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Abstract

In this thesis, the ideas of Guilford about divergent thinking, Jung on intuition and
Sartre on reflection by others are combined to create a Hegelian creative process.
It is posed that the central object of preference discovery is a co-creative process
in which the Other can be represented by a machine, as is often done in the com-
putational creativity community. This thesis explores efficient methods to enhance

introverted intuition using extraverted intuition’s communication lines.

Possible implementations of such processes are presented using novel algorithms that
perform divergent search to feed the users’ intuition with many examples of high
quality solutions, allowing them to take influence interactively. In this process, the
machine feeds and reflects upon human intuition, combining both what is possible
and preferred. The machine model and the divergent optimization algorithms are
the motor behind this co-creative process, in which machine and users co-create
and interactively choose branches of an ad hoc hierarchical decomposition of the

solution space.

The proposed co-creative process consists of several elements, which are treated
in this thesis in the following order: a formal model for interactive co-creative
processes, evolutionary divergent search, diversity and similarity, data-driven
methods to discover diversity, limitations of artificial creative agents, matters of
efficiency in behavioral and morphological modeling, visualization, a connection
to prototype theory, and methods to allow users to influence artificial creative

agents.

We tend to portray human creativity as having few boundaries. It might seem
folly for a computer scientist to venture into such a domain where we have biases
about human capabilities and are not capable of quantifying results in an objective

manner without involving the human we aim to partially replace. This dissertation



is an effort to connect the field of computer science with the fields of philosophy,

psychology, and biology, to enhance, not replace human creativity.

The ethical, social and political consequences of replacing humans by algorithms
are part of a wider debate about how we organize society in the light of artificial
intelligence’s deep impact. But instead of replacing the human, this thesis explicitly
chooses to embrace human-computer interaction in creative design, putting the
human back into the loop of algorithmic design in generative Al and optimiza-

tion.

ii



Replicators [...] should be thought of as having extended phenotypic effects, con-
sisting of all its effects on the world at large, not just its effects on the individual
body in which it happens to be sitting.

(Dawkins 1982)

There is a power and utility to regarding the gene as the unit of selection, but

equally there is value to seeing the organism as the unit of niche construction.
(Laland 2004)
Can There Ever Be Too Many Options?

(Scheibehenne 2010)

No one can tell what the painting of tomorrow will be like; one cannot judge

a painting until it is done.

(Sartre and Elkaim-Sartre 1946)
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