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Abstract

Clearance of nanoparticles (NPs) after intravenous injection – mainly by the liver – is a critical barrier for the clinical translation of
nanomaterials. Physicochemical properties of NPs are known to influence their distribution through cell-specific interactions; however, the
molecular mechanisms responsible for liver cellular NP uptake are poorly understood. Liver sinusoidal endothelial cells and Kupffer cells are
critical participants in this clearance process. Here we use a zebrafish model for liver-NP interaction to identify the endothelial scavenger
receptor Stabilin-1 as a non-redundant receptor for the clearance of small anionic NPs. Furthermore, we show that physiologically, Stabilin-1
is required for the removal of bacterial lipopolysaccharide (LPS/endotoxin) from circulation and that Stabilin-1 cooperates with its homolog
Stabilin-2 in the clearance of larger (~100 nm) anionic NPs. Our findings allow optimization of anionic nanomedicine biodistribution and
targeting therapies that use Stabilin-1 and -2 for liver endothelium-specific delivery.
©2021TheAuthor(s). Published byElsevier Inc. This is an open access article under theCCBY license (http://creativecommons.org/licenses/by/4.0/).
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Clinical application of nanoparticles (NPs) after intravenous
(i.v.) administration and delivery of their cargo (i.e. drugs, DNA,
RNA, etc.) is hampered by the rapid sequestration of NPs,
mainly by cells in the liver.1 ,2 Consequently, removal of NPs
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sinusoids), recognize and internalize NPs and were long thought
to be the only liver cell type responsible for NP clearance in vivo.
However, recent studies on the cellular distribution of NPs
within the liver have revealed important contributions of B-
lymphocytes, hepatocytes, hepatic stellate cells and especially
liver sinusoidal endothelial cells (LSECs).4

The relative contribution of KCs and LSECs to the clearance
of circulating NPs depends mainly on size. Phagocytosis by KCs
is responsible for clearance of particles with a size >500 nm.5,6

These NPs are captured by KCs either directly through endocytic
receptors on their surface (such as scavenger and mannose
receptors), or indirectly, after binding of serum proteins to the
NP surface (i.e. opsonization) and subsequent recognition of the
bound proteins by Fc- and complement receptors.7 Compared to
KCs, clearance by the more numerous LSECs (present in an
approximately 1:2 ratio)4 is largely dependent on clathrin-
mediated endocytosis and is limited to particles with a size <500
nm.8 Although for LSECs the molecular mechanisms leading to
cellular NP uptake are less well understood, it is known that
LSECs internalize biological colloids – such as viral particles,9

bacterial lipopolysaccharide (LPS),10,11 oxidized lipoprotein
particles11,12 and immune complexes13 – at a similar rate to, or
exceeding uptake by KCs.

Analysis and identification of the molecular mechanisms that
mediate NP clearance will help in the challenging task of
translation of nanomedicines. The analysis of LSEC function is
complicated due to the rapid dedifferentiation of LSECs in
vitro14 and relies, consequently, on in vivo animal models.
Recently, we have established an in vivo zebrafish model for NP
clearance and have identified a cell type homologous to LSECs
in the early zebrafish embryo.15 These cells – which we named
scavenging endothelial cells (SECs), in analogy with previously
identified non-mammalian LSEC homologs16 – are not located
in the liver (as in mammals). Instead, they line the first
embryonic veins and provide blood clearance before the liver
vasculature becomes functional. Zebrafish is a convenient model
owing to its ease of genetic manipulation and optical
transparency in embryonic stages that provides the opportunity
to combine genome-editing techniques and non-invasive mi-
croscopy imaging in real-time. Furthermore, zebrafish embryos
are used to screen and optimize formulations prior to clinical
studies. Remarkably, the clearance function of SECs and their
gene expression signature in the zebrafish are comparable to
those of the mammalian LSECs, as demonstrated by the presence
of several endocytic receptors including several scavenger
receptors.17

LSEC-specific scavenger receptors are prominent candidates
for mediating NP clearance in this cell type, since they have been
reported to interact and endocytose a wide range of ligands
including modified lipoprotein particles,12 bacterial and viral
pathogens,18 and exosomes.19 One of the LSEC-specific
scavenger receptors – Stabilin-2 – has been found to bind and
internalize apoptotic bodies20 as well as exogenous ligands, such
as antisense oligonucleotides21 and NPs.22 Indeed, by generating
a zebrafish stab2 knockout line, we showed that Stabilin-2 is an
important receptor for SEC-mediated clearance of anionic
NPs.15 However, we also observed that some negatively charged
NPs were not only dependent on this receptor for clearance,
demonstrated by the uptake of NPs in the SECs even in the
absence of a functional Stabilin-2.

In this study, we identify a requirement for the stab2
homolog, Stabilin-1 (encoded by stab1 gene), in the removal of
small (~6-30 nm) NPs from circulation. These two scavenger
receptors have highly similar domain structure, consistent with
the binding of Stabilin-1 to most (but not all) Stabilin-2 ligands
in vitro,23 suggestive of functional redundancy.24 In addition, we
generated stab1/stab2 double knockout zebrafish embryos to
provide evidence that Stabilin receptors complement each other
in NP clearance of larger NPs (~100 nm size), as well as in the
removal of bacterial LPS from the circulation. Differential
scavenging function between Stabilin-1 and Stabilin-2 suggests
size as a determinant for receptor specificity.
Methods

NPs

Fluorescent Alexa488-LPS from Salmonella minnessota, PS
NPs, and Qdots layered with an organic CdSeS/ZnS and a
carboxylic acid as a reactive group (consisting of a monolayer of
octylamine-modified poly acrylic acid and a monolayer of poly
acrylic acid -PnOAm-co-PAA- copolymer cap) were purchased
from Life Technologies (Eugene, US) by Thermo Fisher
Scientific and Sigma-Aldrich (The Netherlands). SiNPs were
purchased from HiQ-Nano SRL (Arnesano, Italy). FluoHA was
prepared through conjugation of hyaluronic acid (100 kDa) with
fluorescein isothiocyanate (Isomer I, Sigma-Aldrich The Neth-
erlands) as previously described.25 Formulation of SCNPs and
synthesis and labeling are described in this work in the
Supporting Information. PLGA NPs were formulated in house
with a microfluidic system. DOPG-liposomes containing 1 mol
% DOPE-lissamine rhodamine were formulated with an
extrusion system as described previously.15 Rhodamine-loaded
polymersomes26 on PIB/PEG block copolymers were a kind gift
from S. Askes & S. Bonnet (Leiden University, The Nether-
lands). Atto-647 labeled CCMV-VLPs27 were a kind gift from
R. van der Hee & J. Cornelissen (University of Twente, The
Netherlands).

Zebrafish handling and strains

Zebrafish (Danio rerio) were maintained and handled
according to the guidelines from the Zebrafish Model Organism
Database (http://zfin.org) and in compliance with the directives
of the local animal welfare committee of Leiden University.
Housing and husbandry recommendations were followed as
recommended by Alestrom et al.28 Fertilization was performed
by natural spawning at the beginning of the light period and eggs
were raised at 28.5 °C in egg water (60 μg/ml Instant Ocean sea
salts). The following established strains were used: Tg(mpeg1:
mCherry),29 Tg(flt1enh:RFP)hu5333,30 Tg(flt4BAC:YFP)hu7135,31

stab2ibl2,15 stab1ibl3 (described in this work).

CRISPR/Cas9 mutagenesis

Cloning-free sgRNA for CRISPR/Cas9 mutagenesis was
designed and synthesized as described.32,33 125 pg of sgRNA
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(Table S2) and 300 pg cas9 mRNA were co-injected into a
single-cell wt embryo fish. Primers nucleotide sequences,
sgRNA sequence and predicted stab1 and stab2 amino acid
sequences in the stab1ibl3 and stab2ibl2 were used as reported.15

Double stab1ibl3 and stab2ibl2 mutants were generated by
crossing adult homozygous zebrafish stab2ibl2 and stab ibl3

mutants.

In situ hybridization

Whole-mount ISH was performed as described previously.34

The sequences for probes generation (stab1, stab2, mrc1 ) were
used as reported.15

Zebrafish i.v. microinjections and imaging

NPs formulation were injected into 2-day old zebrafish
embryos (52-56 hpf) using a modified microangraphy protocol.35

One nanoliter volume of NP formulation was calibrated and
injected into the duct of Cuvier after embryos were embedded in
0.4%agarose containing 0.01% tricaine as described.15We created
a small injection space by penetrating the skin with the injection
microneedle and gently pulling the needle back, thereby creating a
small pyramidal space in which the NPs were injected.
Representative embryos were randomly selected according to
successful injections and imaged by confocal microscopy after one
hour post injection. Confocal z-stacks were captured on a Leica
TCSSPE orLEICATCSSP8 confocalmicroscope, using a 10× air
objective (HCXPLFLUOTAR), a 40×water-immersion objective
(HCX APO L), or a 63× oil-immersion objective (HC PL APO
CS). In order to compare images between strains, microscopy
settings (laser intensity, gain and offset) were identical between
stacks and sessions. Whole-embryo images were a compilation of
3-4 overlapping z-stacks. Fiji36 distribution of ImageJ was used to
process and quantify images. At least 6 images were used for
quantification.

Imaging quantification

Quantification was performed in the caudal region of the
zebrafish, known to contain Stabilin endothelium and that
includes the dorsal aorta, the caudal vein, and the caudal
hematopoietic tissue and could include macrophages associated
with SECs. First, an average intravascular intensity, within the
dorsal aorta, was measured within a rectangular area in a single
confocal slice that captured the center of the dorsal aorta. This
measurement was repeated three times per embryo in indepen-
dent sites within the dorsal aorta. Next, the maximum intensity
value obtained per image was used to adjust the threshold
according to the max value measure in the aorta (in circulation),
generating a binary image. The strong fluorescence signal
observed by accumulated phagocytosed NPs could lead to a
misinterpretation of a SEC signal. For that reason and since the
aim of this quantification is to compare the contribution of
stabilins in the clearance of NPs and not directly the
phagocytosis of macrophages, we attempt to remove the signal
potentially associated with macrophages by means of size
filtering (0.25-20 um) and to use a qualitative approach to refer to
macrophages uptake. From the resulting image, a value of 254
was subtracted in order to get values of 0 (no signal) or 1
(fluorescence). The image of interest was multiplied (max ×
mask) to obtain the mean intensity and the area (%) of the
analyzed image. Having these values, the total area with signal
(% area × total signal /100) and the total signal (mean signal ×
total area) were calculated. The median intensity value of the
total signal obtained from the mutants was normalized against
the wt counterpart. The angle of the dorsal aspect of the dorsal
aorta (a straight line) was measured and then concatenated.
Images were rotated to orient the DA horizontally within the
image and were subsequently cropped.

Statistical analysis

For comparisons between multiple groups, we used Kruskal–
Wallis tests followed by two-tailed Dunn’s tests with Bonferroni
correction using the PMCMR package in R or GraphPad Prism.
No statistical methods were used to predetermine sample size,
but group sizes were greater than 5 in order for the null
distribution of the Kruskal–Wallis statistic to approximate the Χ2

distribution (with k − 1 degrees of freedom). Graphs show all
individual data points and the median. Confocal image stacks
(raw data) are available from the corresponding author upon
request.
Results

Generation and characterization of stab1 and stab2 double
knockout zebrafish

Liver endothelium is characterized by the presence of
scavenger receptors strongly expressed on the membrane cell
surface. Given that the clearance of some anionic NPs is not
exclusively dependent on the scavenging function of Stabilin-
2,15 we hypothesized that one or more other scavenger receptor
(s) expressed in LSECs might be involved in the removal of NPs.
To identify additional clearance receptors, we first analyzed the
RNA expression of all scavenger receptors in LSECs from
mouse liver, based on published single-cell RNA sequencing
datasets37–39 (Table S1). Although this analysis revealed that
Stab2 is the most abundant scavenger receptor expressed in
LSECs, the expression of seven other scavenger receptors (Msr1,
Scarb1, CD36, Scarf1, Mrc1, CXCl16 and Stab1) was
consistently observed. Of these, the mannose receptor (Mrc1)
and Stab1 are the most abundant scavenger receptors expressed
by LSECs besides Stab2. We previously reported that the
zebrafish orthologues of these genes (mrc1a and stab1) are also
highly expressed on SECs.15 Since Stabilin-1 binds similar
ligands as Stabilin-2,23 we further analyzed the role of this
receptor in NP clearance.

To this end, we generated a zebrafish stab1 mutant line
through CRISPR/Cas mutagenesis (guide RNA sequence in
Table S2). In this strain (stab1ibl3), a deletion of one nucleotide
causes a frame-shift, leading to a premature stop codon after
amino acid 85. The predicted gene product is a truncated protein
lacking most conserved domains, including the fasciclin, EGF-
like and LINK domains (Figure 1, A). This gene knockout
approach allows us to study the biodistribution of NPs in
zebrafish embryo and to compare the clearance by SECs in the



Figure 1. Generation and characterization of stab1 and stab1/stab2 mutants. (A) Schematic representation of a stab1 domain structure predicted to be
expressed from the wt Stabilin-1 and the stab1ibl3 allele. (B) In situ hybridization (ISH), mRNA expression of stab1, stab2, and mrc1 in wt, stab1ibl3, stab2ibl2

single mutants and stab1ibl3stab2ibl2 double mutant. *Reduced expression. (C) Tg(fli1:RFP fli4:YFP) stab1ibl3 single mutant, stab1ibl3stab2ibl2 double mutant,
and sibling at 5 dpf. Scale bar: 250 μm. (d) Representative fertile adult female stab1ibl3 single mutant, stab1ibl3stab2ibl2 double mutant and sibling zebrafish.
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presence and/or absence of functional Stabilin receptor(s). To
study the combined contributions of Stabilin-1 and Stabilin-2,
embryos with mutations in both stab1 and stab2 (stabDKO) were
also generated intercrossing stab1ibl3 and stab2ibl2 carriers.

Characterization of the generated mutants was performed by
whole-mount in situ hybridization (ISH). Using antisense RNA
probes we found a strong reduction of stab1 expression in
stab1 ibl3 homozygous mutant embryos, consistent with
nonsense-mediated decay (NMD) of the mutant RNA, whereas
stab2 and mrc1a expression was unaffected, indicating normal
SEC differentiation (Figure 1, B). In stabDKO embryos,
expression of both stab1 and stab2 was also reduced through
NMD. Of note, stab2 expression was found to be slightly
increased in stabDKO compared to the signal in stab2 mutant
embryos. Importantly, mrc1a expression in stabDKO embryos
was maintained, indicating that SEC differentiation occurred
even after the combined loss of stab1 and stab2.

Homozygous stab1 zebrafish mutants develop a normal
blood and lymphatic vascular system (Figure 1, C) and we did
not observe the previously described defects in lymphatic
development induced by morpholino oligonucleotide-mediated
after stab1 knockdown.40 Stab1 mutant embryos develop
without obvious morphological defects into viable and fertile
adults (Figure 1, D) similar to stab2 mutant zebrafish, as well as
adult Stab1 knockout mice. Strikingly, although Stab1/2 double
knockout mice display reduced viability due to kidney failure,
adult stabDKO zebrafish did not show increased mortality or
pathology.

Identification of Stabilin-1 function in the clearance of anionic
NPs

Previously, we found that two types of NPs were efficiently
cleared by SECs even in the absence of stab2 expression.15
Specifically, these were quantum dots (Qdots) with a negatively
charged surface coating and Cowpea chlorotic mottle virus
derived virus-like particles (CCMV-VLPs), which are non-
enveloped protein capsids with a hexagonal closed packed
structure.27 As most viruses, these VLPs have a negative surface
charge. Biodistribution of the Qdots was unchanged in stab2
mutants, while only a small reduction in the clearance of CCMV-
VLPs was observed. The clearance of these two particle types,
however, is apparently mediated through scavenger receptors,
since it was completely inhibited by pre-injection with the
general scavenger receptor inhibitor, dextran sulfate. Therefore,
we injected fluorescently labeled Qdots and CCMV-VLP i.v.
into the Duct of Cuvier of wild-type (wt), stab1, stab2 and
stabDKO zebrafish embryos at 56 h post fertilization (hpf) and
subsequently imaged their biodistribution with confocal micros-
copy. The resulting accumulation of NP fluorescence represent-
ing SEC-mediated clearance was quantified (see Methods for
details) on a cellular level in the caudal region of the zebrafish
tail (Figure 2, A-B). Importantly, this region also contains
plasma-exposed macrophages, commonly known to remove NPs
from circulation and analogous to the mammalian Kupffer cells
(exemplified in Figure S1).

Strikingly, for both Qdots and CCMV-VLPs, we observed a
strong reduction in NP clearance in both stab1 mutants and
stabDKO embryos indicating a dominant role for Stabilin-1 in the
clearance of these NP types (Figure 2, C-F and Figure S2, A-B).
NPs that were cleared mainly through Stabilin-1 differ in their
composition (inorganic vs. viral capsids) and surface chemistry,
and were also chemically distinct from the NPs cleared mainly
through Stabilin-2 (which included lipid and polymeric parti-
cles). The difference in surface chemistry of all NPs studied
suggests a more general mechanism where particle size might be
an important factor for receptor specificity. To further strengthen
this hypothesis, we next injected chemically distinct (polymeric)

Image of Figure 1


Figure 2. Clearance of small anionic NPs occurs mainly through Stabilin-1. (A) Schematics showing the site of injection within a 56 h post fertilization (hpf)
wt or Stabilin knockout zebrafish. In a box, the caudal vein region, where SECs expressing Stabilins are located, a representation of NP circulating or cleared by
SECs and (B) representative graph comparing intensity of fluorescent NPs in wt and stab mutants. (C-D) Tissue level view and quantification of fluorescently
labeled Qdots. (E-F) CCMV-VLP (G-H) SCNPs. After i.v. injection (1 nL) in wt (AB/TL), stab1ibl3, stab2ibl2 single mutants and stab1ibl3stab2ibl2 double
mutants at 1-1.5 hpi. Scale bar: 50 μm. Bar height represents median values, dots represent individual data points, and brackets indicate significant values (*P
0.05, **P 0.01, ***P 0.001) based on Kruskal–Wallis tests followed by two-tailed Dunn’s tests with Bonferroni correction.
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small NPs. To this end, fluorescently labeled anionic single-
chain polymeric NPs (SCNPs) were synthesized and character-
ized (see Supporting Information for more details). SCNPs are a
polymeric NP type which consists of biodegradable polymer
chains that are covalently cross-linked and folded to form a small
particle.41 The resulting NP size is defined by the length of the
polymer chain and can be used to obtain small, uniform polymer
NPs of 10-20 nm. Injection of ~10 nm SCNPs in the zebrafish
embryo revealed that clearance of these particles occurred
through SECs as expected. Importantly, SCNP clearance was
strongly affected in stab1 mutants, similar to Qdots and CCMV-
VLPs (Figure 2, G-H and Figure S2, C). These results indicate
that – for negatively charged NPs – size, rather than chemical
composition, is a predominant factor for receptor specificity.

Stabilin-1 and Stabilin-2 are complementary receptors in the
clearance of anionic NPs by SECs

Previous studies on the biodistribution of polymer- and lipid-
based NPs including polymersomes,15,26 fibrillar supramolecu-
lar polymers,42 solid polystyrene (PS) NPs and liposomes15 in
zebrafish stab2 mutants revealed a residual uptake of NPs in
SECs in the absence of stab2 expression. Common character-
istics of these NPs were a negative surface, but these NPs
differed in size, shape, composition and rigidity.

To investigate a complementary role of Stabilin-1 to Stabilin-
2 in the clearance of NPs ~100 nm, we injected negatively
charged DOPG-liposomes and polymersomes in stabDKO

embryos. Interestingly, the clearance of both NPs in stabDKO

embryos was strongly affected, more than that observed in stab2
single mutants. The loss of a functional Stabilin-1 did not affect
the biodistribution of these particles compared to wt embryos
(Figure 3, A-D and Figure S3, A-B), in striking contrast to the
biodistribution of the smaller NPs. This indicates a cooperative
role of Stabilin-1 and Stabilin-2 in NP clearance, consistent with
their highly similar ligand profile.23

We next analyze the behavior of more rigid solid NPs.
Therefore, we used anionic poly(D,L-lactide-co-glycolide)
(PLGA) NPs and spherical silica NPs (siNPs) due to their

Image of Figure 2


Figure 3. Combined contribution of Stabilin-1 and Stabilin-2 in the clearance of anionic NPs. (A-B) Tissue level view (40×) and quantification of
fluorescently labeled DOPG-liposomes, (C-D) polymersomes, (E-F) PLGA NPs, (G-H) siNPs after i.v. injection (1 nL) in wt (AB/TL), stab1ibl3, stab2ibl2

single and stab1ibl3stab2ibl2 double mutants at 1-1.5 h post injection (hpi). White arrows indicate apparent NP uptake within plasma-exposed macrophages.
Scale bar: 50 μm. Graphs represent intensity of fluorescent NPs in wt and stabmutants. Bar height represents median values, dots are individual data points, and
brackets indicate significant values (*P 0.05, **P 0.01, ***P 0.001) based on Kruskal–Wallis tests followed by two-tailed Dunn’s tests with Bonferroni
correction.
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relevant importance in drug delivery or biomedical imaging
agent applications.43,44 Similar to polymersomes and DOPG-
liposomes, anionic PLGA NPs and siNPs are cleared through
SECs in wt zebrafish. Their biodistribution remained unchanged
in stab1 mutants, but clearance was strongly affected in stab2
mutants, and even more in stabDKO mutants (Figure 3, E-H and
Figure S3, C-D). Interestingly, for the PLGA NPs, the absence of
SEC clearance resulted in increased macrophage uptake
(indicated by white arrows in Figure 3, E, G and Figure S1).
The absence of molecular interactions between NPs for most of
the ~100 nm NPs and SECs in the stabDKO embryos is an
evidence of a combined contribution of Stabilin-1 and Stabilin-2,
where Stabilin-2 is the predominant receptor involved in the
clearance in this size range. However, this contribution seems to
be a more complex process that depends not only on size but also
on the particle composition. We observed the behavior for
anionic NP type (polystyrene NPs) of different sizes (40-100 nm)
(Figure S4, A). In this case, we first qualitatively confirmed
SEC-uptake of these particles through co-injection with
fluorescently labeled hyaluronic acid (fluoHA), a Stabilin-2
ligand and a marker for SEC endocytosis (Figure S4, B-C). SEC
clearance is only partly affected in stabDKO mutants, indicating
the presence of at least one additional clearance receptor besides
Stabilin-1 and Stabilin-2 (Figure S4, D-G).

Identification of an endogenous Stabilin ligand: bacterial LPS

Clearance of synthetic nanoparticles can only be reflective of
physiological mechanisms that are required for the removal of
naturally occurring particles in the 10 to 200 nm size range. We
therefore sought to identify naturally occurring circulating
particles of this dimension as a probable physiologic Stabilin
ligand. One such ligand is LPS, which is the main component of
the outer membrane of Gram-negative bacteria with the lipid A
portion, an anchor in the bacterial cell wall, which provides
toxicity and activates immune responses in mammals.45

Image of Figure 3


Figure 4. LPS clearance is mediated by Stabilin-1 and Stabilin-2. (A) Biodistribution of Alexa488 LPS (1 nL of 500 μm/mL) in wt (AB/TL), (B) stab2ibl2

mutant, (C) stab1ibl3mutant, (D) stab1ibl3stab2ibl2 double mutant at 56 hpf, 1.5 hpi, whole body view (10×). Scale bar: 200 μm. (E-H) Tissue level views, caudal
region (40×). Scale bar: 50 μm (I) Graph represents intensity of fluorescent LPS in wt and stab mutants. Bar height represents median values, dots represent
individual data points, and brackets indicate significant values (*P 0.05, ***P 0.001) based on Kruskal–Wallis tests followed by two-tailed Dunn’s tests with
Bonferroni correction. The images shown in E-H correspond to the fish used in A-D and are one of the images used for the graph in I.
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We rationally hypothesized that bacterial endotoxin LPS
would be one of this natural ligands for three reasons. First, LPS
is highly toxic and must be rapidly eliminated from host
circulation, which is performed mainly by LSECs scavenger
receptors of unknown identity.10 , 18 Second, due to its
amphiphilic nature, LPS self-assembles into small anionic NPs
with a diameter of ~50 nm, resembling synthetic NPs.46,47

Third, Stabilin-2 has been shown to bind to Gram-negative
bacteria – which contain LPS – in vitro.48 To investigate
whether circulating LPS is indeed cleared by SECs through
Stabilin receptors, fluorescently labeled LPS (Alexa488-LPS)
from the Gram-negative bacterium Salmonella minnesota49 was
i.v. administered. LPS diluted into a salt suspension is proposed
to aggregate into micelles at concentrations above the critical
micelle concentration (CMC).46,47 ,50 The LPS concentration
injected (500 μg/ml) is above the CMC (~10 μg/ml)50 even after
dilution into the blood of a zebrafish embryo (estimated 30-fold
dilution factor, excluding red blood cells, at 2 dpf).51

Distribution of fluorescent LPS in Tg(mpeg1:mCherry) zebrafish
shows no extensive co-localization with labeled macrophages
(Figure S5). This result indicates that phagocytosis by plasma-
exposed macrophages does not represent the main clearance
route of LPS in the zebrafish embryo, at 56 hpf. Instead, LPS was
associated mainly with SECs located in the caudal vein region of
wt zebrafish (Figure 4, A, E), confirming their functional
homology to mammalian LSECs.10

Next, we injected LPS in stab2, stab1 and double mutant
zebrafish embryos (Figure 4, B-D, F-H). Association of LPS
with SECs was maintained in stab2 mutants (Figure 4, B, G). In
this case, although a slight decrease in the LPS clearance was
observed compared to wt embryos, SEC-uptake was not
significantly changed between these two groups (Figure 4, I).
Importantly, LPS uptake by SECs was reduced in stab1 knockout
and completely abrogated in stabDKO mutants, leading to a
strong increased level of LPS in circulation (Figure 4, D, H).
This result revealed a cooperative function of Stabilin-1 and
Stabilin-2 in LPS uptake and clearance. The loss of LPS uptake
in the double knockouts was very similar to that observed after
pre-administration of a competitive inhibitor dextran sulfate
(Figure S6), indicating LPS is a common ligand for Stabilin-1
and Stabilin-2, and both receptors are redundantly required for
the removal of LPS from the circulation.
Discussion

The understanding of NPs in vivo behavior of their molecular
and cellular interactions after i.v. administrations is essential to
improve efficacy and pharmacokinetics of nanomaterials. Here,
we identify that Stabilin-1, a scavenger receptor expressed in
LSECs in mammals, is involved in the clearance of small anionic
NPs. Interestingly, while mice lacking both Stab1 and Stab2
revealed a glomerulofibrotic nephropathy secondary to impaired
liver clearance of noxious blood factors52,53 leading to strongly
reduced viability, we observed that stabDKO adult zebrafish were
obtained in mendelian ratios and were phenotypically indistin-
guishable from single mutant and wt zebrafish. Since the reduced
viability observed in Stab1/Stab2 double knockout mice is due

Image of Figure 4
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mainly to kidney failure, the viability of stabDKO fish potentially
reflects the high regenerative capacity of the zebrafish kidney.54

Through comparison of NP biodistribution in wt and single/
double Stabilin mutants we could quantify the relative contribution
of Stabilin receptors to the clearance of specific NPs in zebrafish
embryos. The analysis of physicochemical properties (Table S3) and
in vivo biodistribution of NPs involved in differential uptake, for
both Stabilin receptors, revealed a dependency on size of the particle.
Particle size is a critical parameter affecting cellular uptake of
nanotherapeutics.55 Depending on the intended application – i.e.
drug targeting, vaccine delivery or nucleic acid delivery – an optimal
size range is desired.56,57 In addition, improved internalization
associatedwith small nanoparticles (~25-50 nm) has been previously
shown.58,59 Gold nanoparticles of this size range coated with
antibodies, for example, display improved endocytosis and
regulation of cellular functions.58 Similarly, ~25-50 nm range has
been suggested as an optimal size to reach the maximum cellular
uptake.59 For in vivo activity of small particles, NP clearance by the
liver is an important factor influencing biodistribution, but so far has
not been linked to a specific receptor. The preference between
Stabilin-1 and Stabilin-2 could be attributed indirectly to biological
factors or to differences in the structural domains. Biologically,
although NP protein corona formation in vivo is known to affect the
fate of NPs, the different chemistries of the various NPs involved in
this study strongly suggest that charge and size are predominant
requirements in the interactions between NPs and Stabilin receptors.
Structurally, both receptors are initially expressed as a 310 kDa
protein, have a very similar domain structure, and are known to share
a very common ligand binding profile.23 So far, it is unknownwhich
structural differences could explain the differential requirement for
both receptors to NP clearance.

Besides NPs, the identification of an endogenous ligand of
Stabilins, LPS, provides important information in the mechanism
of clearance of endotoxins. Mechanistically, LPS is known to be
detected through toll-like receptor factor 4 and myeloid
differentiation factor 2 (TLR4/Md-2) complex in mammals.60

Inflammatory responses to LPS have been previously observed
in the zebrafish,5 but the signaling involved in LPS-sensing is
not well understood. Since SECs in the zebrafish are functionally
homologous to LSECs15 and LPS is known to be recognized by
LSECs in mammals,10,18 we believe our results contribute to the
mechanistic understanding of recognition and clearance of endo-
toxin LPS – especially at high concentrations above the CMC –
important not only in the identification and study of host–pathogen
interactions but also in inflammation and immunity responses.

In conclusion, by using the zebrafish asmodel that allows genetic
analysis and imaging of NP clearance in vivo, we demonstrate that
Stabilin-1 is required independently of Stabilin-2 for endothelial
clearance of small anionic Qdots, CCMV-VLP, and SCNPs (6-30
nm) from the circulation. Since NPs with very different chemistries
are cleared by Stabilin-1, this strongly suggests negative surface
charge and size as the predominant factors that determine a
requirement for Stabilin-1 in NP clearance. We also show a
combined contribution between Stabilin-1 and Stabilin-2 in the
clearance of anionic liposomes, polymeric PS and siNPs (~100 nm)
and in the removal of LPS. These results reveal a partial redundancy
between stab1 and stab2, both important for NPs clearance, and
suggest a differential uptake where size is one of the key parameters
determining the selective uptake by each receptor. Given size is
particularly important in vaccine development, biomedical imaging
applications and delivery technologies, improved mechanistic
insights into the interactions between size-selected NPs and the
liver at the molecular level contribute to the optimization of small
nanomaterials and avenues for receptor-specific targeting.
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