which
serve as the training data for a VAE model. VE is then performed in both search
spaces to fill two separate archives of 512 shapes each. The resulting shape sets
are compared w.r.t. their diversity and average fitness, which are often in conflict
with each other. As the translation from genome to bitmap always produces a
contiguous shape, it is reasonable to expect that a VAE would learn to produce
shapes, and not only random noise, even when starting with a randomly generated

set of examples.

Often, a generative system does not start from a random set of data, but rather a
set of examples that has been observed in the real world. A second configuration,
continuation (C), is defined to reflect this. An experiment is performed to answer
whether the diversity improves when training a VAE with a set of high-quality
generated artifacts from a previous VE search. The archive of shapes produced by
PS from the random initial set (R) is used as training data for a new VAE model.

Both PS and LS are then performed again with this improved model.

It is expected that LS will interpolate between training samples, but will not
be able to expand beyond the generative factors in the data, except through
modeling errors. Since PS is performed on the explicit genome encoding, this
search approach should be able to produce a much higher diversity of artifacts in
both configurations R and C.

The number of latent dimensions of the VAE has been set to 8, 16 and 32 to analyze
the influence of the degrees of freedom in latent space, when it is lower than, equal
to, or higher than the number of parameters of the genome representation. A
higher number of degrees of freedom gives an advantage to the latent model, a
lower number would give it a disadvantage. When using 16 latent dimensions, VE
deals with the same dimensionality in PS and LS. The number of filters in the
VAE is quadrupled to give the model a better chance at learning the larger number

of variations.

This experiment has been repeated ten times per configuration: 1) random initial
set R in PS, 2) continuation C in PS, 3) R in LS and 4) C in LS. Average results

are reported over the total of 10 experiment repetitions.
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Figure 3.25: Diversity (left) and total sum of fitness (right) of artifact sets of both
parameter (PS, green) as well as latent search (LS, blue). VAEs were trained with 8,
16 and 32 latent dimensions , respectively. Both the random initialization (R) and
continuation (C) configurations of the experiments are shown (in every box the two
left-hand bars correspond to R and the two right-hand to C). Significant differences
(two-sample t-test, p < 0.01) are marked with an asterisk.

Fig. 3.25 compares the diversity and total fitness of the generated artifact sets.
The diversity of PS is significantly higher than LS. In turn, LS produces artifacts
with higher levels of fitness. Although the difference between PS and LS gets
smaller when continuing search from an updated model (configuration C), it is
still significant. All significant results (two-sample t-test, p < 0.01) are marked
with an asterisk. Fig. 3.26 shows the expansion away from the latent surface
achieved by PS, analogous to the hypothesis in Fig. 3.21e. The PS and LS artifacts’
position in 16-dimensional latent space is reduced to two dimensions using t-SNE.
The reconstruction error of the model’s prediction of the PS artifacts is used as a

distance measure to the latent surface.

An example of the resulting shape sets of PS and LS is shown in Fig. 3.27 to

illustrate the effective difference in pure diversity.

3.5.4 Discussion
VAEs are able to reproduce recombined and interpolated artifacts quite well

(Section 3.5.3). Extrapolation beyond the extremes of the generative factors is

more difficult, which the higher reconstruction error in Fig. 3.23 gives evidence for.
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Figure 3.26: Expansion in a 16-dimensional latent model (projected to two di-
mensions with t-SNE). We interpret the reconstruction error of a shape as its
distance from the latent surface. Samples from parameter search (PS, green) tend

to extrapolate away from the latent distribution (LS, blue).

The distributions of latent distances between all four data set variants were similar.
This provides some evidence that, even when VAEs are not able to reproduce
the extrapolated shapes, they can still distinguish them from the training data
and from each other. The position of examples in the latent space reflects the
semantic relationship between shapes, as visualized in Fig. 3.24. Shapes are not
properly reconstructed in the extrapolation task, but they are still positioned in
a well-structured manner. The evidence leads to the hypothesis that expansion
away from the latent surface will be even more difficult when searching the latent
space directly. It also provides evidence that the generative system would be able
to fulfill requirement A5 and allow a configurable resonance-dissonance trade-off,

as long as the VAE is not used as a search space directly.

Section 3.5.3 attests to an answer to the last task, expansion. The ability of a
VAE to find new shapes is indirectly measured by comparing the diversity of the
artifact sets created by a parameter and a latent search (PS and LS). The diversity
of PS is significantly higher than that of LS, as is shown in Fig. 3.25. This effect
holds when the number of latent dimensions is increased beyond the number of
degrees of freedom in the original explicit encoding or when the VAE is updated
after a first VE run (C). Although a trade-off between diversity and fitness is
expected, it becomes less pronounced in the 32-dimensional model. This provides
evidence that parameter search actually finds both a more diverse as well as a
higher performing set of artifacts than latent search. It can therefore be concluded

that, when combining VAE and VE, it might make sense to use more powerful
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Figure 3.27: The artifact set generated by PS exhibits a higher diversity than
the one generated by LS with a 16-dimensional latent model (projected to two
dimensions with t-SNE).

encodings than those provided by a GM, but still take advantage of the VAE’s
ability to distinguish shapes and amplify diversity.

3.5.5 Conclusions

To answer research question IV (“What are the limitations of generative models
in terms of the possible diversity of the solutions they create?”), a comparison
was made between the use of latent spaces in GMs as a base for divergent search
methods, specifically the AutoVE algorithm. The findings shown in this section
quantify a VAE’s ability to generate samples through recombination, interpolation
and extrapolation within and expansion beyond the distribution of a given data set.
The diversity of generated artifacts was compared when AutoVE is run either in
latent space or parameter space. Based on these observations evidence was given
that, in the context of divergent optimization, VAEs should be preferred to be used
as a judge of similarity, instead or at least alongside their use as a creator of diverse
artifact sets. Using GMs to distinguish solutions in evolutionary computation
combines the advantages of automatically discovering the best way to describe
similarity and diversity, while still allowing the use of powerful representations

that produce more diverse sets of artifacts than data-driven encodings.
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The usefulness of a GM’s ability to interpolate, extrapolate or expand has to be
discussed in the context of its application. In one setting, it might be ideal to
perfectly reproduce a given domain and a model might be considered as working well
if it can fit a distribution accordingly. In another context, however, and here artistic
applications are included, a model’s ability to surprise through its unexpected
outputs can be of more value and desirable. Here we can use extrapolation to

configure a resonance-dissonance effect in the mind of the user.

In the real world, the assumption that a GM can learn a ‘perfect’ representation
does not hold. A perfect model might not produce anything unexpected, only
creating high quality artifacts with low diversity. A broken model, on the other
hand, might not produce anything useful. The use of modeling errors to find
novel artifacts is certainly a mechanism that allows us to find novel solutions
within the model. An important question for future work is whether early stopping
can be used when training models to create novel yet useful artifacts: is there a
correlation between training loss and diversity? This question is not answered in
this thesis.

It is safe to assume that generative models are always limited by the training
data, which biases models towards what they have learned. Of course, in very
high-dimensional domains for which we can collect large data sets, like image and
video data, a search in latent space already presents us with a vast amount of

possible outcomes, which might be sufficient for some artistic contexts.

3.6 Chapter Summary

This chapter connected evolutionary computational encodings to ecology and
showed that solutions are best compared using their (extended) phenotypes, due
to neutrality and sensitivity effects. Now, different ways to solve a problem can
be provided to users, which should increase the dissonance they experience. This
answers research question I (“Are solutions best compared using their genomes or

their expressed phenotype or behavior?”).

In a critique by Whigham et al. (2017), the authors argue that biological evolution
and its ‘encoding’ are not optimal and should not be blindly applied to evolutionary
computation. They reason that genetic search operators must be aware of the

consequences resulting from the genome-to-phenotype mapping. In support of
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that criticism, I pose that, quite opposite to the emphasis on genetic search,
search should take place in the phenotypic space. This space can oftentimes not be
searched directly, for example in image generation, numerical or robotic simulations.
Instead, a knowledge base needs to be built or learned that contains information

about the common features of high-performing solutions.

Taking advantage of this with QD, performing niching in phenotypic space, enables
an indirect search in those high-dimensional spaces. QD outperforms other multi-
solution paradigms in generating diverse solution sets. A simple, self-expanding
implementation of QD, Voronoi-Elites, was introduced, which makes comparisons
between genetic and phenotypic search easier. This answers research question
IT (“What multi-solution optimization method produces the highest phenotypic
diversity?”).

QD’s niching dimensions can be automatically extracted from data with GM,
alleviating the user’s input prior and increasing solution diversity even more than
using predefined features. This answers research question IT (“Can we produce
more diverse solution sets when learning phenotypic niching from data instead of

using predefined features?”).

A further critical analysis was performed to highlight the limitations of GM and
to answer research question IV (“What are the limitations of generative models in
terms of the possible diversity of the solutions they create?”). Evidence was given
that indicates that in some cases, GM might be better used as niching dimensions
along which an EA can create a diverse set of solutions, instead of using the GM’s
latent dimensions for search directly. This is how we can enforce dissonance in the

mind of the user and discover truly novel solutions.
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