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Chapter 3

Strong ensemble
nonequivalence in systems
with local constraints

Abstract
The asymptotic equivalence of canonical and microcanonical ensembles is a central
concept in statistical physics, with important consequences for both theoretical re-
search and practical applications. However, this property breaks down under certain
circumstances. The most studied violation of ensemble equivalence requires phase
transitions, in which case it has a ‘restricted’ (i.e. confined to a certain region in pa-
rameter space) but ‘strong’ (i.e. characterized by a difference between the entropies
of the two ensembles that is of the same order as the entropies themselves) form.
However, recent research on networks has shown that the presence of an extensive
number of local constraints can lead to ensemble nonequivalence even in the absence
of phase transitions. This occurs in a ‘weak’ (i.e. leading to a subleading entropy
difference) but remarkably ‘unrestricted’ (i.e. valid in the entire parameter space)
form. Here we look for more general manifestations of ensemble nonequivalence in
arbitrary ensembles of matrices with given margins. These models have widespread
applications in the study of spatially heterogeneous and/or temporally nonstationary
systems, with consequences for the analysis of multivariate financial and neural time-
series, multi-platform social activity, gene expression profiles and other Big Data.
We confirm that ensemble nonequivalence appears in ‘unrestricted’ form throughout
the entire parameter space due to the extensivity of local constraints. Surprisingly,
at the same time it can also exhibit the ‘strong’ form. This novel, simultaneously
‘strong and unrestricted’ form of nonequivalence is very robust and imposes a princi-
pled choice of the ensemble. We calculate the proper mathematical quantities to be
used in real-world applications1.

1This chapter is based on:
Qi Zhang, Diego Garlaschelli, "Strong ensemble nonequivalence in systems with local constraints"
arXiv preprint arXiv:2107.04920 (2021)
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3.1 Introduction
In statistical physics, systems with different constraints can be described by different
ensembles. For example, systems with fixed energy can be described by the mi-
crocanonical ensemble, where all microscopic configurations have precisely the same
value of the energy and are equiprobable, thereby modelling large isolated systems.
In this case, the energy is treated as a ‘hard’ constraint enforced separately on each
configuration. By contrast, systems with fixed temperature (which is the ‘dual’ ther-
modynamic quantity conjugated with the energy) can be described by the canonical
ensemble, where individual microscopic configurations can have different values of the
energy and are assigned different probabilities, but in such a way that the average
value of the energy coincides with the one defining the corresponding microcanonical
ensemble [10]. This ensemble represents systems that can exchange energy with their
environment, and the energy is in fact treated as a ‘soft’ constraint which is enforced
only as an ensemble average.

When the size of the system is finite, the two ensembles are necessarily different.
However, in the simplest and most traditional situation, the microcanonical descrip-
tion as a function of the energy becomes equivalent with the canonical description as
a function of the temperature in the thermodynamic limit (i.e., when the number of
particles in the system tends to infinity). This phenomenon is called ensemble equiv-
alence (EE) and is a basic concept in statistical mechanics as already established by
Gibbs [1]. The property of EE justifies the replacement of the (typically unfeasible)
asymptotic calculations in the microcanonical ensemble with the corresponding (much
easier) calculations in the canonical ensemble, i.e. to choose the ensemble based on
mathematical convenience.

However, over the past decades, the breakdown of EE has been observed in various
physical systems, including models of gravitation, fluid turbulence, quantum phase
separation, and networks [21, 43, 5]. When the system is under ensemble nonequiva-
lence (EN), the microcanonical description can no longer be replaced by the canonical
description in the thermodynamic limit. In this situation, many assumptions and cal-
culations that are based on EE in statistical mechanics do not hold anymore. Thus
checking for the breaking of EE is important for both practical applications and
theoretical research. Quantitatively, EN can be defined as a nonvanishing relative
entropy density between the microcanonical and canonical probability distributions
of microscopic configurations [8, 5]. This is equivalent to a nonvanishing difference
between the canonical and microcanonical entropy densities [37]. Technically, this is
the so-called measure-level EN, which (under mild assumptions) has been shown to
coincide with other definitions as well [8]. Importantly, the traditional criterion for
EE based on the vanishing of the relative canonical fluctuations of the contraints has
been recently found to break down when the latter are local in nature and extensive
in number [28].

Indeed, for the most studied systems in statistical physics, the number of con-
straints defining the ensembles of interest is finite. Traditional physical examples are
global constraints such as the total energy and the total number of particles. Non-
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physical examples of systems under global constraints have also been considered, e.g.
networks with given total numbers of edges and triangles [6]. In order to observe the
breakdown of EE in these systems, one typically needs to introduce long-range in-
teractions implying the non-additivity of the energy and possibly associated with the
onset of phase transitions [13] (in the example of networks, the underlying mechanism
is a sort of ‘frustration’ in the simultaneous realizability of the desired numbers of
edges and triangles [6]). In this form of EN, the relative entropy between canonical
and microcanonical ensembles is of the same order as the canonical entropy itself [8, 6].
This is what we will refer to as a ‘strong’ form of EN. At the same time, this form of
EN is also ‘restricted’, because it is confined to a selected (e.g. critical) region of the
space of parameters. Outside this region, EE is restored.

Recently, a new manifestation of EN has been observed in a different class of
network ensembles, where a constraint is enforced on the degree (number of links)
and/or the strength (total weight of all incident links) of each node [5, 26, 49, 28]: un-
like systems with global constraints, in these models the number of constraints grows
linearly in the number of nodes. This crucial difference implies that, at variance with
the more ‘traditional’ situation described above, the onset of EN in this class of models
is completely unrelated to phase transitions and is instead the result of the presence
of an extensive number of local constraints [37, 7, 45]. This situation is by far less
studied, because systems with local constraints are not the traditional focus of statis-
tical physics and have attracted attention only recently as models of complex systems
with built-in spatial heterogenetity [14] and/or temporal non-stationarity [62]. In
this different form of EN, the relative entropy between microcanonical and canonical
ensembles is, at least for the cases studied so far, of lower order (i.e. subleading) with
respect to the canonical entropy. For this reason, we may refer to this situation as a
‘weak’ (i.e. weaker than the one found in the presence of phase transitions) form of
EN. However, this form of EN is ‘unrestricted’, precisely because it is not confined
to specific values of the control parameters and holds in the entire parameter space.
Rather than a property of a phase (or a phase boundary), in this case EN appears to
be an intrinsic property of the system itself. In these models, no parameter value can
restore EE.

The above results indicate that, so far, EN has manifested itself either in a ‘strong
but restricted’ form (under a finite number of global constraints, but in presence of
phase transitions), or in a ‘unrestricted but weak’ form (under an extensive number
of local constraints, but without phase transitions). Clearly, a number of questions
remain open. How general is the manifestation of EN under local constraints, both
in terms of the underlying mechanism and in terms of the strength of the resulting
effect? Besides networks, can the breaking of EE be observed in additional systems
characterized by local constraints? If so, do these systems necessarily exhibit only the
weak form of EN, or can the strong form appear as well? Finally, is there a (possibly
modified) way to exploit the canonical ensemble in order to bypass the challenge of
unfeasible microcanonical calculations even when EE breaks down, i.e. even when the
two ensembles can no longer be treated interchangeably according to mathematical
convenience?
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In this chapter, we will address these problems by exploring the effects of the
presence of an extensive number of local constraints on more general ensembles than
the ones that have been considered so far to model random networks with given node
degrees [5, 26, 7, 63]. In particular, we consider the general setting where each of the n
units of the system has a number m of ‘state variables’ (or ‘degrees of freedom’), and
where constraints are defined as sums over these state variables. Surprisingly, besides
confirming the onset of an unrestricted form of EN in the thermodynamic limit where
n diverges, we also find its simultaneous manifestation in strong form. This happens
when each element of the system retains only a finite number m of degrees of freedom
in the thermodynamic limit. For brevity, we will denote this situation as the ‘strong
and unrestricted’ form of EN. To the best of our knowledge, this finding provides the
first evidence that EN, even in its strong form, does not need phase transitions and
can appear in the entire parameter space as an intrinsic property of the system, if
the latter is subject to an extensive number of local constraints. This simultaneously
‘strong and unrestricted’ form of EN is the most robust among the ones studied so far.
Spatial heterogeneity and temporal non-stationarity are simple candidate mechanisms
that can lead to this phenomenon.

To emphasize the general and important consequences of this form of EN for a
diverse range of practical applications, we consider generic ensembles of random matri-
ces with fixed margins. These ensembles, which include matrices with 0/1 (or equiva-
lently ±1) and non-negative integer entries subject to global or local constraints, arise
for instance in studies of multi-cell gene expression profiles [64], multiplex (online) so-
cial activity [65], multi-channel communication systems [29], complex networks [44],
and multivariate time series in finance [62], neuroscience [66] or other disciplines. Our
results imply that, in many practical situations, the assumption of EE is incorrect
and leads to mathematically wrong conclusions. For the benefit of the aforementioned
applications, we compensate for the ‘disconnection’ between the two ensembles by cal-
culating explicitly the correct canonical and microcanonical quantities of interest via
a generalized relationship that is either analytically computable or asymptotically de-
termined by the covariance matrix of the constraints in the canonical ensemble. These
calculations represent a practical tool for properly dealing with the consequences of
EN in all real-world situations.

3.2 General formalism

3.2.1 Matrix ensembles
A discrete n×m matrix ensemble is a set G of available configurations for an n×m
integer-valued matrix G, endowed with a suitably chosen probability distribution
P (G) over such configurations, such that

∑
G∈G P (G) = 1. An entry of the matrix

is denoted by gij (with 1 ≤ i ≤ n, 1 ≤ j ≤ m). We distinguish two main cases, the
binary case where gij takes one of the two values {0, 1} and the weighted case where
gij takes a value in the set {0, 1, 2, . . . } of non-negative integer values. The number n
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of rows in each matrix represents the number of elements (i.e. the size) of the system
being modelled. The number m of columns represents instead the number of state
variables, or degrees of freedom, for each element.

In general, each matrix G can represent one of the possible states of a (large)
real-world system. For instance, G may represent the realization of a multivariate
time series, where n is the number of units (e.g. brain regions, financial stocks, etc.)
emitting signals, and m is the number of time steps during which the signals are
recorded. G may also represent a multi-cell array of gene expression profiles, where n
is the number of cells and m the number of genes for which expression levels are being
measured. Similarly, G may represent the state of a multi-channel communication
systems, where n is the length of the sequences being transmitted from sender to
receiver (in information theory, such length defines the ‘size’ of the communication
process) and m is the number of channels. Finally, G may represent the adjacency
matrix of a bipartite graph, where n is the number of nodes in the layer of interest
(e.g. people in a co-affiliation network), while m is the number of possible dimensions
where nodes can co-occur (e.g. work, family, sport, friendship, etc.). In the special
case m = n, the network can also be interpreted as a (binary or weighted) directed
unipartite graph, i.e. one where there is a single set of n nodes that can be linked to
each other via directed edges (note that, by contrast, undirected unipartite graphs are
associated with a symmetric adjacency matrix, a property that we do not enforce in
this paper; the nonequivalence of ensembles of binary or weighted undirected graphs
with given constraints has been studied previously in [5, 7, 45, 28]).

3.2.2 Global and local constraints
In each of the examples mentioned above, the ‘true’ microscopic configuration (or
microstate) of the system can be uniquely represented by a specific ‘empirical’ matrix
G∗ in the set G of all possible states. A schematic illustration is shown in Fig. 3.1. As
ordinary in statistical mechanics, when the size of the system is large one no longer
focuses on the specific microstate G∗ (which becomes not empirically accessible),
but rather on the macrostate defined by a collection of microscopic configurations
compatible with the empirical value ~C∗ ≡ ~C(G∗) of a certain observable quantify
~C(G) playing the role of a constraint. The choice of ~C(G) determines the probability
distribution P (G) over G conditional on our knowledge of ~C∗. In other words, it
determines how our estimate of the microstate of the system concentrates around
the compatible configurations once we observe ~C∗. Intuitively, before anything is
obserbed, P (G) is uniform on G.

In ordinary statistical physics, the quantity ~C(G) is typically scalar (e.g. the total
energy) or at most low-dimensional (e.g. a vector containing the total energy and the
total number of particles), reflecting a few global conservation laws applying to a large
homogeneous system at thermodynamic equilibrium. However, in models of complex
systems ~C(G) can be high-dimensional, as it may encode a large number of local
constraints reflecting separate conservation laws imposed by spatial heterogeneity
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Figure 3.1. Schematic illustration of how the state of different real-world systems with n
elements and m degrees of freedom can be represented in an n×m matrix G. The collection
of all possible states of the system is the set of all such matrices. Typically, real-world systems
have a strong heterogeneity or nonstationarity. This empirical fact implies that their possible
states are not sufficiently characterized by the knowledge of a single global constraint (t: solid
orange box). More informative ensembles can be constructed by specifying one- (~r: solid
blue boxes) or two-sided (~r,~c: solid blue and dashed red boxes) local constraints.

and/or temporal non-stationarity. For instance, if G∗ is the observed configuration
of a complex network with n nodes (i.e. the empirical n× n adjacency matrix), it is
well known that the knowledge of purely global properties such as the overall number
of links is insufficient in order to produce a statistical ensemble of networks with
properties similar to those found in G∗. Indeed, enforcing only the total number
of links produces the popular Erdős-Rényi random graph model, whose topological
properties are way too homogenous as compared with those of real-world networks.
By contrast, if the number of links of each node is enforced separately (as in the so-
called configuration model), the resulting ensemble of graphs is found to successfully
replicate many higher-order empirical topological properties [44]. As another example,
if G∗ represents a set of synchronous time series produced by the n components of
a non-stationary system observed over m time steps, then the statistical properties
of these time series will change over time. As a result, overall time-independent
constraints will not be enough in order to produce ensembles of multivariate time
series with properties close to those of G∗, and time-dependent (i.e. local in time)
constraints will in general be needed [62].

In our setting, we consider the general case where the distribution P (G) defining
the (binary or weighted) matrix ensemble is induced by a K-dimensional vector ~C(G)
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of constraints imposed on the matrices. We will assume that the K constraints are
all non-redundant, e.g. they are not trivial copies or linear combinations of each
other [37]. We will consider both global and local constraints. As global constraint
we will consider the scalar quantity t(G) defined as the total sum of all the entries
of the matrix G, i.e. t(G) =

∑n
i=1
∑m
j=1 gij . The number of constraints in this case

is K = 1 and the ‘empirical’ value of t will be denoted as t∗ ≡ t(G∗). As local
constraints, we will consider two possibilities: one-sided local constraints and two-
sided local constraints. A one-sided local constraint is the n-dimensional vector ~r(G)
where the entry ri(G) =

∑m
j=1 gij (i = 1,n) represents the sum of the entries of the

matrix G along its i-th row. The number of constraints is in this case K = n and the
empirical value of ~r will be denoted as ~r∗ ≡ ~r(G∗). A two-sided local contraint is a pair
of vectors (~r(G),~c(G)), where ~r(G) is still the n-dimensional vector representing the
n row sums of G, while ~c(G) is the m-dimensional vector representing the m column
sums of G, i.e. where each entry cj(G) =

∑n
i=1 gij (j = 1,m) is the sum of the entries

of G along its j-th column. The number of constraints is therefore K = n+m and
the empirical value of the pair (~r,~c) will be denoted as (~r∗,~c∗) ≡ (~r(G∗),~c(G∗)). A
visual illustration of these constraints for possible data structures of practical interest
is shown in Fig. 3.1.

Purely global constraints lead to completely homogeneous expectations for the
entries of the matrices in the ensemble. This result follows intuitively from symmetry
arguments, and will be confirmed explicitly in the specific cases considered later.
By contrast, local constraints lead to different expectations for entries in different
rows and/or columns. Since, as we mentioned above, real-world complex systems are
generally very heterogeneous in space and/or time, the only models that can capture
the main features of such systems are those constructed from (one- or two-sided) local
constraints. This is very important because, as we will show, it is precisely in presence
of local constraints (of either type) that the property of EE breaks down. This result
implies that spatial heterogeneity and/or temporal non-stationarity might be natural
origins for the breaking of EE.

3.2.3 Soft constraints: canonical ensemble
Any constraint, whether global or local, can be enforced either as a soft constraint
(canonical ensemble) or as a hard constraint (microcanonical ensemble). We start
with the case of soft constraints, i.e. when one imposes that the ensemble average

〈~C〉 ≡
∑
G∈G

P (G) ~C(G) (3.1)

is fixed to a specific value ~C∗.
The functional form of the resulting canonical probability Pcan over G is found by

maximizing Shannon’s entropy functional

Sn[P ] ≡ −
∑
G∈G

P (G) lnP (G) (3.2)
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(where the subscript n indicates that the entropy is calculated for given n), subject
to the condition 〈~C〉 = ~C∗. The result [15] of this constrained maximization problem
is the parametric solution

Pcan(G|~θ) =
e−H(G,~θ)

Z(~θ)
, (3.3)

where ~θ is a vector of Lagrange multipliers coupled to the constraint ~C, the Hamilto-
nian H(G, ~θ) = ~θ · ~C(G) is a linear combination of the constraints, and the partition
function Z(~θ) =

∑
G∈G e

−H(G,~θ) is the normalization constant.
The numerical values of the canonical probability are found by setting

P ∗can(G) ≡ Pcan(G|~θ∗) (3.4)

where ~θ∗ is the unique parameter value that realizes the ‘soft’ constraint

〈~C〉~θ∗ = ~C∗ (3.5)

where the symbol 〈·〉~θ denotes an ensemble average with respect to Pcan(G|~θ), i.e.

〈~C〉~θ =
∑
G∈G

Pcan(G|~θ) ~C(G). (3.6)

Equivalently, the unique value ~θ∗ is the one that maximizes the log-likelihood function

L∗(~θ) ≡ lnPcan(G∗|~θ), (3.7)

where G∗ is the empirical configuration, or equivalently any configuration that realizes
the empirical constraint exactly, i.e. such that ~C(G∗) = ~C∗ [15]. The uniqueness
of ~θ∗ follows whenever L∗(~θ) can be differentiated at least twice [37], as we confirm
below for all the models considered in this paper.

Inserting Eq. (3.4) into Eq. (3.2), we obtain the value of the canonical entropy

S∗can ≡ Sn[P ∗can] = −L∗(~θ∗) = − lnP ∗can(G∗) (3.8)

where we have omitted the dependence on n to simplify the notation. The last equality
is very useful, as it show that S∗can can be calculated by simply evaluating P ∗can(G)
on the single configuration G∗ [37].

3.2.4 Hard constraints: microcanonical ensemble
In the case of hard constraints, one requires that each individual configuration realizes
the value ~C∗. This means that the ‘soft’ constraint in Eq. (3.5) is replaced by the
much stricter constraint

~C(G) = ~C∗ (3.9)

74



for each allowed configuration G. The microcanonical probability Pmic is found by
enforcing this stronger requirement, while still maximizing the entropy Sn[P ] defined
in Eq. (3.2). The result is the uniform distribution

P ∗mic(G) =

{
Ω−1
~C∗

~C(G) = ~C∗

0 ~C(G) 6= ~C∗
, (3.10)

where Ω ~C∗ is the number of configurations in G realizing the ‘hard’ constraint in
Eq. (3.9). The corresponding microcanonical entropy is obtained by inserting Eq. (3.10)
into Eq. (3.2):

S∗mic ≡ Sn[P ∗mic] = ln Ω ~C∗ , (3.11)

which is also known as Boltzmann entropy.
Crucially, in order to define the microcanonical ensemble it is necessary that

Ω ~C∗ > 0, i.e. that there is at least one configuration realizing the constraint. In
other words, the value of ~C∗ should be realizable in (at least) one single configura-
tion, and not only as an ensemble value. This requirement is not strictly necessary
for the canonical ensemble (even though our interpretation of ~C∗ as the ‘empirical’
value makes the requirement always natural). In any case, since in this paper we are
going to study the (non)equivalence between the two ensembles, we need both of them
to be well defined in order to be compared, for a given value of ~C∗. Therefore we
are going to assume that the value of ~C∗, irrespective of the ensemble considered, is
always realizable by at least one configuration, i.e. such that Ω ~C∗ > 0.

Notably, calculating Ω ~C∗ (especially in presence of many constraints and because
of the discrete nature of the problem of interest for us) can be a complicated enu-
meration problem. Therefore the microcanonical ensemble is typically much more
difficult to deal with mathematically than the canonical ensemble. For this reason, if
the property of EE holds, one prefers to operate in the canonical ensemble and work
out its asymptotics in the limit of large system size, trusting that the result would
return the correct asymptotics for the microcanonical ensemble as well. The above
approach is at the core of many stardard calculations in statistical mechanics text-
books, where the property of EE is typically assumed to hold in general (at least in
absence of phase transitions and long-range interactions). However, when EE breaks
down, this approach will lead to mathematically incorrect results. We will study this
problem in detail, for the ensembles considered, in the rest of the paper. To do so,
we first need to define what we mean by thermodynamic limit.

3.2.5 The thermodynamic limit
We will consider the thermodynamic limit defined as n→ +∞, i.e. when the size of
the system diverges. However, the limit is not completely defined until we also specify
how both m and ~C∗ behave as n grows.

First of all, we consider two possibilities for the behaviour of m as n diverges:
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• m remains finite as n → ∞: in this case, we have m = O(1) where O(x)
indicates a quantity that has a finite limit if divided by x as n→ +∞, i.e. O(x)
is asymptotically of the same leading order2 as x;

• m diverges as n → ∞: in this case, for simplicity and realism we assume
that m can diverge at most as fast as n, i.e. m is at most O(n); it is indeed
difficult to imagine a physical situation where the number m of state variables
characterizing each of the n units grows faster than the number n of units
themselves.

In simple words, the above assumptions mean that the number of state variables
should be either (asymptotically) independent of the number n of units being added
to the system (as in the case of ‘intrinsic’ observations, e.g. for multivariate time
series) or at most proportional to n (as in the case of ‘relational’ observations, e.g. for
networks). We will show that these two situations lead to very different asymptotic
results in terms of the strength of EN. Importantly, the requirement that m grows at
most proportionally to n implies that the number K of both one-sided (K = n) and
two-sided (K = n+m) local constraints is always extensive, i.e. K = O(n) which
grows linearly in the size n of the system, irrespective of the behaviour of m.

A separate, equally important consideration concerns the scaling of the value of
the constraint ~C∗ in the thermodynamic limit n → +∞. Also here, we distinguish
between two situations that we denote as the sparse and the dense regimes.

• We define sparse matrices those for which each of the m column sums (irrespec-
tive of whether such sums are chosen as constraints) is finite in the thermody-
namic limit, i.e. c∗j = O(1) (j = 1, . . . ,m). This implies that, in the canonical
ensemble, the expected value of any entry gij of the matrix G is on average
O(1/n); correspondingly, in the microcanonical ensemble the allowed matrices
are dominated by zeroes (whence the name ‘sparse matrices’). Note that for
the row sums one has r∗i = O(m/n) for all i. If m grew slower than n, these
row sums would vanish as n → +∞, which would imply that asympotically
no microcanonical configuration would realize the local constraints. Since we
require Ω ~C∗ > 0 (see above), this means that in the sparse case we necessarily
need m = O(n). Consequently, r∗i = O(1), r∗i /m = O(1/n) (i = 1, . . . ,n),
t∗ = O(n), and t∗/mn = O(1/n).

• By contrast, we define dense matrices those for which each of them column sums
(again, irrespective of whether they are chosen as constraints) diverges propor-
tionally to n in the thermodynamic limit, i.e. c∗j = O(n) (j = 1, . . . ,m). In the
canonical ensemble, the expected value of gij is therefore O(1), which makes
the allowed matrices in the corresponding microcanonical ensemble ‘dense’. The

2Note that the ‘big-O’ notation we use here is not always used with the same meaning throughout
the literature: some authors prefer the ‘big-Θ’ notation Θ(x) to indicate a quantity that is of the
same leading order as the argument x, and the ‘big-O’ notation to indicate only an upper bound for
it.
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row sums are now r∗i = O(m) and we have r∗i /m = O(1) (for all i) and
t∗/mn = O(1). In this case, we consider m as either remaining finite, in which
case we have m = O(1), r∗i = O(1) (i = 1, . . . ,n) and t∗ = O(n), or diverging
proportionally to n (see above), in which case we have m = O(n), r∗i = O(n)
(i = 1, . . . ,n), and t∗ = O(n2).

• Note that, in principle, in the weighted case we may even consider a sort of
superdense regime where some of the individual entries of the matrix diverge in
the thermodynamic limit. This possibility is related to a Bose-Einstein conden-
sation concentrating a finite fraction of the total weight t∗ of the matrix in a
finite number of entries [28]. However, we will not consider this extreme case
here for simplicity, as it would not arise in most real-world applications.

Combined with the scaling of ~C∗, the behaviour of m as a function of n in the
thermodynamic limit can determine different asymptotic regimes, and in particular
lead to the weak or strong form of EN. The strong form, for the cases considered
below, turns out to be possible in the regime where the matrices are dense and m is
finite as n→ +∞.

3.2.6 Ensemble (non)equivalence
There are various ways to mathematically define the property of ensemble (non)equivalence.
These include the notions of EE in the thermodynamic, macrostate and measure sense
which, under mild assumptions, can be proven to be equivalent [8]. We will adopt the
definition in the measure sense, which states that the ensembles are equivalent if the
relative entropy

Sn[P
∗
mic||P ∗can] ≡

∑
G∈G

P ∗mic(G) ln P
∗
mic(G)

P ∗can(G)
(3.12)

(which is the Kullback-Leibler divergence for given n between the microcanonical and
canonical entropies and is guaranteed to be non-negative [52]), when rescaled by n,
vanishes in the thermodynamic limit [8], i.e. if the specific relative entropy vanishes:

s[P ∗mic||P ∗can] ≡ lim
n→+∞

Sn[P ∗mic||P ∗can]
n

= 0 (3.13)

or equivalently
Sn[P

∗
mic||P ∗can] = o(n), (3.14)

where o(x) indicates a quantity that goes to zero when divided by x as n→ +∞.
Importantly, it can be shown [5, 37] that

Sn[P
∗
mic||P ∗can] = ln P

∗
mic(G∗)
P ∗can(G∗)

= S∗can − S∗mic. (3.15)

The inequality Sn[P ∗mic||P ∗can] ≥ 0, which is a general property of the relative entropy,
implies therefore S∗can ≥ S∗mic and indicates the presence of an ‘extra entropy’ in
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the canonical ensemble. This extra entropy is due to the fact that, while in the
microcanonical ensemble the constraint ~C is a deterministic quantity fixed to the value
~C∗ through the hard constraint introduced in Eq. (3.9), in the canonical ensemble it
is a random variable fluctuating around the expected value ~C∗ as dictated by the soft
constraint defined in Eq. (3.5). With respect to the canonical ensemble, the hardness
of the constraint in the microcanonical ensemble implies additional dependencies (i.e.
smaller entropy) among the entries of G. The definition of EE in Eq. (3.13) states that,
if the extra entropy Sn[P ∗mic||P ∗can], once divided by n, vanishes in the thermodynamic
limit, then the ensembles are equivalent.

From Eq. (3.15) it is clear that Eq. (3.13) is equivalent to the condition

lim
n→+∞

Sn[P ∗can]− Sn[P ∗mic]

n
= 0 (3.16)

or in other words to the asymptotic (for n large) relation

S∗mic = S∗can − o(n). (3.17)

This implies
Ω ~C∗ = eS

∗
can−o(n), (3.18)

i.e. Ω ~C∗ is approximated by eS∗can up to a subexponential (in n) correction factor. The
above asymptotics is used in statistical mechanics textbooks whenever the property of
EE is believed to hold, i.e. in absence of phase transitions or long-range interactions.
When EE does not hold, Eq. (3.18) breaks down. In this case, the extra entropy in
the canonical ensemble grows at least as fast as n. Recent research has shown that
this breakdown can happen even in complete absence of phase transitions, hence also
in situations where EE was typically believed to hold. Here we are going to show
that, additionally, the breakdown can occur with previously undocumented strength,
i.e. the extra entropy can grow as fast as the entropy itself.

Combining Eqs. (3.15) and (3.11), one obtains the following exact generalization
of Eq. (3.18), valid irrespective of whether EE holds:

Ω ~C∗ = eS
∗
can−Sn[P∗mic||P

∗
can]. (3.19)

Clearly, the above expression reduces to Eq. (3.18) in case of EE, i.e. when Eq. (3.14)
holds. Although exact, Eq. (3.19) is not very useful unless one can calculate Sn[P ∗mic||P ∗can]
explicitly. An equivalent exact expression, which only requires the knowledge of P ∗can
and is again valid even when EE does not hold, has been derived [37]:

Ω ~C∗ =
∑
G∈G

ˆ ~π

−~π

d~ψ
(2π)K

ei
~ψ[ ~C∗− ~C(G)]

=

ˆ +~π

−~π

d~ψ
(2π)K

P−1
can(G∗|~θ∗ + i~ψ) (3.20)
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(where
´ +~π
−~π d~ψ ≡

∏K
k=1
´ +π
−π dψk). We will confirm that the above expression pro-

vides the exact result in cases where the complex integral can be calculated explicitly
and Ω ~C∗ can be evaluated independently via combinatorial enumeration. Indeed,
Eq. (3.20) highlights a beautiful connection between canonical and microcanonical
probabilities through an extension to complex numbers.

When the integral in Eq. (3.20) cannot be calculated directly, it is still possible to
use a saddle-point technique leading to [37]

Ω ~C∗ =
eS
∗
can√

det(2πΣ∗)

K∏
k=1

[1 +O(1/λ∗k)]

= eS
∗
can

K∏
k=1

1 +O(1/λ∗k)√
2πλ∗k

(3.21)

where Σ∗ is the covariance matrix of the K constraints in the canonical ensemble,
whose entries are defined as

Σ∗ij = Σij
∣∣
~θ=~θ∗ (3.22)

with

Σij ≡ −∂
2L∗(~θ)
∂θi∂θj

=
∂2 lnZ(~θ)
∂θi∂θj

= 〈CiCj〉~θ − 〈Ci〉~θ〈Cj〉~θ
= Cov~θ[Ci,Cj ] (3.23)

and {λ∗k}Kk=1 are the eigenvalues of Σ∗. We recall that covariance matrices are
positive-semidefinite, so all their eigenvalues are non-negative. If λ∗k is finite, then the
quantity O(1/λ∗k) in Eq. (3.21) cannot in general be calculated explicitly, although
it generates a correction that does not change the leading order of Ω ~C∗ and S∗mic.
If λ∗k is infinite (i.e., if it diverges in the thermodynamic limit), then O(1/λ∗k) will
vanish asymptotically and we have 1 +O(1/λ∗k) = 1 + o(1). This implies that, if all
the eigenvalues of Σ∗ diverge, then Eq. (3.21), when inserted into certain expressions,
can lead to an exact result. This includes the case of local constraints, for which
K diverges in the thermodynamic limit. We will therefore discuss the asymptotic
behaviour of the eigenvalues of Σ∗ in each of the examples considered later.

Equation (3.21) generalizes Eq. (3.18) to the case where EE does not necessarily
hold. Note that our initial assumption that the K constraints are non-redundant
implies that λ∗k > 0 for all k, i.e. Σ∗ is positive-definite [37]. Keeping this assumption
also in the thermodynamic limit (as ensured by our choice of both global and local
constraints defined above), we note two consequences. First, since Eq. (3.23) shows
that Σ∗ is the Hessian matrix of second derivatives of −L∗(~θ), the fact that Σ∗ is
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positive-definite implies that ~θ∗ is a unique global maximum for L∗(~θ) [37], confirming
what we had anticipated previously. Second, the product in Eq. (3.21) is at most of
the same order as the denominator. Therefore, in full generality, we can exploit
Eq. (3.21) to rewrite Eq. (3.19) as

Ω ~C∗ = eS
∗
can−O(αn), (3.24)

where we have defined [37]

αn ≡ ln
√

det(2πΣ∗) = 1
2

K∑
k=1

ln(2πλ∗k). (3.25)

We can now make three important considerations. First, Eq. (3.24) means that

Sn[P
∗
mic||P ∗can] = O(αn), (3.26)

showing that the speed of growth of Sn[P ∗mic||P ∗can] with n can be calculated explicitly
through Eq. (3.25) using the knowledge of Σ∗, which requires only the canonical
ensemble. This is useful when microcanonical calculations are unfeasible. Second, if
K is finite, or if K diverges but all (except possibly a finite number of) the eigenvalues
of Σ∗ diverge, then the product inside Eq. (3.21) gives a subleading contribution to
Sn[P ∗mic||P ∗can], which therefore has the same asymptotic behaviour as αn:

Sn[P
∗
mic||P ∗can] = αn[1 + o(1)]. (3.27)

This result, which is stronger than Eq. (3.26), means that in such a case one can obtain
exact estimates of quantities that depend on Sn[P ∗mic||P ∗can], using only the knowledge
of αn. Third, Eq. (3.26) shows that the definition of EE given by Eq. (3.14) coincides
with

αn = o(n) (3.28)

which, again, can be ascertained by evaluating only Σ∗ and avoiding any microcanon-
ical calculation. Indeed, Eq. (3.28) can be formulated as an equivalent definition of
EE in the measure sense [37]. If αn grows faster than o(n), then the system is under
EN.

3.3 Weak and strong ensemble nonequivalence
In this section we illustrate the main results, i.e. we identify systems for which the
breaking of EE occurs in a form that is at the same time ‘strong’ and ‘unrestricted’
and we calculate the relative entropy in various such systems. To this end, we first
make some general considerations leading to a rigorous definition of ‘strong’ EN and
subsequently study specific examples within our matrix ensembles.
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3.3.1 Relative entropy ratio
Equation (3.21) reveals that the asymptotic behaviour of Ω ~C∗ depends on that of K
and of the eigenvalues of the covariance matrix Σ∗. We can indeed convince ourselves
of this fact by looking at results of previous studies from a novel perspective.

Specifically, if K = o(n) and if we exclude phase transitions, then Eq. (3.21) leads
to Eq. (3.18), i.e. the ensembles are equivalent. This includes the traditional situation
where one has a finite number of constraints, as well as more complicated cases where
the number of constraints is subextensive (e.g. random graphs with constraints on
a subextensive subset of node degrees [63]). In order to break EE in this case, one
needs phase transitions corresponding to singularities of the partition function [8].
For instance, in the case of graphs with fixed numbers of edges and triangles (or
wedges) [67], there is a region in parameter space where one gets Sn[P ∗mic||P ∗can] =
O(n2) and therefore Ω ~C∗ = eS

∗
can−O(n2). Since also S∗can and S∗mic are O(n2) in this

case, it follows that
Sn[P

∗
mic||P ∗can] = O(S∗can) (3.29)

(note that in general S∗can ≥ S∗mic due to the non-negativity of the Kullback-Leibler
divergence and to Eq. (3.15), therefore O(S∗can) is necessarily the leading order). This
is what we have previously referred to as a form of EN that is ‘restricted’ (i.e. valid
only in a certain region in parameter space arising from a phase transition and outside
which EE is restored) but ‘strong’ (i.e. where the relative entropy is of the same order
as the entropy itself).

If K = O(n), then Eq. (3.18) is in general no longer valid. For instance, in the
case of sparse graphs with fixed degrees (K = n), all the eigenvalues of Σ∗ are finite
in the thermodynamic limit [5, 7]; one indeed obtains Sn[P ∗mic||P ∗can] = O(n) [5] and
hence Ω ~C∗ = eS

∗
can−O(n). Note that in this case the product in Eq. (3.21) (which

in general cannot be calculated exactly) is of the same order as the denominator
and should be taken into account. In the case of dense graphs with fixed degrees
(again K = n), all the eigenvalues of Σ∗ are instead O(n) [7]; one indeed obtains
Sn[P ∗mic||P ∗can] = O(n lnn) [7] and hence Ω ~C∗ = eS

∗
can−O(n lnn). The product in

Eq. (3.21) is in this case negliglible with respect to the denominator, which can be
calculated exactly. In any case, since S∗can and S∗mic are still O(n2) for both sparse
and dense networks with fixed degrees, these situations correspond to

Sn[P
∗
mic||P ∗can] = o(S∗can), (3.30)

i.e. to what we have defined ‘weak’ EN. On the other hand, this type of EN is not
associated with phase transitions (which are indeed absent in the mentioned examples
of graphs with fixed degrees) and is therefore ‘unrestricted’, i.e. valid in the entire
parameter space.

The above considerations suggest that, in order to rigorously define the strength
of EN, we may define the ratio

Rn ≡
Sn[P ∗mic||P ∗can]
Sn[P ∗can]

= 1− Sn[P ∗mic]

Sn[P ∗can]
(3.31)
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between the relative entropy and the canonical entropy, calculated for fixed n, and
consider its limit as n→ +∞, i.e.

R∞ ≡ lim
n→∞

Rn

= lim
n→∞

Sn[P ∗mic||P ∗can]
Sn[P ∗can]

= 1− lim
n→∞

Sn[P ∗mic]

Sn[P ∗can]
. (3.32)

For brevity, we will call Rn the relative entropy ratio and R∞ the limiting relative
entropy ratio. Note that the inequality S∗can ≥ S∗mic ≥ 0 implies 0 ≤ Rn ≤ 1 for all
n > 0. The condition characterizing our notion of strong EN in Eq. (3.29) coincides
with R∞ being strictly positive. The value of R∞ in that case quantifies exactly the
asymptotic proportionality between Sn[P ∗mic||P ∗can] and Sn[P ∗can], which is otherwise
left unquantified by Eq. (3.29) alone. We will therefore adopt the strict inequality

R∞ > 0 (3.33)

(which in turns implies the breakdown of Eq. (3.28), the converse being in general
not true) as our definition of strong EN. By contrast, the condition characterizing
our notion of weak EN in Eq. (3.30) can be rephrased as the equality R∞ = 0. Note
that one may have R∞ = 0 also in cases where the ensembles are equivalent. We will
therefore adopt the condition R∞ = 0, in conjunction with the violation of Eq. (3.28),
as our definition of weak EN. Note that our discussion following Eq. (3.21) implies
that, if all but at most a finite number of the eigenvalues of Σ∗ diverge, then the
exact value of R∞ can be retrieved by replacing Sn[P ∗mic||P ∗can] with αn given by
Eq. (3.25), i.e. using only the canonical covariances between the constraints, without
microcanonical calculations.

Note that Eq. (3.19) implies

Ω ~C∗ = eS
∗
can(1−Rn) = O

((
eS
∗
can
)1−R∞

)
. (3.34)

So, in presence of strong nonequivalence (R∞ > 0), Ω ~C∗ is of strictly smaller or-
der compared with the ordinary estimate in Eq. (3.18). This is actually due to the
canonical ensemble having much bigger entropy than the microcanonical one: indeed,
Eq. (3.15) implies

S∗mic = S∗can(1−Rn) (3.35)

and, inverting,
S∗can =

1
1−Rn

S∗mic. (3.36)

Note that the factor 1/(1−Rn) can be arbitrarily large since Rn can be arbitrarily
close to 1.
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Given the above definitions of ‘weak’ and ‘strong’ EN in terms of the limiting
relative entropy ratio, in what follows we will consider the specific ensembles of ma-
trices introduced in the previous section, under both global and local constraints, and
calculate the value of αn and R∞ in each case.

3.3.2 Global constraints
As already discussed, ensembles of (binary or weighted) n×m matrices with a global
constraint are defined by requiring that the single quantity t(G) =

∑n
i=1
∑m
j=1 gij

takes, either ‘hardly’ or ‘softly’, a specific value t∗ ≡ t(G∗). For this simple choice
of the constraint, both S∗can and S∗mic can be calculated exactly. This allows us to
check that the complex integral in Eq. (3.20) indeed provides the exact value of Ωt∗ .
Moreover, we can confirm the correctness of the asymptotic formula in Eq. (3.21).
All these approaches show that for both binary and weighted matrices with a global
constraint the canonical and microcanonical ensembles are equivalent.

Binary matrices under a global constraint

Let us start with the case when the global constraint t∗ is imposed on binary matrix
ensembles characterized by gij ∈ {0, 1}. The calculation of the canonical entropy S∗can
is straightforward (see Appendix) by first calculating the likelihood

Pcan(G∗|θ) =
e−θ t

∗

(1 + e−θ)mn
(3.37)

and then looking for the value θ∗ that maximizes Pcan(G∗|θ) or, equivalently, realizes
the soft constraint 〈t〉θ∗ = t∗. The result is

θ∗ = ln mn− t
∗

t∗
. (3.38)

Using Eq. (3.8), we can then easily evaluate S∗can from Eqs. (3.37) and (3.38) as

S∗can = − lnPcan(G∗|θ∗) = ln (mn)mn

(t∗)t
∗
(mn− t∗)mn−t∗

. (3.39)

The calculation of the microcanonical entropy S∗mic is in this case even simpler
than that of the canonical one, since the number Ωt∗ of configurations realizing the
hard constraint t(G) = t∗ is simply the number of ways in which t∗ ‘ones’ can be
placed in mn available positions, i.e. the binomial coefficient Ωt∗ = (mnt∗ ). This
implies

S∗mic = ln Ωt∗ = ln
(
mn

t∗

)
. (3.40)

Importantly, it is possible to confirm that, upon extending the argument of the likeli-
hood to the complex domain and calculating Pcan(G∗|θ∗+ iψ), the integral formula in
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Eq. (3.20) returns a value of Ωt∗ that produces the exact value of the microcanonical
entropy S∗mic given in Eq. (3.40):

S∗mic = ln
ˆ +π

−π

dψ
2π P

−1
can(G∗|θ∗ + iψ)

= ln
ˆ +π

−π

dψ
2π

(1 + e−θ
∗−iψ)mn

e−(θ
∗+iψ) t∗

= ln
(
mn

t∗

)
, (3.41)

where the (instructive) calculation justifying the last equality is reported in the Ap-
pendix.

Combining the expressions for S∗mic and S∗can into Eq. (3.15), we obtain the relative
entropy between the two ensembles:

Sn[P
∗
mic||P ∗can] = ln (mn)mn(

mn

t∗

)
(t∗)t

∗
(mn− t∗)mn−t∗

. (3.42)

In this simple example, the inequality Sn[P ∗mic||P ∗can] > 0 clearly arises from the
presence of dependencies among the entries of G in the microcanonical ensemble
and the absence of such dependencies in the canonical one. Indeed, while in the
microcanonical ensemble the hard constraint t(G) = t∗ makes all the entries of G
mutually dependent, in the canonical ensemble the soft constraint 〈t〉θ∗ = t∗ leaves
each entry gij independent and identically (Bernoulli-)distributed with probability

p(gij |θ∗) =
e−θ

∗gij

1 + e−θ∗
, gij ∈ {0, 1} (3.43)

(see Appendix). Consequently, while in the microcanonical ensemble the constraint
t(G) is a deterministic quantity fixed to the value t∗, in the canonical ensemble t(G)
is a random variable with expected value t∗ and variance

Σ∗ = Varθ∗ [t] = nm
e−θ

∗

(1 + e−θ∗)2 = t∗
(

1− t∗

mn

)
(3.44)

(see Appendix), where Σ∗ is the only (recall that hereK = 1) of the covariance matrix
Σ∗ introduced in Eq. (3.23).

As discussed in Subsection 3.2.6, Sn[P ∗mic||P ∗can] and Σ∗ are asymptotically related
through Eq. (3.26), and the (non)equivalence of canonical and microcanonical ensem-
bles is decided by the asymptotic behaviour of these two quantities. We will confirm
both results in the particular case under consideration here. However, for compact-
ness, we do this in conjunction with the weighted case, after introducing the latter
below.
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Weighted matrices under a global constraint

We now consider the case when the global constraint t∗ is enforced on weighted
matrices where gij is a non-negative integer. As we show in the Appendix, in the
canonical ensemble the likelihood can be calculated as

Pcan(G∗|θ) = e−θ t
∗
(1− e−θ)mn (3.45)

and is maximised by the parameter value

θ∗ = ln mn+ t∗

t∗
(3.46)

(note the change of sign with respect to the binary case) realizing the soft constraint
〈t〉θ∗ = t∗. The canonical entropy is therefore

S∗can = − lnPcan(G∗|θ∗) = ln (mn+ t∗)mn+t
∗

(t∗)t
∗
(mn)mn

. (3.47)

In the microcanonical ensemble, the number Ωt∗ of configurations realizing the
hard constraint t(G) = t∗ coincides with the number of so-called weak compositions
of the positive integer t∗ into exactly mn parts, i.e. the number of ways of writing
the positive integer t∗ as the sum of an ordered sequence of mn non-negative integers
(note that two sequences that differ in the order of their terms represent different
configurations). This number is given by the negative binomial coefficient Ωt∗ =

(mn+t
∗−1

t∗ ) [68], whence

S∗mic = ln Ωt∗ = ln
(
mn+ t∗ − 1

t∗

)
. (3.48)

In this case as well, one can confirm that the integration of the complex quantity
P−1
can(G∗|θ∗ + iψ) as specified in Eq. (3.20) produces precisely the same value of Ωt∗

used in Eq. (3.48) (see Appendix), thus retrieving the exact entropy

S∗mic = ln
ˆ +π

−π

dψ
2π P

−1
can(G∗|θ∗ + iψ)

= ln
ˆ π

−π

dψ
2π

(1− e−θ∗−iψ)−mn

e−(θ
∗+iψ)t∗

= ln
(
mn+ t∗ − 1

t∗

)
. (3.49)

The relative entropy Sn[P ∗mic||P ∗can], calculated using Eq. (3.15), equals

Sn[P
∗
mic||P ∗can] = ln (mn+ t∗)mn+t

∗(
mn+ t∗ − 1

t∗

)
(t∗)t

∗
(mn)mn

. (3.50)
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Again, the origin of a non-zero relative entropy lies in the presence of dependencies
among all the entries of G in the microcanonical ensemble, where they are coupled
by the hard constraint t(G) = t∗, and in the absence of such dependencies in the
canonical ensemble, where each entry gij is independent and now geometrically (see
Appendix) distributed with probability

p(gij |θ∗) = e−θ
∗gij (1− e−θ∗), gij ∈ {0, 1, 2, . . . }. (3.51)

As a consequence, while in the microcanonical ensemble the constraint t(G) is fixed to
the constant value t∗, in the canonical ensemble it is a random variable with expected
value t∗ and variance

Σ∗ = Varθ∗ [t] = nm
e−θ

∗

(1− e−θ∗)2 = t∗
(

1 + t∗

mn

)
(3.52)

(see Appendix).

Ensemble equivalence for matrices under a global constraint

We can now study, in a combined fashion, the (non)equivalence of the canonical
and microcanonical ensembles of both binary and weighted matrices with a global
constraint t∗. To this end, we preliminarly notice that the reason why the quantity
(k+l−1

l ) is called negative binomial is the fact that it can be formally rewritten as the
following binomial coefficient with negative signs:(

k+ l− 1
l

)
= (−1)l

(
−k
l

)
. (3.53)

The above relation allows us to conveniently rewrite the relative entropy for the
weighted case appearing in Eq. (3.50) as

Sn[P
∗
mic||P ∗can] = ln (−mn)−mn(

−mn
t∗

)
(t∗)t

∗
(−mn− t∗)−mn−t∗

. (3.54)

Upon comparison with the corresponding Eq. (3.42) valid in the binary case, we can
express the relative entropy in general as

S±n [P
∗
mic||P ∗can] = ln (±mn)±mn(

±mn
t∗

)
(t∗)t

∗
(±mn− t∗)±mn−t∗

, (3.55)

where the superscript “+” applies to binary matrices (note that t∗ ≤ mn in this case)
and the superscript “−” applies to weighted matrices. Note that the expression for the
weighted case can be formally retrieved by changing the sign of m in the expression
valid for the binary case.
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As we discussed in Subsection 3.2.6, checking for (non)equivalence requires study-
ing the asymptotic behaviour of the relative entropy. In this case, we can calculate
the asymptotic behaviour of S±n [P ∗mic||P ∗can] explicitly from the exact expression given
by Eq. (3.55). Note that, in both the sparse and dense case (see Subsection 3.2.5),
t∗ and mn diverge in the thermodynamic limit. We can therefore apply Stirling’s
formula

k! =
√

2πk
(
k

e

)k
[1 + o(1)] (3.56)

to Eq. (3.55), which yields

S±n [P
∗
mic||P ∗can] =

1
2 ln

[
2πt∗

(
1− t∗

±mn

)]
[1 + o(1)] . (3.57)

For purely pedagogical reasons, we check that the asymptotic behaviour found
above is consistent with the one we would retrieve by using the expansion in Eq. (3.21),
which leads to Eq. (3.26) and reduces the problem of the calculation of S±n [P ∗mic||P ∗can]
to that of its leading order αn. To this end, we note that in this case the matrix Σ∗,
being a 1× 1 matrix, coincides with its only eigenvalue

(λ∗)± = t∗
(

1− t∗

±mn

)
, (3.58)

where we have used Eq. (3.44) for binary (+) and Eq. (3.52) for weighted (−) matrices.
Therefore

α±n = ln
√

2π(λ∗)±

=
1
2 ln

[
2πt∗

(
1− t∗

±mn

)]
, (3.59)

which has indeed the same leading order as Eq. (3.57), thereby confirming the cor-
rectness of the saddle-point calculation. As an even stronger result, we are under
the conditions for which Eq. (3.27) holds, a relationship that can be confirmed by
comparing Eqs. (3.57) and (3.59). It should also be noted that, since t∗ diverges in
the thermodynamic limit, so does (λ∗)± and Eq. (3.21) leads to

Ω±t∗ =
eS
±
n [P∗can]√

2πt∗
(

1− t∗
±mn

) [1 + o(1)], (3.60)

which is precisely what we get by applying Eq. (3.56) to the binomial and negative
binomial coefficients appearing in the exact expression for Ω±t∗ in the binary and
weighted case respectively.

As stated in Eq. (3.28), checking whether the ensembles are equivalent boils down
to checking whether αn = o(n). Note that the only effect of the asymptotic scaling
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of t∗ is that the quantity 1− t∗/(±mn) in Eq. (3.59) converges to 1 in the sparse
case t∗/mn = O(1/n) and to a different, but still finite and positive constant in the
dense case t∗/mn = O(1) (see Subsection 3.2.5). Therefore in both cases we have
αn = O(ln t∗) = O(lnmn). This implies αn = o(n) independently of the asymptotic
behaviour of m. This result shows that, in presence of a global constraint, both binary
and weighted matrices are under EE, irrespective of the scaling of t∗ and m. This
finding confirms, in a generalized setting, the result obtained for networks with a
given total number of links [5]. Since EE is preserved, we avoid the calculation of the
limiting relative entropy ratio R∞ defined in Eq. (3.32) in this case.

3.3.3 One-sided local constraints
We now consider ensembles of binary and weighted n×m matrices with one-sided
local constraints, i.e. under the requirement that the n-dimensional vector ~r(G) with
entries ri(G) =

∑m
j=1 gij (i = 1,n) takes a specific value ~r∗ ≡ ~r(G∗). Note that,

unlike the case of global constraints, here the number of constraints is extensive. As
in the case with global constraints, it turns out that both S∗can and S∗mic can still be
calculated exactly. Therefore we can again confirm the correctness of both the exact
integral formula in Eq. (3.20) and the asymptotic expansion in Eq. (3.21). Despite
these extensions are mathematically straightforward, we find a deep physical differ-
ence with respect to the case with global constraints: the presence of an extensive
number of local constraints implies the breaking of the equivalence of canonical and
microcanonical ensembles for both binary and weighted matrices. The calculation of
the limiting relative entropy ratio R∞ allows us to quantify the strength of nonequiv-
alence and also to identify the conditions leading to the ‘strong and unrestricted’
form.

Binary matrices under one-sided local constraints

Let us first examine the case when the one-sided local constraints ~r∗ are imposed on
ensembles of binary matrices. As we show in the Appendix, in the canonical ensemble
the likelihood is

Pcan(G∗|~θ) =
e−

~θ·~r∗∏n
i=1(1 + e−θi)m

(3.61)

and reaches its maximum when the parameter ~θ takes the value ~θ∗ with entries

θ∗i = ln m− r
∗
i

r∗i
i = 1,n, (3.62)

corresponding to the soft constraint 〈~r〉 ~θ∗ = ~r∗. Substituting Eq. (3.62) into Eq. (3.61),
we obtain the canonical entropy as

S∗can = − lnPcan(G∗|~θ∗)

=
n∑
i=1

ln mm

(r∗i )
r∗i (m− r∗i )

m−r∗i
. (3.63)
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Let us now turn to the microcanonical ensemble. Since the constraints are only
one-sided, it is immediate to realize that the number Ω~r∗ of configurations realizing
the hard constraint ~r(G) = ~r∗ is a product of row-specific binomial coefficients, so
that the microcanonical entropy S∗mic can still be calculated exactly as the following
simple generalization of Eq. (3.40):

S∗mic = ln Ω~r∗ = ln
n∏
i=1

(
m

r∗i

)
=

n∑
i=1

ln
(
m

r∗i

)
. (3.64)

For the same reason, S∗mic can also be exactly retrieved by explicitly integrating the
complex-valued quantity Pcan(G∗|~θ∗+ i ~ψ) as prescribed by Eq. (3.20) (see Appendix):

S∗mic = ln
ˆ +~π

−~π

d~ψ
(2π)nP

−1
can(G∗|~θ∗ + i~ψ)

= ln
n∏
i=1

ˆ +π

−π

dψi
2π

(1 + e−θ
∗
i −iψi)m

e−(θ
∗
i +iψi)r∗i

=
n∑
i=1

ln
(
m

r∗i

)
. (3.65)

Combining the above results, we can calculate the relative entropy from Eq. (3.15)
as

Sn[P
∗
mic||P ∗can] =

n∑
i=1

ln mm(
m

r∗i

)
(r∗i )

r∗i (m− r∗i )m−r
∗
i

. (3.66)

The above quantity encodes the following difference between the two ensembles: in
the microcanonical ensemble, the hard constraint ~r(G) = ~r∗ makes all the entries in
each row of G mutually dependent, while leaving different rows independent of each
other; on the other hand, in the canonical ensemble the soft constraint 〈~r〉~θ∗ = ~r∗

leaves all entries of the matrix independent. As in the case with a global constraint,
each entry gij is still Bernoulli-distributed, but now with row-specific probability

p(gij |~θ∗) =
e−θ

∗
i gij

1 + e−θ
∗
i

, gij ∈ {0, 1}, (3.67)

as we show in the Appendix. Correspondingly, in the microcanonical ensemble ~r is
a deterministic vector fixed to the value ~r∗, while in the canonical ensemble it is a
random vector with expected value ~r∗. The covariance matrix Σ∗ between the entries
of ~r (i.e. between the n constraints) in the canonical ensemble is a diagonal matrix
with entries

Σ∗ij = δijr
∗
i

(
1− r∗i

m

)
(3.68)
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where δij = 1 if i = j and δij = 0 if i 6= j (see Appendix). This implies that the
eigenvalues {λ∗i }ni=1 of Σ∗ are

λ∗i = r∗i

(
1− r∗i

m

)
i = 1,n. (3.69)

Again, we are going to discuss the (non)equivalence of the two ensembles together
with the corresponding case of weighted matrices, after studying the latter below.

Weighted matrices under one-sided local constraints

We now move to the case when the one-sided local constraints ~r∗ are imposed on
ensembles of weighted matrices. The canonical ensemble under such constraints is
characterized by the likelihood

Pcan(G∗|~θ) =
e−

~θ·~r∗∏n
i=1(1− e−θi)−m

, (3.70)

which is maximized by the parameter value ~θ∗ with entries

θ∗i = ln m+ r∗i
r∗i

i = 1,n (3.71)

realizing the soft constraint 〈~r〉 ~θ∗ = ~r∗ (see Appendix). If we insert Eq. (3.71) into
Eq. (3.70), we get

S∗can = − lnPcan(G∗|~θ∗)

=
n∑
i=1

ln (m+ r∗i )
m+r∗i

(r∗i )
r∗imm

. (3.72)

The microcanonical entropy S∗mic is instead given by the following generalization
of Eq. (3.48):

S∗mic = ln Ω~r∗ =
n∑
i=1

ln
(
m+ r∗i − 1

r∗i

)
, (3.73)

where we have expressed the number Ω~r∗ of configurations realizing the hard con-
straint ~r(G) = ~r∗ as a product of row-specific negative binomial coefficients. Again,
the microcanonical entropy can be obtained equivalently from Eq. (3.20) as follows
(see Appendix):

S∗mic = ln
ˆ +~π

−~π

d~ψ
(2π)nP

−1
can(G∗|~θ∗ + i~ψ)

= ln
n∏
i=1

ˆ +π

−π

dψi
2π

(1− e−θ∗i−iψi)−m

e−(θ
∗
i +iψi)r∗i

=
n∑
i=1

ln
(
m+ r∗i − 1

r∗i

)
. (3.74)
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The relative entropy, which can be obtained from Eq. (3.15) as usual, equals

Sn[P
∗
mic||P ∗can] =

n∑
i=1

ln (m+ r∗i )
m+r∗i(

m+ r∗i − 1
r∗i

)
(r∗i )

r∗imm
(3.75)

and encodes the difference between the microcanonical ensemble, where the entries
of each row of G are mutually coupled by the hard constraint ~r(G) = ~r∗ (while
different rows are independent), and the canonical ensemble, where all entries of G
are independent and geometrically (see Appendix) distributed with row-dependent
probability

p(gij |~θ∗) = e−θ
∗
i gij (1− e−θ∗i ), gij ∈ {0, 1, 2, . . . }. (3.76)

As a consequence, while in the microcanonical ensemble the constraint ~r is fixed to
the value ~r∗, in the canonical ensemble it is a random vector fluctuating around ~r∗
according to the diagonal covariance matrix Σ∗ with entries

Σ∗ij = δijr
∗
i

(
1 + r∗i

m

)
(3.77)

(see Appendix) and eigenvalues

λ∗i = r∗i

(
1 + r∗i

m

)
i = 1,n. (3.78)

Ensemble nonequivalence for matrices under one-sided local constraints

We can now compactly discuss the (non)equivalence of canonical and microcanonical
ensembles of both binary and weighted matrices under one-sided local constraints.
As for the case of global constraints discussed in Subsection 3.3.2, we still have an
exact knowledge of the canonical entropy, the microcanonical entropy, and the relative
entropy. Moreover, these quantities can all be written, using Eq. (3.53), in compact
expressions formally valid for both binary (+) and weighted (−) matrices. Indeed, the
canonical entropy can be expressed by combining the expressions for Sn[P ∗can] = S∗can
in Eqs. (3.63) and (3.72) into the unified formula

S±n [P
∗
can] =

n∑
i=1

ln m±m

(r∗i )
r∗i (m∓ r∗i )

±m−r∗i
(3.79)

and, similarly, the microcanonical entropy can be obtained by formally combining
Eqs. (3.64) and (3.73) into

S±n [P
∗
mic] =

n∑
i=1

ln
[
(±1)r∗i

(
±m
r∗i

)]
. (3.80)
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The above expressions can be used to calculate the relative entropy as

S±n [P
∗
mic||P ∗can] =

n∑
i=1

ln (±m)±m(
±m
r∗i

)
(r∗i )

r∗i (±m− r∗i )±m−r
∗
i

(3.81)

which indeed combines the expressions given in Eq. (3.66) for binary (+) matrices
and Eq. (3.75) for weighted (−) matrices. Equation (3.81) extends Eq. (3.55) to the
case of one-sided local constraints. We now consider different regimes.

• In the sparse case where r∗i = O(1) (for all i) and m = O(n) (see Subsec-
tion 3.2.5), we can use Stirling’s formula, given by Eq. (3.56), to expand m!
(but not r∗i !) appearing in the (negative) binomial coefficient to get(

±m
r∗i

)
≈ (±m)r

∗
i

r∗i !
(3.82)

and consequently

S±n [P
∗
mic||P ∗can] ≈

n∑
i=1

ln er
∗
i r∗i !

(r∗i )
r∗i

= O(n). (3.83)

• In the dense case where both r∗i (for all i) and m are O(n), as discussed in
Subsection 3.2.5 (so that r∗i /m converges to a finite constant), we can use
Stirling’s formula to expand both m! and r∗i ! into Eq. (3.81) to obtain

S±n [P
∗
mic||P ∗can] =

1
2

n∑
i=1

ln
[
2πr∗i

(
1− r∗i
±m

)]
[1 + o(1)]

= O(n lnn) (3.84)

for binary (+) (in which case r∗i ≤ m) and weighted (−) matrices.

• In the dense case where both m and r∗i are finite, there is no asymptotic ex-
pansion that allows to simplify Eq. (3.81) in general, so S±n [P ∗mic||P ∗can] has to
be evaluated explicitly (simple examples are provided below). The important
general consideration is that, irrespective of the specific values of m and r∗i ,

S±n [P
∗
mic||P ∗can] = O(n). (3.85)

Again, we can confirm that the above asymptotic expressions are consistent with
what we would obtain from Eq. (3.26), which follows from the saddle-point approxi-
mation given by Eq. (3.21). To see this, noting that here K = n and that Eqs. (3.68)
and (3.77) indicate that (Σ∗)± is a diagonal matrix with entries

(Σ∗ij)
± = δijr

∗
i

(
1− r∗i
±m

)
(3.86)
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for binary (+) and weighted (−) one-sided constraints respectively, we can compactly
express Eq. (3.25) as

α±n = ln
√

det [2π(Σ∗)±]

=
1
2

n∑
i=1

ln
[
2π(Σ∗ii)±

]
=

1
2

n∑
i=1

ln
[
2πr∗i

(
1− r∗i
±m

)]
. (3.87)

In the dense regime with diverging m, the conditions guaranteeing the strong result
in Eq. (3.27) (all but a finite number of diverging eigenvalues of Σ∗) hold, as can be
confirmed by comparing Eqs. (3.84) and (3.87). Moreover, noticing from Eq. (3.56)
that ekk!/kk =

√
2πk[1 + o(1)], we see that Eq. (3.87) confirms the asymptotic

behaviour of the relative entropy obtained also in Eqs. (3.83) and (3.85) for the
other two regimes, under the respective assumptions on the scaling of m and k.
Coincidentally, we also see that the stronger result in Eq. (3.27) turns out to be a
very good approximation for the relative entropy even in these two regimes where,
technically, the required conditions are not met. This means that, for the one-sided
dense case with finite m, we can rewrite Eq. (3.26) asymptotically (i.e. for large n)
as

S±n [P
∗
mic||P ∗can] = C1(m)α±n

= C1(m) ln
√

det[2π(Σ∗)±] (3.88)

where C1(m) is a finite and positive constant. Moreover, from the known inequality
ekk!/kk ≥

√
2πk for the factorial, we see that C1(m) ≥ 1 as implied by comparing

Eqs. (3.81) and (3.87). Finally, we also know from Stirling’s approximation that
C1(m) is not much bigger than 1, i.e. C1(m) & 1, and that it rapidly approaches 1:
indeed when m diverges Eq. (3.27) holds exactly, which implies

lim
m→∞

C1(m) = 1. (3.89)

The fact that, in all regimes, S±n [P ∗mic||P ∗can] (or equivalently αn) is at least of order
O(n) shows that Eq. (3.28) is violated and that EE breaks down for both binary and
weighted matrices under one-sided local constraints, irrespective of the density and of
the behaviour of m. This important finding generalizes the result, documented so far
only for ensembles of binary graphs with given degree sequence [5, 7, 45] (and possibly
modular structure [26]) and weighted graphs with given strength sequence [28], that
EE breaks down in the presence of an extensive (i.e. growing like n) number of local
constraints. Here, this result is extended to more general ensembles of matrices, i.e.
asymmetric, rectangular matrices describing e.g. bipartite graphs, multivariate time
series, multiplex social activity, multi-cast communication systems and multi-cell gene
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expression profiles with variable m. More importantly, this generalized setting allows
for a qualitatively new phenomenon to emerge, namely the onset of ‘strong’ EN, as
we now show.

Indeed, we can investigate the ‘strength’ of nonequivalence by comparing the
asymptotic behaviour of the relative entropy with that of the canonical entropy given
by Eq. (3.79). This expression can be evaluated in the usual three regimes as follows.

In the sparse case with r∗i = O(1) and m = O(n), noticing that asymptotically
(for large n) we have (m∓ r∗i )

±m−r∗i ≈ m±m−r∗i e∓r∗i , Eq. (3.79) reduces to

S±n [P
∗
can] ≈

n∑
i=1

r∗i ln e
±1m

r∗i
= O(n lnn), (3.90)

which dominates over the orderO(n) of the corresponding relative entropy S±n [P ∗mic||P ∗can]
calculated previously in Eq. (3.83) for the sparse case. This implies that the limit-
ing relative entropy ratio defined in Eq. (3.32) is R±∞ = 0 for both binary (+) and
weighted (−) constraints, meaning that in this case the breaking of EE is still ‘weak’
as in the case of graphs with local constraints.

In the dense case with r∗i = O(n) and m = O(n), Eq. (3.79) can be evaluated as

S±n [P
∗
can] =

n∑
i=1

[
±m ln m

m∓ r∗i
+ r∗i ln m∓ r

∗
i

r∗i

]
= O(n2) (3.91)

which, again, dominates over the order O(n lnn) of the corresponding relative entropy
calculated in Eq. (3.84). Therefore we still have R±∞ = 0 (weak nonequivalence).

Finally, the dense case where both m and r∗i remain finite as n→∞ is the subject
of the rest of this Section. Equation (3.79) implies that

S±n [P
∗
can] = O(n) (3.92)

which, upon comparison with Eq. (3.85), shows that now the relative entropy grows as
fast as the canonical entropy, signalling the ‘strong’ form of EN. Using the combined
expressions given in Eqs. (3.79) and (3.80), we can explicitly calculate the relative
entropy ratio introduced in Eq. (3.31) as follows:

R±n = 1−

∑n
i=1 ln

[
(±1)r∗i (±mr∗i )

]
∑n
i=1 ln m±m

(r∗i )
r∗
i (m∓r∗i )

±m−r∗
i

> 0. (3.93)

Using Eqs. (3.87) and (3.88), we obtain the alternative asymptotic (for large n) ex-
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Figure 3.2. Strong ensemble nonequivalence, signalled by a positive limiting entropy ratio
R+
∞ > 0, for binary matrices under homogeneous one-sided local constraints (r∗i = r∗ ∀i) in

the dense case with finite m and r∗. (a) R+
∞ as a function of p∗ = r∗/m for various values of

m. Note that R+
∞ is larger for smaller m and for values of p∗ more distant from the uniform

case (p∗ = 1/2). (b) R+
∞ as a function of m for various values of p∗. Note that, as m grows,

R+
∞ decays like ln(2πm)/m.

pression

R±n =
S±n [P

∗
mic||P ∗can]

S±n [P ∗can]

= C1(m)
α±n∑n

i=1 ln m±m

(r∗i )
r∗
i (m∓r∗i )

±m−r∗
i

=
C1(m)

2

∑n
i=1 ln

[
2πr∗i

(
1− r∗i

±m

)]
∑n
i=1 ln m±m

(r∗i )
r∗
i (m∓r∗i )

±m−r∗
i

. (3.94)

Comparing Eqs. (3.93) and (3.94) confirms that, as noticed above, C1(m) ≈ 1 also
for finite m.

In general, taking the thermodynamic limit n→∞ in Eq. (3.93) or (3.94) requires
the specification of the value of r∗i for all i. For the sake of illustration, we can consider
the simplest case where each constraint has the same value r∗i = r∗ (i = 1,n). Note
that the resulting canonical entropy of matrices with constant one-sided constraint r∗,
given by Eq. (3.79), coincides with the canonical entropy of matrices with the implied
global constraint t∗ = nr∗, given by Eqs. (3.39) and (3.47) in the binary and weighted
case respectively. However, the microcanonical entropy in the one-sided case, given
by Eq. (3.80), is strictly smaller than the corresponding one for matrices with the
implied global constraint t∗ = nr∗, given by Eqs. (3.40) and (3.48) in the binary and
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weighted case respectively. From Eq. (3.93) we immediately find

R±∞ = lim
n→∞

R±n = 1−
ln
[
(±1)r∗(±mr∗ )

]
ln m±m

(r∗)r
∗
(m∓r∗)±m−r

∗
> 0, (3.95)

confirming strong nonequivalence as defined in Eq. (3.33). To gain numerical and
visual insight about the behaviour of R±∞ in Eq. (3.95), let us consider the binary and
weighted cases separately.

In the binary case, Eq. (3.62) implies that, if r∗i = r∗ for all i, then the Lagrange
multipliers θ∗i are all equal to

θ∗+ ≡ ln m− r
∗

r∗
. (3.96)

Then, writing p∗ ≡ r∗/m = e−θ
∗
+/(1 + e−θ

∗
+) ∈ (0, 1), from Eq. (3.95) we obtain

R+
∞ = 1−

ln (mr∗)

ln mm

(r∗)r
∗
(m−r∗)m−r∗

(3.97)

= 1−
ln ( m

p∗m)

ln mm

(p∗m)p
∗m(m−p∗m)m−p∗m

> 0.

Using the above expression, in Fig. 3.2 we plot R+
∞ as a function of either p∗ (for

fixed m) or m (for fixed p∗). We see that, for a wide range of values of p∗, R+
∞

remains appreciably large for values of m up to one hundred. Moreover, values of p∗
closer to 0 or 1 than to 1/2 make R+

∞ larger. So, for empirical applications where
the level of ‘multiplexity’ is moderate (i.e. small m), and especially away from the
uniform case (p∗ = 1/2), there is a significant entropy reduction from the canonical
to the microcanonical ensemble. By contrast, as m increases while p∗ remains fixed,
R+
∞ decreases like ln 2πm

m , as can be easily realized by applying Stirling’s formula
to Eq. (3.97). This coincides with the system progressively moving to the different
regime where both m and r∗i grow as n grows, which results in weak EN and R+

∞ = 0
as previously noticed. Similarly, if r∗i remains finite while m grows, we enter the
sparse regime for which R+

∞ = 0 as previously noticed.
In the weighted case, Eq. (3.71) implies that if r∗i = r∗ for all i, then θ∗i = θ∗− for

all i with
θ∗− ≡ ln m+ r∗

r∗
. (3.98)

Then, writing q∗ ≡ e−θ
∗
− = r∗

m+r∗ ∈ (0, 1), from Eq. (3.95) we obtain

R−∞ = 1−
ln (m+r∗−1

r∗ )

ln (m+r∗)m+r∗

mm(r∗)r
∗

(3.99)

= 1−
ln ((m−1+q∗)/(1−q∗)

mq∗/(1−q∗) )

m
1−q∗ ln m

1−q∗ −m lnm− mq∗
1−q∗ ln mq∗

1−q∗
> 0.
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Figure 3.3 shows the behaviour of R−∞ either as a function of q∗ (with m fixed) or
as a function of m (with q∗ fixed). Considerations similar to the binary case apply.
The main difference is that, while R+

∞ has a symmetric behaviour around the value
p∗ = 1/2 (arising from the fundamental symmetry of exchanging p∗ with 1− p∗ and
gij = 1 with gij = 0 in the binary case), R−∞ decreases monotonically as a function of
q∗ (due to the lack of any symmetry of that sort in the weighted case). So now R−∞
is larger for smaller m and q∗.

The above results illustrate what we had anticipated previously, i.e. that if m is
finite (and the matrices are necessarily dense) then the ensembles feature a strong form
of EN. Here, this form of EN is also ‘unrestricted’, as it holds irrespective of the value
of ~C∗ or ~θ∗, i.e. throughout the parameter space. To the best of our knowledge, this
is the first evidence of a situation for which EN occurs in a simultaneously ‘strong
and unrestricted’ form, i.e. the most robust manifestation of the breaking of EE
documented so far. Its ultimate origin is the presence of an extensive number of local
constraints, and not of phase transitions.
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Figure 3.3. Strong ensemble nonequivalence, signalled by a positive limiting entropy ratio
R−∞ > 0, for weighted matrices under homogeneous one-sided local constraints (r∗i = r∗ ∀i)
in the dense case with finite m and r∗. (a) R−∞ as a function of q∗ = r∗

m+r∗ for various values
of m. Note that R−∞ is larger for smaller m and q∗. (b) R−∞ as a function of m for various
values of q∗. As in the binary case, R−∞ decays like ln(2πm)/m as m grows.

3.3.4 Two-sided local constraints
We now discuss binary and weighted matrices under two-sided local constraints (~r(G),~c(G)),
where ~r(G) is still the n-dimensional vector of row sums while ~c(G) is the m-
dimensional vector of column sums, with entries cj(G) =

∑n
i=1 gij (j = 1, . . . ,m).

We constrain both vectors to a given value (~r∗,~c∗) ≡ (~r(G∗),~c(G∗)). Note that the
number of constraints is still extensive. Unlike the case of one-sided constraints, for
two-sided constraints it is not possible to calculate the exact number Ω~r∗,~c∗ of con-
figurations in the microcanonical ensemble. By contrast, all canonical calculations
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can still be carried out analytically (although the value of the Lagrange multipliers
can be determined only via implicit expressions). Therefore, as we show below, the
matrix Σ∗ of canonical covariances between the constraints becomes a crucial tool to
calculate the asymptotic behaviour of the relevant microcanonical quantities.

Binary matrices under two-sided local constraints

As usual, we start from the binary case. As shown in the Appendix, in the canonical
ensemble the likelihood is

Pcan(G∗|~α, ~β) = e−~α·~r
∗−~β·~c∗∏n

i=1
∏m
j=1[1 + e−(αi+βj )]

(3.100)

and is maximized by the parameter values (~α∗, ~β∗) defined implicitly by the following
set of n+m coupled nonlinear equations:

r∗i =
m∑
j=1

e
−(α∗i+β

∗
j )

1 + e
−(α∗i+β

∗
j )

, i = 1,n, (3.101)

c∗j =
n∑
i=1

e
−(α∗i+β

∗
j )

1 + e
−(α∗i+β

∗
j )

, j = 1,m. (3.102)

Unfortunately, in general these equations cannot be solved analytically to express
(~α∗, ~β∗) as an explicit function of (~r∗,~c∗). This is due to the fact that the presence
of both row and column constraints couples all parameters. However, the equations
can be solved numerically and the unique solution (~α∗, ~β∗) can then be inserted into
Pcan(G|~α, ~β). This gives complete analytical control over the canonical ensemble. In
particular, the canonical entropy is

S∗can = − lnPcan(G∗|~α∗, ~β∗) (3.103)

= ~α∗ · ~r∗ + ~β∗ ·~c∗ +
n∑
i=1

m∑
j=1

ln[1 + e
−(α∗i+β

∗
j )].

Note that, since this model has additional constraints with respect to the one-sided
case with the same row sums ~r∗, the canonical entropy above cannot be larger than
the corresponding one-sided canonical entropy given by Eq. (3.63), i.e. we have the
following upper bound:

S∗can ≤
n∑
i=1

ln mm

(r∗i )
r∗i (m− r∗i )

m−r∗i
. (3.104)

On the other hand, the microcanonical entropy S∗mic cannot be computed analyt-
ically, although the asymptotic formulas based on Eqs. (3.24) and (3.25) can be used
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to estimate it from the canonical covariance matrix Σ∗. As we show later, this leads
to an asymptotic estimate of the relative entropy based on Eq. (3.26). As for the
canonical entropy, the microcanonical one cannot be larger than the corresponding
one given by Eq. (3.64) in the one-sided case with the same row sums, with the only
difference that now the resulting upper bound is tight:

S∗mic <
n∑
i=1

ln
(
m

r∗i

)
. (3.105)

Indeed, the configurations matching both the row and the column constraints in the
two-sided case form a proper subset of the configurations matching only the row
constraints in the one-sided case.

It should be noted that in the microcanonical ensemble both ~r and ~c are deter-
ministic vectors fixed to the values ~r∗ and ~c∗ respectively, while in the canonical
ensemble they are random vectors with expected values ~r∗ and ~c∗. In the micro-
canonical ensemble, the hard constraints (~r(G),~c(G)) = (~r∗,~c∗) create mutual de-
pendencies among all the entries of G. In the canonical ensemble, the soft constraint
(〈~r〉~α∗ , 〈~c〉~β∗) = (~r∗,~c∗) leaves all entries of G independent. As in all other canonical
binary ensembles considered above, each entry gij is Bernoulli-distributed, but now
with its specific parameters:

p(gij |~α∗, ~β∗) =
e−(α

∗
i+β

∗
i )gij

1 + e−(α
∗
i ,β∗i )

, gij ∈ {0, 1}, (3.106)

as shown in the Appendix.
For illustration, we consider the special case where the column sums are all equal

to each other, i.e. c∗j = c∗ for all j. In this case, since the corresponding Lagrange
multipliers must also be all equal to each other (β∗j = β∗ for all j), it is indeed possible
to solve for the parameters explicitly. Indeed, Eqs. (3.101) and (3.102) reduce to the
n+ 1 independent equations

r∗i = m
e−(α

∗
i+β

∗)

1 + e−(α
∗
i+β

∗)
, i = 1,n, (3.107)

c∗ =
n∑
i=1

e−(α
∗
i+β

∗)

1 + e−(α
∗
i+β

∗)
, (3.108)

where the second equation is simply the consistency condition c∗ =
∑n
i=1 r

∗
i /m im-

plied by the first one. This means that the parameter β∗ is actually redundant,
as it could in principle be reabsorbed into a shift of all the α∗i ’s. In any case, the
combination α∗i + β∗ is found explicitly by inverting Eq. (3.107):

α∗i + β∗ = ln m− r
∗
i

r∗i
. (3.109)
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Note that, inserting this value into the expression for S∗can in Eq. (3.103), we obtain
exactly the canonical entropy found previously in Eq. (3.63) for the binary ensemble
with one-sided (row) constraints specified by the same vector ~r∗, i.e. the bound in
Eq. (3.104) is fully saturated:

S∗can = ~α∗ · ~r∗ +mβ∗c∗ +m

n∑
i=1

ln[1 + e−(α
∗
i+β

∗)]

=
n∑
i=1

ln mm

(r∗i )
r∗i (m− r∗i )

m−r∗i
. (3.110)

Indeed, the two canonical ensembles are indistinguishable and all their properties
are the same. However, the corresponding microcanonical ensembles remain very
different, because in the two-sided case each of the m column sums has to match
the exact value c∗ separately, while in the one-sided case only the total sum mc∗ of
all the m column sums (which is necessarily implied by the row constraints) has to
be matched exactly. Indeed Eq. (3.105) is a tight bound that cannot be saturated.
Similarly, the covariance matrix Σ∗ is now a (n+m)× (n+m) matrix (calculated
later) and its determinant is different from the one obtained in the one-sided case,
where the matrix is n× n.

Again, we are going to discuss the (non)equivalence of the two ensembles together
with the corresponding case of weighted matrices, after studying the latter below.

Weighted matrices under two-sided local constraints

We now discuss EN in weighted matrices with two-sided local constraints. The like-
lihood (see Appendix) is now

Pcan(G∗|~α, ~β) = e−~α·~r
∗−~β·~c∗∏n

i=1
∏m
j=1[1− e−(αi+βj )]−1

(3.111)

and is maximized by the unique parameter values (~α∗, ~β∗) defined implicitly through
the n+m coupled nonlinear equations

r∗i =
m∑
j=1

e
−(α∗i+β

∗
j )

1− e−(α
∗
i+β

∗
j )

, i = 1,n, (3.112)

c∗j =
n∑
i=1

e
−(α∗i+β

∗
j )

1− e−(α
∗
i+β

∗
j )

, j = 1,m. (3.113)
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that can be solved numerically. The solution (~α∗, ~β∗), when inserted into Pcan(G|~α, ~β),
completely characterizes the canonical ensemble. The resulting canonical entropy is

S∗can = − lnPcan(G∗|~α∗, ~β∗) (3.114)

= ~α∗ · ~r∗ + ~β∗ ·~c∗ −
n∑
i=1

m∑
j=1

ln[1− e−(α
∗
i+β

∗
j )]

and an upper bound is provided by the canonical entropy given in Eq. (3.72) for the
one-sided case with the same row constraints ~r∗:

S∗can ≤
n∑
i=1

ln (m+ r∗i )
m+r∗i

(r∗i )
r∗imm

. (3.115)

As in the binary two-sided case, the microcanonical entropy S∗mic cannot be com-
puted explicitly, but it can still be evaluated asymptotically from the determinant of
the canonical covariance matrix Σ∗ using Eqs. (3.24) and (3.25). Correspondingly,
the relative entropy can be computed using Eq. (3.26). The microcanonical entropy
given by Eq. (3.73) for the corresponding one-sided case is still a strict upper bound
for the two-sided entropy:

S∗mic <
n∑
i=1

ln
(
m+ r∗i − 1

r∗i

)
. (3.116)

As in the corresponding binary case, in the microcanonical ensemble both ~r and
~c are deterministic and fixed to the values ~r∗ and ~c∗, while in the canonical ensemble
they are random with expected values ~r∗ and ~c∗. The coupled hard constraints
(~r(G),~c(G)) = (~r∗,~c∗) create mutual dependencies among all the entries of G in the
microcanonical ensemble. By contrast, the soft constraint (〈~r〉~α∗ , 〈~c〉~β∗) = (~r∗,~c∗)
leaves all entries of G independent in the canonical ensemble. In the latter, as for
all weighted matrices discussed so far, each entry gij is geometrically distributed, but
now with its specific parameters:

p(gij |~α∗, ~β∗) = e−(α
∗
i+β

∗
i )gij

[
1− e−(α∗i+β∗i )

]
(3.117)

for gij ∈ {0, 1, 2, . . . }, as we show in the Appendix.
Here as well, the special case where the column sums are all equal to each other

(c∗j = c∗ for all j) provides a nice example. The corresponding Lagrange multipliers
are in this case all equal to each other (β∗j = β∗ for all j) and this allows us to solve
for all parameters explicitly. In particular, Eqs. (3.112) and (3.113) reduce to the
n+ 1 independent equations

r∗i = m
e−(α

∗
i+β

∗)

1− e−(α∗i+β∗)
, i = 1,n, (3.118)

c∗ =
n∑
i=1

e−(α
∗
i+β

∗)

1− e−(α∗i+β∗)
, (3.119)
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where, again, the second equation is equivalent to the consistency condition c∗ =∑n
i=1 r

∗
i /m. Inverting Eq. (3.118), we obtain explicitly

α∗i + β∗ = ln m+ r∗i
r∗i

(3.120)

which, if inserted into the expression for S∗can in Eq. (3.114), produces exactly the
canonical entropy found previously in Eq. (3.72) for the weighted ensemble with one-
sided (row) constraints specified by the same vector ~r∗:

S∗can = ~α∗ · ~r∗ +mβ∗c∗ −m
n∑
i=1

ln[1− e−(α∗i+β∗)]

=
n∑
i=1

ln (m+ r∗i )
m+r∗i

(r∗i )
r∗imm

. (3.121)

The upper bound in Eq. (3.115) is therefore fully saturated. Again, while the canonical
ensembles are identical for the two cases, the microcanonical ensembles remain very
different and the microcanonical entropy under two-sided constraints is strictly smaller
than the one under one-sided constraints: the upper bound in Eq. (3.116) cannot be
saturated. Similarly, the determinant of the covariance matrix Σ∗, which here is
a (n+m)× (n+m) matrix (that we calculate later on), is different from the one
obtained in the one-sided case.

The (non)equivalence of the two ensembles is discussed below, in conjunction with
the case of two-sided binary matrices.

Ensemble nonequivalence for matrices under two-sided local constraints

To investigate EN in the two-sided case, it is convenient to preliminary combine the
results obtained so far in the binary (+) and weighted (−) cases as follows.

The canonical entropy S±n [P
∗
can] can be evaluated by combining Eqs. (3.103)

and (3.114), as well as the corresponding upper bounds given by Eqs. (3.104) and (3.115),
into

S±n [P
∗
can] = ~α∗ · ~r∗ + ~β∗ ·~c∗ ±

n∑
i=1

m∑
j=1

ln[1± e−(α
∗
i+β

∗
j )]

≤
n∑
i=1

ln m±m

(r∗i )
r∗i (m∓ r∗i )

±m−r∗i
(3.122)

(see Eq. (3.79) for a comparison). It is easy to check that, in all the three regimes
considered (sparse, dense with diverging m, dense with finite m), the above canonical
entropy has the same qualitative behaviour as the corresponding quantity obtained
previously in Eq. (3.79) for the one-sided case.
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Unlike the one-sided case, the microcanonical entropy cannot be evaluated exactly,
neither through a direct combinatorial formula nor via the complex integral approach,
and we only have strict upper bounds given by Eqs. (3.105) and (3.116) in the binary
and weighted case respectively, which we can combine as follows:

S±n [P
∗
mic] <

n∑
i=1

ln
[
(±1)r∗i

(
±m
r∗i

)]
(3.123)

(see Eq. (3.80) for a comparison).
We can now discuss EN in a combined fashion for binary and weighted matrices.

While we cannot calculate the relative entropy exactly, we can correctly evaluate its
asymptotic scaling via Eq. (3.26), because the canonical covariance matrix (Σ∗)±
between the constraints can still be calculated analytically as a function of the pa-
rameters (~α∗, ~β∗), in both the binary and weighted cases. In particular, it is easy
to see that the entries (Σ∗ij)

± are arranged into a block structure, with a square
n× n diagonal block (i, j ∈ [1,n]) representing the covariance matrix between pairs
of row sums, a square m ×m diagonal block (i, j ∈ [n + 1,n +m]) representing
the covariance matrix between pairs of column sums, and two rectangular (n×m
and m× n) off-diagonal blocks representing the covariances between row and column
sums (i ∈ [1,n], j ∈ [n+ 1,n+m] and i ∈ [n+ 1,n+m], j ∈ [1,n]). As we show in
the Appendix, these entries are

(Σ∗ij)
± =



δij
∑m
k=1

e−(α
∗
i+β

∗
k
)[

1± e−(α∗i+β∗k)
]2 i, j ∈ [1,n],

e
−(α∗i+β

∗
j−n)[

1± e−(α
∗
i+β

∗
j−n)

]2 i ∈ [1,n], j ∈ [n+ 1,n+m]

e
−(α∗j+β

∗
i−n)[

1± e−(α
∗
j+β

∗
i−n)

]2 i ∈ [n+ 1,n+m], j ∈ [1,n]

δij
∑n
k=1

e
−(α∗

k
+β∗j−n)[

1± e−(α
∗
k
+β∗j−n)

]2 i, j ∈ [n+ 1,n+m]

. (3.124)

The above expression is the generalization of Eq. (3.86) to the case of two-sided con-
straints. Once the values of ~r∗ and ~c∗ are specified, one can calculate the determinant
of the above matrix and, through Eq. (3.26), the leading order of the relative entropy
S±n [P

∗
mic||P ∗can]. As we show in the Appendix, the order of α±n confirms the same

scalings for the relative entropy found previously in Eqs. (3.83), (3.84) and (3.85) for
the one-sided case: namely, α±n = O(n) in the sparse regime, α±n = O(n lnn) in the
dense regime with m = O(n), and α±n = O(n) in the dense regime with finite m.

In practice, unlike the one-sided case, calculating the values of S±n [P ∗mic||P ∗can]
and R±∞ (or bounds for them) as explicit functions of the constraints is not easy
in general. It is however possible, and instructive, to consider a special case where
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S±n [P
∗
mic||P ∗can] and R±∞ in this two-sided case (given the vectors ~r∗ and ~c∗) can be

related to the corresponding values obtained in the one-sided case with the same
vector ~r∗ (but without a constraint on ~c∗). Indeed, if we consider again the special
case with constant column constraints (c∗j = c∗, j = 1,m) then from our previous
results in Eqs. (3.110) and (3.121) we recall that, for any given value of n, the two-
sided canonical entropy S±n [P ∗can] is exactly equal to the one-sided canonical entropy
given in Eq. (3.79) corresponding to the same vector ~r∗, while of course the two-sided
microcanonical entropy S±n [P ∗mic] is strictly smaller than the one-sided one given in
Eq. (3.80). This automatically implies that S±n [P ∗mic||P ∗can] in the two-sided case is
strictly larger than the corresponding one-sided relative entropy given in Eq. (3.81).
This proves that the scaling of the relative entropy is always at least O(n), irrespective
of the density and of the value of m: in all regimes, EE breaks down for binary and
weighted matrices under two-sided local constraints, as found in the one-sided case.
The presence of the extra column constraints is not changing the qualitative behaviour
of the relative entropy, but only its numerical value. Since the assumption of constant
column sums only changes the values, but not the order, of the relative entropy, we
expect that the scalings remain unchanged in the general case as well.

Moreover, EN has again the strong form (R±∞ > 0) in the sparse regime with
finite m, because the value of R±n = 1− S±n [P ∗mic]/S

±
n [P

∗
can] in the two-sided case

is strictly larger than the corresponding one calculated previously for the one-sided
case. In particular, we can use Eq. (3.93) to establish the following lower bound in
the two-sided case with constant column constraints and finite m:

R±n > 1−

∑n
i=1 ln

[
(±1)r∗i (±mr∗i )

]
∑n
i=1 ln m±m

(r∗i )
r∗
i (m∓r∗i )

±m−r∗
i

> 0. (3.125)

The above inequality proves strong EN in this case as well. Again, we expect that
relaxing the assumption of constant column sums will change only the value of R±n ,
but not its strict positivity.

Finally, we can also establish an upper bound for R±n by rewriting Eq. (3.26)
asymptotically for large n, in analogy with Eq. (3.88), as

S±n [P
∗
mic||P ∗can] = C2(m)α±n (3.126)

where C2(m) is a finite positive constant and noticing that, since the covariance
matrix (Σ∗)± is positive-definite, we can use Hadamard’s inequality stating that the
determinant of a positive-definite matrix is less than or equal to the product of the
diagonal entries of the matrix. This means

α±n = ln
√

det [2π(Σ∗)±] ≤ α̃±n (3.127)

where, using Eq. (3.124), we have introduced

α̃±n =
1
2

n∑
i=1

ln
[
2π(Σ∗ii)±

]
+

1
2

m∑
j=1

ln
[
2π(Σ∗jj)±

]
. (3.128)
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Now, using Eqs. (3.109) and (3.120) in the binary and weighted case respectively, it
is easy to show that, in the two-sided case with constant column sums, the first n
diagonal entries of (Σ∗)± are identical to the n diagonal entries of the covariance
matrix in the corresponding one-sided case given by Eq. (3.86), i.e.

(Σ∗ii)
± = r∗i

(
1− r∗i
±m

)
, i = 1,n. (3.129)

Inserting the above expression into Eq. (3.128), and noticing that the last sum in the
latter is strictly positive, we can write

α̃±n <
1
2

n∑
i=1

ln
[
2πr∗i

(
1− r∗i
±m

)]
. (3.130)

Combining Eqs. (3.126), (3.127) and (3.130) we obtain the upper bound (for large n)

R±n = C2(m)
α±n

S±n [P ∗can]
(3.131)

≤ C2(m)
α̃±n

S±n [P ∗can]

<
C2(m)

2

∑n
i=1 ln

[
2πr∗i

(
1− r∗i

±m

)]
∑n
i=1 ln m±m

(r∗i )
r∗
i (m∓r∗i )

±m−r∗
i

=
C2(m)

C1(m)

1−

∑n
i=1 ln

[
(±1)r∗i (±mr∗i )

]
∑n
i=1 ln m±m

(r∗i )
r∗
i (m∓r∗i )

±m−r∗
i

 ,

where we have used Eqs. (3.93) and (3.94) established in the one-sided case. Compar-
ing Eq. (3.131) with Eq. (3.125) we see that we must have C2(m)/C1(m) > 1. We
conjecture that, in analogy with C1(m) in the one-sided case, C2(m) & 1. Moreover,
here as well we know that limm→∞ C2(m) = 1 as in Eq. (3.89). This means that we
expect that, for n large, C2(m)/C1(m) ≈ 1 so that the upper bound in Eq. (3.131)
approaches the lower bound in Eq. (3.125), which is therefore a very good estimate
of the actual value of R±n in the two-sided case with constant column constraints:

R±n ≈ 1−

∑n
i=1 ln

[
(±1)r∗i (±mr∗i )

]
∑n
i=1 ln m±m

(r∗i )
r∗
i (m∓r∗i )

±m−r∗
i

. (3.132)

Upon comparison with Eq. (3.93), we see that R±n remains practically unchanged with
respect to the one-sided case with the same value of ~r∗.

Note that the above result means that the decrease ∆mic in microcanonical entropy
introduced by the extra column constraints is subleading with respect to the canonical
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entropy. Indeed, denoting with {·}h a quantity evaluated in the h-sided case (where
h = 1, 2), and exploiting again the identity of the canonical entropies {S±n [P ∗can]}1 =
{S±n [P ∗can]}2 and our conjecture C2(m)/C1(m) ≈ 1, we can use Eqs. (3.15) and the
results obtained so far to express the decrease in microcanonical entropy as

∆mic = {S±n [P ∗mic]}1 − {S±n [P ∗mic]}2
= {S±n [P ∗mic||P ∗can]}2 − {S±n [P ∗mic||P ∗can]}1
= C2(m){α±n }2 −C1(m){α±n }1
< C2(m){α̃±n }2 −C1(m){α±n }1

≈ C1(m)

2

m∑
j=1

ln
[
2π(Σ∗jj)±

]
= C1(m)

m

2 ln
n∑
k=1

2π e−(α∗k+β∗)[
1± e−(α∗k+β∗)

]2

= C1(m)
m

2 ln
n∑
k=1

[
2π r

∗
i

m

(
1− r∗i
±m

)]
, (3.133)

which is of order O(lnn), while the canonical entropy is of order O(n) in the dense
case with finite m considered here.

Clearly, if we additionally consider constant row constraints, i.e. r∗i = r∗ for
i = 1,n (where necessarily r∗ = c∗m/n), then in analogy with Eq. (3.95) we can
establish the following explicit lower bound for the value of R±∞ in the two-sided case
with constant row and column constraints:

R±∞ > 1−
ln
[
(±1)r∗(±mr∗ )

]
ln m±m

(r∗)r
∗
(m∓r∗)±m−r

∗
> 0. (3.134)

Our expectation in Eq. (3.132) suggests that the above lower bound is a very good
approximation for the actual value of R±∞:

R±∞ ≈ 1−
ln
[
(±1)r∗(±mr∗ )

]
ln m±m

(r∗)r
∗
(m∓r∗)±m−r

∗
, (3.135)

leading to the same result as in Eq. (3.95) for the one-sided case.
The above results generalize the finding of strong EN to the two-sided case, again

in the dense regime with finite m. The results do not change qualitatively, and
apparently only slightly quantitatively, with respect to the one-sided case. This result
points again at the fact that it is the extensivity of the constraints that plays the key
role for EN: adding a finite number m of (column) constraints does not relevantly
change the picture already obtained in the one-sided case.
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3.4 Discussion and conclusions
We have studied the problem of EN in the general context of n×m matrices with
given constraints. Such matrices can represent high-dimensional data such as multi-
variate time series, expression profiles, multiplex social activity, and other relational
or structured data encountered in many settings. Their entries can either be binary
(Boolean) or weighted (non-negative integers). The constraints imposed on these ma-
trices represent sums over either all the entries of the matrix (single global constraint)
or over individual rows (local one-sided constraints) and possibly also columns (lo-
cal two-sided constraints). These constraints take the form of linear terms into the
Hamiltonian at the exponent of the maximum-entropy probability distribution char-
acterizing the matrix ensemble.

Global constraints do not account for the heterogeneity (either spatial or tem-
poral, i.e. nonstationarity) in the physical data-generating process, as they lead to
probability distributions with identical parameters for all the entries of the matrix.
By contrast, local constraints produce probability distributions with different local
(row- and possibly column-specific) parameters. Most modern data structures are
heterogeneous and/or nonstationary, and are therefore characterized by (at least) the
type of local constraints considered here. Indeed, maximum-entropy ensembles with
local constraints are being increasingly used, either as null models for pattern de-
tection or even as generative models and inference methods whenever there is only
partial, local information available about the system [44, 14].

We have shown that local constraints break the asymptotic (i.e. for large n) equiv-
alence of canonical and microcanonical ensembles, where the constraints are enforced
in a soft and hard manner respectively. By contrast, global constraints preserve EE.
Mathematically, EE is encountered when the relative entropy between the canonical
and microcanonical probability distributions is o(n). Importantly, the breakdown
of EE observed here under local constraints occurs without phase transitions, which
would require nonlinear constraints in the Hamiltonian and are therefore deliberately
excluded from the cases we considered. The form of EN we observe under local con-
straints is also ‘unrestricted’, i.e. it holds for any value of the model parameters
(here, for any graphical value of the constraints), while the mechanism for EN based
on phase transitions requires specific parameters or phases. Our results hold in all
regimes of density and for all values of m, and therefore generalize a recently discov-
ered, alternative mechanism for the breakdown of EE observed so far in ensembles
of binary graphs with given degree sequence [5, 26, 7, 45] and weighted graphs with
given strength sequence [28].

At the same time, our results highlight a qualitatively new finding. While the
systems with local constraints studied in the past exhibited a ‘weak’ degree of EN
(where the relative entropy is of smaller order compared with the canonical entropy,
while still growing at least linearly in n), here we identified a regime for which EN is as
‘strong’ as in presence of phase transitions (i.e. with the relative entropy being of the
same order as the canonical entropy). This regime is obtained when both m and the
expected value of each entry of the matrix are finite, i.e. O(1). In practice, this means
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that the data structure is one where n grows as the size of the system grows, while m
remains finite. This circumstance is naturally encountered e.g. when n represents a
large number of timesteps during which a small number m of synchronous time series
are observed (e.g. for EEG signals), or when n represents a large number of genes
for which expression levels are observed in a small number m of cells at the same
time, or when n represents a large number of users whose activities or preferences are
recorded for a small number m of platforms, items, or other dimensions.

The simultaneously ‘strong’ and ‘unrestricted’ form of EN discussed here has never
been documented so far, to the best of our knowledge. Indeed, in all the settings
that had been studied previously, m was necessarily equal to n since the matrices
represented the special case of square adjacency matrices of graphs, therefore the
regime leading to strong EN could not be observed.

EN has important practical consequences. A traditional expectation in statistical
physics is that, in absence of phase transitions or long-range interactions, ensembles
are equivalent and it is therefore legitimate to freely choose the ensemble to work
with, e.g. based purely on mathematical or computational convenience. For instance,
if the ensemble is used as a null model for a real system, one may either want to
randomize the data numerically by keeping certain quantities fixed (in which case the
microcanonical ensemble is the most efficient choice) or prefer an exact mathematical
characterization of the probability of each configuration in the ensemble (in which case
the canonical ensemble is the easiest to work with). This view has been challenged by
the recent discovery of EN under local constraints. Nonequivalence imposes a princi-
pled choice of the ensemble, that can no longer be based on practical convenience. For
instance, if one has reasons to believe that the hypothesis underlying the null model,
or the partial information available about the system, should be treated as a hard
constraint, then one is forced to choose the microcanonical ensemble. By contrast,
if one believes the constraints should be treated as soft (for instance to account for
possible measurement errors leading to noisy values of the constraints in the data),
then one should take the canonical route.

Our observation of strong EN shows that the quantitative differences between
the two descriptions of the same system are much bigger than previously encoun-
tered in the case of weak EN. These big quantitative differences are exemplified by
Eqs. (3.34), (3.35) and (3.36). A ‘wrong’ choice of the ensemble can therefore lead
to major errors in the estimation of the probability distribution characterizing the
ensemble, of the resulting entropy, of the expected values of higher-order properties
that are nonlinear functions of the constraints, etc. Conclusions of statistical analyses
can therefore be highly biased.

However, besides this warning, the findings presented here are intended to offer
also a constructive solution. The fact that it is possible to rigorously quantify the dif-
ferences between the two ensembles via the explicit calculation of the relative entropy
ratio Rn and its limiting value R∞ implies that one can still make a convenient choice
of the ensemble, while at the same time being able to retrieve the desired results for
the other ensemble via the calculated value of R∞. In other words, besides being a
warning signal for strong EN, R∞ is also a concrete tool allowing researchers to switch
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more easily between alternative descriptions of the same system, by compensating for
their irreducible differences. The calculations carried out here can hopefully serve as
useful references for future quantitative research in a variety of domains.
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Appendix 3.A Global constraints
Here we derive the main mathematical expressions for the case of global constraints
on our ensembles of binary and weighted matrices. This corresponds to the case
where the constraint ~C(G) is a simple scalar quantity C(G) defined as the total
value C(G) ≡ t(G) ≡

∑n
i=1
∑m
j=1 gij . There is only one scalar Lagrange multiplier

θ entering the definition of the Hamiltonian

H(G, θ) = θ t(G) = θ

n∑
i=1

m∑
j=1

gij . (3.136)

The above Hamiltonian is the same for both binary and weighted matrices under a
global constraint. However, the calculation of the partition function (hence of all the
other properties) is different in the two cases.

3.A.1 Binary matrices under a global constraint
Let us consider binary matrices first (gij = 0, 1). The partition function can be
calculated as follows:

Z(θ) =
∑
G∈G

e−H(G,θ)

=
∑
G∈G

e
−θ
∑n

i=1

∑m

j=1 gij

=
∑
G∈G

n∏
i=1

m∏
j=1

e−θgij

=
n∏
i=1

m∏
j=1

∑
gij=0,1

e−θgij

=
n∏
i=1

m∏
j=1

(1 + e−θ)

= (1 + e−θ)mn. (3.137)

This leads to

Pcan(G|θ) =
e−H(G,θ)

Z(θ)

=
e−θ t(G)

(1 + e−θ)mn

=
n∏
i=1

m∏
j=1

e−θgij

1 + e−θ
(3.138)
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and to Eq. (3.37) in the main text. Notice that Eq. (3.138) reveals that each entry gij
of the matrix G is a Bernoulli-distributed random variable taking the value gij = 1
with probability p(1|θ) = e−θ/(1 + e−θ) and the value gij = 0 with probability
p(0|θ) = 1/(1 + e−θ), i.e.

p(gij |θ) =
e−θgij

1 + e−θ
. (3.139)

(the entries of G are therefore i.i.d.). The expected value of gij is

〈gij〉θ ≡
∑

gij=0,1
gijp(gij |θ) =

e−θ

1 + e−θ
, (3.140)

while its variance is

Varθ[gij ] ≡ 〈g2
ij〉θ − 〈gij〉2θ =

e−θ

(1 + e−θ)2 . (3.141)

The resulting expected value and variance of the constraint t(G) are

〈t〉θ =
n∑
i=1

m∑
j=1
〈gij〉θ = nm

e−θ

1 + e−θ
, (3.142)

Varθ[t] =
n∑
i=1

m∑
j=1

Varθ[gij ] = nm
e−θ

(1 + e−θ)2 , (3.143)

the latter identity following from the fact that, since all the entries of G are mutually
independent, the variance of the constraint t(G) is the sum of all variances.

Now, we have to find the parameter value θ∗ that solves Eq. (3.5) or equivalently
maximizes the log-likelihood lnPcan(G∗|θ). This can be done by setting the expected
value 〈t〉θ∗ equal to the desired value t∗, which leads to

e−θ
∗
=

t∗

mn− t∗
, (3.144)

and to Eq. (3.38) in the main text. Inserting Eq. (3.144) into the expressions for
Pcan(G∗|θ) and Varθ[t] leads to the values of S∗can and Varθ∗ [t] given in Eqs. (3.39)
and (3.44) in the main text. One can easily confirm that Varθ∗ [t] coincides with the
only (K = 1) entry of the 1× 1 covariance matrix Σ∗ obtained through Eq. (3.23),
i.e.

Σ∗ =
∂2 lnZ(θ)

∂θ2

∣∣∣∣
θ=θ∗

= t∗
(

1− t∗

mn

)
= Varθ∗ [t] (3.145)
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and, trivially,
det(Σ∗) = t∗

(
1− t∗

mn

)
. (3.146)

The calculation of the microcanonical entropy S∗mic is in this case trivial and given
by Eq. (3.40) in the main text. Given the simplicity of this example, it is instructive
to show explicitly that the integral formula in Eq. (3.20), which can be calculated
exactly in this case, gives the correct value of Ωt∗ . To do this, we use Eq. (3.138) to
obtain the complex-valued quantity

Pcan(G∗|θ∗ + iψ) = e−(θ
∗+iψ)t∗

[1 + e−(θ
∗+iψ)]mn

(3.147)

and use Eq. (3.20) to calculate Ωt∗ as

Ωt∗ =
1

2π

ˆ π

−π
[1 + e−(θ

∗+iψ)]mne(θ
∗+iψ)t∗dψ. (3.148)

To calculate the above integral, we change variable from ψ to z ≡ e−(θ
∗+iψ), so that

dz = de−(θ∗+iψ) = −izdψ and dψ = i dz/z. Then the integral becomes

Ωt∗ =
i

2π

ˆ e−(θ∗+iπ)

e−(θ∗−iπ)
(1 + z)mnz−(t

∗+1)dz. (3.149)

and, using the binomial formula

(1 + x)l =
l∑

k=0

(
l

k

)
xl−k, (3.150)

we obtain

Ωt∗ =
i

2π

mn∑
k=1

(
mn

k

)ˆ e−(θ∗+iπ)

e−(θ∗−iπ)
zmn−k−t

∗−1dz. (3.151)

Now, each integral in the above sum can be calculated using Cauchy’s residue theorem,
from which we know that the integral is non-zero only when the exponent of z is −1,
in which case it equals −2πi. This selects the only value k = mn− t∗ in the sum, so
that

Ωt∗ =
i

2π

(
mn

mn− t∗

)
(−2πi) =

(
mn

t∗

)
, (3.152)

which coincides with the binomial coefficient used in Eq. (3.40).

3.A.2 Weighted matrices under a global constraint
We now consider the case of weighted matrices (gij = 0, 1, 2, . . . ,+∞) with a global
constraint t∗. The Hamiltonian is still given by Eq. (3.136), while the partition
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function is now calculated differently as follows:

Z(θ) =
∑
G∈G

e−H(G,θ)

=
∑
G∈G

e
−θ
∑n

i=1

∑m

j=1 gij

=
∑
G∈G

n∏
i=1

m∏
j=1

e−θgij

=
n∏
i=1

m∏
j=1

+∞∑
gij=0

e−θgij

=
n∏
i=1

m∏
j=1

1
1− e−θ

=
1

(1− e−θ)mn
. (3.153)

The canonical probability is therefore

Pcan(G|θ) =
e−H(G,θ)

Z(θ)

= e−θ t(G)(1− e−θ)mn

=
n∏
i=1

m∏
j=1

e−θgij (1− e−θ), (3.154)

which leads to Eq. (3.45) in the main text. Equation (3.154) shows that all the entries
of G are i.i.d. random variables, in this case distributed according to a geometric
distribution with success probability e−θ:

p(gij |θ) = e−θgij (1− e−θ). (3.155)

The expected value of gij is now

〈gij〉θ =
+∞∑
gij=0

gijp(gij |θ) =
e−θ

1− e−θ (3.156)

and its variance is

Varθ[gij ] ≡ 〈g2
ij〉θ − 〈gij〉2θ =

e−θ

(1− e−θ)2 (3.157)
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(note the change of sign at the denominator with respect to Eq. (3.141)), from which
we calculate the expected value and variance of the constraint t(G) as

〈t〉θ =
n∑
i=1

m∑
j=1
〈gij〉θ = nm

e−θ

1− e−θ , (3.158)

Varθ[t] =
n∑
i=1

m∑
j=1

Varθ[gij ] = nm
e−θ

(1− e−θ)2 . (3.159)

The maximum-likelihood parameter value θ∗ is found by setting the expected value
〈t〉θ∗ equal to t∗, resulting in

e−θ
∗
=

t∗

mn+ t∗
(3.160)

(notice again the change of sign with respect to the binary case) and to Eq. (3.46) in
the main text. Substituting Eq. (3.160) into Eqs. (3.154) and (3.159) produces the
expressions for S∗can and Varθ∗ [t] shown in Eqs. (3.47) and (3.52) in the main text.
As for the binary case, one can easily confirm that Varθ∗ [t] coincides with

Σ∗ =
∂2 lnZ(θ)

∂θ2

∣∣∣∣
θ=θ∗

= t∗
(

1 + t∗

mn

)
= Varθ∗ [t] (3.161)

so that
det(Σ∗) = t∗

(
1 + t∗

mn

)
. (3.162)

Again, it is instructive to show that the complex integral in Eq. (3.20) gives
the exact result corresponding to the microcanonical entropy reported in Eq. (3.48).
Calculating the quantity

Pcan(G∗|θ∗ + iψ) = e−(θ
∗+iψ)t∗

[1− e−(θ∗+iψ)]−mn
(3.163)

and inserting it into Eq. (3.20) yields

Ωt∗ =
1

2π

ˆ π

−π

e(θ
∗+iψ)t∗

[1− e−(θ∗+iψ)]mn
dψ. (3.164)

We first perform the change of variable y ≡ e−(θ∗+iψ), dψ = idy/y and rearrange the
integral as

Ωt∗ =
i

2π

ˆ e−(θ∗+iπ)

e−(θ∗−iπ)
y−(t

∗+1)
(

1
1− y

)mn
dy (3.165)

=
i

2π

ˆ e−(θ∗+iπ)

e−(θ∗−iπ)
y−(t

∗+1)
(

1 + y

1− y

)mn
dy.
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Then we perform a second change of variable z ≡ y/(1− y), dy = dz/(z + 1)2

and apply the binomial formula in Eq. (3.150) twice to obtain

Ωt∗ =
i

2π

mn∑
k=0

(
mn

k

)ˆ z+

z−

(
z

z + 1

)−(t∗+1) zk

(z + 1)2 dz

=
i

2π

mn∑
k=0

(
mn

k

)ˆ z+

z−

zk−t
∗−1(z + 1)t∗−1dz

=
i

2π

mn∑
k=0

(
mn

k

) t∗−1∑
h=0

(
t∗ − 1
h

)ˆ z+

z−

zk+h−t
∗−1dz

where we have defined
z± ≡

e−(θ
∗±iπ)

1− e−(θ∗±iπ)
. (3.166)

Using again the residue theorem, the only non-zero integral is obtained for h = t∗− k,
which selects the value

Ωt∗ =
1

2πi

mn∑
k=0

(
mn

k

)(
t∗ − 1
k− 1

)
(−2πi)

=
mn∑
k=0

(
mn

k

)(
t∗ − 1
k− 1

)

=
mn∑
k=0

(
mn

k

)(
t∗ − 1
t∗ − k

)
=

(
t∗ +mn− 1

t∗

)
(3.167)

(where we have used the generalized Vandermonde’s identity). The above calculation
retrieves exactly the negative binomial coefficient used in Eq. (3.48).

Appendix 3.B One-sided local constraints
We now consider the case of one-sided local constraints on ensembles of binary and
weighted n×m matrices. The constraint ~C(G) is now an n-dimensional (K = n)
vector ~r(G) where the entry ri(G) =

∑m
j=1 gij is the i-th row sum of the matrix G.

Correspondingly, there is an n-dimensional vector ~θ of Lagrange multipliers and the
Hamiltonian is

H(G, ~θ) = ~θ · ~r(G) =
n∑
i=1

θiri(G) =
n∑
i=1

θi

m∑
j=1

gij (3.168)

for both binary and weighted matrices. The calculation of the resulting properties of
binary and weighted ensembles is discussed separately below.
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3.B.1 Binary matrices under one-sided local constraints
In the binary case, the partition function Z(~θ) can be calculated from Eq. (3.168)
according to the following generalization of Eq. (3.137):

Z(~θ) =
∑
G∈G

e−H(G,~θ)

=
∑
G∈G

e
−
∑n

i=1 θi
∑m

j=1 gij

=
∑
G∈G

n∏
i=1

m∏
j=1

e−θigij

=
n∏
i=1

m∏
j=1

∑
gij=0,1

e−θigij

=
n∏
i=1

m∏
j=1

(1 + e−θi)

=
n∏
i=1

(1 + e−θi)m. (3.169)

The resulting canonical probability is

Pcan(G|~θ) =
e−H(G,~θ)

Z(~θ)

=
e−

~θ·~r(G)∏n
i=1(1 + e−θi)m

=
n∏
i=1

m∏
j=1

e−θigij

1 + e−θi
, (3.170)

which leads to Eq. (3.61) in the main text. As in the case of binary matrices under
a global constraint, each entry gij of the matrix G is a Bernoulli-distributed random
variable. However, while all these entries are still independent, the parameter of the
distribution depends on the row being considered:

p(gij |~θ) =
e−θigij

1 + e−θi
. (3.171)

Consequently, Eqs. (3.140) and (3.141) generalize to

〈gij〉~θ ≡
∑

gij=0,1
gijp(gij |~θ) =

e−θi

1 + e−θi
, (3.172)

Var~θ[gij ] ≡ 〈g2
ij〉~θ − 〈gij〉

2
~θ
=

e−θi

(1 + e−θi)2 . (3.173)
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We can therefore calculate the expected value of each constraint ri(G) as

〈ri〉~θ =
m∑
j=1
〈gij〉~θ = m

e−θi

1 + e−θi
, i = 1,n. (3.174)

Similarly, the variance of ri is

Var~θ[ri] =
m∑
j=1

Var~θ[gij ] = m
e−θi

(1 + e−θi)2 , i = 1,n (3.175)

while all covariances between different constraints are zero, because of the indepen-
dence of distinct entries of G:

Cov~θ[ri, rj ] =
m∑
k=1

m∑
l=1

Cov~θ[gik, gjl] = 0, i 6= j. (3.176)

We can combine Eqs. (3.175) and (3.176) as follows:

Cov~θ[ri, rj ] = δijm
e−θi

(1 + e−θi)2 , (3.177)

where δij = 1 if i = j and δij = 0 if i 6= j.
Now, the parameter value ~θ∗ that maximizes the log-likelihood is found by equat-

ing the expected value 〈~r〉~θ∗ with the desired value ~r∗. Inverting Eq. (3.174), this
leads to

e−θ
∗
i =

r∗i
m− r∗i

i = 1,n (3.178)

or equivalently to Eq. (3.62) in the main text. The expression for the canonical
entropy S∗can given in Eq. (3.63) in the main text follows from substituting Eqs.(3.178)
into Eq. (3.170). Similarly, the expression for the entries of the n × n covariance
matrix Σ∗ given in Eq. (3.68) in the main text follows from combining Eqs. (3.177)
and (3.178). Note that Eq. (3.68) can also be obtained by differentiating the logarithm
of Eq. (3.169) as prescribed by Eq. (3.23):

Σ∗ij =
∂2 lnZ(~θ)
∂θi∂θj

∣∣∣∣∣
~θ=~θ∗

= δijr
∗
i

(
1− r∗i

m

)
= Cov~θ∗ [ri, rj ]. (3.179)

These results imply

det(Σ∗) =
n∏
i=1

r∗i

(
1− r∗i

m

)
. (3.180)
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The microcanonical entropy S∗mic can be directly calculated as Eq. (3.64) in the
main text. We can still confirm that its value is exactly retrieved by using the integral
formula in Eq. (3.20). From Eq. (3.170) we obtain

Pcan(G∗|~θ∗ + i~ψ) =
n∏
i=1

e−(θ
∗
i +iψi)r∗i

[1 + e−(θ
∗
i +iψi)]m

. (3.181)

Using Eq. (3.20), we can calculate Ω~r∗ by exploiting again the binomial theorem, a
change of variables (zi ≡ e−(θ

∗
i +iψi), dzi = −izidψi) and the residue theorem as in

Eqs. (3.149), (3.151) and (3.152):

Ω~r∗ =

ˆ +~π

−~π

d~ψ
(2π)n

n∏
i=1

[1 + e−(θ
∗
i +iψi)]m

e−(θ
∗
i +iψi)r∗i

=
n∏
i=1

ˆ +π

−π

dψi
2π

[1 + e−(θ
∗
i +iψi)]m

e−(θ
∗
i +iψi)r∗i

=
n∏
i=1

ˆ +π

−π

dψi
2π

m∑
k=0

(
m

k

)
e−(θ

∗
i +iψi)(k−r∗i )

=
n∏
i=1

ˆ θ∗i +iπ

θ∗i −iπ

dzi
(−2πi)

m∑
k=0

(
m

k

)
zi
k−r∗i −1

=
n∏
i=1

(−2πi)
(−2πi)

(
m

r∗i

)

=
n∏
i=1

(
m

r∗i

)
(3.182)

which coincides with Eq. (3.64).
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3.B.2 Weighted matrices under one-sided local constraints
In the weighted case, the partition function is given by the following generalization
of Eq. (3.153):

Z(~θ) =
∑
G∈G

e−H(G,~θ)

=
∑
G∈G

e
−
∑n

i=1 θi
∑m

j=1 gij

=
∑
G∈G

n∏
i=1

m∏
j=1

e−θigij

=
n∏
i=1

m∏
j=1

+∞∑
gij=0

e−θigij

=
n∏
i=1

1
(1− e−θi)m . (3.183)

The resulting canonical probability is

Pcan(G|~θ) =
e−H(G,~θ)

Z(~θ)

=
e−

~θ·~r(G)∏n
i=1(1− e−θi)−m

=
n∏
i=1

m∏
j=1

e−θigij

(1− e−θi)−1 , (3.184)

leading to Eq. (3.70) in the main text. As in the case of weighted matrices under a
global constraint, each entry gij of the matrix G is an independent and geometrically
distributed random variable. On the other hand, as in the case of binary matrices
under local constraints, the parameter of the distribution depends on the row being
considered:

p(gij |~θ) = e−θigij (1− e−θi). (3.185)

The resulting expected value and variance of gij are given by the following general-
izations of Eqs. (3.156) and (3.157):

〈gij〉~θ ≡
∑

gij=0,1
gijp(gij |~θ) =

e−θi

1− e−θi , (3.186)

Var~θ[gij ] ≡ 〈g2
ij〉~θ − 〈gij〉

2
~θ
=

e−θi

(1− e−θi)2 . (3.187)
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The expected value of each constraint ri(G) is therefore

〈ri〉~θ =
m∑
j=1
〈gij〉~θ = m

e−θi

1− e−θi , i = 1,n, (3.188)

while the covariances between different constraints are

Cov~θ[ri, rj ] = δijm
e−θi

(1− e−θi)2 . (3.189)

As usual, note the change of sign at the denominator of Eqs. (3.188) and (3.189) with
respect to the corresponding Eqs. (3.174) and (3.177) valid in the binary case.

Using Eq. (3.188), we set 〈~r〉~θ∗ = ~r∗ and solve for ~θ∗, finding

e−θ
∗
i =

r∗i
m+ r∗i

i = 1,n (3.190)

as the parameter value that maximizes the log-likelihood. From the above expression,
we get Eq. (3.71) and, using Eq. (3.184), Eq. (3.72) in the main text.

Similarly, the expression for the entries of the n× n covariance matrix Σ∗ given
in Eq. (3.68) in the main text follows from combining Eqs. (3.175), (3.176) and (3.178).
Note that Eq. (3.68) can also be obtained by differentiating the logarithm of Eq. (3.169)
as prescribed by Eq. (3.23):

Σ∗ij =
∂2 lnZ(~θ)
∂θi∂θj

∣∣∣∣∣
~θ=~θ∗

= δijr
∗
i

(
1 + r∗i

m

)
= Cov~θ∗ [ri, rj ]. (3.191)

So, in analogy with the binary case,

det(Σ∗) =
n∏
i=1

r∗i

(
1 + r∗i

m

)
. (3.192)

The microcanonical entropy S∗mic can be directly calculated as Eq. (3.73) in the
main text. We can still confirm that its value is correctly retrieved by using the
integral formula in Eq. (3.20). From Eq. (3.184) we obtain

Pcan(G∗|~θ∗ + i~ψ) =
n∏
i=1

e−(θ
∗
i +iψi)r∗i

[1− e−(θ∗i +iψi)]−m
. (3.193)

Using Eq. (3.20), we can calculate Ω~r∗ by exploiting again the binomial theorem as

Ω~r∗ =

ˆ ~π

−~π

d~ψ
(2π)n

n∏
i=1

e(β
∗
i +iψi)(r∗i )

[1− e−(β∗i +iψi)]m
. (3.194)
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We can use the change of variables yi ≡ e−(β
∗
i +iψi), dψi = −idyi/yi and the relation

(1− yi)−m = (1 + yi
1−yi )

m to calculate Ω~r∗ as

Ω~r∗ =
n∏
i=1

ˆ β∗i +iπ

β∗i −iπ

dyi
2πi

(
1 + yi

1− yi

)m
y
−r∗i−1
i (3.195)

=
n∏
i=1

ˆ β∗i +iπ

β∗i −iπ

dyi
2πi

m∑
k=0

(
m

k

)
y
−r∗i−1
i

(
yi

1− yi

)k
.

Using another change of variables zi = yi/(1− yi), yi = zi/(zi + 1), dyi = dzi/(zi + 1)2,
and denoting u∗i = e

−(β∗
i
+iπ)

1−e−(β∗
i
+iπ) , we find

Ω~r∗ =
n∏
i=1

ˆ u∗i

−u∗i

dzi
2πi

m∑
k=0

(
m

k

)(
zi

zi + 1

)−r∗i −1 (zi)k

(zi + 1)2

=
n∏
i=1

ˆ u∗i

−u∗i

dzi
2πi

m∑
k=0

(
m

k

)
(zi + 1)r

∗
i−1(zi)

k−r∗i −1

=
n∏
i=1

ˆ u∗i

−u∗i

dzi
2πi

m∑
k=0

(
m

k

) r∗i−1∑
l=0

(
r∗i − 1
l

)
z
l+k−r∗i −1
i .

Now, according to Cauchy’s residue theorem, only when l+ k = r∗i we get a non-zero
value. This allows us to further write

Ω~r∗ =
n∏
i=1

m∑
k=1

(
m

k

)(
r∗i − 1
k− 1

)
=

n∏
i=1

(
m+ r∗i − 1

r∗i

)
,

which coincides with Eq. (3.74) in the main text.

Appendix 3.C Two-sided local constraints

We now discuss ensembles of binary and weighted n×m matrices with two-sided local
constraints. In this case ~C(G) is (n+m)-dimensional (K = n+m) and specified
by the two vectors (~r(G),~c(G)), where ~r(G) is still the n-dimensional vector of
row sums of the matrix G (as in the one-sided case) and, additionally, ~c(G) is the
m-dimensional vector of column sums of G, with entries cj(G) =

∑n
i=1 gij (j =

1,m). The corresponding Lagrange multipliers take the form (~α, ~β) where ~α is n-
dimensional and coupled to ~r(G), while ~β is m-dimensional and coupled to ~c(G).
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The corresponding Hamiltonian is

H(G, ~α, ~β) =
n∑
i=1

αiri(G) +
m∑
j=1

βjcj(G)

=
n∑
i=1

m∑
j=1

(αi + βj)gij . (3.196)

As usual, the binary and weighted cases are discussed separately below.

3.C.1 Binary matrices under two-sided local constraints
Starting from the Hamiltonian in Eq. (3.196), the partition function of the canonical
binary matrix ensemble can be still calculated exactly as a simple generalization of
Eq. (3.169):

Z(~α, ~β) =
∑
G∈G

e−H(G,~α,~β)

=
∑
G∈G

e
−
∑n

i=1

∑m

j=1(αi+βj )gij

=
∑
G∈G

n∏
i=1

m∏
j=1

e−(αi+βj )gij

=
n∏
i=1

m∏
j=1

∑
gij=0,1

e−(αi+βj )gij

=
n∏
i=1

m∏
j=1

[1 + e−(αi+βj )]. (3.197)

The resulting probability is

Pcan(G|~α, ~β) =
e−H(G,~α,~β)

Z(~α, ~β)

=
e−~α·~r(G)−~β·~c(G)∏n

i=1
∏m
j=1[1 + e−(αi+βj )]

=
n∏
i=1

m∏
j=1

e−(αi+βj )gij

1 + e−(αi+βj )
. (3.198)

As in the case of binary matrices under global and one-sided local constraints, each
entry gij of the matrix G is still an independent and Bernoulli-distributed random
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variable, now controlled by the two parameters αi and βj . We can write the proba-
bility of gij as

p(gij |~α, ~β) = e−(αi+βj )gij

1 + e−(αi+βj )
. (3.199)

The expected value of gij is now

〈gij〉~α,~β ≡
∑

gij=0,1
gij p(gij |~α, ~β) = e−(αi+βj )

1 + e−(αi+βj )
(3.200)

and the variance is

Var
~α,~β [gij ] ≡ 〈g2

ij〉~α,~β − 〈gij〉
2
~α,~β

=
e−(αi+βj )

[1 + e−(αi+βj )]2
. (3.201)

The resulting expected values of the constraints are

〈ri〉~α,~β =
m∑
j=1

e−(αi+βj )

1 + e−(αi+βj )
, i = 1,n, (3.202)

〈cj〉~α,~β =
n∑
i=1

e−(αi+βj )

1 + e−(αi+βj )
, j = 1,m. (3.203)

The unique parameter values (~α∗, ~β∗) that maximize the likelihood are found as
usual by imposing that the expected values (〈~r〉

~α∗,~β∗ , 〈~c〉~α∗,~β∗) match the desired
values (~r∗,~c∗). Unfortunately, in this case the values (~α∗, ~β∗) cannot be determined
analytically as a function of (~r∗,~c∗), but they are defined implicitly by imposing

(~r∗,~c∗) = (〈~r〉
~α∗,~β∗ , 〈~c〉~α∗,~β∗), (3.204)

which leads to Eqs. (3.101) and (3.102) in the main text.
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3.C.2 Weighted matrices under two-sided local constraints
In the canonical ensemble of weighted matrices under two-sided local constraints, the
partition function is the following generalization of Eq. (3.183):

Z(~α, ~β) =
∑
G∈G

e−H(G,~α,~β)

=
∑
G∈G

e
−
∑n

i=1

∑m

j=1(αi+βj )gij

=
∑
G∈G

n∏
i=1

m∏
j=1

e
−
∑n

i=1

∑m

j=1(αi+βj )gij

=
n∏
i=1

m∏
j=1

+∞∑
gij=0

e−(αi+βj )gij

=
n∏
i=1

m∏
j=1

1
1− e−(αi+βj )

. (3.205)

The resulting canonical probability is

Pcan(G|~α, ~β) =
e−H(G,~α,~β)

Z(~α, ~β)

=
e−~α·~r(G)−~β·~c(G)∏n

i=1
∏m
j=1 [1− e−(αi+βj )]

−1

=
n∏
i=1

m∏
j=1

e−(αi+βj )gij

[1− e−(αi+βj )]−1 . (3.206)

As in the case of weighted matrices under global and one-sided local constraints, each
entry gij of the matrix G is an independent geometrically distributed random variable
defined by the probability

p(gij |~α, ~β) = e−(αi+βj )gij [1− e−(αi+βj )], (3.207)

which is now controlled by the entry-specific pair of parameters αi,βj . The expected
value of gij is

〈gij〉~α,~β ≡
+∞∑
gij=0

gijp(gij |~α, ~β) = e−(αi+βj )

1− e−(αi+βj )
(3.208)

and the variance is

Var
~α,~β [gij ] ≡ 〈g2

ij〉~α,~β − 〈gij〉
2
~α,~β

=
e−(αi+βj )

[1− e−(αi+βj )]2
. (3.209)
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The expected values of the constraints are

〈ri〉~α,~β =
m∑
j=1

e−(αi+βj )

1− e−(αi+βj )
, i = 1,n, (3.210)

〈cj〉~α,~β =
n∑
i=1

e−(αi+βj )

1− e−(αi+βj )
, j = 1,m. (3.211)

As in the two-sided binary case, the values (~α∗, ~β∗) maximizing the likelihood cannot
be determined analytically as a function of the empirical values (~r∗,~c∗), but they are
defined implicitly by imposing the equality

(~r∗,~c∗) = (〈~r〉
~α∗,~β∗ , 〈~c〉~α∗,~β∗) (3.212)

between the empirical and the expected values of the constraints. This equality leads
to Eqs. (3.112) and (3.113) in the main text.

3.C.3 Determinant of the covariance matrix for two-sided local
constraints

The covariance matrix (Σ∗)± in binary (+) and weighted (−) ensembles of matrices
under two-sided local constraints is an (n +m) × (n +m) matrix. It contains all
covariances among the n row sums, all covariances among the m column sums, and
all the covariances between row and column sums. If we order the constraints by
considering first the n row sums ~r∗ and then the m column sums ~c∗ into the (n+m)-
dimensional vector ~C∗ = (~r∗,~c∗), and combine Eqs. (3.197) and (3.205) into the
general partition function

Z±(~α, ~β) =
n∏
i=1

m∏
j=1

[1± e−(αi+βj )]±1 (3.213)
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valid for binary (+) and weighted (−) matrices, we can determine the entries of Σ±
by applying the definition in Eq. (3.23). This yields

Σ±ij =



∂2 lnZ±(~α, ~β)
∂αi∂αj

i, j ∈ [1,n],

∂2 lnZ±(~α, ~β)
∂αi∂βj−n

i ∈ [1,n], j ∈ [n+ 1,n+m]

∂2 lnZ±(~α, ~β)
∂αi−n∂βj

i ∈ [n+ 1,n+m], j ∈ [1,n]

∂2 lnZ±(~α, ~β)
∂βi−n∂βj−n

i, j ∈ [n+ 1,n+m]

=


Cov±

~α,~β
[ri, rj ] i, j ∈ [1,n],

Cov±
~α,~β

[ri, cj−n] i ∈ [1,n], j ∈ [n+ 1,n+m]

Cov±
~α,~β

[ci−n, rj ] i ∈ [n+ 1,n+m], j ∈ [1,n]
Cov±

~α,~β
[ci−n, cj−n] i, j ∈ [n+ 1,n+m]

and, following Eq. (3.22),

(Σ∗ij)
± = (Σij)±

∣∣
(~α,~β)=(~α∗,~β∗) . (3.214)

It is easy to see that (Σ∗)± is a combination of four blocks

(Σ∗)± =

[
(A∗)± (B∗)±
(C∗)± (D∗)±

]
, (3.215)

where each block has entries as described below. What determines these entries is the
elements gij of the (binary or weighted) adjacency matrix G that different constraints
have in common. The covariance between contraints that have no gij in common is
zero (as such constraints are independent), while the covariance between constraints
that share a term gij receives from that term a contribution equal to

Var±
~α∗,~β∗

[gij ] =
e
−(α∗i+β

∗
j )

[1± e−(α
∗
i+β

∗
j )]2

, (3.216)

obtained combining Eqs. (3.201) and (3.209).
• Block (A∗)± is the n×n covariance matrix between the row sums, with entries

(A∗ij)
± = Cov±

~α∗,~β∗
[ri, rj ]

=
∂2 lnZ±(~α, ~β)

∂αi∂αj

∣∣∣∣∣
(~α,~β)=(~α∗,~β∗)

= δij

m∑
k=1

e−(α
∗
i+β

∗
k
)[

1± e−(α∗i+β∗k)
]2 . (3.217)
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Note that (A∗)± is a diagonal matrix, since different row sums are all indepen-
dent.

• Block (B∗)± is the n×m matrix of covariances between row sums and column
sums, with entries

(B∗ij)
± = Cov±

~α∗,~β∗
[ri, cj ]

=
∂2 lnZ±(~α, ~β)

∂αi∂βj

∣∣∣∣∣
(~α,~β)=(~α∗,~β∗)

=
e
−(α∗i+β

∗
j )[

1± e−(α
∗
i+β

∗
j )
]2 , (3.218)

where we now see that the matrix is not diagonal, as reach row sum ri shares
the entry gij with the column sum cj .

• Similarly, block (C∗)± is the m×n matrix of covariances between column sums
and row sums, and is therefore the transpose of (B∗)±, as follows also from the
fact that (Σ∗)± must be symmetric. Indeed its entries are

(C∗ij)
± = Cov±

~α∗,~β∗
[ci, rj ]

=
∂2 lnZ±(~α, ~β)

∂αj∂βi

∣∣∣∣∣
(~α,~β)=(~α∗,~β∗)

=
e
−(α∗j+β

∗
i )[

1± e−(α
∗
j+β

∗
i )
]2 . (3.219)

• Finally, block (D∗)± is the m×m matrix of covariances among the column
sums, with entries

(D∗ij)
± = Cov±

~α∗,~β∗
[ci, cj ]

=
∂2 lnZ±(~α, ~β)

∂βi∂βj

∣∣∣∣∣
(~α,~β)=(~α∗,~β∗)

= δij

n∑
k=1

e
−(α∗

k
+β∗j )[

1± e−(α
∗
k
+β∗j )

]2 . (3.220)

Like (A∗)±, (D∗)± is a diagonal matrix, since different column sums are all
independent.
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Combining Eqs. (3.215), (3.217), (3.218), (3.219) and (3.220) proves Eq. (3.124) in
the main text.

Now, in order to calculate the scaling of the determinant of (Σ∗)±, we follow the
definition by Leibniz as

det[(Σ∗)±] =
∑

σ∈Zn+m

sgn(σ)
n+m∏
l=1

(Σ∗l,σl)
±, (3.221)

where σ is a permutation of the first n+m integers that exchanges (without replace-
ment) each of these integers i with another such integer j = σi, Zn+m is the set of
all such (n+m)! permutations, and the symbol sgn(σ) represents the parity of σ:
sgn(σ) = +1 when σ is an even permutation (i.e. obtained by combining an even
number of pairwise exchanges of the type j = σi and i = σj) and sgn(σ) = −1 when
σ is an odd permutation (i.e. obtained by combining an odd number of pairwise
exchanges). Let us call σ0 the identity permutation, i.e. the one such that σ0

i = i for
all i, and Z0

n+m ≡ Zn+m\σ0 the set of all other permutations. Clearly, sgn(σ0) = +1
because σ0 involves an even number (zero) of exchanges. We can therefore rewrite
Eq. (3.221) as

det[(Σ∗)±] = ∆0 + ∆′ (3.222)
where

∆0 =
n+m∏
l=1

(Σ∗
l,σ0
l
)± =

n∏
i=1

(A∗ii)
±

m∏
j=1

(D∗jj)
± (3.223)

is the product of the diagonal entries of (Σ∗)± and

∆′ =
∑

σ∈Z0
n+m

sgn(σ)
n+m∏
l=1

(Σ∗l,σl)
±. (3.224)

We are going to show that ∆′ is at most of the same order of ∆0. Setting cn = 1/n
in the sparse regime (for which we recall that m = O(n) necessarily) and cn = 1 in
the dense regime (for which m can be either finite or O(n)), we note that each entry
of the blocks (B∗)± and (C∗)± is of order O(cn), while each of the diagonal entries
of block (A∗)± is of order O(cnm) and each of the diagonal entries of block (D∗)±
is of order O(cnn). In general, the order of ∆0 is therefore

∆0 = O ((cnn)
m(cnm)n) (3.225)

as clear from Eq. (3.223).
To this end, we note that each permutation σ appearing in Eq. (3.224) can be

expressed as a combination of a certain number (say a > 0) of exchanges of pairs of
the first n+m integers. It is easy to see that all the (n2) exchanges of pairs of the
first n integers give a zero contribution to ∆′, because they lead to terms of the type
(Σ∗i,j)

± = 0 where i, j ∈ [0,n] with i 6= j (combination of exchanges that lead again
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Figure 3.4. Illustration of the permutations producing the non-zero contributions to the
determinant of the covariance matrix, as described in the text.

to i = j are such that j = σi = i and therefore do not lead to new permutations:
they are already accounted for in permutations with lower a). Similarly, all the (m2 )
exchanges of pairs of the next m integers give a zero contribution to ∆′, because
they lead to terms of the type (Σ∗i,j)

± = 0 where i, j ∈ [n+ 1,n+m] with i 6= j.
Therefore the only exchanges leading to nonzero contributions to ∆′ are the nm
exchanges across the first n integers and the next m integers, i.e. those that lead
to terms (Σ∗i,j)

± > 0 where i ∈ [0,n] and j ∈ [n + 1,n +m] or j ∈ [0,n] and
i ∈ [n+ 1,n+m] in Eq. (3.224). Each of these nontrivial contributing permutations
involves a (unrepeated) exchanges of integers, where a ∈ [1,nm]. Compared with the
identity σ0, each of these permutations replaces a of the first n diagonal entries and
a of the next m diagonal entries of (Σ∗)± appearing in Eq. (3.223) with a number 2a
of non-zero off-diagonal entries in blocks (B∗)± and (C∗)± (see Fig. 3.4).

Each such permutation therefore gives a contribution of order (cnn)m−a(cnm)n−a

to the summation in Eq. (3.224). Individually, each such contribution is subleading
with respect to the term ∆0. However, collectively all the contributions involving the
same number a of exchanges contribute a term of order Ea(cnn)m−a(cnm)n−a where
Ea is the number of unrepeated exchanges of a pairs. The order of Ea is given by the
number of distinct choices of a exchanges out of the nm possible ones, which is (nma ).
This estimate does not control for the fact that, for each a, some of the exchanges
reduce to simpler permutations already accounted for by smaller values of a, however
the leading order is correct. Since nm is large, we can apply Stirling’s approximation
to (nm)! and estimate the order of Ea as

Ea = O

((
nm

a

))
= O

(
(nm)a

a!

)
(3.226)

as in Eq. (3.82). Therefore all the permutations realized by a exchanges collectively
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give a contribution of order

Ea(cnn)
m−a(cnm)n−a = O

(
(cnn)m(cnm)n

a!

)
(3.227)

and sign (−1)a to the sum in Eq. (3.224), so ∆′ can be rewritten as a sum over a
(with a = 1,nm) of terms of alternating sign. Qualitatively, and with an abuse of
notation, the order of the entire sum defining det[(Σ∗)±] in Eq. (3.221) is (except
for accidental cancellations due to particular combinations of values of the entries of
(Σ∗)±)

O(det[(Σ∗)±]) =
nm∑
a=1

O

(
(−1)a(cnn)m(cnm)n

a!

)
= O

(
(cnn)

m(cnm)ne−1)
= O ((cnn)

m(cnm)n) . (3.228)

We therefore see that the order of ∆′ does not exceed that of ∆0, so the leading
order of det[(Σ∗)±] is

det[(Σ∗)±] = O(∆0) = O ((cnn)
m(cnm)n) . (3.229)

In other words, the off-diagonal terms of (Σ∗)± do not alter the order obtained by
multiplying the diagonal terms. For finite m, we therefore have

α±n = ln
√

det [2π(Σ∗)±]
= O (m ln(cnn) + n ln(cnm)) . (3.230)

In the sparse case where cn = 1/n and m = O(n), we have

α±n = O (n) , (3.231)

while in the dense case with cn = 1 and m = O(n) we have

α±n = O (n lnn) , (3.232)

and finally in the dense case with cn = 1 and finite m we have

α±n = O (n) , (3.233)

confirming the same scalings for the relative entropy obtained in Eqs. (3.83), (3.84)
and (3.85) for the one-sided case.
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