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CHAPTER 6

Abstract

Adenoviral vectors emerged as important platforms for cancer immunotherapy. Vaccination 

with adenoviral vectors is promising in this respect, however, their specific mechanisms of 

action are not fully understood. Here, we assessed the development and maintenance of 

vaccine-induced tumor-specific CD8+ T cells elicited upon immunization with adenoviral 

vectors. Adenoviral vaccine vectors encoding the full-length E7 protein from human 

papilloma virus (HPV) or the immunodominant epitope from E7 were generated, and mice 

were immunized intravenously with different quantities (107, 108 or 109 infectious units). 

The magnitude, kinetics and tumor protection capacity of the induced vaccine-specific T cell 

responses were evaluated. The adenoviral vaccines elicited inflationary E7-specific memory 

CD8+ T cell responses in a dose-dependent manner. The magnitude of these vaccine-specific 

CD8+ T cells in the circulation related to the development of E7-specific CD8+ tissue-resident 

memory T (TRM) cells, which were maintained for months in multiple tissues after vaccination. 

The vaccine-specific CD8+ T cell responses conferred long-term protection against HPV-

induced carcinomas in the skin and liver, and this protection required the induction and 

accumulation of CD8+ TRM cells. Moreover, the formation of CD8+ TRM cells could be enhanced 

by temporal targeting CD80/CD86 costimulatory interactions via CTLA-4 blockade early after 

immunization. Together, these data show that adenoviral vector-induced CD8+ T cell inflation 

promotes protective TRM cell populations, and this can be enhanced by targeting CTLA-4.



565510-L-bw-vdGracht565510-L-bw-vdGracht565510-L-bw-vdGracht565510-L-bw-vdGracht
Processed on: 20-10-2021Processed on: 20-10-2021Processed on: 20-10-2021Processed on: 20-10-2021 PDF page: 171PDF page: 171PDF page: 171PDF page: 171

171

Adenoviral vaccines promote protective tissue-resident memory T cell populations against cancer

6

Introduction

After viral infection, naïve CD8+ T cells clonally expand and differentiate into effector cell 

populations, which turn into phenotypically diverse memory CD8+ T cell subsets that differ in 

their homing properties, cytokine polyfunctionality and cytolytic capacity (1). These memory 

T cell populations reside in the blood circulation, lymphoid organs but also in tissues, where 

they can become tissue-resident (2–5).

Defining the protective cellular subsets and the crucial molecular interactions that induce 

sufficient effective CD8+ T cell memory pools at the right location is decisive for the design 

of successful vaccines against malignant disease. Recombinant adenoviral vectors are widely 

studied to induce immunity against viral infections. Adenovirus-based vaccines have been 

developed against respiratory syncytial virus and hepatitis C virus and demonstrated effective 

immunogenicity (6,7). Adenoviral vectors are currently strong candidate vaccines against 

the recently emerged SARS-CoV-2 causing the pandemic COVID-19 (8–11). Adenoviruses 

are also frequently used as platforms for gene therapy, oncolytic therapy and vaccines in 

cancer treatment (12). Regarding the cancer vaccine platform, several adenoviral vectors 

are currently in clinical trials for (preventive) treatment against prostate cancer, pancreatic 

cancer and human papilloma virus (HPV)-associated cancer (12). The utilization of adenoviral 

vectors as vaccines relates to their genome that can be genetically engineered. Replication-

deficient adenoviral vectors are generated by deletion of early proteins (E1/E3) that are 

essential for viral replication. However, these vectors still allow considerable transgene 

expression. The absence of replication and the lack of integration of the vector genome, is 

linked to the safety of these vaccine vectors (13, 14). The tropism of the adenoviral vectors is 

broad, nonetheless on systemic administration the liver is a major site of infection (15–17).

Moreover, adenoviral vaccine vectors are able to induce and sustain substantial memory 

CD8+ T cell populations. In experimental settings, recombinant replication-deficient HuAd5 

vectors have been modified by a mini-gene strategy to express specific epitopes eliciting 

memory T cell inflation (18, 19) Memory inflation, a characteristic of cytomegalovirus (CMV) 

infection, is typified by the maintenance of large populations of virus-specific CD8+ T cells 

with an effector-memory-like phenotype (20, 21). The low-level intermittent persistence of 

antigen is critical for the induction of inflationary memory responses, and importantly, the 
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inflationary CD8+ T cells remain functional over time, which makes adenoviral vectors an 

ideal vaccine candidate (21). In contrast, chronic infections with high-level active replication 

elicit virus-specific exhausted CD8+ T cells (22). It became also apparent that both adenoviral 

vectors and CMV elicit circulating and tissue-resident memory T (TRM) cells that are enriched 

in certain tissues (23–26). Whether memory T cell inflation is related to the formation 

and maintenance of TRM cells on adenoviral-vector vaccination is not fully understood. 

Furthermore, which cellular subset is critical for protection against cancer progression is 

unknown.

Here, we aim to understand the connection between memory T cell inflation and the 

induction of tissue-residency of T cells in an adenoviral vaccine setting, and in addition assess 

the protective capacity of circulating and TRM cell pools against solid tumors. We show that 

mice immunized with adenoviral vectors expressing the E7 oncogene of HPV or only the 

E7 immunodominant epitope induce high frequencies of circulating inflationary E7-specific 

CD8+ T cells, and the magnitude of these cells related to their development into TRM cells. In 

particular, these vaccine-induced CD8+ TRM cells provided long-term protection against HPV-

positive tumors in the skin and liver, and enhancement of the TRM cell formation by temporal 

CTLA-4 blockade, improved suboptimal antitumor vaccination. Thus, the induction of CD8+ T 

cell tissue-residency by adenoviral vectors is linked to memory inflation, and this induction is 

essential for protection against solid tumors.
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Materials and methods

Mice

C57BL/6 mice were obtained from Charles River Laboratories (L’Arbresle, France) or Jackson 

Laboratory (Sacramento, California, USA). Cd70−/−(27) and Cd80/86−/− (28) and Ly5.1 (CD45.1) 

mice were bred in house. At the start of the experiments, mice were 6 to 8 week-old. Animals 

were housed in individually-ventilated cages under specific-pathogen free conditions at the 

animal facility at the Leiden University Medical Center (LUMC). All animal experiments were 

approved by the Animal Experiments Committee of LUMC and performed according to the 

recommendations and guidelines set by the LUMC and Dutch Experiments on Animals Act.

Adenoviral vaccine vectors

E1/E3-deleted replication-deficient adenoviral vectors (type 5) expressing full-length E7 (Ad-

E7) or the E7 epitope (Ad-R9F) transgenes under control of the human CMV promoter were 

produced at the Jenner Institute Viral Vector Core Facility (University of Oxford), as previously 

described (19). Expression cassettes were flanked by an initiator methionine, stop codon and 

a SV40 polyA tail. Peptide sequence full-length E7: MHGDTPTLHE YMLDLQPETT DLYCYEQLND 

SSEEEDEIDG PAGQAEPDRA HYNIVTFCCK CDSTLRLCVQ STHVDIRTLE DLLMGTLGIV CPICSQKP. 

Peptide sequence E7 epitope (R9F): RAHYNIVTF.

HEK293A T-Rex cells were transfected using linearized plasmid and the presence of the 

antigen gene was confirmed by PCR. The integrity of the antigenic DNA sequence and 

absence of contaminating adenovirus was confirmed by Flank-Flank PCR. The virus was titred 

to obtain infectious units (IU) per mL, and assayed by spectrophotometry to quantify the 

number of virus particles per mL. The P:I ratios of virus particles to infectivity were 25 (Ad-

E7) and 40 (Ad-R9F). The sterility of the virus was also confirmed by inoculation of TSB broth 

with 10 µL of purified virus and incubation for 3 days at 35°C. Adenoviral vectors were stored 

at −80°C and injected intravenously via the retro-orbital route at a dose of 107, 108 or 109 IU 

per mouse.

Isolation of TRM cells

Mice were perfused with 20 mL PBS containing 2 mM EDTA to remove circulating blood cells 

from the organs of interest. The liver, lungs and tumors were cut into small pieces using 
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surgical knives. The liver was resuspended in 3.5 mL IMDM containing 250 U/mL collagenase 

type 1-A (C2674, Sigma) and 20 µg/mL DNase I (D5025, Sigma). Lung tissue was incubated 

with 1 mL IMDM and 250 U/mL collagenase and 20 µg/mL DNase. For both liver and lungs, 

collagenase and DNase were incubated for 25 min at 37°C. Tumors were incubated for 15 

min at 37°C with IMDM-containing Liberase (#05401020001, Roche). Single cell suspensions 

were made using 70 µm cell strainers and subsequently lymphocytes were isolated using a 

Percoll gradient.

For intraepithelial lymphocyte (IEL) isolation, fat tissue and Peyer’s patches were removed 

from the small intestine after which it was cut into 1 cm pieces. After washing, the intestine 

was incubated with 20 mL IMDM containing 10% FCS, 5 mM EDTA and 1 mM DTT (D0632, 

Sigma) for 30 min at 37°C. Supernatant containing the IEL fraction was isolated by filtering 

over a 70 µm cell strainer and lymphocyte fractions were isolated using a Percoll gradient. 

For skin T cell isolation, first remaining hair was removed using Veet hair removal cream after 

which 1 cm by 1.5 cm skin tissue (located at the subcutaneous tumor site) was dissected. Skin 

tissue was incubated in 1.5 mL of 2.5 mg/mL Dispase II (D4693, Sigma) at 37°C for 1.5 hours. 

The skin tissue was cut into small pieces using surgical knives after which it was incubated in 

1.5 mL 3 mg/mL collagenase type IV (C5138 Sigma) and 5 µg/mL DNAse I (D5025, Sigma) for 

30 min at 37°C. Single cell suspensions were made using 70 µm cell strainers.

Tumor challenge models

The TC-1 tumor cell line (a kind gift from T.C. Wu, John Hopkins University, Baltimore, MD) 

was developed by retroviral transduction of C57BL/6 lung epithelial cells with the HPV16 

E6/E7 and c-H-ras oncogenes (29). The tumor cell line C3 was generated by transfection of 

mouse embryonic cells with the HPV16 genome and an activated-ras oncogene (30). Mice 

were inoculated subcutaneously in the flank with 1×105 TC-1 tumor cells or 5×105 C3 tumor 

cells. Tumor size (mm3) was measured two times a week using a caliper and calculated as 

(L×W× H)×0.52 (L: for length, W: width, H: height). Mice were euthanized when tumor size 

reached 500–1000 mm3 in volume. Mycoplasma tests were frequently performed by PCR 

and were negative for all cell lines. Cell lines were authenticated with a microsatellite PCR.

Luciferase-expressing TC-1 tumor cells were generated by transducing the TC-1 cells with 

a lentiviral vector expressing IRIS-GFP and the luciferase gene luc2. Before performing 
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surgery, mice received 0.1 mg/kg buprenorphine (Temgesic) subcutaneously as analgesia 

and isoflurane for anesthesia. After opening the peritoneum, the tip of the spleen was 

lifted to inject 1×105 TC-1-luc2 tumor cells in the spleen. To visualize tumor outgrowth 

by bioluminescence imaging, mice were injected intraperitoneally (IP) with 100 mg/kg 

D-luciferin (Synchem, Germany) and imaged after 10 min with the IVIS Spectrum Imager. 

Bioluminescence signals were measured twice a week starting from day 2 after tumor 

challenge.

In vivo cytotoxicity assay

The cytotoxicity of CD8+ T cells was assessed by transferring target cells (splenocytes from 

Ly5.1 (CD45.1) mice) that were prior differentially labeled with CFSE and peptide. Target cells 

were either CFSE high labeled (5 µM) and then loaded with specific peptide (RAHYNIVTF) 

or were CFSE low labeled (0.5 µM), and then loaded with a-specific peptide. Subsequently, 

the two target cell populations were mixed in a 1:1 ratio and injected intravenously into 

recipient mice. Recipient mice (wild-type C57BL/6 mice, Cd80/86-/- mice or mice containing 

CD70 blocking antibodies (clone FR70)) were either naïve or were previously vaccinated with 

109 IU Ad-R9F for 50 days at the time of transfer. At 16 hours after transfer, the target cell 

killing in the spleens of recipient mice was determined by flow cytometry.

Adoptive T cell transfers

Spleens from Ly5.1 (CD45.1) mice were isolated and subsequently CD8+ effector-memory T 

(TEM, CD44+CD62L-CD69-)) and central-memory T (TCM, CD44+CD62L+CD69-)) cells were purified 

on a BD FACSAria cell sorter (BD Bioscience). TEM and TCM cells were adoptively transferred via 

retro-orbital injection into naïve Ly5.2 mice, TC-1 tumor-bearing mice or into mice previously 

vaccinated with 108 IU Ad-R9F.

In vivo antibody and FTY720 treatment

CD8+ T cell depleting monoclonal antibodies (clone 2.43) were administered twice per week, 

starting 4 days before tumor challenge, at 150 µg per mouse by IP injection. For low-dose 

anti-CD8 treatment, CD8+ T cell depleting monoclonal antibodies (clone 2.43, Bio X Cell, West 

Lebanon, New Hampshire, USA) were administered twice per week, starting 4 days before 

tumor challenge, at 20 µg per mouse by IP injection. To assess CD8+ T cell infiltration, the 

CD8+ T cells in the circulation were labeled by injecting mice retro-orbitally with 3 µg CD8a 
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APC (clone 53.6-7, BioLegend). After 3 min mice were sacrificed and subsequently tumor, 

spleen and liver were analyzed.

CTLA-4 (clone 9H10) monoclonal antibodies (Bio X Cell) were administered IP twice per week 

for 2 weeks starting at the day of infection at 200 µg per mouse. CXCR3 (clone CXCR3-173, 

Bio X Cell) monoclonal antibodies were administered IP twice per week starting 4 days before 

tumor inoculation at 200 µg per mouse. CD80 (clone RM80) and CD86 (clone P03.1) blocking 

antibodies (31) were administered IP two times per week at 300 µg per mouse for 2 weeks 

starting the day of infection. CD70 (clone FR70) blocking antibody (32) was administered IP 

twice a week at 150 µg per mouse starting at the beginning of the experiment and continued 

for 3 weeks.

FTY720 (SML0700, SIGMA) was dissolved in 0,9% NaCl and administered IP twice per week at 

50 µg starting 1 week before tumor challenge.

Flow cytometry

Fluorescently labeled monoclonal antibodies against the following mouse antigens were 

used: CD3 (clone 145–2 C11, BD Biosciences), CD4 (clone RM4-5, BioLegend), CD8a (clone 

53–6.7, BioLegend), CD8b (clone YTS156.7.7, BioLegend), CD11a (clone M17/4, eBioscience), 

CD127 (clone A7R34, Thermo Fisher), KLRG-1 (clone 2F1, Thermo Fisher), CD44 (clone IM7, 

BioLegend), CD49a (clone Ha31/8, BD Biosciences), CD62L (clone MEL-14, BioLegend), 

CD69 (clone H1.2F3, BD Biosciences), CD38 (clone 90, Thermo Fisher) and CD103 (clone 

2E7, Thermo Fisher). Cells were stained according to our previously published protocol (33). 

7-AAD (A1310, Invitrogen) staining was used to exclude dead cells. E7-specific CD8+ T cells 

were quantified using MHC class I tetramers for the RAHYNIVTF epitope. Flow cytometric 

acquisition was performed on a BD Fortessa flow cytometer (BD Biosciences).

Statistics

Statistical analyzes were performed using GraphPad Prism (La Jolla, CA, Unites States). The 

One-way analysis of variance or Student’s t-test was used for statistical analysis of unpaired 

data following a Gaussian (normal) distribution test. Difference in survival was tested with the 

log-rank (Mantel-Cox) survival test. All P values were two sided, and P<0.05 was considered 

statistically significant.
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Results

Adenoviral vector vaccines induce CD8+ T cell memory inflation and associated quantities 

of TRM cells

Mice were immunized with different dosages of adenoviral vectors encoding full-length 

HPV E7 protein (Ad-E7) or the immunodominant epitope RAHYNIVTF from E7 (Ad-R9F). 

Vaccination with 108 and 109 IU of Ad-E7 or Ad-R9F elicited high frequencies of circulating 

E7-specific CD8+ T cell populations in the blood, that is, 4%–12% of the total CD8+ T cell 

population, which were maintained for months (Figure 1A). In contrast, immunization with 

107 IU elicited E7-specific responses <2%. The higher vaccination dose correlated with an 

enhancement of circulating E7-specific CD8+ T cells with an effector-memory phenotype (ie, 

CD44+CD62L-CD127-KLRG1+) (Figure 1B and S1A).

Next, we interrogated the impact of adenoviral vaccination on the development of E7-specific 

CD8+ T cells in multiple organs. E7-specific CD8+ T cells with a TRM-like phenotype (ie, CD69+ or 

CD69+CD103+) were present in liver, lungs, intestine and skin (Figure 1C and S1B). Especially, 

in the liver large quantities of E7-specific CD69+ CD8+ T cells were induced, which were stably 

maintained for more than 200 days after vaccination (Figure 1D). The E7-specific CD69+ CD8+ 

T cells in the liver also express other markers associated with CD8+ T cell tissue-residency 

such as CD38, CD11a and CD49a (Figure 1E) (34–36). The adenovirus-vectored vaccines 

also elicited circulating effector-memory cells (CD44+CD62L-KLRG1+CD69-) in these organs. 

Remarkably, TRM cells increased particularly in the liver compared with the non-resident CD8+ 

T cells on high dose (109 IU) vaccination. The increase in the total E7-specific CD8+ T cell 

population was mainly due to the rise in E7-specific CD8+ TRM cell numbers (Figure 1F). In the 

lungs, mainly non-resident CD69- E7-specific CD8+ T cells are increased in numbers after high 

dose vaccination (Figure 1G). Thus, high-dosed adenoviral vaccination elicits memory T cell 

inflation and specifically enhanced TRM cell formation in liver.
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Figure 1. Adenoviral vaccine vectors induce memory CD8+ T cell inflation and TRM cells. Mice were vaccinated 
IV with increasing dosages (107, 108 or 109 IU) of Ad-E7 or Ad-R9F vaccine vectors. E7-specific CD8+ T cells were 
longitudinally monitored with MHC class I tetramers. (A) Kinetics of E7-specific CD8+ T cells in blood. (B) Phenotype 
of E7-specific CD8+ T cells in blood at day 50 after vaccination. (C) E7-specific CD8+ TRM cells in liver, lung and IEL 
and CD8+ TRM cells in skin 200 days after 109 IU Ad-R9F vaccination. (D) Percentage of E7-specific CD8+ TRM cells in 
liver at day 50 and day 200 after 109 IU Ad-E7 or Ad-R9F vaccination. (E) Phenotype of E7-specific CD8+ TRM in liver 
at day 50 after Ad-R9F vaccination. (F, G) Percentage and absolute numbers of E7-specific CD8+ T cells and TRM 
cells after indicated doses of Ad-E7 or Ad-R9F in liver (F) and lung (G) 200 days after vaccination. Data shown are 
pooled from 2 to 3 independent experiments (n=3-5 per group). Data are expressed as mean±SEM. One-way ANOVA 
(three groups) or Student t-test (two groups) was used for statistical analysis. *P<0.05, **P<0.01. ANOVA, analysis of 
variance; IEL, intraepithelial lymphocyte; IU, infectious units; TRM, tissue-resident memory T.
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Rapid conversion of circulating vaccine-elicited CD8+ T cells into tissue-resident cells

To assess whether the inflationary CD8+ T cells induced by adenoviral vectors have the 

capacity to migrate to the liver and differentiate into TRM cells, we performed adoptive 

transfers of the circulating CD8+ effector-memory (TEM; CD44+CD62L-CD69-) or central-

memory (TCM; CD44+CD62L+CD69-) T cells (Figure S2A) from Ad-R9F vaccinated mice into 

naïve recipient mice or into recipient mice that where prior challenged with TC-1 tumor cells 

or prior vaccinated with Ad-R9F. When transferred into naïve mice, the TEM and TCM subsets 

largely retain their phenotype in the liver after 14 days of transfer (Figure 2A). However, in 

mice-bearing E7-expressing TC-1 tumors a substantial fraction of the transferred TEM cells 

differentiated within 10 days into liver CD69+ TRM cells (Figure 2B and S2B). This conversion 

was also evident in mice previously vaccinated with the same adenoviral vector (Figure 2C 

and S2C). A portion of the E7-specific CD8+ TCM cells converted also converted into TRM cells, 

although this conversion was to a lower extent as compared with their effector-memory 

counterparts. Thus, adenoviral vaccine-induced E7-specific CD8+ T cells that circulate in the 

body can convert rapidly into cells with a TRM phenotype in an antigen-dependent manner.
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Figure 2. Circulating adenoviral vaccine-elicited CD8+ T cells convert rapidly into TRM cells. (A) Effector-memory 
(TEM; CD44+CD62L-CD69-) or central-memory (TCM; CD44+CD62L+CD69-) CD8+ T cells were isolated from infected Ly5.1 
(CD45.1+) mice and adoptively transferred into naïve recipient mice, the distribution and phenotype of donor cells 
was analyzed 14 days later. Bar graphs show the frequency of CD69-CD62L- TEM, CD69-CD62L+ TCM and CD69+CD62L- 
TRM cells within the donor CD45.1+ CD8+ T cell population in the liver. (B) Ly5.1 mice were vaccinated with 108 IU 
Ad-R9F. At day 50 day, the TEM or TCM CD8+ T cells were isolated and adoptively transferred into recipient mice, which 
were 10 days before transfer challenged with TC-1 tumor cells (subcutaneously in the flank). Bar graphs show the 
frequency of CD69-CD62L-, CD69-CD62L+ and CD69+CD62L- cells within the donor CD45.1+ CD8+ T cell population in 
the liver. (C) Ly5.1 (CD45.1+) mice were vaccinated intravenously with 108 IU Ad-R9F. At day 50 day, the TEM or TCM CD8+ 
T cells were isolated and adoptively transferred into recipient mice, which were vaccinated intravenously with 108 IU 
Ad-R9F 23 days before transfer. Bar graphs show the frequency of CD69-CD62L-, CD69-CD62L+ and CD69+CD62L- cells 
within the donor CD45.1+ CD8+ T cell population in the liver. Data shown are from two independent experiments 
(n=6 per group). Data are expressed as mean±SEM. IU, infectious units.
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Adenoviral vector vaccination provides long-term CD8+ T cell dependent tumor protection

To investigate the potential of Ad-E7 and Ad-R9F vaccine vectors to provide tumor protection, 

mice received a subcutaneous TC-1 tumor challenge 50 days after vaccination. The strength 

of the vaccine-induced CD8+ T cell responses correlated with long-term protection against 

subcutaneously transplanted TC-1 tumors (Figure 3A, B). To confirm the importance of the 

vaccine-induced CD8+ T cells in tumor protection, these cells were specifically depleted by 

anti-CD8 antibodies. On CD8+ T cell depletion, none of the vaccinated mice were protected 

(Figure 3A, B). Subsequently, we validated in a second model the tumor protection efficacy 

of adenoviral vaccines. For this, we used the HPV16-transformed C3 tumor model. In this 

model, Ad-R9F vaccination resulted in substantial protection against C3 tumors in a dose-

dependent manner, and this protection also required CD8+ T cells (Figure 3C, D). Thus, 

adenoviral vaccines elicit E7-specific CD8+ T cells that protect against subcutaneous tumors.
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Figure 3. CD8+ T cells are essential for adenoviral vector-mediated protection against subcutaneous tumors. 
Mice were vaccinated intravenously with increasing dosages (107, 108 or 109 IU) of Ad-E7 or Ad-R9F vaccine vectors. 
Tumor outgrowth (A) and survival (B) of mice challenged with TC-1 tumor cells (subcutaneously in the flank) at day 
160 after vaccination. CD8 depleting antibodies (150 µg IP) were administered twice per week starting 4 days before 
tumor challenge. (C, D) Tumor outgrowth (C) and survival (D) of mice challenged with C3 tumor cells (subcutaneously 
in the flank) at day 50 after vaccination with 107 or 109 IU Ad-R9F. CD8 depleting antibodies (150 µg IP) were injected 
4 days before tumor challenge. Data shown are from two pooled experiments (n=3–8 per group). Log-rank (Mantel-
Cox) survival test was performed. *P<0.05, **P<0.01. IU, infectious units.
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The induction of TRM cells by adenoviral vectors is important for tumor protection

To study the importance of circulating and tissue-resident CD8+ T cells elicited by adenoviral 

vaccines for tumor protection, we trapped the circulating cells in the lymph nodes by the 

sphingosine 1-phosphate receptor modulator FTY720 (37) or depleted either the circulating 

CD8+ T cells by low dose anti-CD8 antibody treatment or tissue-resident CD8+ T cells by CXCR3 

antibodies (Figure 4A, B). Compared with untreated vaccinated mice, FTY720 treatment 

resulted in a substantial reduction in tumor protection. Moreover, on low-dose anti-CD8 

antibody treatment, none of the vaccinated mice were protected against tumor outgrowth 

(Figure 4C, D). Both FTY720 treatment and low dose anti-CD8 affected the total amount of 

CD8+ T cells in the circulation (Figure 4A), and also those present in the tumor (Figure S3). 

Nevertheless, the few CD8+ T cells that were present in the tumor still converted into TRM cells, 

indicating that TRM formation is not blocked but severely limited and is likely due to limited 

infiltration from the circulation (Figure S3). Thus, diminishing the number of circulating CD8+ 

T cells prevent robust accumulation of TRM cells in the tumor, indicating that the circulating 

CD8+ T cells are an important source for sufficient formation of tumor-resident CD8+ T cells.

To directly study the role of TRM cells in tumor control, we tested whether CXCR3 antibodies, 

known to specifically deplete TRM cells in the liver (38), also deplete TRM cells in subcutaneous 

tumors. Treatment with CXCR3 antibodies resulted in a nearly complete depletion of liver 

TRM cells and also of TRM cells in the tumor (Figure 4B), whereas CD8+ T cells in the circulation 

were not depleted (Figure 4A). CXCR3 treatment did however not affect skin TRM (Figure S4), 

which corroborates the notion that circulation CD8+ T cells are vital for the formation of TRM 

cells in the tumor. To examine possible effects of CXCR3 antibody treatment on the migration 

of CD8+ T cells, we labeled the circulating CD8+ T cells by injecting APC-labeled CD8 antibodies 

3 min before sacrifice. CXCR3 treatment did not alter the migration properties of CD8+ T cells 

in the tumor, spleen or liver (Figure S5). Taken together, CXCR3 antibody treatment does 

not affect T cell migration into tissues or the number of skin TRM cells but results in specific 

depletion of TRM cells in the tumor. Importantly, on the specific TRM cell depletion in the tumor 

by CXCR3 antibodies, Ad-R9F vaccination did not show any efficacy and all mice succumbed 

on tumor challenge (Figure 4C, D).
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Figure 4. TRM cells are important for adenovirus-mediated tumor protection. (A) Percentage of CD8+ T cells of 
total blood lymphocytes in untreated (Ctrl) mice or in mice treated for 2 weeks with FTY720, low-dose anti-CD8 
mAb or CXCR3 antibodies. FTY720 (50 µg IP), CD8 depleting antibody (20 µg IP), and CXCR3 antibody (200 µg IP) 
was administered twice per week. (B) Expression of CD69 and CD38 on E7-specific CD8+ T cells in liver and tumor of 
109 IU Ad-R9F intravenously vaccinated mice that were challenged with TC-1 tumor cells at day 50 post-vaccination 
and treated twice per week (starting 4 days before tumor challenge) with a depleting CXCR3 antibody (200 µg 
IP). Analysis was performed at day 20 post-tumor challenge. (C, D) Tumor outgrowth (C) and survival (D) of mice 
challenged with TC-1 tumor cells (subcutaneously in the flank) at day 50 after intravenous vaccination with 109 IU 
Ad-R9F. FTY720 (50 µg IP), low-dose CD8 depleting antibody (20 µg IP) or CXCR3 depleting antibody (200 µg IP) 
was administered twice per week starting 4 days before tumor challenge. Data are pooled from 2 independent 
experiments (n=6–9 per group). (E) Mice were vaccinated intravenously with 109 IU Ad-R9F and 44 days post-
vaccination received luciferase-containing TC-1 (TC-1-luc2) tumor cells in the spleen, which metastasize to the liver. 
Shown are bioluminescence signals of unvaccinated and 109 IU Ad-R9F vaccinated mice at day 7 after TC-1-luc2 
splenic tumor challenge. (F) Image and bioluminescence signal of a representative liver from unvaccinated mouse 
at day 12 after TC-1-luc2 splenic tumor challenge. Bioluminescence signals were absent in all livers of vaccinated 
mice. (G) CXCR3 depleting antibody (200 µg IP) was administered twice per week starting 4 days before splenic 
tumor challenge. Bioluminescence flux at liver side at indicated time points after tumor challenge is shown (n=10 
per group). Data are expressed as mean±SEM. One-way ANOVA was used for statistical analysis. Log-rank (Mantel-
Cox) survival test is performed for survival data. *P<0.05, **P<0.01. ANOVA. analysis of variance; IU, infectious units.

 

To corroborate the importance of TRM cells for tumor protection, we setup a model to assess the 

efficacy of the E7-specific CD8+ T cell-eliciting adenoviral vectors against tumor development 

in the liver. Previous studies showed that on intrasplenic injection of tumor cells, the tumor 

cells are initially trapped in the liver vasculature followed by invasion of the surrounding 

tissue (39, 40). By performing this procedure with luciferase-expressing TC-1 tumor cells, we 

were able to track the metastatic tumor development in the liver by in vivo bioluminescence 

(Figure 4E, F). In contrast to unvaccinated mice, 109 IU Ad-R9F vaccinated mice, with intact 

numbers of TRM cells, were protected against liver tumor outgrowth. Strikingly, TRM depletion 
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in vaccinated mice resulted in considerable outgrowth of the tumor cells (Figure 4G). Thus, 

TRM cells mediate critical immunity against tumors growing in the skin and liver.

Costimulatory requirements for inflationary E7-specific CD8+ T cell responses and TRM cell 

formation

Costimulatory molecules regulate T cell activation and differentiation, and can serve 

as therapeutic targets for modulating T cell responses. At day 3 after adenoviral vector 

vaccination, the costimulatory molecules CD80 and CD86 were upregulated on CD11b+CD11c+ 

cells in the liver (Figure 5A). To directly dissect the role of CD80/CD86-mediated costimulation 

in the induction of memory inflation and the formation of TRM cells after adenovirus-vector 

vaccination, we evaluated mice deficient in these costimulatory molecules and in addition 

abrogated CD80/CD86 interactions at different time points post 109 IU Ad-R9F vaccination 

using blocking antibodies. Cd80/86-/- mice were not able to generate inflationary E7-specific 

CD8+ T cell responses in the blood after Ad-R9F vaccination (Figure 5B). Consistently, in 

adenovirus-vector vaccinated wild-type mice, but not in vaccinated Cd80/86-/- mice, a 

functional cytolytic E7-specific CD8+ T cell response was generated that killed E7+ target 

cells in vivo (Figure 5C, D). Blockade of CD80/CD86-mediated costimulation at different 

time points after adenovirus-vector vaccination indicated that predominantly the initial 

CD80/CD86 interactions are required for the initiation of inflationary E7-specific CD8+ T cell 

responses in the blood (Figure 5B). The deprived E7-specific CD8+ T cell response in mice 

with deficient CD80/CD86-mediated costimulation, related to a complete lack of E7-specific 

CD8+ TRM cell formation in liver and lungs of these mice (Figure 5E). In contrast to CD80/CD86, 

CD70 was not upregulated on vaccination and consistently the abrogation of CD70 did not 

affect the generation or cytolytic function of E7-specific CD8+ T cells in the circulation or in 

the tissues (Figure 5A–E). Thus, in particular CD80/CD86-mediated costimulation is essential 

for the inflationary E7-specific CD8+ T cell response and development of TRM cell formation 

on adenoviral vaccination.
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Figure 5. CD80/86-mediated costimulation is required for the development of inflationary E7-specific CD8+ T 
cell responses and TRM cell formation. (A) Expression levels of CD80, CD86 and CD70 on CD11b+CD11c+ cells in 
the liver 3 days post-intravenous vaccination with 109 IU Ad-R9F. One-way ANOVA was used for statistical analysis. 
*P<0.05. Experiments were performed twice with similar outcome. (B) Kinetics of E7-specific CD8+ T cells after 109 
IU Ad-R9F intravenous vaccination. CD80/86 or CD70 blocking antibodies were administered during indicated time 
periods. (C) In vivo cytotoxicity assay. Target ratio of specific (CFSE high) and non-specific (CFSE low) peptide-loaded 
CD45.1+ splenocytes 1 day after adoptive transfer in C57BL/6 mice 50 days after 109 IU Ad-R9F vaccination. (D) In 
vivo cytotoxicity assay. Percentage of specific killing of target CD45.1+ cells. (E) E7-specific CD8+ TRM cell numbers in 
the liver and lung at day 50 post 109 IU Ad-R9F intravenous vaccination. Data are expressed as mean±SEM. ANOVA, 
analysis of variance; IU, infectious units.

Enhancement of TRM cell formation by CTLA-4 blockade leads to delayed tumor outgrowth

Next, we evaluated whether enhancing CD80/86-mediated costimulation by blocking the 

inhibitory receptor CTLA-4, which competes with CD28 for CD80/86, could positively impact 

the formation of adenoviral vaccine-elicited CD8+ TRM cells, and hence the protection against 

subcutaneous tumors. To create a therapeutic window, mice were vaccinated with 107 IU Ad-

R9F and subsequently treated with CTLA-4 blocking antibodies during the first 2 weeks after 

vaccination. Blockade of CTLA-4 delayed tumor outgrowth as compared with control treated 

vaccinated mice, and this delay of tumor outgrowth was dependent on TRM cells (Figure 6A, 

B). Although CTLA-4 blockade resulted in similar frequencies of circulating E7-specific CD8+ 

T cells, a large portion of these cells displayed an effector-memory phenotype (Figure 6C). 
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Moreover, the formation of CD8+ TRM cells in the liver was enhanced by CTLA-4 blockade 

(Figure 6D). Thus, temporal improving CD80/CD86-mediated costimulation increases CD8+ 

TRM cell formation leading to delayed tumor outgrowth.
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Figure 6. Enhancement of TRM cell formation by CTLA-4 targeting leads to delayed tumor outgrowth. (A) Tumor 
outgrowth of mice challenged with TC-1 tumor cells (subcutaneously in the flank) at day 50 after 107 IU Ad-R9F 
intravenous vaccination. CTLA-4 monoclonal antibody (200 µg IP) was administered twice per week for two weeks 
starting the day of vaccination. CXCR3 depleting antibody (200 µg IP) and control IgG antibody (200 µg IP) were 
administered twice per week starting 4 days before tumor challenge. (B) Mean tumor size of mice intravenous 
vaccinated with 107 IU Ad-R9F, and treated with CTLA-4, CXCR3 or control IgG antibody IP. (C) Percentage and 
phenotype of CD8+ T cells in blood 21 days after intravenous vaccination with 107 IU Ad-R9F and treatment with 
blocking CTLA-4 antibody (200 µg IP). (D) Percentage of E7-specific CD8+ T cells and E7-specific CD8+ TRM cells in 
the liver at day 50 post vaccination and treatment with blocking CTLA-4 antibody (200 µg IP). CTLA-4 blockade 
was provided for two weeks post vaccination. Data shown are pooled from 2 independent experiments (n=3-6 per 
group). One-way ANOVA or Student�s t-test was used for statistical analysis. Data are expressed as mean±SEM. 
*P<0.05, **P<0.01. ANOVA, analysis of variance; IP, intraperitoneally; IU, infectious units; ns, not significant.

Discussion

Here, we show that adenoviral vaccine vectors expressing E7 antigens from HPV induce 

E7-specific memory inflation and associated formation of TRM cells. In particular, TRM cell 

development was instrumental in providing protection against subcutaneous tumors and 

metastasized tumors in the liver. To this end, it was unknown which cellular subsets induced 

on adenoviral vaccination are implicated in protection. The induction of memory inflation 

and ensuing TRM development depended on early CD80/CD86-mediated costimulatory 

interactions, and enhancing this costimulatory communication by blocking the interaction 

of CD80/CD86 with the inhibitory receptor CTLA-4, improved TRM cell formation leading to 

increased protection.



565510-L-bw-vdGracht565510-L-bw-vdGracht565510-L-bw-vdGracht565510-L-bw-vdGracht
Processed on: 20-10-2021Processed on: 20-10-2021Processed on: 20-10-2021Processed on: 20-10-2021 PDF page: 187PDF page: 187PDF page: 187PDF page: 187

187

Adenoviral vaccines promote protective tissue-resident memory T cell populations against cancer

6

We used replication-deficient adenoviral vaccine vectors (18, 19), modified to elicit CD8+ T cell 

responses against the E7 oncogene of HPV as a traceable model to study the development 

of tumor-specific memory T cell populations and their connection to protection. Large 

populations of circulating E7-specific memory CD8+ T cells with an effector-memory-like 

phenotype were maintained on high-dose vaccination. This resembles CMV infection, where 

the viral inoculum dose determines the degree of memory T cell inflation (21, 41). In contrast 

to CMV, adenoviral-vectors do not replicate, however, antigen likely persists at low levels. 

Bolinger et al showed that even without replication of the adenoviral vaccines, low-level 

antigen is expressed at late time points after vaccination. This persistence of antigen after 

vaccination was tested by adoptive transfer of CFSE-labeled TCR transgenic CD8+ T cells into 

previously vaccinated recipients (18). Even 100 days after vaccination, adoptively transferred 

T cells became activated and proliferated. Although the induction pathway of inflationary 

adenoviral induced T cells is distinct from inflationary CMV-specific T cells, the sustained 

memory inflation induced by adenoviral vectors and CMV is closely related, in both mouse 

and human (42, 43). Strikingly, we found that the induction and magnitude of inflationary 

CD8+ T cells is linked to an increase in TRM cells.

For various infections, the route of infection is crucial for the magnitude and location of 

TRM cell formation (reviewed in 44). Consistent with the liver being the site of infection on 

systemic administration of the adenoviral vaccine (15–17), we found that E7-specific CD8+ 

TRM cells were stably maintained in the liver for months after adenoviral vaccination. The 

antigen persistence in the liver on adenoviral vector immunization may explain both the 

phenomenon of memory T cell inflation as well as the maintenance of liver TRM cells, since 

TRM cell formation is linked to memory inflation and the TRM cells can be enhanced by both 

local antigen presentation and inflammation (45–49).

Previously, Ad35-based vectors eliciting E7-specific T cell responses showed protection 

against subcutaneous tumor protection but the mode of action remained unclear (50, 51). 

Here, we found for the first time a crucial role for TRM cells for the adenovirus-mediated tumor 

protection in both liver and skin. CMV-based vaccines can also mediate tumor protection and 

this correlates to circulating inflationary CD8+ T cells (52), but whether TRM cells are implicated 

for protection is unknown. Circulating T cells are also important, and our results indicate that 

these cells are a crucial source for the formation of tumor-resident CD8+ T cells. Recombinant 



565510-L-bw-vdGracht565510-L-bw-vdGracht565510-L-bw-vdGracht565510-L-bw-vdGracht
Processed on: 20-10-2021Processed on: 20-10-2021Processed on: 20-10-2021Processed on: 20-10-2021 PDF page: 188PDF page: 188PDF page: 188PDF page: 188

188

CHAPTER 6

vaccinia viruses also mediate tumor protection that rely on both circulating and TRM cells, and 

collaboration between these subsets leads to optimal antitumor immunity (53).

The characteristics of effector and memory antigen-specific CD8+ T cell responses are 

shaped by pathogen-specific differential utilization of costimulatory pathways (54). Herein, 

we demonstrate that the initial expansion of adenovirus-vectored vaccine-specific CD8+ T 

cells depends completely on CD80/CD86 costimulatory interactions, which is dissimilar to 

the induction of memory inflation on MCMV infection (33). In addition, CD70-mediated 

costimulation is redundant for adenoviral induced T cell responses whereas this type of 

costimulation is important for the development of mouse CMV-specific T cell immunity (55). 

CTLA-4 generates inhibitory signals that counteract the costimulation provided via CD28 by 

competing directly with CD28 for its ligands CD80/CD86 (56, 57), but CTLA-4 can also actively 

remove its ligands CD80/CD86 by internalizing them for degradation (58). Blocking CTLA-4 

is thought to promote especially the priming of CD8+ T cells (59, 60). In line with an early 

impact of CD80/CD86 costimulatory interactions, we here show that initial targeting of CTLA-

4 after immunization increases CD8+ TRM cells and therefore also protective immunity. It is of 

interest to further explore whether directly targeting CD28 or targeting other costimulatory 

receptors could also lead to enhanced TRM cell formation.

To conclude, here we show that CD8+ TRM cells are an important protective cellular subset 

induced by adenoviral vectors. Moreover, the formation of TRM cells is linked to the magnitude 

of memory inflation in the circulation, and this process can be enhanced by targeting CD28-

mediated costimulation. Thereby, this study provides new insights for future development of 

adenoviral vaccine strategies with an emphasis on the induction of TRM cells.
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Figure S1. A) Gating strategy and phenotype of E7-specific CD8+ T cells in blood. Representative data shown from 
mice vaccinated with 109 IU Ad-R9F. B) Gating strategy of E7-specific CD8+ TRM cells in the liver. Representative data 
shown from mice vaccinated with 109 IU Ad-R9F. 
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Figure S2. A) Phenotype of adoptively transferred CD8+ T cells. Expression of CD44 and CD62L on sorted effector and 
central-memory T cell subsets from Ly5.1 mice before adoptive transfer to recipient mice. B, C) Absolute number of 
CD45.1+CD8+CD69+ T cells and CD45.1+CD8+CD69+ T cells in liver per 50.000 transferred TEM or TCM cells. Transferred 
cells were isolated from Ad-R9F vaccinated mice and injected into TC-1 tumor bearing mice (B) or mice that were 
previously vaccinated with 108 IU Ad-R9F (C). 
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Figure S3. Phenotype of CD8+ T cells isolated from tumors at day 20 after TC-1 tumor challenge. Mice were 
challenged with TC-1 tumor cells (subcutaneously in the flank) at day 50 after IV vaccination with 109 IU Ad-R9F. 
Low dose CD8 depleting antibody (20 µg IP) or FTY720 (50 µg IP) was administered twice per week starting 4 days 
before tumor challenge.
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