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Mechanisms—collections of rigid elements coupled by perfect hinges which exhibit a zero-energy
motion—motivate the design of a variety of mechanical metamaterials. We enlarge this design space by
considering pseudo-mechanisms, collections of elastically coupled elements that exhibit motions with very
low energy costs. We show that their geometric design generally is distinct from those of true mechanisms,
thus opening up a large and virtually unexplored design space. We further extend this space by designing
building blocks with bistable and tristable energy landscapes, realize these by 3D printing, and show how
these form unit cells for multistable metamaterials.
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A mechanism is a collection of flexibly linked,
rigid elements which exhibits a zero-energy motion.
Mechanisms play a foundational role in the physics of
jammed media and spring networks [1–7], and are central
in mechanical engineering, where they underlie the design
of robotic devices such as grippers [8,9]. Imperfect mech-
anisms, based on distorted geometries [10–13], extra bonds
or connections [1–7], or nonideal hinges [14] frequently
occur, and these exhibit soft modes similar to the zero
energy motions of the underlying mechanism. In particular,
mechanism-based metamaterials borrow the geometric
design of mechanisms but replace the hinges by slender,
flexible parts which connect stiffer elements, such that the
soft modes of the metamaterial are similar to the free
motion of the underlying mechanism. External forces easily
excite these soft modes, and as the mechanism-derived soft
modes can be very different from those of ordinary elastic
modes, exotic properties may emerge [15], including
negative response parameters [16–18], shape-morphing
[19–22], topological polarization [23–26], programm-
ability and multistability [10,11,27–29] and (self-)folding
[10–12,20,24,29–35].
However, as mechanism-based metamaterials do not

have true zero modes [14,15], the design of a flexible
metamaterial does not require an underlying true zero-
energy mechanism. This suggests one to consider pseudo-
mechanisms (PMs), which we define as collections of
flexibly coupled rigid elements that exhibit motions with
(very) low energy costs.
Here we show that PMs are widespread, by constructing

quadrilateral based PMs by use of particle swarm opti-
mization. Our central finding is that most PMs are
geometrically very distinct from true mechanisms; most
PMs are not simply perturbed mechanisms, but PMs
permeate the design space very far away from the true
mechanism subspace. We extend our search techniques to

obtain multistable units [27], and bring these to life using
3D printing. Finally, we show how to tile our unit cells
to obtain complex periodic metamaterials. Together, our
approach, which is computationally effective, suggests new
avenues for the design of shape-morphing and multistable
metamaterials [15] as well as devices for robotics or
deployable structures such as bellows [9,36].
System.—We consider collections of quadrilaterals con-

nected in a square topology by hinges with zero torsional
stiffness and finite stretchability (Fig. 1). For equally sized
squares, such a system has a zero mode and is known
as the rotating square mechanism [37]; this geometry
underlies a large number of mechanical metamaterials
[14,15,17,19,21,28,32,38]. Generalizations, including to
regular tilings of alternatingly sized squares, rectangles,
or 3D, are well known [19,28,39,40]. The condition for
such collections of quadrilaterals to form a mechanism are
simple. For definiteness, we focus on 3 × 3 tilings of
quadrilaterals [Fig. 1(a)]. We can consider such tilings as

(a) (b) (c)

FIG. 1. (a) Full unit consisting of nine rigid quadrilaterals
(1–9), connected by 12 flexible hinges fx12; x23;…g (circles).
This unit can also be seen as four connected four-bar linkages Li.
(b) Diluted unit. (c) Depending on the design of quadrilaterals
(1–8), the characteristic motion of the diluted unit, DðθÞ, can be
(nearly) constant (i), a monotonic function (ii), or a nonmono-
tonic function (iii).
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collections of connected four-bar linkages Li, and then
express the relations between their (inner) angles by
mappings Mi. It can be shown that quadrilateral tilings
can only form a mechanism if all four-bar linkages (voids)
form parallelograms, as these are associated with linear
mappingsMi [41]. In contrast, for generic quadrilaterals the
mappings Mi are nonlinear, and tilings of 3 × 3 (or larger)
generic quadrilaterals do not possess a zero energy motion
[38,41,42] [Fig. 1(a)].
To make progress, we focus on a diluted unit, obtained

by removing quadrilateral 9, which yields a mechanism
with a freely hinging, zero energy, finite amplitude mode
[38,42] [Fig. 1(b)]. To characterize this mechanism, we
remove all extraneous information, and replace the corner
quadrilaterials with rigid bars [Fig. 1(b)]. The geometry of
this mechanism is specified by the coordinates of the 12
links fx12; x23;…g≕X, which span a 24-dimensional
design space. We control the free motion of this mechanism
by θ, the deviation of ∠ from its initial value, and
characterize the diluted unit by D ≔ jx89 − x69j as a
function of θ [Fig. 1(b)]. Experimentally, stretching or
compressing two points on the systems, or compressing the
points between parallel plates actuates the soft mode of the
system that we describe here. The function DðθÞ acts as a
proxy for the mechanics of a full 3 × 3 unit consisting of
flexible elements: if DðθÞ is a constant, reinserting a ninth
quad of appropriate dimensions yields a full 3 × 3 unit with
a zero mode [42,43] [Fig. 1(c)(i)]. For nearly constant
DðθÞ, reinserting the ninth quadrilateral would lead to a
system with a large amplitude motion with a very low
energy: a pseudo-mechanism. For generic quadrilaterals
DðθÞ is a nonlinear function [Fig. 1(c)(ii–iii)], and inserting
the ninth quadrilateral yields a more complex energy
landscape. The design problem is thus to obtain coordi-
nates fx12; x23;…g so that DðθÞ closely matches a target
function DtðθÞ.
Design by particle swarm optimization.—We define a

cost function f based on the normalized Euclidean distance
between DðθÞ and DtðθÞ, combined with discrete con-
straints to avoid nonfitting quadrilaterals, overlapping
quadrilaterals, and designs where the quadrilateral sizes
differ too much (see Supplemental Material [44]).
Exploring this design space requires an algorithm that
does not easily get stuck in shallow minima, as purely
gradient based methods would. Evolutionary algorithms
are eminently suited for this, and we choose here to use
particle swarm optimization (PSO) due to its simplicity and
ease of tuning. This method employs an ensemble (swarm)
of particles—each representing a particular design—and is
known to allow one to identify deep minima in a rugged
landscape [45–51]. While we note that our approach
remains valid for larger structures, the computational time
grows exponentially in the size of the structure and we
focus here on 3 × 3 structures. The PSO algorithm keeps
track of the best position discovered by each particle up to

generation (iteration) k, xbk
i , and by the best position

discovered by all the particles—the swarm—xsk. We seed
an initial population of randomly distributed particles with
random velocities. During the search, each particle is
attracted towards a stochastic mix of xbk

i and xsk:

vkþ1
i ¼ wvki þ c1r1i · ðxbk

i − xk
i Þ þ c2r2i · ðxsk − xk

i Þ; ð1Þ

xkþ1
i ¼ xk

i þ vkþ1
i ; ð2Þ

where r1i and r2i are random vectors whose elements are
uniformly distributed between 0 and 1, and the so-called
inertia (w), cognition (c1), and social (c2) hyperparameters
must be chosen to optimize convergence. For our specific
design problem, the position xi and velocity vi of particle i
are both 24-dimensional vectors, and we have verified by
hyperparameter optimization that the algorithm yields good
results for w ¼ 0.25, c1 ≥ 0.0, c2 ≥ 1.75 and c1 þ c2 ≤
3.50 (see Supplemental Material [44]). For each target
function, we run 3000 runs for each of the 36 pairs of
parameter values that satisfy c1 ¼ 0; 0.25; 0.5;…; 1.75,
c2 ¼ 1.75; 2; 2.25;…; 3.5, and c1 þ c2 ≤ 3.5, leading to
a total of 1.18 × 105 runs. For details, see Supplemental
Material [44].
Generic flexible unit cells.—We first focus on designing

diluted units for which DðθÞ is close to a constant. We set
the target curve Dt1ðθÞ ¼ 1 and deploy PSO to obtain
designs with low values of f. We find a large number of
designs for which f is very small, so that DðθÞ is close to a
constant (Fig. 2). We quantify the geometry of these
solutions through an order-parameter s which measures
the proximity of the four internal four-bar linkages to
parallelogram linkages. We define si for the ith linkage as

s2i ¼
ða1i − a3i Þ2 þ ða2i − a4i Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða1i Þ2 þ ða2i Þ2 þ ða3i Þ2 þ ða4i Þ2
p ; ð3Þ

where aji are the bar lengths j ¼ 1;…; 4 of linkage i, and
define s as

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

X

4

i¼1

s2i

v

u

u

t : ð4Þ

While our algorithm finds some solutions with small s, i.e.,
close to the true mechanism limit where all linkages are
parallelograms [Fig. 2(a)], the vast majority of solutions
with low f have significantly larger values of s [Figs. 2(b)
and 2(c)]. Notwithstanding this strong deviation from true
mechanisms, the peak deviation between DðθÞ and DtðθÞ
can be as small as 4 × 10−4 [Figs. 2(d)–2(f)].
We show a scatter plot of f versus s, and the individual

distributions of f and s—which are only weakly
correlated—in Figs. 2(g)–2(i). These plots reveal that the
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distribution of f is log normal, with s normally distributed
with the center at s ≈ 1, corresponding to designs that are
very far away from strict mechanisms (s ¼ 0). Hence,
pseudo-mechanisms with anomalously low functional
deviations from true mechanisms are widespread, and

occur in regions of design space that are far away from
true mechanisms.
Our findings suggest a complex organization of the

design space. To gain insight into this structure, we have
explored whether the value of f increases if a certain
solution x0 is randomly perturbed. Specifically, we generate
1000 random 24-dimensional vectors dx with each entry
uniformly distributed between −1 and 1, and then calculate
fðx0 þ εdxÞ for a range of ε. For the deep solution, where
½f0; s� ¼ ½9.88 × 10−9; 0.61�, we find that all f > f0, con-
sistent with the idea that these solutions are local minima
(see Supplemental Material [44]). In contrast, for solutions
with much larger values of f we find a small but finite
probability that f < f0 for small perturbations (ε ¼ 10−3)
but not for larger perturbations of order ε ¼ 10−2. We
suggest that these solutions perhaps are close to a shallow
local minimum, and note that PSO is not guaranteed to find
local minima with high accuracy (for details, see
Supplemental Material [44]).
Multistable unit cells.—The ease with which we can find

pseudo-mechanisms prompts the question if it is similarly
easy to generate designs for other target functions. For
systems with flexible hinges, inserting a ninth quad
with dimension D0 provides the blueprint for a unit
with low energy states for DðθÞ ¼ D0, so that nonmono-
tonic DðθÞ lead to multistable structures. We have inves-
tigated four families of target function: D1;t ¼ 1þ αθ,
D2;t ¼ 1þ α sinð2θ þ π=2Þ, D3;t ¼ 1þ α sinð3θ þ π=2Þ,
andD4;t ¼ 1þ α sinð4θÞ for a range of values of α between
−1=2 and 1=2 [52]. Here we focus on the designs for D2;t

and D4;t, as these form the basis for bistable and trista-
ble units.
We show scatter plots of f vs s forD2;t andD4;t in Fig. 3,

for α ¼ 0.5. We observe a large cloud of solutions, and note
that the typical values of f for curves with more extrema are
somewhat larger than those for Dt ¼ 1. Examples of

FIG. 2. (a)–(c) Three examples of diluted units for which DðθÞ
is nearly constant and equal to 1, for θ ∈ ½−60°; 60°�, for ½f; s� ¼
½2.26 × 10−8; 0.084� (a); ½9.88 × 10−9; 0.611� (b); and ½1.04 ×
10−8; 1.06� (c). The three snapshots in each panel correspond to
θ ¼ −60°, 0°, and 60°. (d)–(f) Corresponding plots ofD − 1 vs θ;
notice the scale. (g) Scatter plot of f vs s, where uptriangle,
square, and downtriangle symbols indicate the parameter values
shown in (a)–(c), respectively. (h),(i) Distributions of f and s.

FIG. 3. (a) Scatter plot [18000 points] of f and s for the target function DtðθÞ ¼ 1þ 0.5 sin ð2θ þ π=2Þ. Inset: The target and realized
DðθÞ for f ¼ 3.2 × 10−5; s ¼ 1.12 (triangle in panel (a)) are virtually indistinguishable. (b,c) Corresponding pruned unit for θ ¼ �60°,
whereD ≈ 1 (d,e) Corresponding 3D printed flexible bistable unit in both its stable states. (f) Scatter plot [18000 points] of f and s for a
target function DtðθÞ ¼ 1þ 0.5 sin ð4θÞ. Inset: The target and realized DðθÞ for f ¼ 6.7 × 10−3; s ¼ 1.10 (triangle in panel (g)) are
virtually indistinguishable. (g–i) Corresponding pruned unit for θ ¼ −45°; 0°; 45°, whereD ≈ 1. (j–l) 3D printed tristable unit in all three
stable states.
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designs of diluted units that closely satisfy the target curves
are shown in Fig. 3.
We experimentally realized full units based on the

designs shown in Figs. 3(b) and 3(g) by adding a ninth
quad of appropriate length and then 3D printing these units
with flexible material (filaflex). The out-of-plane thickness
of these samples is 10 mm and the connecting hinges have a
minimum thickness of ≈0.5 mm. Despite the finite flex-
ibility of all quads, and the finite but small bending stiffness
of their hinges, we observe that these samples are indeed
bistable and tristable respectively, with their stable con-
figurations close to the expected configurations [Figs. 3(d),
3(e) and 3(j)–3(l).
Complex tilings.—Finally, we briefly outline how we can

connect complex 3 × 3 units into larger systems. Each PM
can be augmented by replacing the outer bars by triangles
[Figs. 4(a) and 4(b)]. The outer tips of this unit form a
quadrilateral, and as any quadrilateral can be tiled in a
pattern where adjacent quadrilaterals are rotated by 180°,
larger PMs can readily be designed by connecting these
units [Fig. 4(c)]. One can similarly augment multistable
unit cells, and for a tiling of general augmenting triangles
one expects stable collective states only when all units are
in the same configuration, as the “gap” distance between

tips of triangles generally differs in different minima.
However, the augmenting triangles can be chosen
such that this gap has the same length in each stable state
[Figs. 4(d) and 4(e)]. Connecting such augmented units in a
tiling yields a design with energy minima when each
individual unit is in its stable state, leading to a number
of stable states which grows exponentially with system size
[Figs. 4(f)–4(i)].
Summary and outlook.—We have presented a novel

strategy for the design of metamaterial architectures, based
on pseudo-mechanisms which can have a geometric
structure which is surprisingly far removed from that of
strict mechanisms. As similar pseudo-mechanisms can
be observed in 2D origami, where PMs allow to circumvent
the difficult design of rigidly folding mechanisms
[11,12,33,35], we speculate that pseudo-mechanisms are
generic and relevant for a wide classes of structures,
including networks of hinged bars [22] and (3D) origami
[20]. Moreover, the ease of designing multistable structures
in a hierarchical fashion—coupling complex units in
tilings—suggests one generalize this approach to other
classes also.
Extensions of our work include the design of larger

nonperiodic collections of quadrilaterals that form pseudo-
mechanisms. Conceptually, the step from a 2 × 3 mecha-
nism to a 3 × 3 pseudo-mechanism might be similar to that
from a 3 × 3 to a 3 × 4 pseudo-mechanism, but it is an open
question how the design space evolves for increasingly
large systems. A further intriguing possibility arises for,
e.g., bellows: while the volume of a polyhedron cannot
change as it flexes, pseudo-mechanisms may in practice
work equally well [36]. Moreover, we wonder whether
pseudo-mechanisms can mimic an equivalent of the topo-
logical polarization, edge modes and corner modes
observed in topologically nontrivial mechanical metama-
terials that are based on true mechanisms [23–26]. Finally,
our designs space is only of moderate dimensions, and
obtaining nontrivial designs is computationally relatively
cheap. This makes our designs eminently suited to test
whether machine learning techniques would be suitable to,
first, be trained to distinguish “good” from “bad” pseudo-
mechanisms, second, to detect and classify multistable
designs, and third, be used to speed up the design of such
structures [53,54].

We thank M. Bessa, M. Dijkstra, S. Guest, A. Murugan,
S. Pellegrino, and T. Tachi for productive discussions. This
work is part of an Industrial Partnership Programme of the
Netherlands Organization for Scientific Research (NWO)
under Grant No. 12CSER036.
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