Functions of leptin in tuberculosis and diabetes: multi-omics studies across species Ding, Y. ### Citation Ding, Y. (2021, December 7). Functions of leptin in tuberculosis and diabetes: multi-omics studies across species. Retrieved from https://hdl.handle.net/1887/3245305 Version: Publisher's Version License: License agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden Downloaded from: https://hdl.handle.net/1887/3245305 Note: To cite this publication please use the final published version (if applicable). # Chapter # Metabolomic and transcriptomic profiling of adult mice and larval zebrafish leptin mutants reveal a common pattern of changes in metabolites and signalling pathways Yi Ding¹, Marielle C. Haks², Gabriel Forn-Cuni¹, Junling He¹, Natalia Nowik^{1,3}, Amy C. Harms⁴, Thomas Hankemeier⁴, Muhamed N. H. Eeza^{5,6}, Jorg Matysik⁶, A. Alia^{5,7} and Herman P. Spaink¹* Cell Biosci (2021) 11:126 ¹ Institute of Biology, Leiden University, Leiden, The Netherlands ² Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands ³ Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn, Poland ⁴ Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands ⁵ Institute of Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany ⁶ Institute of Analytical Chemistry, University of Leipzig, Linnéstraße 3, D-04103, Leipzig, Germany ⁷ Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands ^{*}Corresponding author, email: h.p.spaink@biology.leidenuniv.nl ### Background Leptin plays a critical role in the regulation of metabolic homeostasis. However, the molecular mechanism and cross talks between leptin and metabolic pathways leading to metabolic homeostasis across different species are not clear. This study aims to explore the effects of leptin in mice and zebrafish larvae by integration of metabolomics and transcriptomics. Different metabolomic approaches including mass spectrometry, nuclear magnetic resonance (NMR) and high-resolution magic-angle-spinning NMR spectroscopy were used to investigate the metabolic changes caused by leptin deficiency in mutant *ob/ob* adult mice and *lepb* zebrafish larvae. For transcriptome studies, deep RNA sequencing was used. ### Results Thirteen metabolites were identified as common biomarkers discriminating ob/ob mice and lepb zebrafish larvae from their respective wild type controls: alanine, citrulline, ethanolamine, glutamine, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, putrescine, serine and threonine. Moreover, we also observed that glucose and lipid levels were increased in lepb zebrafish larvae compared to the lepb group. Deep sequencing showed that many genes involved in proteolysis and arachidonic acid metabolism were dysregulated in ob/ob mice heads and lepb mutant zebrafish larvae compared to their wild type controls, respectively. ### Conclusions Leptin deficiency leads to highly similar metabolic alterations in metabolites in both mice and zebrafish larvae. These metabolic changes show similar features as observed during progression of tuberculosis in human patients, mice and zebrafish larvae. In addition, by studying the transcriptome, we found similar changes in gene regulation related to proteolysis and arachidonic acid metabolism in these two different in vivo models. **Keywords**: *Ob/ob* mice, Leptin mutant zebrafish, Diabetes, Metabolomics, Transcriptomics, Wasting syndrome ### **Background** Leptin, the first discovered adipokine, plays a critical role in the regulation of energy balance and homeostasis of metabolism [1, 2]. Congenital leptin deficiency in humans results in extreme obesity, hyperphagia and many complications such as type 2 diabetes [3]. Leptin administration therapy with metreleptin, a recombinant human leptin analogue, has been approved for the treatment of the metabolic abnormalities linked to dyslipidemia [4]. Metabolic effects of leptin have been studied in rodent animal models [5]. Leptin signaling deficient rodent mutants, such as *ob/ob* mice, db/db mice and Zucker rats, have been commonly used as animal models in leptin studies [5]. Similar to the rare cases of congenital human leptin deficiency, these rodent mutants display hyperphagia, obesity and an insulin resistant phenotype. Several studies have shown metabolic disorders in ob/ob mice [6-8], db/db mice [6, 9, 10] and obese Zucker rats [11] measured by mass spectrometry (MS) or ¹H solution nuclear magnetic resonance (NMR). Using a positional isotopomer NMR tracer analysis method, Perry et al showed that leptin mediates a glucose-fatty acid cycle to maintain glucose homeostasis in starvation in rats [12]. Using a combination of metabolomics and transcriptomics, a recent published paper demonstrates that the carbohydrate, lipid and amino acid metabolic liver responses to glucose administration are broadly different between wild type and *ob/ob* mice [13]. Leptin and leptin receptor (lepr) are highly conserved and share extensive homology across vertebrates including all mammals and fish and have been studied in many model organisms [14, 15]. However, leptin functions in early development of vertebrates are largely unknown. Notwithstanding many reports indicate that leptin plays a key role in gestational diabetes and fetal development [16-20]. Further understanding of the function of leptin in these processes is hampered by the challenges of using rodent animal models for the study of fetal development. Zebrafish represents a robust animal model for early development because of its external fertilization, transparency of its larvae and large numbers of offspring. Since the zebrafish larvae are independent of feeding in the first five days after fertilization, it offers a great model for comparative leptin studies in fetal development with adult mammals. In zebrafish, there are two orthologs of the human leptin gene, *leptin a (lepa)* and *leptin b (lepb)*. A zebrafish mutant line with lepa gene deficiency displays a phenotype of obesity and various deviations in behavior and circadian rhythm in the adult stage [21]. It was shown that *lepb* mutant zebrafish have more visceral fat and higher glucose level in male adult fish [22]. However, a zebrafish mutant for lepr was reported not to exhibit increased obesity in adult fish [23]. In larval studies, we have previously shown that *lepb* is one of the most affected genes after insulin injection [24]. However, how *lepb* gene affects the metabolic and transcriptomic level in zebrafish larvae is still unknown. In this study, we have compared the metabolic changes resulting from leptin deficiency in blood of adult *ob/ob* mice, extracted and intact zebrafish larvae using MS, solution-state NMR and high-resolution magic-angle-spinning NMR (HR-MAS NMR) spectrometry. HR-MAS NMR is a noninvasive method that can be used for analysis of intact tissues at low temperature. In addition, we have compared the transcriptomic changes resulting from leptin deficiency in *ob/ob* mice heads, a published dataset for ob/ob mice liver and lepb mutant zebrafish larvae. These comparisons show a remarkable similarity of the effects of leptin knockdown on the metabolomes and transcriptomes of adult mice and zebrafish larvae. ### Results ### Metabolic profiles of blood from ob/ob and wild type mice measured by MS We first investigated the metabolic profiles of blood from ob/ob and wild type lean male mice at 14 weeks of age. Mice were kept on a standard diet for 8 weeks, after which the body weight of ob/ob mice was significantly higher than wild type C57BL/6 mice (**Supplementary Figure S1**). Metabolic profiles of the blood of the two groups were obtained by MS. Using a highly standardized platform we could measure 41 small amine-containing compounds. A Partial Least Squares Discriminant Analysis (PLS-DA) scores plot of the 41 identified metabolites showed clear differences between the ob/ob and the wild type mice, indicating metabolic alterations in the metabolism due to leptin deficiency (**Figure 1A**). Using a cut-off p value of 0.05, we could classify 30 out of the 41 identified small amine-containing compounds as associated with ob/ob mice. These 30 metabolites were significantly downregulated with a p value < 0.05 in ob/ob mice compared to wild type mice (**Figure 1B** and **Supplementary Table S1**). For 25 of these metabolites, we have previously shown that they are biomarkers for $mycobacterium\ tuberculosis\ (Mtb)$ -infected mice (**Figure 1C**). Graphs showing the quantification of these 25 common metabolites revealed that both the original and normalized values were decreased in leptin-deficient ob/ob mice (**Supplementary Figure S2**). **Figure 1.** Metabolic profiles of blood from *ob/ob* and wild type C57BL/6 mice measured by mass spectrometry. A PLS-DA analysis of wild type and *ob/ob* mice, n = 15 in total, each replicate represents one mouse. *PLS-DA* partial least square discriminant analysis. *WT* wild type. **B** Heat map of 30 statistically significant biochemical markers profiled in this mice study. **C** A Venn diagram showing the overlap of the 30 metabolites of B with the set of wasting syndrome biomarkers published by Ding et al [26]. ### Metabolic profiles of extracts of lepb deficient and wild type zebrafish larvae measured by NMR A *lepb* mutant zebrafish line was generated by CRISPR/CAS methodology [22]. Metabolic profiles of extracted zebrafish larvae from *lepb*-/- mutant and *lepb*+/+ wild type siblings were measured by one-dimensional 1 H solution NMR. **Figure 2A** shows the representative 1 H NMR spectra of extracted metabolites in the two groups. The assignment was performed based on the peaks of reference metabolites from
literature [6, 25] in the library of Chenomx 600 MHz (version 11). A PLS-DA scores plot showed differences between the *lepb*-/- and *lepb*+/+ groups (**Figure 2B**), suggesting metabolic changes resulting from *lepb* deficiency in zebrafish larvae. We found 27 metabolites to be significantly changed with a p value < 0.05 in extracted *lepb*-/- zebrafish larvae compared to *lepb*+/+ group. For 19 of these metabolites, we have previously shown that they are biomarkers for *Mycobacterium marinum*-infected zebrafish larvae (**Figure 2C**). Quantification of these 19 common metabolites showed that the levels of all the metabolites were decreased in *lepb* mutant zebrafish larvae (**Supplementary Figure S3**). **Figure 2.** One-dimensional ¹H NMR spectra and PLS-DA analysis of extracted *lepb* mutant zebrafish larvae. A The representative spectra of extracted larvae from wild type and *lepb* mutant groups measured by solution NMR spectrometry. Spectra from chemical shift 0.5–4.4 were assigned to specific metabolites. *Acet* acetate, *Ala* alanine, *Arg* arginine, *Asp* aspartate, *Cho* choline, *Chol* cholesterol, *Cit* citrulline, *Eta* ethanolamine, *FA* fatty acid, *Glc* glucose, *Gln* glutamine, *Glu* glutamate, *Gly* glycine, lle isoleucine, *Kyn* kynurenine, *Lac* lactate, *Leu* leucine, *Lys* lysine, *Met* methionine, *m-Ins* myo-inositol, *Ser* serine, *Tau* taurine, *tCr* total creatine (creatine + phosphocreatine), *Trp* tryptophan, *NMR* nuclear magnetic resonance. **B** PLS-DA analysis of wild type and *lepb* mutant groups, n = 4, each replicate represents 105 pooled larvae. *PLS-DA* partial least square discriminant analysis. **C** A Venn diagram is shown of the common 19 metabolites that changed significantly towards *lepb* deficiency in extracted zebrafish larvae and tuberculosis caused by *M. marinum* infection in extracted zebrafish larvae published by Ding et al [26]. ## Metabolic profiles of intact lepb deficient and wild type zebrafish larvae measured by HR-MAS NMR Due to the possibility of degradation and selective loss of compounds because of the extraction method needed for solution NMR, we used HR-MAS NMR as a comparative method on intact zebrafish larvae. **Figure 3A** showed the comparison of metabolic profiles and the assignments of metabolites of representative spectra in *lepb* mutant and wild type siblings. It was shown that the intensities of many peaks were lower in the mutant group. A PLS-DA scores plot showed clear discrimination between the $lepb^{-/-}$ and $lepb^{+/+}$ groups (**Figure 3B**). To compare the methods of solution NMR and HR-MAS NMR, we showed a Venn diagram of the significantly changed metabolites in the mutant and control siblings. The result revealed that there were 25 common metabolites significantly changed in both measurements (**Figure 3C**). These 25 metabolites include the small amines alanine, asparagine, aspartate, citrulline, cysteine, ethanolamine, glutamate, glutamine, glycine, histidine, isoleucine, kynurenine, leucine, methionine, phenylalanine, putrescine, serine, threonine and tyrosine (**Figure 4A**, **C**). In addition, the concentration of ATP, glucose, mannose, acetate, lactate and myo-inositol were changed significantly (**Figure 4B**, **D**). For 21 of the 25 metabolites, both methods showed the same result: lower measurements of 20 metabolites and higher glucose level in the mutant group. However, kynurenine, tyrosine, ATP and mannose were detected at a decreased level in the mutant group with extracted larvae while at an increased level using intact larvae (**Figure 4**). **Figure 3. One-dimensional** ¹**H HR-MAS NMR spectra and PLS-DA analysis of intact** *lepb* **mutant zebrafish larvae. A** The representative spectra of intact larvae from wild type and *lepb* mutant groups measured by HR-MAS NMR spectrometry. Spectra from chemical shift 0.5–4.4 were assigned to specific metabolites. *Acet* acetate, *Ala* alanine, *Asp* aspartate, *Cho* choline, Chol cholesterol, *Cit* citrulline, *Cys* cysteine, *Eta* ethanolamine, *FA* fatty acid, *Glc* glucose, *Gln* glutamine, *Glu* glutamate, *Gly* glycine, *His* histidine, *Ile* isoleucine, *Lac* lactate, *Leu* leucine, *Lys* lysine, *Met* methionine, *m-Ins* myo-inositol, *Pu* putrescine, *Ser* serine, *Tau* taurine, *tCr* total creatine (creatine + phosphocreatine), *Thr* threonine, *TAMO* trimethylamine N-oxide, *HR-MAS NMR* high-resolution magic-angle-spinning nuclear magnetic resonance. **B** PLS-DA analysis of intact larvae from wild type and *lepb* mutant groups, n = 3, three times measurements, each replicate represents 120 pooled larvae. *PLS-DA* partial least square discriminant analysis. **C** A Venn diagram is shown of the common 25 metabolites that are significantly changed both in extracted zebrafish larvae measured by ¹H solution NMR and intact larvae measured by ¹H HR-MAS NMR. Figure 4. Quantification of the common 25 metabolites that are significantly changed in zebrafish larvae. A The concentration of amino acids and amines of wild type and *lepb* mutant in extracted larvae. B The concentration of ATP, carbohydrates and organic acids of wild type and *lepb* mutant in extracted larvae. C The concentration of amino acids and amines of wild type and *lepb* mutant in intact larvae. D The concentration of ATP, carbohydrates and organic acids of wild type and *lepb* mutant in intact larvae. *p < 0.05, **p < 0.01, ***p < 0.0005, ****p < 0.0005. ### A core set of metabolites are markers for leptin deficiency in mice and zebrafish larvae A common set of 13 metabolites were significantly changed in *ob/ob* mice blood, extracted *lepb* mutant and intact *lepb* mutant zebrafish larvae compared to their respective wild type controls (**Figure 5A**). These 13 common metabolites were alanine, citrulline, ethanolamine, glutamine, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, putrescine, serine and threonine (**Figure 5B**). The concentrations of these 13 metabolites were reduced in a mutant compared to wild types for all the three metabolomic data sets (**Figure 5B**). Of these metabolites, the following 6 are also reported as markers for tuberculosis infection in human, mice and zebrafish larvae based on mass spectrometry: citrulline, ethanolamine, leucine, methionine, phenylalanine, serine and threonine [26]. Figure 5. Common biomarkers for leptin deficiency in *ob/ob* mice, extracted and intact zebrafish larvae. A A Venn diagram shows that 13 common metabolites are significantly changed after leptin knockdown in mice blood, extracted and intact zebrafish larvae. B The ratio of leptin mutant versus wild type of the 13 common metabolites in the three metabolomic datasets. ### Lipid profiles of *lepb*-deficient zebrafish larvae To investigate whether lipid metabolism is influenced by leptin deficiency at the early stage of zebrafish development, lipids were extracted from pooled 5 days post fertilization (dpf) zebrafish larvae in the *lepb* mutant and sibling control groups and then measured with ¹H solution NMR (**Figure 6A**). A PLS-DA scores plot of the tetramethylsilane (TMS) normalized spectra showed a clear separation of the lipid profiles of the two groups (**Figure 6B**), which indicated lipid metabolism was altered in *lepb* mutant zebrafish larvae. Twenty-two lipid signals could be assigned from chemical shift 0.5 to 5.5 in the spectra of both groups (**Figure 6A** and **Supplementary Table S2**). Based on the quantification of normalized peaks, we can conclude that saturated lipids were significantly increased in the *lepb* mutant zebrafish larvae (**Figure 6C**, **D**). In addition, the polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) was found in a higher abundance in the mutant group (**Figure 6E**). Figure 6. Lipid profiles of *lepb* mutant zebrafish larvae compared to wild type siblings. A The representative spectra of total lipid extracts from wild type and *lepb* mutant zebrafish larvae obtained by 1 H NMR spectroscopy. The assignments of the peak numbers were shown in Additional file 1: Table S2. *NMR* nuclear magnetic resonance. **B** PLS-DA analysis of *lepb* mutant and wild type zebrafish larvae, n = 3, each replicate represents 105 pooled larvae. *PLS-DA* partial least square discriminant analysis. **C** The relative concentration of the signal 14 FA in A. *FA* fatty acids. **D** The relative concentration of the signal 18 PC in A. *PC* phosphatidylcholines. **E** The relative concentration of the signal 15 DHA in A. *DHA* docosahexaenoic acid. *p < 0.05. ### Deep sequencing of transcriptomes of leptin deficient mice and zebrafish larvae We investigated the effects of leptin deficiency at the transcriptome level in mice and zebrafish larvae by using deep RNA sequencing methods. Samples were taken from the same experimental groups as used for the metabolomic analysis described above. Mice heads were taken as a body part of interest because of the known classical signaling of leptin in the brain. A volcano plot showed that 5658 genes significantly regulated at a p value < 0.05 in ob/ob mice compared to wild type C57BL/6 mice (**Figure 7A**). A recent paper published by Kokaji et al. reported the transcriptomes of mice liver from ten-week-old male ob/ob mutant and C57BL/6 wild type mice [13]. The comparison of the two mice liver groups showed 6693 genes significantly regulated at a p value < 0.05 (**Supplementary Figure S4**). The two gene sets encompassing 5658 and 6693 genes of the transcriptomes in mice head and mice liver, respectively, showed an overlap of 1865 genes (**Figure** **7B**). Gene ontology (GO) enrichment analysis using DAVID showed a large group of GO terms. In **Figure 7C**, we showed a selected set of GO terms (biological process) with the lowest *p* adjusted values and the highest numbers of genes representatives. The GO term nervous system development was in line with the function of leptin in the brain. The GO enrichment
of the overlap sets in **Figure 7B** gave comparable results as with the mouse head GO terms, with the exception of ion transport and nervous system development (**Figure 7C**). This could be explained by the relatively large number of neuronal cells in the head compared to liver. For zebrafish larvae, there were 2718 genes significantly regulated at a *p* value < 0.05 in *lepb* mutant zebrafish larvae compared to wild type siblings (Figure 7E). We validated the mRNA expression level of a few representative genes in the $lepb^{+/+}$ and $lepb^{-/-}$ zebrafish larvae with qPCR (Supplementary Figure S5). The human orthologs of this zebrafish larvae gene set and of the mice head transcriptome ob/ob signature set showed an overlap of 470 genes (Figure 7F). The GO enrichment analysis of Figure 7G showed the top 8 GO terms (biological process) with lowest p adjusted values and highest numbers of genes representatives in the signature set of zebrafish larvae (**Figure 7G**). The GO enrichment of the overlap set gave a similar result as in the zebrafish larvae terms with the exception of DNA replication, cell division and mitotic nuclear division. As shown in the Figure 7C and Figure 7G, one of the top GO terms in the signature set of mice heads, zebrafish larvae and the overlap was proteolysis. We also found the GO term proteolysis to be significantly enriched in the overlap of mice head and liver ob/ob signature set (Figure 7C). The genes linked to this GO term were proteases which could be classified as aspartyl protease, carboxypeptidase, cysteine protease, metallopeptidase, serine protease, and threonine protease (Figure 7D, H, Supplementary Table S3 and Supplementary Table S4). The pattern of the enriched gene numbers of those proteases in the signature sets of mice heads and zebrafish was similar in the up or down regulated groups (Figure 7D, H). Figure 7 (following page). Transcriptome signature sets of mice and zebrafish larvae. A A Volcano plot showing a graphical representation of the significance (p < 0.05) in ob/ob mice head compared to C57BL/6 mice head. The transcripts with fold change over 1.5 are highlighted in red. Fifteen significant genes in mice head out of the fold change in X axis are excluded to make the graph look well. B A Venn diagram showing the comparison of the number of significantly changed genes between ob/ob mice head and mice liver published by Kokaji et al. C The top eight GO terms of biological process (BP) with lowest p adjusted values and highest numbers of genes representatives in mice head and the overlap of B. GO gene ontology. D Number of genes in classification of GO term proteolysis in the signature set of mice head. E A Volcano plot showing a graphical representation of the significance (p < 0.05) in lepb mutant zebrafish larvae compared to wild type siblings. The transcripts with fold change over 1.5 are highlighted in green. Twentytwo significant genes in zebrafish larvae out of the fold change in X axis are excluded to make the graph look well. F A Venn diagram showing the comparison of the number of significantly changed genes from human homologs of the signature gene sets of zebrafish larvae and ob/ob mice head. G The top eight GO terms of BP with lowest p adjusted values and highest numbers of genes representatives in zebrafish larvae and the overlap of F. H Number of genes in classification of GO term proteolysis in the signature set of zebrafish larvae. ### Metabolomic and transcriptomic profiling of leptin mutants in mice and zebrafish As shown in Figure 6, fatty acids such as DHA were significantly increased in the *lepb* mutant zebrafish larvae compared to wild type siblings. Lipid metabolism disturbance is possibly associated with inflammation [27]. Obese leptin deficient *ob/ob* mice show a low-grade chronic inflammation [28]. Interestingly, we found another common enriched GO term using DAVID (KEGG pathway) in the signature sets of mice head, mice liver and zebrafish larvae was arachidonic acid (ARA) metabolism (**Supplementary Table S5**, **S6**, and **S7**). Arachidonic acid is a pro-inflammatory precursor that can mediate inflammatory responses via transforming into a variety of downstream products such as prostaglandins and leukotrienes. It is also an early indicator of inflammation [27]. Therefore, the human orthologs of the signature sets of mice head, mice liver and zebrafish larvae were projected on the drawn ARA metabolic pathway based on the human wikipathways data using Pathvisio (**Figure 8**). As shown in Figure 8, five genes in the pathway namely *ANXA1*, *ANXA5*, *ACSL3*, *MAP2K6*, *NFE2L2* were altered in all three datasets. Some other genes were significantly changed in only one or two datasets. However, the majority of the gene expression levels of the three datasets visualized in this pathway were not high (**Supplementary Table S8**). This indicates there might be only mild inflammation in the leptin deficient mice and zebrafish larvae. **Figure 8.** Genes involved in arachidonic acid pathway in human orthologs of the three transcriptome signature sets. Dashed lines means indirect regulation. Red color represents genes significantly changed in *ob/ob* mice head compared to control. Blue color represents genes significantly changed in *ob/ob* mice liver compared to wild type published by Kokaji et al. Green color represents genes significantly changed in *lepb* mutant zebrafish larvae compared to wild type siblings. *COX* cyclo-oxygenase, *LOX* lipoxygenase, *EOX* epoxygenase, *DHA* docosahexaenoic acid. ### Discussion In this study, we have compared the metabolic changes resulting from leptin deficiency in blood of adult mice and extracted as well as intact zebrafish larvae. We studied metabolism using three different technologies: mass spectroscopy (MS), nuclear magnetic resonance (NMR) and highresolution magic-angle-spinning NMR (HR-MAS NMR) spectrometry. In addition, we have compared the transcriptomic changes resulting from leptin deficiency in ob/ob mice heads and published data sets for ob/ob mice liver and lepb mutant zebrafish larvae using deep RNA sequencing (RNA-seq). These comparisons using very different omics technologies all show a remarkable similarity of the effects of leptin knockdown on the metabolomes and transcriptomes of adult mice and zebrafish larvae. These similarities are surprising because the analyzed samples of this comparative study are in many respects extremely different: (1) Mice and zebrafish are very diverse examples of the vertebrate subphylum, e.g., metabolic rate, body size, body temperature and examined life stages vary greatly. (2) Samples of blood or body tissue, in the case of the mice experiments, are compared with the entire organism in the case of zebrafish larvae. (3) The environmental conditions are different in mice and zebrafish larvae. (4) The genetic variation within the studied populations is highly diverse in zebrafish test samples, whereas a highly inbred population is used in the case of mice. (5) For zebrafish larvae, there is no feeding of the organism involved and embryos are able to develop normally based on their reserves in the yolk until 5dpf. Nevertheless, also in a previous study, we showed remarkable similarities in small metabolite levels occurring in mice blood and zebrafish larvae after infection by mycobacteria [26]. The observed metabolic changes were mainly comprising a reduction of the levels of various amino acids that were also detected in human tuberculosis patients of several ethnical populations [26, 29, 30]. In the present study, we have also included HR-MAS NMR as a non-invasive method for analysis of metabolites in intact embryos. The results confirm the findings obtained with solution-state NMR analysis of extracted tissues. A few metabolites are changed in different directions measured by these two approaches, namely kynurenine, tyrosine, ATP and mannose. They are detected at a decreased level in the mutant group with extracted larvae while an increased level was detected with intact larvae using HR-MAS NMR (Figure 4). This might be due to the fact that samples detected by solution-state NMR require extraction and pretreatment. Therefore, solubility with the used extraction solvents plays a key role in the detectable concentration. In addition, some metabolites might get degraded and oxidized during the extraction process. Conversely, these limitations are not present with HR-MAS NMR as it works with natural, unaltered, and intact samples at low temperature. Therefore, it likely better mirrors the underlying biochemical activity and state. In the case of kynurenine, this has been reported to have a significant higher level in blood of tuberculosis patients possibly due to an increased level of the enzyme indoleamine 2,3 dioxygenase 1 (IDO1) that converts tryptophan [29]. Tyrosine and mannose levels were previously also shown to be increased in mice and zebrafish samples using NMR analyses [26, 31]. Considering that zebrafish larvae and mouse and human blood samples are very similar in their metabolite profiles after mycobacterial infection [26], the increased level of kynurenine, tyrosine and mannose seen using HR-MAS NMR indicates an advantage of detecting metabolites directly in intact embryos using non-invasive HR-MAS NMR over extracted metabolites using solution NMR. However, a disadvantage of HR-MAS NMR compared to solution NMR is its lower resolution capacity for lipids. As it is well known, rodents with leptin signaling deficiency show a typical phenotype of fat accumulation and obesity. Phospholipids and polyunsaturated fatty acids (PUFAs) including arachidonic acid and eicosapentaenoic acid are significantly increased in plasma and liver of ob/ob and db/db mice measured by MS [6]. Another study on obese Zucker and lean rats performed by ¹H NMR reported increased concentrations of total fatty acids and triglycerides, while the ratio of
PUFAs/monounsaturated fatty acids (MUFAs) was decreased in liver and blood of obese rats [11]. In our larval zebrafish *lepb* mutant, we also found that many lipid peaks are generally higher, for instance levels of DHA and phosphatidylcholines are significantly increased in *lepb* mutant larvae compared to the wild type siblings (**Figure 6**). These observations demonstrate that *lepb* deficiency in zebrafish leads to lipid accumulation even at the organismal level at the larval stage. The parental adult *lepb* mutant zebrafish display distinctly more visceral fat compared to wild type sibling fish measured by magnetic resonance imaging (MRI) [32]. As zebrafish larvae before 5dpf only use yolk as their nutrition supply, which comes from the mother, zebrafish larvae offer a promising model to investigate maternal effects of the adult parents on the metabolic state of their offspring in the absence of a feeding regime. We reported previously that adult *lepb* mutant zebrafish display features of type 2 diabetes mellitus (T2DM) including higher glucose levels and develop early signs of diabetic nephropathy [32]. In this study, we also found that the concentration of glucose is significantly elevated in *lepb*-/- zebrafish larvae compared to *lepb*+/+ group in both ¹H NMR and HR-MAS NMR measurements. These observations in adult and larval zebrafish could lead to a better understanding of the effects of parents with gestational diabetes mellitus (GDM) on their offspring. GDM is one type of diabetes characterized by high blood pressure and high levels of glucose occurring only during pregnancy. Children from mothers suffering from GDM have a higher risk to develop obesity and T2DM, but also diabetic complications such as kidney disease. Unfortunately, it is impracticable to investigate maternal effects of GDM on offspring in humans and mammal animal models. Zebrafish larvae are therefore promising to explore the maternal effects of T2DM on their offspring as they develop outside the mother's body [33, 34]. In this study, we demonstrate that 6 of the 13 amino acid metabolites of which the levels are reduced in both mutant ob/ob mice and $lepb^{-/-}$ zebrafish larvae are also biomarkers for tuberculosis infection in human, mice and zebrafish larvae [26]. As it is well known, tuberculosis is also called a consumption disease with severe wasting syndrome symptoms at a later stage in TB patients. Therefore, the similarities between the deficiency of leptin and tuberculosis could be related to the occurrence of wasting syndrome in both ob/ob mice and lepb mutant zebrafish larvae. In this respect, metabolic changes due to leptin deficiency are also relevant for understanding T2DM that is accompanied by wasting syndrome. Of the 30 amino acids levels that we find reduced in the blood of ob/ob mice, several have been reported to be also changed in diabetic mice models in other studies. A decrease in glucogenic amino acids such as alanine, serine, glycine and glutamine indicates a high level of gluconeogenesis in leptin deficient animals. Plasma levels of glycine and serine were found to be significantly decreased in *ob/ob* mice and *db/db* mice compared to their wild type controls [6]. Leucine and isoleucine are two branched-chain amino acids (BCAAs) which are reported to stimulate protein synthesis in muscle [35, 36]. In contrast to our study, BCAAs levels were reported to be increased in *ob/ob* mice and *db/db* mice [6]. However, a study of human plasma samples demonstrated that the concentrations of the BCAAs, alanine and glutamine were significantly decreased in the plasma of T2DM patients compared to healthy volunteer groups [37]. The similarity of amino acid level changes resulting from leptin deficiency between mammals and zebrafish larvae provides the potential utility of common metabolites as biomarkers for both diabetic parents and their offspring by providing prognostic markers for the early identification of the risks of GDM. The similarities in changes in metabolite levels resulting from leptin deficiency in different model organisms provide a way to further investigate the mechanism underlying these changes. In a first step towards further functional studies, we investigated the effect of leptin deficiency on the transcriptomic level. Studies have shown that wasting syndrome occurred in obese animals as evidenced by muscle mass reduction was due to the activation of proteolytic pathways such as the caspase-3 and the ubiquitin-proteasome proteolytic pathways [38, 39]. We also observed the gene ontology (GO) term proteolysis as one of the top GO terms in the transcriptome signature sets of ob/ob mice heads compared to wild type lean mice heads. This GO term was also enriched in the overlap set of this signature set with a signature set that we derived from a published liver transcriptome study of *ob/ob* mice compared to wild type mice (**Figure 7C**). Genes involved in proteolysis can be classified as six types of proteases (Figure 7D). Multiple proteolytic pathways are shown to be involved in wasting syndrome, including the following enzyme families: cysteine proteases such as calpains, cathepsins, caspases, ubiquitin peptidase families, metallopeptidases, serine proteases and threonine proteases such as proteasome subunit families [40]. Similar to the results obtained with the *ob/ob* mice body parts, we found that the expression levels of the genes encoding these proteases are significantly changed in lepb mutant zebrafish larvae compared to their wild type siblings (Figure 7H). This is an indication that the *lepb* mutation leads to wasting syndrome even at an early stage of zebrafish larval development. It has been reported that amino acids are key regulators of protein turnover [41] and that the depletion of amino acids stimulates proteolysis in differentiated muscle cells [42]. The mechanisms underlying the observed reduced levels of amino acids in ob/ob mice and lepb mutant zebrafish larvae remains to be determined, but could be explained by protein degradation. The significant decrease of many amino acids in *ob/ob* mice and lepb mutant zebrafish might be a trigger for protein degradation to compensate for the loss of these amino acids. In zebrafish larvae, both saturated fatty acids and polyunsaturated fatty acid DHA are increased in the *lepb* mutant group. DHA is an omega-3 fatty acid which is a precursor of eicosanoids such as resolvins and protectins with potential anti-inflammatory activity [43]. In contrast, omega-6 PUFA arachidonic acid (ARA) is a key precursor for eicosanoids such as prostaglandins, thromboxanes and leukotrienes which mediate inflammatory response [44]. Peak 11 of the spectra (Figure 6A) could represent the PUFA arachidonic acid. However, the relatively low abundance and the overlap with the peak of eicosapentaenoic acid (EPA) made it hard to quantify the concentration in the two groups. In zebrafish larvae, genes such as PTGS2, PTGIS, involved in the generation of prostaglandins in the cyclo-oxygenase (COX) pathway are downregulated in lepb-/- compared to the $lepb^{+/+}$ group (Figure 8 and Supplementary Table S8). This might be the result of the antiinflammatory effect of an increased level of DHA observed in *lepb* mutant zebrafish larvae. In *ob/ob* mice head and liver, genes like PLA2G4A, ALOX5AP, DPEP1 involved in the release of ARA from cell membrane and lipoxygenase (LOX) pathway are significantly upregulated (Figure 8 and **Supplementary Table S8**). Therefore, more leukotrienes are expected to be produced, which leads to a potential inflammatory state. This is consistent with the generally accepted concept that obesity and type II diabetes are accompanied with chronic, low-grade inflammation [45]. This is in line with the previously shown correlation of leptin deficiency and diabetes with a higher susceptibility to tuberculosis [46]. Furthermore, it has been shown that zebrafish larvae and humans respond in a very similar way to infection with mycobacteria, for instance in the activation of the prostaglandin pathway [47, 48]. Therefore, the opportunities for future studies of the common mechanism underlying wasting syndrome in various disease such as T2DM and infectious disease in zebrafish larvae are extremely promising for leading to understand human diseases. ### Conclusion Leptin deficiency in adult mice and larval zebrafish leads to highly similar metabolic alterations in amino acid levels. These metabolic changes show the same key features as observed during progression of tuberculosis in human patients, rodents and zebrafish larvae. This conclusion is supported by different technologies, namely MS, solution-state NMR and HR-MAS NMR. Moreover, by studying the transcriptome, we found highly similar changes in gene regulation related to proteolysis and arachidonic acid pathways in these two test systems. These results show a remarkable similarity of the effects of leptin knockdown on the metabolomes and transcriptomes of adult mice and zebrafish larvae that might be related to wasting syndrome. Apparently, the metabolic control by leptin is similar in adult and embryonic stages in mammals and fish, respectively. ### Material and methods ### **Biological materials** ### Mice Male *ob/ob* mice and lean C57BL/6 wild type mice were obtained from Charles River Laboratories at 6 weeks of age (n=8 per group) and maintained for 8 weeks under specific pathogen free conditions in the animal facility of the Leiden University Medical Center (LUMC). Male mice were chosen because metabolic variation due to the hormonal cycle is limited. Mice were kept on a standard-chow diet with ad libitum access to food and water. One *ob/ob* mouse had to be sacrificed at an early stage due to malocclusion. Body weight of all mice was measured weekly. Mice were sacrificed at week 14 and blood was collected and heads were snap-frozen in liquid nitrogen and stored at -80°C until RNA
isolation. Mice heads were taken as a body part of interest because of the known classical signaling of leptin in the brain. Handling of mice was conducted in compliance with European Community Directive 86/609 for the care and use of laboratory animals and in accordance with the regulations set forward by the LUMC animal care committee. ### Mouse serum sample preparation Mouse serum samples were collected from clotted blood tubes and mixed with pre-heated 80% ethanol at a 1:3 ratio (end concentration: 60% ethanol) in polypropylene screwcap tubes. Samples were heated for 10 min at 90°C and subsequently chilled on ice for 10 minutes before centrifugation at 13.000 rpm for 10 minutes at 4°C. Supernatants were harvested and stored at -80°C for LC-MS analysis. ### Zebrafish larvae Zebrafish were handled in compliance with the local animal welfare regulations and maintained according to standard protocols (http://zfin.org). Mutant $lepb^{-/-}$ and wild type sibling $lepb^{+/+}$ zebrafish lines were generated, screened and raised as described previously [32]. A lepb mutant with a 7 base pair deletion encompassing TAGAGGG in exon 2 was used in this study. Zebrafish larvae at 5 dpf from $lepb^{-/-}$ and $lepb^{+/+}$ groups were collected and stored at -80°C until further analysis. For solution-state NMR measurement, 4 replicate samples per genotype comprised of 105 pooled larvae were taken. From the same batch, 3 replicate samples per group of 15 pooled larvae were used for RNA isolation and transcriptome analysis. For HR-MAS NMR measurement, 3 replicates of 120 pooled larvae were used (each sample was measured three times). ### LC-MS/MS Metabolite levels in mice serum were measured in individual replicates using a targeted LC-MS/MS platform as described before [26, 29]. Subject numbers were randomized and run in 5 batches which included a calibration line, QC samples and blanks. QC samples were analyzed every 10 samples. They were used to assess data quality and to correct for instrument responses. The amine platform covers amino acids and biogenic amines employing an Accq-Tag derivatization strategy adapted from a previously published protocol [49]. Briefly, 5.0 µL of each sample was spiked with an internal standard solution. Then proteins were precipitated by the addition of MeOH. The supernatant was dried in a speedvac. The residue was reconstituted in borate buffer (pH 8.5) with AQC reagent. 1.0 µL of the reaction mixture was injected into the UPLC-MS/MS system. Chromatographic separation was achieved by an Agilent 1,290 Infinity II LC System on an Accq-Tag Ultra column. The UPLC was coupled to electrospray ionization on a triple quadrupole mass spectrometer (AB SCIEX Qtrap 6500). Analytes were detected in the positive ion mode and monitored in Multiple Reaction Monitoring (MRM) using nominal mass resolution. Acquired data were evaluated using MultiQuant Software for Quantitative Analysis (AB SCIEX, Version 3.0.2). The data are expressed as relative response ratios (target area/ISTD area; unit free) using proper internal standards. For analysis of amino acids, their 13C15N-labeled analogs were used. For other metabolites, the closest-eluting internal standard was employed. Inhouse developed algorithms were applied using the pooled QC samples to compensate for shifts in the sensitivity of the mass spectrometer over the batches. After quality control correction, metabolite targets complied with the acceptance criteria of RSDqc < 15%. Using this platform, we were able to identify 41 metabolites in blood samples from mice. ### MS data analysis Data was analyzed using the software package MetaboAnalyst 4.0 [50]. MetaboAnalyst offers the possibility to provide automated data reports which we used for archiving data sets. Default settings were used with log transformation and auto scaling of the data for normalization. Naming of the metabolites is based on reference compounds using standard nomenclature of the human metabolome database (https://www.hmdb.ca/). ### ¹H solution NMR measurement of extracted larvae For ¹H solution NMR spectroscopy, metabolites from pooled zebrafish larvae were extracted according to a previous study [26]. Zebrafish larvae were crushed and 1ml mixture of methanol: water (1:1, v/v) and 1ml chloroform were immediately added to the sample. The mixture was sonicated for 15 minutes and then centrifuged at 5000rpm for 5 minutes. After centrifugation, two layers were formed: the upper layer is methanol and water containing metabolites, the lower layer is chloroform containing lipids. Those two layers were separately collected and evaporated via nitrogen gas flow. The metabolite pellets were resuspended in 600µl of 100mM deuterated phosphate buffer (KD2PO4, PH=7.0) containing 0.02% trimethyl-silylpropanoic acid (TSP) as a reference and was subsequently centrifuged, and the supernatant was analyzed by solution NMR. The lipid pellets were resuspended in 600µl deuterated chloroform containing 0.03% TMS which was used as a reference. Metabolites and lipids in zebrafish larvae were measured with a Bruker DMX 600MHz NMR spectrometer at 4°C equipped with a 5mm inverse triple high-resolution probe with an actively shielded gradient coil. The ¹H NMR spectra were accumulated with 65,000 data points, a 2-s relaxation delay, a sweep width of 12.4 kHz, and 256 scans which were required to obtain a satisfactory signal-to-noise ratio. ### ¹H HR-MAS NMR measurement of intact larvae Metabolic profiling by 1H HR-MAS NMR spectroscopy was performed as adapted from previous studies [51-53]. Zebrafish larvae from $lepb^{+/+}$ and $lepb^{-/-}$ groups were carefully transferred to a 4-mm zirconium oxide MAS NMR rotor (Bruker BioSpin AG, Switzerland). As a reference (1H chemical shift at 0 ppm), $10\mu l$ of 100mM deuterated phosphate buffer (KD₂PO4, PH=7.0) containing 0.1% (w/v) TSP was added to each sample. The rotor was then placed immediately inside the NMR spectrometer. All HR-MAS NMR experiments were done on a Bruker DMX 600-MHz NMR spectrometer, which was equipped with a 4-mm HR-MAS dual inverse ¹H/¹³C probe with a magic angle gradient and spinning rate of 6 kHz with a proton resonance frequency of 600MHz. Measurements were carried out at a temperature of 277 K using a Bruker BVT3000 control unit. Acquisition and processing of data were done with Bruker TOPSPIN software 2.1 (Bruker Analytische Messtechnik, Germany). A rotor synchronized Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence with water suppression was used for one-dimensional 1 H HR-MAS NMR spectra. Each one-dimensional spectrum was acquired applying a spectral width of 8000 Hz, domain data points of 16k, a number of averages of 512 with 8 dummy scans, a constant receiver gain of 2048, an acquisition time of 2 s, and a relaxation delay of 2 s. The relaxation delay was set to a small value to remove nascent short transverse (T_2) components due to the presence of lipids in intact embryo samples. All spectra were processed by an exponential window function corresponding to a line broadening of 1 Hz and zero-filled before Fourier transformation. NMR spectra were phased manually and automatically baseline corrected using TOPSPIN 2.1. The total analysis time (including sample preparation, optimization of NMR parameters, and data acquisition) of 1 H HR-MAS NMR spectroscopy for each sample was approximately 20 min. ### NMR analysis The one-dimensional ¹H solution NMR and HR-MAS NMR spectra obtained from $lepb^{-/-}$ and $lepb^{+/+}$ group were corrected for baseline, phase shifts and reference using the MestReNova software version 11.0 (Mestrelab Research S.L., Santiago de Compostela, Spain). The region of 4.8-4.9 (solution NMR) was excluded from the analysis to remove the water peak. The spectra were then subdivided in the range between 0 and 10 ppm into buckets of 0.04 ppm. The resulting data matrix was saved as the format of script: NMR CSV matrix (transposed) (*.CSV, *.txt). This was then imported into MetaboAnalyst 4.0 for multivariate analysis using PLS-DA. Correlation coefficients with p < 0.05 were considered statistically significant. Quantification of metabolites was performed using Chenomx NMR Suite 8.6 (Edmonton, Alberta, Canada), which allowed for qualitative and quantitative analysis of an NMR spectrum by fitting spectral signatures from HMDB database to the respective spectrum. Assignment of peaks was based on the chemical shifts of compounds of interest in Chenomx software. The concentration of lipids was calculated by comparing the integral peak intensity of the lipids of interest with that of the reference TMS peak [54]. Statistical analysis (t-tests) of the NMR quantification results was performed with GraphPad Prism 8.0.1 (San Diego, CA, USA) and *p*-values < 0.05 were considered significantly. ### **RNA** isolation Frozen ob/ob and C57BL/6 mouse heads (n=4) were thawed in 30 ml of TRIzol Reagent (Life Technologies) and manually crushed in a mortar while zebrafish larvae from $lepb^{+/+}$ and $lepb^{-/-}$ groups (n=3) were resuspended and crushed in 0.5 ml of TRIzol Reagent. Subsequently, total RNA was extracted in accordance with the manufacturer's instructions. Contaminating genomic DNA was removed using DNase I digestion for 15min at 37°C. RNA concentration was determined by NanoDrop 2000 (Thermo Scientific, the Netherlands). RNA integrity (RIN) was assessed by bioanalyzer (Agilent) and samples with RIN values > 6 were used for further library construction and sequencing. ### Deep sequencing ### Mice Deep sequencing of total RNA samples derived from ob/ob and lean C57BL/6 mice heads was performed at ZF-screens B.V. (Leiden, the Netherlands) as described in a previous study [55]. A total of 3 µg of RNA was used to generate RNA-seq libraries using the Illumina TruSeq RNA Sample Preparation Kit v2 (Illumina Inc., San Diego, USA). In the manufacturer's instructions two modifications were made: In the adapter ligation step 1 µl instead of
2.5 µl adaptor was used; In the library size selection step, the library fragments were isolated using a double Ampure XP purification with a 0.7x beads to library ratio. The resulting mRNA-seq libraries were sequenced using an Illumina HiSeq2000 instrument according to the manufacturer's description with a read length of 50 nucleotides. Image analysis and base calling were done by the Illumina HCS version 1.15.1. At least 15 million reads were obtained that could be mapped to the mouse genome version GRCm38. ### Zebrafish larvae Deep sequencing of the zebrafish larvae RNA from *lepb*^{+/+} and *lepb*^{-/-} groups was performed by GenomeScan B.V. (Leiden, the Netherlands). The NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (NEB #E7760S/L) was used to process the samples. Briefly, mRNA was isolated from total RNA using oligo-dT magnetic beads. After fragmentation of the mRNA, a cDNA synthesis was performed. This was used for ligation of the sequencing adapters and PCR amplification of the resulting product. The quality and yield after sample preparation was measured with Fragment Analyzer. The size of the resulting products was consistent with the expected size distribution (a broad peak between 300-500 bp). Clustering and DNA sequencing using the NovaSeq6000 was performed according to manufacturer's protocols. A concentration of 1.1 nM of DNA was used. For the zebrafish larval samples, data sets of paired end reads of 150 nucleotides were obtained with at least 20 million reads of reads that could be mapped to the zebrafish genome version GRCz11. ### Deep sequencing data mapping and analysis Sequencing data of mice heads were aligned and mapped to the mouse genome GRCm38.p6 using Genetiles server [55]. Sequencing data of zebrafish larvae were aligned and mapped to the zebrafish genome GRCz11 using Salmon v1.2.1, and differential gene expression was analyzed using DESeq2 v1.21.1. Gene Ontology (GO) term enrichment and KEGG pathway analysis were performed in DAVID Bioinformatics Resources 6.8 (https://david.ncifcrf.gov/). The arachidonic acid pathway of Figure 8 was drawn in Pathvisio software based on the wikipathways eicosanoid synthesis, eicosanoid metabolism via cytochrome P450 mono-oxygenases (CYP), prostaglandin synthesis, and omega3 and omega6 fatty acids synthesis [56]. Genes MAP2K6 and Nfe2l2 were added to the pathway based on literature [57, 58]. ### qPCR Zebrafish larvae cDNA was generated from the same RNA samples of RNAseq by using iScript cDNA synthesis kit (Bio-Rad). qPCR experiment was performed by following a protocol of SsoAdvanced Universal SYBR* Green Supermix kit (Bio-Rad). qPCR measurement was detected on a CFX96 machine (Bio-Rad). The Cq values of targeted genes were normalized to a zebrafish housekeeping gene Tsp as the expression level was not changed due to lepb mutation. The relative expression level were analyzed by using $2^{-\Delta\Delta Ct}$ method. We selected the representative genes based on the fold change, expression level, p adjusted value and the ease to make good primers. The forward and reverse primer sequences of tested genes in zebrafish larvae are showing below. LO018181.1: TGAAGCGACTGGGATGCTG/TGGATCTCTTCGTTCAAGGGTT. Si:dkey-14d8.6: ACTCCTATGATCAGCCCCTG/TTACAGCCAAACTCCCACACC. Amy2al2: AGCACAACCCAAACACGAAA/CTGAACTCCTCCATAGCCGT. Tsp: CCTGCCCATTTTCAGTC/TGTTGTTGCCTCTGTTGCTC. ### **Declarations** ### **Ethics approval** Experiments in mice were performed under ethical license number DEC 14080 (10-07-2014) of Leiden University. Zebrafish lines were handled in accordance with the local animal welfare regulations and maintained according to standard protocols (https://zfin.org). This local regulation serves as the implementation of Guidelines on the protection of experimental animals by the Council of Europe, Directive 86/609/EEC, which allows zebrafish embryos to be used up to the moment of free-living (5 days after fertilization). Since embryos used in this study were no more than 5 days old, no license is required by the Council of Europe (1986), Directive 86/609/EEC or the Leiden University ethics committee. ### Consent for publication Not applicable ### Availability of data and materials All data generated or analyzed during this study are included in this published article and its supplementary information files. ### **Competing interests** The authors declare that they have no competing interests. ### **Funding** Y. Ding and J. He are funded by China Scholarship Council. M.N.H. Eeza is funded by the Deutscher Akademischer Austauschdienst (DAAD). ### Authors' contributions YD: Conceptualization, Methodology, Statistic analysis, Experimental and bioinformatic investigation, Visualization, Writing - Original Draft. MC.H: Resources, Experimental investigation, Writing - Review & Editing. GFC: bioinformatic investigation. JH, NN, AC.H and MN.H.E: Experimental investigation. A.A: Conceptualization, Methodology, Supervision, Writing - Review & Editing. TH and JM: Resources. HP.S: Initialization of the study, Conceptualization, Bioinformatic investigation, Supervision, Writing - Review & Editing, Project administration, Funding acquisition. All authors have read and approved the final version of the manuscript. ### Acknowledgements We thank Alfons Lefeber helping measuring samples with solution-state NMR. Y. Ding and J. He acknowledge the support of China Scholarship Council for fellowship. M.N.H. Eeza acknowledges the support by the Deutscher Akademischer Austauschdienst (DAAD) for fellowship. ### References - [1] Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372(6505):425-32. - [2] Perakakis N, Farr OM, Mantzoros CS. Leptin in Leanness and Obesity: JACC State-of-the-Art Review. Journal of the American College of Cardiology 2021;77(6):745-60. - [3] Paz-Filho G, Mastronardi C, Delibasi T, Wong M-L, Licinio J. Congenital leptin deficiency: diagnosis and effects of leptin replacement therapy. Arquivos Brasileiros de Endocrinologia & Metabologia 2010;54:690-7. - [4] Meehan CA, Cochran E, Kassai A, Brown RJ, Gorden P. Metreleptin for injection to treat the complications of leptin deficiency in patients with congenital or acquired generalized lipodystrophy. Expert Rev Clin Pharmacol 2016;9(1):59-68. - [5] Wang B, Chandrasekera PC, Pippin JJ. Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Current diabetes reviews 2014;10(2):131-45. - [6] Giesbertz P, Padberg I, Rein D, Ecker J, Hofle AS, Spanier B, et al. Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes. Diabetologia 2015;58(9):2133-43. - [7] Won EY, Yoon MK, Kim SW, Jung Y, Bae HW, Lee D, et al. Gender-specific metabolomic profiling of obesity in leptin-deficient ob/ob mice by 1H NMR spectroscopy. PLoS One 2013;8(10):e75998. - [8] Gogiashvili M, Edlund K, Gianmoena K, Marchan R, Brik A, Andersson JT, et al. Metabolic profiling of ob/ob mouse fatty liver using HR-MAS (1)H-NMR combined with gene expression analysis reveals alterations in betaine metabolism and the transsulfuration pathway. Anal Bioanal Chem 2017;409(6):1591-606. - [9] Gipson GT, Tatsuoka KS, Ball RJ, Sokhansanj BA, Hansen MK, Ryan TE, et al. Multi-platform investigation of the metabolome in a leptin receptor defective murine model of type 2 diabetes. Mol Biosyst 2008;4(10):1015-23. - [10] Connor SC, Hansen MK, Corner A, Smith RF, Ryan TE. Integration of metabolomics and transcriptomics data to aid biomarker discovery in type 2 diabetes. Mol Biosyst 2010;6(5):909-21. - [11] Serkova NJ, Jackman M, Brown JL, Liu T, Hirose R, Roberts JP, et al. Metabolic profiling of livers and blood from obese Zucker rats. J Hepatol 2006;44(5):956-62. - [12] Perry RJ, Wang Y, Cline GW, Rabin-Court A, Song JD, Dufour S, et al. Leptin Mediates a Glucose-Fatty Acid Cycle to Maintain Glucose Homeostasis in Starvation. Cell 2018;172(1-2):234-48 e17. - [13] Kokaji T, Hatano A, Ito Y, Yugi K, Eto M, Morita K, et al. Transomics analysis reveals allosteric and gene regulation axes for altered hepatic glucose-responsive metabolism in obesity. Science Signaling 2020;13(660):eaaz1236. - [14] Gorissen M, Bernier NJ, Nabuurs SB, Flik G, Huising MO. Two divergent leptin paralogues in zebrafish (Danio rerio) that originate early in teleostean evolution. J Endocrinol 2009;201(3):329-39. - [15] Prokop JW, Duff RJ, Ball HC, Copeland DL, Londraville RL. Leptin and leptin receptor: analysis of a structure to function relationship in interaction and evolution from humans to fish. Peptides 2012;38(2):326-36. - [16] Araújo JR, Keating E, Martel F. Impact of Gestational Diabetes Mellitus in the Maternal-to-Fetal Transport of Nutrients. Current Diabetes Reports 2015;15(2):1. - [17] Guelfi KJ, Ong MJ, Li S, Wallman KE, Doherty DA, Fournier PA, et al. Maternal circulating adipokine profile and insulin resistance in women at high risk of developing gestational diabetes mellitus. Metabolism 2017;75:54-60. - [18] Kampmann FB, Thuesen ACB, Hjort L, Bjerregaard AA, Chavarro JE, Frystyk J, et al. Increased leptin, decreased adiponectin and FGF21 concentrations in adolescent offspring of women with gestational diabetes. European Journal of Endocrinology 2019;181(6):691. - [19] Radaelli T, Varastehpour A, Catalano P, Hauguel-de Mouzon S. Gestational Diabetes Induces Placental Genes for Chronic Stress and Inflammatory Pathways. Diabetes 2003;52(12):2951-8. - [20] Yamashita H, Shao J, Ishizuka T, Klepcyk PJ, Muhlenkamp P, Qiao L, et al. Leptin Administration Prevents Spontaneous Gestational Diabetes in Heterozygous Leprdb/+ Mice: Effects on Placental Leptin and Fetal Growth*. Endocrinology 2001;142(7):2888-97. - [21] Audira G, Sarasamma S, Chen JR, Juniardi S, Sampurna BP, Liang ST, et al. Zebrafish Mutants Carrying Leptin a (lepa) Gene Deficiency Display Obesity, Anxiety, Less Aggression and
Fear, and Circadian Rhythm and Color Preference Dysregulation. Int J Mol Sci 2018;19(12). - [22] He J, Ding Y, Nowik N, Jager C, Eeza MNH, Alia A, et al. Leptin deficiency affects glucose homeostasis and results in adiposity in zebrafish. Journal of Endocrinology 2021;249(2):125-34. - [23] Michel M, Page-McCaw PS, Chen W, Cone RD. Leptin signaling regulates glucose homeostasis, but not adipostasis, in the zebrafish. Proc Natl Acad Sci U S A 2016;113(11):3084-9. - [24] Marín-Juez R, Jong-Raadsen S, Yang S, Spaink HP. Hyperinsulinemia induces insulin resistance and immune suppression via Ptpn6/Shp1 in zebrafish. Journal of Endocrinology 2014;222(2):229. - [25] Menni C, Fauman E, Erte I, Perry JR, Kastenmuller G, Shin SY, et al. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes 2013;62(12):4270-6. - [26] Ding Y, Raterink RJ, Marin-Juez R, Veneman WJ, Egbers K, van den Eeden S, et al. Tuberculosis causes highly conserved metabolic changes in human patients, mycobacteria-infected mice and zebrafish larvae. Sci Rep 2020;10(1):11635. - [27] Sztolsztener K, Chabowski A, Harasim-Symbor E, Bielawiec P, Konstantynowicz-Nowicka K. Arachidonic Acid as an Early Indicator of Inflammation during Non-Alcoholic Fatty Liver Disease Development. Biomolecules 2020;10(8). - [28] Sáinz N, Rodríguez A, Catalán V, Becerril S, Ramírez B, Gómez-Ambrosi J, et al. Leptin Administration Downregulates the Increased Expression Levels of Genes Related to Oxidative Stress and Inflammation in the Skeletal Muscle of <i>ob/ob</i> Mice. Mediators of Inflammation 2010;2010;784343. - [29] Vrieling F, Alisjahbana B, Sahiratmadja E, van Crevel R, Harms AC, Hankemeier T, et al. Plasma metabolomics in tuberculosis patients with and without concurrent type 2 diabetes at diagnosis and during antibiotic treatment. Sci Rep 2019;9(1):18669. - [30] Weiner J, 3rd, Maertzdorf J, Sutherland JS, Duffy FJ, Thompson E, Suliman S, et al. Metabolite changes in blood predict the onset of tuberculosis. Nat Commun 2018;9(1):5208. - [31] Shin J-H, Yang J-Y, Jeon B-Y, Yoon YJ, Cho S-N, Kang Y-H, et al. 1H NMR-based Metabolomic Profiling in Mice Infected with Mycobacterium tuberculosis. Journal of Proteome Research 2011;10(5):2238-47. - [32] He J, Ding Y, Nowik N, Jager C, H. Eeza MN, Alia A, et al. Leptin deficiency affects glucose homeostasis and results in adiposity in zebrafish. Journal of Endocrinology 2021. - [33] Pelegri F. Maternal factors in zebrafish development. Developmental Dynamics 2003;228(3):535-54. - [34] Lee MT, Bonneau AR, Giraldez AJ. Zygotic genome activation during the maternal-to-zygotic transition. Annu Rev Cell Dev Biol 2014;30:581-613. - [35] O'Connell TM. The complex role of branched chain amino acids in diabetes and cancer. Metabolites 2013;3(4):931-45. - [36] Anthony JC, Reiter AK, Anthony TG, Crozier SJ, Lang CH, MacLean DA, et al. Orally Administered Leucine Enhances Protein Synthesis in Skeletal Muscle of Diabetic Rats in the Absence of Increases in 4E-BP1 or S6K1 Phosphorylation. Diabetes 2002;51(4):928-36. - [37] van Doorn M, Vogels J, Tas A, van Hoogdalem EJ, Burggraaf J, Cohen A, et al. Evaluation of metabolite profiles as biomarkers for the pharmacological effects of thiazolidinediones in Type 2 diabetes mellitus patients and healthy volunteers. Br J Clin Pharmacol 2007;63(5):562-74. - [38] Sishi B, Loos B, Ellis B, Smith W, du Toit EF, Engelbrecht AM. Diet-induced obesity alters signalling pathways and induces atrophy and apoptosis in skeletal muscle in a prediabetic rat model. Exp Physiol 2011;96(2):179-93. - [39] Wang X, Hu Z, Hu J, Du J, Mitch WE. Insulin resistance accelerates muscle protein degradation: Activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology 2006;147(9):4160-8. - [40] Pasiakos SM, Carbone JW. Assessment of skeletal muscle proteolysis and the regulatory response to nutrition and exercise. IUBMB Life 2014;66(7):478-84. - [41] Kadowaki M, Kanazawa T. Amino Acids as Regulators of Proteolysis. The Journal of Nutrition 2003;133(6):2052S-6S. - [42] Bechet D, Tassa A, Combaret L, Taillandier D, Attaix D. Regulation of skeletal muscle proteolysis by amino acids. J Ren Nutr 2005;15(1):18-22. - [43] Yan Y, Jiang W, Spinetti T, Tardivel A, Castillo R, Bourquin C, et al. Omega-3 Fatty Acids Prevent Inflammation and Metabolic Disorder through Inhibition of NLRP3 Inflammasome Activation. Immunity 2013;38(6):1154-63. - [44] Kuehl F, Egan R. Prostaglandins, arachidonic acid, and inflammation. Science 1980;210(4473):978-84. - [45] Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006;444(7121):860-7. - [46] Dooley KE, Chaisson RE. Tuberculosis and diabetes mellitus: convergence of two epidemics. The Lancet Infectious Diseases 2009;9(12):737-46. - [47] Tobin DM, Roca FJ, Ray JP, Ko DC, Ramakrishnan L. An enzyme that inactivates the inflammatory mediator leukotriene b4 restricts mycobacterial infection. PLoS One 2013;8(7):e67828. - [48] Tobin David M, Roca Francisco J, Oh Sungwhan F, McFarland R, Vickery Thad W, Ray John P, et al. Host Genotype-Specific Therapies Can Optimize the Inflammatory Response to Mycobacterial Infections. Cell 2012;148(3):434-46. - [49] Noga MJ, Dane A, Shi S, Attali A, van Aken H, Suidgeest E, et al. Metabolomics of cerebrospinal fluid reveals changes in the central nervous system metabolism in a rat model of multiple sclerosis. Metabolomics 2012;8(2):253-63. - [50] Chong J, Xia J. Using MetaboAnalyst 4.0 for Metabolomics Data Analysis, Interpretation, and Integration with Other Omics Data. Methods Mol Biol 2020;2104:337-60. - [51] Berry JP, Roy U, Jaja-Chimedza A, Sanchez K, Matysik J, Alia A. High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance of Intact Zebrafish Embryos Detects Metabolic Changes Following Exposure to Teratogenic Polymethoxyalkenes from Algae. Zebrafish 2016;13(5):456-65. - [52] Roy U, Conklin L, Schiller J, Matysik J, Berry JP, Alia A. Metabolic profiling of zebrafish (Danio rerio) embryos by NMR spectroscopy reveals multifaceted toxicity of beta-methylamino-L-alanine (BMAA). Sci Rep 2017;7(1):17305. - [53] Zuberi Z, Eeza MNH, Matysik J, Berry JP, Alia A. NMR-Based Metabolic Profiles of Intact Zebrafish Embryos Exposed to Aflatoxin B1 Recapitulates Hepatotoxicity and Supports Possible Neurotoxicity. Toxins (Basel) 2019;11(5). - [54] van Amerongen YF, Roy U, Spaink HP, de Groot HJ, Huster D, Schiller J, et al. Zebrafish brain lipid characterization and quantification by (1)H nuclear magnetic resonance spectroscopy and MALDI-TOF mass spectrometry. Zebrafish 2014;11(3):240-7. - [55] Veneman WJ, de Sonneville J, van der Kolk KJ, Ordas A, Al-Ars Z, Meijer AH, et al. Analysis of RNAseq datasets from a comparative infectious disease zebrafish model using GeneTiles bioinformatics. Immunogenetics 2015;67(3):135-47. - [56] Pico AR, Kelder T, van Iersel MP, Hanspers K, Conklin BR, Evelo C. WikiPathways: Pathway Editing for the People. PLOS Biology 2008;6(7):e184. - [57] Itoh K, Mochizuki M, Ishii Y, Ishii T, Shibata T, Kawamoto Y, et al. Transcription Factor Nrf2 Regulates Inflammation by Mediating the Effect of 15-Deoxy-Δ^{12,14}-Prostaglandin J₂. Molecular and Cellular Biology 2004;24(1):36-45. - [58] Oyeniran C, Tanfin Z. MAPK14 Cooperates with MAPK3/1 to Regulate Endothelin-1-Mediated Prostaglandin Synthase 2 Induction and Survival in Leiomyoma but Not in Normal Myometrial Cells1. Biology of Reproduction 2011;84(3):495-504. ### Supplementary materials Supplementary Figure S1. Body weight of ob/ob and wild type C57BL/6 mice from week 6 to week 14. WT: Wild type. ****p < 0.0001. Supplementary Figure S2. Quantifications of the common biomarkers of the blood from ob/ob mice and wild type mice. The original and normalized value of the 25 biomarkers showing in Figure 1C were significantly (p < 0.05) decreased in ob/ob mice blood compared to wild type mice blood. Sample normalization was performed automatically by chosen log transformation and auto scaling in MetaboAnalyst 4.0. WT: Wild type. Supplementary Figure S3. Quantifications of the common biomarkers from extracted *lepb* mutant zebrafish larvae and wild type siblings. Quantifications of the common 19 biomarkers in Figure 2C that are significantly changed in *lepb* mutant zebrafish larvae versus wild type. WT: Wild type. *p < 0.05, **p < 0.01, ***p < 0.0001. Supplementary Figure S4. A Volcano plot of published transcriptomes of mice liver. A Volcano plot showing a graphical representation of the significance (p < 0.05) in ob/ob mice liver compared to C57BL/6 mice liver. The transcripts with fold change over 1.5 are highlighted in blue. Thirty-six significant genes in mice liver out of the fold change in X axis were excluded to make the graph look well. Supplementary **S5. Figure** Validation of gene mRNA expression level from RNAseq data in Zebrafish larvae using qPCR. A. Gene LO018181.1, ensembl code ENSDARG00000113971. B. Gene Si:dkey-14d8.5, ensembl code ENSDARG00000045835. C. Gene Amy2al2, ensembl code, ENSDARG00000009443. *p < 0.05, **p < 0.01. | Metabolite | HMDB code | FC | p value | |-----------------------|-----------|------|----------| | Arginine | HMDB00517 | 0.23 | 3.00E-06 | | Hydroxyproline | HMDB00725 | 0.29 | 6.00E-06 | | Gamma-glutamylalanine | HMDB06248 | 0.30 | 1.00E-05 | | Glutamine | HMDB00641 | 0.41 | 5.00E-05 | | Histidine | HMDB00177 | 0.45 | 1.00E-04 | | Glycine | HMDB00123 | 0.42 | 1.00E-04 | | Proline | HMDB00162 | 0.44 | 1.00E-04 | | Sarcosine | HMDB00271 | 0.33 | 2.00E-04 | | Citrulline | HMDB00904 | 0.45 | 3.00E-04 | | Methionine sulfoxide | HMDB02005 | 0.36 | 3.00E-04 | | 2-Aminobutyrate | HMDB00510 | 0.32 | 4.00E-04 | | Lysine | HMDB00182 | 0.43 | 5.00E-04 | | Alpha-aminobutyric acid | HMDB00452 | 0.57 | 5.00E-04 | |-------------------------|-----------|------|----------| | Methionine | HMDB00696 | 0.42 | 5.00E-04 | | Kynurenine | HMDB00183 | 0.36 | 5.00E-04 | | Tryptophan | HMDB00929
 0.42 | 6.00E-04 | | Hydroxylysine | HMDB00450 | 0.46 | 7.00E-04 | | Leucine | HMDB00687 | 0.48 | 7.00E-04 | | Threonine | HMDB00167 | 0.45 | 8.00E-04 | | Tyrosine | HMDB00158 | 0.45 | 2.00E-03 | | Methyldopa | HMDB11754 | 0.50 | 2.00E-03 | | Phenylalanine | HMDB00159 | 0.49 | 2.00E-03 | | Isoleucine | HMDB00172 | 0.54 | 2.00E-03 | | Homoserine | HMDB00719 | 0.49 | 2.00E-03 | | Valine | HMDB00883 | 0.50 | 4.00E-03 | | Alanine | HMDB00161 | 0.59 | 5.00E-03 | | Spermidine | HMDB01257 | 0.42 | 2.00E-02 | | Ethanolamine | HMDB00149 | 0.66 | 2.00E-02 | | Putrescine | HMDB01414 | 0.59 | 2.00E-02 | | Serine | HMDB00187 | 0.72 | 4.00E-02 | Supplementary Table S1. Ratio of metabolite quantities in blood of *ob/ob* mice compared to the control group. The levels of 30 metabolites are significantly decreased in the *ob/ob* mice compared to the wild type C57BL/6 mice. | | | Zebrafish larvae | | | |-------------|---------------------------|------------------|------------------------------------|--| | Peak
no. | Assignments | Multiplicity | Chemical
shifts (ppm)
600MHz | | | 1 | Chol (C18) | s | 0.62 0.60 | | | 2 | Chol (C26,27) | dd | 0.81 0.78 | | | 3 | w-6 FA -CH3
(terminal) | d | 0.83 0.81 | | | 4 | Chol (C21) | d | 0.86 0.83 | | | 5 | w-3 FA -CH3
(terminal) | t | 0.92 0.89 | | | 6 | Chol (C19) | S | 0.95 0.93 | | | 7 | Chol | m | 1.12 0.98 | | | 8 | Chol+FA (CH2) | s | 1.28 1.15 | | | 9 | Chol+FA (CH2) | m | 1.76 1.73 | | | 10 | FA (CH2) | bs | 1.80 1.76 | | | 11 | Chol+FA (CH2) | d | 1.89 1.88 | | | 12 | FA (CH2)–Chol | m | 1.96 1.91 | | |----|----------------------|------|-----------|--| | 13 | FA (CH2) | quin | 2.05 1.96 | | | 14 | FA (CH2)–Chol | dt | 2.25 2.19 | | | 15 | FA (CH2)–DHA | m | 2.33 2.28 | | | 16 | FA (CH2)–PUFA | dd | 2.81 2.72 | | | 17 | PLs | bs | 3.13 3.05 | | | 18 | PC | S | 3.29 3.26 | | | 19 | Chol (C3) | m | 3.49 3.41 | | | 20 | Phosphotidylglycerol | bm | 4.38 3.55 | | | | Sphingolipids | | | | | 21 | Dolichols | m | 5.11 4.99 | | | | Plasmalogens | | | | | 22 | FA (-CH = CH-) and | m | 5.19 5.12 | | | 22 | Chol | m | 3.13 3.12 | | Supplementary Table S2. Overview of assigned lipid signals in Figure 6 from zebrafish larvae. S: singlet, d: doublet, t: triplet, m: multiplet, quin: quintet; dd: double doublet, bs: broad singlet, bm: broad multiplet, Chol: cholesterol, EPA: eicosapentaenoic acid, AA: arachidonic acid, DHA: docosahexaenoic acid, FA: fatty acids, PC: phosphatidylcholine, PLs: phospholipids, PUFA: polyunsaturated fatty acid. | Mice ID | Mice gene | Human homolog | Meas/Ctrl | <i>p</i> -value | Classification | |--------------------|-----------|-----------------|-----------|-----------------|--------------------| | | name | | or - | | | | | | | Ctrl/Meas | | | | | | | (scaled) | | | | ENSMUSG00000070645 | Ren1 | ENSG00000143839 | -2.89 | 8.16E-04 | Aspartic peptidase | | ENSMUSG00000032086 | Bace1 | ENSG00000186318 | -1.17 | 1.60E-03 | Aspartic peptidase | | ENSMUSG00000007891 | Ctsd | ENSG00000117984 | 1.11 | 3.43E-02 | Aspartic peptidase | | ENSMUSG00000058499 | Pip | | 1.48 | 4.56E-02 | Aspartic peptidase | | ENSMUSG00000039070 | Cpa4 | ENSG00000128510 | -2.67 | 3.05E-02 | Carboxypeptidase | | ENSMUSG00000020841 | Cpd | ENSG00000108582 | -1.28 | 4.34E-05 | Carboxypeptidase | | ENSMUSG00000039007 | Cpq | ENSG00000104324 | 1.22 | 4.13E-03 | Carboxypeptidase | | ENSMUSG00000020473 | Aebp1 | ENSG00000106624 | 1.24 | 8.91E-03 | Carboxypeptidase | | ENSMUSG00000027408 | Cpxm1 | ENSG00000088882 | 1.40 | 2.04E-05 | Carboxypeptidase | | ENSMUSG00000001865 | Cpa3 | ENSG00000163751 | 1.90 | 9.45E-08 | Carboxypeptidase | | ENSMUSG00000036596 | Cpz | ENSG00000109625 | 2.20 | 1.20E-07 | Carboxypeptidase | | ENSMUSG00000034342 | Cbl | ENSG00000110395 | -1.64 | 8.07E-06 | Cysteine peptidase | | ENSMUSG00000037326 | Capn15 | ENSG00000103326 | -1.35 | 9.53E-04 | Cysteine peptidase | | ENSMUSG00000022637 | Cblb | ENSG00000114423 | -1.18 | 1.47E-02 | Cysteine peptidase | | ENSMUSG00000026509 | Capn2 | ENSG00000162909 | 1.12 | 2.24E-02 | Cysteine peptidase | | ENSMUSG00000001794 | Capns1 | ENSG00000126247 | 1.12 | 3.57E-02 | Cysteine peptidase | | ENSMUSG00000083282 Ctsf ENSG00000174080 1.15 2.17E-02 Cysteine peptidase ENSMUSG00000028015 Ctsb ENSG00000038041 1.25 1.63E-04 Cysteine peptidase ENSMUSG00000033259 Ctsh ENSG0000013811 1.25 4.55E-03 Cysteine peptidase ENSMUSG00000038642 Ctss ENSG0000018313 1.27 4.31E-04 Cysteine peptidase ENSMUSG00000075418 Atg4a ENSG0000011804 1.31 6.93E-05 Cysteine peptidase ENSMUSG00000025418 Atg4a ENSG00000137752 1.37 4.14E-02 Cysteine peptidase ENSMUSG00000021477 Ctsl ENSG00000137752 1.37 4.14E-02 Cysteine peptidase ENSMUSG00000023111 Ctsl ENSG0000014387 2.36 9.17E-08 Cysteine peptidase ENSMUSG00000031015 Usp4 ENSG00000144663 1.33 6.72E-04 Cysteine peptidase ENSMUSG00000051306 Ky ENSG0000014466 1.31 7.73E-05 Cysteine peptidase ENSMUSG00000051306 Usp42 ENSG0000015806 < | ENICHIECONOMIA 1020 | Ct.1 | ENICCO0000164722 | 1.15 | 4.72E.04 | C -(-1 | |---|---------------------|---------|------------------|-------|----------|--------------------| | ENSMUSG00000028015 Ctso ENSG00000256043 1.25 1.63E-04 Cysteine peptidase ENSMUSG00000032359 Ctsb ENSG0000013811 1.25 4.55E-03 Cysteine peptidase ENSMUSG00000054083 Capn12 ENSG0000013817 1.27 4.31E-04 Cysteine peptidase ENSMUSG00000016256 Ctsz ENSG0000011160 1.31 6.93E-05 Cysteine peptidase ENSMUSG0000002588 Casp1 ENSG00000137752 1.37 4.14F-02 Cysteine peptidase ENSMUSG00000023477 Ctsl ENSG00000137757 1.96 3.68E-03 Cysteine peptidase ENSMUSG00000023588 Casp4 ENSG00000137575 1.96 3.68E-03 Cysteine peptidase ENSMUSG00000033506 Ky ENSG0000013757 1.96 3.68E-03 Cysteine peptidase ENSMUSG0000003101 Usp49 ENSG0000016463 -1.33 6.72E-04 Cysteine peptidase ENSMUSG0000003100 Usp42 ENSG0000016463 -1.31 7.73E-05 Cysteine peptidase ENSMUSG0000005150 Usp24 ENSG0000016346 | ENSMUSG00000021939 | Ctsb | ENSG00000164733 | 1.15 | 4.73E-04 | Cysteine peptidase | | ENSMUSG00000032359 Ctsh ENSG00000103811 1.25 4.55E-03 Cysteine peptidase ENSMUSG0000003842 Ctss ENSG00000163131 1.27 4.31E-04 Cysteine peptidase ENSMUSG00000054083 Capn12 ENSG0000011160 1.31 6.93E-05 Cysteine peptidase ENSMUSG00000079418 Atg4a ENSG0000011160 1.31 6.93E-05 Cysteine peptidase ENSMUSG000000237878 Casp1 ENSG00000137752 1.37 4.14E-02 Cysteine peptidase ENSMUSG000000233783 Casp4 ENSG00000137757 1.96 3.68E-03 Cysteine peptidase ENSMUSG00000023506 Cysteine PEPTIDASE ENSG0000014387 2.36 9.17E-08 Cysteine peptidase ENSMUSG0000003101 Usp49 ENSG00000124486 -1.31 7.73E-05 Cysteine peptidase ENSMUSG0000003106 Usp42 ENSG0000016364 -1.29 3.12E-03 Cysteine peptidase ENSMUSG0000005400 Usp42 ENSG0000016346 -1.26 3.16E-03 Cysteine peptidase ENSMUSG0000005401 Usp42 ENSG000 | | | | | | • • • | | ENSMUSG00000038642 Ctss ENSG00000163131 1.27 4.31E-04 Cysteine peptidase ENSMUSG00000016256 Ctsz ENSG000001182472 1.30 3.85E-03 Cysteine peptidase ENSMUSG00000079418 Arg4a ENSG0000011844 1.31 6-93E-05 Cysteine peptidase ENSMUSG0000002477 Ctsl ENSG00000137752 1.37 4.14E-02 Cysteine peptidase ENSMUSG00000023773 Ctsl ENSG00000137757 1.96 3.68E-03 Cysteine peptidase ENSMUSG00000023510 Ctsk ENSG00000137757 1.96 3.68E-03 Cysteine peptidase ENSMUSG00000023510 Ctsk ENSG00000174611 -1.89 1.10E-08 Cysteine peptidase ENSMUSG0000001510 Usp49 ENSG00000164663 -1.33 6.72E-04 Cysteine peptidase ENSMUSG0000005100 Usp42 ENSG0000016466 -1.31 7.73E-05 Cysteine peptidase ENSMUSG00000051506 Usp42 ENSG000001846 -1.29 3.14E-04 Cysteine peptidase ENSMUSG00000051527 Usp29 ENSG000001893 | | | | | | , , , | | ENSMUSG00000054083 Capn12 ENSG00000182472 1.30 3.85E-03 Cysteine peptidase ENSMUSG00000016256 Cis/2 ENSG00000101160 1.31 6.93E-05 Cysteine peptidase ENSMUSG00000079418 Atg4a ENSG0000011844 1.33 1.47E-02 Cysteine peptidase ENSMUSG00000025888 Casp1 ENSG00000137752 1.37 4.14E-02 Cysteine peptidase ENSMUSG000000235388 Casp4 ENSG00000137757 1.96 3.68E-03 Cysteine peptidase ENSMUSG00000035606 Ky ENSG00000143387 2.36 9.17E-08 Cysteine peptidase ENSMUSG00000035606 Ky ENSG00000164663 -1.33 6.72E-04 Cysteine peptidase ENSMUSG0000003100 Usp49 ENSG0000016466 -1.29 3.14E-04 Cysteine peptidase ENSMUSG00000051306 Usp42 ENSG0000016866 -1.28 3.14E-04 Cysteine peptidase ENSMUSG00000055900 Usp13 ENSG00000188923 -1.26 1.10E-05 Cysteine peptidase ENSMUSG00000033909 Usp36 ENSG0000018404 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | ENSMUSG0000016256 Ctsz ENSG0000011160 1.31 6.93E-05 Cysteine peptidase ENSMUSG00000079418 Atg4a ENSG0000011844 1.33 1.47E-02 Cysteine peptidase ENSMUSG00000025888 Casp1 ENSG00000137752 1.37
4.14E-02 Cysteine peptidase ENSMUSG00000025888 Casp4 ENSG00000137757 1.96 3.68E-03 Cysteine peptidase ENSMUSG00000035338 Casp4 ENSG00000143387 2.36 9.17E-08 Cysteine peptidase ENSMUSG00000035111 Cisk ENSG00000164663 -1.38 1.10E-08 Cysteine peptidase ENSMUSG0000003101 Usp49 ENSG00000164663 -1.33 6.72E-04 Cysteine peptidase ENSMUSG0000003106 Usp42 ENSG0000016346 -1.29 3.12E-03 Cysteine peptidase ENSMUSG00000051527 Usp24 ENSG0000018923 -1.26 1.10E-05 Cysteine peptidase ENSMUSG00000033190 Usp36 ENSG00000128923 -1.26 1.10E-05 Cysteine peptidase ENSMUSG00000035127 Usp24 ENSG0000015267 <td>ENSMUSG00000038642</td> <td></td> <td>ENSG00000163131</td> <td>1.27</td> <td>4.31E-04</td> <td>, , ,</td> | ENSMUSG00000038642 | | ENSG00000163131 | 1.27 | 4.31E-04 | , , , | | ENSMUSG00000079418 Atg4a ENSG0000011844 1.33 1.47E-02 Cysteine peptidase ENSMUSG00000025888 Casp1 ENSG00000137752 1.37 4.14F-02 Cysteine peptidase ENSMUSG0000002477 Ctsl ENSG00000137757 1.96 3.68E-03 Cysteine peptidase ENSMUSG00000028111 Ctsk ENSG00000137757 1.96 3.68E-03 Cysteine peptidase ENSMUSG0000035606 Ky ENSG00000174611 -1.89 1.10E-08 Cysteine peptidase ENSMUSG000003101 Usp49 ENSG00000164663 -1.31 7.73E-05 Cysteine peptidase ENSMUSG0000005900 Usp13 ENSG0000016346 -1.29 3.12E-03 Cysteine peptidase ENSMUSG0000005900 Usp13 ENSG0000018923 -1.26 1.10E-05 Cysteine peptidase ENSMUSG0000005127 Usp29 ENSG00000188923 -1.26 1.10E-05 Cysteine peptidase ENSMUSG0000003309 Usp36 ENSG00000018404 -1.25 7.69E-03 Cysteine peptidase ENSMUSG0000005412 Usp36 ENSG00000018404 | | Capn12 | | 1.30 | | | | ENSMUSG00000025888 Casp1 ENSG00000137752 1.37 4.14E-02 Cysteine peptidase ENSMUSG00000021477 Ctsl ENSG00000136943 1.45 1.07E-11 Cysteine peptidase ENSMUSG00000033588 Casp4 ENSG000001377575 1.96 3.68E-03 Cysteine peptidase ENSMUSG0000033506 Ky ENSG00000143187 2.36 9.17E-08 Cysteine peptidase ENSMUSG00000031010 Usp49 ENSG00000164663 -1.31 7.73E-05 Cysteine peptidase ENSMUSG0000005100 Usp8x ENSG00000163466 -1.29 3.12E-03 Cysteine peptidase ENSMUSG0000005100 Usp12 ENSG0000016346 -1.29 3.12E-03 Cysteine peptidase ENSMUSG00000056900 Usp12 ENSG00000128923 -1.26 1.10E-05 Cysteine peptidase ENSMUSG00000051527 Usp29 ENSG0000018464 -1.23 2.77E-03 Cysteine peptidase ENSMUSG00000028514 Usp24 ENSG0000015462 -1.20 3.0E-04 Cysteine peptidase ENSMUSG00000036712 Cyld ENSG0000015464 | ENSMUSG00000016256 | Ctsz | ENSG00000101160 | 1.31 | 6.93E-05 | Cysteine peptidase | | ENSMUSG00000021477 Ctsl ENSG00000136943 1.45 1.07E-11 Cysteine peptidase ENSMUSG00000033538 Casp4 ENSG00000137757 1.96 3.68E-03 Cysteine peptidase ENSMUSG00000028111 Ctsk ENSG00000174611 -1.89 1.10E-08 Cysteine peptidase ENSMUSG0000009115 Usp49 ENSG00000164663 -1.33 6.72E-04 Cysteine peptidase ENSMUSG00000051306 Usp42 ENSG00000163466 -1.29 3.12E-03 Cysteine peptidase ENSMUSG00000051306 Usp13 ENSG0000016346 -1.29 3.12E-03 Cysteine peptidase ENSMUSG00000051527 Usp13 ENSG00000189293 -1.26 1.10E-05 Cysteine peptidase ENSMUSG00000033909 Usp36 ENSG0000015483 -1.23 2.77E-03 Cysteine peptidase ENSMUSG00000033909 Usp36 ENSG0000015402 -1.20 8.01E-04 Cysteine peptidase ENSMUSG00000036712 Cyld ENSG0000015464 -1.19 1.38E-03 Cysteine peptidase ENSMUSG00000062627 Mysm1 ENSG0000012556 | ENSMUSG00000079418 | Atg4a | ENSG00000101844 | 1.33 | 1.47E-02 | Cysteine peptidase | | ENSMUSG0000033538 Casp4 ENSG00000137757 1.96 3.68E-03 Cysteine peptidase ENSMUSG00000028111 Ctsk ENSG00000143387 2.36 9.17E-08 Cysteine peptidase ENSMUSG00000035606 Ky ENSG00000174611 -1.89 1.10E-08 Cysteine peptidase ENSMUSG0000003101 Usp49 ENSG00000124486 -1.31 6.72E-04 Cysteine peptidase ENSMUSG00000051306 Usp42 ENSG00000124486 -1.31 7.73E-05 Cysteine peptidase ENSMUSG00000056900 Usp13 ENSG0000016346 -1.29 3.12E-03 Cysteine peptidase ENSMUSG00000051527 Usp29 ENSG00000131864 -1.25 7.69E-03 Cysteine peptidase ENSMUSG0000033909 Usp29 ENSG00000131864 -1.25 7.69E-03 Cysteine peptidase ENSMUSG00000028514 Usp24 ENSG00000154402 -1.20 8.01E-04 Cysteine peptidase ENSMUSG00000056342 Usp34 ENSG00000154402 -1.17 1.01E-02 Cysteine peptidase ENSMUSG00000062672 Mysm1 ENSG0000012554 | ENSMUSG00000025888 | Casp1 | ENSG00000137752 | 1.37 | 4.14E-02 | Cysteine peptidase | | ENSMUSG0000028111 Ctsk ENSG00000143387 2.36 9.17E-08 Cysteine peptidase ENSMUSG00000035606 Ky ENSG00000174611 -1.89 1.10E-08 Cysteine peptidase ENSMUSG00000090115 Usp49 ENSG00000164663 -1.33 6.72E-04 Cysteine peptidase ENSMUSG0000051306 Usp42 ENSG00000104486 -1.31 7.73E-05 Cysteine peptidase ENSMUSG000005306 Usp13 ENSG00000108466 -1.28 3.14E-04 Cysteine peptidase ENSMUSG0000055900 Usp13 ENSG00000128923 -1.26 1.10E-05 Cysteine peptidase ENSMUSG00000051527 Usp29 ENSG0000018464 -1.25 7.69E-03 Cysteine peptidase ENSMUSG00000028514 Usp24 ENSG00000162402 -1.20 8.01E-04 Cysteine peptidase ENSMUSG0000028514 Usp24 ENSG00000162402 -1.17 1.91E-02 Cysteine peptidase ENSMUSG00000036712 Cyld ENSG00000162601 -1.17 1.91E-02 Cysteine peptidase ENSMUSG0000004455 Usp45 ENSG00000175073 <td>ENSMUSG00000021477</td> <td>Ctsl</td> <td>ENSG00000136943</td> <td>1.45</td> <td>1.07E-11</td> <td>Cysteine peptidase</td> | ENSMUSG00000021477 | Ctsl | ENSG00000136943 | 1.45 | 1.07E-11 | Cysteine peptidase | | ENSMUSG0000035606 Ky ENSG0000174611 -1.89 1.10E-08 Cysteine peptidase ENSMUSG00000090115 Usp49 ENSG0000164663 -1.33 6.72E-04 Cysteine peptidase ENSMUSG00000031010 Usp9x ENSG00000124486 -1.31 7.73E-05 Cysteine peptidase ENSMUSG00000051306 Usp42 ENSG0000016346 -1.29 3.12E-03 Cysteine peptidase ENSMUSG00000051306 Usp13 ENSG0000005806 -1.28 3.14E-04 Cysteine peptidase ENSMUSG00000042444 Fam63b ENSG00000131864 -1.25 7.69E-03 Cysteine peptidase ENSMUSG00000033909 Usp36 ENSG00000131864 -1.23 2.77E-03 Cysteine peptidase ENSMUSG00000055412 Usp24 ENSG0000015402 -1.20 8.01E-04 Cysteine peptidase ENSMUSG00000065672 Usp34 ENSG0000015464 -1.19 1.38E-03 Cysteine peptidase ENSMUSG00000040455 Usp45 ENSG00000175507 -1.16 3.76E-02 Cysteine peptidase ENSMUSG00000045410 Usp46 ENSG000001750 | ENSMUSG00000033538 | Casp4 | ENSG00000137757 | 1.96 | 3.68E-03 | Cysteine peptidase | | ENSMUSG0000090115 Usp49 ENSG0000164663 -1.33 6.72E-04 Cysteine peptidase ENSMUSG00000031010 Usp9x ENSG00000124486 -1.31 7.73E-05 Cysteine peptidase ENSMUSG00000051306 Usp42 ENSG00000106346 -1.29 3.12E-03 Cysteine peptidase ENSMUSG00000056900 Usp13 ENSG000000128923 -1.28 3.14E-04 Cysteine peptidase ENSMUSG0000055901 Usp13 ENSG000000128923 -1.28 3.14E-04 Cysteine peptidase ENSMUSG0000055127 Usp29 ENSG0000013864 -1.25 7.69E-03 Cysteine peptidase ENSMUSG00000033909 Usp36 ENSG00000162402 -1.20 8.01E-04 Cysteine peptidase ENSMUSG00000036712 Cyld ENSG0000015464 -1.19 1.38E-03 Cysteine peptidase ENSMUSG00000062627 Mysm1 ENSG00000162601 -1.17 1.01E-02 Cysteine peptidase ENSMUSG00000045210 Vcpip1 ENSG00000175573 -1.16 2.16E-02 Cysteine peptidase ENSMUSG00000045210 Vcpip1 ENSG000 | ENSMUSG00000028111 | Ctsk | ENSG00000143387 | 2.36 | 9.17E-08 | Cysteine peptidase | | ENSMUSG0000031010 Usp9x ENSG00000124486 -1.31 7.73E-05 Cysteine peptidase ENSMUSG0000051306 Usp42 ENSG0000106346 -1.29 3.12E-03 Cysteine peptidase ENSMUSG00000056900 Usp13 ENSG00000058056 -1.28 3.14E-04 Cysteine peptidase ENSMUSG00000042444 Fam63b ENSG00000128923 -1.26 1.10E-05 Cysteine peptidase ENSMUSG00000055127 Usp29 ENSG000000131864 -1.25 7.69E-03 Cysteine peptidase ENSMUSG00000035914 Usp24 ENSG00000162402 -1.20 8.01E-04 Cysteine peptidase ENSMUSG00000055412 Usp24 ENSG00000162402 -1.12 1.38E-03 Cysteine peptidase ENSMUSG00000036712 Cyld ENSG00000162601 -1.17 1.01E-02 Cysteine peptidase ENSMUSG00000045210 Vcpip1 ENSG00000123552 -1.16 3.76E-02 Cysteine peptidase ENSMUSG00000045411 Usp48 ENSG00000175073 -1.16 4.90E-03 Cysteine peptidase ENSMUSG00000054814 Usp46 ENSG0 | ENSMUSG00000035606 | Ky | ENSG00000174611 | -1.89 | 1.10E-08 | Cysteine peptidase | | ENSMUSG0000051306 Usp42 ENSG0000106346 -1.29 3.12E-03 Cysteine peptidase ENSMUSG0000056900 Usp13 ENSG0000058056 -1.28 3.14E-04 Cysteine peptidase ENSMUSG00000042444 Fam63b ENSG00000128923 -1.26 1.10E-05 Cysteine peptidase ENSMUSG00000033909 Usp29 ENSG0000013846 -1.25 7.69E-03 Cysteine peptidase ENSMUSG00000033909 Usp36 ENSG00000162402 -1.20 8.01E-04 Cysteine peptidase ENSMUSG00000056342 Usp34 ENSG0000015464 -1.19 1.38E-03 Cysteine peptidase ENSMUSG0000062672 Mysm1 ENSG00000162601 -1.17 1.01E-02 Cysteine peptidase ENSMUSG00000045210 Vcpip1 ENSG00000123552 -1.16 3.76E-02 Cysteine peptidase ENSMUSG00000043411 Usp48 ENSG00000197073 -1.16 2.16E-02 Cysteine peptidase ENSMUSG0000005414 Usp46 ENSG0000019189 -1.15 1.43E-02 Cysteine peptidase ENSMUSG00000052917 Senp7 ENSG0000013 | ENSMUSG00000090115 | Usp49 | ENSG00000164663 | -1.33 | 6.72E-04 | Cysteine peptidase | | ENSMUSG0000056900 Usp13 ENSG0000058056 -1.28 3.14E-04 Cysteine peptidase ENSMUSG00000042444 Fam63b ENSG0000128923 -1.26 1.10E-05 Cysteine peptidase ENSMUSG0000051527 Usp29 ENSG00000131864 -1.25 7.69E-03 Cysteine peptidase ENSMUSG00000033909 Usp36 ENSG0000005483 -1.23 2.77E-03 Cysteine peptidase ENSMUSG00000028514 Usp34 ENSG00000162402 -1.20 8.01E-04 Cysteine peptidase ENSMUSG00000036712 Cyld ENSG0000015464 -1.19 1.38E-03 Cysteine peptidase ENSMUSG00000062627 Mysm1 ENSG0000018601 -1.17 1.01E-02 Cysteine peptidase ENSMUSG00000045210 Vcpip1 ENSG00000123552 -1.16 3.76E-02 Cysteine peptidase ENSMUSG0000045210 Vcpip1 ENSG00000175073 -1.16 4.90E-03 Cysteine peptidase ENSMUSG00000054814 Usp46 ENSG000001866 -1.16 4.90E-03 Cysteine peptidase ENSMUSG0000002124 Usp15 ENSG000013846 | ENSMUSG00000031010 | Usp9x | ENSG00000124486 | -1.31 | 7.73E-05 | Cysteine peptidase | | ENSMUSG0000042444 Fam63b ENSG00000128923 -1.26 1.10E-05 Cysteine peptidase ENSMUSG0000051527 Usp29 ENSG00000131864 -1.25 7.69E-03 Cysteine peptidase ENSMUSG00000033909 Usp36 ENSG0000005483 -1.23 2.77E-03 Cysteine peptidase ENSMUSG00000028514 Usp24 ENSG00000162402 -1.20 8.01E-04 Cysteine peptidase ENSMUSG00000036712 Cyld ENSG00000115464 -1.19 1.38E-03 Cysteine peptidase ENSMUSG00000062627 Mysm1 ENSG00000162601 -1.17 1.01E-02 Cysteine peptidase ENSMUSG0000004551 Usp45 ENSG0000012552
-1.16 3.76E-02 Cysteine peptidase ENSMUSG00000045210 Vcpip1 ENSG00000175073 -1.16 2.16E-02 Cysteine peptidase ENSMUSG00000043411 Usp48 ENSG0000019189 -1.15 1.43E-02 Cysteine peptidase ENSMUSG00000054814 Usp46 ENSG00000138468 -1.13 4.32E-02 Cysteine peptidase ENSMUSG00000027363 Usp15 ENSG00000 | ENSMUSG00000051306 | Usp42 | ENSG00000106346 | -1.29 | 3.12E-03 | Cysteine peptidase | | ENSMUSG00000051527 Usp29 ENSG00000131864 -1.25 7.69E-03 Cysteine peptidase ENSMUSG00000033909 Usp36 ENSG00000055483 -1.23 2.77E-03 Cysteine peptidase ENSMUSG00000028514 Usp24 ENSG00000162402 -1.20 8.01E-04 Cysteine peptidase ENSMUSG00000056342 Usp34 ENSG00000115464 -1.19 1.38E-03 Cysteine peptidase ENSMUSG00000062627 Mysm1 ENSG00000162601 -1.17 1.01E-02 Cysteine peptidase ENSMUSG0000004455 Usp45 ENSG00000123552 -1.16 3.76E-02 Cysteine peptidase ENSMUSG00000045210 Vcpip1 ENSG00000175073 -1.16 2.16E-02 Cysteine peptidase ENSMUSG00000043411 Usp48 ENSG0000019189 -1.15 1.43E-02 Cysteine peptidase ENSMUSG00000054814 Usp46 ENSG00000264522 -1.15 2.14E-02 Cysteine peptidase ENSMUSG0000002747 Senp7 ENSG00000138468 -1.13 4.32E-02 Cysteine peptidase ENSMUSG00000027363 Usp8 ENSG000 | ENSMUSG00000056900 | Usp13 | ENSG00000058056 | -1.28 | 3.14E-04 | Cysteine peptidase | | ENSMUSG00000033909 Usp36 ENSG00000055483 -1.23 2.77E-03 Cysteine peptidase ENSMUSG00000028514 Usp24 ENSG00000162402 -1.20 8.01E-04 Cysteine peptidase ENSMUSG00000056342 Usp34 ENSG00000115464 -1.19 1.38E-03 Cysteine peptidase ENSMUSG00000062627 Mysm1 ENSG00000162601 -1.17 1.01E-02 Cysteine peptidase ENSMUSG0000004555 Usp45 ENSG00000123552 -1.16 3.76E-02 Cysteine peptidase ENSMUSG00000043210 Vcpip1 ENSG00000175073 -1.16 2.16E-02 Cysteine peptidase ENSMUSG00000054814 Usp46 ENSG0000019189 -1.15 1.43E-02 Cysteine peptidase ENSMUSG00000038495 Otud7b ENSG0000018468 -1.13 4.32E-02 Cysteine peptidase ENSMUSG0000002917 Senp7 ENSG00000138468 -1.13 4.32E-02 Cysteine peptidase ENSMUSG0000002763 Usp8 ENSG0000138592 -1.10 3.45E-02 Cysteine peptidase ENSMUSG0000002764 Usp50 ENSG000017 | ENSMUSG00000042444 | Fam63b | ENSG00000128923 | -1.26 | 1.10E-05 | Cysteine peptidase | | ENSMUSG0000028514 Usp24 ENSG00000162402 -1.20 8.01E-04 Cysteine peptidase ENSMUSG00000056342 Usp34 ENSG00000115464 -1.19 1.38E-03 Cysteine peptidase ENSMUSG00000036712 Cyld ENSG00000083799 -1.17 1.01E-02 Cysteine peptidase ENSMUSG00000062627 Mysm1 ENSG00000162601 -1.17 3.83E-02 Cysteine peptidase ENSMUSG00000040455 Usp45 ENSG00000123552 -1.16 3.76E-02 Cysteine peptidase ENSMUSG00000045210 Vcpip1 ENSG00000175073 -1.16 2.16E-02 Cysteine peptidase ENSMUSG00000043411 Usp48 ENSG00000109189 -1.15 1.43E-02 Cysteine peptidase ENSMUSG00000038495 Otud7b ENSG00000138468 -1.13 4.32E-02 Cysteine peptidase ENSMUSG0000002124 Usp15 ENSG00000138668 -1.12 4.54E-02 Cysteine peptidase ENSMUSG00000027363 Usp8 ENSG00000138592 -1.10 3.45E-02 Cysteine peptidase ENSMUSG00000027364 Usp50 ENSG00 | ENSMUSG00000051527 | Usp29 | ENSG00000131864 | -1.25 | 7.69E-03 | Cysteine peptidase | | ENSMUSG0000056342 Usp34 ENSG00000115464 -1.19 1.38E-03 Cysteine peptidase ENSMUSG0000036712 Cyld ENSG00000083799 -1.17 1.01E-02 Cysteine peptidase ENSMUSG00000062627 Mysm1 ENSG00000162601 -1.17 3.83E-02 Cysteine peptidase ENSMUSG00000040455 Usp45 ENSG00000123552 -1.16 3.76E-02 Cysteine peptidase ENSMUSG0000043210 Vcpip1 ENSG00000175073 -1.16 2.16E-02 Cysteine peptidase ENSMUSG00000043411 Usp48 ENSG00000109189 -1.15 1.43E-02 Cysteine peptidase ENSMUSG00000038495 Otud7b ENSG00000138468 -1.13 4.32E-02 Cysteine peptidase ENSMUSG0000002124 Usp15 ENSG00000138468 -1.12 4.54E-02 Cysteine peptidase ENSMUSG00000027363 Usp8 ENSG00000138592 -1.10 3.45E-02 Cysteine peptidase ENSMUSG00000027364 Usp50 ENSG00000170236 -1.10 4.55E-02 Cysteine peptidase ENSMUSG00000028964 Park7 ENSG0000 | ENSMUSG00000033909 | Usp36 | ENSG00000055483 | -1.23 | 2.77E-03 | Cysteine peptidase | | ENSMUSG00000036712 Cyld ENSG00000083799 -1.17 1.01E-02 Cysteine peptidase ENSMUSG00000062627 Mysm1 ENSG00000162601 -1.17 3.83E-02 Cysteine peptidase ENSMUSG00000044515 Usp45 ENSG00000123552 -1.16 3.76E-02 Cysteine peptidase ENSMUSG00000045210 Vcpip1 ENSG00000175073 -1.16 2.16E-02 Cysteine peptidase ENSMUSG00000043411 Usp48 ENSG0000009866 -1.16 4.90E-03 Cysteine peptidase ENSMUSG00000054814 Usp46 ENSG0000019189 -1.15 1.43E-02 Cysteine peptidase ENSMUSG00000038495 Otud7b ENSG00000138468 -1.13 4.32E-02 Cysteine peptidase ENSMUSG0000002124 Usp15 ENSG00000138565 -1.12 4.54E-02 Cysteine peptidase ENSMUSG00000027363 Usp8 ENSG00000170236 -1.10 4.55E-02 Cysteine peptidase ENSMUSG0000001244 Scrn1 ENSG0000016280 -1.10 4.55E-02 Cysteine peptidase ENSMUSG0000002364 Park7 ENSG000001 | ENSMUSG00000028514 | Usp24 | ENSG00000162402 | -1.20 | 8.01E-04 | Cysteine peptidase | | ENSMUSG00000062627 Mysm1 ENSG00000162601 -1.17 3.83E-02 Cysteine peptidase ENSMUSG00000040455 Usp45 ENSG00000123552 -1.16 3.76E-02 Cysteine peptidase ENSMUSG00000043411 Usp48 ENSG00000175073 -1.16 4.90E-03 Cysteine peptidase ENSMUSG00000054814 Usp46 ENSG00000109189 -1.15 1.43E-02 Cysteine peptidase ENSMUSG00000038495 Otud7b ENSG00000264522 -1.15 2.14E-02 Cysteine peptidase ENSMUSG00000052917 Senp7 ENSG00000138468 -1.13 4.32E-02 Cysteine peptidase ENSMUSG0000002124 Usp15 ENSG000001385655 -1.12 4.54E-02 Cysteine peptidase ENSMUSG00000027363 Usp8 ENSG00000138592 -1.10 3.45E-02 Cysteine peptidase ENSMUSG00000027364 Usp50 ENSG00000170236 -1.10 4.55E-02 Cysteine peptidase ENSMUSG00000028964 Park7 ENSG00000116288 1.12 3.67E-02 Cysteine peptidase ENSMUSG00000028250 Usp1 ENSG00 | ENSMUSG00000056342 | Usp34 | ENSG00000115464 | -1.19 | 1.38E-03 | Cysteine peptidase | | ENSMUSG00000040455 Usp45 ENSG00000123552 -1.16 3.76E-02 Cysteine peptidase ENSMUSG00000045210 Vcpip1 ENSG00000175073 -1.16 2.16E-02 Cysteine peptidase ENSMUSG00000043411 Usp48 ENSG00000090686 -1.16 4.90E-03 Cysteine peptidase ENSMUSG00000054814 Usp46 ENSG00000109189 -1.15 1.43E-02 Cysteine peptidase ENSMUSG00000038495 Otud7b ENSG0000018468 -1.15 2.14E-02 Cysteine peptidase ENSMUSG00000052917 Senp7 ENSG00000138468 -1.13 4.32E-02 Cysteine peptidase ENSMUSG00000027363 Usp15 ENSG00000138555 -1.12 4.54E-02 Cysteine peptidase ENSMUSG00000027364 Usp50 ENSG00000170236 -1.10 4.55E-02 Cysteine peptidase ENSMUSG00000028964 Park7 ENSG00000116288 1.12 3.67E-02 Cysteine peptidase ENSMUSG00000029223 Uchl1 ENSG00000154277 1.16 7.50E-03 Cysteine peptidase ENSMUSG00000050994 Adgb ENSG00 | ENSMUSG00000036712 | Cyld | ENSG00000083799 | -1.17 | 1.01E-02 | Cysteine peptidase | | ENSMUSG00000045210 Vcpip1 ENSG00000175073 -1.16 2.16E-02 Cysteine peptidase ENSMUSG00000043411 Usp48 ENSG00000090686 -1.16 4.90E-03 Cysteine peptidase ENSMUSG00000054814 Usp46 ENSG00000109189 -1.15 1.43E-02 Cysteine peptidase ENSMUSG0000038495 Otud7b ENSG00000264522 -1.15 2.14E-02 Cysteine peptidase ENSMUSG00000052917 Senp7 ENSG00000138468 -1.13 4.32E-02 Cysteine peptidase ENSMUSG00000027363 Usp15 ENSG00000135655 -1.12 4.54E-02 Cysteine peptidase ENSMUSG00000027364 Usp50 ENSG00000170236 -1.10 3.45E-02 Cysteine peptidase ENSMUSG00000019124 Scrn1 ENSG00000136193 -1.10 4.55E-02 Cysteine peptidase ENSMUSG00000028964 Park7 ENSG00000116288 1.12 3.67E-02 Cysteine peptidase ENSMUSG00000029223 Uchl1 ENSG00000154277 1.16 7.50E-03 Cysteine peptidase ENSMUSG00000050994 Adgb ENSG00 | ENSMUSG00000062627 | Mysm1 | ENSG00000162601 | -1.17 | 3.83E-02 | Cysteine peptidase | | ENSMUSG0000043411 Usp48 ENSG00000090686 -1.16 4.90E-03 Cysteine peptidase ENSMUSG00000054814 Usp46 ENSG00000109189 -1.15 1.43E-02 Cysteine peptidase ENSMUSG00000038495 Otud7b ENSG00000264522 -1.15 2.14E-02 Cysteine peptidase ENSMUSG00000052917 Senp7 ENSG00000138468 -1.13 4.32E-02 Cysteine peptidase ENSMUSG0000002124 Usp15 ENSG00000135655 -1.12 4.54E-02 Cysteine peptidase ENSMUSG00000027363 Usp8 ENSG00000138592 -1.10 3.45E-02 Cysteine peptidase ENSMUSG00000027364 Usp50 ENSG00000170236 -1.10 4.55E-02 Cysteine peptidase ENSMUSG00000028964 Park7 ENSG00000116288 1.12 3.67E-02 Cysteine peptidase ENSMUSG00000028560 Usp1 ENSG00000162607 1.14 4.06E-02 Cysteine peptidase ENSMUSG00000029223 Uchl1 ENSG00000154277 1.16 7.50E-03 Cysteine peptidase ENSMUSG0000002190 Lgmn ENSG00000118 | ENSMUSG00000040455 | Usp45 | ENSG00000123552 | -1.16 | 3.76E-02 | Cysteine peptidase | | ENSMUSG00000054814 Usp46 ENSG00000109189 -1.15 1.43E-02 Cysteine peptidase ENSMUSG00000038495 Otud7b ENSG00000264522 -1.15 2.14E-02 Cysteine peptidase ENSMUSG00000052917 Senp7 ENSG00000138468 -1.13 4.32E-02 Cysteine peptidase ENSMUSG00000027363 Usp8 ENSG00000138592 -1.10 3.45E-02 Cysteine peptidase ENSMUSG00000027364 Usp50 ENSG00000170236 -1.10 4.55E-02 Cysteine peptidase ENSMUSG00000028964 Park7 ENSG00000116288 1.12 3.67E-02 Cysteine peptidase ENSMUSG00000028960 Usp1 ENSG00000162607 1.14 4.06E-02 Cysteine peptidase ENSMUSG00000029223 Uchl1 ENSG00000154277 1.16 7.50E-03 Cysteine peptidase ENSMUSG00000050994 Adgb ENSG00000118492 1.22 2.90E-02 Cysteine peptidase ENSMUSG0000002876 Tinfaip3 ENSG00000118503 1.32 7.28E-03 Cysteine peptidase ENSMUSG00000050345 4930486L24Rik E | ENSMUSG00000045210 | Vcpip1 | ENSG00000175073 | -1.16 | 2.16E-02 | Cysteine peptidase | | ENSMUSG00000038495 Otud7b ENSG00000264522 -1.15 2.14E-02 Cysteine peptidase ENSMUSG00000052917 Senp7 ENSG00000138468 -1.13 4.32E-02 Cysteine peptidase ENSMUSG00000020124 Usp15 ENSG00000135655 -1.12 4.54E-02 Cysteine peptidase ENSMUSG00000027363 Usp8 ENSG00000138592 -1.10 3.45E-02 Cysteine peptidase ENSMUSG00000027364 Usp50 ENSG00000170236 -1.10 4.55E-02 Cysteine peptidase ENSMUSG00000019124 Scrn1 ENSG00000136193 -1.10 3.06E-02 Cysteine peptidase ENSMUSG00000028964 Park7 ENSG00000116288 1.12 3.67E-02 Cysteine peptidase ENSMUSG00000028560 Usp1 ENSG00000152607 1.14 4.06E-02 Cysteine peptidase ENSMUSG00000050994 Adgb ENSG00000118492 1.22 2.90E-02 Cysteine peptidase ENSMUSG00000021190 Lgmn ENSG00000118503 1.32 7.28E-03 Cysteine peptidase ENSMUSG00000028776 Tinagl1 ENSG00000 | ENSMUSG00000043411 | Usp48 | ENSG00000090686 | -1.16 | 4.90E-03 | Cysteine peptidase | | ENSMUSG00000052917 Senp7
ENSG00000138468 -1.13 4.32E-02 Cysteine peptidase ENSMUSG00000020124 Usp15 ENSG00000135655 -1.12 4.54E-02 Cysteine peptidase ENSMUSG00000027363 Usp8 ENSG00000138592 -1.10 3.45E-02 Cysteine peptidase ENSMUSG00000027364 Usp50 ENSG00000170236 -1.10 4.55E-02 Cysteine peptidase ENSMUSG00000019124 Scrn1 ENSG00000136193 -1.10 3.06E-02 Cysteine peptidase ENSMUSG00000028964 Park7 ENSG00000116288 1.12 3.67E-02 Cysteine peptidase ENSMUSG00000028560 Usp1 ENSG00000162607 1.14 4.06E-02 Cysteine peptidase ENSMUSG00000029223 Uchl1 ENSG00000154277 1.16 7.50E-03 Cysteine peptidase ENSMUSG00000050994 Adgb ENSG00000118492 1.22 2.90E-02 Cysteine peptidase ENSMUSG00000019850 Tnfaip3 ENSG00000118503 1.32 7.28E-03 Cysteine peptidase ENSMUSG0000002876 Tinagl1 ENSG00000 | ENSMUSG00000054814 | Usp46 | ENSG00000109189 | -1.15 | 1.43E-02 | Cysteine peptidase | | ENSMUSG00000020124 Usp15 ENSG00000135655 -1.12 4.54E-02 Cysteine peptidase ENSMUSG00000027363 Usp8 ENSG00000138592 -1.10 3.45E-02 Cysteine peptidase ENSMUSG00000027364 Usp50 ENSG00000170236 -1.10 4.55E-02 Cysteine peptidase ENSMUSG00000019124 Scrn1 ENSG00000136193 -1.10 3.06E-02 Cysteine peptidase ENSMUSG00000028964 Park7 ENSG00000116288 1.12 3.67E-02 Cysteine peptidase ENSMUSG00000028560 Usp1 ENSG00000162607 1.14 4.06E-02 Cysteine peptidase ENSMUSG00000029223 Uchl1 ENSG00000154277 1.16 7.50E-03 Cysteine peptidase ENSMUSG00000050994 Adgb ENSG00000118492 1.22 2.90E-02 Cysteine peptidase ENSMUSG00000019850 Tnfaip3 ENSG00000118503 1.32 7.28E-03 Cysteine peptidase ENSMUSG00000028776 Tinagl1 ENSG00000142910 1.34 9.20E-03 Cysteine peptidase ENSMUSG00000050345 4930486L24Rik E | ENSMUSG00000038495 | Otud7b | ENSG00000264522 | -1.15 | 2.14E-02 | Cysteine peptidase | | ENSMUSG00000027363 Usp8 ENSG00000138592 -1.10 3.45E-02 Cysteine peptidase ENSMUSG00000027364 Usp50 ENSG00000170236 -1.10 4.55E-02 Cysteine peptidase ENSMUSG00000019124 Scrn1 ENSG00000136193 -1.10 3.06E-02 Cysteine peptidase ENSMUSG00000028964 Park7 ENSG00000116288 1.12 3.67E-02 Cysteine peptidase ENSMUSG00000028560 Usp1 ENSG00000162607 1.14 4.06E-02 Cysteine peptidase ENSMUSG00000029223 Uchl1 ENSG00000154277 1.16 7.50E-03 Cysteine peptidase ENSMUSG00000050994 Adgb ENSG00000118492 1.22 2.90E-02 Cysteine peptidase ENSMUSG00000021190 Lgmn ENSG0000010600 1.22 4.86E-06 Cysteine peptidase ENSMUSG00000019850 Tnfaip3 ENSG00000118503 1.32 7.28E-03 Cysteine peptidase ENSMUSG000000028776 Tinagl1 ENSG00000135047 3.01 2.15E-02 Cysteine peptidase ENSMUSG00000050345 4930486L24Rik ENS | ENSMUSG00000052917 | Senp7 | ENSG00000138468 | -1.13 | 4.32E-02 | Cysteine peptidase | | ENSMUSG00000027364 Usp50 ENSG00000170236 -1.10 4.55E-02 Cysteine peptidase ENSMUSG00000019124 Scrn1 ENSG00000136193 -1.10 3.06E-02 Cysteine peptidase ENSMUSG00000028964 Park7 ENSG00000116288 1.12 3.67E-02 Cysteine peptidase ENSMUSG00000028560 Usp1 ENSG00000162607 1.14 4.06E-02 Cysteine peptidase ENSMUSG00000029223 Uchl1 ENSG00000154277 1.16 7.50E-03 Cysteine peptidase ENSMUSG00000050994 Adgb ENSG00000118492 1.22 2.90E-02 Cysteine peptidase ENSMUSG00000021190 Lgmn ENSG00000100600 1.22 4.86E-06 Cysteine peptidase ENSMUSG00000019850 Tnfaip3 ENSG00000118503 1.32 7.28E-03 Cysteine peptidase ENSMUSG00000028776 Tinagl1 ENSG00000135047 3.01 2.15E-02 Cysteine peptidase ENSMUSG00000050345 4930486L24Rik ENSG00000135047 3.01 2.15E-02 Cysteine peptidase | ENSMUSG00000020124 | Usp15 | ENSG00000135655 | -1.12 | 4.54E-02 | Cysteine peptidase | | ENSMUSG00000019124 Scrn1 ENSG00000136193 -1.10 3.06E-02 Cysteine peptidase ENSMUSG00000028964 Park7 ENSG00000116288 1.12 3.67E-02 Cysteine peptidase ENSMUSG00000028560 Usp1 ENSG00000162607 1.14 4.06E-02 Cysteine peptidase ENSMUSG00000029223 Uchl1 ENSG00000154277 1.16 7.50E-03 Cysteine peptidase ENSMUSG00000050994 Adgb ENSG00000118492 1.22 2.90E-02 Cysteine peptidase ENSMUSG00000021190 Lgmn ENSG00000100600 1.22 4.86E-06 Cysteine peptidase ENSMUSG00000019850 Tnfaip3 ENSG00000118503 1.32 7.28E-03 Cysteine peptidase ENSMUSG00000028776 Tinagl1 ENSG00000142910 1.34 9.20E-03 Cysteine peptidase ENSMUSG00000050345 4930486L24Rik ENSG00000135047 3.01 2.15E-02 Cysteine peptidase | ENSMUSG00000027363 | Usp8 | ENSG00000138592 | -1.10 | 3.45E-02 | Cysteine peptidase | | ENSMUSG00000028964 Park7 ENSG00000116288 1.12 3.67E-02 Cysteine peptidase ENSMUSG00000028560 Usp1 ENSG00000162607 1.14 4.06E-02 Cysteine peptidase ENSMUSG00000029223 Uchl1 ENSG00000154277 1.16 7.50E-03 Cysteine peptidase ENSMUSG00000050994 Adgb ENSG00000118492 1.22 2.90E-02 Cysteine peptidase ENSMUSG00000021190 Lgmn ENSG00000100600 1.22 4.86E-06 Cysteine peptidase ENSMUSG00000019850 Tnfaip3 ENSG00000118503 1.32 7.28E-03 Cysteine peptidase ENSMUSG00000028776 Tinagl1 ENSG00000142910 1.34 9.20E-03 Cysteine peptidase ENSMUSG00000050345 4930486L24Rik ENSG00000135047 3.01 2.15E-02 Cysteine peptidase | ENSMUSG00000027364 | Usp50 | ENSG00000170236 | -1.10 | 4.55E-02 | Cysteine peptidase | | ENSMUSG00000028560 Usp1 ENSG00000162607 1.14 4.06E-02 Cysteine peptidase ENSMUSG00000029223 Uchl1 ENSG00000154277 1.16 7.50E-03 Cysteine peptidase ENSMUSG00000050994 Adgb ENSG00000118492 1.22 2.90E-02 Cysteine peptidase ENSMUSG00000021190 Lgmn ENSG00000100600 1.22 4.86E-06 Cysteine peptidase ENSMUSG00000019850 Tnfaip3 ENSG00000118503 1.32 7.28E-03 Cysteine peptidase ENSMUSG00000028776 Tinagl1 ENSG00000142910 1.34 9.20E-03 Cysteine peptidase ENSMUSG00000050345 4930486L24Rik ENSG00000135047 3.01 2.15E-02 Cysteine peptidase | ENSMUSG00000019124 | Scrn1 | ENSG00000136193 | -1.10 | 3.06E-02 | Cysteine peptidase | | ENSMUSG00000029223 Uchl1 ENSG00000154277 1.16 7.50E-03 Cysteine peptidase ENSMUSG00000050994 Adgb ENSG00000118492 1.22 2.90E-02 Cysteine peptidase ENSMUSG00000021190 Lgmn ENSG00000100600 1.22 4.86E-06 Cysteine peptidase ENSMUSG00000019850 Tnfaip3 ENSG00000118503 1.32 7.28E-03 Cysteine peptidase ENSMUSG00000028776 Tinagl1 ENSG00000142910 1.34 9.20E-03 Cysteine peptidase ENSMUSG00000050345 4930486L24Rik ENSG00000135047 3.01 2.15E-02 Cysteine peptidase | ENSMUSG00000028964 | Park7 | ENSG00000116288 | 1.12 | 3.67E-02 | Cysteine peptidase | | ENSMUSG00000050994 Adgb ENSG00000118492 1.22 2.90E-02 Cysteine peptidase ENSMUSG00000021190 Lgmn ENSG00000100600 1.22 4.86E-06 Cysteine peptidase ENSMUSG00000019850 Tnfaip3 ENSG00000118503 1.32 7.28E-03 Cysteine peptidase ENSMUSG00000028776 Tinagl1 ENSG00000142910 1.34 9.20E-03 Cysteine peptidase ENSMUSG00000050345 4930486L24Rik ENSG00000135047 3.01 2.15E-02 Cysteine peptidase | ENSMUSG00000028560 | Usp1 | ENSG00000162607 | 1.14 | 4.06E-02 | Cysteine peptidase | | ENSMUSG00000021190 Lgmn ENSG00000100600 1.22 4.86E-06 Cysteine peptidase ENSMUSG00000019850 Tnfaip3 ENSG00000118503 1.32 7.28E-03 Cysteine peptidase ENSMUSG00000028776 Tinagl1 ENSG00000142910 1.34 9.20E-03 Cysteine peptidase ENSMUSG00000050345 4930486L24Rik ENSG00000135047 3.01 2.15E-02 Cysteine peptidase | ENSMUSG00000029223 | Uchl1 | ENSG00000154277 | 1.16 | 7.50E-03 | Cysteine peptidase | | ENSMUSG00000019850 Tnfaip3 ENSG00000118503 1.32 7.28E-03 Cysteine peptidase ENSMUSG00000028776 Tinagl1 ENSG00000142910 1.34 9.20E-03 Cysteine peptidase ENSMUSG00000050345 4930486L24Rik ENSG00000135047 3.01 2.15E-02 Cysteine peptidase | ENSMUSG00000050994 | Adgb | ENSG00000118492 | 1.22 | 2.90E-02 | Cysteine peptidase | | ENSMUSG00000019850 Tnfaip3 ENSG00000118503 1.32 7.28E-03 Cysteine peptidase ENSMUSG00000028776 Tinagl1 ENSG00000142910 1.34 9.20E-03 Cysteine peptidase ENSMUSG00000050345 4930486L24Rik ENSG00000135047 3.01 2.15E-02 Cysteine peptidase | ENSMUSG00000021190 | Lgmn | ENSG00000100600 | 1.22 | 4.86E-06 | Cysteine peptidase | | ENSMUSG00000050345 4930486L24Rik ENSG00000135047 3.01 2.15E-02 Cysteine peptidase | ENSMUSG00000019850 | | ENSG00000118503 | 1.32 | 7.28E-03 | Cysteine peptidase | | ENSMUSG00000050345 4930486L24Rik ENSG00000135047 3.01 2.15E-02 Cysteine peptidase | ENSMUSG00000028776 | Tinagl1 | ENSG00000142910 | 1.34 | 9.20E-03 | Cysteine peptidase | | | ENSMUSG00000050345 | _ | ENSG00000135047 | 3.01 | 2.15E-02 | Cysteine peptidase | | | ENSMUSG00000008438 | Adam21 | ENSG00000139985 | -1.78 | 3.85E-02 | Metallopeptidase | | ENSMUSG00000023845 Lnpep ENSG00000013441 -1.67 1.96E-05 Metallopeptidase ENSMUSG0000003663 Trhde ENSG00000072557 -1.64 1.82E-10 Metallopeptidase ENSMUSG00000003330 Adamts18 ENSG00000158859 -1.57 5.24E-06 Metallopeptidase ENSMUSG00000023330 Pappa2 ENSG00000158133 -1.45 2.68E-04 Metallopeptidase ENSMUSG00000022449 Adamts20 ENSG00000173157 -1.42 3.50E-03 Metallopeptidase ENSMUSG00000023749 Adamts20 ENSG00000173157 -1.42 3.50E-03 Metallopeptidase ENSMUSG00000023764 Adam22 ENSG0000014948 -1.36 2.12E-08 Metallopeptidase ENSMUSG0000002926 Adam11 ENSG0000014948 -1.36 2.12E-08 Metallopeptidase ENSMUSG0000002439 Adam19 ENSG00000138074 -1.25 5.66E-05 Metallopeptidase ENSMUSG0000002439 Adam10 ENSG00000142303 -1.22 2.72E-02 Metallopeptidase ENSMUSG00000037612 Mmp14 ENSG00000142304< | | | | | | |
---|--------------------|----------|-----------------|-------|----------|------------------| | ENSMUSG00000053399 Adamts1 8 ENSG00000140873 -1.59 9.55E-03 Metallopeptidase ENSMUSG000000073530 Adamts4 ENSG00000158859 -1.57 5.24E-06 Metallopeptidase ENSMUSG00000028226 Mmp16 ENSG0000015103 -1.45 2.68E-04 Metallopeptidase ENSMUSG00000022449 Adamts20 ENSG00000173157 -1.42 3.50E-03 Metallopeptidase ENSMUSG00000025964 Adam22 ENSG00000179157 -1.37 2.55E-09 Metallopeptidase ENSMUSG0000002926 Adam11 ENSG00000135074 -1.36 2.12E-08 Metallopeptidase ENSMUSG0000002946 Adam19 ENSG00000135074 -1.26 5.04E-03 Metallopeptidase ENSMUSG0000002436 Mmp17 ENSG00000135074 -1.26 5.66E-05 Metallopeptidase ENSMUSG0000002429 Adam10 ENSG00000125966 -1.21 2.12E-03 Metallopeptidase ENSMUSG00000030844 Uqerc2 ENSG00000142303 -1.22 2.72E-02 Metallopeptidase ENSMUSG00000030849 Adam10 ENSG000001435 | ENSMUSG00000023845 | | ENSG00000113441 | -1.67 | 1.96E-05 | Metallopeptidase | | ENSMUSG0000006403 Adamts4 ENSG00000158859 -1.57 5.24E-06 Metallopeptidase ENSMUSG000000028266 Pappa2 ENSG00000116183 -1.55 3.79E-03 Metallopeptidase ENSMUSG00000022449 Adamts20 ENSG00000173157 -1.42 3.50E-03 Metallopeptidase ENSMUSG00000022449 Adam22 ENSG00000173157 -1.42 3.50E-03 Metallopeptidase ENSMUSG00000029266 Adam12 ENSG00000173670 -1.29 3.39E-05 Metallopeptidase ENSMUSG00000029266 Adam11 ENSG00000185074 -1.26 5.04E-03 Metallopeptidase ENSMUSG00000029436 Mmp17 ENSG00000185074 -1.26 5.04E-03 Metallopeptidase ENSMUSG00000029436 Mmp17 ENSG00000128966 -1.21 2.72E-02 Metallopeptidase ENSMUSG00000029429 Adam10 ENSG00000128966 -1.21 2.12E-03 Metallopeptidase ENSMUSG00000026493 Adam10 ENSG00000128966 -1.21 1.13E-03 Metallopeptidase ENSMUSG00000029017 Pmpcb ENSG000001891 | ENSMUSG00000050663 | Trhde | ENSG00000072657 | -1.64 | 1.82E-10 | * * | | ENSMUSG00000073530 Pappa2 ENSG00000116183 -1.55 3.79E-03 Metallopeptidase ENSMUSG00000028226 Mmpl6 ENSG00000156103 -1.45 2.68E-04 Metallopeptidase ENSMUSG00000024449 Adamts20 ENSG000000731757 -1.42 3.50E-03 Metallopeptidase ENSMUSG00000025964 Adam23 ENSG00000073670 -1.29 3.39E-05 Metallopeptidase ENSMUSG00000029266 Adam11 ENSG0000073670 -1.29 3.39E-05 Metallopeptidase ENSMUSG00000029436 Mmp17 ENSG00000135074 -1.26 5.04F-03 Metallopeptidase ENSMUSG00000024299 Adam19 ENSG00000125966 -1.21 2.12E-03 Metallopeptidase ENSMUSG00000024299 Adam10 ENSG00000125966 -1.21 2.12E-03 Metallopeptidase ENSMUSG0000004693 Adam10 ENSG00000125966 -1.21 1.13E-02 Metallopeptidase ENSMUSG00000020681 Ace ENSG00000140740 1.10 4.75E-02 Metallopeptidase ENSMUSG00000020681 Ace ENSG00000140740 | ENSMUSG00000053399 | Adamts18 | ENSG00000140873 | -1.59 | 9.55E-03 | Metallopeptidase | | ENSMUSG0000002826 Mmp16 ENSG00000156103 -1.45 2.68E-04 Metallopeptidase ENSMUSG00000022449 Adamts20 ENSG000000173157 -1.42 3.50E-03 Metallopeptidase ENSMUSG00000025964 Adam22 ENSG0000001877 -1.37 2.55E-09 Metallopeptidase ENSMUSG0000002926 Adam11 ENSG000000135074 -1.29 3.39E-05 Metallopeptidase ENSMUSG0000029436 Mmp17 ENSG00000185074 -1.26 5.04E-03 Metallopeptidase ENSMUSG000002499 Adam19 ENSG00000125966 -1.22 5.86E-03 Metallopeptidase ENSMUSG0000002499 Adam10 ENSG00000125966 -1.21 2.12E-03 Metallopeptidase ENSMUSG00000029403 Adam10 ENSG00000137845 -1.15 1.13E-02 Metallopeptidase ENSMUSG00000030884 Ugcrc2 ENSG0000014740 1.10 4.75E-02 Metallopeptidase ENSMUSG00000039081 Ace ENSG00000159610 1.20 1.88E-02 Metallopeptidase ENSMUSG00000039062 Anpep ENSG00000133313 | ENSMUSG00000006403 | Adamts4 | ENSG00000158859 | -1.57 | 5.24E-06 | Metallopeptidase | | ENSMUSG00000024449 Adamts20 ENSG00000173157 -1.42 3.50E-03 Metallopeptidase ENSMUUG000000040537 Adam22 ENSG00000002877 -1.37 2.55E-09 Metallopeptidase ENSMUSG00000029564 Adam23 ENSG0000014948 -1.36 2.12E-08 Metallopeptidase ENSMUSG0000002945 Adam19 ENSG00000135074 -1.26 5.04E-03 Metallopeptidase ENSMUSG00000024945 Mmp17 ENSG00000124930 -1.22 5.86E-05 Metallopeptidase ENSMUSG00000027612 Mmp24 ENSG00000125966 -1.21 2.12E-03 Metallopeptidase ENSMUSG00000054693 Adam10 ENSG00000125966 -1.21 2.12E-03 Metallopeptidase ENSMUSG0000003884 Uqcrc2 ENSG00000140740 1.10 4.75E-02 Metallopeptidase ENSMUSG00000029017 Pmpcb ENSG00000124299 1.13 4.97E-02 Metallopeptidase ENSMUSG00000023081 Ace ENSG00000159640 1.20 1.88E-02 Metallopeptidase ENSMUSG00000039052 Adappe ENSG00000133313 | ENSMUSG00000073530 | Pappa2 | ENSG00000116183 | -1.55 | 3.79E-03 | Metallopeptidase | | ENSMUSG00000040537 Adam22 ENSG0000002877 -1.37 2.55E-09 Metallopeptidase ENSMUSG00000025964 Adam23 ENSG00000114948 -1.36 2.12E-08 Metallopeptidase ENSMUSG0000002926 Adam11 ENSG00000073670 -1.29 3.99E-05 Metallopeptidase ENSMUSG0000002436 Mmp17 ENSG00000135074 -1.26 5.86E-05 Metallopeptidase ENSMUSG00000024299 Adamts10 ENSG000001249303 -1.22 2.72E-02 Metallopeptidase ENSMUSG00000027612 Mmp24 ENSG00000125966 -1.21 2.12E-03 Metallopeptidase ENSMUSG0000003884 Ugcrc2 ENSG00000127966 -1.15 1.13E-02 Metallopeptidase ENSMUSG0000003884 Ugcrc2 ENSG00000104740 1.10 4.75E-02 Metallopeptidase ENSMUSG00000029017 Pmpcb ENSG00000124299 1.13 4.97E-02 Metallopeptidase ENSMUSG00000020681 Ace ENSG00000159640 1.20 1.88E-02 Metallopeptidase ENSMUSG00000030464 Cndp2 ENSG0000014848 | ENSMUSG00000028226 | Mmp16 | ENSG00000156103 | -1.45 | 2.68E-04 | Metallopeptidase | | ENSMUSG00000025964 Adam23 ENSG00000114948 -1.36 2.12E-08 Metallopeptidase ENSMUSG00000020926 Adam11 ENSG000000735670 -1.29 3.39E-05 Metallopeptidase ENSMUSG00000011256 Adam11 ENSG00000135074 -1.26 5.04E-03 Metallopeptidase ENSMUSG00000024299 Adam10 ENSG00000143233 -1.22 2.7E-0.2 Metallopeptidase ENSMUSG000000274299 Adam10 ENSG00000125966 -1.21 2.12E-03 Metallopeptidase ENSMUSG00000034693 Adam10 ENSG00000127845 -1.15 1.13E-02 Metallopeptidase ENSMUSG00000039017 Pmpcb ENSG000001740740 1.10 4.75E-02 Metallopeptidase ENSMUSG00000039017 Pmpcb ENSG00000124299 1.13 4.97E-02 Metallopeptidase ENSMUSG00000020681 Ace ENSG00000159640 1.20 1.88E-02 Metallopeptidase ENSMUSG00000039062 Anpep ENSG00000159640 1.20 1.88E-02 Metallopeptidase ENSMUSG00000034644 Cndp2 ENSG00000133131 | ENSMUSG00000022449 | Adamts20 | ENSG00000173157 | -1.42 | 3.50E-03 | Metallopeptidase | | ENSMUSG00000020926 Adam11 ENSG00000073670 -1.29 3.39E-05 Metallopeptidase ENSMUSG00000011256 Adam19 ENSG00000135074 -1.26 5.04E-03 Metallopeptidase ENSMUSG00000027436 Mmp17 ENSG00000195988 -1.22 5.86E-05 Metallopeptidase ENSMUSG00000027612 Mmp24 ENSG00000125966 -1.21 2.72E-02 Metallopeptidase ENSMUSG00000054693 Adam10 ENSG00000127845 -1.15 1.13E-02 Metallopeptidase ENSMUSG00000030884 Uqcrc2 ENSG00000140740 1.10 4.75E-02 Metallopeptidase ENSMUSG00000063931 Pepd ENSG0000012499 1.13 4.97E-02 Metallopeptidase ENSMUSG00000031029 Eif3f ENSG0000012499 1.13 4.97E-02 Metallopeptidase ENSMUSG00000031029 Eif3f ENSG00000175399 1.23 4.69E-05 Metallopeptidase ENSMUSG00000024644 Cndp2 ENSG00000183313 1.26 8.50E-05 Metallopeptidase ENSMUSG000000054555 Adamts2 ENSG00000184848 | ENSMUSG00000040537 | Adam22 | ENSG00000008277 | -1.37 | 2.55E-09 | Metallopeptidase | | ENSMUSG0000011256 Adam19 ENSG00000135074 -1.26 5.04E-03 Metallopeptidase ENSMUSG0000002436 Mmp17 ENSG00000149898 -1.22 5.86E-05 Metallopeptidase ENSMUSG00000024299 Adamts10 ENSG00000142966 -1.21 2.12E-03 Metallopeptidase ENSMUSG0000027612 Mmp24 ENSG00000137845 -1.15 1.13E-02 Metallopeptidase ENSMUSG00000054693 Adam10 ENSG00000137845 -1.15 1.13E-02 Metallopeptidase ENSMUSG00000029017 Pmpcb ENSG00000140740 1.10 4.75E-02 Metallopeptidase ENSMUSG00000029017 Pmpcb ENSG0000015819 1.12 4.74E-02 Metallopeptidase ENSMUSG0000002081 Ace ENSG00000175940 1.20 1.88E-02 Metallopeptidase ENSMUSG00000031029 Ei3f ENSG00000175940 1.21 4.93E-03 Metallopeptidase ENSMUSG00000024644 Cndp2 ENSG00000133313 1.26 8.50E-05 Metallopeptidase ENSMUSG000000054555 Adam12 ENSG000000157227 | ENSMUSG00000025964 | Adam23 | ENSG00000114948 | -1.36 | 2.12E-08 | Metallopeptidase | | ENSMUSG00000024366 | ENSMUSG00000020926 | Adam11 | ENSG00000073670 | -1.29 | 3.39E-05 | Metallopeptidase | | ENSMUSG0000024299 Adamts10 ENSG0000142303 -1.22 2.72E-02 Metallopeptidase ENSMUSG00000027612 Mmp24 ENSG00000125966 -1.21 2.12E-03 Metallopeptidase ENSMUSG00000054693 Adam10 ENSG00000137845 -1.15 1.13E-02 Metallopeptidase ENSMUSG0000003084 Ugcrc2 ENSG00000140740 1.10 4.75E-02 Metallopeptidase ENSMUSG00000039017 Pmpcb ENSG0000016819 1.12 4.74E-02 Metallopeptidase ENSMUSG0000020681 Ace ENSG00000159640 1.20 1.88E-02 Metallopeptidase ENSMUSG00000031029 Eif3f ENSG00000175390 1.23 4.69E-05 Metallopeptidase ENSMUSG00000039062 Anpep ENSG00000133313 1.26 8.50E-05 Metallopeptidase ENSMUSG00000024644 Cndp2 ENSG0000018848 1.27 2.76E-02
Metallopeptidase ENSMUSG0000002545 Adam12 ENSG0000018848 1.27 2.76E-02 Metallopeptidase ENSMUSG000000025355 Mmp14 ENSG00000157227 1 | ENSMUSG00000011256 | Adam19 | ENSG00000135074 | -1.26 | 5.04E-03 | Metallopeptidase | | ENSMUSG0000027612 Mmp24 ENSG00000125966 -1.21 2.12E-03 Metallopeptidase ENSMUSG00000054693 Adam10 ENSG00000137845 -1.15 1.13E-02 Metallopeptidase ENSMUSG00000030884 Uqcrc2 ENSG00000140740 1.10 4.75E-02 Metallopeptidase ENSMUSG00000029017 Pmpcb ENSG00000140740 1.10 4.75E-02 Metallopeptidase ENSMUSG00000033102 Pepd ENSG0000012499 1.13 4.97E-02 Metallopeptidase ENSMUSG00000031029 EiTsf ENSG00000159640 1.20 1.88E-02 Metallopeptidase ENSMUSG00000031029 EiTsf ENSG00000175390 1.23 4.69E-05 Metallopeptidase ENSMUSG00000039062 Anpep ENSG00000133313 1.26 8.50E-05 Metallopeptidase ENSMUSG00000054555 Adamts2 ENSG00000148848 1.27 2.76E-02 Metallopeptidase ENSMUSG000000957 Mmp14 ENSG00000157227 1.41 3.44E-04 Metallopeptidase ENSMUSG00000025473 Adams ENSG00000123342 | ENSMUSG00000029436 | Mmp17 | ENSG00000198598 | -1.22 | 5.86E-05 | Metallopeptidase | | ENSMUSG0000054693 Adam10 ENSG00000137845 -1.15 1.13E-02 Metallopeptidase ENSMUSG00000030884 Uqcrc2 ENSG00000140740 1.10 4.75E-02 Metallopeptidase ENSMUSG00000029017 Pmpcb ENSG00000105819 1.12 4.74E-02 Metallopeptidase ENSMUSG00000020681 Ace ENSG00000124299 1.13 4.97E-02 Metallopeptidase ENSMUSG00000031029 Eif3f ENSG00000175390 1.23 4.69E-05 Metallopeptidase ENSMUSG0000039062 Anpep ENSG00000175390 1.23 4.69E-05 Metallopeptidase ENSMUSG00000024644 Cndp2 ENSG0000016825 1.24 4.93E-03 Metallopeptidase ENSMUSG00000036545 Adam12 ENSG00000148848 1.27 2.76E-02 Metallopeptidase ENSMUSG0000002961 Mmp23 ENSG00000157227 1.41 3.44E-04 Metallopeptidase ENSMUSG00000025473 Adam8 ENSG0000012342 1.54 2.63E-05 Metallopeptidase ENSMUSG00000027878 Pope1 ENSG0000015633 1.62< | ENSMUSG00000024299 | Adamts10 | ENSG00000142303 | -1.22 | 2.72E-02 | Metallopeptidase | | ENSMUSG0000030884 Uqcrc2 ENSG0000140740 1.10 4.75E-02 Metallopeptidase ENSMUSG0000029017 Pmpcb ENSG0000015819 1.12 4.74E-02 Metallopeptidase ENSMUSG00000020681 Ace ENSG00000159640 1.20 1.88E-02 Metallopeptidase ENSMUSG00000031029 Eif3f ENSG00000159640 1.20 1.88E-02 Metallopeptidase ENSMUSG00000039062 Anpep ENSG00000175390 1.23 4.69E-05 Metallopeptidase ENSMUSG00000039062 Anpep ENSG00000133313 1.26 8.50E-05 Metallopeptidase ENSMUSG00000024644 Cndp2 ENSG00000148848 1.27 2.76E-02 Metallopeptidase ENSMUSG00000036545 Adamt2 ENSG0000018716 1.36 1.14E-03 Metallopeptidase ENSMUSG0000002961 Mmp23 ENSG00000189409 1.52 4.02E-03 Metallopeptidase ENSMUSG00000025473 Adam8 ENSG00000123342 1.54 2.63E-05 Metallopeptidase ENSMUSG00000029718 Pcole ENSG0000015413 1.71 <td>ENSMUSG00000027612</td> <td>Mmp24</td> <td>ENSG00000125966</td> <td>-1.21</td> <td>2.12E-03</td> <td>Metallopeptidase</td> | ENSMUSG00000027612 | Mmp24 | ENSG00000125966 | -1.21 | 2.12E-03 | Metallopeptidase | | ENSMUSG0000029017 Pmpcb ENSG00000105819 1.12 4.74E-02 Metallopeptidase ENSMUSG0000063931 Pepd ENSG0000124299 1.13 4.97E-02 Metallopeptidase ENSMUSG00000020681 Ace ENSG00000159640 1.20 1.88E-02 Metallopeptidase ENSMUSG00000031029 Eif3f ENSG00000175390 1.23 4.69E-05 Metallopeptidase ENSMUSG00000024644 Cndp2 ENSG0000016825 1.24 4.93E-03 Metallopeptidase ENSMUSG00000024645 Cndp2 ENSG00000133313 1.26 8.50E-05 Metallopeptidase ENSMUSG00000036545 Adam12 ENSG00000184848 1.27 2.76E-02 Metallopeptidase ENSMUSG000000957 Mmp14 ENSG00000187227 1.41 3.44E-04 Metallopeptidase ENSMUSG00000025355 Mmp19 ENSG00000123342 1.54 2.63E-05 Metallopeptidase ENSMUSG00000025473 Adam8 ENSG0000015651 1.56 3.03E-03 Metallopeptidase ENSMUSG00000070867 Trabd2b ENSG0000015413 1.71 | ENSMUSG00000054693 | Adam10 | ENSG00000137845 | -1.15 | 1.13E-02 | Metallopeptidase | | ENSMUSG0000063931 Pepd ENSG00000124299 1.13 4.97E-02 Metallopeptidase ENSMUSG00000020681 Ace ENSG00000159640 1.20 1.88E-02 Metallopeptidase ENSMUSG00000031029 Eif3f ENSG00000175390 1.23 4.69E-05 Metallopeptidase ENSMUSG00000039062 Anpep ENSG00000166825 1.24 4.93E-03 Metallopeptidase ENSMUSG00000024644 Cndp2 ENSG00000133313 1.26 8.50E-05 Metallopeptidase ENSMUSG00000054555 Adam12 ENSG00000148848 1.27 2.76E-02 Metallopeptidase ENSMUSG00000005455 Adamts2 ENSG0000008716 1.36 1.14E-03 Metallopeptidase ENSMUSG0000002961 Mmp13 ENSG00000189409 1.52 4.02E-03 Metallopeptidase ENSMUSG00000025355 Mmp19 ENSG00000123342 1.54 2.63E-05 Metallopeptidase ENSMUSG00000029718 Pcolce ENSG00000151651 1.56 3.03E-03 Metallopeptidase ENSMUSG00000002787 Dpep1 ENSG0000015413 1.71 | ENSMUSG00000030884 | Uqcrc2 | ENSG00000140740 | 1.10 | 4.75E-02 | Metallopeptidase | | ENSMUSG0000020681 Ace ENSG00000159640 1.20 1.88E-02 Metallopeptidase ENSMUSG00000031029 Eif3f ENSG00000175390 1.23 4.69E-05 Metallopeptidase ENSMUSG00000030062 Anpep ENSG00000166825 1.24 4.93E-03 Metallopeptidase ENSMUSG00000024644 Cndp2 ENSG00000133313 1.26 8.50E-05 Metallopeptidase ENSMUSG00000054555 Adam12 ENSG00000148848 1.27 2.76E-02 Metallopeptidase ENSMUSG0000000957 Mmp14 ENSG00000157227 1.41 3.44E-04 Metallopeptidase ENSMUSG00000029061 Mmp23 ENSG00000123342 1.54 2.63E-05 Metallopeptidase ENSMUSG00000025473 Adam8 ENSG00000123342 1.54 2.63E-05 Metallopeptidase ENSMUSG00000029718 Pcolce ENSG0000015651 1.56 3.03E-03 Metallopeptidase ENSMUSG0000007278 Dpep1 ENSG0000016731 1.62 1.78E-05 Metallopeptidase ENSMUSG00000017278 Dpep1 ENSG00000137745 1.85 </td <td>ENSMUSG00000029017</td> <td>Pmpcb</td> <td>ENSG00000105819</td> <td>1.12</td> <td>4.74E-02</td> <td>Metallopeptidase</td> | ENSMUSG00000029017 | Pmpcb | ENSG00000105819 | 1.12 | 4.74E-02 | Metallopeptidase | | ENSMUSG00000031029 Eif3f ENSG0000175390 1.23 4.69E-05 Metallopeptidase ENSMUSG00000039062 Anpep ENSG00000166825 1.24 4.93E-03 Metallopeptidase ENSMUSG00000024644 Cndp2 ENSG00000133313 1.26 8.50E-05 Metallopeptidase ENSMUSG00000054555 Adam12 ENSG00000148848 1.27 2.76E-02 Metallopeptidase ENSMUSG0000000575 Adamts2 ENSG00000157227 1.41 3.44E-04 Metallopeptidase ENSMUSG00000029061 Mmp23 ENSG00000157227 1.41 3.44E-04 Metallopeptidase ENSMUSG00000025473 Adam8 ENSG00000123342 1.54 2.63E-05 Metallopeptidase ENSMUSG00000029718 Pcolce ENSG00000166333 1.62 1.11E-07 Metallopeptidase ENSMUSG0000007867 Trabd2b ENSG0000015413 1.71 2.59E-07 Metallopeptidase ENSMUSG00000019278 Dpep1 ENSG00000137745 1.85 3.59E-09 Metallopeptidase ENSMUSG0000001740 Mmp2 ENSG00000167261 1 | ENSMUSG00000063931 | Pepd | ENSG00000124299 | 1.13 | 4.97E-02 | Metallopeptidase | | ENSMUSG00000039062 Anpep ENSG00000166825 1.24 4.93E-03 Metallopeptidase ENSMUSG00000024644 Cndp2 ENSG00000133313 1.26 8.50E-05 Metallopeptidase ENSMUSG00000054555 Adam12 ENSG00000148848 1.27 2.76E-02 Metallopeptidase ENSMUSG00000005455 Adamts2 ENSG00000157227 1.41 3.44E-04 Metallopeptidase ENSMUSG00000029061 Mmp14 ENSG00000189409 1.52 4.02E-03 Metallopeptidase ENSMUSG00000025355 Mmp19 ENSG00000123342 1.54 2.63E-05 Metallopeptidase ENSMUSG00000025473 Adam8 ENSG00000151651 1.56 3.03E-03 Metallopeptidase ENSMUSG00000079718 Pcolce ENSG0000016333 1.62 1.11E-07 Metallopeptidase ENSMUSG00000019278 Dpep1 ENSG0000015413 1.71 2.59E-07 Metallopeptidase ENSMUSG00000031740 Mmp2 ENSG00000137745 1.85 3.59E-09 Metallopeptidase ENSMUSG000000057457 Phex ENSG0000012174 2 | ENSMUSG00000020681 | Ace | ENSG00000159640 | 1.20 | 1.88E-02 | Metallopeptidase | | ENSMUSG00000024644 Cndp2 ENSG00000133313 1.26 8.50E-05 Metallopeptidase ENSMUSG00000054555 Adam12 ENSG00000148848 1.27 2.76E-02 Metallopeptidase ENSMUSG00000036545 Adamts2 ENSG00000087116 1.36 1.14E-03 Metallopeptidase ENSMUSG0000000957 Mmp14 ENSG00000157227 1.41 3.44E-04 Metallopeptidase ENSMUSG00000025355 Mmp19 ENSG00000123342 1.54 2.63E-05 Metallopeptidase ENSMUSG00000025473 Adam8 ENSG00000151651 1.56 3.03E-03 Metallopeptidase ENSMUSG00000029718 Pcolce ENSG00000166333 1.62 1.11E-07 Metallopeptidase ENSMUSG00000019278 Dpep1 ENSG0000015413 1.71 2.59E-07 Metallopeptidase ENSMUSG00000019278 Dpep1 ENSG00000137745 1.85 3.59E-09 Metallopeptidase ENSMUSG00000031740 Mmp2 ENSG00000137745 1.88 9.13E-05 Metallopeptidase ENSMUSG000000057457 Phex ENSG0000012174 2 | ENSMUSG00000031029 | Eif3f | ENSG00000175390 | 1.23 | 4.69E-05 | Metallopeptidase | | ENSMUSG00000054555 Adam12 ENSG00000148848 1.27 2.76E-02 Metallopeptidase ENSMUSG00000036545 Adamts2 ENSG0000087116 1.36 1.14E-03 Metallopeptidase ENSMUSG0000000957 Mmp14 ENSG0000157227 1.41 3.44E-04 Metallopeptidase ENSMUSG0000002961 Mmp23 ENSG0000189409 1.52 4.02E-03 Metallopeptidase ENSMUSG00000025473 Adam8 ENSG00000123342 1.54 2.63E-05 Metallopeptidase ENSMUSG00000029718 Pcolce ENSG00000166333 1.62 1.11E-07 Metallopeptidase ENSMUSG00000070867 Trabd2b ENSG00000269113 1.62 1.78E-05 Metallopeptidase ENSMUSG00000019278 Dpep1 ENSG0000015413 1.71 2.59E-07 Metallopeptidase ENSMUSG00000050578 Mmp13 ENSG00000137745 1.85 3.59E-09 Metallopeptidase ENSMUSG00000031740 Mmp2 ENSG00000167261 1.93 3.73E-02 Metallopeptidase ENSMUSG00000057457 Phex ENSG00001274 2.10 </td <td>ENSMUSG00000039062</td> <td>Anpep</td> <td>ENSG00000166825</td> <td>1.24</td> <td>4.93E-03</td> <td>Metallopeptidase</td> | ENSMUSG00000039062 | Anpep | ENSG00000166825 | 1.24 | 4.93E-03 | Metallopeptidase | | ENSMUSG0000036545 Adamts2 ENSG00000087116 1.36 1.14E-03 Metallopeptidase ENSMUSG0000000957 Mmp14 ENSG00000157227 1.41 3.44E-04 Metallopeptidase ENSMUSG00000029061 Mmp23 ENSG00000189409 1.52 4.02E-03 Metallopeptidase ENSMUSG00000025355 Mmp19 ENSG00000123342 1.54 2.63E-05 Metallopeptidase ENSMUSG00000029718 Pcolce ENSG00000151651 1.56 3.03E-03 Metallopeptidase ENSMUSG00000070867 Trabd2b ENSG00000269113 1.62 1.78E-05 Metallopeptidase ENSMUSG0000019278 Dpep1 ENSG0000015413 1.71 2.59E-07 Metallopeptidase ENSMUSG00000050578 Mmp13 ENSG00000137745 1.85 3.59E-09 Metallopeptidase ENSMUSG00000031740 Mmp2 ENSG00000087245 1.88 9.13E-05 Metallopeptidase ENSMUSG00000053687 Dpep2 ENSG00000167261 1.93 3.73E-02 Metallopeptidase ENSMUSG00000057457 Phex ENSG0000012174 2.1 | ENSMUSG00000024644 | Cndp2 | ENSG00000133313 | 1.26 | 8.50E-05 | Metallopeptidase | | ENSMUSG00000000957 Mmp14
ENSG00000157227 1.41 3.44E-04 Metallopeptidase ENSMUSG00000029061 Mmp23 ENSG00000189409 1.52 4.02E-03 Metallopeptidase ENSMUSG00000025355 Mmp19 ENSG00000123342 1.54 2.63E-05 Metallopeptidase ENSMUSG00000025473 Adam8 ENSG00000151651 1.56 3.03E-03 Metallopeptidase ENSMUSG00000029718 Pcolce ENSG0000016333 1.62 1.11E-07 Metallopeptidase ENSMUSG00000070867 Trabd2b ENSG00000269113 1.62 1.78E-05 Metallopeptidase ENSMUSG00000019278 Dpep1 ENSG00000137745 1.85 3.59E-07 Metallopeptidase ENSMUSG00000031740 Mmp2 ENSG00000137745 1.88 9.13E-05 Metallopeptidase ENSMUSG00000053687 Dpep2 ENSG00000167261 1.93 3.73E-02 Metallopeptidase ENSMUSG00000057457 Phex ENSG000001774 2.10 1.08E-02 Metallopeptidase ENSMUSG00000022894 Adamts5 ENSG00000154736 2 | ENSMUSG00000054555 | Adam12 | ENSG00000148848 | 1.27 | 2.76E-02 | Metallopeptidase | | ENSMUSG0000029061 Mmp23 ENSG00000189409 1.52 4.02E-03 Metallopeptidase ENSMUSG00000025355 Mmp19 ENSG00000123342 1.54 2.63E-05 Metallopeptidase ENSMUSG00000025473 Adam8 ENSG00000151651 1.56 3.03E-03 Metallopeptidase ENSMUSG0000029718 Pcolce ENSG0000016333 1.62 1.11E-07 Metallopeptidase ENSMUSG00000070867 Trabd2b ENSG00000269113 1.62 1.78E-05 Metallopeptidase ENSMUSG00000019278 Dpep1 ENSG00000137413 1.71 2.59E-07 Metallopeptidase ENSMUSG0000005578 Mmp13 ENSG00000137745 1.85 3.59E-09 Metallopeptidase ENSMUSG00000031740 Mmp2 ENSG00000087245 1.88 9.13E-05 Metallopeptidase ENSMUSG00000057457 Phex ENSG00000167261 1.93 3.73E-02 Metallopeptidase ENSMUSG00000024481 Lvrn ENSG00000154736 2.41 6.19E-20 Metallopeptidase ENSMUSG00000017737 Mmp9 ENSG00000149968 3.40 </td <td>ENSMUSG00000036545</td> <td>Adamts2</td> <td>ENSG00000087116</td> <td>1.36</td> <td>1.14E-03</td> <td>Metallopeptidase</td> | ENSMUSG00000036545 | Adamts2 | ENSG00000087116 | 1.36 | 1.14E-03 | Metallopeptidase | | ENSMUSG00000025355 Mmp19 ENSG00000123342 1.54 2.63E-05 Metallopeptidase ENSMUSG00000025473 Adam8 ENSG00000151651 1.56 3.03E-03 Metallopeptidase ENSMUSG00000029718 Pcolce ENSG0000016333 1.62 1.11E-07 Metallopeptidase ENSMUSG00000070867 Trabd2b ENSG000000269113 1.62 1.78E-05 Metallopeptidase ENSMUSG00000019278 Dpep1 ENSG00000015413 1.71 2.59E-07 Metallopeptidase ENSMUSG00000050578 Mmp13 ENSG00000137745 1.85 3.59E-09 Metallopeptidase ENSMUSG00000057457 Mmp2 ENSG00000167261 1.93 3.73E-02 Metallopeptidase ENSMUSG00000024481 Lvrn ENSG000001274 2.10 1.08E-02 Metallopeptidase ENSMUSG0000002894 Adamts5 ENSG00000154736 2.41 6.19E-20 Metallopeptidase ENSMUSG00000043613 Mmp3 ENSG00000149968 3.40 5.21E-09 Metallopeptidase ENSMUSG000000049723 Mmp12 ENSG000001262406 | ENSMUSG00000000957 | Mmp14 | ENSG00000157227 | 1.41 | 3.44E-04 | Metallopeptidase | | ENSMUSG00000025473 Adam8 ENSG00000151651 1.56 3.03E-03 Metallopeptidase ENSMUSG00000029718 Pcolce ENSG0000016333 1.62 1.11E-07 Metallopeptidase ENSMUSG00000070867 Trabd2b ENSG00000269113 1.62 1.78E-05 Metallopeptidase ENSMUSG00000019278 Dpep1 ENSG00000015413 1.71 2.59E-07 Metallopeptidase ENSMUSG00000050578 Mmp13 ENSG00000137745 1.85 3.59E-09 Metallopeptidase ENSMUSG00000031740 Mmp2 ENSG00000087245 1.88 9.13E-05 Metallopeptidase ENSMUSG00000053687 Dpep2 ENSG00000167261 1.93 3.73E-02 Metallopeptidase ENSMUSG00000057457 Phex ENSG0000012174 2.10 1.08E-02 Metallopeptidase ENSMUSG00000022894 Adamts5 ENSG00000154736 2.41 6.19E-20 Metallopeptidase ENSMUSG00000043613 Mmp3 ENSG00000149968 3.40 5.21E-09 Metallopeptidase ENSMUSG000000049723 Mmp12 ENSG00000121022 | ENSMUSG00000029061 | Mmp23 | ENSG00000189409 | 1.52 | 4.02E-03 | Metallopeptidase | | ENSMUSG00000029718 Pcolce ENSG00000106333 1.62 1.11E-07 Metallopeptidase ENSMUSG00000070867 Trabd2b ENSG00000269113 1.62 1.78E-05 Metallopeptidase ENSMUSG00000019278 Dpep1 ENSG00000015413 1.71 2.59E-07 Metallopeptidase ENSMUSG00000050578 Mmp13 ENSG00000137745 1.85 3.59E-09 Metallopeptidase ENSMUSG00000031740 Mmp2 ENSG00000087245 1.88 9.13E-05 Metallopeptidase ENSMUSG00000053687 Dpep2 ENSG00000167261 1.93 3.73E-02 Metallopeptidase ENSMUSG00000057457 Phex ENSG0000012174 2.10 1.08E-02 Metallopeptidase ENSMUSG00000024841 Lvrn ENSG00000172901 2.20 3.85E-03 Metallopeptidase ENSMUSG00000017737 Mmp9 ENSG00000154736 2.41 6.19E-20 Metallopeptidase ENSMUSG00000043613 Mmp3 ENSG00000149968 3.40 5.21E-09 Metallopeptidase ENSMUSG00000049723 Mmp12 ENSG0000012022 1.17< | ENSMUSG00000025355 | Mmp19 | ENSG00000123342 | 1.54 | 2.63E-05 | Metallopeptidase | | ENSMUSG00000070867 Trabd2b ENSG00000269113 1.62 1.78E-05 Metallopeptidase ENSMUSG00000019278 Dpep1 ENSG00000015413 1.71 2.59E-07 Metallopeptidase ENSMUSG00000050578 Mmp13 ENSG00000137745 1.85 3.59E-09 Metallopeptidase ENSMUSG00000031740 Mmp2 ENSG00000087245 1.88 9.13E-05 Metallopeptidase ENSMUSG00000053687 Dpep2 ENSG00000167261 1.93 3.73E-02 Metallopeptidase ENSMUSG00000057457 Phex ENSG0000012174 2.10 1.08E-02 Metallopeptidase ENSMUSG00000024481 Lvrn ENSG00000172901 2.20 3.85E-03 Metallopeptidase ENSMUSG00000017737 Mmp9 ENSG00000154736 2.41 6.19E-20 Metallopeptidase ENSMUSG00000043613 Mmp3 ENSG00000149968 3.40 5.21E-09 Metallopeptidase ENSMUSG00000049723 Mmp12 ENSG00000121022 1.17 6.01E-03 Metallopeptidase ENSMUSG00000063177 Klk1b27 -7.46 1.42E-03 | ENSMUSG00000025473 | Adam8 | ENSG00000151651 | 1.56 | 3.03E-03 | Metallopeptidase | | ENSMUSG00000019278 Dpep1 ENSG00000015413 1.71 2.59E-07 Metallopeptidase ENSMUSG00000050578 Mmp13 ENSG00000137745 1.85 3.59E-09 Metallopeptidase ENSMUSG00000031740 Mmp2 ENSG00000087245 1.88 9.13E-05 Metallopeptidase ENSMUSG00000053687 Dpep2 ENSG00000167261 1.93 3.73E-02 Metallopeptidase ENSMUSG00000057457 Phex ENSG0000012174 2.10 1.08E-02 Metallopeptidase ENSMUSG00000024481 Lvrn ENSG00000172901 2.20 3.85E-03 Metallopeptidase ENSMUSG00000022894 Adamts5 ENSG00000154736 2.41 6.19E-20 Metallopeptidase ENSMUSG00000043613 Mmp9 ENSG00000149968 3.40 5.21E-09 Metallopeptidase ENSMUSG00000049723 Mmp12 ENSG00000262406 9.10 3.43E-21 Metallopeptidase ENSMUSG00000063177 Klk1b27 -7.46 1.42E-03 Serine peptidase | ENSMUSG00000029718 | Pcolce | ENSG00000106333 | 1.62 | 1.11E-07 | Metallopeptidase | | ENSMUSG00000050578 Mmp13 ENSG00000137745 1.85 3.59E-09 Metallopeptidase ENSMUSG00000031740 Mmp2 ENSG00000087245 1.88 9.13E-05 Metallopeptidase ENSMUSG00000053687 Dpep2 ENSG00000167261 1.93 3.73E-02 Metallopeptidase ENSMUSG0000057457 Phex ENSG00000102174 2.10 1.08E-02 Metallopeptidase ENSMUSG00000024481 Lvrn ENSG00000172901 2.20 3.85E-03 Metallopeptidase ENSMUSG00000022894 Adamts5 ENSG00000154736 2.41 6.19E-20 Metallopeptidase ENSMUSG00000017737 Mmp9 ENSG00000100985 2.55 4.54E-18 Metallopeptidase ENSMUSG00000049723 Mmp12 ENSG00000149968 3.40 5.21E-09 Metallopeptidase ENSMUSG00000049723 Mmp12 ENSG00000121022 1.17 6.01E-03 Metallopeptidase ENSMUSG00000063177 Klk1b27 -7.46 1.42E-03 Serine peptidase | ENSMUSG00000070867 | Trabd2b | ENSG00000269113 | 1.62 | 1.78E-05 | Metallopeptidase | | ENSMUSG00000031740 Mmp2 ENSG000000087245 1.88 9.13E-05 Metallopeptidase ENSMUSG00000053687 Dpep2 ENSG00000167261 1.93 3.73E-02 Metallopeptidase ENSMUSG00000057457 Phex ENSG00000102174 2.10 1.08E-02 Metallopeptidase ENSMUSG00000024481 Lvrn ENSG00000172901 2.20 3.85E-03 Metallopeptidase ENSMUSG00000022894 Adamts5 ENSG00000154736 2.41 6.19E-20 Metallopeptidase ENSMUSG00000017737 Mmp9 ENSG00000100985 2.55 4.54E-18 Metallopeptidase ENSMUSG00000043613 Mmp3 ENSG00000149968 3.40 5.21E-09 Metallopeptidase ENSMUSG00000049723 Mmp12 ENSG00000262406 9.10 3.43E-21 Metallopeptidase ENSMUSG000000025917 Cops5 ENSG00000121022 1.17 6.01E-03 Metallopeptidase ENSMUSG00000063177 Klk1b27 -7.46 1.42E-03 Serine peptidase | ENSMUSG00000019278 | Dpep1 | ENSG00000015413 | 1.71 | 2.59E-07 | Metallopeptidase | | ENSMUSG00000053687 Dpep2 ENSG00000167261 1.93 3.73E-02 Metallopeptidase ENSMUSG00000057457 Phex ENSG00000102174 2.10 1.08E-02 Metallopeptidase ENSMUSG00000024481 Lvrn ENSG00000172901 2.20 3.85E-03 Metallopeptidase ENSMUSG00000022894 Adamts5 ENSG00000154736 2.41 6.19E-20 Metallopeptidase ENSMUSG00000017737 Mmp9 ENSG00000100985 2.55 4.54E-18 Metallopeptidase ENSMUSG00000043613 Mmp3 ENSG00000149968 3.40 5.21E-09 Metallopeptidase ENSMUSG00000049723 Mmp12 ENSG00000262406 9.10 3.43E-21 Metallopeptidase ENSMUSG00000025917 Cops5 ENSG00000121022 1.17 6.01E-03 Metallopeptidase ENSMUSG00000063177 Klk1b27 -7.46 1.42E-03 Serine peptidase | ENSMUSG00000050578 | Mmp13 | ENSG00000137745 | 1.85 | 3.59E-09 | Metallopeptidase | | ENSMUSG00000057457 Phex ENSG00000102174 2.10 1.08E-02 Metallopeptidase ENSMUSG00000024481 Lvrn ENSG00000172901 2.20 3.85E-03 Metallopeptidase ENSMUSG00000022894 Adamts5 ENSG00000154736 2.41 6.19E-20 Metallopeptidase ENSMUSG00000017737 Mmp9 ENSG00000100985 2.55 4.54E-18 Metallopeptidase ENSMUSG00000043613 Mmp3 ENSG00000149968 3.40 5.21E-09 Metallopeptidase ENSMUSG00000049723 Mmp12 ENSG00000262406 9.10 3.43E-21 Metallopeptidase ENSMUSG00000025917 Cops5 ENSG00000121022 1.17 6.01E-03 Metallopeptidase ENSMUSG00000063177 Klk1b27 -7.46 1.42E-03 Serine peptidase | ENSMUSG00000031740 | Mmp2 | ENSG00000087245 | 1.88 | 9.13E-05 | Metallopeptidase | | ENSMUSG00000024481 Lvrn ENSG00000172901 2.20 3.85E-03 Metallopeptidase ENSMUSG00000022894 Adamts5 ENSG00000154736 2.41 6.19E-20 Metallopeptidase ENSMUSG00000017737 Mmp9 ENSG00000100985 2.55 4.54E-18 Metallopeptidase ENSMUSG00000043613 Mmp3 ENSG00000149968 3.40 5.21E-09 Metallopeptidase ENSMUSG00000049723 Mmp12 ENSG00000262406 9.10 3.43E-21 Metallopeptidase ENSMUSG00000025917 Cops5 ENSG00000121022 1.17 6.01E-03 Metallopeptidase ENSMUSG00000063177 Klk1b27 -7.46 1.42E-03 Serine peptidase | ENSMUSG00000053687 | Dpep2 | ENSG00000167261 | 1.93 | 3.73E-02 | Metallopeptidase | | ENSMUSG00000022894 Adamts5 ENSG00000154736 2.41 6.19E-20 Metallopeptidase ENSMUSG00000017737 Mmp9 ENSG00000100985 2.55 4.54E-18 Metallopeptidase ENSMUSG00000043613 Mmp3 ENSG00000149968 3.40 5.21E-09 Metallopeptidase ENSMUSG00000049723 Mmp12 ENSG00000262406 9.10 3.43E-21 Metallopeptidase ENSMUSG00000025917 Cops5 ENSG00000121022 1.17 6.01E-03 Metallopeptidase ENSMUSG00000063177 Klk1b27 -7.46 1.42E-03 Serine peptidase | ENSMUSG00000057457 | Phex |
ENSG00000102174 | 2.10 | 1.08E-02 | Metallopeptidase | | ENSMUSG00000017737 Mmp9 ENSG00000100985 2.55 4.54E-18 Metallopeptidase ENSMUSG00000043613 Mmp3 ENSG00000149968 3.40 5.21E-09 Metallopeptidase ENSMUSG00000049723 Mmp12 ENSG00000262406 9.10 3.43E-21 Metallopeptidase ENSMUSG00000025917 Cops5 ENSG00000121022 1.17 6.01E-03 Metallopeptidase ENSMUSG00000063177 Klk1b27 -7.46 1.42E-03 Serine peptidase | ENSMUSG00000024481 | Lvrn | ENSG00000172901 | 2.20 | 3.85E-03 | Metallopeptidase | | ENSMUSG00000043613 Mmp3 ENSG00000149968 3.40 5.21E-09 Metallopeptidase ENSMUSG00000049723 Mmp12 ENSG00000262406 9.10 3.43E-21 Metallopeptidase ENSMUSG00000025917 Cops5 ENSG00000121022 1.17 6.01E-03 Metallopeptidase ENSMUSG00000063177 Klk1b27 -7.46 1.42E-03 Serine peptidase | ENSMUSG00000022894 | Adamts5 | ENSG00000154736 | 2.41 | 6.19E-20 | Metallopeptidase | | ENSMUSG00000049723 Mmp12 ENSG00000262406 9.10 3.43E-21 Metallopeptidase ENSMUSG00000025917 Cops5 ENSG00000121022 1.17 6.01E-03 Metallopeptidase ENSMUSG00000063177 Klk1b27 -7.46 1.42E-03 Serine peptidase | ENSMUSG00000017737 | Mmp9 | ENSG00000100985 | 2.55 | 4.54E-18 | Metallopeptidase | | ENSMUSG00000025917 Cops5 ENSG00000121022 1.17 6.01E-03 Metallopeptidase ENSMUSG00000063177 Klk1b27 -7.46 1.42E-03 Serine peptidase | ENSMUSG00000043613 | Mmp3 | ENSG00000149968 | 3.40 | 5.21E-09 | Metallopeptidase | | ENSMUSG00000063177 Klk1b27 -7.46 1.42E-03 Serine peptidase | ENSMUSG00000049723 | Mmp12 | ENSG00000262406 | 9.10 | 3.43E-21 | Metallopeptidase | | | ENSMUSG00000025917 | Cops5 | ENSG00000121022 | 1.17 | 6.01E-03 | Metallopeptidase | | ENSMUSG00000063089 Klk1b8 -7.26 2.11E-03 Serine peptidase | ENSMUSG00000063177 | Klk1b27 | | -7.46 | 1.42E-03 | Serine peptidase | | | ENSMUSG00000063089 | Klk1b8 | | -7.26 | 2.11E-03 | Serine peptidase | | ENSMUSG00000030713 | Klk7 | ENSG00000169035 | -6.89 | 3.68E-02 | Serine peptidase | |---|----------|------------------------------------|-------|----------|------------------------------------| | ENSMUSG00000038968 | Klk1b16 | 11000000107033 | -5.78 | 1.85E-03 | Serine peptidase | | ENSMUSG00000063133 | Klk1b1 | ENSG00000167751 | -5.47 | 1.90E-03 | Serine peptidase | | ENSMUSG00000066516 | Klk1b21 | ENSG00000167751 | -4.96 | 2.68E-03 | Serine peptidase | | ENSMUSG00000059042 | Klk1b9 | ENSG00000167751 | -4.96 | 2.09E-03 | Serine peptidase | | ENSMUSG00000063713 | Klk1b24 | ENSG00000167751 | -4.88 | 3.06E-03 | Serine peptidase | | ENSMUSG00000066515 | Klk1b3 | ENSG00000167751 | -4.61 | 3.70E-03 | Serine peptidase | | ENSMUSG00000053719 | Klk1b26 | L140G00000107731 | -4.27 | 4.73E-03 | Serine peptidase | | ENSMUSG00000033715 | Klk1b11 | ENSG00000167751 | -4.26 | 4.65E-03 | Serine peptidase | | ENSMUSG00000060177 | Klk1b22 | ENSG00000167751 | -4.17 | 6.65E-03 | Serine peptidase | | ENSMUSG00000066513 | Klk1b4 | ENSG00000167751 | -4.09 | 3.66E-03 | Serine peptidase | | ENSMUSG000000061780 | Cfd | ENSG00000197766 | -2.40 | 3.07E-31 | Serine peptidase | | ENSMUSG00000006179 | Prss16 | ENSG00000137700 | -2.16 | 2.71E-02 | Serine peptidase | | ENSMUSG0000000173 | Cd46 | ENSG00000112312 | -1.52 | 1.26E-03 | Serine peptidase | | ENSMUSG00000070695 | Cntnap5a | ENSG00000117333 | -1.51 | 4.74E-07 | Serine peptidase | | ENSMUSG00000070093 ENSMUSG000000042453 | Reln | ENSG00000133032
ENSG00000189056 | -1.31 | 2.02E-07 | Serine peptidase Serine peptidase | | ENSMUSG00000037129 | Tmprss13 | ENSG00000137030 | -1.42 | 2.38E-02 | Serine peptidase | | ENSMUSG00000028979 | Masp2 | ENSG000000137747 | -1.35 | 5.29E-05 | Serine peptidase | | ENSMUSG00000032393 | Dpp8 | ENSG0000000724 ENSG00000074603 | -1.29 | 2.28E-05 | Serine peptidase | | ENSMUSG00000032393 | St14 | ENSG00000074003 | -1.29 | 3.87E-02 | Serine peptidase | | ENSMUSG00000031993 ENSMUSG00000036098 | Myrf | ENSG00000149418 ENSG00000124920 | -1.27 | 2.90E-04 | Serine peptidase | | ENSMUSG00000030587 | Pcsk1 | ENSG00000175426 | -1.21 | 4.27E-02 | Serine peptidase | | ENSMUSG000000021387
ENSMUSG00000001229 | Dpp9 | ENSG00000173420 | -1.21 | 1.20E-03 | Serine peptidase | | ENSMUSG000000024127 | Prepl | ENSG00000142002 | -1.19 | 3.01E-03 | Serine peptidase | | ENSMUSG00000061576 | Dpp6 | ENSG00000130226 | -1.16 | 9.53E-03 | Serine peptidase | | ENSMUSG0000000525246 | Tbl1x | ENSG00000130220 | -1.13 | 2.86E-02 | Serine peptidase | | ENSMUSG00000047866 | Lonp2 | ENSG00000092377 | 1.14 | 6.23E-03 | Serine peptidase | | ENSMUSG0000000278 | Scpep1 | ENSG00000102310 | 1.17 | 3.49E-02 | Serine peptidase | | ENSMUSG00000000278 | Htral | ENSG00000121004 ENSG00000166033 | 1.17 | 2.64E-02 | Serine peptidase | | ENSMUSG000000017760 | Ctsa | ENSG00000160693 | 1.17 | 5.18E-04 | serine peptidase | | ENSMUSG00000017700 | Pcsk5 | ENSG00000099139 | 1.22 | 1.61E-03 | Serine peptidase | | ENSMUSG00000024713 | Plau | ENSG00000033133 | 1.25 | 3.64E-02 | Serine peptidase | | ENSMUSG00000027188 | Pamr1 | ENSG00000122001 | 1.27 | 3.85E-03 | Serine peptidase | | ENSMUSG00000027100 | Prss57 | ENSG00000145090 | 1.46 | 1.85E-02 | Serine peptidase | | ENSMUSG00000033491 | Prss35 | ENSG00000146250 | 1.51 | 1.57E-03 | Serine peptidase | | ENSMUSG000000039491 ENSMUSG00000000392 | Fap | ENSG0000078098 | 1.54 | 1.07E-06 | Serine peptidase | | ENSMUSG000000055172 | C1ra | ENSG00000078098 ENSG000000159403 | 1.59 | 2.50E-05 | Serine peptidase Serine peptidase | | ENSMUSG00000098470 | C1rb | ENSG00000159403 | 1.70 | 1.63E-04 | Serine peptidase Serine peptidase | | ENSMUSG00000098470 ENSMUSG00000038521 | C110 | ENSG00000139403
ENSG00000182326 | 1.70 | 3.05E-09 | Serine peptidase Serine peptidase | | ENSMUSG00000038321
ENSMUSG00000090231 | Cfb | ENSG00000182328
ENSG00000243649 | 2.31 | 1.94E-23 | Serine peptidase Serine peptidase | | ENSMUSG00000090231 ENSMUSG00000029096 | Htra3 | ENSG00000243649 ENSG00000170801 | 2.54 | 3.35E-30 | Serine peptidase Serine peptidase | | ENSMUSG00000029098
ENSMUSG00000021492 | F12 | ENSG00000170801
ENSG00000131187 | 2.63 | 2.46E-02 | Serine peptidase Serine peptidase | | ENSMUSG00000021492
ENSMUSG00000041534 | | | | | Serine peptidase Serine peptidase | | ENSWIO5G00000041534 | Rbp3 | ENSG00000265203 | 2.76 | 2.92E-04 | serme peptidase | | ENSMUSG00000061068 | Mcpt4 | | 3.01 | 1.67E-22 | Serine peptidase | |--------------------|--------|------------------|------|----------|---------------------| | ENSMUSG00000033825 | Tpsb2 | ENSG00000095917, | 3.02 | 1.72E-18 | Serine peptidase | | | | ENSG00000172236, | | | | | | | ENSG00000197253 | | | | | ENSMUSG00000023031 | Cela1 | ENSG00000139610 | 3.48 | 8.79E-11 | Serine peptidase | | ENSMUSG00000022225 | Cma1 | ENSG00000092009 | 3.85 | 2.95E-20 | Serine peptidase | | ENSMUSG00000049719 | Prss46 | ENSG00000261603 | 4.82 | 1.12E-02 | Serine peptidase | | ENSMUSG00000031443 | F7 | ENSG00000057593 | 5.27 | 1.33E-02 | Serine peptidase | | ENSMUSG00000031722 | Нр | ENSG00000261701 | 7.95 | 1.62E- | Serine peptidase | | | | | | 147 | | | ENSMUSG00000026750 | Psmb7 | ENSG00000136930 | 1.12 | 1.50E-02 | Threonine peptidase | | ENSMUSG00000030751 | Psma1 | ENSG00000256206 | 1.12 | 4.82E-02 | Threonine peptidase | | ENSMUSG00000068749 | Psma5 | ENSG00000143106 | 1.15 | 4.69E-02 | Threonine peptidase | | ENSMUSG00000030591 | Psmd8 | ENSG00000099341 | 1.16 | 2.00E-03 | Threonine peptidase | | ENSMUSG00000042541 | Shfm1 | | 1.16 | 3.58E-02 | Threonine peptidase | | ENSMUSG00000022193 | Psmb5 | ENSG00000100804 | 1.16 | 1.74E-02 | Threonine peptidase | | ENSMUSG00000015671 | Psma2 | ENSG00000256646 | 1.18 | 1.23E-03 | Threonine peptidase | | ENSMUSG00000027566 | Psma7 | ENSG00000101182 | 1.19 | 3.32E-04 | Threonine peptidase | | ENSMUSG00000039033 | Tasp1 | ENSG00000089123 | 1.20 | 2.12E-02 | Threonine peptidase | | ENSMUSG00000005779 | Psmb4 | ENSG00000159377 | 1.20 | 1.58E-04 | Threonine peptidase | | ENSMUSG00000014769 | Psmb1 | ENSG00000008018 | 1.20 | 3.07E-04 | Threonine peptidase | | ENSMUSG00000031897 | Psmb10 | ENSG00000205220 | 1.21 | 1.07E-02 | Threonine peptidase | | ENSMUSG00000021024 | Psma6 | ENSG00000100902 | 1.21 | 7.23E-04 | Threonine peptidase | | ENSMUSG00000024338 | Psmb8 | ENSG00000204264 | 1.22 | 4.43E-02 | Threonine peptidase | | ENSMUSG00000018286 | Psmb6 | ENSG00000142507 | 1.24 | 8.80E-05 | Threonine peptidase | | ENSMUSG00000028837 | Psmb2 | ENSG00000126067 | 1.30 | 6.18E-06 | Threonine peptidase | | ENSMUSG00000006344 | Ggt5 | ENSG00000099998 | 1.59 | 2.00E-03 | Threonine peptidase | Supplementary Table S3: Gene lists and classification of GO term proteolysis from transcriptomes of mice head. | Zebrafish ID | Zebrafish | Human homolog | Meas/Ctrl | <i>p</i> -value | Classification | |--------------------|-----------|-----------------|-----------|-----------------|--------------------| | | gene name | | or - | | | | | | | Ctrl/Meas | | | | | | | (scaled) | | | | ENSDARG00000057698 | ctsd | ENSG00000117984 | 1.15 | 3.20E-02 | Aspartic peptidase | | ENSDARG00000008165 | caspa | | -2.08 | 4.23E-03 | Cysteine protease | | ENSDARG00000052039 | caspb | | -2.04 | 1.50E-05 | Cysteine protease | | ENSDARG00000052917 | si:ch211- | ENSG00000214711 | -1.84 | 1.15E-03 | Cysteine protease | | | 202f3.3 | | | | | | ENSDARG00000005595 | adgb | ENSG00000118492 | -1.75 | 2.08E-02 | Cysteine protease | | TIMES A D COORDON AS THE | | TN TO COO COO CO CO CO | | A 45E 44 | | |--------------------------|------------|------------------------|-------|----------|-------------------| | ENSDARG00000013771 | ctss2.2 | ENSG00000163131 | -1.68 | 2.27E-02 | Cysteine protease | | ENSDARG00000034211 | capn2l | ENSG00000162909 | -1.68 | 3.87E-04 | Cysteine protease | | ENSDARG00000012341 | capn9 | ENSG00000135773 | -1.54 | 7.25E-03 | Cysteine protease | | ENSDARG00000045641 | usp3 | ENSG00000140455 | -1.49 | 1.75E-02 | Cysteine protease | | ENSDARG00000098239 | zgc:85932 | | -1.46 | 2.26E-03 | Cysteine protease | | ENSDARG00000091699 | capn2a | | -1.42 | 1.87E-03 | Cysteine protease | | ENSDARG00000030177 | uchl3 | ENSG00000118939
 -1.40 | 2.22E-03 | Cysteine protease | | ENSDARG00000055045 | casp3b | ENSG00000164305 | -1.37 | 2.73E-02 | Cysteine protease | | ENSDARG00000040990 | usp37 | ENSG00000135913 | -1.31 | 6.36E-03 | Cysteine protease | | ENSDARG00000035329 | capnsla | ENSG00000126247 | -1.31 | 2.15E-02 | Cysteine protease | | ENSDARG00000013804 | capns1b | ENSG00000126247 | -1.23 | 2.72E-02 | Cysteine protease | | ENSDARG00000089861 | usp44 | ENSG00000136014 | 1.19 | 4.32E-02 | Cysteine protease | | ENSDARG00000063190 | zranb1b | ENSG00000019995 | 1.19 | 2.87E-02 | Cysteine protease | | ENSDARG00000079198 | usp13 | ENSG00000058056 | 1.28 | 1.63E-02 | Cysteine protease | | ENSDARG00000102705 | otud6b | ENSG00000155100 | 1.30 | 2.81E-02 | Cysteine protease | | ENSDARG00000019595 | senp8 | ENSG00000166192 | 1.82 | 3.25E-02 | Cysteine protease | | ENSDARG00000101051 | ctsbb | ENSG00000136943 | 1.92 | 4.83E-05 | Cysteine protease | | ENSDARG00000052578 | c6ast4 | | 1.97 | 1.26E-08 | Cysteine protease | | ENSDARG00000069748 | capn5b | ENSG00000149260 | 2.02 | 4.80E-02 | Cysteine protease | | ENSDARG00000088145 | atg4db | ENSG00000130734 | 4.19 | 1.55E-02 | Cysteine protease | | ENSDARG00000042816 | mmp9 | ENSG00000100985 | -3.26 | 5.48E-03 | Metallopeptidase | | ENSDARG00000059029 | mmp28 | ENSG00000271447 | -2.30 | 2.67E-02 | Metallopeptidase | | ENSDARG00000045887 | mmp30 | | -1.66 | 4.76E-08 | Metallopeptidase | | ENSDARG00000034693 | mysm1 | ENSG00000162601 | 1.23 | 3.98E-02 | Metallopeptidase | | ENSDARG00000067545 | adam19b | ENSG00000135074 | 1.24 | 3.16E-02 | Metallopeptidase | | ENSDARG00000062363 | phex | ENSG00000102174 | 1.24 | 4.58E-02 | Metallopeptidase | | ENSDARG00000068187 | spg7 | ENSG00000197912 | 1.25 | 4.21E-02 | Metallopeptidase | | ENSDARG00000079166 | ace | ENSG00000264813 | 1.32 | 1.78E-02 | Metallopeptidase | | ENSDARG00000007813 | rnpepl1 | ENSG00000142327 | 1.36 | 1.19E-02 | Metallopeptidase | | ENSDARG00000006901 | si:ch1073- | ENSG00000106624 | 1.40 | 5.42E-03 | Metallopeptidase | | | 459j12.1 | | | | | | ENSDARG00000061737 | ece1 | ENSG00000117298 | 1.52 | 1.38E-04 | Metallopeptidase | | ENSDARG00000043722 | cpa4 | ENSG00000158516 | 1.60 | 2.81E-03 | Metallopeptidase | | ENSDARG00000006029 | lta4h | ENSG00000111144 | 1.88 | 3.17E-04 | Metallopeptidase | | ENSDARG00000057644 | adam8b | ENSG00000151651 | 2.05 | 4.07E-04 | Metallopeptidase | | ENSDARG00000079983 | agbl2 | ENSG00000165923 | 4.57 | 2.56E-03 | Metallopeptidase | | ENSDARG00000059026 | zgc:123217 | ENSG00000189099 | -6.64 | 3.52E-02 | Serine peptidase | | ENSDARG00000077540 | f2rl1.2 | ENSG00000164251 | -1.98 | 2.11E-02 | Serine peptidase | | ENSDARG00000039579 | cfd | ENSG00000197766 | -1.90 | 2.20E-04 | Serine peptidase | | ENSDARG00000038891 | AL954146.1 | | -1.86 | 4.30E-02 | Serine peptidase | | ENSDARG00000079393 | tmprss15 | | -1.79 | 1.10E-02 | Serine peptidase | | | | | | • | | ### Metabolomic and transcriptomic profiling of leptin mutants in mice and zebrafish | ENSDARG0000004748 zgc:100868 ENSG0000103355 -1.65 1.62E-05 Serine peptidase ENSDARG00000095807 hp ENSG00000263639 -1.59 1.56E-02 Serine peptidase ENSDARG00000032831 htra1a ENSG00000166033 -1.52 1.56E-02 Serine peptidase ENSDARG00000058593 sri ENSG0000007142 -1.38 3.03E-03 Serine peptidase ENSDARG0000089138 si:ch1073-440b2.1 4.82E-03 Serine peptidase ENSDARG0000061173 st14a ENSG00000170500 -1.32 1.80E-02 Serine peptidase ENSDARG00000100691 prss35 ENSG00000126231 1.15 3.49E-02 Serine peptidase ENSDARG00000037783 pro2a ENSG00000126211 1.15 3.49E-02 Serine peptidase ENSDARG00000085851 f10 ENSG00000126218 1.24 1.31E-02 Serine peptidase ENSDARG00000075948 lonrf1 1.29 4.25E-03 Serine peptidase ENSDARG00000073742 prss59.2 1.62 1.27E-02 Serine peptidase ENSDA | ENSDARG00000055014 | si:dkey- | | -1.65 | 1.46E-02 | Serine peptidase | |--|--------------------|------------|-----------------|-------|----------|---------------------| | ENSDARG0000095807 hp ENSG00000263639 -1.59 1.56E-02 Serine peptidase ENSDARG0000032831 htra1a ENSG00000166033 -1.52 1.56E-02 Serine peptidase ENSDARG00000102332 spint1a ENSG00000243543 -1.49 6.25E-04 Serine peptidase ENSDARG00000085938 sri ENSG00000075142 -1.38 3.03E-03 Serine peptidase ENSDARG00000081733 st14a -1.32 4.82E-03 Serine peptidase ENSDARG00000100691 prss35 ENSG00000146250 -1.30 2.69E-02 Serine peptidase ENSDARG00000037783 proza ENSG00000126231 1.15 3.49E-02 Serine peptidase ENSDARG00000029063 clpxa ENSG00000166855 1.23 3.80E-04 Serine peptidase ENSDARG00000075048 lonrf1 1.29 4.25E-03 Serine peptidase ENSDARG00000073742 prss59.2 1.62 1.27E-02 Serine peptidase ENSDARG00000078567 lonrf11 ENSG00000154359 1.67 2.69E-06 Serine peptidase | | 33m11.8 | | | | | | ENSDARG00000032831 htra1a ENSG00000166033 -1.52 1.56E-02 Serine peptidase ENSDARG0000102332 spint1a ENSG00000243543 -1.49 6.25E-04 Serine peptidase ENSDARG00000058593 sri ENSG00000075142 -1.38 3.03E-03 Serine peptidase ENSDARG00000089138 sich1073-440b2.1 -1.32 4.82E-03 Serine peptidase ENSDARG00000061173 st14a -1.32 1.80E-02 Serine peptidase ENSDARG0000010691 prss35 ENSG00000146250 -1.30 2.69E-02 Serine peptidase ENSDARG00000037783 proza ENSG00000166855 1.23 3.80E-04 Serine peptidase ENSDARG0000003784 fl0 ENSG00000166855 1.23 3.80E-04 Serine peptidase ENSDARG00000075048 lonrfl 1.29 4.25E-03 Serine peptidase ENSDARG00000073742 prss59.2 1.62 1.27E-02 Serine peptidase ENSDARG00000078567 lonrfl1 ENSG00000142615 1.62 1.26E-02 Serine peptidase ENSDARG00000 | | zgc:100868 | ENSG00000103355 | | 1.62E-05 | 1 1 | | ENSDARG0000102332 spint1a ENSG00000243543 -1.49 6.25E-04 Serine peptidase ENSDARG00000058593 sri ENSG00000075142 -1.38 3.03E-03 Serine peptidase ENSDARG00000089138 si:ch1073-440b2.1 ENSG00000170500 -1.32 4.82E-03 Serine peptidase ENSDARG00000100691 prss35 ENSG00000146250 -1.30 2.69E-02 Serine peptidase ENSDARG00000037783 proza ENSG00000166251 1.15 3.49E-02 Serine peptidase ENSDARG0000029063 clpxa ENSG00000166855 1.23 3.80E-04 Serine peptidase ENSDARG00000075048 fl0 ENSG00000126218 1.24 1.31E-02 Serine peptidase ENSDARG00000075048 borrfl 1.29 4.25E-03 Serine peptidase ENSDARG00000073742 prss59.2 1.62 1.27E-02 Serine peptidase ENSDARG00000073742 prss59.2 1.62 1.27E-02 Serine peptidase ENSDARG00000078567 lonrfl1 ENSG00000142615 1.82 2.41E-12 Serine peptidase <td>ENSDARG00000095807</td> <td>hp</td> <td>ENSG00000263639</td> <td>-1.59</td> <td>1.56E-02</td> <td>Serine peptidase</td> | ENSDARG00000095807 | hp | ENSG00000263639 | -1.59 | 1.56E-02 | Serine peptidase | | ENSDARG00000058593 sri ENSG00000075142 -1.38 3.03E-03 Serine peptidase ENSDARG00000089138 si:ch1073-440b2.1 ENSG00000170500 -1.32 4.82E-03 Serine peptidase ENSDARG000001010691 prss35 ENSG00000146250 -1.30 2.69E-02 Serine peptidase ENSDARG00000037783 proza ENSG00000126231 1.15 3.49E-02 Serine peptidase ENSDARG00000029063 clpxa ENSG00000166855 1.23 3.80E-04 Serine peptidase ENSDARG00000075048 fl0 ENSG00000126218 1.24 1.31E-02 Serine peptidase ENSDARG00000075048 lonrfl 1.29 4.25E-03 Serine peptidase ENSDARG00000073742 prss59.2 1.62 1.27E-02 Serine peptidase ENSDARG00000078567 lonrfl1 ENSG00000154359 1.67 2.69E-06 Serine peptidase ENSDARG00000093844 zgc:136461 ENSG00000142615 1.82 2.41E-12 Serine peptidase ENSDARG00000056765 ela2l ENSG00000142615 1.82 2.41E-12 | ENSDARG00000032831 | htra1a | ENSG00000166033 | -1.52 | 1.56E-02 | Serine peptidase | | ENSDARG00000089138 si:ch1073-440b2.1 ENSG00000170500 -1.32 4.82E-03 Serine peptidase ENSDARG00000061173 st14a -1.32 1.80E-02 Serine peptidase ENSDARG00000100691 prss35 ENSG00000146250 -1.30 2.69E-02 Serine peptidase ENSDARG00000037783 proza ENSG00000126231 1.15 3.49E-02 Serine peptidase ENSDARG00000029063 clpxa ENSG00000166855 1.23 3.80E-04 Serine peptidase ENSDARG00000088581 f10 ENSG00000126218 1.24 1.31E-02 Serine peptidase ENSDARG00000075048 lonrf1 1.29 4.25E-03 Serine peptidase ENSDARG00000073742 prss59.2 1.62 1.27E-02 Serine peptidase ENSDARG00000073742 prss59.2 1.62 1.27E-02 Serine
peptidase ENSDARG00000045544 hgfa ENSG00000154359 1.67 2.69E-06 Serine peptidase ENSDARG00000093844 zgc:136461 ENSG000001442615 1.82 2.41E-12 Serine peptidase ENSDAR | ENSDARG00000102332 | spint1a | ENSG00000243543 | -1.49 | 6.25E-04 | Serine peptidase | | March Marc | ENSDARG00000058593 | sri | ENSG00000075142 | -1.38 | 3.03E-03 | Serine peptidase | | ENSDARG0000061173 st14a -1.32 1.80E-02 Serine peptidase ENSDARG00000100691 prss35 ENSG00000146250 -1.30 2.69E-02 Serine peptidase ENSDARG00000037783 proza ENSG00000126231 1.15 3.49E-02 Serine peptidase ENSDARG00000029063 clpxa ENSG00000166855 1.23 3.80E-04 Serine peptidase ENSDARG00000075048 f10 ENSG00000126218 1.24 1.31E-02 Serine peptidase ENSDARG00000075048 lonrf1 1.29 4.25E-03 Serine peptidase ENSDARG00000073742 prss59.2 1.62 1.27E-02 Serine peptidase ENSDARG00000073742 prss59.2 1.62 1.27E-02 Serine peptidase ENSDARG00000078567 lonrf11 ENSG00000154359 1.67 2.69E-06 Serine peptidase ENSDARG00000093844 zgc:136461 ENSG00000142615 1.82 2.41E-12 Serine peptidase ENSDARG00000056765 ela2l ENSG00000142615 1.82 2.41E-12 Serine peptidase ENSDARG00000007276 | ENSDARG00000089138 | si:ch1073- | ENSG00000170500 | -1.32 | 4.82E-03 | Serine peptidase | | ENSDARG00000100691 prss35 ENSG00000146250 -1.30 2.69E-02 Serine peptidase ENSDARG00000037783 proza ENSG00000126231 1.15 3.49E-02 Serine peptidase ENSDARG00000029063 clpxa ENSG00000166855 1.23 3.80E-04 Serine peptidase ENSDARG00000088581 f10 ENSG00000126218 1.24 1.31E-02 Serine peptidase ENSDARG00000075048 lonrf1 1.29 4.25E-03 Serine peptidase ENSDARG00000073742 prss59.2 1.62 1.27E-02 Serine peptidase ENSDARG00000073742 prss59.2 1.62 1.27E-02 Serine peptidase ENSDARG00000073744 hgfa ENSG00000154359 1.67 2.69E-06 Serine peptidase ENSDARG00000078567 lonrf11 ENSG00000168928 1.78 6.57E-11 Serine peptidase ENSDARG00000056765 ela2l ENSG00000142615 1.82 2.41E-12 Serine peptidase ENSDARG0000004293 prss1 ENSG00000142615 1.89 1.72E-09 Serine peptidase | | 440b2.1 | | | | | | ENSDARG0000037783 proza ENSG00000126231 1.15 3.49E-02 Serine peptidase ENSDARG00000029063 clpxa ENSG00000166855 1.23 3.80E-04 Serine peptidase ENSDARG00000088581 f10 ENSG00000126218 1.24 1.31E-02 Serine peptidase ENSDARG00000075048 lonrf1 1.29 4.25E-03 Serine peptidase ENSDARG00000073742 prss59.2 1.62 1.27E-02 Serine peptidase ENSDARG00000045544 hgfa ENSG00000137359 1.65 1.46E-02 Serine peptidase ENSDARG00000078567 lonrf11 ENSG00000143359 1.67 2.69E-06 Serine peptidase ENSDARG00000093844 zgc:136461 ENSG00000142615 1.82 2.41E-12 Serine peptidase ENSDARG00000056765 ela21 ENSG00000142615 1.82 2.41E-12 Serine peptidase ENSDARG00000042993 prss1 ENSG00000142615 1.89 1.72E-09 Serine peptidase ENSDARG0000007276 ela31 1.90 1.12E-09 Serine peptidase | ENSDARG00000061173 | st14a | | -1.32 | 1.80E-02 | Serine peptidase | | ENSDARG0000029063 clpxa ENSG00000166855 1.23 3.80E-04 Serine peptidase ENSDARG00000088581 f10 ENSG00000126218 1.24 1.31E-02 Serine peptidase ENSDARG00000075048 lonrf1 1.29 4.25E-03 Serine peptidase ENSDARG00000037883 prcp ENSG00000137509 1.45 2.48E-02 Serine peptidase ENSDARG00000073742 prss59.2 1.62 1.27E-02 Serine peptidase ENSDARG00000045544 hgfa ENSG00000154359 1.65 1.46E-02 Serine peptidase ENSDARG00000078567 lonrf1l ENSG00000154359 1.67 2.69E-06 Serine peptidase ENSDARG00000093844 zgc:136461 ENSG00000168928 1.78 6.57E-11 Serine peptidase ENSDARG00000056765 ela2l ENSG00000142615 1.82 2.41E-12 Serine peptidase ENSDARG00000068680 ctrl ENSG00000141086 1.89 1.72E-09 Serine peptidase ENSDARG0000007276 ela3l 1.90 1.12E-09 Serine peptidase | ENSDARG00000100691 | prss35 | ENSG00000146250 | -1.30 | 2.69E-02 | Serine peptidase | | ENSDARG00000088581 f10 ENSG00000126218 1.24 1.31E-02 Serine peptidase ENSDARG00000075048 lonrf1 1.29 4.25E-03 Serine peptidase ENSDARG00000037883 prcp ENSG00000137509 1.45 2.48E-02 Serine peptidase ENSDARG00000073742 prss59.2 1.62 1.27E-02 Serine peptidase ENSDARG00000045544 hgfa ENSG0000019991 1.65 1.46E-02 Serine peptidase ENSDARG00000078567 lonrf1l ENSG00000154359 1.67 2.69E-06 Serine peptidase ENSDARG00000093844 zgc:136461 ENSG00000168928 1.78 6.57E-11 Serine peptidase ENSDARG00000056765 ela2l ENSG00000142615 1.82 2.41E-12 Serine peptidase ENSDARG00000068680 ctrl ENSG00000141086 1.89 1.72E-09 Serine peptidase ENSDARG0000007276 ela3l 1.90 1.12E-09 Serine peptidase ENSDARG0000007274 prss59.1 1.95 1.41E-09 Serine peptidase ENSDARG00000094741 | ENSDARG00000037783 | proza | ENSG00000126231 | 1.15 | 3.49E-02 | Serine peptidase | | ENSDARG00000075048 lonrf1 1.29 4.25E-03 Serine peptidase ENSDARG00000037883 prcp ENSG00000137509 1.45 2.48E-02 Serine peptidase ENSDARG00000073742 prss59.2 1.62 1.27E-02 Serine peptidase ENSDARG00000045544 hgfa ENSG00000019991 1.65 1.46E-02 Serine peptidase ENSDARG00000078567 lonrf1l ENSG00000154359 1.67 2.69E-06 Serine peptidase ENSDARG0000093844 zgc:136461 ENSG00000168928 1.78 6.57E-11 Serine peptidase ENSDARG00000056765 ela2l ENSG00000142615 1.82 2.41E-12 Serine peptidase ENSDARG00000042993 prss1 ENSG00000204983 1.84 1.10E-10 Serine peptidase ENSDARG0000007276 ela3l 1.90 1.12E-09 Serine peptidase ENSDARG0000007274 prss59.1 1.95 1.41E-09 Serine peptidase ENSDARG00000056744 ela2 ENSG00000142615 2.03 2.05E-02 Serine peptidase ENSDARG0000009428 | ENSDARG00000029063 | clpxa | ENSG00000166855 | 1.23 | 3.80E-04 | Serine peptidase | | ENSDARG00000037883 prcp ENSG00000137509 1.45 2.48E-02 Serine peptidase ENSDARG00000073742 prss59.2 1.62 1.27E-02 Serine peptidase ENSDARG00000045544 hgfa ENSG00000019991 1.65 1.46E-02 Serine peptidase ENSDARG00000078567 lonrf1l ENSG00000154359 1.67 2.69E-06 Serine peptidase ENSDARG00000093844 zgc:136461 ENSG00000168928 1.78 6.57E-11 Serine peptidase ENSDARG00000056765 ela2l ENSG00000142615 1.82 2.41E-12 Serine peptidase ENSDARG00000042993 prss1 ENSG00000204983 1.84 1.10E-10 Serine peptidase ENSDARG0000007276 ela3l 1.90 1.12E-09 Serine peptidase ENSDARG00000079274 prss59.1 1.95 1.41E-09 Serine peptidase ENSDARG00000056744 ela2 ENSG00000142615 2.03 2.05E-02 Serine peptidase ENSDARG0000009428 ctrb1 ENSG00000115317 2.21 4.19E-02 Serine peptidase | ENSDARG00000088581 | f10 | ENSG00000126218 | 1.24 | 1.31E-02 | Serine peptidase | | ENSDARG00000073742 prss59.2 1.62 1.27E-02 Serine peptidase ENSDARG00000045544 hgfa ENSG00000019991 1.65 1.46E-02 Serine peptidase ENSDARG00000078567 lonrf1l ENSG00000154359 1.67 2.69E-06 Serine peptidase ENSDARG00000093844 zgc:136461 ENSG00000168928 1.78 6.57E-11 Serine peptidase ENSDARG00000056765 ela2l ENSG00000142615 1.82 2.41E-12 Serine peptidase ENSDARG00000042993 prss1 ENSG00000204983 1.84 1.10E-10 Serine peptidase ENSDARG0000007276 ela3l 1.90 1.12E-09 Serine peptidase ENSDARG00000079274 prss59.1 1.95 1.41E-09 Serine peptidase ENSDARG00000056744 ela2 ENSG00000142615 2.03 2.05E-02 Serine peptidase ENSDARG0000009428 ctrb1 ENSG0000015317 2.21 4.19E-02 Serine peptidase ENSDARG0000009424 HTRA2 (1 ENSG00000115317 2.21 4.19E-02 Serine peptidase | ENSDARG00000075048 | lonrf1 | | 1.29 | 4.25E-03 | Serine peptidase | | ENSDARG00000045544 hgfa ENSG00000019991 1.65 1.46E-02 Serine peptidase ENSDARG00000078567 lonrf11 ENSG00000154359 1.67 2.69E-06 Serine peptidase ENSDARG00000093844 zgc:136461 ENSG00000168928 1.78 6.57E-11 Serine peptidase ENSDARG00000056765 ela2l ENSG00000142615 1.82 2.41E-12 Serine peptidase ENSDARG00000042993 prss1 ENSG00000204983 1.84 1.10E-10 Serine peptidase ENSDARG00000068680 ctrl ENSG00000141086 1.89 1.72E-09 Serine peptidase ENSDARG0000007276 ela3l 1.90 1.12E-09 Serine peptidase ENSDARG00000079274 prss59.1 1.95 1.41E-09 Serine peptidase ENSDARG00000056744 ela2 ENSG00000142615 2.03 2.05E-02 Serine peptidase ENSDARG00000094741 HTRA2 (1 ENSG00000115317 2.21 4.19E-02 Serine peptidase ENSDARG00000017314 CELA1 (1 ENSG00000139610 2.27 5.10E-16 Serine | ENSDARG00000037883 | prcp | ENSG00000137509 | 1.45 | 2.48E-02 | Serine peptidase | | ENSDARG00000078567 lonrf11 ENSG00000154359 1.67 2.69E-06 Serine peptidase ENSDARG00000093844 zgc:136461 ENSG00000168928 1.78 6.57E-11 Serine peptidase ENSDARG00000056765 ela2l ENSG00000142615 1.82 2.41E-12 Serine peptidase ENSDARG00000042993 prss1 ENSG00000204983 1.84 1.10E-10 Serine peptidase ENSDARG00000068680 ctrl ENSG00000141086 1.89 1.72E-09 Serine peptidase ENSDARG0000007276 ela3l 1.90 1.12E-09 Serine peptidase ENSDARG00000079274 prss59.1 1.95 1.41E-09 Serine peptidase ENSDARG00000056744 ela2 ENSG00000142615 2.03 2.05E-02 Serine peptidase ENSDARG00000094741 HTRA2 (1 ENSG00000115317 2.21 4.19E-02 Serine peptidase ENSDARG00000017314 CELA1 (1 ENSG00000139610 2.27 5.10E-16 Serine peptidase | ENSDARG00000073742 | prss59.2 | | 1.62 | 1.27E-02 | Serine peptidase | | ENSDARG00000093844 zgc:136461 ENSG00000168928 1.78 6.57E-11 Serine peptidase ENSDARG00000056765 ela2l ENSG00000142615 1.82 2.41E-12 Serine peptidase ENSDARG00000042993 prss1 ENSG00000204983 1.84 1.10E-10 Serine peptidase ENSDARG00000068680 ctrl ENSG00000141086 1.89 1.72E-09 Serine peptidase ENSDARG00000007276 ela3l 1.90 1.12E-09 Serine peptidase ENSDARG00000079274 prss59.1 1.95 1.41E-09 Serine peptidase ENSDARG00000056744 ela2 ENSG00000142615 2.03 2.05E-02 Serine peptidase ENSDARG0000009428 ctrb1 ENSG00000168925 2.19 8.72E-20 Serine peptidase ENSDARG00000094741 HTRA2 (1 of many) ENSG00000115317 2.21 4.19E-02 Serine peptidase ENSDARG00000017314 CELA1 (1 of many) ENSG00000139610 2.27 5.10E-16 Serine peptidase | ENSDARG00000045544 | hgfa | ENSG00000019991 | 1.65 | 1.46E-02 | Serine peptidase | | ENSDARG00000056765 ela2l ENSG00000142615 1.82 2.41E-12 Serine peptidase ENSDARG00000042993 prss1 ENSG00000204983 1.84 1.10E-10 Serine peptidase ENSDARG00000068680 ctrl ENSG00000141086 1.89 1.72E-09 Serine peptidase ENSDARG0000007276 ela3l 1.90 1.12E-09 Serine peptidase ENSDARG00000079274 prss59.1 1.95 1.41E-09 Serine peptidase ENSDARG00000056744 ela2 ENSG00000142615 2.03 2.05E-02 Serine peptidase ENSDARG00000094741 HTRA2 (1 ENSG0000015317 2.21 4.19E-02 Serine peptidase ENSDARG00000017314 CELA1 (1 ENSG00000139610 2.27 5.10E-16 Serine peptidase | ENSDARG00000078567 |
lonrf1l | ENSG00000154359 | 1.67 | 2.69E-06 | Serine peptidase | | ENSDARG00000042993 prss1 ENSG00000204983 1.84 1.10E-10 Serine peptidase ENSDARG00000068680 ctrl ENSG00000141086 1.89 1.72E-09 Serine peptidase ENSDARG0000007276 ela3l 1.90 1.12E-09 Serine peptidase ENSDARG00000079274 prss59.1 1.95 1.41E-09 Serine peptidase ENSDARG00000056744 ela2 ENSG00000142615 2.03 2.05E-02 Serine peptidase ENSDARG00000090428 ctrb1 ENSG00000168925 2.19 8.72E-20 Serine peptidase ENSDARG00000094741 HTRA2 (1 ENSG00000115317 2.21 4.19E-02 Serine peptidase of many) ENSDARG00000017314 CELA1 (1 ENSG00000139610 2.27 5.10E-16 Serine peptidase | ENSDARG00000093844 | zgc:136461 | ENSG00000168928 | 1.78 | 6.57E-11 | Serine peptidase | | ENSDARG00000068680 ctrl ENSG00000141086 1.89 1.72E-09 Serine peptidase ENSDARG00000007276 ela3l 1.90 1.12E-09 Serine peptidase ENSDARG00000079274 prss59.1 1.95 1.41E-09 Serine peptidase ENSDARG00000056744 ela2 ENSG00000142615 2.03 2.05E-02 Serine peptidase ENSDARG0000009428 ctrb1 ENSG00000168925 2.19 8.72E-20 Serine peptidase ENSDARG00000094741 HTRA2 (1 of many) ENSG00000115317 2.21 4.19E-02 Serine peptidase ENSDARG00000017314 CELA1 (1 of many) ENSG00000139610 2.27 5.10E-16 Serine peptidase | ENSDARG00000056765 | ela2l | ENSG00000142615 | 1.82 | 2.41E-12 | Serine peptidase | | ENSDARG00000068680 ctrl ENSG00000141086 1.89 1.72E-09 Serine peptidase ENSDARG00000007276 ela3l 1.90 1.12E-09 Serine peptidase ENSDARG00000079274 prss59.1 1.95 1.41E-09 Serine peptidase ENSDARG00000056744 ela2 ENSG00000142615 2.03 2.05E-02 Serine peptidase ENSDARG0000009428 ctrb1 ENSG00000168925 2.19 8.72E-20 Serine peptidase ENSDARG00000094741 HTRA2 (1 of many) ENSG00000115317 2.21 4.19E-02 Serine peptidase ENSDARG00000017314 CELA1 (1 of many) ENSG00000139610 2.27 5.10E-16 Serine peptidase | ENSDARG00000042993 | prss1 | ENSG00000204983 | 1.84 | 1.10E-10 | Serine peptidase | | ENSDARG00000079274 prss59.1 1.95 1.41E-09 Serine peptidase ENSDARG00000056744 ela2 ENSG00000142615 2.03 2.05E-02 Serine peptidase ENSDARG00000090428 ctrb1 ENSG00000168925 2.19 8.72E-20 Serine peptidase ENSDARG00000094741 HTRA2 (1 of many) ENSG00000115317 2.21 4.19E-02 Serine peptidase ENSDARG00000017314 CELA1 (1 of many) ENSG00000139610 2.27 5.10E-16 Serine peptidase | ENSDARG00000068680 | ctrl | ENSG00000141086 | 1.89 | 1.72E-09 | | | ENSDARG00000056744 ela2 ENSG00000142615 2.03 2.05E-02 Serine peptidase ENSDARG00000090428 ctrb1 ENSG00000168925 2.19 8.72E-20 Serine peptidase ENSDARG00000094741 HTRA2 (1 of many) ENSG00000115317 2.21 4.19E-02 Serine peptidase ENSDARG00000017314 CELA1 (1 of many) ENSG00000139610 2.27 5.10E-16 Serine peptidase | ENSDARG00000007276 | ela3l | | 1.90 | 1.12E-09 | Serine peptidase | | ENSDARG00000090428 ctrb1 ENSG00000168925 2.19 8.72E-20 Serine peptidase ENSDARG00000094741 HTRA2 (1 of many) ENSG00000115317 2.21 4.19E-02 Serine peptidase ENSDARG00000017314 CELA1 (1 of many) ENSG00000139610 2.27 5.10E-16 Serine peptidase | ENSDARG00000079274 | prss59.1 | | 1.95 | 1.41E-09 | Serine peptidase | | ENSDARG00000094741 HTRA2 (1 of many) ENSDARG00000017314 CELA1 (1 of many) ENSG00000139610 2.27 5.10E-16 Serine peptidase | ENSDARG00000056744 | ela2 | ENSG00000142615 | 2.03 | 2.05E-02 | Serine peptidase | | ENSDARG00000017314 CELA1 (1 of many) ENSG000000139610 2.27 5.10E-16 Serine peptidase | ENSDARG00000090428 | ctrb1 | ENSG00000168925 | 2.19 | 8.72E-20 | Serine peptidase | | ENSDARG00000017314 CELA1 (1 ENSG00000139610 2.27 5.10E-16 Serine peptidase of many) | ENSDARG00000094741 | HTRA2 (1 | ENSG00000115317 | 2.21 | 4.19E-02 | Serine peptidase | | of many) | | of many) | | | | • • | | of many) | ENSDARG00000017314 | CELA1 (1 | ENSG00000139610 | 2.27 | 5.10E-16 | Serine peptidase | | | | of many) | | | | | | ENSDARG00000043173 CELA1 (1 ENSG00000139610 3.87 6.95E-03 Serine peptidase | ENSDARG00000043173 | CELA1 (1 | ENSG00000139610 | 3.87 | 6.95E-03 | Serine peptidase | | of many) | | of many) | | | | • • | | ENSDARG00000002240 psmb6 ENSG00000142507 1.39 7.79E-03 Threonine peptidase | ENSDARG00000002240 | • | ENSG00000142507 | 1.39 | 7.79E-03 | Threonine peptidase | | ENSDARG00000043781 psmb10 ENSG00000205220 1.93 5.73E-03 Threonine peptidase | ENSDARG00000043781 | psmb10 | ENSG00000205220 | 1.93 | 5.73E-03 | Threonine peptidase | Supplementary Table S4: Gene lists and classification of GO term proteolysis from transcriptomes of zebrafish larvae. ### **Supplementary Table S5** | Mouse ID | Mouse | Human gene | Meas/Ctrl | <i>p</i> -value | <i>p</i> -adj | |--------------------|-----------|-----------------|-----------|-----------------|---------------| | | gene_name | stable ID | or - | | | | | | | Ctrl/Meas | | | | | | | (scaled) | | | | ENSMUSG00000025479 | Cyp2e1 | ENSG00000130649 | -3.45 | 2.60E-31 | 3.66E-28 | | ENSMUSG00000060675 | Pla2g16 | ENSG00000176485 | 1.4 | 3.29E-11 | 4.28E-09 | | ENSMUSG00000028597 | Gpx7 | ENSG00000116157 | 1.85 | 3.54E-07 | 1.55E-05 | | ENSMUSG00000015090 | Ptgds | ENSG00000107317 | 1.25 | 6.88E-07 | 2.78E-05 | | ENSMUSG00000020377 | Ltc4s | ENSG00000213316 | 2.45 | 1.74E-06 | 6.17E-05 | | ENSMUSG00000017969 | Ptgis | ENSG00000124212 | 1.43 | 3.72E-05 | 7.88E-04 | | ENSMUSG00000041193 | Pla2g5 | ENSG00000127472 | 1.67 | 7.24E-05 | 1.36E-03 | | ENSMUSG00000018339 | Gpx3 | ENSG00000211445 | 1.27 | 2.94E-04 | 4.25E-03 | | ENSMUSG00000063856 | Gpx1 | ENSG00000233276 | 1.28 | 7.91E-04 | 9.20E-03 | | ENSMUSG00000034579 | Pla2g3 | ENSG00000100078 | -1.26 | 1.34E-03 | 1.41E-02 | | ENSMUSG00000021760 | Gpx8 | ENSG00000164294 | 1.31 | 1.92E-03 | 1.86E-02 | | ENSMUSG00000006344 | Ggt5 | ENSG00000099998 | 1.59 | 2.00E-03 | 1.92E-02 | | ENSMUSG00000022040 | Ephx2 | ENSG00000120915 | 1.27 | 2.47E-03 | 2.24E-02 | | ENSMUSG00000098488 | Pla2g4b | ENSG00000168970 | -1.72 | 2.50E-03 | 2.26E-02 | | ENSMUSG00000022947 | Cbr3 | ENSG00000159231 | 1.31 | 9.26E-03 | 5.94E-02 | | ENSMUSG00000029059 | Fam213b | ENSG00000157870 | 1.18 | 1.12E-02 | 6.79E-02 | | ENSMUSG00000027999 | Pla2g12a | ENSG00000123739 | 1.19 | 1.48E-02 | 8.27E-02 | | ENSMUSG00000042808 | Gpx2 | ENSG00000176153 | 1.33 | 2.20E-02 | 1.09E-01 | | ENSMUSG00000056220 | Pla2g4a | ENSG00000116711 | 1.33 | 2.20E-02 | 1.09E-01 | | ENSMUSG00000020891 | Alox8 | ENSG00000179593 | -1.5 | 2.31E-02 | 1.13E-01 | | ENSMUSG00000052914 | Cyp2j6 | ENSG00000134716 | 1.16 | 3.04E-02 | 1.36E-01 | Supplementary Table S5: Gene lists of GO term arachidonic acid metabolism from transcriptomes of mice head. | Mouse ID | Mouse | Human gene | MEAS/CTRL | p value | <i>p</i> -adj | |--------------------|-----------|-----------------|-----------|----------|---------------| | | gene name | stable ID | or - | | | | | | | CTRL/MEAS | | | | | | | (scaled) | | | | ENSMUSG00000006344 | Ggt5 | ENSG00000099998 | 1.56 | 2.14E-03 | 2.60E-03 | | ENSMUSG00000009646 | Pla2g12b | ENSG00000138308 | 1.57 | 1.35E-03 | 1.74E-03 | | ENSMUSG00000018339 | Gpx3 | ENSG00000211445 | 2.56 | 4.80E-16 | 4.35E-15 | | ENSMUSG00000022040 | Ephx2 | ENSG00000120915 | -1.57 | 1.49E-11 | 8.59E-11 | | ENSMUSG00000022947 | Cbr3 | ENSG00000159231 | 13.91 | 2.33E-31 | 5.53E-30 | | ENSMUSG00000024055 | Cyp4f13 | ENSG00000186526 | -1.51 | 2.12E-14 | 1.65E-13 | | ENSMUSG00000024292 | Cyp4f14 | ENSG00000186115 | -1.73 | 2.32E-12 | 1.48E-11 | |--------------------|----------|-----------------|-------|----------|----------| | ENSMUSG00000025002 | Cyp2c55 | ENSG00000108242 | 4.51 | 2.08E-24 | 3.47E-23 | | ENSMUSG00000025003 | Cyp2c39 | | 3.16 | 5.14E-31 | 1.19E-29 | | ENSMUSG00000025004 | Cyp2c40 | | 1.78 | 8.28E-03 | 8.27E-03 | | ENSMUSG00000025197 | Cyp2c23 | | -3.84 | 1.62E-55 | 1.17E-53 | | ENSMUSG00000025479 | Cyp2e1 | ENSG00000130649 | -1.48 | 5.25E-10 | 2.51E-09 | | ENSMUSG00000026820 | Ptges2 | ENSG00000148334 | 1.34 | 4.51E-03 | 4.95E-03 | | ENSMUSG00000027983 | Cyp2u1 | ENSG00000155016 | -2.61 | 1.72E-14 | 1.36E-13 | | ENSMUSG00000028597 | Gpx7 | ENSG00000116157 | 2.48 | 3.39E-06 | 8.52E-06 | | ENSMUSG00000028712 | Cyp4a31 | ENSG00000186204 | -4.29 | 1.03E-25 | 1.83E-24 | | ENSMUSG00000028715 | Cyp4a14 | | -2.02 | 1.69E-20 | 2.21E-19 | | ENSMUSG00000029919 | Hpgds | ENSG00000163106 | 3.37 | 1.28E-09 | 5.76E-09 | | ENSMUSG00000029925 | Tbxas1 | ENSG00000059377 | 2.32 | 5.19E-06 | 1.26E-05 | | ENSMUSG00000030483 | Cyp2b10 | | -1.33 | 4.18E-02 | 3.20E-02 | | ENSMUSG00000032808 | Cyp2c38 | | 1.82 | 6.04E-10 | 2.86E-09 | | ENSMUSG00000040660 | Cyp2b9 | | 79.13 | 1.13E-46 | 5.73E-45 | | ENSMUSG00000042248 | Cyp2c37 | | -3.39 | 1.76E-47 | 9.41E-46 | | ENSMUSG00000042632 | Pla2g6 | ENSG00000184381 | 1.95 | 1.23E-07 | 4.06E-07 | | ENSMUSG00000047250 | Ptgs1 | ENSG00000095303 | 1.34 | 3.18E-03 | 3.66E-03 | | ENSMUSG00000051483 | Cbr1 | ENSG00000159228 | 2.26 | 4.09E-10 | 1.98E-09 | | ENSMUSG00000052520 | Cyp2j5 | | -1.14 | 3.47E-03 | 3.96E-03 | | ENSMUSG00000054827 | Cyp2c50 | | -1.74 | 1.71E-09 | 7.60E-09 | | ENSMUSG00000056220 | Pla2g4a | ENSG00000116711 | 1.24 | 2.08E-03 | 2.54E-03 | | ENSMUSG00000063856 | Gpx1 | ENSG00000233276 | 1.48 | 4.96E-03 | 5.35E-03 | | ENSMUSG00000063929 | Cyp4a32 | ENSG00000186204 | -1.95 | 2.11E-19 | 2.56E-18 | | ENSMUSG00000066072 | Cyp4a10 | ENSG00000186204 | -2.10 | 3.56E-16 | 3.31E-15 | | ENSMUSG00000067225 | Cyp2c54 | | -4.10 | 8.56E-34 | 2.24E-32 | | ENSMUSG00000071072 | Ptges3 | ENSG00000110958 | -1.21 | 3.96E-04 | 5.99E-04 | | ENSMUSG00000074882 | Cyp2c68 | | 1.54 | 1.35E-05 | 3.00E-05 | | ENSMUSG00000078597 | Cyp4a12b | | -5.43 | 2.94E-17 | 3.02E-16 | | | | | | | | Supplementary Table S6: Gene lists of GO term arachidonic acid metabolism from transcriptomes of published mice liver. | Zebrafish ID | Fish
gene_name | Human gene stable
ID | Meas/Ctrl
or - | <i>p</i> -value | <i>p</i> -adj | |--------------------|-------------------|-------------------------|-----------------------|-----------------|---------------| | | | | Ctrl/Meas
(scaled) | | | | ENSDARG00000060094 | ptgis | ENSG00000124212 | -2.21 | 4.57E-02 | 4.37E-01 | | ENSDARG00000004539 | ptgs2a | ENSG00000073756 | -1.66 | 1.21E-03 |
5.49E-02 | | ENSDARG00000010276 | ptgs2b | ENSG00000073756 | -1.60 | 2.86E-03 | 9.78E-02 | |--------------------|----------|-----------------|-------|----------|----------| | ENSDARG00000027088 | ptgdsb.1 | | -1.52 | 7.38E-05 | 7.29E-03 | | ENSDARG00000021149 | cbr1l | | -1.48 | 8.79E-04 | 4.48E-02 | | ENSDARG00000069463 | alox12 | ENSG00000108839 | -1.27 | 4.13E-02 | 4.19E-01 | | ENSDARG00000089626 | ptges3b | ENSG00000110958 | -1.24 | 2.18E-02 | 3.07E-01 | | ENSDARG00000006029 | lta4h | ENSG00000111144 | 1.88 | 3.17E-04 | 2.16E-02 | | ENSDARG00000009153 | pla2g1b | | 2.15 | 4.19E-02 | 4.22E-01 | | ENSDARG00000042090 | si:ch73- | ENSG00000105499 | 2.81 | 3.51E-02 | 3.88E-01 | | | 55i23.1 | | | | | Supplementary Table S7: Gene lists of GO term arachidonic acid metabolism from transcriptomes of zebrafish larvae. | Human
homologs | Human
gene
name | Mice id | Mice
head
ratio | Mice head p-value | Mice
liver
ratio | Mice liver p-value | Fish ID | Fish
ratio | Fish <i>p</i> -
value | |-------------------|-----------------------|------------|-----------------------|-------------------|------------------------|--------------------|------------|---------------|--------------------------| | | name | | ratio | | ratio | | | | | | ENSG000 | PLA2G5 | ENSMUSG0 | 1.67 | 7.24E-05 | | | | | | | 00127472 | | 0000041193 | | | | | | | | | ENSG000 | PLA2G4A | ENSMUSG0 | 1.33 | 2.20E-02 | 1.24 | 2.08E-03 | | | | | 00116711 | | 0000056220 | | | | | | | | | ENSG000 | ALOX15B | ENSMUSG0 | -1.50 | 2.31E-02 | | | | | | | 00179593 | | 0000020891 | | | | | | | | | ENSG000 | ALOX5A | ENSMUSG0 | 1.74 | 1.81E-06 | 1.76 | 1.04E-02 | | | | | 00132965 | P | 0000060063 | | | | | | | | | ENSG000 | LTC4S | ENSMUSG0 | 2.45 | 1.74E-06 | | | | | | | 00213316 | | 0000020377 | | | | | | | | | ENSG000 | DPEP1 | ENSMUSG0 | 1.71 | 2.59E-07 | 1.59 | 5.63E-03 | | | | | 00015413 | | 0000019278 | | | | | | | | | ENSG000 | PTGDS | ENSMUSG0 | 1.25 | 6.88E-07 | | | | | | | 00107317 | | 0000015090 | | | | | | | | | ENSG000 | ACSL1 | ENSMUSG0 | 1.31 | 2.80E-06 | -1.34 | 2.65E-05 | | | | | 00151726 | | 0000018796 | | | | | | | | | ENSG000 | ANXA2 | ENSMUSG0 | 1.63 | 2.56E-13 | 10.01 | 3.36E-90 | | | | | 00182718 | | 0000032231 | | | | | | | | | ENSG000 | ANXA3 | ENSMUSG0 | 1.48 | 1.82E-06 | 1.82 | 3.72E-06 | | | | | 00138772 | | 0000029484 | | | | | | | | | ENSG000 | ANXA4 | ENSMUSG0 | 1.33 | 1.24E-04 | 1.40 | 1.80E-04 | | | | | 00196975 | | 0000029994 | | | | | | | | | ENSG000 | ANXA6 | ENSMUSG0 | 1.10 | 4.38E-02 | | | | | | | 00197043 | | 0000018340 | | | | | | | | | ENSG000 | ACSL3 | ENSMUSG0 | | | 1.42 | 4.74E-14 | ENSDARG0 | 2.23 | 2.61E-02 | | 00123983 | | 0000032883 | | | | | 0000032079 | | | | ENSG000 | PTGS2 | | | | | | ENSDARG0 | -1.66 | 1.21E-03 | | 00073756 | <u> </u> | | | <u> </u> | | | 0000004539 | | | | ENSG000 | PTGS2 | | | | | | ENSDARG0 | -1.60 | 2.86E-03 | | 00073756 | | | | | | | 0000010276 | | | | ENSG000 | PNPLA3 | | | | | | ENSDARG0 | 1.58 | 6.74E-05 | | 00100344 | | | | | | | 0000102020 | | | | ENSG000 | LTA4H | | | | | | ENSDARG0 | 1.88 | 3.17E-04 | | 00111144 | | | | | | | 0000006029 | | | ### Metabolomic and transcriptomic profiling of leptin mutants in mice and zebrafish | ENSG000 | ALOX12 | | | | | | ENSDARG0 | -1.27 | 4.13E-02 | |----------|---------|------------|-------|----------|-------|----------|------------|-------|----------| | 00108839 | | | | | | | 0000069463 | | | | ENSG000 | S100A10 | ENSMUSG0 | 1.44 | 8.09E-11 | 2.65 | 2.06E-12 | ENSDARG0 | -1.69 | 8.71E-05 | | 00197747 | | 0000041959 | | | | | 0000055589 | | | | ENSG000 | CYP2J2 | ENSMUSG0 | 1.16 | 3.04E-02 | | | ENSDARG0 | -5.70 | 2.52E-03 | | 00134716 | | 0000052914 | | | | | 0000098803 | | | | ENSG000 | ANXA1 | ENSMUSG0 | 1.67 | 6.86E-08 | | | ENSDARG0 | -3.40 | 4.54E-08 | | 00135046 | | 0000024659 | | | | | 0000100095 | | | | ENSG000 | ANXA1 | ENSMUSG0 | 1.67 | 6.86E-08 | 2.32 | 5.94E-08 | ENSDARG0 | -2.57 | 6.82E-03 | | 00135046 | | 0000024659 | | | | | 0000026726 | | | | ENSG000 | NFE2L2 | ENSMUSG0 | 1.15 | 1.72E-02 | 1.65 | 4.46E-06 | ENSDARG0 | -2.25 | 3.39E-02 | | 00116044 | | 0000015839 | | | | | 0000042824 | | | | ENSG000 | PTGIS | ENSMUSG0 | 1.43 | 3.72E-05 | | | ENSDARG0 | -2.21 | 4.57E-02 | | 00124212 | | 0000017969 | | | | | 0000060094 | | | | ENSG000 | ANXA5 | ENSMUSG0 | 1.24 | 5.46E-05 | 3.60 | 4.04E-54 | ENSDARG0 | -1.65 | 1.03E-02 | | 00164111 | | 0000027712 | | | | | 0000026406 | | | | ENSG000 | MAP2K6 | ENSMUSG0 | -1.29 | 4.66E-04 | -1.62 | 2.28E-04 | ENSDARG0 | -1.20 | 1.28E-02 | | 00108984 | | 0000020623 | | | | | 0000099184 | | | Supplementary Table S8: Gene signature sets of mice head, mice liver and zebrafish larvae in Figure 8.