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Chapter 5

Information theory with
coupled sources under
ensemble nonequivalence

Abstract
Information theory is build to describe information transmission and storage in differ-
ent systems. Restricted by the initial setting of the electronic communication system,
the traditional information theory is based on a fundamental assumption that the sig-
nal generation by those information sources has an identical probability distribution
and is independent of time. However, recent research on nervous systems and social
networks shows that the information flows in those systems are generated by the nu-
merous interacting units, and the signal generation in those systems is under temporal
dependencies. It means the classical information theory based on the i.i.d assump-
tion cannot deal with the coupled sources with temporal and spatial dependencies in
non-artificial communication systems.

Motivated by the recent works on systems with local constraints in statistical
physics, a generalization of information theory with coupled sources is built to find the
limits of information transmission and storage based on the descriptions of information
sequences with statistical ensembles under local constraints in this work. We find
that the microcanonical ensemble description or the Boltzmann entropy is closer to
the real limit of information storage than the canonical ensemble description with soft
constraints or Shannon entropy. We also find that the classical information theory
is a particular case of the canonical ensemble description when the dependencies
are homogeneous. Moreover, the effectivity of classical information theory only holds
when the microcanonical ensemble description and the canonical ensemble description
of the signal generation are under the ensemble equivalence. Our result also shows
that the finite temporal dependences of units in the information source are not enough
to break the ensemble equivalence. The ensemble nonequivalence is formed by the
extensive spatial interactions among all the units 1.

1This chapter is based on the coming paper:
Qi Zhang, Diego Garlaschelli, "Information theory with coupled source under ensemble nonequiva-
lence" (2021)
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5.1 Introduction

The classical information theory established in 1948 by Shannon is build to estimate
the information-theoretical bounds of the information storage and the information
transmission in communication systems [33]. This theory is based on an essential
assumption that the information source works independently with an identical prob-
ability distribution (i.i.d) in the process of signal generation. According to this as-
sumption, Shannon found that almost all the information generated by the i.i.d.
information source x is carried by a set of equiprobable sequences {x1,x2, · · · ,xn},
which is named as typical set T (n)

ε . Therefore, the smallest space needs to store the
information generated by the information source is equal to the logarithm of the car-
dinality of the typical set ln |T (n)

ε |. This limit of information storage will converge
to the n× s(x) as a function of Shannon entropy s(x) of the information sources
when (n → ∞) the length of sequences goes to infinite [29]. This typicality is the
asymptotic equipartition property (AEP). It also can be found in statistical physics,
which shows that the equilibrium behaviour of a system in the thermodynamic limit
is determined by typical microstates [8].

The signal generation under the i.i.d. assumption as a stationary process ig-
nores the possible temporal and spatial dependencies between the units in information
sources. However, in natural systems, especially when there are multivariates in the
information source, these dependencies generally exist. For example, in the vertebrate
retina, the activity of neurons is determined by pairwise correlations among neurons,
and the limited energy can be used for each neuron simultaneously [69]. The pairwise
correlations are spatial interactions among all the neurons. The finite energy that
can be used by each neuron in the whole process of signal generation is the tempo-
ral constraint. The spatial and temporal dependencies also exist in the changes of
cars’ flow in the urban traffic networks [70] and fluctuations of the stock market [3].
These heterogeneous dependencies among the units in the information source make
it impossible to find the limit of information storage by the classical AEP [71, 30].
Also, it may affect the symbol rate used to reliable transport the information through
different channels. Thus, we need a new theory to describe the signal generation with
spatial and temporal dependencies and find the information-theoretical bounds.

According to the classical information theory, the information generated by the
source is carried by information sequences, which are used to record the behaviour of
units in information sources. So even when the signal generation of the multivariate
source is under spatial and temporal dependencies, the information generated by it
is still carried by the multivariate information sequences {~x1, ~x2, · · · , ~xn}. Thus, to
find the information-theoretical bounds of those non-stationary signal generations, we
should focus on the information sequences, not the information sources.

However, those sequences with heterogeneous dependencies and the increased
length are impossible to be described by random variables with finite outcomes, but
those macroscopic properties are analogue with the that in states of thermodynamic
systems. Both of them have numerous interacting units, and the numbers of units
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go to infinite in the thermodynamic limit. It means statistical ensembles in physics
can be used to describe the multivariate and heterogeneous dependent information
sequences, to find its information-theoretical bounds [1, 27].

In statistical physics, systems with different macroscopic properties need to be
described by different ensembles. The microcanonical ensemble is used to describe
systems with fixed total energy E∗. The canonical ensemble is used to describe sys-
tems with fixed temperature β = 1/kT [1, 49, 27]. The two ensembles will conjugate
with each other by setting the parameter β in the canonical ensemble equal to β∗,
which makes the average value of the total energy in the canonical ensemble equal to
the fixed total energy in the microcanonical ensemble (〈E〉 = E∗) [15].

Normally, in the thermodynamic limit, the two conjugate ensemble descriptions
are believed to be equivalent. The microcanonical ensemble can be replaced by the
canonical ensemble, which is mathematically easy to calculate. This one phenomenon
is called ensemble equivalence (EE) [8]. However, in the past decades, the breakdown
of EE also has been observed in various physical systems [39, 25, 21]. Especially
when there are extensive local constraints in the system, the EE breaks in the whole
parameter space of this system [5, 27]. Therefore, when statistical ensembles are
used to describe the information sequences with different macroscopic properties,
their information-theoretical bounds are affected by the possible appearance of the
ensemble nonequivalence (EN).

In this work, a matrix ensemble with local constraints is used to describe the in-
formation sequences that are generated in the signal generation with heterogeneous
dependencies. These heterogeneous dependencies are quantified by the total corre-
lation (multi-information) among units in sequences [72]. We find that the classical
information theory is a particular case of the canonical ensemble description with soft
constraints. We also prove that the effectivity of the classical AEP in information
theory is based on the EE of the signal generation. Most importantly, we find that
the EN in the non-stationary process is led by the variable spatial interactions among
units in the source, not the finite temporal dependence.

5.2 Ensemble described information sequences
In traditional statistical physics, statistical ensembles are under global constraints
such as the fixed total energy and fixed temperature. The interactions among all units
are homogeneous. However, this assumption breaks when the statistical ensembles
are used to describe the information sequences generated by the information source
with heterogeneous dependent units since the interactions among those units are
homogeneous and time variant. It means the description of the information sequences
needs the statistical ensemble with local constraints [27].

The information sequences are generated by the information source with hetero-
geneous spatial interactions and temporal dependencies. If the information source
has m finite units, then the information generated by it in n times sampling should
be recorded by the m× n matrix X. Each unit xji represents the state of unit j
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in information source at time i, and matrix X represents a particular state of the
information sequences.

According to the definition of matrix should above, the spatial dependence among
m units in the information source at different time can be modelled by the column local
constraints ~c = [c1, c2, · · · , ci, · · · , cn], where ci is the sum of all the units in column i
of matrix X as ci =

∑m
j=1 xij . The temporal dependence of each variable in the infor-

mation sources is modelled by the row local constraints ~r = [r1, r2, · · · , rj , · · · , rm],
where each rj =

∑n
i=1 xji is the sum of all the element in the jth row of matrix X.

In nervous systems, rj represents the total energy theta can be used by the neuron
Xj in the whole signal generation, ci represents the total energy that can be used by
m interacting units in time i.

The relationship between local constraints in the matrix ensemble and the depen-
dencies in ensemble sequences is shown in FIG.5.1.

Figure 5.1. The status of m units in different times show in (a). The red and blue colour
of each node represents it is active or non-active. The selected nodes (the big nodes with
the black circle as margin) are used as units in the information source. The green line across
different layers represents temporal dependence. The red line among nodes in each layer
represents the spatial interaction among them. The localization of the two dependencies in
the matrix shows in (b). The spatial interactions among all the units in the information
source at time i are quantified by the column local constraints ci. The temporal dependence
of unit j is represented by the row local constraints rj .

When the dependence is homogeneous, the information sequences should be mod-
elled by the matrix ensemble with global constraints as t∗ =

∑n
i=1
∑m
j=1 xji, which

is the sum of all elements in the sequence [27].
The statistical ensemble is a probability distribution of all possible states in a

specific thermodynamic system. The macroscopic property of constraints determines
the value of probability for each state. For example, when the constraints are hard,

152



states of it are equiprobable. When the constraints are soft, the probability of each
state is different. The two different kinds of constraints represent two different ways
to describe the signal generation under dependencies. When the constraints are hard,
we need the microcanonical ensemble. Otherwise, when the constraints are soft, we
need the canonical ensemble [15].

5.2.1 Canonical ensemble description
When heterogeneous dependencies in sequences are soft, the constraints of each mi-
croscopic configuration are different. The average value of the constraints for all the
sequences is equal to the hard constraints in the conjugate microcanonical ensemble.
Then the sequences will be described by the canonical ensemble.

The probability of each state in the canonical ensemble is a parameter solution
under the realization of the average constraints and the maximization of Shannon
entropy

Pcan(X|~β) = e−H(X,~β)/Z(~β). (5.1)

Vector ~β is an extension of the maximum likelihood parameter β base on extensive
local constraints in it [27].

The partition function Z(~β) is a normalization constant, which collect the ex-
ponential function of all the possible configurations of the sequences X as Z(~β) =∑

X∈X e
−H(X,~β). The symbol H(X, ~β) represents the Hamiltonian of a sequence X.

It is a liner combination of constraint and maximum likelihood parameter, H(X, ~β) =
~C(X) · ~β [15].

The microcanonical ensemble and canonical ensemble are conjugate with each
other by setting the parameter ~β = ~β∗, to make the average value of constraints
〈~C(X)〉 in the canonical ensemble is equal to hard constraints ~C∗ in the microcanon-
ical ensemble as

〈~C(X)〉 =
∑

X∈X
Pcan(X|~β∗) ~C(X) = ~C∗, (5.2)

where X represents the collection of all the possible information sequences.
As constraints ~C(X) is the sum of elements in each column and row, the prob-

ability of a sequence in the conjugate canonical ensemble is equal to the product of
the probability of each unit in each sequence as

Pcan(X|~β∗) =
n∏
i=1

m∏
j=1

e
−xijβ∗ij∑

xij∈§ij e
−xijβ∗ij

. (5.3)

The value of Pcan(X|~β∗) is governed by the parameter ~β∗ and the value of each units
xij in sequence X. The symbol §ij represents the collection of all the possible values
of xij .
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Then, according to the classical information theory, it is easy to find that the
smallest space to store the information carried by canonical ensemble sequences is
equal to the Shannon entropy of it as

Scan =
∑

X∈X
Pcan(X|~β∗) lnPcan(X|~β∗). (5.4)

This result coincides with the consequence in Shannon’s information theory that the
smallest space needs to store the information is determined by its uncertainty. How-
ever, the quantification of the uncertainty is affected by the appearance of heteroge-
neous interactions.

The Eq.5.3 shows that each unit in the sequence X under soft constraints is
independent. Probability of each unit to gets value xij is governed by the localized
parameter β∗ij . Thus, the canonical ensemble is equal to the production of the marginal
probability of each unit as

Pcan(X|~β∗) =
n∏
i=1

m∏
j=1

P (xji). (5.5)

Comparing with the microcanonical ensemble that realization all the constraints ex-
actly, the canonical one is more like the localization of the dependencies on each unit
in the information sequence.

When the two local constraints are working simultaneously, sequences are under
coupled local constraints. The Hamiltonian is equal toH =

∑n
i=1 α

∗
i ci+

∑
j=1m β

∗
j rj .

Then, we can get the probability distribution and the Shannon entropy of this canon-
ical ensemble description. Details of the calculation are shown in the Appendix 5.C.

When only column-local constraints work on the signal generation or the signal
generation is only constrained by soft spatial interactions among all the units in
information sources, the canonical ensemble description of this signal generation still
can be described by the coupled local constraints, but with the row local constraints
equal to each other as r∗j = r∗ and β∗j = β∗. Then the Hamiltonian should equal to
H =

∑m
j=1

∑n
i=1(β

∗ + α∗i )xji. The partition function and the Shannon entropy of
this canonical ensemble can be found in the Appendix 5.B. It also can be described
by the one-sided local constraints matrix in [27].

When the signal generation is only limited by the soft temporal dependence or
when the units in the multivariate information source are independent, the signal
generation also can be described by the coupled local constraints canonical ensembles
with the unit in column local constraints equal to each other as c∗i = c∗. The corre-
sponding maximum likelihood parameter is also equal to each other as α∗i = α∗ The
Hamiltonian of this canonical ensemble description is H =

∑m
j=1

∑n
i=1(β

∗
j + α∗)xji.

The Shannon entropy can be found in the Appendix 5.A.

5.2.2 Microcanonical ensemble description
In the microcanonical ensemble description, constraints of each state have the same
value ~C∗. The column and row local constraints are fixed exactly in each matrix.
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Thus, in the signal generation, the possible state of each unit in the information
source will be limited by the spatial dependencies and temporal interactions exactly.
For example, the activity of neurons in the nervous system is decided by the energy
that the neuron can use in signal generation. The fixed column local constraints ~c∗
means the total energy that can be used by all neurons each time is finite. The fixed
row local constraints ~r∗ mean the total energy that can be used by each neuron in
the whole process of signal generation is finite. Then the more energy cost by other
units in the information source, the less energy will be left for the specific one to have
different states. For each unit, the more energy cost in the past, the less will be left
for the future.

The hard constraints of information sequences require the probability of each state
with constraints ~C∗ equal to each other as

Pmic(X|~C∗) = 1/Ω ~C∗ , (5.6)

where Ω ~C∗ = |Xmic| represents the total number of sequences with constraint ~C∗ in
the microcanonical ensemble.

According to the AEP, we can find that all sequences in the microcanonical ensem-
ble belong to the typical set Tmic of it. Space needs to store the information carried
by the typical set is equal to the Boltzmann entropy of information sequence X [10]

Smic = ln |Tmic| = ln Ωmic. (5.7)

The value of it is determined by the total number of configurations of information
sequence with hard constraints ~C∗.

The Ω ~C∗ is hard to calculate analytical, especially when information sequences
are under coupled constraints. However, according to the mechanism in [37], we
can estimate the value of it by the covariance matrix of constraints in the canonical
ensemble.

In the two conjugate ensembles, the total number of states in the microcanonical
ensemble is equal to the number of states in the canonical ensemble with constraints
equal to ~C∗ [37]. Thus, the number of states in the microcanonical ensemble can be
calculated from the canonical probability distribution with Dirac delta function (δ
function) as

Ω ~C∗ =
∑

X∈X

ˆ ~π

−~π

d~ψ
(2π)K e

i ~ψ[ ~C∗− ~C(X)]

=

ˆ ~π

−~π

d~ψ
(2π)K P

−1
can(X∗|~θ∗ + i ~ψ).

(5.8)

The integral is difficult to calculate when it is under coupled constraints [37]. But
it is still possible to use saddle point technology to approach the value of Ω ~C∗ as

Ω ~C∗ =
eScan√

det(2πΣ∗)

K∏
k=1

[1 +O(1/λ∗k)], (5.9)
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where Σ∗ is the covariance matrix of constraints in the canonical ensemble whose
entries are defined as

Σ∗ij ≡
∂2 lnZ(~θ)
∂θi∂θj

|
~θ=~θ∗

= Cov[Ci,Cj ]~θ∗
= 〈CiCj〉~θ∗ − 〈Ci〉~θ∗〈Cj〉~θ∗ ,

(5.10)

The {λ∗k} is the eigenvalue of covariance matrix Σ∗ [37]. K is the number of con-
straints in the matrix X

Then we can have the Boltzmann entropy of the microcanonical ensemble Smic =
ln Ω ~C∗ is equal to the Shannon entropy of the conjugate canonical ensemble minus
the correction part based on the covariance matrix of constraints in the canonical
ensemble as

Smic = Scan − ln
√

det(2πΣ∗) +
K∑
k=1

ln[1 +O(1/λ∗k)]. (5.11)

The correction part
∑K
k=1 ln[1 +O(1/λ∗k) is negligible when the eigenvalue value of

the covariance matrix λ∗k is big enough. Thus, the space to store the information
carried by the microcanonical ensemble sequences is smaller than the canonical one.
Because the hard constraint in the microcanonical ensemble strictly modelled the
influence of heterogeneous dependencies in information sequences. Therefore, the
microcanonical ensemble description is closer to the natural process of signal genera-
tion under heterogeneous dependence than the canonical ensemble one, which is the
maximum entropy approximation.

5.3 Total correlations of information sequences
The nonnegligible difference between the microcanonical and canonical ensemble de-
scription of the information sequences shows that the two different descriptions of the
heterogeneous dependencies in the information sequences contains different informa-
tion about the signal generation with temporal and spatial dependencies. However,
we do not know, if this difference is related with the correaltions among units in the
information sequences. Therefore, it is important to check if the nonnegligible en-
semble difference is a manifestation of the correaltions of the units in the information
sequences.

The matrix ensemble X gives a possible model for us to quantify the dependence
among all units in information sequences as the total correlations C [72]

C =
∑

X∈X
P (X) ln P (X)∏n

i=1
∏m
j=1 P (xji)

. (5.12)

The symbol X represents the collection of all possible configurations of sequences X
under heterogeneous dependencies.
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However, with heterogeneous dependencies, both the actual probability P (X)
of the sequence X and the production of the marginal probability of each unit∏n
i=1
∏m
j=1 P (xij) are difficult to calculate. Therefore, the two different ensemble

descriptions show above that are based on the maximum entropy principle proposed
by Jaynes [15] give a way to approach the probability P (X) and the production of
marginal probability

∏n
i=1
∏m
j=1 P (xij) from the biased information we know.

The probability of the matrix X with constraints ~C(X) to appear in the signal
generation is decided by the number of configurations Ω ~C(X) in it. The microcanoni-
cal ensemble description strictly satisfies the requirement of signal generation. Thus,
when the constraints are fixed, the probability P (X) in the definition of total corre-
lations can be replaced by the probability of states in the microcanonical ensemble
description as

P (X) = Pmic(X|~C∗). (5.13)

The production of each unit’s marginal probability in Eq.5.12 is based on the as-
sumption that the probability of each unit P (xji) can be calculated independently.
However, when there is heterogeneous dependence, we can only use the canonical
ensemble to approach the production of marginal probabilities, as the canonical en-
semble has localized the dependencies of all the units in the sequence by the parameter
βji. Thus, we can have the production of the marginal probability of the matrix X
as

n∏
i=1

m∏
j=1

P (xji) = Pcan(X|~β∗). (5.14)

It is determined by the parameter ~β∗ and the corresponding constraints ~C(X) simul-
taneously.

Therefore, the total correlation in sequences with constraints ~C∗ (the hard con-
straints in microcanonical ensemble, and the average value of constraints in canonical
ensemble) can be approached by the relative entropy S(Pmic||Pcan) between the two
ensembles as

C = S(Pmic||Pcan) =
∑

X∈X
Pmic(X|~C∗) ln Pmic(X|~C∗)

Pcan(X|~β∗)
(5.15)

The probability of states in microcanonical ensemble with constraints not equal to
~C∗ is 0, so the total correlation also can be calculated as

C = lnPmic(X∗)− lnPcan(X∗), (5.16)

where X∗ represents sequence with constraints ~C∗ [27].
The Shanon entopy of the canonical ensemble is equal to Scan = lnPcan(X∗). The

Boltzmann entropy of the microcanonical ensembl equal to Smic = lnPmic(X∗).Thus,
the total correaltions C is the difference between the shannon entropy and Boltzmann
entropy of the sequences with heterogeneous dependencies.
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As the relative entropy density is the indicator of the measure ensemble nonequiv-
alence [8], the total correlation C of the matrices X also has a close relationship with
the EN in it.

Because the microcanonical entropy can be obtained by the covariance matrix of
constraints in the canonical ensemble, we can find that the total correlation also can
be calcualted by the covariance matrix of constraints in the canonical ensemble as

C = ln
√

det(2πΣ∗)− ln
K∏
k=1

[1 +O(1/λ∗k)]. (5.17)

This result shows that the extra information needs to describe states in the canoni-
cal ensemble is determined by the relative fluctuation between the constraints in the
canonical ensemble and the conjugate microcanonical ensemble. The bigger the fluc-
tuation, the more difference between the two ensembles. The more information we
need to store under the canonical ensemble description.

5.4 Classical information theory with ensemble de-
scription

As we already mentioned before, the ensemble description is an extension of the
classical information theory with heterogeneous dependencies. Thus, in this part, we
will show that the classical information theory is a particular case of the ensemble
description of information sequences.

First, we will introduce the typical description of signal generating in classical
information theory.

In classical information theory, there is a basic assumption that each unit in the
sequence is independent. Moreover, the probability distribution of each unit to get dif-
ferent values is the same (independent-identical-distribution). For example, in the bi-
nary information source x, the probability of the sequence A = [a1, a2, · · · , ai, · · · , an]
with t units equal to 1 is

P (A|t) = pt(1− p)n−t, (5.18)

where p is the probability of the information source x to have the value of 1, and t is
the total number of units with value 1 in the sequence.

When the length n of the sequence A goes to infinite, and the probability p of each
unit to get value 1 fixed, we can find the average number of units in the sequence A
to has value 1 is equal to 〈t〉 = t∗ = n× p. It is a manifestation of the large number
law.

The information that is generated by the information source x is carried by in-
formation sequences A in the typical set Tε. This typical set can be detected by the
AEP as

1
n

lnP (A|t) = t

n
ln p+ n− t

n
ln(1− p). (5.19)
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When the length n → ∞, the value of t
n in the rescaled proability 1

n lnP (A|t) will
equal to t∗

n = p. Thus, the limit of the rescaled probability is equal to

lim
n→∞

1
n

lnP (A|p) = p ln p+ (1− p) ln(1− p), (5.20)

which is the minus of the Shannon entropy of the information source x. The Shannon
entropy s(x) of the information source is equal to

s(x) = − t
∗

n
ln t
∗

n
− n− t∗

n
ln n− t

∗

n
. (5.21)

Therefore, the typical set Tε is the collection of all the sequences that satisfy the
following condition

Tε = {A|e−n(s(x)−ε) ≤ P (A) ≤ e−n(s(x)−ε)}. (5.22)

The space to store sequences in the typical set is equal to ln |Tε=0| = n× s(x). The
result shows one of the main results in Shannon’s information theory that the space
needs to store the information generated by the information source is decided by the
uncertainty of the information source, which is the Shannon entropy of the information
source x [33].

Next we will prove that the classical information theory is a particular case of the
canonical ensemble described information sequences with coupled constraints when
the parameter β∗ij is equal to each other as β∗, and m = 1. It is also can be described
by the canonical ensemble under global constraints t =

∑n
i=1 ai.

When use the canonical ensemble undee global constraints to describe the infor-
mation sequence in the classical information theory, the Hamiltonian of classical case
is equal to H(A) = t · β∗. The partition function is equal to Z(β∗) = (1 + e−β

∗
)n.

Probability of the sequence with global constraint equal to t is

Pcan(A|(β∗, t)) =
e−tβ

∗

(1 + e−β∗)n
. (5.23)

The soft constraints require the average value of global constraints in the canonical
ensemble equals to t∗ as

〈t〉can =
∑

A∈Xcan

t(A)Pcan(A|β∗, t) = t∗. (5.24)

Thus, the probability of unit ai to have the value of 1 in the canonical ensemble is
equal to

p =
e−β

∗

1 + e−β∗
=
t∗

n
. (5.25)

The Shannon entropy of the information source under canonical ensemble description
is equal to

scan(x) = −[
t∗

n
ln t
∗

n
+
n− t∗

n
ln n− t

∗

n
]. (5.26)
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Hence, the typical set of sequences in the classical information theory can be obtained
from the AEP as

lim
n→∞

1
n

lnPcan(A|β∗, t) =
1
n

n∑
i=1

ln p(ai)

→ E ln p(x)
= −scan(x),

(5.27)

The sequences in the typical set should satisfy the following condition

Tcan = {A|e−nscan(x)−ε ≤ P (A) ≤ e−nscan(x)+ε}. (5.28)

According to the relationship show in Eq.5.23, we find sequences that belong to the
typical set also can be represented by the Shannon entropy of the canonical ensemble.
As the sum of n rescaled entropy scan(x) is equal to

n× scan(x) =
t∗t
∗
(n− t∗)n−t∗

nn

= lnPcan(A|(β∗, t∗))
= Scan

(5.29)

Thus, the space to store the information carried by those sequences is equal to

ln |T can
ε | = Scan = n× s(x). (5.30)

The result of the canonical ensemble description is equivalent to the classical descrip-
tion of the information sources. It proves that when the interactions in the information
sequences are homogeneous, the classical description in information theory is a special
case of the canonical ensemble description.

Then we need to check what happens when we use the microcanonical ensemble
to describe the classical signal generating of the binary information source x. The mi-
crocanonical ensemble description is different from the canonical one. The probability
of these sequences with t∗ units have a value 1 can be obtained by the microcanonical
ensemble description as

Pmic(A|t∗) = 1/
(
n

t∗

)
. (5.31)

All the sequences in the microcanonical ensemble belong to the typical set Tmic of
it, so the smallest space needs to store the information carried by those sequences
ln |Tmic| is equal to the Boltzmann entropy of the microcanonical ensemble

ln |Tmic| = ln
(
n

t∗

)
= ln Ωmic = Smic, (5.32)

where Ωmic is the total number of sequences under this hard constraints t∗. We
can find that the canonical ensemble description showed above is equivalent to the
classical information theory when the i.i.d. assumption hold.
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The difference between the space to store the information carried by the sequences
in the two ensembles is equal to

ln |Tcan| − ln |Tmic| = Scan − Smic. (5.33)

It is the total correlations C in the sequence A

C =
∑
A∈A

Pmic(A|t∗) ln Pmic(A|t∗)
Pcan(A|θ∗)

. (5.34)

When it is rescaled n,

1
n

C =
1
n
[ln nn

t∗t
∗
(n− t∗)n−t∗

− ln
(
n

t∗

)
], (5.35)

It is equal to the relative entropy density between the two ensembles.
According to the Stirling approximation, the limit of the rescaled difference is

equal to 0
lim
n→∞

1
n

C = lim
n→∞

1
n
[
1
2 ln 2πt∗(1− t∗

n
)] = 0. (5.36)

It means the canonical ensemble will converge to the microcanonical one in the ther-
modynamic limit. It also shows that the limit of the information storage is the same
in the two ensemble descriptions.

In statistical physics, this is the measure-level ensemble equivlaence [8]. The
logarithm difference ln |Tcan| − ln |Tmic| is the relative entropy

ln |Tcan| − ln |Tmic| = Scan − Smic = S(Pmic||Pcan), (5.37)

which grows like o(n).
The microcanonical ensemble description has realized the constraints in the signal

generation exactly. The classical information theory under this case is a particular
example of the canonical ensemble. It means the effectiveness of the classical in-
formation theory is based on the EE between the microcanonical ensemble and the
canonical ensemble with the global constraints t∗.

5.5 Extensive number of constraints and ensemble
nonequivalence

As already strictly prov proved in Chapter 3, that the ensemble nonequivalence is
generally exist in the systems with extensive local constraints. When we use K
to represents the numbers of constraints in a systems. In the matrix under global
constraints, there is only one constraint, K = 1. When the m× n matrix is under
row local constraits, there is m constraints in it, K = m. If the matrix is under
column local constraints, then there is K = n constraints in it. The matrix under
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coupled local constraints has K = m+ n constraints. The extension of constraints in
the matrix X is a localization of dependencies in information sequences. According to
the canonical ensemble description, the units in the matrix under global constraints
have a homogeneous interactions. When the matrix are under row local constraints,
the units can be divided into m parts and each part have the same interactions.
Obviously, when the m× n matrix under coupled constraints, the interactions have
be localized to each unit.

The classical information theory is a special case of the global constrained canoni-
cal ensemble description, when the matrix X only has one row m = 1 and n columns,
t =

∑n
i=1 x1i [27]. It is under EE, and the limit of information storage in the two

ensemble descriptions is equivalent.
The single generation by the m independent variables with different probability

distribution in the network information theory is an m extension of the global con-
strained classical information theory. We can use the matrix with the finite row local
constraints ~r to describe the sequences generated by the i.i.d multivariate information
source in the network information theory [27, 30]. There are K = m constraints in
it. It is also under EE. We can find the description of it in Appendix 5.A.

If we only focus on the spatial dependences, there will be n constraints in the
sequence, K = n. The sequences generated by this non-stationary process can be
represented by the states of the matrices with local column constraint ~c. According
to Stirling’s approximation, the limit of rescaled total correlations is bigger than 0 as

lim
n→∞

1
n

n∑
i=1

[
1
2 ln 2πc∗i (1−

c∗i
m
)] > 0. (5.38)

Sequences with this spatial dependence are under EN. Details of proof are in Appendix
5.B.

The coupled local constraints are the two kinds of dependences work simultane-
ously, ~C(X) = [~c,~r]. There are K = m+ n constraints in it. The probability of the
microcanonical ensemble is difficult to calculate, but we can still get the conjugate
canonical probability as

Pcan(X|~θ∗) =
n∏
i=1

m∏
j=1

e
−(α∗i+β

∗
j )xji

e
−(α∗i+β

∗
j ) + 1

. (5.39)

According to the results in [27], those sequences are also under EN.
The constraints’ extension has two paths: the first one is from global to row-local

constraints, then coupled local constraints, the second one is from global to column-
local constraints, then to the coupled local constraints. As we already know, both of
the two paths will break the EE, but the difference in the two paths will show which
kind of dependence subleading the breaking of EE.

In order to check how is the total correlation will change when the constraint is
extended in the system, we set a series of models with homogeneous dependencies.
The homogeneous spatial interaction means the ci in the column local constraint is
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equal to each other as c∗. The homogeneous temporal dependencies need each element
in the row local constraints equal to each other as rj = r∗. And the global constraint
is equal to t∗ = n× c∗ = m× r∗. All the three special cases can be described by
coupled constraints matrix ensemble with different definitions of Hamilotonian. Thus,
we have a series of models where the spatial interactions and temporal dependencies
are homogeneous but still under extensive local constraints.

The signal generation by multivariate information source under the same temporal
dependencies should have the same value with row local constraint r∗j = r∗. The
canonical entropy of this matrix ensemble is equal to

S
(K=m)
can = m× ln nn

r∗r
∗
(n− r∗)n−r∗

. (5.40)

As we already mentioned before, it is a m times linear extension of the single inde-
pendent identical signal generating in the classical information theory, and it is under
EE.

In information sequences with homogeneous spatial interactions in the information
sources, the canonical entropy should equal to

SK=n
can = n× ln nn

r∗r
∗
(n− r∗)n−r∗

. (5.41)

It is equivalent to the signal generated by the multivariate information source with
an identical probability distribution, but variables in the information source are not
independent. It has nonneglected dependencies among them.

If the homogeneous spatial interactions and temporal dependencies work simulta-
neously, information sequences with these coupled constraints have the same column
and row local constraint as c∗i = c∗, r∗j = r∗. The canonical entropy of this matrix
ensemble should equal to

S
(K=m+n)
can = n× ln mm

c∗c
∗
(m− c∗)m−c∗

(5.42)

when we focus on the spatial interactions.
The canonical entropy is equal to

S
(K=m+n)
can = m× ln nn

r∗r
∗
(n− r∗)n−r∗

(5.43)

when the calculation is focused on the temporal dependencies. It is also equivalent
to the matrix ensemble with one side column local constraints,

Canonical entropies show above are all equivalent to the one with global constraints
t∗, when the r∗ is replaced by r∗ = t∗/m, or the c∗ is replaced by c∗ = t∗/n. It shows
that the canonical ensemble description of information Sequences under four different
local constraints that are implied by the homogeneous dependencies are equivalent to
each other,

S
(K=1)
can = S

(K=m)
can = S

(K=n)
can = S

(K=m+n)
can . (5.44)
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Thus, under soft constraints, the four homogeneous signal generations have the same
information-theoretical bounds. The space to store the information generated by it
is the same.

However, the Boltzmann entropy of information sequences with the four different
dependences is different. Under the global constraint, it is equal to

S
(K=1)
mic = ln

(
mn

t∗

)
. (5.45)

Under row-local constraints, the Boltzmann entropy is equal to

S
(K=m)
mic = m× ln

(
n

r∗

)
. (5.46)

When it is under column-local constraints, the Boltzmann entropy is equal to

S
(K=n)
mic = n× ln

(
m

c∗

)
. (5.47)

When the two dependence is working Simultaneously, the Boltzmann entropy of the
hard constrained sequences is difficult to calculate, but we can still get the approx-
imation by the Eq (5.11), and the value of it is smaller than S

(K=n)
mic . Thus, the

relationship between the four Boltzmann entropy is

S
(K=1)
mic > S

(K=m)
mic > S

(K=n)
mic > S

(K=m+n)
mic . (5.48)

The relationship between the breaking of ensemble equivalence and the extension of
constraints is shown in Fig.5.2.

These results show above proved that the temporal dependence of each indepen-
dent variable in information sources is not enough to break the EE between the hard
and soft constraint’s description of information sequences. This EE allows classical in-
formation theory can be applied in the independent multivariate information sources
system to estimate the limit of information storage [30].

5.6 Information transmission with coupled sources
In classical information theory, the maximum speed of reliable information transmis-
sion through a channel is the channel capacity. It is the other vital bounds of the
information theory, and it is equal to the mutual information between the information
source x and the received signal y [33].

To transport the information carried by matrix X with local constraints, we still
need to code it by codes G with length L. In the receiver, we will receive a matrix
Y. The information we will transport through this channel is equal to L×R, and it
is decided by the uncertainty from the channel H(X|Y) and the information carried
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Figure 5.2. The relationship between the constraints’ extension and the breaking of EE
is shown in (a). The extension of constraints in matrix described systems have two paths.
First, the constraints is extend from global constraint to row local constraints then to cou-
pled constraints. The other path is the extendtion from global constraints to column local
constraints then coupled constraints. Systems are still under EE when the constraints extend
from global to row local constraints (K = 1 → K = m), but when the constraints extend
to the coupled local constraints from row local constraints K = m → K = m+ n, the EE
is broken. On the other path, the extension of global constraint to column local constraints
already breaks the EE. Obviously, the extension from column local constraints to coupled
local constraints is already under EN. This result shows that the extension of global con-
straints to finite numbers local constraints is not enough to break the EE. Only when the
extension of local constraints has the same order as the increasing of system’s size, or even
faster, EE will break by the extension of constraints. On the other hand, the relationship
between the canonical entropy and microcanonical entropy of the systems with extensive
constraints under homogeneous dependencies in (b) shows that the non-vanished fluctuation
of the constraints in the canonical ensemble does not lead to the breaking of EE. The EN
is formed by the reduction of possible configurations of sequences in the microcanonical en-
semble. Because the canonical ensemble with soft constraints has the same Shannon entropy
when it is under homogeneous local and global constraints. But the Boltzmann entropy of
the microcanonical ensemble with hard constraints is declined.
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by the sequences X sent to the receiver I(X; Y). Thus, we will have the relationship
as

L×R = H(X|Y) + I(X; Y) ≥ S(X). (5.49)

In the zero-error channel, the matrix we received Y is the matrix we sent X, the
value of H(X|Y) = 0, the mutual information I(X; Y) = S(X), then the effective
information we need transport is equal to the Shannon entropy of the sequence S(X).
When the message we received is a random matrix, the mutual information I(X; Y) =
0, but the channel uncertainty is equal to H(X|Y) = S(X).

Both in the two cases, the smallest information needs to transport are all decided
by the entropy of the sequences S(X). Thus, the symbol rate R = S(G)/L or the
channel capacity is also affected by the hard or soft constraints in this signal generation
process. When using the microcanonical to describe the sequences, the Boltzmann
entropy Smic is smaller than the Shannon entropy in the conjugate canonical ensemble
Scan. Thus, the symbol rate Rmic needs for the microcanonical ensemble is smaller
than the symbol rate Rcan,

Rmic ≤ Rcan. (5.50)

It means the microcanonical ensemble with local constraints is reliable than the canon-
ical ensemble one when we use the same channel to transport the information carried
by the sequences ensemble. Because it needs less information carried for each symbol
in the code, the system will have more redundancy.

5.7 Conclusions
The information is not only the bits that flow in the electronic communication systems.
It also generally exists in the natural systems, e.g., the activity of neurons in the
nervous system and the fluctuation of the financial system. The birth of classical
information theory ignores the interactions and dependencies among the information
sources, as it is limited by the initial structure of artificial communication systems.
However, this imperfection has been amplified when the classical information theory
is attempted to describe the signal generation in natural systems with heterogeneous
dependencies and interactions.

The existence of heterogeneous dependencies in the signal generation has broken
the i.i.d assumption in the classical information theory, which is the cornerstone of the
finding that the uncertainty of information sources decides the limit of the information
storage. Thus, finding the information-theoretical bounds (i.e., the limit of informa-
tion storage and channel capacity) of the natural signal generation should focus on
the information sequences, not the interacting and temporal dependent information
source.

The information sequence with heterogeneous interactions has an extensive length.
It is analogous to the state in the thermodynamic system. That is why statistical
ensembles can be used to describe the information sequences in this work.
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In ensemble descriptions of the information sequence, the heterogeneous depen-
dencies imply local constraints in the statistical ensemble. The microcanonical en-
semble description requires all the local constraints fixed in the information sequences
generated by the heterogeneous interacting information sources. It is closer to the
real process of signal generation in natural systems. On the contrary, the canonical
ensemble description is a maximum entropy approximation of the signal generation.
The total correlation is equal to the relative entropy between the microcanonical and
canonical ensemble, which is the indicator of the measure level EN. It means the EN
appearance in the heterogeneous interacted signal generation also has a connection
with the degree of dependences among the units in it.

The sequences described by the microcanonical ensemble with hard local con-
straints need less space to store the information carried by them compared with the
canonical one. In the information transmission, the microcanonical ensemble also
needs a lower symbol rate to transport the information than the canonical ensemble.
Both results show that the microcanonical ensemble description is better than the
canonical one from the limit of information storage. However, the probability distri-
bution of the microcanonical ensemble is mathematically difficult to calculate than
the canonical ensemble. Thus, when we want to build a communication system with a
multi-coupled source, we still need to consider the trade-off between the cost of calcu-
lation to maintain the hard constraints in the microcanonical ensemble and the waste
of space and channel capacity to use the canonical ensemble with soft constraints.

We also find that the classical information theory under the i.i.d. assumption is a
special case of the canonical ensemble description when the column-local constraints
have the same value or when the sequences have homogeneous spatial dependence.
The effectiveness of the classical information theory is based on the EE between the
canonical ensemble and the natural signal generation.

This non-stationary process also gives a chance to learn how is the extension of
constraints causes EN in a system. From the canonical ensemble description, the
global constraints and two different local constraints are special cases of the coupled
constraints matrix ensemble. The extension of constraints in it has two paths. The
first one is from global constraints to row local constraints then coupled constraints.
The second one is from global constraints to column local constraints, then coupled
constraints. The matrix under global constraints and finite row local constraints is in
the EE. However, this equivalence will break when there are column-local constraints
and coupled constraints. The column-local constraints are used to describe the spatial
interaction among the units in the information source. Thus, the EN in sequences is
caused by the spatial interactions among the units in the signal generation, not the
temporal dependence of finite independent variables in the information source. Even
the row local constraints also have influences on all the units in sequences.

The same Shannon entropy and the decreased Boltzmann entropy in the process
of constraints’ extention illustrate that the breaking of EE is caused by the reduction
of the possible configurations in the microcanonical ensemble when there are homo-
geneous dependencies. This mechanism is different from the traditional one, which
shows that the EN is caused by the non-vanished fluctuation of constraints in the
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canonical ensemble. This finding extended our understanding of the EN in statistical
physics.
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Appendix 5.A Row local constraints and multivari-
ate independence source

There is m rows in the matrices X, which means there are m units in the information
source. The signal generation of the multivariate independent information source is
under ensemble equivalence, as there is a finite number of local constraints in it, and
there is no phase transition in the information sequence [27]. This signal generation
still can be described by the classical information theory. Then according to the AEP,
we can find the limit of information storage.

The sequence generated by the information source ~x = [b1, b2, · · · , bj , · · · , bm] with
m independent variables is an m× n matrix B. As the m units in the information
source are independent with each other, the sequence B can be divided into m row
vectors B = {~R1; ~R2; · · · ; ~Rm}. Each row vectors ~Rj of the matrix B has n elements
in it. According to the classical information theory, the m i.i.d. random variables
may have different probability to get different value, so the probability of sequence B
to appear in the signal generation is equal to

P (B) =
m∏
j=1

P ( ~Rj) =
m∏
j=1

p
rj
j (1− pj)n−rj . (5.51)

Here we still focus on the binary information sequence. Thus, pj is the probability of
each unit in row j to have value 1. The rj is the number of units in row j to have a
value of 1, and it will affect the process of signal generating when different constraints
model it.

The value of pj can be obtained by the average value of total units with value 1
in each row as pj = r∗j/n. When the jth variable is represented by bj , then the AEP
will be generalized as

1
n

lnP (B) =
m∑
j=1

[
r∗j
n

ln r
∗
i

n
+
n− r∗j
n

ln
n− r∗j
n

]

→ −
m∑
j=1

s(bj)

(5.52)

Sequences belonging to the typical set of this system with multivariate independence
information source should satisfy the following condition

Tε = {B|e
−n
∑m

j=1 s(bj )−ε ≤ P (B) ≤ e−n
∑m

j=1 s(bj )+ε}. (5.53)

The space to store the information carried by it is equal to

ln |Tε| = n×
m∑
j=1

s(bj). (5.54)
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This result shows that the uncertainty of the information source still decides the limit
of information storage. Even there are m independent variables in it.

Next, we will introduce the ensemble description of the information sequence gen-
erated by the multivariate independent information sources.

Canonical ensemble description- The information sequence B generated by
the independent variables with different probability distribution can be modeled by
the matrix X with the row local constraints ~r(X) = [r∗1, r∗2, · · · , r∗m], where r∗j =∑n
i=1 xji. The maximum likelihood parameter ~β = [β∗1 ,β∗2 , · · · ,β∗m] has m elements.

The Hamiltonian is still the linear combination of the constraints and parameters
H(X) =

∑m
j=1 β

∗
j r
∗
j . In the binary case, the partition function of this matrix ensemble

is

Z(~β) =
m∏
j=1

(1 + e
−β∗j )n. (5.55)

Then we can have the canonical probability of the state X with row local constraints
~r(X) as

Pcan(X) =
m∏
j=1

e
−β∗j r

∗
j

(1 + e
−β∗j )n

. (5.56)

The parameter β∗j is decided by the corresponding average value of row local con-
straints 〈rj〉.

Space to store the information carried by the information sequences B still can be
quantified by the AEP. The rescaled logarithm of the probability is equal to

1
n

lnPcan(X) =
1
n

m∑
j=1

n∑
i=1

ln e
−β∗j xji

1 + e
−β∗j

. (5.57)

When the length n goes to infinite, the probability of the units in jth row to have
value 1 is equal to average value of xji as

〈xji〉 =
e
−β∗j

1 + e
−β∗j

=
r∗j
n

. (5.58)

The sum of the logarithms of the probability for the m× n units will equal the sum
of the m variables Shannon entropy

lim
n→∞

1
n

lnPcan(X) = lim
n→∞

m∑
j=1

[
r∗j
n

ln
r∗j
n

+
n− r∗j
n

ln
n− r∗j
n

]

→
m∑
j=1

s(bj).
(5.59)

Then space to store the information carried by the sequences in the typical set T ε=0
can ,

which satisfy the following condition

T ε=0
can = {X|Pcan(X) = e

n
∑m

j=1 s(bj )} (5.60)
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The logarithm of the number of sequence in the typical set also equal to ln |Tcan| =
n
∑m
j=1 s(bj), which is the Shannon entropy of the sequences Scan(X)

ln |T ε=0
can | = Scan(X) =

m∑
j=1

ln[ nn

r∗j
r∗j (n− r∗j )

n−r∗j
]. (5.61)

It is equal to the ln |Tε| = n×
∑m
j=1 s(bj) in the classical information theory. This

result shows that the method in the classical information theory is a particular case
of the canonical ensemble description.

Microcanonical ensemble description- The microcanonical ensemble under
the hard constraints needs the total number of units with the value 1 in each row of all
the sequences X are fixed the same as ~r∗ = [r∗1, r∗2, · · · , r∗j , · · · , r∗m]. The probability
of each sequence decided by the total number of configurations of this local row
constrained sequences with constraints ~r∗ as

Pmic(X) = 1/
m∏
j=1

(
n

r∗j

)
. (5.62)

All the sequences in the microcanonical ensemble belong to the typical set of it, the
space to store the information carried by it is equal to the Boltzmann entropy of the
sequences as

ln |T (~r∗)
mic | =

m∑
j=1

ln
(
n

r∗j

)
= ln Ω~r∗ . (5.63)

The rescaled difference between the logarithm of the two ensemble’s probability is
close to the rescaled total correaltions 1

nC as

1
n

C =
1
n

m∑
j=1

[ln nn

r∗j
r∗j (n− r∗j )

n−r∗j
− ln

(
n

r∗j

)
] (5.64)

The asymptotic behaviour of 1
nC decided by m, in this work, m = o(n), thus the

limit of 1
nC is equal to 0 as

lim
n→∞

1
n

C = lim
n→∞

1
n

m∑
j=1

[
1
22πr∗j (1−

r∗j
n
)] = 0. (5.65)

The signal generalization by the classical independent multivariate information sources
is under ensemble equivalence. That is why we can still use the AEP in the estimation
of information-theoretical bounds.

Appendix 5.B Column local constraints and non-
stationary process

In the binary matrix X, when the constraints are the time-variation total energy can
be used by all the m units in different times, the process recorded by the matrices
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ensemble X is under column local constraints ~c∗(X) = [c∗1, c∗2, · · · c∗n]. At time i, the
constraint is the sum of all the units in column i of matrice X as c∗i =

∑m
j=1 xji. The

probability of the variable getting different values in the signal generation will change
with time, so applying the classical information theory in this process is impossible,
but we can still use the ensemble descriptions.

Microcanonical ensemble description- In the microcanonical ensemble de-
scription of sequences, the probability of each state is based on the total number of
configurations in it as

Pmic(X|~c∗) = 1/
n∏
i=1

(
m

c∗i

)
. (5.66)

Obviously, all the sequences with hard constraints still belong to the typical set of it,
so the space to store the information carried by it is equal to the Boltzmann entropy
of it as

ln |T (~c∗)
mic | = − lnPmic(X|~c∗) =

n∑
i=1

ln
(
m

c∗i

)
. (5.67)

This is the smallest space need to store the information generated under the con-
straints ~c∗.

Canonical ensemble description- We need the canonical ensemble to describe
the sequences X with soft constraints. The correspond parameter ~α∗ = [α∗1, · · · ,α∗n]
has n elements in it. The Hamiltonian of the binary matrix still is a linear combination
of the parameter and constraints, H =

∑n
i=1 ciα

∗
i . The partition function is equal to

Z(~α∗) =
n∏
i=1

(e−α
∗
i + 1)m, (5.68)

and the probability of each sequence in the system is equal to

Pcan(X|~α∗) =
n∏
i=1

e−α
∗
i ci

(e−α
∗
i + 1)m

. (5.69)

The average value of xji equal to

〈xji〉 =
e−α

∗
i

e−α
∗
i + 1

=
c∗i
m

. (5.70)

This condition imply the relationship between the parameter α∗i and the correspond-
ing constraints c∗i as

e−α
∗
i =

c∗i
m− c∗i

. (5.71)

The space to store the information carried by it can not be approached by the AEP,
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but we can find the Shannon entropy of the whole sequences as

Scan =
n∑
i=1

α∗i c
∗
i + lnZ(~α∗)

=
n∑
i=1

[−c∗i ln c∗i
m− c∗i

+m ln m

m− c∗i
]

=
n∑
i=1

[ln mm

c∗i
c∗i (m− c∗i )

m−c∗i
].

(5.72)

Under this constraint, it is difficult to find the typical set of the sequences by the
classical information theory, but we can still find the difference of the rescaled loga-
rithm of the probability between microcanonical and canonical ensemble is equal to
the rescaled total correlations in the sequence as 1

n ln Pmic(D)
Pcan(D)

= 1
nC, which is equal

to
1
n

C =
1
n

n∑
i=1

[ln mm

c∗i
c∗i (m− c∗i )

m−c∗i
− ln

(
m

c∗i

)
]. (5.73)

As we already know the total correlations is equal to the relative entropy, thus the
difference between the rescaled logarithm of the probability is equal to the relative
entropy density as 1

nC = 1
nS(Pmic||Pcan). When the value of n goes to infinite, the

limit
lim
n→∞

1
n

C = O(n) > 0, (5.74)

so this signal generation is under ensemble nonequivalence.
The total correlation between the microcanonical ensemble and canonical ensemble

of the matrix X with column local constraints ~c∗ grows like O(n) in the thermody-
namic limit. It means the information carried by the typical set of the two ensemble
descriptions is different under the spatial interactions. This difference also manifested
in the appearance of measure level ensemble nonequivalence in it.

Appendix 5.C Coupled local constraints and multi-
coupled process

In the former two subsections, we have introduced the ensemble description of the
information generating with independent spatial or temporal dependencies. They are
modelled by the matrix ensemble with local column or row constraints. In this subsec-
tion, we will study what will happens when the two constraints work simultaneously
~C(X) = [~c,~r].

Canonical ensemble description- As we know, under the coupled local con-
straints, the maximum likelihood parameter will be ~θ = [~α, ~β]. The constraint ~c is
the local column constraints. The ~r is the local row constraints. The corresponding
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parameters ~θ also comes from the maximum likelihood parameter of row and column
local constraints. The Hamiltonian is still the linear combination of constraints and
parameters as

H =
n∑
i=1

m∑
j=1

(αi + βj)xji. (5.75)

We still focus on the binary matrix, so the partition function of these sequences with
coupled local constraints is

Z(~θ) =
n∏
i=1

m∏
j=1

[e−(αi+βj ) + 1]. (5.76)

Probability of the sequence X to appears in the signal generating process is equal to

Pcan(X) =
n∏
i=1

m∏
j=1

e
−(α∗i+β

∗
j )xji

e
−(α∗i+β

∗
j ) + 1

. (5.77)

The probability of each unit in matrix X is decided by the value of xji and the
corresponding parameter αi and βj . The smallest space needs to store the information
carried by them is still equal to the Shannon entropy of it as

Scan =
n∑
i=1

m∑
j=1

(αi + βj)〈xji〉+ lnZ(~θ). (5.78)

The average value of xji is difficult to get exactly, but we can still find the exact value
of it under the special setting of the constraints.

Appendix 5.D Homogeneous dependencies under dif-
ferent constraints

As a special case of heterogeneous dependencies, homogeneous dependencies gives a
chance for us to check what will happens when the canonical ensemble descriptions are
equivalent under different constraints, but the microcanonical ensemble descriptions
are different. Obviously, the global constraints and one-sided local constraints (both
the column and row local constraints) are all the special cases of the coupled con-
straints under homogeneous dependencies. Thus, in this part, we will introduce the
coupled constrained ensemble descriptions of the signal generation with homogeneous
dependencies under different constraints.

5.D.1 Global constraint t∗

The canonical ensemble description of the information sequence under global con-
straints is a special case of the coupled local constraints when there is only one con-
straint, and the corresponding maximum likelihood parameter is equal to α∗ + β∗.
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The Hamiltonian of it is equal to

H =
n∑
i=1

m∑
j=1

(α∗ + β∗)xji. (5.79)

The partition function will be

Z(θ∗) =
n∏
i=1

m∏
j=1

[e−(α
∗+β∗) + 1] = [e−(α

∗+β∗) + 1]mn. (5.80)

The probability of the states under this special case is equal to

Pcan(X) =
e
−
∑m

j=1

∑n

i=1(α
∗+β∗)xji

[e−(α
∗+β∗) + 1]mn

. (5.81)

When the sum of all elements in sequence is equal to t, the probability of X to
appears in the signal generation is equal to that in the canonical ensemble with global
constraints t∗ as

Pcan(X) =
e−(α

∗+β∗)t

[e−(α
∗+β∗) + 1]mn

. (5.82)

When the average value of the total number of units in the information sequence
with value 1 〈t〉 = t∗ as

〈t〉 =
∑

X∈X
t(X)Pcan(X) = t∗. (5.83)

We can have the parameter α∗ + β∗ is equal to

e−(α
∗+β∗) =

t∗

mn− t∗
. (5.84)

Then we can find the Shannon entropy of the information sequence with the number
of constraints equal to 1 is equal to lnPcan(X|t∗) as

S
(K=1)
can = ln mnmn

t∗t
∗
(mn− t∗)mn−t∗

. (5.85)

Then microcanonical ensemble description of the information sequence with global
constraints t∗ have Ωt∗ states in it. Thus, the probability of each state in it is equal
to

Pmic(X|t∗) =
1

Ωt∗
= 1/

(
mn

t∗

)
. (5.86)

Therefore, the Boltzmann entropy of the microcanonical ensemble with global con-
straints is equal to

S
(K=1)
mic = ln

(
mn

t∗

)
(5.87)
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According to Stirling’s approximation and the results in [27], the difference between
the Shannon entropy of canonical and the microcanonical ensemble is equal to

S
(K=1)
can − S(K=1)

mic =
1
2 ln

[
2πt∗

(
1− t∗

±mn

)]
[1 + o(1)] . (5.88)

Thus, it is under ensemble equivalence.

5.D.2 Row local constraints
When we use r∗ = t∗/m as the row local constraints, there are m constraints in the
information sequence. It also can be model by the matrix with coupled constraints,
when the elements in the column local constraints is equal to each other as c∗i = c∗

but the elements in the row local constraints is ~r∗. We will have another special
case of the coupled constrained ensemble description, which is that the interactions
among all the units in the information sources are identified in the whole process of
signal generating, but the temporal dependence of each unit is different. Then the
corresponding parameter will change as α∗i = α∗. Thus, the Hamiltonian of this
special case will be

H =
n∑
i=1

m∑
j=1

(α∗ + β∗j )xji. (5.89)

The partition function of this coupled local constraints sequences will be

Z(~θ∗) =
n∏
i=1

m∏
j=1

[e−(α
∗+β∗j ) + 1]. (5.90)

We can get the probability of states in the sequences under this special constraints as

Pcam(X|~θ∗) =
n∏
i=1

m∏
j=1

e
−(α∗+β∗j )xji

e
−(α∗+β∗j ) + 1

. (5.91)

Because each element in the column local constraints are equal to each other as
c∗i = c∗, the average value of xji in this sequence is equal to

〈xji〉 =
e
−(α∗+β∗j )

e
−(α∗+β∗j ) + 1

=
r∗j
n

. (5.92)

It implies the relationship between α∗ + β∗j and r∗j as

e
−(α∗+β∗j ) =

r∗j
n− r∗j

. (5.93)
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The Shannon entropy of this sequences under this local constraints is equal to

S
(K=m)
can = lnPcan(X∗|~θ∗)

=
n∑
i=1

m∑
j=1

[(α∗ + β∗j )〈xji〉] + lnZ(~θ∗)

=
n∑
i=1

m∑
j=1

[−
r∗j
n

ln
r∗j

n− r∗j
] + lnZ(~θ∗)

=
n∑
i=1

m∑
j=1

[−
r∗j
n

ln
r∗j

n− r∗j
+ ln n

n− r∗j
]

=
m∑
j=1

[−r∗j ln
r∗j

n− r∗j
+ ln nn

(n− r∗j )n
]

=
m∑
j=1

[ln nn

r∗j
r∗j (n− r∗j )

n−r∗j
],

(5.94)

It also equals the Shannon entropy of the sequences under one-sided row local con-
straints.

The microcanonical ensemble description of this special case is equal to the one
where there are only row local constraints in the information sequence. Thus, we can
have the Boltzmann entropy of this information source as

S
(K=m)
mic =

m∑
j=1

ln
(
n

r∗j

)
(5.95)

It is also under ensemble equivalence [27].

5.D.3 Column local constraints
When all the elements in the row constraints is equal to each other as r∗j = r∗, the
column local constraints still remain as ~c∗, the corresponding maximum likelihood
parameter will be ~θ∗ = [~α∗, ~β∗], but all the elements in ~β∗ is equal to each other as
β∗j = β∗. Then the Hamiltonian of this coupled constrained canonical ensemble will
be

H =
n∑
i=1

m∑
j=1

(α∗i + β∗)xji. (5.96)

The partition function need to consider all the possible configurations as

Z(~θ∗) =
n∏
i=1

m∏
j=1

[e−(α
∗
i+β

∗) + 1]. (5.97)
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Probability of states under this constraint is equal to

Pcam(X|~θ∗) =
n∏
i=1

m∏
j=1

e−(α
∗
i+β

∗)xji

e−(α
∗
i+β

∗) + 1
. (5.98)

The average value of each element 〈xij〉 is

〈xij〉 =
e−(α

∗
i+β

∗)

e−(α
∗
i+β

∗) + 1
. (5.99)

Each element in the row local constraints is equal to each other as r∗j = r∗, so the
average value of element xji should also equal to the c∗i

m . Thus, we will have the
relationship follows

e−(α
∗
i+β

∗)

e−(α
∗
i+β

∗) + 1
=
c∗i
m

, e−(α∗i+β∗) = c∗i
m− c∗i

. (5.100)

The smallest space to store the information carried by the canonical ensemble de-
scribed sequences is equal to the Shannon entropy of it as

S
(K=n)
can = lnPcam(X∗|~θ∗)

= ~C∗ · ~θ∗ + lnZ(~θ∗)

=
n∑
i=1

m∑
j=1

[(α∗i + β∗)
e−(α

∗
i+β

∗)

e−(α
∗
i+β

∗) + 1

+ ln[e−(α∗i+β∗) + 1]]

=
n∑
i=1

m∑
j=1

[−
c∗i
m

ln c∗i
m− c∗i

+ ln m

m− c∗i
]

=
n∑
i=1

[− ln c∗i
c∗i

(m− c∗i )
c∗i

+ ln mm

(m− c∗i )m
]

=
n∑
i=1

ln mm

c∗i
c∗i (m− c∗i )

m−c∗i
,

(5.101)

It is the same as the Shannon entropy of the sequences under soft constraints when
there is only column local constraints ~c∗.

The microcanonical ensemble description is also equal to the one when there only
has column-local constraints. Therefore, the entropy of this microcanonical ensemble
description is equal to

S
(K=n)
mic =

n∑
i=1

ln
(
m

c∗i

)
. (5.102)

According to the results in section 5.B, this coupled constrianted information sequence
is under ensemble nonequivlaence.
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