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3
SPIN-WAVE THEORY

Spin waves are collective excitations of spins in magnetic materials. In this chapter we
derive expressions that are useful and recurrent in Chapters 4-6. We start by calculating
the dipolar field of a planar magnetization (Section 3.1), which we need in the follow-
ing sections. Starting from the Landau-Lifshits-Gilbert (LLG) equation, in Section 3.2 we
derive the spin-wave susceptibility, and from that the spin-wave dispersion. We then ex-
amine which spin-wave modes are efficiently excited inductively (Section 3.3), calculate
the stray fields that spin waves generate (Section 3.4) and finally show how these fields can
be detected using NV magnetometry (Section 3.5) via measuring Rabi oscillations and T1

relaxometry. Importantly, from the last three sections stem equations regarding the cou-
pling of the stray field of a microstrip with the spin waves, and of the spin-wave stray field
with NV centers.
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3.1. STRAY FIELD OF A PLANAR MAGNETIZATION
In this section we calculate the dipolar stray field generated by a planar magnetization.
This result is needed in Sections 3.2 and 3.4, where we derive the spin-wave dispersion
and the stray field of a spin wave, respectively.

The magnetic field of a single magnetic dipole m, located at the origin, is given by

B(r) =µ0ΓΓΓ(r)m, (3.1)

whereΓΓΓ(r) is the dipolar tensor, given by

ΓΓΓ(r) = 1

4π|r|5

 2x2 − y2 − z2 3x y 3xz
3x y 2y2 −x2 − z2 3y z
3xz 3y z 2z2 −x2 − y2

 . (3.2)

For a magnetization M(r), the stray field is given by

B(r) =µ0

∫
dr′ΓΓΓ(r− r′)M(r′), (3.3)

where the components of the dipolar tensor ΓΓΓ(r− r′) are derivatives of the Coulomb’s
kernel

Γαβ(r− r′) = ∂

∂α

∂

∂β′
1

4π|r− r′| with α,β= x, y, z. (3.4)

Later on, we analyze spin waves (in thin films) that are characterized by their wavevector.
Thus, it is convenient here to remove the convolution in Eq. 3.3 by taking the 2D Fourier
transform in the film plane (y z)1

B(k, x) =µ0

∫
dx′ΓΓΓ(k, x −x ′)M(k,x′), (3.5)

where k = ky ŷ+kz ẑ is in the film plane. Using [1, 2]

∇2 1

4π|r− r′| = δ(r− r′) (3.6)

and the identity [1–3]
1

|r− r′| = 2π
∫

dk

k
e−k|x−x′|e i k(ρρρ−ρρρ′), (3.7)

where k and ρρρ = y ŷ+ zẑ are in the infinite y z plane, we obtain the Fourier transform of
Eq. 3.4

Γαβ(k, x −x ′) = 1

2


e−k|x−x′|k −2δ(x −x ′) for α=β= x,

−e−k|x−x′| kαkβ
k for α,β= y, z,

−e−k|x−x′|sign(x −x ′)i kα for α= y, z and β= x.

(3.8)

1We are considering a thin film with infinite lateral dimensions.
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Because we consider thin films, we assume that the magnetization M = mMs does not
vary across the film thickness2: m(k,x′) = m(k). We can now integrate Eq. 3.5 over the
film thickness t , where the only x ′-dependent components are the Γαβ, so that the dipo-
lar field at x is

B(k,x) =µ0Ms

∫ 0

−t
dx′ΓΓΓ(k, x −x ′)m(k) =µ0MsΓΓΓ(k, x)m(k), (3.9)

where (...) indicates spatial averaging over the film thickness. Carrying out the integra-
tion for r > r′ (i.e. above the film)3 results in

ΓΓΓ(k, x) =
∫ 0

−t
dx′ΓΓΓ(k, x −x ′) = 1

2
e−kx (1−e−kt )

 −1 i sinφ i cosφ
i sinφ sin2φ sinφcosφ
i cosφ sinφcosφ cos2φ

 , (3.10)

where we expressed k in terms of its polar coordinates k and φ (φ= 0 corresponds to the
z axis).

Below the magnetic film, sign(x−x ′) in Eq. 3.8 changes sign, so that Γx y ,Γy x ,Γxz ,Γzx also
change sign. It will become clear in Section 3.4 that this result is important to understand
the chirality of NV-based detection of spin waves with φ=±π/2.

3.2. SPIN-WAVE DISPERSION
The relation between the frequency of an excitation and its wavelength is known as dis-
persion. The gradient of the dispersion, called group velocity, denotes the direction
in which energy is transported in the system. In this section we derive the transverse
dynamic susceptibility of a thin magnetic film from the Landau-Lifshitz-Gilbert (LLG)
equation. From the susceptibility, we find expressions for the spin-wave dispersion and
damping. The LLG equation phenomenologically describes the damped motion of the
magnetization in an effective magnetic field, composed of several contributions, such as
the Zeeman, exchange, and dipolar interactions. In Section 3.3 we use the spin-wave sus-
ceptibility to calculate the magnetization excited inductively by a microwave stripline.

3.2.1. MAGNETIZATION DYNAMICS: LANDAU-LIFSHITZ-GILBERT EQUATIONS
We consider an external static magnetic field B0 applied along z (B0 = B0ẑ) (Fig. 3.1),
which forces the static magnetization parallel to z4,5. The magnetization evolves in time

2This assumption is valid in the limit kt ¿ 1, where t is the film thickness, which is the case for the magneti-
zation profiles in this thesis.

3For x > x′, we use
∫ 0
−t dx′e−k|x−x′| = ∫ 0

−t dx′e−kx ekx′ = e−kx 1−e−kt

k .
4We disregard the crystalline anisotropy, because it is small for the magnets considered in this thesis (Ni, YIG)

[4].
5In the experiments of Chapters 4-5, the static field is applied along the axis of one NV center family, which

forms a ∼ 35◦ angle with the z axis. However, the fields we apply in spin-wave experiments are always smaller
than ∼ 30 mT, such that the out-of-plane component is smaller than ∼ 17.3 mT. Since the saturation mag-
netization of YIG is 178 mT at room temperature, the static magnetization tilts out-of-plane by less than
atan(17.3/178) ∼ 5.6◦. In Chapter 6, the system considered is nickel, whose saturation magnetization is ∼5
times higher, but we also apply fields up to ∼ 60 mT. We treat the case of a tilted magnetization is Section 3.2.3.
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Figure 3.1: Geometry of the system. A thin film in the y z plane is magnetized along z by the static
magnetic field B0. Spin waves propagate with wavevector k at angle φ from M.

following the Landau-Lifshitz-Gilbert (LLG) equation [5]:

dm

dt
=−γm×Beff −α

dm

dt
×m, (3.11)

where α is the Gilbert damping parameter (we study changes of α due to increased
damping in Chapter 5) and Beff is the effective magnetic field (including both static and
dynamic contributions). The first term after the equal sign in Eq. 3.11 induces the pre-
cession of m around Beff (Fig. 3.2). The second term induces a rotation of m toward Beff,
with rate given by α, and is therefore a damping term. Here, Beff is the sum of the exter-
nal fields and the effective fields due to dipolar and exchange contributions (both static
and oscillating):

Beff = B0 +BAC +Bdem +Bex (3.12)

where BAC is an external oscillating field used to excite spin waves, Bdem is the demag-
netizing (i.e. dipolar) field and Bex the exchange field. We evaluate each contribution in
the following sections.

ZEEMAN INTERACTION

The Zeeman energy associated with the external magnetic field is

FZ =−M ·B0 = Ms m ·B0. (3.13)

Defining ωB = γB0, the Zeeman contribution to the effective field is

B0,z = ωB

γ
. (3.14)

EXCHANGE INTERACTION

The exchange interaction is short-ranged (i.e. few nanometers) and, in a magnet with
negligible anisotropy constants such as YIG [4], the exchange energy density can be con-
sidered isotropic:

Fex(r) = D

2

∑
i , j=x,y,z

(
∂mi (r)

∂ j

)2

. (3.15)
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× Ma

Figure 3.2: Time evolution of the magnetization according to the LLG equation. The magnetiza-
tion M precesses around the effective field Beff (which is static, in this sketch). The damping term
forces M towards Beff.

where D is the exchange constant. Its Fourier transform over the in-plane coordinates
y, z is

Fex(k, x) =−k2D
[

m2
y (k, x)+m2

z (k, x)
]
+ D

2

∑
i=x,y,z

(
∂mi (k, x)

∂x

)2

, (3.16)

where k is the spin-wavevector (in the y z plane). For a constant magnetization over the
film thickness, the last term vanishes. Thus, the exchange energy contributes an effective
field with Cartesian components:

Bex,i =− 1

Ms

∂F

∂mi
=−ωex

γ
k2mi (k, x), (3.17)

where we defined ωex = γD/Ms

DIPOLAR INTERACTION

The dipolar interaction is long ranged and strongly anisotropic, unlike the short-ranged,
isotropic exchange interaction. Therefore, the dipolar contribution leads to an anisotropic
spin-wave dispersion at long wavelengths: spin waves propagating perpendicularly to
the static magnetization generate a larger stray (i.e. dipolar) field than those propagat-
ing parallel to it, which costs energy.

We use the results of Section 3.1 to calculate the demagnetizing field

Bdem(r) =µ0Ms

∫
Γ(r− r′)m(r′)dr′, (3.18)

which can be seen as the field felt by a spin, due to the dipolar field of all the other spins
in the system.
In k-space, after averaging over the film thickness, from Eq. 3.9 we obtain

Bdem(k) =µ0Ms
1

t

∫ 0

−t
dxΓ(k, x)m(k) =µ0MsΓ(k)m(k), (3.19)
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where (...) indicates averaging over the thickness. Using Eq. 3.8 and

1

t

∫ 0

−t

∫ 0

−t
dx′dxe−k|x−x′| = 2

k
(1− 1−e−kt

kt
) = 2

k
f (kt ), (3.20)

1

t

∫ 0

−t

∫ 0

−t
dx′dxsign(x −x ′)e−k|x−x′| = 0, (3.21)

1

t

∫ 0

−t

∫ 0

−t
dx′dxδ(x −x ′) = 1, (3.22)

we arrive at

Bdem(k) =µ0Ms


f (kt )−1 0 0

0
−k2

y

k2 f (kt )
−ky kz

k2 f (kt )

0
−ky kz

k2 f (kt )
−k2

z
k2 f (kt )


mx (k)

my (k)
mz (k)

 , (3.23)

which can be re-written as

Bdem(k) =µ0Ms

 f −1 0 0
0 − f sin2φ − f sinφcosφ
0 − f sinφcosφ − f cos2φ

mx (k)
my (k)
mz (k)

 , (3.24)

where φ is the in-plane angle between m and k. Thus, the dipolar contribution to the
effective field in the LLG equations (Eq. 3.12) reads

Bdem(k) = ωdem

γ
ΓΓΓ(k)m(k), (3.25)

where we defined

ωdem = γµ0Ms . (3.26)

3.2.2. SPIN-WAVE DISPERSION AND SUSCEPTIBILITY

Having evaluated the contributions to Beff, we can now calculate the spin-wave disper-
sion. To do so, we Fourier-transform the LLG equation (Eq. 3.11) into the frequency do-

main, and linearize it by assuming that mz =
√

1−m2
x −m2

y ≈ 1, yielding

−iωmx =−γ(Beff,z my −Beff,y )+ iαωmy , (3.27)

−iωmy =−γ(Beff,x −Beff,z mx )− iαωmx . (3.28)

Using Eq. 3.12 and Γx y = Γy x = 0 (from Eq. (3.24)) we obtain

γBeff,x =ωdem( f −1)mx −ωexk2mx +γBAC,x , (3.29)

γBeff,y =−ωdem f sin2φmy −ωexk2my +γBAC,y , (3.30)

γBeff,z =ωB . (3.31)
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Defining

ω0 =ωB +ωexk2, (3.32)

ω2 =ω0 +ωdem(1− f ), (3.33)

ω3 =ω0 +ωdem f sin2φ, (3.34)

we obtain Eqns. (3.27-3.28) in matrix form:(
ω2 − iαω iω

−iω ω3 − iαω

)(
mx

my

)
= γ

(
B AC ,x

B AC ,y

)
. (3.35)

Inverting Eq. (3.35) gives the susceptibility tensor

χχχ= γ

(ω2 − iαω)(ω3 − iαω)−ω2

(
ω3 − iαω −iω

iω ω2 − iαω

)
. (3.36)

The matrix elements of the susceptibility tensor describe the response of the magneti-
zation to a transverse magnetic drive field. The prefactor, with a Lorentzian-like form,
peaks at a (k- and φ-dependent) resonance frequency, and has a width that is governed
by α. We can find the spin-wave dispersion by solving

Λ=ω2 − (ω2 − iαω)(ω3 − iαω) = 0, (3.37)

with solutions

ω=−iα
ω2 +ω3

2(1+α2)
±

√
4ω2ω3 −α2(ω2 +ω3)2

4(1+α2)
. (3.38)

The real (imaginary) part of this equation gives the dispersion ωsw (linewidth ∆ωsw )

ωsw ≈pω2ω3, (3.39)

∆ωsw ≈αω2 +ω3

2
, (3.40)

where we neglected the α2 terms, since usually α < 0.01. The ellipticity of the magneti-
zation precession is given by

η=
∣∣∣∣χxx

χy x

∣∣∣∣≈√
ω3

ω2
. (3.41)

Interestingly, the dispersion of spin waves is strongly anisotropic due to theφ-dependence
of ω3 (Fig. 3.3). We can consider three important cases:

• The mode with k = 0 is spatially uniform, and known as ferromagnetic resonance
(FMR). Its frequency follows from Eq. 3.39, and is given by6

ωsw =
√
ωB (ωB +ωdem) = γ√

B0(B0 +µ0Ms ), (3.42)

which is known as Kittel’s law [6].
A typical way of studying this mode is with microwave absorption measurements,
such as cavity- or broadband-FMR, which often aim at characterizing the width
of the absorption dip to extract the saturation magnetization and (changes in) the
Gilbert damping parameter (see Chapter 4 for an example of such measurements).

6For k = 0, f → 0, so that ω2 →ωB +ωdem and ω3 →ωB .
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• Spin-waves propagating parallel to the magnetization (φ= 0;π) are known as backward-
volume spin waves (BVSW), because of the negative group velocity at small k.
Their dispersion reads

ωsw =
√
ω0[ω0 +ωdem(1− f )], (3.43)

and is plotted in Fig. 3.3b (red line).

• Spin waves propagating perpendicular to the magnetization (φ=±π/2) are known
as Damon-Eshbach spin waves (DESW) [7, 8], surface spin waves, and often de-
scribed with the adjective "chiral" (blue line in Fig. 3.3b). The reasons for these
names are historical: the article in Ref. [7], by Eshbach and Damon, is the first
to identify and study these modes that are confined to the surface in YIG crystals
of macroscopic dimensions. However, the vertical confinement of these modes
is on the order of the spin-wavelength (they decay exponentially with depth), so
that in films thinner than ∼ 1 µm, this confinement is effectively negligible for
micron-sized spin waves. The "chiral" aspect will become clear in this chapter
(Sections 3.4-3.5). Their dispersion reads

ωsw =
√

[ω0 + f ωdem][ω0 + (1− f )ωdem]. (3.44)

In the rest of this thesis, we use "BV" and "DE" to indicate the propagation direction of
the spin waves with respect to the static magnetization.

3
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Figure 3.3: Spin-wave dispersion. (a) 2D spin-wave dispersion for B0 = 30 mT. The frequency of
a spin wave strongly depends on it propagation angle (φ) with respect to the static magnetization
(M). For backward-volume spin waves (along the dashed red line), the frequency decreases with
increasing wavevector (the dispersion slope corresponds to the group velocity, from which the
name "backward"). For Damon-Eshbach spin waves (dashed blue line), the group velocity is al-
ways positive. (b) Linecuts of (a), corresponding to the DE (blue line) and BV (red line) spin waves.
The shaded orange area indicates which wave-vector values are easily excited inductively.
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INTRINSIC HANDEDNESS OF THE MAGNETIZATION PRECESSION

A single, isolated magnetic moment precesses around the static field always with a par-
ticular handedness, performing a circular motion with direction governed by the first
cross-product in the LLG equation (Eq. 3.11). In a magnet, however, a spin also feels
the field generated by its neighbours (demagnetizing field). As a result, the precessional
motion becomes elliptical, as described by Eq. 4.15. However, this motion retains the
same preferential handedness. It is important to keep this in mind before deriving the
spin-wave excitation efficiency by a microstrip (Section 3.3). In that section we shall
find out that such phenomenon has a momentum-locking character that, together with
this preferential handedness of the magnetization precession, results in very spatially-
asymmetric spin-wave excitation.

We can see this preferred precession handedness of the magnetization by disregarding
the terms with α and the dipolar terms in ω2 and ω3

7, so that both are equal to ω0, and
the dispersion ω∼ω0. From Eq. 3.36 we obtain

mx

my
= Bxω0 − i Byω0

i Bxω0 +Byω0
. (3.45)

Clearly, my = i mx : the precession is right-circularly polarized. Considering the dipolar
terms we just disregarded, the polarization becomes right-handed elliptical (i.e. the out-
of-plane component mx is smaller than my ), which can be seen as linear superposition
of right- and left-circularly polarized fields, of which the right- component is larger. We
see in Section 3.3 why this is important.

3.2.3. STATIC FIELD WITH AN OUT-OF-PLANE COMPONENT
So far we considered B0 and M along z. We now generalize these results to the case of a
magnetic field applied with out-of-plane angle θB (from the z axis), which lifts the mag-
netization out of plane by θ. In this case, it is convenient to consider the system in the
magnet frame, i.e. with z ′ rotated out-of-plane from z around y by θ (Fig. 3.4).

The changes to the results of the previous section are to the Zeeman and the dipolar
contributions. The former becomes [3]

B0, z = ωB

γ
→ ωB

γ
cos(θB −θ). (3.46)

The demagnetizing field can be obtained applying a rotation matrix

R(θ) =
cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ

 (3.47)

such that m′ = R(θ)m and m = RT (θ)m′.

7At very large k, this is a good approximation.
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Figure 3.4: System geometry for a magnetic field along the NV axis. A magnetic field applied at
an out-of-plane angle θB = θNV tilts the magnetization out of plane by a smaller angle θ.

The rotated form of the dipolar tensorΓ′Γ′Γ′ = RΓΓΓRT reads( f −1)cos2θ− f sin2θcos2φ f sinθ sinφcosφ sinθcosθ( f −1+ f cos2φ)
f sinθ sinφcosφ − f sin2φ − f cosθ sinφcosφ

sinθcosθ( f −1+ f cos2φ) − f cosθ sinφcosφ ( f −1)sin2θ− f cos2θcos2φ

 .

(3.48)
This modifies Eqns. 3.29 into

γB ′
eff,x =ωdem

{[
( f −1)cos2θ− f sin2θcos2φ

]
m′

x + f sinθ sinφcosφm′
y

}
−ωexk2m′

x +γBAC,x ′ ,

(3.49)

γB ′
eff,y =ωdem

[
f sinθ sinφcosφm′

x − f sin2φm′
y

]
−ωexk2m′

y +γBAC,y ′ , (3.50)

γB ′
eff,z =ωB cos(θB −θ)−ωdem sin2θ, (3.51)

where the last term in Eq. 3.51 is Γzz (k = 0), since m′
z is spatially homogeneous. The LLG

equations in matrix form then read(
ω2 − iαω −ω1 + iω
−ω1 − iω ω3 − iαω

)(
m′

x
m′

y

)
= γ

(
B AC ,x′
B AC ,y ′

)
, (3.52)

with

ω0 =ωB cos(θB −θ)+ωexk2 −ωdem sin2θ, (3.53)

ω1 =ωdem f sinθ sinφcosφ, (3.54)

ω2 =ω0 +ωdem
[
(1− f )cos2θ+ f sin2θcos2φ)

]
, (3.55)

ω3 =ω0 +ωdem f sin2φ. (3.56)

The susceptibility then reads

χ= γ

(ω2 − iαω)(ω3 − iαω)−ω2
1 −ω2

(
ω3 − iαω −ω1 + iω
−ω1 − iω ω2 − iαω

)
(3.57)
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and, disregarding the terms with α, the dispersion is given by

ωsw =
√
ω2ω3 −ω2

1, (3.58)

while the linewidth is unchanged.

3.3. SPIN-WAVE EXCITATION
Spin waves can be excited using several methods, such as thermally [9–11], by light
pulses [12], mechanically via magnetoelastic coupling [13, 14], by spin pumping via the
spin-Hall effect [15, 16] or FMR-driving [17], via spin-orbit [18] and spin-transfer torques
[19, 20], and inductively [21–25]. In this thesis we always use the last method because 1)
we already have the necessary circuit elements, which we use to drive NV centers and 2)
it allows to drive spin-waves that are coherent and monochromatic8.

In the next section we show how certain magnetization patterns and dynamics are ex-
cited using the monochromatic microwave field from a microwave stripline. We shall
find out that only spin waves with specific values of k can be excited, and that the exci-
tation efficiency depends on the direction and handedness/chirality of the modes.

3.3.1. INDUCTIVE EXCITATION OF SPIN-WAVES
We saw previously that the precession of the magnetization around its equilibrium po-
sition possesses a certain intrinsic handedness. In this section we shall find out that a
microstrip stray field is also circularly-polarized with handedness that depends on the
wave-vector k. The combined result of these two phenomena is a strong spatial asym-
metry in the spin-wave excitation.

In this thesis we use current-carrying circuit elements to generate an oscillating mag-
netic field B that excites oscillations of the magnetization M9

M(r) = 1

µ0

∫
dr′χχχ(r,r′)B(r′). (3.59)

We can remove the convolution in the y z plane with a 2D Fourier transform that yields,
in the mixed position and momentum space

M(x,k,ω) = 1

µ0t

∫ 0

−t
dx′χχχ(x, x ′,k,ω)B(x ′,k,ω), (3.60)

whereχχχ is the magnetic susceptibility tensor from Eq. 3.36.

We start from the stray field generated by a current distribution J, using Ampere’s law [1]

B(r) = µ0

4π

∫
dr′J(r′)× r− r′

|r− r′|3 = µ0

4π
∇∇∇×

∫
dr′

J(r′)
|r− r′| . (3.61)

8The range of k excited depends on the spin-wave linewidth, since the signal generated by the microwave
source is extremely narrow (i.e. ∼ kHz width for a GHz signal).

9Strictly speaking, in Eq. 3.59-3.60 B should be substituted by µ0H. However, we use B for simplicity.
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where µ0 is the magnetic permeability of vacuum. Because ∇∇∇·B = 0, B can be written as
the curl of a vector potential A:

B(r) =∇∇∇×A(r). (3.62)

From Eq. 3.61 we get

A(r,ω) = µ0

4π

∫
dr′

J(r′,ω)e i k|r−r′|

|r− r′| , (3.63)

where k = ω/c =
√

k2
x +k2

y +k2
z with c the speed of light. We consider a microstrip of

width w , length L and thickness h with current flowing parallel to z, thus A = Aẑ, so that
Bz = 0.

Eq. 3.62 then becomes
(Bx ,By ) = (∂Az /∂y,∂Az /∂x). (3.64)

Substituting the Weyl identitity10 and carrying out the differentiation and integration,
we obtain the Fourier components of the stray field in reciprocal space [28]:

Bx(y)(x,ky ,kz ) = 2iµ0 J (ω)
e−i kx x

kx

e i kx h −1

kx(y)
sin

(
ky

w

2

)
sin(kz

L

2
)

e−i kz z

kz
, (3.65)

where z = 0 is located at the center of the microstrip. At the few-GHz frequency we con-
sider in the experiments, k = ω/c ¿ 100 rad/m, while typical spin-wavevectors for our

experiments are 105 −107 rad/m, so that kx =
√

k2 −k2
y −k2

z → i
√

k2
y +k2

z = iκ. Thus,

Bx (x,ky ,kz ) =−2iµ0 J (ω)eκx e−κh −1

κ2 sin
(
ky

w

2

)
sin(kz

l

2
)

e−i kz z

kz
, (3.66)

By (x,ky ,kz ) =2µ0 J (ω)eκx e−κh −1

κky
sin

(
ky

w

2

)
sin(kz

l

2
)

e−i kz z

kz
. (3.67)

These expressions for the field of a microstrip are useful for further calculations and offer
the following insights:

• Only certain values of the spin-wavevector can be excited with a microstrip.
Specifically, when an integer number of wavelengths fits under the microstrip width
(k = n ·2π/w), the excitation efficiency vanishes. A wire that is very long in a cer-
tain direction (z in all experiments) can efficiently excite only large wavenumbers
(i.e. with wavelength ∼larger than the length) in the same direction. Similarly, it
is less efficient to excite spin waves with wavelength below 1 µm with strips that
are wider than a micrometer (Fig. 3.5). This difficulty in exciting nanometer-sized
spin waves is a drawback of inductive spin-wave excitation.

• The polarization of the microstrip field depends on the value of k. Because Bx =
−i By ky /κ (from Eqs. 3.66-3.67), we can identify two interesting situations:

10The Weyl identity is [26, 27] ei k
√

(x−x′)2+(y−y ′)2+(z−z′)2√
(x−x′)2+(y−y ′)2+(z−z′)2

= i
2π

∫
dky dkz

ei kx |x−x′ |+i ky (y−y ′)+i kz (z−z′)
kx

.
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Figure 3.5: Effect of the microstrip shape on the stray field. A microstrip of length L = 100 µm
(along z) and width w = 5 µm (along y) can excite spin waves with large ky (red line) and small kz
(green line).

– When |kz |À |ky | (BV waves), |Bx |¿ |By |, so that the field is linearly polarized
along ŷ.

– When |ky | À |kz | (DE waves), Bx →−i sign(ky )By represents a circularly po-
larized field11 with opposite handedness for ±ky (Fig. 3.6a): Even though the
stripline field is linearly polarized at each location, its right-circular (left-
circular) component couples only to modes propagating with wavevector
+ky (−ky ).

• Spin waves are preferentially excited in certain directions, i.e. their amplitude de-
pends on k. For |ky |À |kz | we have

– For +ky , from By = i Bx and Eq. 3.36 follows that my = i mx /η, where η =
|mx |/|my | has been defined in Section 3.2.2, and12

my ≈ Byω2(1+η). (3.68)

– For −ky , from By =−i Bx follows that my =−i mx /η, with

my ≈ Byω2(1−η). (3.69)

Thus, we see from Eq. 3.68-3.69 that the spin-wave amplitude is strongly asymmet-
ric: spin waves with circular precession (i.e. η= 1) are exclusively excited with +ky ,

11Using Jones matrices [29], we can write an oscillating field as B =
(

Bx

By eiϕ

)
. A field for which By = ±i Bx

can be written as B = Bx

(
1
±i

)
=

(
1

e±iπ/2

)
, such that By trails (leads) Bx by π/2: the field is right-circularly

(left-circularly) polarized.
12Here we are again disregarding the terms in α in Eq. 3.36.
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thus propagating along +y . As the precession becomes more elliptical, the left-
propagating spin waves are also excited, but with very low efficiency. This strongly
asymmetric excitation of DE waves by a microstrip can be seen in Chapters 4-5.

x

ymagnet
microstrip

a b

y-k y+ky+ky-k

+kz

-kz

Figure 3.6: Chiral inductive excitation of DESW by a microstrip field. (a) For k = ±kz , the mi-
crostrip field (black arrows) is linearly polarized along y . For k =+ky (−ky ), the field is right(left)-
circularly polarized in the x y plane. (b) The right(left)-propagating spin waves (in red) are excited
with large (small) amplitude.

From the susceptibility (Eq. 3.36) and the microstrip field (Eqs. 3.66-3.67), we can cal-
culate the dynamic magnetization in k−space using Eq. 3.60, and Fourier-transforming
back into real space yields

Mi (ρρρ, t ) = 1

4π2

∫ ∫
dke i k·ρρρ−iωt Mi (x,k), (3.70)

where ρρρ = (y, z).

3.4. STRAY FIELD OF A SPIN WAVE
We can now derive the stray field of a spin wave of in-plane wavevector k and frequency
ω/2π from Eqs. 3.9-3.10:

Bsw,x (x,k) =µ0Ms

2
e−kx (1−e−kt )

(−mx (k)+ i sinφmy (k)
)

, (3.71)

Bsw,y (x,k) =µ0Ms

2
e−kx (1−e−kt )

(
i sinφmx (k)+ sin2φmy (k)

)
, (3.72)

Bsw,z (x,k) =µ0Ms

2
e−kx (1−e−kt )

(
i cosφmx (k)+ sinφcosφmy (k)

)
, (3.73)

where again sinφ = ky /k and cosφ = kz /k, so that Bsw,y = −i (ky /k)Bsw,x and Bsw,z =
−i (kz /k)Bsw,x .

Because we use NV centers to study spin waves via their stray fields, these results are
central to this thesis. Let’s examine a few interesting cases:

• For φ = 0(π) (BV geometry), Bsw,y = 0 and Bsw,z = −(+)i Bsw,x . In the x y plane,
however, this field is linearly polarized.
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• In the DE geometry the situation is dramatically different.
Forφ=+π/2 the spin waves propagate with +ky , therefore my = i mx /η (from Sec-
tion 3.3) and Bsw,y =−i Bsw,x . This field is circularly polarized in the x y plane, with
handedness opposite to that of the microstrip stray field, which excited the spin-
waves along +ky in the first place (Eqs. 3.66-3.67).

• For φ=−π/2, Bsw,y =+i Bsw,x . Because these modes propagate toward −ky , they
are characterized by my =−i mx /η. Using this relation, we see that both Bsw,x and
Bsw,y vanish (remembering that the formula for the stray fields holds above the
magnetic film, while below the film the terms containing i change sign, see Sec-
tion. 3.1).

Let’s summarize the importance of these results (Fig. 3.7):

• The right-propagating DE spin waves (+ky ) generate a stray field above the mag-
netic film that is left-circularly polarized. If there was an ensemble of NV centers
above the film, with axes parallel to the magnetic z axis, the spin-wave field would
have the correct handedness to drive the 0 ↔ −1 NV transition of those NVs on
the right of the microstrip, and would not drive the 0 ↔ +1 transition. However,
there is usually an angle between the two axes, so that the field drives the 0 ↔+1
transition as well.

• The left-propagating spin waves are not efficiently excited and generate a left-
circularly polarized stray field below the film. Above the film, the field is zero for
η= 1, and non-zero for smaller ellipticity, but with opposite handedness, such that
it can drive the 0 ↔+1 NV transition.

• BV waves generate a field in the xz plane. Its projection onto the x y plane (relevant
to NV driving) is a linear field (for any out-of-plane angle between the NV and the
magnet), which drives both transitions with equal efficiency.

3.5. SPIN-WAVE DETECTION WITH NV MAGNETOMETRY
In this section we derive the effect of the stray field of coherent (Section 3.5.1) and ther-
mal (Section 3.5.2) spin waves on the NV center spin state.

3.5.1. DETECTING COHERENT SPIN WAVES: RABI FREQUENCY ENHANCE-
MENT

In Chapter 4 we measure the NV Rabi frequency induced by the stray field of spin waves
to image them and ultimately extract the amplitude of the spin-wave oscillations. In
Chapter 5 we detect a change in spin-wave damping by measuring the spatial variations
of the Rabi frequency. In this section we derive the Rabi frequency induced by the spin-
wave stray field.
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z+k

z-k

Backward-volume Damon-Eshbach

Figure 3.7: Momentum-locked spin-wave handedness. (a) Backward-volume spin waves (red ar-
rows) generate fields that are circularly-polarized in the xz plane (black arrows). In the x y plane,
the field is linearly polarized (green arrow). (b) Damon-Eshbach spin waves (red arrows) are ex-
cited with different amplitudes on the two sides of the stripline. The field they generate (black
arrows) is circularly-polarized in the x y plane, with handedness opposite to that of the spin pre-
cession. Right-propagating spin waves generate a large left-circular field above the magnetic film.
Conversely, left-propagating spin waves (less efficiently excited) generate a left-circular field below
the film. If we consider spin waves with an elliptical precession (i.e. η< 1), a small field component
is present also below (above) the film, on the right (left) side, that has the opposite handedness of
the component above (below).

We know from 2.17 that the ω± transition is driven by a resonant magnetic field that is
circularly polarized in the plane perpendicular to the NV axis, inducing Rabi rotations
with frequency Ω±

R = γ|Bx ∓ i By |/
p

2. We can use the results of the previous section for
the spin-wave field, but we need to transform them into the NV reference frame (rotated
by θNV from z toward x about y). To do so, we use the rotation matrix of Eq. 3.47 to
obtain the B+ component in the NV frame:

|BNV
+ | = |Bx cosθNV −Bz sinθNV + i By |. (3.74)

For spin waves propagating along +ky , we obtain

Ω±
R = |B 0

sw my |
γ
√
η2 + sin2φ
p

2

√
(cosθNV ± sinφ)2 + sin2θNV cos2φ, (3.75)

where B 0
sw =µ0Ms e−kx (1−e−kt )/2.

We see that, for BVSWs (φ = 0,π), Ω±
R = |B 0

sw myη/
p

2|, so that ω± are driven equally.
Moreover, when the waves are very elliptical13 (small η) the spin-wave driving of the NV
transitions decreases correspondingly.

Forφ=π/2,Ω∓
R = |B 0

sw my |
√
η2 +1|cosθNV ±1|/p2. As previously introduced, for θNV =

0, the spin-wave field is circularly polarized in the NV-x y axis and only drives ω−.

13At large wavelengths, the out-of-plane component is much smaller than the in-plane one [28].
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In Chapter 4 we build on this model, considering the additional stray field components
of a microwave stripline and of a bonding wire, used as antenna, to extract the preces-
sion amplitude of DE spin waves from experiments. In Chapter 5 we monitor the spatial
decay of the Rabi frequency to characterize the spin-wave damping induced by metallic
electrodes.

3.5.2. MAGNETIC NOISE GENERATED BY THERMALLY-EXCITED SPIN WAVES
Even in absence of direct driving, incoherent spin waves are thermally excited because
of the finite temperature. Such spin waves generate fluctuating magnetic fields that act
as noise and can induce relaxation of the NV spin states. In Chapter 6, we probe these
magnetic fluctuations in a nickel thin film using NV relaxometry. In this section we de-
rive the magnetic field noise generated by these thermal spin-waves, and calculate the
NV relaxation rates they induce.

The system considered is a thin magnetic film in the y z plane. A single NV center is
located at distance d above the film, with axis oriented in the xz plane at an angle θNV

from z. A static field is applied along the NV axis, which lifts the magnetization of the
film out of plane by an angle θ. From Eq. 3.9, 3.10, and the rotation matrix R(θ) (Eq. 3.47)
the dipolar field in the NV frame is given by

BNV = Ms R(θNV )ΓΓΓ(k)RT(θ)m′(k) = MsΓΓΓ
eff(k)m′(k). (3.76)

Substituting into Eq. 2.20, we can express the relaxation rates as an integral over k-space
[3]

Γ∓ = γ2M 2
s

2

∫
dk

(2π)2

∑
i , j={x,y}

Γeff
±i (k)Γeff

∓ j (−k)Ci j (k,ω∓), (3.77)

where the elements of the dipolar tensorΓeff
±i = Γeff

xi ±iΓeff
yi and Ci j is the Fourier transform

of the magnetization correlator [3, 30]

Ci j (r− r′, t − t ′) =
〈

m′
i (r, t )m′

j (r′, t ′)
〉

. (3.78)

The magnetization correlations are governed by the dispersion and the band occupa-
tion, determined by the temperature T . Defining Dth =αkB T /(γMs t ), with kB the Boltz-
mann constant, we can express the Ci j as [3]

Ci j (k,ω) = 2Dth

∑
ρ={x,y}

χiρ(k,ω)χ jρ(−k,−ω), (3.79)

where χi j are the elements of the susceptibility in Eq. 3.57 (for θB = θNV ).

In the next chapter we see that these equations agree quite well with the measured re-
laxation rates. Unlike previous models [17, 31, 32], which only included in-plane oscilla-
tions of the magnetization (thus, the spin-wave fields were linearly polarized, coupling
equally well to both NV ESR transitions), this model includes the handedness of the spin-
waves and their fields, which therefore couple differently to the two NV ESR transitions.
Thus, this model can be applied without arbitrary scaling constant to account for the
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different rates at ω±. We use this in Chapter 6 to calculate the NV relaxation rate as a
function of the static field (Fig. 3.8).
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Figure 3.8: NV relaxation rate as a function of magnetic field. Red (blue) lines: calculated relax-
ation rate of the |0〉↔ |−1〉 (|0〉↔ |+1〉) transition, for a distance of 200 nm (solid lines) and 300 nm
(dashed lines) between an NV center and a nickel film of thickness 40 nm.
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