
Statistical physics and information theory for systems with
local constraints
Zhang, Q.

Citation
Zhang, Q. (2021, December 1). Statistical physics and information theory for
systems with local constraints. Casimir PhD Series. Retrieved from
https://hdl.handle.net/1887/3244220
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3244220
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3244220


Chapter 4

New information-theoretic
bounds for systems with local
constraints

Abstract
The information-theoretic bounds are the limit of space to store the information
generated by the information source and the limit of speed to reliable transmit infor-
mation through a channel. In classical information theory, those bounds are deter-
mined by the Shannon entropy of the information sources. However, recent research
shows that information sources in non-physical systems such as social networks or
nervous systems are not a single variable with finite outcomes but a composition of
numerous interacting units. Furthermore, these heterogeneous dependencies imply
local constraints in those information sources. Thus, to find the new information-
theoretical bounds of them, statistical ensembles with local constraints are used to
describe those new information sources in this work. We find that under ensemble
equivalence, information-theoretical bounds of information sources described by dif-
ferent statistical ensembles are equivalent. When heterogeneous dependencies implied
local constraints break the ensemble equivalence, the information storage space of the
information source described by the microcanonical ensemble with hard constraints
is smaller than that of the canonical ensemble one with soft constraints. The extra
sequences in the typical set of the canonical ensemble described sources have the same
sum of Hamiltonian with the microcanonical ensemble one. But the constraints of
each state in the sequence are not equal to hard constraints. Therefore, there is a
tradeoff between the choosing of different ensembles to describe those information
sources. Using the microcanonical one with hard constraints costs more calculation
to obtain the probability distribution but requires less information storage space.
Choosing the canonical one needs more space to store the information but requires
less calculation to hold the ’soft’ constraints1.

1This chapter is based on the coming paper:
Qi Zhang, Diego Garlaschelli, "New information-theoretic bounds for systems with local constraints"
(2021)
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4.1 Introduction
The birth of modern information theory can be traced to 1948 when Shannon gave
the first quantifiable definition of information in his fundamental paper [33]. It is
believed to be promoted by the rapid progress of electronic communication systems
in the first half of the 20th century. When all the engineers in the communication
industry are desire to know what the smallest space needs to store the information
that is generated by different information sources, and what is the maximum speed of
reliable information transmission through a channel, i.e., the information-theoretical
bounds of the communication systems [29].

To find the information-theoretical bounds of the communication systems, Shan-
non creatively divides the communication systems into three parts: the information
source, the channel and the receiver. And all of them are described by the probability
theory, e.g., information sources and the receivers are described by random variables;
the channel used to transport the information is modelled by conditional probability.
The smallest space needs to store the information generated by information sources is
decided by the information entropy, which is the probabilistic uncertainty of the infor-
mation source [33]. The maximum speed of reliable information transmission (channel
capacity) is equal to the mutual information between the information source and re-
ceiver, which is determined by the conditional probability that is used to describe the
channel [29].

Compared with 1948, the information needs to store and transmit in natural and
artificial systems right now is much more complex, e.g., the activity of the neurons
in the nervous system [9], the appearing of retweets and comments in a social net-
work [36]. Information sources in these systems are not a single variable in the
traditional information theory. Instead, they have numerous units, and almost all
units are entangled with each other by different interactions. Thus, using the random
variables with finite outcomes to model those new information sources is impossible,
as the single variable can not describe the heterogeneous interactions among units.

Actually, signal generation by these information sources is not like the sampling
of a random variable. It is closer to the change of the particles’ status in the ther-
modynamic system under localized macroscopic properties [27]. Thus, the space to
store the information that is generated by the billions of users in Twitter when there
is break news in the real world, or the limit of information storage in the nervous
system like the brain is equivalent to the quantify of the macroscopic property in
thermodynamic systems with numerous particles. Fortunately, the signal generation
at different times by those new information sources are still independent. Thus, we
can not use the random variable with finite outcomes to describe those information
sources. But we can use statistical ensembles from statistical physics to describe the
status change of those heterogeneous interacted units and find the new information-
theoretical bounds [1, 37, 27, 28].

In statistical physics, statistical ensembles are introduced by Gibbs to model the
macroscopic properties of the numerous particles in the thermodynamic system from
microscopic behaviour of them based on the probability theory [1]. In traditional
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statistical physics, the particles are identical, and this is why all the ensembles are
under global constraints, such as the fixed total energy or temperature. However,
in the new information sources, the heterogeneous interacted units are not identical.
The heterogeneous interactions among all units will imply local constraints. Thus,
to describe new information sources, we need the statistical ensembles with localized
macroscopic constraints [27].

In ensemble theory, systems with different constraints will be described by differ-
ent statistical ensembles [1]. The microcanonical ensemble is used to describe systems
with fixed total energy E∗, and the canonical ensemble is used to describe the system
with fixed temperature β = 1/KT , where K is the Boltzmann constant, T is the
absolute temperature. Obviously, from the energy isolation, the restriction in the mi-
crocanonical ensemble is harder than that in the canonical ensemble [15]. Thus, when
the local constraints implied by the heterogeneous interactions among the units in the
information sources have a different macroscopic property (hard or soft), the infor-
mation sources also need to be described by different statistical ensembles. When the
local constraints are hard, those information sources need to be described by the mi-
crocanonical ensemble. When the local constraints are soft, those information sources
need to be described by the canonical ensemble [26, 45]. The two ensembles will con-
jugate with each other by setting the parameter β = β∗ to make the average total
energy in the canonical ensemble equal to the fixed total energy in the microcanonical
ensemble,〈E〉 = E∗.

When the system has finite sizes, the two ensembles are certainly different. But
in the thermodynamic limit (number of particles goes to infinite), the fluctuation of
constraints in the canonical ensemble will vanish. The microcanonical ensemble can
be replaced by the canonical ensemble, which is mathematically easy to calculate [8].
This phenomenon is called ensemble equivalence (EE). The existence of EE also shows
that the information carried by different ensemble descriptions of the thermodynamic
system is the same. However, recent research on networks and system with long-range
interactions also show that in the boundary of phase transitions or when the system is
under extensive local constraints, this ensemble equivalence will be broken [8, 5, 27].
This ensemble nonequivalence (EN) will directly influence the information-theoretical
bounds of the new information sources with different statistical ensembles descriptions
under local constraints. As detecting the limits needs the length of the sequences used
to record the status changing in the information sources goes to infinite.

In Shannon’s setting, the information generated by the random variable described
information source is carried by the sequences use to record the status changing of the
information source, and most of the information is carried by equiprobable sequences
that belong to the typical set of it [29]. Thus, the smallest space of information
storage is determined by the size of the typical set. And the influence of ensemble
nonequivalence in information sources with heterogeneous interacted units will be
manifested by the difference between the typical sets of different ensembles.

In this chapter, the statistical ensembles with local constraints are used to de-
scribe the information sources with heterogeneous interacting units to find the new
information-theoretical bounds of them [27]. As the extensive local constraints in the
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new information source will lead the EN, we also need to check the influence of EN on
the new information-theoretical bounds. We find that the information storage space
of the microcanonical ensemble described information sources is smaller than the con-
jugate canonical ensemble one. As the typical set of the microcanonical ensemble is
smaller than the conjugate canonical ensemble. The extra sequences in the typical
set of the canonical ensemble have the same sum of Hamilitonian as sequences in the
typical set of the microcanonical ensemble. But the local constraints of information
sources are not the same. This result shows that using the microcanonical ensemble
with hard constraints to describe information sources with heterogeneous interacting
units needs less space to store the information generated by it than the conjugate
canonical ensembles. But it needs cost more power on the calculations to obtain the
probability distributions. Therefore, there is a tradeoff in the choosing of ensembles.
Using the microcanonical ensemble needs less information storage space but cost more
energy in the initial calculation. Using the canonical ensemble will reduce the energy
cost in the initial calculation but requires more information storage space.

4.2 Ensemble described information sources
To describe those new information sources, we need a reasonable mathematical model
to quantify the heterogeneous interactions. Actually, the quantification of interactions
among different units is not a new problem in scientific research. Networks model as a
specific case of the random matrix has already been widely used in different research
fields to describe those interactions [12, 14]. Thus, in the following discussion, infor-
mation sources with heterogeneous interacted units will be described by the random
matrix with marginal sums as local constraints [27]. According to the traditional
information theory, the limit of space to store the information generated by the ran-
dom variable described information source is determined by the uncertainty of the
information source. Therefore, to find new information-theoretical bounds, we also
need to find the probability distribution of possible states of the random matrix with
local constraints based on statistical ensembles.

According to statistical physics, the appearance of each state in the thermody-
namic system with numerous particles is random. But the different macroscopic
properties will determine the probability of each state’s presence. For example, in the
microcanonical ensemble, the total energy E∗ of each state is equal to each other, so
each state has the same probability. In the canonical ensemble, the total energy of
each state is different, but the temperature β∗ is fixed. Therefore, the probability of
each state in the canonical ensemble is determined by β∗ and the total energy of each
state [1]. Thus, the different macroscopic properties of local constraints will affect the
choice of ensembles to describe it.

Here, we use the n×m matrix G (m can equal to n) to represent the possible
configurations of the interacted units in the information sources [27]. Each unit gij
in the matrix G represents the degree of interaction in this system, and it will have
different physical means when there is a different definition of i and j. The con-
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straint of the matrix is ~C(G), and it is determined by the macroscopic property of
the interactions among units in the information sources If the interactions are homo-
geneous, the constraints will be global, which is is the sum of all units in the matrix,
C(G) =

∑n
i=1
∑m
j=1 gij . When interactions are heterogeneous, the constraints will

be localized as the column and row sum of the matrix ~C(G) = [~c,~r]. The column
local constraints is a vector withm units in it, ~c = [c1, c2, · · · , cj , · · · , cm], each unit is
the sum of all the elements in column j of matrix G as cj =

∑n
i=1 gij . This represents

the sum of one kind of property of all the particles in the information source. The row
constraints is ~r = [r1, r2, · · · , ri, · · · , rn], each unit is equal to ri =

∑m
j=1 gij [27]. It

represents the total influence of the particle i in the information source. Two examples
of information sources that need to be modelled by the matrix with local constraints
are shown in FIG.4.1

Figure 4.1. The left figure shows the retweets in social media. It can be treated as a
bipartite network, where the m users retweet the n users’ tweets, each gji here represents
retweet from user j to user i. The right figure shows the activity of the neurons in the
nervous system, i and j represents the spatial position of each neuron, gji here can be 0 or
1, to represents the activity of neurons in the position j, i. The local constraints in the two
information sources can be the sum of all the activated neurons in the specific region in the
nervous system or the fixed total number of retweets for each user in the social networks.
The changing of all the units’ state in the two systems is determined by the interactions with
each other.

To analytically get the details of the interactions among the numerous units is
difficult. Normally, we have the local constraints ~C(G) and the size of the information
sources. Thus, to obtain the probability distribution of the states of the information
source with the partial information, we need based on the maximum entropy principle
introduced by Jaynes [15].

As the macroscopic property of the constraints will decide the ensemble used to
describe it [7] so when the constraints are hard, each state of the information source
have the same value of constraints as ~C∗, the information source needs to be described
by the microcanonical ensemble. The probability of each state in the microcanonical
ensemble described information source Gmic is

Pmic(G) = Ω−1
~C∗

, (4.1)

where Ω ~C∗ = |{G ∈ Gmic : ~C(G) = ~C∗}| is the number of states in microcanonical
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ensemble with hard constraints ~C∗. The Shannon entropy of the microcanonical
ensemble Smic = ln Ω ~C∗ is also decided by the number of configurations in it.

If constraints are soft. Only the average value of the constraints in each state
of the ensemble is required to equal to the hard constraints in the microcanonical
ensemble as 〈~C(G)〉 = ~C∗, then the information source needs to be described by the
conjugate canonical ensemble. The probability of each state of the canonical ensemble
described information source Gcan is equal to

Pcan(G) = e−H(G,~β∗)/Z(~θ∗), (4.2)

where ~β∗ represnt parameters, which realize 〈C(G)〉~θ equal to C
∗ [15]. The partition

function Z(~β∗) is a normalization constant equal to Z(~β∗) =
∑
e−H(G,~β∗), which is

the sum of e−H(G,~β∗) of all the possible configuration of G in canonical ensemble. The
Hamiltonian H = ~C(G) · ~β∗ is a liner combination of the constraints and parameter
~β∗.

According to the definition of the partition function and the Hamiltonian, we can
rewrite the probability Pcan(G) as a product of all the interactions’ probability in the
information source as

Pcan(G) =
n∏
i=1

m∏
j=1

e
−β∗ijgij∑

gij∈g e
−β∗ijgij

(4.3)

where g is the collection of all possible configuration of gij [27]. It means the localized
interactions are independent. Thus, when the interaction is homogeneous, the param-
eter will be set equal to each other as β∗ij = β∗. And then, the canonical ensemble
is a n×m extension of the random variable. It means the classical description is a
special case of the canonical ensemble descriptions.

In traditional information theory, the information generated by random variable
described information sources are carried by sequences use to record the status chang-
ing of random variables [29]. In ensemble described information sources with local
constraints, the information generated by it is carried by ensemble sequences. When
using different ensembles to describe information sources, we will have different en-
semble sequences. The structure of the microcanonical ensemble sequences A(l)

mic and
canonical ensemble sequence A(l)

can with length l are shown in Fig.4.2.
The limit of information storage space is determined by the size of the correspond-

ing typical set.
Let G∗ denotes the state in the microcanonical ensemble with constraints ~C∗,

then probability of microcanonical ensemble sequence A(l)
mic is equal to

P (A(l)
mic) =

l∏
k=1

Pmic(G∗) = Ω−l~C∗ = e−lSmic . (4.4)

As each state have the same probability, so all the microcanonical ensemble sequences
have the same probability. According to the asymptotic equipartition property (AEP),
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Figure 4.2. As we mentioned before, the states of the new information source are analogue
to the recording of the behaviours of numerous particles. Thus, each ensemble sequence is
the recording of the interacting units’ behaviours in l times. In microcanonical ensemble
sequences A(l)

mic, each state G∗k have the same constraints ~C(G∗k) = ~C∗. But in canonical
ensemble sequences A(l)

can, the total energy of each state is different. The average value of the
constraints of all states should equal the hard constraints in the conjugate microcanonical
ensemble 〈~C(G)〉 = ~C∗.

microcanonical ensemble sequences have the same probability. Thus, all of them
belong to the typical set of it [29].

The number of ensemble sequences in typical set of the microcanonical ensemble
|T εmic| = 1/P (A(l)

mic) is equal to elSmic . The smallest space need to store the informa-
tion generated by the microcanonical ensemble described information source is equal
to

ln |T εmic| = l× Smic. (4.5)

It is connected with the possible number of configurations in the microcanonical
ensemble with hard constraints ~C∗.

The canonical ensemble sequence A(l)
can is generated by the canonical ensemble

Gcan. According to Jaynes’s work [15], the probability of each state in the canonical
ensemble should realize the average value of constraints equal to hard constraints
in the microcanonical ensemble as 〈~C(G)〉 = ~C∗, and maximization the Shannon
entropy Scan of it. Thus, probability of the canonical ensemble sequences A(l)

can still
equal to the production of all the l states as

P (A(l)
can) =

l∏
k=1

Pcan(Gk). (4.6)

The smallest space to store the information carried by the canonical ensemble se-
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quences A(l)
can still can be estimated by the AEP as

lim
l→∞

1
l

lnP (A(l)
can) = lim

l→∞

1
l

l∑
k=1

lnPcan(Gk)

→ E[lnPcan(G)]

= Scan.

(4.7)

The Scan is the Shannon entropy of the canonical ensemble. It is defined as Scan =
−
∑

G∈Gcan Pcan(G) lnPcan(G). When symbol 〈·〉 represents the average value, canon-
ical entropy Scan = 〈H + lnZ(~θ∗)〉 will equal to Scan = 〈~C〉 · ~θ∗ + lnZ(~θ∗). In the
setting of ensemble conjugation, the hard constraints equal to the average value of
soft constraints as 〈~C〉 = ~C∗. It makes the value of Scan equals to ~C∗ · ~θ∗ + lnZ(~θ∗),
which is only based on the probability of state G∗ and equal to logarithm of Pcan(G∗).

As not all states in the canonical ensemble have the same probability, thus the
probability of each canonical ensemble sequence may also be different. Therefore, to
find the limit of information storage for the canonical ensemble described information
source, we need to find the typical set of it. When use the ε to represent the bias be-
tween the canonical entropy function and the limit of the average value of lnPcan(G),
probability of canonical ensemble sequence in typical set A(l)

T εcan
have the property

e−l(Scan+ε) ≤ P (A(l)
T εcan

) ≤ e−l(Scan−ε). (4.8)

If the value of ε is equal to 0, then the ensemble sequences belong to the typical set
of canonical ensembles can be identified by the sum of Hamiltonian in the ensemble
sequences as

T ε=0
can = {A(l)

can|
l∑

k=1
H(Gk, ~θ∗) = l×H(G∗, ~θ∗)}. (4.9)

This result shows that all sequences in the typical set of the conjugate microcanonical
ensemble belong to the typical set of the canonical ensemble.

The number of ensemble sequences in the typical set is equal to |T ε=0
can | and the

smallest space needs to store the information is also equal to ln |T ε=0
can | as

ln |T ε=0
can | = l× Scan = l× [ ~C∗ · ~θ∗ + lnZ(~θ∗)]. (4.10)

The result shows that states in the canonical ensemble with constraints ~C(G) =
~C∗.determine the limit of information storage.

The generating of ensemble sequences by statistical ensembles with local con-
straints is independent. The space needs to store the information carried by the
different kinds of ensemble sequences still decided by the Shannon entropy of the
ensemble, which is used to describe the information source.
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4.3 Information storage under ensemble nonequiv-
alence

The measure-level ensemble equivalence is that the canonical probability distribution
converges to the conjugate microcanonical one in the thermodynamic limit [8]. Under
ensemble nonequivalence, there is always a difference between the two probability
distributions, even in the thermodynamic limit. Specifically, probability of states with
the constraints C∗ in the canonical ensemble is smaller than that in the microcanonical
ensemble Pmic(G∗) > Pcan(G∗). It is why the conjugate canonical ensemble always
has a bigger Shannon entropy than the microcanonical ensemble [45].

The measure-level ensemble nonequivalence is easy to be shown in the probability
distribution of the states as in FIG.4.3. And this difference can be quantified by the

Figure 4.3. Probability distribution of states in the microcanonical and conjugate canonical
ensemble under EE (a) and EN (b).

relative entropy between probability distributions of the microcanonical and canonical
ensemble as

S(Pmic||Pcan) =
∑

G∈Gcan

Pmic(G) ln Pmic(G)

Pcan(G)
. (4.11)

The probability of states in microcanonical with constraints ~C 6= ~C∗ is equal to 0, so
the relative entropy is decided by states in the two ensembles with constraints ~C∗.
And the value of it is equal to S(Pmic||Pcan) = lnPmic(G∗)− lnPcan(G∗), which is
the difference between the Shannon entropy of the two ensembles, S(Pmic||Pcan) =
Scan − Smic. It directly connects with the difference of the typical set’s size.

The relative entropy is difficult to obtain, as the value of Ω ~C∗ is hard to calculate.
However, according to the assumption that all the microscopic configurations in the
microcanonical ensemble are the subset of the conjugate canonical ensemble, the
number of configurations in the microcanonical ensemble can be estimated by the
δ-function as Ω ~C∗ =

∑
G∈G

´ ~π
−~π

d~ψ
(2π)K

ei
~ψ[ ~C∗− ~C(G)], which can be simplied as the

function of the canonical probability Ω ~C∗ =
´ +~π
−~π

d~ψ
(2π)K

P−1
can(G∗|~β∗ + i~ψ) [37].
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When the integration is hard to calculate we can still use the saddle-point tech-
nique to approach number of configurations in the microcanonical ensemble as

Ω ~C∗ =
eS
∗
can√

det(2πΣ∗)

K∏
k=1

[1 +O(1/λ∗k)], (4.12)

which is based on the covariance matrix of constraints Σ∗ [37]. Therefore, the relative
entropy between the microcanonical and canonical ensemble is equal to

S(Pmic||Pcan) =
1
2

W∑
w=1

ln 2πλ∗w
[1 +O(1/λ∗w)]2

, (4.13)

where λ∗w is the wth no-zero eigenvalue of the covariance matrix of constraints in the
canonical ensemble Σ∗, W is the total number of constraints in the systems. When
the matrix is under two-sided local constraints, the value of W = n+m [27].

Each entry Σ∗kl in the covariance matrix reprensents the covariance between local
constraints Ck and Cl, Σ∗kl = Cov[Ck,Cl]~β∗ . The constraint Ck or Cl here can be the
column local constraint r∗i or c∗j in the canonical ensemble. The value of Σ∗kl equal to

Σ∗kl =
∂2 lnZ(~β∗)
∂β∗
k
∂β∗
l

. It can be obtained from the partial differential of the logarithm of
partition function of the canonical ensemble lnZ(~θ∗). More details of the proofs can
be found in [37].

According to Eq.(4.5) and Eq.(4.10), we can find the difference between the size of
typical sets of different ensembles described information sources are connected with
the relative entropy between the ensembles. This relative entropy is the indicator
that is used to detect the measure-level ensemble nonequivalence. Thus, the EN in
the information sources will directly affect the information-theoretical bounds of the
new information sources.

As the Shannon entropy of the microcanonical ensemble is smaller than the con-
jugate canonical ensemble, the typical set of the microcanonical ensemble described
information sources is also smaller than the canonical ensemble one. It means using
the canonical ensemble to describe the information source with heterogeneous inter-
acting units needs extra space to store the sequences that belong to the typical set
of the canonical ensemble but not include in the typical set of the microcanonical
ensemble. Moreover, this extra space is determined by the relative entropy between
the two ensembles, or in other words, it will be affected by the degree of ensemble
nonequivalence. Especially when each unit in the information source has a finite de-
gree of freedom, there is a strong ensemble nonequivalence [27], the gap between the
limit of space to store the information generated by the different ensemble described
information source has the same order as the limit under the canonical ensemble
descriptions.

The space requires to store the set of the extra sequences T (l)
α̃n

in the typical set
of the canonical ensemble but not belong to the typical set of the microcanonical
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ensemble is equal to

ln |T (l)
α̃n
| = l× 1

2

W∑
w=1

ln 2πλ∗w
[1 +O(1/λ∗w)]2

. (4.14)

Since sequences belong to the typical set of the canonical ensemble should have the
sum of each state’s Hamiltonian as l×H(G∗, ~θ∗) and ensemble sequences generate
by the microcanonical ensemble are all belong to the typical set of the canonical
ensemble. Thus the extra sequences T εα̃n should satisfy the following condition:

Tα̃n = {T (l)
can|

l∑
k=1

~C(Gk) = l× ~C∗, ~C(Gk) 6= ~C∗}. (4.15)

If χcan is a collection of all the ensemble sequences generated by the canonical
ensemble described information source, and χmic represents all the ensemble sequences
generated by the microcanonical ensemble, then the relationship between the typical
set of them under ensemble equivalence or nonequivalence is shown as in FIG.4.4.

Figure 4.4. Every ensemble sequence generated by the microcanonical ensemble belongs to
the typical set of it. But not all the ensemble sequences of the canonical ensemble are included
in T εcan. When the information source is under EE, the typical set of the microcanonical
ensemble T εmic is close to the typical set of the canonical ensemble as shown in (b). When
the information sources are under EN, there is a non-vanished difference between the typical
set of the canonical ensemble and the microcanonical ensemble like in (c).

Then we want to know if the difference between the information-theoretical bounds
that is quantified by ln |T εα̃n | is bigger enough to affect the choice of the ensembles
to describe information source? To solve this problem, we need to compare the limit
of the extra space to store the set Tα̃n with the space needs to store the information
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that is generated by the canonical ensemble as

lim
l→∞

r =
ln |T εα̃n |
ln |T εcan|

=

1
2
∑K
k=1

ln(2πλ∗
k
)

[1+O(1/λ∗w)]2

−~θ∗ · ~C∗ − lnZ(~θ∗)
. (4.16)

If the limit value r is bigger than 0, then the space saved by choosing the micro-
canonical ensemble is bigger enough. This will happens when the information source
with heterogeneous interacted units are under strong ensemble nonequivalence [27].
When the information source is under EE, the information-theoretical bounds of the
different ensemble described information source is the same. Such as the information
sources described by the ER model and the matrix with global constraints.

The proof details are in the appendix. When information sources need to be
described by the matrix with local constraints, the ratio r is bigger than 0, and close
to r ∼ ln(2πm)

m , where m is the degree of freedom for each unit in the information
source [27]. Proof also can be found in the appendix.

4.4 Ensemble nonequivalence and channel capacity
As we already mentioned before, the information-theoretical bounds include the limit
of information storage and the maximum speed of reliable information transmission
through a channel. Here, to find the possible influence of EN on the channel capacity,
we suppose there is a zero-less ensemble channel, which can transmit all the infor-
mation generated by the ensemble described information sources correct. Then the
information R should be transmitted through the channel is equal to

R =

{
l× Smic, microcanonical ensemble
l× Scan, canonical ensemble (4.17)

When the number of codes that can be used to carry the information is fixed, us-
ing the microcanonical ensemble to describe the information source will leave more
redundancy for the information transmission. Furthermore, this redundancy can be
quantified by the covariance of the matrix in the conjugate canonical ensemble.

4.5 Conclusions
In this chapter, we show that the information-theoretical bounds of the information
sources with numerous heterogeneous interacting units are still decided by the uncer-
tainty of the information sources, which are quantified by the Shannon entropy. As
the random variable with finite outcomes is not enough to describe the new informa-
tion sources, so we have introduced the statistical ensembles with local constraints
to model those heterogeneous interactions. Thus, the new information-theoretical
bounds are decided by the entropy of those statistical ensembles. As these new infor-
mation sources have a huge number of units, the entropy of the statistical ensemble
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described information sources would be affected by the possible appearance of ensem-
ble nonequivalence. Under this case, different ensemble descriptions have different
Shannon entropy. Using the microcanonical ensemble to describe the information
source with interacting units needs a smaller information storage space, but the prob-
ability distribution of the microcanonical ensemble is hard to calculate. Using the
canonical ensemble to describe the new information sources is easy to get the proba-
bility distribution but requires more information storage space. The extra sequences
that need to store in the canonical ensemble descriptions are those sequences with the
same sum of Hamiltonian as the sequences in the typical set of the microcanonical
ensemble, but the constraints of each state are not equal to the hard constraints of the
microcanonical ensemble. The size of the extra typical sets can be approached by the
covariance matrix of constraints in the canonical ensemble. It means the difference
between the information-theoretical bounds of different ensemble descriptions of the
ensemble nonequivalent information sources is affected by the fluctuation in the local
constraints. It has reinforced the conclusions in the traditional information theory
that the uncertainty of the information sources will affect the information-theoretical
bounds.

Appendix 4.A ERmodel described information sources
ER model G(n, p) represents the probability of the system with n units, and each
pair of units have a probability of p to connect with each other. The constraint in
the ER model is the total number of interactions among the units in the information
source. It still can be described by the microcanonical and the canonical ensemble
when constraints in it have different properties.

As the number of the possible links in the ER model is equal to n(n− 1)/2, the
hard constraint C∗ in the microcanonical ensemble is equal to the expectation value
of the total number of links as p× n(n− 1)/2. Thus, the probability of each state in
the microcanonical ensemble with these hard constraints is

Pmic(G∗) = 1/
(
n(n− 1)/2

C∗

)
. (4.18)

Each state has the same probability to appears in the process of signal generation.
The value of the probability is decided by the total number of configurations with the
same constraints.

When the ER model is under ’soft’ constraints, each state of the information
source does not need to have the same value of total interactions; only the average
value of total interactions is equal to the C∗. Then the value of p is equal to 2C∗

n(n−1) ,
probability of the state of the information source described by the canonical ensemble
is

Pcan(G) = pC(G)(1− p)
1
2n(n−1)−C(G). (4.19)

The canonical entropy is equal to − lnPcan(G∗). When the value of soft constraints
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is equal to C∗, the canonical entropy is

Scan =−C∗ ln 2C∗ + n(n− 1)
2 ln[n(n− 1)]

− (
n(n− 1)

2 −C∗) ln(n(n− 1)− 2C∗).
(4.20)

If the information source described by the microcanonical ER model ensembles is used
to generate the information sequences with length l, the space to store the information
that is generated by the microcanonical description is equal to

ln |T ε=0
mic | = l× ln

(
n(n− 1)/2

C∗

)
, (4.21)

where T ε=0
mic is the typical set of the microcanonical ensemble information sequence.

When information sources are described by the canonical ER model, the space to
store the information that is generated by it is equal to

ln |T ε=0
can | = l× Scan = −l× lnPcan(G∗). (4.22)

It is decided by the canonical entropy of the ER model.
The difference between the limit of information storage of the information source

described by different ensembles is related to the relative entropy between the mi-
crocanonical and canonical ER model, which is equal to Scan − Smic when the two
ensembles are conjugate with each other. We can get the result of relative entropy
based on Stirling’s formula as

S(Pmic||Pcan) ≈ ln
√

2πC∗(1− 2C∗/[n(n− 1)]). (4.23)

In the thermodynamic limit, the two ER model ensembles are equivalent to each
other, as the limit value of the relative entropy density is equal to 0

lim
n→∞

1
n
S(Pmic||Pcan) = 0. (4.24)

The space can be saved from canonical ensemble description to microcanonical
ensemble description is equal to l×S(Pmic||Pcan), but compared with the total space
needs in the canonical ensemble description, it is not so important, as the space ratio
r will equal to 0 in the thermodynamic limit

r =
S(Pmic||Pcan)

Scan
= 0. (4.25)

Therefore, using the microcanonical ensemble only saves finite space of the information
storage. The ensemble equivalence allows us to choose the canonical ensemble, which
is mathematically easy to obtain.
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Appendix 4.B Matrix described information sources
Matrix is a general model widely used to describe natural systems with heterogeneous
interactions. [27]. The heterogeneous interactions among the units imply the local
constraints in it. It means this information sources described by the matrix ensembles
are under ensemble nonequivalence.

Thus, checking if the limit of information storage of the matrix ensemble described
information source will be affected by the ensemble nonequivalence as we predicted
is significant for our theory. We will start with matrice under global constraint, then
extend the discussion to the local constrained one.

4.B.1 Matrix with global constraint
Global constraint is the sum of all the elements in each matrix is fixed as C(G) =∑n,m
i=1,j=1 gij . When the global constraint is hard, the constraint of each state in the

matrix ensemble is equal to each other as C∗. The system can be described by the
microcanonical ensemble. If the global constraint is soft, the average value of each
matrix’s constraints is equal to the hard constraints, 〈C(G)〉 = C∗, the system can be
described by the canonical ensemble. States both in the microcanonical and canonical
ensemble with constraints equal to C∗ is represented by G∗.

The probability of each state in the matrix described by the microcanonical en-
semble is equal to

Pmic(G∗) =
1

ΩC∗
, (4.26)

where ΩC∗ is the total number of states with global constraint equals to C∗.
In the matrix described by the canonical ensemble, the Hamiltonian of each matrix

H = θ∗ ·C(G) (4.27)

decides the probability of it. The θ∗ is the maximum likelihood parameter realized
〈C(G)〉 = C∗ and maximum the Shannon entropy. Thus, the probability of each
state in the canonical ensemble is equal to

Pcan(G) =
e−H(G,θ∗)

Z(θ∗)
, (4.28)

Z(θ∗) is the partition function, and it is a normalization constant equal to Z(θ∗) =∑
G∈G e

−H .
If the matrix with global constraints is used as an information source, then the

information generated from it is carried by a set of matrix ensemble sequences with
length l.

When the global constrained matrix is described by the microcanonical ensemble,
the space to store the information generated by it is equal to

ln |T εmic| = l× Smic = l× ln ΩC∗ . (4.29)
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For the canonical ensemble described matrix information sources, the space to
store the information generated by it is equal to

ln |T εcan| = l× Scan = −l× lnPcan(G∗). (4.30)

Relative entropy between the two ensembles’ probability distribution is equal to
Scan − Smic. It can be estimated by the determinant of the covariance matrix of
constraints in the canonical ensemble as

S(Pmic||Pcan) ≈ ln
√

2πΣ∗ = 1
2 ln 2π∂

2 lnZ(θ∗)
∂θ∗2

. (4.31)

When the elements in the matrix is chosen from different set, partition func-
tion Z(θ∗) is also different. For example when the element in the matrix is equal
to 1 or 0, this matrix is binary matrix, the partition function of it is equal to
Z(θ∗) = (e−θ

∗
+ 1)mn. If the element in the matrix is chosen from the whole natural

number set, the matrix is a weighted matrix, the partition function of it is equal to
Z(θ∗) = (1− e−θ∗)−mn. According to the relationship between θ∗ and C∗ in the two
different matrices, we can find the value of relative entropy of binary matrix is equal
to S(Pmic||Pcan) = 1

2 ln[2πC∗(1−C∗/(mn))], and the relative entropy of weighted
matrix is equal to S(Pmic||Pcan) = 1

2 ln[2πC∗(1 +C∗/(mn))].
Because the value of S(Pmic||Pcan) for the two different kinds of matrices are both

grows like o(n), the two different ensemble descriptions are equivalent to each other
in the thermodynamic limit.

The ratio of space that can be saved from canonical ensemble description to mi-
crocanonical ensemble description is

r = [
1
2 ln 2π∂

2 lnZ(θ∗)
∂θ∗2

]/[−θ∗ ·C∗ − lnZ(θ∗)]. (4.32)

The value r of the binary matrix under global constraint is equal to

r =
1
2

ln[2πC∗(1−C∗/(mn))]
mn ln(mn)−C∗ lnC∗ − (mn−C∗) ln(mn−C∗) . (4.33)

The value of r for the weighted matrix ensemble under global constraints is equal to

r =
1
2

ln[2πC∗(1 +C∗/(mn))]
(mn+C∗) ln(mn+C∗)−mn ln(mn)−C∗ lnC∗ , (4.34)

When n goes to infinite, the r is equal to 0 both in the two matrices. Therefore,
when the system with global constraint is used as the information source, it is under
ensemble equivalence. The space saved from canonical to microcanonical ensemble
description can be neglected.
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4.B.2 Matrix with local constraints
The local constraints of the information sources are implied by the heterogeneous
interactions among the units in it. The local constraint is the sum of all the elements
in each row or column in the matrix ensemble. According to the research in [27],
matrix ensemble with local constraints is under ensemble nonequivalence. When the
value of rows in the matrix under local constraints is finite m � ∞, the ensemble
nonequivalence is as strong as the one in the boundary of phase transition [8].

In this section, we will introduce how the heterogeneous interaction will affect
the limit of information storage. As the coupled constraints only can be analytically
solved in two particular cases, we will put all the calculations on the matrix with
one-sided local constraints [27].

Them×nmatrix ensemble under local column constraints ~C∗ = [c∗1, c∗2, · · · , c∗i , · · · , c∗n]
has n constraints in it. Each c∗i is the sum of all the elements in the column i as
c∗i =

∑m
j=1 gij . The property of constraints decides which ensembles will be used to

describe this local constrained matrix.
In the microcanonical ensemble description, each state still have the same value

of constraints as ~C∗, and the probability of it is equal to

Pmic(G∗) = 1/Ω ~C∗ , (4.35)

where Ω ~C∗ is the number of states in the matrix described by the microcanoni-
cal ensemble. In binary matrix, Ω ~C∗ =

∏n
i=1 (

m
r∗i
). In weighted matrix, Ω ~C∗ =∏n

i=1 (
m+r∗i−1

r∗i
). The space to store the information generated by it is equal to

ln |T ε=0
mic | = l× Smic = l× ln Ω ~C∗ , (4.36)

both in the binary and weighted matrix.
When the local column constraints are soft, the matrix needs to be described by

the canonical ensemble. The probability of states in the canonical ensemble is also
based on the Hamiltonian of it, which is defined as H =

∑n
i=1 β

∗
i c
∗
i . Where β∗i is

the correspond parameter which maximum the Shannon entropy and realized the
〈~C(G)〉 = ~C∗. Therefore, the probability of states in the canonical matrix ensemble
is

Pcan(G) =
e−H

Z(~β∗)
. (4.37)

The information generated by it is also carried in the canonical matrix ensemble
sequences. The space to store the information is equal to

ln |T ε=0
can | = l× Scan = −l× lnPcan(G∗). (4.38)

The space saved from the canonical description to the microcanonical ensemble
description can be estimated by the function of the determinant of the covariance
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matrix of constraints in the canonical ensemble as

S(Pmic||Pcan) =
1
2

n∑
k=1

ln
2πλ∗k

[1 +O(1/λ∗k)]
2

≈ 1
2

n∑
k=1

ln[2π∂
2 lnZ(~β∗)
∂β∗k

2 ].
(4.39)

As different matrices have different difference of partition function, so the relative
entropy is also different. Partition function of binary matrix under is equal to
Z(~β∗) =

∏n
i=1(e

−β∗i + 1)m. In weighted matrix, partition function is equal to
Z(~β∗) =

∏n
i=1(1− e−β

∗
)−m. Then the value of relative entropy for binary matrix

is equal to S(Pmic||Pcan) = 1
2
∑n
i=1 ln[2π r

∗
i (m−r

∗
i )

m ]. In weighted matrix, the value of
relative entropy is equal to S(Pmic||Pcan) = 1

2
∑n
i=1 ln[2π r

∗
i (m+r∗i )

m ]. Both of those
two matrix are under ensemble nonequivalence. The space can be saved from the
canonical ensemble description to the microcanonical ensemble description has the
same order as the increase of the ensemble sequences’ length. The ratio r is still
defined as

r = [
1
2

n∑
k=1

ln[2π∂
2 lnZ(~β∗)
∂β∗k

2 ]]/[−~β∗ · ~C∗ − lnZ(~β∗)]. (4.40)

In the binary matrix ensemble under local column constraints, the value of r is equal
to

r = 1− [
n∑
i=1

ln
(
m

r∗i

)
]/[

n∑
i=1

ln[mm/r∗i
r∗i (m− r∗i )m−r

∗
i ]]. (4.41)

In the weighted matrix ensemble, the value of r is equal to

r = 1− [
n∑
i=1

ln
(
m+ r∗i − 1

r∗i

)
]/[

n∑
i=1

ln[ (m− r
∗
i )
m−r∗i

mmr∗i
r∗i

]. (4.42)

When the matrix is in the thermodynamic limit, the limit value of r grows like ln(2πm)
m .

Thus, when the freedom of each element is finite m � ∞, the ratio is fixed. When
the value of m is growing like O(n), the ratio is close to 0. It means compare with
canonical ensemble description, using the microcanonical ensemble will save r% of
the space.

Under two-sided local constraints, it is impossible to calculate the number of
states in the microcanonical ensemble. The increased number of constraints will
decrease the possible configurations in the microcanonical ensemble, so the space to
store the information generated by it is even smaller than the one with local column
constraints [27]. The ensemble nonequivalence will affect the information-theoretical
bounds.
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