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Chapter 2

Ensemble nonequivalence and
Bose-Einstein condensation in
weighted networks

Abstract
The asymptotic (non)equivalence of canonical and microcanonical ensembles, describ-
ing systems with soft and hard constraints respectively, is a central concept in sta-
tistical physics. Traditionally, the breakdown of ensemble equivalence (EE) has been
associated with nonvanishing relative canonical fluctuations of the constraints in the
thermodynamic limit. Recently, it has been reformulated in terms of a nonvanish-
ing relative entropy density between microcanonical and canonical probabilities. The
earliest observations of EE violation required phase transitions or long-range inter-
actions. More recent research on binary networks found that an extensive number
of local constraints can also break EE, even in absence of phase transitions. Here
we study for the first time ensemble nonequivalence in weighted networks with local
constraints.

Unlike their binary counterparts, these networks can undergo a form of Bose-
Einstein condensation (BEC) producing a core-periphery structure where a finite
fraction of the link weights concentrates in the core. This phenomenon creates a
unique setting where local constraints coexist with a phase transition. We find sur-
viving relative fluctuations only in the condensed phase, as in more traditional BEC
settings. However, we also find a non-vanishing relative entropy density for all tem-
peratures, signalling a breakdown of EE due to the presence of an extensive number
of constraints, irrespective of BEC. Therefore, in the presence of extensively many
local constraints, vanishing relative fluctuations no longer guarantee EE 1.

1This chapter is based on:
Qi Zhang, Diego Garlaschelli, "Ensemble nonequivalence and BEC in weighted networks" arXiv
preprint arXiv:2012.09998 (2020)
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2.1 Introduction
Statistical ensembles were introduced by Gibbs [1] to mathematically describe systems
at thermodynamic equilibrium, i.e. where certain conserved macroscopic properties
(such as the total energy) are constant, while the microscopic state (i.e. the state of all
the microscopic constituents) is subject to fluctuations. For a system with n units and
discrete degrees of freedom, a statistical ensemble is a probability distribution P (W)
over the collection Wn = {W} of all the possible (unobserved) microscopic states of
the system, given a set of measurable macroscopic properties. Clearly, P (W) ≥ 0
for all W ∈ Wn and

∑
W∈Wn P (W) = 1. This distribution conceptualizes the fact

that, ideally, repeated observations of the microscopic state would retrieve different
(and independent) outcomes. It can be viewed as the probability distribution that
maximizes the Gibbs-Shannon entropy functional

S[P ] ≡ −
∑

W∈Wn

P (W) lnP (W), (2.1)

under a set of (macroscopic) constraints, therefore being maximally noncommittal
with respect to missing (microscopic) information [15].

Depending on the choice of the macroscopic properties being constrained, different
statistical ensembles can be constructed. The microcanonical ensemble Pmic(W|E)
is used to describe systems with fixed total energy E (energetic isolation), while the
canonical ensemble Pcan(W|β) is used to describe systems with fixed (inverse) tem-
perature β (thermal equilibrium) [1]. For a physical system, the inverse temperature
β equals 1/kT where T is the absolute temperature and k is Boltzmann’s constant.
In both ensembles, the microscopic state W is random, but the randomness is gov-
erned differently by the two distributions Pcan(W|β) and Pmic(W|E). In particular,
while the microcanonical ensemble assigns each realized configuration W a constant
(deterministic) value E(W) = E of the total energy (which can therefore be regarded
as a ‘hard’ constraint corresponding to energetic isolation), the canonical ensemble
assigns configurations a fluctuating (random) energy with a certain expected value
〈E〉β =

∑
W∈Wn Pcan(W|β)E(W) and a positive standard deviation σβ(E) > 0 (i.e.

the energy plays the role of a ‘soft’ constraint resulting from the contact with a heat
bath at fixed inverse temperature β).

2.1.1 Conjugate ensembles
The two ensembles can be made conjugate to each other by choosing a specific value
E∗ and simultaneously setting the total energy E(W) of each realized configuration
W in the microcanonical ensemble equal to E(W) ≡ E∗ and the inverse temperature
β in the canonical ensemble to the corresponding value β ≡ β∗ such that the resulting
average value 〈E〉β∗ of the fluctuating total energy under the canonical probability
Pcan(W|β∗) equals E∗, i.e.

〈E〉β∗ ≡ E∗. (2.2)
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For systems with finite size, the two conjugate ensembles are unavoidably differ-
ent, because in the microcanonical ensemble the hardness of the constraint implies
extra dependencies among the state of the microscopic constituents with respect to
the canonical case. However, in the thermodynamic limit (i.e. when the number of
units in the system goes to infinite) and under certain ‘natural’ circumstances, the
two associated probabilistic descriptions are expected to become effectively equiva-
lent (i.e. the canonical fluctuations and the microcanonical dependencies are both
expected to play an asymptotically vanishing role) as a result of some form of the
law of large numbers. This idea, which dates back to Gibbs himself [1] and has con-
tinued to attract a lot of interest until presently [13, 8, 5, 37], goes under the name
of ensemble equivalence (EE). When EE holds, one can treat the two ensembles as
asymptotically interchangeable, and hence use any of them based on mathematical
or computational convenience. For instance, analytical calculations are signficantly
easier in the canonical ensemble, while numerical randomizations of an initial config-
uration can be carried out more naturally in the microcanonical ensemble.

Most statistical physics textbooks still convey the message that EE is expected
to hold in general as a sort of principle at the basis of ensemble theory. The pos-
sible breakdown of EE, also known as ensemble nonequivalence (EN), is still not
discussed systematically in the literature. However, several observations of EN have
been documented over the past decades [22, 38, 39, 23–25, 40–42, 21, 43, 13, 5]. These
observations motivated various efforts aimed at elucidating both the possible physical
mechanisms at the origin of EN and, in parallel, its proper mathematical definition(s).

2.1.2 Physical mechanisms for ensemble (non)equivalence
Traditionally, the ‘natural’ circumstances generally invoked to ensure EE mainly con-
cern the presence of (loosely speaking) ‘at most weak’ interactions between the con-
stituents of the system. This condition is automatically realized when the system
consists of independent units or units with short-range interactions and sufficiently
high temperature (to stay away from possible low-temperature phases with broken
symmetries, for which the canonical average value of the energy is no longer the typ-
ical value). Indeed, violations of EE have been documented in presence of long-range
interactions (e.g. in gravitational systems) or phase transitions (e.g. in interacting
spin systems) [22, 38, 39, 23–25, 40–42, 13, 8].

However, recent research on complex systems encountered beyond the usual realm
of physics has found an additional mechanism that can break EE, even in presence
of weak (or no) interactions: namely, the presence of an extensive number of local
constraints [5, 37]. This situation is frequently found in networks with constraints on
the number of links (degree) of each node. More specifically, the binary configuration
model [44] is a widely used null model of graphs with a given degree sequence, i.e.
a given vector of node degrees. The model captures many properties found in real-
world networks, because the local character of the degree constraint can accomodate
the strong structural heterogeneity typically observed across nodes in real networks.
Unlike the traditional thermodynamic example where the total energy (and possibly
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a small, finite number of additional macroscopic properties) is a global and unique
constraint for the system, networks with given node degrees are systems with as
many constraints as the number of fundamental units, i.e. where constraints are
extensive in number and local in nature. This situation has been found to break
the equivalence of the corresponding canonical and microcanonical ensembles, even
without long-range interactions or phase transitions [5, 26, 45]. Notably, since systems
with local constraints are generic models for virtually any heterogenous system, the
new mechanism significantly widens the range of real-world cases for which EE may
break down. This novel result deserves further research.

2.1.3 Mathematical definitions of ensemble (non)equivalence
Besides the aforementioned advances in the study of the physical mechanisms at the
origin of EN, significant progress has been made in the mathematical characterization
of EN as well. Traditionally, the informal criterion [1] used to test whether two
conjugate ensembles are equivalent is checking whether the relative fluctuations of
the constraint in the canonical ensemble, e.g. the ratio σβ∗(E)/E∗ of the canonical
standard deviation to the average value of the energy, vanish in the thermodynamic
limit. If this happens, then the canonical fluctuations of the total energy are negligible
with respect to the total energy itself and, intuitively, the energy in the canonical
ensemble can be though of as an effectively deterministic quantity, very much like
in the conjugated microcanonical ensemble. Similarly, the extra dependencies among
the microscopic constituents in the microcanonical ensemble are expected to play a
smaller and smaller role, thus coming closer to the canonical case.

More recent approaches have considered different rigorous definitions of EE, which
can be beautifully summarized [8] as the following three notions: thermodynamic
equivalence (convexity of the microcanonical entropy density), macrostate equiva-
lence (equality of the expected values of macroscopic quantities under the two en-
sembles), and measure equivalence (vanishing of the relative entropy density between
the microcanonical and canonical probability distributions). Under mild conditions,
these notions have been shown to be equivalent [8]. In this paper, we use measure
equivalence as it is more transparently related to the ensemble probabilities.

As a useful result, research on the relationship between statistical physics and
combinatorics has revealed that the relative entropy between the microcanonical and
the canonical probability distributions is, under certain conditions, asymptotically
proportional to the logarithm of the determinant of the covariance matrix of the ef-
fective constraints in the canonical ensemble [37]. The effective constraints are those
that are neither redundant, i.e. trivially replicating other constraints, nor degener-
ate, i.e. deterministically restricting the canonical and microcanonical configurations
in exactly the same way. For instance, formally imposing ‘two’ constraints where
one is the total energy E and the other one is twice the total energy 2E is clearly
a redundant choice: the effective number of constraints is just one in this case. As
another example, if in addition to the energy E we impose its square value E2, then
for those values of the Lagrange multipliers such that 〈E2〉 = 〈E〉2 the variance of the
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energy will be zero also in the canonical ensemble: E will become degenerate and de-
terministically equal to its imposed value in both ensembles, so not contributing any
difference between the two (by contrast, for parameter values such that 〈E2〉 > 〈E〉2
there are no allowed configurations in the microcanonical ensemble because the hard
values of E2 and E become conflicting, thereby breaking the equivalence with the
canonical one). In general, if the problem is not ill-posed from the beginning, the
number of effective constraints coincides with the number of enforced constraints.
However, it may happen that some constraints become ineffective for certain degen-
erate values of the parameters. In any case, for a given parameter value the number
of effective constraints coincides with the rank of the covariance matrix of all imposed
constraints [37].

Since nonequivalence in the measure sense corresponds to the (super)extensivity
of the relative entropy, studying the asymptotic behaviour of the determinant of the
(effective) covariance matrix is enough in order to assess ensemble nonequivalence. It
is worth noticing that, if there is a single constraint (say, the total energy E), then
the determinant of the covariance matrix coincides with the corresponding variance
σ2
β∗(E) and the relative entropy grows asymptotically (under the necessary hypothe-

ses) as ln σ2
β∗(E) = 2 ln σβ∗(E). On the other hand, since E is a global constraint, it

is generally extensive in the number n of units of the system. Therefore the vanishing
of the relative fluctuations, i.e. σβ∗(E) = o(E), implies that the relative entropy is
subextensive, i.e. the relative entropy density vanishes in the thermodynamic limit.
This suggests that, in presence of a global constraint, the vanishing of the relative
fluctuations implies ensemble equivalence.2 How this picture changes in presence of
an extensive number of local constraints has not been investigated yet. In particu-
lar, whether the vanishing of relative fluctuations still implies ensemble equivalence
remains an open question.

2.1.4 The contribution of this chapter
This chapter connects to both lines of research described above (physical mechanisms
and mathematical definitions for EN) and its aim is therefore twofold. On the one
hand, we aim at investigating for the first (to the best of our knowledge) time the
phenomenon of EN in a model system that combines the presence of an extensive
number of local constraints with a phase transition. On the other hand, we aim at
understanding whether the intuitive criterion of vanishing relative fluctuations of the
constraints still ensures EE in this more general setting.

Concretely, we consider the weighted configuration model [44], namely a model
of weighted (as opposed to binary) networks with given strength sequence, i.e. with
given values of the strength (sum of the weights of incident links) of each node. The
weighted character of the model allows for the emergence of a phase transition that is

2Note that the converse is not necessarily true. However, observing ensemble equivalence and
non-vanishing relative fluctuations simultaneously requires some rather uncommon circumstances:
for instance, if σβ∗ (E) grows like Eα with α ≥ 1 while the entropy still grows like E, then the
relative entropy is still subextensive, while the relative fluctuations do not vanish.
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impossible to observe in the corresponding binary configuration model, namely Bose-
Einstein Condensation (BEC) [46, 19]. For the sake of clarity, it is worth mentioning
here that, although a form of BEC in networks was identified for the first time in
growing binary graphs [47], the notion we refer to here refers to static networks and
as such can only occur in weighted networks [46]. Indeed, while the configuration
model for weighted networks obeys Bose-Einstein statistics, the configuration model
for binary networks obeys Fermi-Dirac statistics [46, 19, 20]. BEC can arise in our
model by appropriately tuning the strength sequence. In particular, we are going to
show that we can make the strength sequence temperature-dependent and generate
BEC by picking a sufficiently low temperature, below a certain critical value. The
simplest such setting is one where the network has a ‘core-periphery’ structure, with
BEC appearing in the core.

We find that, for all temperatures and irrespective of whether BEC emerges, the
canonical and microcanonical ensembles are always nonequivalent as signalled by a
nonvanishing relative entropy density. On the other hand, the relative fluctuations
of all the constraints vanish when BEC is absent, while some of them do not vanish
when BEC is present. This shows that the relative fluctuations cannot distinguish
between equivalence and nonequivalence of the ensembles in this more general case
where multiple constraints are present. In fact, what they do is detecting the presence
of BEC. Therefore the traditional criterion for EE based on the vanishing of the rela-
tive fluctuations is no longer valid in presence of an extensive number of constraints,
even when applied simultaneously to all constraints. These results enrich our under-
standing of the phenomenology of EN and shed more light on its relationship with
both the extensivity of the constraints and the presence of phase transitions.

The remainder of this chapter is organized as follows. In Sec. 2.2 we rigorously
define the canonical and microcanonical ensembles of weighted networks with given
strength sequence. In Sec. 2.3 we introduce two criteria for the (non)equivalence of the
ensembles, one based on the relative entropy between the corresponding probability
distributions (measure equivalence) and one based on the relative fluctuations of the
constraints. In Sec. 2.4 we study in detail a model defined by the simplest family
of strength sequences, driven by a temperature parameter, such that we can observe
both a BEC and a non-BEC phase. In Sec. 2.5 we offer our conclusions. Finally, the
Appendix contains useful calculations needed to establish the scaling of the relative
entropy in all the regimes considered.

2.2 Canonical and microcanonical ensembles of weighted
networks

In this section, we introduce the definition of weighted networks and of canonical and
microcanonical ensembles of weighted networks with given strength sequence.
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Figure 2.1. Example of four weighted networks W1, W2, W3, W4 having the same number
n = 8 of nodes (labelled from a to h) and the same strength sequence ~s(Wi) = ~s∗ =
(11, 6, 5, 13, 8, 5, 2, 4) (i = 1, 4), but different structure (Wi 6= Wj for all i 6= j). The dashed
blocks highlight the links from node a to its neighbours: in different networks, node a can
have different neighbours and, importantly, different distributions of link weights (more or
less concentrated on specific neighbours). More homogeneous choices of ~s∗ would result in
less concentrated link weights, while more heterogeneous choices of ~s∗ would result in more
concentrated link weights.

2.2.1 Weighted network ensembles
Weighted networks are widely used to describe systems with a large number of com-
ponents and heterogeneous patterns of interaction [17]. We represent a possible con-
figuration of a weighted network with n nodes as an n×n weighted adjacency matrix
W. Each entry of the matrix wij (1 ≤ i ≤ n, 1 ≤ j ≤ n) denotes the weight of the
link between node i and node j, which is taken from the set N of natural numbers
(including zero, which corresponds to the absence of a link between i and j). In
this work, we only consider undirected networks without self-loops, thus the weighted
matrix W is a symmetric matrix (wij = wji for all i, j) and its diagonal elements are
zero (wii = 0 for all i). The number of independent entries of each such matrix is
therefore (n2) = n(n− 1)/2.

An ensemble of weighted networks on n nodes is the discrete (infinite) set Wn =

Nn(n−1)/2 of all available configurations for the matrix W and a probability dis-
tribution P (W) over Wn that is specified by a given vector ~C(W) of constraints,
which can be enforced either as a soft constraint (canonical ensemble) or as a hard
constraint (microcanonical ensemble) [44]. So the matrix W is a possible outcome of
a random variable. We will consider the weighted configuration model, for which the
constraints are the strengths of all nodes, i.e. the strength sequence ~C(W) = ~s(W),
where the strength si(W) of node i is a local sum of all the link weights that connect
i to its neighbours in the particular network W:

si(W) =
n∑
j=1

wij , i = 1,n. (2.3)

Clearly, the number of scalar constraints is n, which coincides with the number of
nodes, so this model is a perfect example of a system subject to an extensive number
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of local constraints. In fact, it is the weighted counterpart of the binary configuration
model, where EN driven by local constraints was observed for the first time [5].

A crucial consequence of the presence of local constraints in weighted networks is
illustrated in Fig.2.1, where we show an example of different networks with the same
strength sequence. For a given choice of ~s∗, in different realizations of the network
each node i can have different neighbours and different distributions of weights on the
links that connect it to those neighbours. In particular, the strength s∗i can be more
or less concentrated on specific neighbours (a property that is usually quantified by
the so-called disparity [48]). However, more homogeneous choices of ~s∗ unavoidably
result in less concentrated link weights, while more heterogeneous choices of ~s∗ impose
more concentrated link weights. This fact will allow us to consider (in Sec. 2.4)
different structural regimes ranging between two extreme limits: a constant (infinite-
temperature) strength sequence implying that on average each node is connected to
its neighbours in an equally strong way, and a ‘step-like’ (zero-temperature) strength
sequence implying an extreme concentration of link weights among a small subset of
the n nodes. In between these two limits, a certain critical temperature separates
a ‘non-condensed’ (high-temperature) phase from a ‘condensed’ (low-temperature)
phase featuring the properties of BEC.

2.2.2 Canonical weighted network ensemble
We first discuss how to implement the strength sequence constraint mathematically in
the canonical ensemble (soft constraint) [44]. Recall that in the traditional canonical
ensemble the inverse temperature β∗ is the only (scalar) parameter of the canonical
probability distribution Pcan(W|β∗), conjugate to a certain (scalar) total energy E∗ in
the corresponding microcanonical ensemble. Explicitly, Pcan(W|β∗) is the Boltzmann
distribution Pcan(W|β∗) = e−β

∗E(W)/Z(β∗) with inverse temperature β∗ = 1/kT ∗.
By contrast, in our setting the canonical distribution Pcan(W|~β∗) has to depend on
an n-dimensional vector ~β∗ of parameters, conjugate to the n-dimensional constraint
~s∗ which, in turn, defines the microcanonical ensemble. This distribution is found by
maximizing the Gibbs-Shannon entropy functional defined in Eq. (2.1) under the soft
constraint

〈~s〉~β∗ =
∑

W∈Wn

Pcan(W|~β∗)~s(W) ≡ ~s∗ (2.4)

which generalizes the conjugacy condition in Eq. (2.2). The solution to the maxi-
mization problem sees ~β∗ play the role of a vector of Lagrange multipliers coupled to
the strength sequence ~s∗, and is given by [44]

Pcan(W|~β∗) =
e−H(W,~β∗)

Z(~β∗)
, (2.5)

where the (network) Hamiltonian H(W, ~β) = ~β · ~s(W) is the linear combination of
the node strengths, the partition function Z(~β) =

∑
W∈Wn e

−H(W,~β) is a normaliza-
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tion constant, and ~β∗ is the unique parameter value realizing Eq. (2.4). Note that
Eq. (2.5) has still the form of the Boltzmann distribution, with the important caution
that the inverse temperature has been reabsorbed into the Hamiltonian. Therefore, to
keep the parallel with the traditional physical situation, in our setting, the Hamilto-
nian should be thought of as the inverse temperature times the energy, and ~β∗ as the
inverse temperature times a vector of ‘fields’, each coupled to a different constraint.
Clearly, since the probability in Eq. (2.5) must be dimensionless, the product ~β ·~s(W)
must be dimensionless as well. In Sec. 2.4, we will notice that the Hamiltonian can
be further reinterpreted as also incorporating a ‘chemical potential’ governing the
expected weight of the links in the network [20].

Notably, Pcan(W|~β∗) depends on W only through ~s(W). In particular, it gives
the same value Pcan(W∗|~β∗) to any network W∗ such that ~s(W∗) = ~s∗. Explicitly,
given the definition of node strength in Eq. (2.3), the network Hamiltonian can be
written for a generic value of ~β as

H(W, ~β) =
n∑
i=1

∑
i<j

(βi + βj)wij . (2.6)

The partition function can be easily shown [44] to be

Z(~β) =
n∏
i=1

∏
i<j

1
1− e−(βi+βj )

(2.7)

provided that βi + βj > 0 for all i, j (otherwise, the model admits no solution). The
canonical probability distribution therefore factorizes over pairs of nodes as

Pcan(W|~β) =
n∏
i=1

∏
i<j

qij(wij |~β), (2.8)

where
qij(w|~β) =

e−(βi+βj )w

[1− e−(βi+βj )]−1
(2.9)

is the probability that the weight of the link between nodes i and j takes the partic-
ular value w. Therefore different pairs of nodes are statistically independent in the
canonical ensemble (while they are not in the microcanonical one).

Note that qij(w|~β) is a geometric distribution [49, 44] with expected value

〈wij〉~β =
∑
w∈N

w qij(w|~β)

=
∑
w∈N

w
e−(βi+βj )w

[1− e−(βi+βj )]−1

=
e−(βi+βj )

1− e−(βi+βj )
(2.10)
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(representing the expected weight of the link connecting nodes i and j) and variance

Var~β(wij) =
e−(βi+βj )

[1− e−(βi+βj )]2
= 〈wij〉~β(1 + 〈wij〉~β). (2.11)

As we will discuss in detail is Sec. 2.4, Eq. (2.10) has the form of Bose-Einstein
statistics, where 〈wij〉~β plays the role of an expected occupation number for the state
labeled by nodes i and j. In an appropriate ‘low-temperature’ regime, BEC can
emerge into the model through the divergence of the occupation number 〈wij〉~β for
one (possibly degenerate) ‘ground state’ (corresponding to βi + βj → 0+), while the
occupation number for the other states remains finite [46, 44, 19]. This discussion
requires a series of considerations that we leave for later. For the moment, we notice
that Eq. (2.10) allows us to determine the special value ~β∗ corresponding to the given
strength sequence ~s∗. Summing over all nodes j 6= i, the average value of the strength
of node i is

〈si〉~β =
∑
j 6=i
〈wij〉~β =

∑
j 6=i

e−(βi+βj )

1− e−(βi+βj )
, (2.12)

whence we can reformulate Eq. (2.4) as

∑
j 6=i
〈wij〉~β∗ =

∑
j 6=i

e
−(β∗i +β

∗
j )

1− e−(β
∗
i +β

∗
j )
≡ s∗i i = 1,n (2.13)

which fixes the unique parameter value ~β∗. Notably, this value is also the one that
maximizes the (log-)likelihood [18, 44], i.e.

~β∗ = argmax~β lnPcan(W∗|~β), (2.14)

where, again, W∗ is any configuration such that ~s(W∗) = ~s∗. In general, it is not
possible to write ~β∗ explicitly as a function of ~s∗. However, Eq. (2.13) or equivalently
Eq. (2.14) can be efficiently solved numerically [49, 44] using various algorithms that
have been coded for this purpose [50, 51]. In any case, a general property (that we
will use later) is that for any two nodes i and j with the same expected strength
(s∗i = s∗j ), the corresponding parameters β∗i and β∗j obey the same equation in (2.13)
and are therefore equal. In other words, s∗i = s∗j implies β∗i = β∗j .

Once ~β∗ is calculated, we can plug it back into Eq. (2.8) to finally obtain the
probability distribution

Pcan(W|~β∗) =
n∏
i=1

∏
i<j

e
−(β∗i +β

∗
j )wij

[1− e−(β
∗
i +β

∗
j )]−1

(2.15)

that characterizes the canonical ensemble entirely. For practical purposes, ~β∗ can be
inserted into Eq. (2.9) to obtain the link weight probability qij(w|~β∗), from which
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several expected network properties can be calculated very directly. For instance,
besides the expected link weight 〈wij〉~β∗ , we can calculate the probability that nodes
i and j are connected by a link, irrepective of the weight of the latter, as follows:

p∗ij ≡ 〈Θ(wij)〉~β∗

=
∞∑
w=1

w qij(w|~β∗)

= 1− qij(0|~β∗)

= e
−(β∗i +β

∗
j )

=
〈wij〉~β∗

1 + 〈wij〉~β∗
, (2.16)

where Θ(x) denotes the Heaviside step function, defined as Θ(x) = 1 if x > 0 and
Θ(x) = 0 if x ≤ 0. Note that, if i and j belong to the condensed state where the
expected link weight 〈wij〉~β∗ diverges (β

∗
i +β∗j → 0+), then they become deterministi-

cally connected, i.e. p∗ij → 1−. By contrast, non-condensed states have 〈wij〉~β∗ <∞,
β∗i + β∗j > 0, and p∗ij < 1. The analogy with BEC will be discussed in much more
detail in Sec. 2.4.

Besides the structural properties, one of the key quantities that we will need in
order to determine EE (or the lack thereof) is the resulting canonical entropy S∗can,
obtained by inserting Eq. (2.15) into Eq. (2.1):

S∗can ≡ S[Pcan(W|~β∗)]
= 〈H(W, ~β∗)〉+ lnZ(~β∗)
= ~β∗ · 〈~s(W)〉+ lnZ(~β∗)
= ~β∗ · ~s∗ + lnZ(~β∗)
= − lnPcan(W∗|~β∗). (2.17)

Note that the calculation of the canonical entropy S∗can of the entire weighted network
ensemble only requires the knowledge of the probability of one generic network W∗

with strength sequence ~s∗, which is in turn directly calculated through Eq. (2.15).

2.2.3 Microcanonical weighted network ensemble
We now come to the microcanonical ensemble. Its governing probability distribution
Pmic(W|~s∗) can be obtained by maximizing the Gibbs-Shannon entropy functional in
Eq. (2.1) under the hard constraint

~s(W) = ~s∗ (2.18)
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that applies to each network W realized (with positive probability) in the set Wn.
The solution is obviously the uniform probability distribution

Pmic(W|~s∗) =
{

Ω−1
~s∗ ~s(W) = ~s∗

0 ~s(W) 6= ~s∗
(2.19)

where Ω~s∗ is the number of networks for which the hard constraint in Eq. (2.18) is
realized. An implicit assumption throughout this paper is that the particular strength
sequence ~s∗ is graphic, i.e. it can be realized by at least one network, so that Ω~s∗ > 0.
In this case as well, the (microcanonical) entropy is obtained by inserting Eq. (2.19)
into Eq. (2.1):

S∗mic ≡ S[Pmic(W|~s∗)]
= ln Ω~s∗

= − lnPmic(W∗|~s∗), (2.20)

which is also known as Boltzmann entropy. Note that W∗ has the same meaning as
in Eq. (2.17), therefore both the canonical and microcanonical entropies are equal to
minus the log of the corresponding probability, evaluated in any state W∗ realizing
the hard constraint in Eq. (2.18).

Note that, although the derivation of Pmic(W|~s∗) is formally much more direct
than that of Pcan(W|~β∗) in the conjugate canonical ensemble, its explicit calculation is
more challenging, as it requires the combinatorial enumeration of all the Ω~s∗ weighted
networks with strength sequence ~s∗ (as a side remark, it is precisely the local nature
of ~s∗ that makes the calculation of Ω~s∗ daunting). Here, we will employ a recently
proposed saddle-point asymptotic formula, for a generic discrete system under a K-
dimensional vector ~C∗ of effective (see Sec. 2.1.3) constraints, for the number Ω ~C∗
of microcanonical configurations [37]. The formula uses only conjugate canonical
quantities, namely the canonical entropy S∗can and the K ×K covariance matrix Σ∗
among the K constraints in the canonical ensemble, and reads [37]

Ω ~C∗ =
eS
∗
can√

det(2πΣ∗)

K∏
k=1

[1 +O(1/λ∗k)], (2.21)

where {λ∗k}Kk=1 are the eigenvalues of Σ∗. The symbol O(x) indicates a quantity with
a finite limit when divided by x as n → ∞, i.e. O(x) is asymptotically of the same
order as x. Note that, since covariance matrices are positive semidefinite, λ∗k ≥ 0
for all k. Moreover, since the constraints are assumed to be non-redundant, then
λ∗k > 0 for all k [37] (if some of the constraints were redundant, there would be
certain zero eigenvalues rendering the above equation inapplicable; that is why the
formula should be applied to a maximal set of K non-redundant constraints). Finally,
if these eigenvalues grow sufficiently fast as n → ∞, then the product on the right
hand side becomes irrelevant, in which case the knowledge of S∗can and det(2πΣ∗) is
enough in order to characterize the asymptotics of Ω ~C∗ .
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In our setting where ~C∗ = ~s∗ and K = n (node strengths are all mutually inde-
pendent as it is not possible to guess any individual node strength from the knowledge
of the other n− 1 ones), we calculate the entries of Σ∗ as

Σ∗ij ≡ Cov~β∗(si, sj)
= 〈sisj〉~β∗ − 〈si〉~β∗〈sj〉~β∗

=
∂2 lnZ(~β)
∂βi∂βj

∣∣∣∣∣
~β=~β∗

(2.22)

where Z(~β) is given by Eq. (2.7). An explicit calculation gives

Σ∗ii = Var~β∗(si)

=
∑
j 6=i

e
−(β∗i +β

∗
j )

[1− e−(β
∗
i +β

∗
j )]2

=
∑
j 6=i
〈wij〉~β∗(1 + 〈wij〉~β∗) (2.23)

for the diagonal entries (i.e. the variances of the constraints) and

Σ∗ij = Cov~β∗(si, sj)
= Var~β∗(wij)

=
e
−(β∗i +β

∗
j )

[1− e−(β
∗
i +β

∗
j )]2

= 〈wij〉~β∗(1 + 〈wij〉~β∗) (i 6= j) (2.24)

for the off-diagonal entries (i.e. the covariances between distinct constraints).
We finally obtain

S∗mic = ln Ω~s∗ (2.25)

= S∗can − ln
√

det(2πΣ∗) +
n∑
k=1

ln[1 +O(1/λ∗k)]

where we have used
√

det(2πΣ∗) =
∏n
k=1

√
2πλ∗k. Note that the eigenvalues {λ∗k}nk=1

are positive, the n node strengths being linearly independent constraints [37]. In
principle, in order to compute (the leading term of) Eq. (2.25) explicitly, we need to
specify a value for ~s∗, calculate the resulting matrix Σ∗, and the eigenvalues of the
latter. However, in Sec. 2.3 we show that the knowledge of the diagonal elements of
the covariance matrix is enough for our purposes. This result is then used in Sec. 2.4
when we consider specific choices of ~s∗.
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Figure 2.2. Illustration of the nonequivalence of ensembles of weighted networks with given
strength sequence ~s∗ in the measure sense. Schematically, the x axis represents all weighted
networks W ∈ Wn. Here, n = 8 and ~s∗ = (11, 6, 5, 13, 8, 5, 2, 4). The Ω~s∗ networks matching
the particular strength sequence ~s∗, i.e. those for which ~s(W) = ~s∗, are represented in the
middle. The y axis represents the canonical and microcanonical probabilities for each net-
work. The microcanonical distribution Pmic(W|~s∗) assigns zero probability to the networks
for which ~s(W) 6= ~s∗, and uniform probability Pmic(W∗|~s∗) = Ω−1

~s∗ to each network W∗ for
which ~s(W∗) = ~s∗. By contrast, the conjugate canonical distribution Pcan(W|~β∗) assigns
positive probability to all the networks in Wn and therefore has ‘tails’ that extend all over
the x axis. Normalization implies that, while also the canonical probability gives a constant
value Pcan(W∗|~β∗) to each network W∗ with the strength sequence ~s∗, this value is (for n
finite) smaller (lower plateau) than the corresponding microcanonical one (upper plateau):
Pcan(W∗|~β∗) < Pmic(W∗|~s∗). Indeed, the blue and red areas should be equal because of
normalization. Intuitively, the two ensembles become equivalent in the thermodynamic limit
if, sufficiently fast as n → ∞, the canonical tails vanish (the blue areas disappear) and
the canonical plateau ‘catches up’ with the microcanonical one (the red area disappears).
Measure equivalence formalizes this ‘sufficiently fast’ rigorously, finding that EE corresponds
to the condition limn→∞[lnPmic(W∗|~s∗)− lnPcan(W∗|~β∗)]/n = 0. It turns out that this
is not the case for the model discussed here: canonical and microcanonical ensembles of
weighted networks with given strength sequence are not equivalent.
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2.3 Equivalence and nonequivalence of weighted net-
work ensembles

In this section we use the knowledge of the canonical and microcanonical probability
distributions derived in the previous section in order to establish two criteria for the
equivalence of ensembles of weighted networks, namely the one based on the vanishing
of the relative entropy density between the two distributions [8] and the traditional
one based on the vanishing of the canonical relative fluctuations of the constraints [1].

2.3.1 Relative entropy density
As we have anticipated, EE can be stated mathematically using three different no-
tions, namely thermodynamic, macrostate and measure equivalence [8]. These defini-
tions turn out to be, under mild assumptions, essentially equivalent [8]. Here, we use
the definition in the measure sense, which has been recently formulated explicitly for
binary network ensembles [5, 26, 45, 37] and is based on the vanishing of a suitable
relative entropy density between the microcanonical and canonical probability distri-
butions. Our calculations generalize those results to the case of weighted networks,
for which measure equivalence has not been studied yet.

In general, the relative entropy (or Kullback-Leibler divergence) between two dis-
tributions P and Q, both having support over a discrete set Wn = {W} of configu-
rations in analogy with Eq. (2.1), is defined as

D[P ||Q] ≡
∑

W∈Wn

P (W) ln P (W)

Q(W)
(2.26)

and quantifies ‘how far’ the distribution P is from the reference distribution Q [52].
When P and Q represent the microcanonical and canonical distributions respectively,
it can be shown [5, 37] that D[P ||Q] reduces to the difference between the canonical
and microcanonical entropy, which can be both estimated on a single configuration
realizing the hard constraint (as we have indeed shown in the previous section for our
weighted network model). Moreover, its calculation asymptotically requires only the
canonical covariance matrix Σ∗ between the constraints.

We are now going to see how these general results apply to our specific case.
A visual illustration of the idea behind measure equivalence for our ensembles of
weighted networks with given strength sequence is provided in Fig. 2.2. Following
Eq. (2.26), the relative entropy between Pmic(W|~s∗) and Pcan(W|~β∗) is defined as

D∗ ≡ D[Pmic(W|~s∗)||Pcan(W|~β∗)]

=
∑

W∈Wn

Pmic(W|~s∗) ln Pmic(W|~s∗)
Pcan(W|~β∗)

. (2.27)

By inserting Eq. (2.19) into Eq. (2.27) and using the fact that Pcan(W|~β∗) has the
same value for any network W∗ matching the hard constraint ~s(W∗) = ~s∗, we confirm
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that D∗ can be estimated pointwise on W∗ as

D∗ = lnPmic(W∗|~s∗)− lnPcan(W∗|~β∗). (2.28)

Moreover, using Eqs. (2.17) and (2.20), we also confirm that it reduces to the entropy
difference

D∗ = S∗can − S∗mic. (2.29)
Now, Eq. (2.25) immediately allows us to obtain

D∗ = ln
√

det(2πΣ∗) +
n∑
k=1

ln[1 +O(1/λ∗k)] (2.30)

which depends only on the eigenvalues of the canonical covariance matrix Σ∗, whose
diagonal and off-diagonal entries are given in Eqs. (2.23) and (2.24) respectively.

The definition of measure equivalence is the vanishing of the relative entropy
density, i.e. of the ratio D∗/n, in the thermodynamic limit [8]. Explicitly, EE in the
measure sense corresponds to

d∗ ≡ lim
n→∞

D∗

n
= 0 (2.31)

or equivalently [37]
D∗ = o(n), (2.32)

where o(n) denotes a quantity that, if divided by n, vanishes as n → ∞. Equa-
tion (2.29) allows us to understand the above definition of macrostate EE as follows.
The microcanonical entropy S∗mic is the logarithm of the number of accessible con-
figurations under hard constraints, while the canonical entropy S∗can is the logarithm
of the corresponding ‘effective’ number of configurations under soft constraints. EE
requires that, as n increases, the typical configurations of the system under the two
ensembles become the same, i.e. that the (effective) numbers of configurations in
the two ensembles become closer to each other. This cannot happen if, as we keep
adding one more unit to the system, the difference between the two entropies (i.e.
the relative entropy D∗) keeps increasing by an arbitrary amount. The criterion in
Eq. (2.31) establishes that if the entropy difference per node, i.e. D∗/n, does not
vanish as n diverges, then the two ensembles cannot be equivalent.

Equation (2.32) implies that, in order to assess whether the system is under EE,
we do not need the exact value of D∗, but only its leading order with respect to n.
Then from Eq. (2.30) we see that, since the term 1+O(1/λ∗k) is at most of the same
order as

√
2πλ∗k, the presence of O(1/λ∗k) does not affect ensemble (non)equivalence:

D∗ = O

(
n∑
k=1

lnλ∗k

)
= O(ln det Σ∗). (2.33)

So, in order to check whether Eq. (2.32) holds, it is ultimately enough to check whether

ln det Σ∗ = o(n). (2.34)
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On the other hand, since our hypothesis of non-redundant constraints implies λ∗k >
0 for all k (as discussed in Sec. 2.2.3), we see that the contribution of the term∑n
k=1 ln[1 + O(1/λ∗k)] to the relative entropy in Eq. (2.30) is at most O(n). So if

ln
√

det(2πΣ∗) grows faster than O(n) then Eq. (2.30) reduces to the stronger result

D∗ ≈ ln
√

det(2πΣ∗) ≈ 1
2 ln det Σ∗, (2.35)

i.e. the leading term of the relative entropy (not only its leading order) can be cal-
culated exactly from ln det Σ∗ (throughout this paper, the symbol “x ≈ y” indicates
that the leading term of x and y is asymptotically the same, i.e. the two quantities
differ by a quantity that vanishes if divided by either x or y as n→∞). Depending
on the regimes considered later on in the paper, different techniques for calculating
(the leading order of) the determinant of the covariance matrix Σ∗ can be used. We
will discuss these techniques when needed, and refer to the Appendix for explicit
calculations. We will show that, except in a certain zero-temperature limit, the con-
ditions ensuring Eq. (2.35) are met and the leading order of the relative entropy can
be calculated exactly.

2.3.2 Relative fluctuations of the constraints
We now consider the relative fluctuations of the constraints, whose behaviour in the
thermodynamic limit is, historically, the traditional criterion used to check whether
statistical ensembles are equivalent [1]. In the standard situation, where the canonical
and microcanonical ensembles are defined through a single scalar constraint on the
total energy E, the relative fluctuations are captured by a single scalar quantity
r∗ ≡ σβ∗(E)/E∗ representing the ratio of the canonical standard deviation of the
energy to the mean energy itself. EE is then associated with the vanishing of r∗ as
n → ∞. In statistics, r∗ is called the coefficient of variation of the random variable
E with expected value E∗ and variance σ2

β∗(E)
In the case of networks with local constraints, there are n coefficients of variation

to consider. They have been calculated for both the binary and the weighted versions
of the configuration model [49]. In extreme summary, those results show that, in the
binary case (where there is a constraint on the degree k∗i for each node i = 1,n), an
upper bound 1/

√
k∗i for the relative fluctuation r∗i = σβ∗(ki)/k∗i can been established.

By contrast, in the weighted case (corresponding to the model considered here with
a constraint on the strength s∗i for each node i = 1,n), the value 1/

√
s∗i becomes a

lower bound for the relative fluctuation r∗i = σβ∗(si)/s∗i [49]. Those results have two
implications.

First, in the binary case the only regime for which general conclusions can be drawn
about the vanishing of the relative fluctuations is the so-called dense regime where the
expected degree of all nodes diverges, hence r∗i → 0. In the opposite sparse regime
where the average degree of all nodes is finite, we only have a finite upper bound
for the relative fluctuations, but their actual value depends on the specific network.
In general, however, the decreasing behaviour of the upper bound for the relative
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fluctuations in binary networks with increasing degrees is opposite to that of the
relative entropy density, which increases as the expected degree increases [5, 26, 45].

Second, in the weighted case we have a somewhat opposite situation where we can
only conclude that, in the sparse regime where the expected strengths are finite (apart
from possible hubs), the relative fluctuations do not vanish. By contrast, in the dense
case where the expected strengths diverge, the relative fluctuations can in principle
pick any value. Confusingly, even if in the weighted case the lower bound for the
relative fluctuations of the strengths goes to zero for nodes with diverging strength
s∗i , previous results seem to indicate that the realized value of r∗i in networks with
heterogeneous strength sequence actually increases for higher s∗i [49]. This behaviour
suggests that weighted networks, due to the many possible ways in which weight
can accumulate on links, can behave very differently from binary networks. This
observation requires further research and strengthens our motivation for studying
the relative fluctuations in weighted networks in different scenarios (ranging from
homogeneous to heterogenous concentrations of link weights), in conjunction with
the relative entropy and, in general, ensemble (non)equivalence.

Using Eq. (2.23), we can immediately calculate the standard deviation of each
constraint si around its expected value s∗i as

σ~β∗(si) =
√

Var~β∗(si)

=

√√√√∑
i 6=j

e
−(β∗i +β

∗
j )

[1− e−(β
∗
i +β

∗
j )]2

=

√∑
i 6=j
〈wij〉~β∗(1 + 〈wij〉~β∗)

=

√
s∗i +

∑
i 6=j
〈wij〉2~β∗ . (2.36)

The relative fluctuation of the strength is therefore

r∗i =
σ~β∗(si)

s∗i
=

√√√√ 1
s∗i

+

∑
i 6=j〈wij〉2~β∗

(
∑
i 6=j〈wij〉~β∗)

2 , (2.37)

Since 〈wij〉~β∗ ≥ 0 for all i, j, we have (
∑
i 6=j〈wij〉~β∗)

2 ≥
∑
i 6=j(〈wij〉~β∗)

2, showing that
1/
√
s∗i is indeed a lower bound for r∗i . When studying the asymptotic behaviour of

the relative fluctuations in the thermodynamic limit, we will be interested in whether
the limit

ρ∗i ≡ lim
n→∞

r∗i (2.38)

is zero (vanishing relative fluctuations) or positive (nonvanishing relative fluctuations)
for each node i = 1,n.
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2.4 BEC in weighted networks
In physical systems composed of bosons, i.e. particles obeying Bose-Einstein statistics,
BEC is a phase transition whereby, below a certain critical temperature, a finite
fraction of the total number of particles condenses in the ground state, i.e. the state
with lowest energy (or more generally in a finite number of states with lowest energy).
BEC was theoretically predicted by Satyendra Nath Bose and Albert Einstein in
1924 [53], and it has since then been observed in various physical systems. Models of
BEC have been studied in different statistical ensembles in the standard case with only
global constraints (total energy and/or total number of particles) [54–59]. Although
the detailed phenomenology exhibited by these models depends on the choice of the
energy and the structure of the interactions, it is generally found that EE breaks
down in the condensed (low-temperature) phase, as signalled by nonvanishing relative
fluctuations of the constraints.

In this Section, we are going to show that a form of BEC, even if quite different
from that found in more traditional physical settings, can also appear in our ensem-
bles of weighted networks. The possible onset of BEC in our system creates an ideal
situation where an EE-breaking phase transition can be studied in combination with
an additional and unrelated mechanism for the breakdown of EE, i.e. the presence of
local constraints, which is always active in both the condensed and the non-condensed
phases. To illustrate our results, we first make some important clarifications in or-
der to establish a rigorous link from weighted network ensembles to Bose-Einstein
statistics and then study the different phases of the model.

2.4.1 Bose-Einstein statistics in weighted networks
As we have already recalled, weighted networks with a constraint on the strength se-
quence obey Bose-Einstein statistics, as opposed to binary networks that obey Fermi-
Dirac statistics [46, 19, 20]. Indeed, inserting Eq. (2.6) into Eq. (2.5) we get the
probability of a configuration for a gas of free particles in the grandcanonical en-
semble3, where the pair i, j labels an energy state, the weight wij is the number of
particles in that state (occupation number), and the sum βi + βj can be interpreted
as

βi + βj =
εij − µ(T )

kT
. (2.39)

In the latter expression, εij represents the energy of the state, 1/kT is the inverse tem-
perature, and µ(T ) is the chemical potential (required to fix the same expected overall
number of particles for all values of T ) [20]. Indeed, as we discussed in Sec. 2.2.2, in

3In the grandcanonical ensemble, both the total energy and the total number of particles are
treated as soft constraints. With respect to the canonical ensemble, the appearance of the number of
particles as an additional soft constraint requires the introduction of an extra Lagrange multiplier,
the chemical potential.Interestingly, in the context of BEC a fourth (so-called ‘Maxwell’s Demon’)
ensemble has also been introduced where the total number of particles is soft while the total energy
is hard [54].
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our setting the energy and temperature (and in this case, the chemical potential as
well) are all reabsorbed into ~β. Therefore we can interpret the link weight wij as the
number of ‘elementary particles’ of weight, i.e. the number of quanta of unit weight,
populating the link between nodes i and j [46, 19]. The total number of such particles
in the system is the total weight W of all links in the network:

W (W) =
n∑
i=1

∑
j<i

wij =
1
2

n∑
i=1

si(W). (2.40)

The ‘weighted’ property wij ∈ N, which leads to Eqs. (2.7), (2.8) and (2.9), corre-
sponds to the possibility that the same state (pair of nodes) is occupied by indefinitely
many particles (subject to the average number dictated by the chemical protential),
which is a property of bosons. By contrast, in binary networks one has to impose
wij ∈ (0, 1), which is a property of fermions [46]. An extensive treatment of the role
of chemical potential and temperature in binary networks can be found in [20]. Here,
to properly interpret what the weighted model is doing, we should give a series of
clarifications.

First, we should make a clear distrinction beween the n ‘units’ of our system (i.e.
the nodes of the network) and the W ‘particles’ of weight that, as a formal analogy,
can be interpreted as populating the links of the network. The former are the real
constituents of our physical system, while the latter are a mathematical abstraction
used to represent the nature of the interactions (links) between such constituents. If
we imagine doubling the size of our network, we should imagine doubling the number
n of nodes: indeed, we can imagine the network ‘growing in size’ by adding one single
node at a time, but we cannot imagine adding one single pair of nodes at a time,
without actually adding n new pairs. One should also not be tempted to regard
node pairs as the fundamental units by the fact that, mathematically, the n(n− 1)/2
variables {wij} involving different pairs of nodes are independent random variables:
actually, this only occurs in the canonical ensemble and would in any case not be
true for more general choices of the constraints. Moreover, even the n(n − 1)/2
independent node pairs in the canonical ensemble cannot be assigned independent
values of the parameters, since there are only n parameters corresponding to the
Lagrange multipliers attached to each node. Explicit (and strong) consequences of
this fact will be illustrated precisely in the context of BEC. Therefore the physical
size of our system is n, and this is why in Eq. (2.31) we defined the relative entropy
density as the relative entropy divided by n in the first place. How the total weightW
varies with the system size n depends on a specific property, i.e. on how we make the
entries of ~s∗ (and the resulting value of W ∗ =

∑n
i=1 s

∗
i /2) scale with n. For instance,

we may choose to be in the sparse regime where ~s∗ remains finite as n → ∞, or in
the dense regime where ~s∗ diverges as n → ∞. As we show below, the latter is the
relevant case for BEC to emerge.

Second, we stress that, irrespective of the above, we always consider a hard num-
ber n of nodes, and this is why we compare (only) the canonical (soft value of ~s)
and microcanonical (hard value of ~s) ensembles of networks, both for fixed n (which
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sets the dimension of ~s). We do not consider the grandcanonical ensemble of network
configurations where n is soft. The grandcanonical ensemble introduced in the afore-
mentioned analogy with systems of bosons is a different one; it may be denoted as
an ensemble of weight quanta in a network with fixed n and originates from the fact
that the Hamiltonian in Eq. (2.6), and consequently the total link weight (not n) in
Eq. (2.40), is a fluctuating quantity in the canonical ensemble of network configura-
tions. The fluctuations in the (rescaled) energy H (canonical ensemble of network
configurations) are seen as fluctuations in the particle number W (grandcanonical
ensemble of weight quanta) in the Bose-Einstein analogy. Fluctuations in the particle
number have been the subject of many studies in the literature on BEC [54–59]. Note
that, in both canonical and microcanonical ensembles, the individual link weights
{wij} are fluctuating quantities, despite the fact that the total link weight W ∗ is
constant in the microcanonical ensemble. Therefore the numbers of ‘weight particles’
of individual links fluctuate in both ensembles.

Third, while we necessarily discuss the (non)equivalence of the canonical and
microcanonical ensembles in the thermodynamic limit n → ∞, the total weight W ∗
can (and, across the canonical ensemble, will in any case) be arbitrarily large even
for finite n. Indeed, the phase transition that we are about to discuss (namely,
BEC) does not per se require the limit n → ∞, while it definitely requires the limit
W ∗ → ∞. Abstractly, these two limits (and the associated phenomena of EN and
BEC respectively) may appear as mathematically unrelated. However, in practice
they are physically related once the scaling of ~s∗ with n is specified. In particular, we
are going to show that, in order to observe BEC, we need be in a dense regime where
W ∗ = O(n2). This ensures that, when taking the thermodynamic limit n → ∞ in
order to study ensemble (non)equivalence, we are automatically implying W ∗ → ∞
so that we can check for BEC at the same time.

Last, we recall that ~β · ~s(W) has to be dimensionless in order to ensure that the
probability is a number. Therefore, since wij is dimensionless, so are s∗i and β∗i . In
turn, this implies that both sides of Eq. (2.39) must be dimensionless. On the other
hand, when modelling a real system, the ‘energy’ εij may represent any physical
‘cost’ associated to the link between nodes i and j (more precisely, it represents the
cost of reinforcing wij by a unit of weight) and may therefore carry its own unit of
measure (e.g. it may depend on some distance between nodes i and j). Necessarily, the
chemical potential µ(T ) carries the same units as the energy. As for the ‘temperature’
T , it may be chosen to be dimensionless as it merely represents a control parameter
(this is the choice that we will make later); alternatively, it may carry the same
units of the energy if it is useful that temperature and energy live on the same scale.
Irrespective of this choice, in our setting the ‘Boltzmann constant’ k is simply a
constant that takes care of all dimensional units of measure and makes the ratio on
the right hand side of Eq. (2.39) dimensionless.
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2.4.2 Core-periphery networks
With the above clarifications, we can finally go back to our model. In the traditional
physical situation, in the canonical ensemble the energy εij of each state i, j is a
constant and the temperature T can be varied. Clearly, εij is independent of T , while
the chemical potential µ(T ) is chosen, as a function of temperature, in order to realize
the correct (T -independent) expected total number 〈W 〉∗ ≡ W ∗ of particles for all
values of T . In this ‘direct problem’, every state will therefore have an expected
occupation number governed by εij , T and µ(T ). In our ‘inverse’ setting, T ∗ and µ∗
are instead reabsorbed into ~β∗, which in turn is induced by the chosen value of the
strength sequence (rather than the other way around). We should therefore regard
~s∗ = ~s∗(T ) and ~β∗ = ~β∗(T ) as T -dependent, while W ∗ remains T -independent. This
means that the chemical potential µ∗(T ) should be such that

n∑
i=1

s∗i (T ) = 2W ∗ ∀T ≥ 0. (2.41)

BEC emerges when, below a certain critical temperature Tc, the occupation num-
ber of the state with minimum energy εmin = mini,j{εij} (ground state), or of a finite
number of states with lowest energy, becomes so large that it reaches a finite fraction
of the total numberW ∗ of particles. Clearly, this requires the existence of at least two
different energy levels (the ground state and at least one ‘excited’ state). Therefore
the simplest way to obtain BEC in our model is by considering a strength sequence
of the form

s∗i (T ) =

{
s∗+(T ) i = 1,n+
s∗−(T ) i = n+ + 1,n s∗+(T ) ≥ s∗−(T ), (2.42)

i.e. by partitioning the n nodes into two classes, which we call core and periphery:
the core has a finite number

n+ = O(1) (2.43)

of nodes, each having a ‘large’ strength s∗+(T ), while the periphery has an extensive
number

n− = n− n+ = O(n) (2.44)

of nodes, each having a ‘small’ strength s∗−(T ). What we mean precisely by ‘small’
and ‘large’ will be clarified below. For the moment, we notice that the BEC phase
(T < Tc) corresponds to picking a ‘condensed’ value of ~s∗(T < Tc) such that, in
the thermodynamic limit, the core takes up a finite fraction of the total weight W ∗
of all links in the network, despite having a finite size. In particular, in the zero-
temperature limit all the total weight W ∗ is in the core. By contrast, the non-
condensed phase T >Tc is one where ~s∗(T >Tc) is such that no individual link receives
a finite fraction of W ∗. In particular, the infinite-temperature limit should be such
that the energy difference between ground and excited states becomes ineffective, i.e.
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s∗+(T →∞) = s∗−(T →∞). The different phases can be efficiently monitored by
introducing a temperature-dependent order parameter Q∗(T ), as we show below.

We stress that, since we are ultimately interested in the relative fluctuations of the
canonical constraints and in the relative entropy that can be asymptotically calculated
purely from canonical quantities according to Eq. (2.33), practically we only need to
study the canonical ensemble. The only check we need to make is that, whenever we
speak of the system being in a certain ‘phase’, this statement does not depend on the
particular ensemble. In other words, we need to show that the order parameter has
always the same value in the canonical and microcanonical ensembles.

Before studying the individual phases, let us make some general considerations,
valid for all values of T . We first find the value of ~β∗(T ) corresponding to the value
of ~s∗(T ) in Eq. (2.42). As we mentioned, s∗i (T ) = s∗j (T ) implies β∗i (T ) = β∗j (T ),
therefore the entries of ~β∗(T ) take only two values β∗+(T ) and β∗−(T ) such that

β∗i (T ) =

{
β∗+(T ) i = 1,n+
β∗−(T ) i = n+ + 1,n β∗+(T ) ≤ β∗−(T ). (2.45)

These values solve the n equations in (2.13), which here reduce to the two independent
equations

(n+ − 1)w∗+(T ) + n−w
∗
0(T ) ≡ s∗+(T ) (2.46)

(n− − 1)w∗−(T ) + n+w
∗
0(T ) ≡ s∗−(T ) (2.47)

where we have defined

w∗+(T ) =
e−2β∗+(T )

1− e−2β∗+(T )
(2.48)

as the expected link weight 〈wij〉~β∗(T ) between any two nodes in the core (i, j = 1,n+),

w∗−(T ) =
e−2β∗−(T )

1− e−2β∗−(T )
(2.49)

as the expected link weight 〈wij〉~β∗(T ) between any two nodes in the periphery (i, j =
n+ + 1,n), and

w∗0(T ) =
e−β

∗
−(T )−β

∗
+(T )

1− e−β
∗
−(T )−β

∗
+(T )

=

√
w∗+(T )w

∗
−(T )√

1 +w∗+(T )
√

1 +w∗−(T )−
√
w∗+(T )w

∗
−(T )

=
1√

1 + 1/w∗+(T )
√

1 + 1/w∗−(T )− 1
(2.50)
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as the expected link weight 〈wij〉~β∗(T ) between any node in the core and any node in
the periphery (i = 1,n+ and j = n+ + 1,n or j = 1,n+ and i = n+ + 1,n). Note
that β∗+(T ) ≤ β∗−(T ) implies w∗−(T ) ≤ w∗0(T ) ≤ w∗+(T ).

Now, solving Eqs. (2.46) and (2.47), we obtain the explicit values of β∗+(T ) and
β∗−(T ) appearing in Eq. (2.45):

β∗±(T ) =
1
2 ln

1 +w∗±(T )

w∗±(T )
=

1
2 ln

(
1 + 1

w∗±(T )

)
. (2.51)

Also note from Eq. (2.50) that

β∗+(T ) + β∗−(T ) = ln
(

1 + 1
w∗0(T )

)
. (2.52)

Also, using Eq. (2.16) we can define

p∗±(T ) ≡ e
−2β∗±(T ) =

w∗±(T )

1 +w∗±(T )
(2.53)

as the probability that a link exists (irrespective of its weight) between any two core-
core (+) or any two periphery-periphery (−) nodes, and

p∗0(T ) ≡ e
−β∗+(T )−β

∗
−(T ) =

w∗0(T )

1 +w∗0(T )
(2.54)

as the probability that a link exists (irrespective of its weight) between a core node
and a periphery node.

From Eq. (2.39), we notice that the existence of the two values above for the entries
of ~β∗(T ) implies that there are three energy levels, associated with the energies

ε∗+ = µ∗(T ) + 2kTβ∗+(T ), (2.55)
ε∗− = µ∗(T ) + 2kTβ∗−(T ), (2.56)

ε∗0 = µ∗(T ) + kT [β∗+(T ) + β∗−(T )] =
ε∗+ + ε∗−

2 , (2.57)

where ε∗+ ≤ ε∗0 ≤ ε∗− (we recall that all energy values are finite and independent of
both T and n). The appearance of three distinct energy levels out of just two values of
the fundamental Lagrange multipliers confirms the interpretation that the true units
of the system are the nodes and not the node pairs: it would indeed be impossible for
our system to exhibit exactly two energy states, or in general to engineer an arbitrary
number of energy states for the node pairs, since the only arbitrary values are those
that can be attached to nodes, not to node pairs. Also note that all the three levels
above are degenerate: the n+(n+ − 1)/2 pairs of nodes in the core have the same
expected link weight w∗+(T ) and energy ε∗+, the n−(n− − 1)/2 pairs of nodes in the
periphery have the same expected link weight w∗−(T ) and energy ε∗−, and the n+n−
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pairs of nodes across core and periphery have the same expected link weight w∗0(T )
and energy ε∗0. Therefore the ground state has energy ε∗min = ε∗+ and degeneracy
n+(n+ − 1)/2. These degeneracies are dictated by the numbers of nodes in the two
sets and cannot be assigned arbitrarily.

The occupation number of the ground state (with energy ε∗+) coincides with the
expected weight of all links between core nodes (total ‘core-core’ weight):

W ∗+(T ) =
n+(n+ − 1)

2 w∗+(T ). (2.58)

Similarly, the occupation number of the first excited state (with energy ε0) coincides
with the expected weight of all links between nodes across core and periphery (total
‘core-periphery’ weight):

W ∗0 (T ) = n+n−w
∗
0(T ). (2.59)

Finally, the occupation number of the second excited state (with energy ε−) coin-
cides with the expected weight of all links between periphery nodes (total ‘periphery-
periphery’ weight):

W ∗−(T ) =
n−(n− − 1)

2 w∗−(T ). (2.60)

By writing W ∗ as the sum of its core-core, core-periphery and periphery-periphery
components, we get

W ∗ = W ∗+(T ) +W ∗0 (T ) +W ∗−(T )

=
n+(n+ − 1)

2 w∗+(T ) + n+n−w
∗
0(T )

+
n−(n− − 1)

2 w∗−(T ). (2.61)

Using Eq. (2.41), the total weight can also be expressed as

W ∗ =
n+s

∗
+(T ) + n−s∗−(T )

2 (2.62)

which, through Eqs. (2.46) and (2.47), indeed reduces to Eq. (2.61).
We stress again that the chemical potential µ∗(T ) appearing in Eqs. (2.55), (2.56)

and (2.57) plays the role of a global Lagrange multiplier ensuring that, for all values
of T , the total expected weight is W ∗. Note that the T -independence of W ∗ allows
us to conclude immediately that its value should be of order

W ∗ = O(n2) (2.63)

because, in particular, in the non-condensed phase all the n(n− 1)/2 individual link
weights w∗±, w∗0 must be finite by definition. As we have anticipated, this result
ensures that in the thermodynamic limit (n→∞) we automatically have W ∗ →∞,
so that we can study ensemble (non)equivalence and BEC simultaneously, thereby
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‘physically’ connecting two otherwise mathematically unrelated limits. We also note
that, irrespective of temperature, the network is always in the dense regime. We can
therefore introduce the average expected link weight

w∗ ≡ 2W ∗
n(n− 1) = O(1), (2.64)

which is a T -independent, finite parameter of our model, controlling the overall link
weight in the network. Clearly,

w∗−(T ) ≤ w∗ ≤ w∗+(T ) ∀T . (2.65)

It is good to remark again that, in our ‘inverse’ problem (construction of the
conjugate canonical and microcanonical ensembles), the parameters of the model are
the values of the constraints, which here reduce to the two (diverging when n→∞)
numbers s∗±(T ). However, to allow consistent comparisons for different temperatures,
not all strength sequences are allowed, but only those that can be obtained from one
another by varying T . In particular the values s∗±(T ) have to be specified for each
value of T and be such that the total weight is always W ∗. Indeed Eq. (2.62) shows
that only two of the three quantities s∗±(T ), W ∗ are independent. By contrast, the
traditional ‘direct’ problem in physics sees the three energies ε∗± and ε∗0 (which do
not depend on T ) as the parameters of the model, plus either w∗ or the chemical
potential µ∗(T ). However, Eq. (2.57) shows that ε∗0 = (ε∗+ + ε∗−)/2, indicating only
two independent values of the energy (say ε∗±), as a result of the fact that there
are only two types of nodes. Moreover, we may set the minimum energy ε∗+ ≡ 0
without loss of generality, because any overall energy shift can be reabsorbed into the
chemical potential. We can therefore rename the only remaining independent value
of the energy as ε∗− ≡ ε∗ > 0, and similarly ε∗0 = ε∗/2 > 0. Using these replacements
into Eqs. (2.55) and (2.56), and combining the two equations, we get

µ∗(T ) = −2kTβ∗+(T ) = ε∗ − 2kTβ∗−(T ) (2.66)

which is a convenient expression for solving the ‘direct’ problem. Rearranging, we
obtain

ε∗ = 2kT [β∗−(T )− β∗+(T )] . (2.67)
and, using Eqs. (2.51) and (2.53),

e−ε
∗/kT = e2[β∗+(T )−β

∗
−(T )]

=
p∗−(T )

p∗+(T )

=
w∗−(T )[1 +w∗+(T )]

w∗+(T )[1 +w∗−(T )]
, (2.68)

which shows how the energy difference ε∗ between periphery-periphery (+) and core-
core (−) states is related to the corresponding connection probabilities p∗±(T ) and
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expected link weights w∗±(T ). Therefore the most compact way of parametrizing
the direct problem is by specifying only the two finite, positive and T -independent
numbers ε∗ and w∗, and explore the resulting network properties by finding µ(T ) (as a
function of ε∗, w∗ and T ) and varying T as a control parameter. This will indeed allow
us to easily explore the different (high- and low-temperature) phases consistently.

In our model, BEC occurs below a critical temperature Tc such that a finite fraction
of the total weight W ∗ condenses in the core, which remains of finite size (i.e. of a
finite number n+ of nodes) even when the size of the whole network diverges. This
corresponds to requiring that, as n→∞, n+ remains finite as dictated by Eq. (2.43),
W ∗ diverges, and W ∗+(T ) takes up a finite fraction of W ∗. Rigorously, we can define
this fraction (for finite n) as

Q∗n(T ) ≡
W ∗+(T )

W ∗
(2.69)

and use it to introduce the order parameter as

Q∗(T ) ≡ lim
n→∞

Q∗n(T ) = lim
n→∞

W ∗+(T )

W ∗
. (2.70)

We can then define the BEC phase as a phase emerging below a certain critical
temperature Tc such that

Q∗(T <Tc) > 0. (2.71)
By contrast, the non-BEC phase is such that

Q∗(T >Tc) = 0. (2.72)

A visual anticipation of the qualitative behaviour that our system will exhibit is
provided in Fig. 2.3.

In conjunction with BEC, we will investigate ensemble (non)equivalence. There-
fore, in each phase of the model we will consider the relative entropy between the mi-
crocanonical and canonical ensembles and the relative fluctuations of the constraints.
The criterion for measure equivalence is based on the relative entropy in Eq. (2.33),
and useful techniques for the calculation of the determinant of the covariance matrix
Σ∗ in each phase are provided in the Appendix. Clearly, from Eqs. (2.23) and (2.45)
we see that the diagonal entries Σ∗ii of Σ∗ take two possible values:

Σ∗ii(T ) = σ2
~β∗(T )

(si) =

{
Σ∗+(T ) i = 1,n+
Σ∗−(T ) i = n+ + 1,n (2.73)

where

Σ∗±(T ) =
(n± − 1)e−2β∗±(T )[

1− e−2β∗±(T )
]2 +

n∓e
−β∗+(T )−β

∗
−(T )[

1− e−β
∗
+(T )−β

∗
−(T )

]2

= (n± − 1)w∗±(T ) [1 +w∗±(T )]

+n∓w
∗
0(T ) [1 +w∗0(T )] . (2.74)
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Condensed phase Non-condensed phase

Figure 2.3. Illustration of possible realizations of a network as a function of temperature,
from higher (right) to lower (left) values of T . As a schematic example, a network with
n = 14 nodes, of which n+ are core nodes and n− = 10 are peripheral nodes, is considered.
The order parameter Q∗(T ) is zero for temperatures above the critical temperature Tc, while
it is positive for temperatures below Tc, increasing towards 1 at zero temperature. At in-
finite temperature (T →∞), there is no distinction between core and periphery: all links
have the same probability of existing and the same expected weight. At lower but super-
critical temperature (T > Tc), a quantitative (but not yet qualitative) distinction between
core and periphery appears: core-core links have higher probability and expected weight
than core-periphery links, which in turn have higher probability and expected weight than
periphery-periphery links, however all these probabilities and expected link weights are of
the same (finite) order O(1). Below a certain critical temperature (T < Tc), the distinc-
tion between core and periphery becomes qualitative and more dramatic (the core forms
a ‘condensate’): the expected link weights are of order O(n2) for core-core links (with the
corresponding connection probabilities approaching one) and O(1) for core-periphery and
periphery-periphery links. Finally, at zero temperature (T → 0) the condensate decouples
from the rest: peripheral nodes are completely disconnected and all links end up in the core,
with an expected weight still of order O(n2).

38



Recalling Eq. (2.7), we remark that the canonical entropy S∗can(T ) can be easily
calculated from Eq. (2.17) as the following sum of five terms:

S∗can(T ) = ~β∗(T ) · ~s∗(T ) + lnZ[~β∗(T )]
= n+β

∗
+(T )s

∗
+(T )

+n−β
∗
−(T )s

∗
−(T )

+
n+(n+ − 1)

2 ln 1
1− e−2β∗+(T )

+
n−(n− − 1)

2 ln 1
1− e−2β∗−(T )

+n+n− ln 1
1− e−β

∗
+(T )−β

∗
−(T )

, (2.75)

while the microcanonical entropy S∗mic(T ) is in general hard to compute, as it re-
quires an explicit enumeration. However, its leading order can be obtained combining
Eqs. (2.25) and (2.75).

The relative fluctuations of the constraints take the form

r∗i (T ) =

{
r∗+(T ) i = 1,n+
r∗−(T ) i = n+ + 1,n (2.76)

where, from Eq. (2.37),

r∗±(T ) =

√
Σ∗±(T )

s∗±(T )
(2.77)

=

√
1

s∗±(T )
+

(n± − 1)[w∗±(T )]2 + n∓[w∗0(T )]
2

[s∗±(T )]
2

=

√
1

s∗±(T )
+

(n± − 1)[w∗±(T )]
2 + n∓[w∗0(T )]

2

[(n± − 1)w∗±(T ) + n∓w∗0(T )]
2 .

Therefore in the thermodynamic limit the relative fluctuations of the constraints, as
defined in Eq. (2.38), take only the two possible limiting values

ρ∗i (T ) =

{
ρ∗+(T ) i = 1,n+
ρ∗−(T ) i = n+ + 1,n (2.78)

where
ρ∗±(T ) = lim

n→∞
r∗±(T ). (2.79)

Armed with the above general results, we can now study each phase in detail.
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2.4.3 Non-condensed phase
Let us start from the non-BEC phase (T >Tc). We first consider the finite-temperature
case (Tc<T <∞) and then the infinite-temperature limit (T→∞). As all the inter-
esting phenomenology (in terms of both BEC and EN) occurs in the thermodynamic
limit n→∞, we look for the asymptotic behaviour of all quantities in that limit.

Finite (supercritical) temperature: Tc<T <∞

Since, by definition, when T >Tc there is no concentration of ‘particles’ of weight on
any of the links, all the expected link weights must be separately finite, i.e. w∗+(T >
Tc), w∗−(T > Tc) and w∗0(T > Tc) are all O(1). Consequently, from Eqs. (2.53)
and (2.54) we see that all the connection probabilities p∗+(T > Tc), p∗−(T > Tc) and
p∗0(T >Tc) are strictly smaller than one, i.e. missing links can occur anywhere in the
network. Using this fact into Eqs. (2.46), (2.47), (2.58), (2.59) and (2.60), and using
Eqs. (2.43) and (2.44), we immediately get the strength of nodes in the core, i.e.

s∗+(T >Tc) = (n+ − 1)w∗+(T >Tc) + n−w
∗
0(T >Tc)

≈ nw∗0(T >Tc)

= O(n), (2.80)

and in the periphery, i.e.

s∗−(T >Tc) = (n− − 1)w∗−(T >Tc) + n+w
∗
0(T >Tc)

≈ nw∗−(T >Tc)

= O(n). (2.81)

Similarly, for W ∗±(T >Tc), W ∗0 (T >Tc) we get

W ∗+(T >Tc) = n+(n+ − 1)w∗+(T >Tc)/2 = O(1), (2.82)
W ∗−(T >Tc) ≈ n2w∗−(T >Tc)/2 = O(n2), (2.83)
W ∗0 (T >Tc) ≈ n+ nw

∗
0(T >Tc) = O(n), (2.84)

from which we see that in this phase the total weight W ∗ is essentially all in the
periphery, i.e.

W ∗−(T >Tc) = W ∗ − o(n2) ≈W ∗, (2.85)
w∗−(T >Tc) = w∗ − o(1) ≈ w∗. (2.86)

We stress that the above result does not mean that the core is empty or that there
are no connections between core and periphery. Rather, it indicates that the total
weight of all core-core and core-periphery connections is asymptotically negligible with
respect to the total weight located inside the periphery, simply because the number of
periphery-periphery node pairs dominates the number of core-periphery and core-core
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pairs. In particular, the finite parameter w∗+(T > Tc) can take an arbitrarily large
value, without ‘moving’ the (finite and positive) value of the average link weight w∗.
All positive values of w∗+(T >Tc) are therefore allowed. By contrast, w∗−(T >Tc) is
forced to take (to leading order) only the value w∗.

Using Eqs. (2.81), (2.83) and (2.84), we write the order parameter as

Q∗(T >Tc) ≡ lim
n→∞

W ∗+(T >Tc)

W ∗

= lim
n→∞

W ∗ −W ∗−(T >Tc)−W ∗0 (T >Tc)
W ∗

= 1− lim
n→∞

n2 w∗−(T >Tc)

2W ∗

= 1− lim
n→∞

n s∗−(T >Tc)

2W ∗ ,

= 0, (2.87)

confirming the definition of non-condensed phase in Eq. (2.72) and showing that, since
both s∗−(T >Tc) and W ∗ have by construction the same value in the canonical and
microcanonical ensemble, the order parameter must be zero in both ensembles, for all
values of T > Tc. Therefore, whenever one ensemble is in the non-condensed phase,
the other ensemble is the non-condensed phase as well. Importantly, this allows us to
refer to the conjugate canonical and microcanonical ensembles ‘in the non-condensed
phase’ consistently.

To solve the ‘inverse’ problem, we use Eqs. (2.51) and (2.52) and invert Eqs. (2.80)
and (2.81) to get

β∗−(T >Tc) =
1
2 ln

(
1 + 1

w∗−(T >Tc)

)
≈ 1

2 ln
(

1 + n

s∗−(T >Tc)

)
(2.88)

and

β∗+(T >Tc) + β∗−(T >Tc) = ln
(

1 + 1
w∗0(T >Tc)

)
≈ ln

(
1 + n

s∗+(T >Tc)

)
. (2.89)

Then, subtracting Eq. (2.88) from Eq. (2.89), we get

β∗+(T >Tc) =
1
2 ln

(
1 + 1

w∗+(T >Tc)

)

≈ ln
1 + n

s∗+(T>Tc)√
1 + n

s∗−(T>Tc)

. (2.90)
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Equations (2.88) and (2.90) express β∗±(T >Tc) as a function of the two (diverging)
constraints s∗±(T >Tc), or equivalently as a function of the finite parameters w∗±(T >
Tc), which have to be specified for all values of T .

To solve the ‘direct’ problem, we first note an important consequence of Eq. (2.86):
in the large n limit, w∗−(T > Tc) and β∗−(T > Tc) are independent of temperature.
Indeed, using Eq. (2.81) and (2.86) into Eq. (2.88), we get asympotically

β∗−(T >Tc) ≈
1
2 ln

(
1 + 1

w∗

)
(2.91)

and, using Eq. (2.67),

β∗+(T >Tc) ≈
1
2 ln

(
1 + 1

w∗

)
− ε∗

2kT . (2.92)

When inserted into Eq. (2.66), the above expressions allow us to directly obtain the
chemical potential as

µ(T >Tc) = ε∗ − 2kTβ∗−(T >Tc)

≈ ε∗ − kT ln
(

1 + 1
w∗

)
+ o(T ). (2.93)

As anticipated, the above result provides the solution to the direct problem in terms
of the two finite constants ε∗ and w∗, and allows us to explore the model by varying
T throughout the non-condensed phase T >Tc.

We now consider ensemble (non)equivalence. Inserting Eqs. (2.80) and (2.81) into
Eq. (2.74), we obtain the variance of the strength of nodes in the core, i.e.

Σ∗+(T >Tc) ≈ nw∗0(T >Tc) [1 +w∗0(T >Tc)]

≈ s∗+(T >Tc)

[
1 +

s∗+(T >Tc)

n

]
= O(n), (2.94)

and in the periphery, i.e.

Σ∗−(T >Tc) ≈ nw∗−(T >Tc) [1 +w∗−(T >Tc)]

≈ s∗−(T >Tc)

[
1 +

s∗−(T >Tc)

n

]
= O(n). (2.95)

As we show in Appendix 2.A.1, it is possible to show that the leading term of the
determinant of the covariance matrix Σ∗(T >Tc) in this non-condensed phase is

det[Σ∗(T >Tc)] =
n∏
i=1

Σ∗ii(T >Tc) +O(nn−2). (2.96)
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Using Eqs. (2.74), (2.94) and (2.95) we obtain
n∏
i=1

Σ∗ii(T >Tc) = [Σ∗+(T >Tc)]
n+ [Σ∗−(T >Tc)]

n−

= O(nn). (2.97)
Inserting this result into Eq. (2.96), we find

det[Σ∗(T >Tc)] = O(nn) +O(nn−2) = O(nn), (2.98)
showing that the determinant is dominated by the diagonal entries of Σ∗(T > Tc).
Taking the logarithm, we obtain

ln det Σ∗(T >Tc) = O(n lnn) (2.99)
which, when compared with Eq. (2.34), shows that the system is under ensemble
nonequivalence. We note that the O(n lnn) scaling of ln det Σ∗(T >Tc) ensures that
Eq. (2.35) holds, so the leading order of the relative entropy can be calculated exactly
as

D∗(T >Tc) ≈
1
2 ln det Σ∗(T >Tc) ≈

1
2n lnn (2.100)

where we have used Eqs. (2.94) and (2.95) into Eq. (2.96). The above result is in
line with the scaling of the relative entropy found in the case of binary networks with
a constraint on the node degrees in the dense regime [5, 26, 45]. Another similarity
between the two models is the order of the canonical entropy:

S∗can(T >Tc) = O(n2), (2.101)
which can be easily seen from Eq. (2.75) using β∗±(T >Tc) = O(1) and s∗±(T >Tc) =
O(n), as found in Eqs. (2.80), (2.81), (2.88) and (2.90). Then Eq. (2.25) also implies

S∗mic(T >Tc) = O(n2). (2.102)
Note that, even if the relative entropy is subleading with respect to the canonical
and microcanonical entropies, it is still superextensive in the number n of units of
the system, thereby breaking ensemble equivalence as in binary networks with fixed
degrees. Therefore the result in Eq. (2.99) is another observation, for the first time
in weighted networks, of the fact that ensemble equivalence can be broken by the
presence of an extensive number of local constraints, even away from phase transitions.

Coming to the relative fluctuations of the constraints, we see from Eqs. (2.77)
and (2.79) that

r∗±(T >Tc) =

√
Σ∗±(T >Tc)

s∗±(T >Tc)

≈

√
n+ s∗±(T >Tc)

n s∗±(T >Tc)

= O

(
1√
n

)
(2.103)
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and
ρ∗±(T >Tc) = 0. (2.104)

We therefore observe that in the non-condensed phase the decay of the relative fluctu-
ations of each constraint is of the same order O(1/

√
n) as generally observed for the

global constraint (total energy) in a system with short-range interactions away from
phase transitions. However, while in the traditional situation the vanishing of the
relative fluctuations implies that the relative entropy is subextensive and that the rel-
ative entropy density vanishes in the thermodynamic limit (as discussed in Sec. 2.1.3),
here the relative entropy density does not vanish and the ensembles are not equivalent.
Therefore we find that, in systems with an extensive number of local constraints, the
vanishing of even all the relative fluctuations does not ensure ensemble equivalence.

Infinite temperature: T→∞

The extreme regime of the non-condensed phase is the infinite-temperature case,
which can be explored by taking the limit T → ∞ in the solution to the ‘direct’
problem provided by Eq. (2.93). In such a limit, Eq. (2.39) implies that β∗+(T >Tc)
and β∗−(T >Tc) converge to the same value β∗∞ given by

β∗+(T→∞) = β∗−(T→∞) = β∗∞ ≡
1
2 ln

(
1 + 1

w∗

)
. (2.105)

Then, through Eqs. (2.48), (2.49), (2.50), (2.53) and (2.54), we get

w∗+(T→∞) = w∗−(T→∞) = w∗0(T→∞) = w∗, (2.106)
p∗+(T→∞) = p∗−(T→∞) = p∗0(T→∞) = p∗, (2.107)

i.e. all node pairs have the same expected link weight w∗ and connection probability
p∗ given by

p∗ =
w∗

1 +w∗
. (2.108)

This is the characteristic situation in the infinite-temperature limit of Bose-Einstein
statistics, where each particle is equally likely distributed across all energy levels.
Here, this situation translates in the graph becoming completely homogeneous: the
distinction between core and periphery disappears as the finite difference between
energy levels becomes entirely dominated by the diverging temperature. The expected
strength of every node has the same value s∗ ≡ (n− 1)w∗:

s∗+(T→∞) = s∗−(T→∞) = s∗ = (n− 1)w∗, (2.109)

i.e. the strength sequence becomes a constant vector.
Clearly, the above result does not change the value of the order parameter in

Eq. (2.87):
Q∗(T→∞) = 0. (2.110)
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Similarly, the final results in eqs. (2.99) and (2.104) about the simultaneous breakdown
of ensemble equivalence and the vanishing of all relative fluctuations carry over to the
infinite-temperature limit, so in principle we do not have to further discuss this case.
However, the fact that the strength sequence becomes a constant vector allows us
to calculate many of the properties of the model exactly, so this example is a very
transparent and instructive one. It is therefore worth considering it in some more
detail, also because some of the following results will be useful in the (much less
trivial) zero-temperature limit as well.

In particular, Eqs. (2.105) and (2.109) imply that Eqs. (2.23) and (2.24) can be
rewritten as

Σ∗ii(T→∞) =
(n− 1)e−2β∗∞

(1− e−2β∗∞)2 = w∗(1 +w∗)(n− 1) (2.111)

for all i = 1,n and

Σ∗ij(T→∞) =
e−2β∗∞

(1− e−2β∗∞)2 = w∗(1 +w∗) (2.112)

for all i 6= j respectively. In Appendix 2.A.2 we show that the above expressions can
be used to calculate the determinant of Σ∗(T→∞) exactly as

det Σ∗(T→∞) = 2(n− 1)(n− 2)n−1 [w∗(1 +w∗)]n , (2.113)

from which we confirm, without having made the approximation in eq. (2.96), that

ln det Σ∗(T→∞) = O(n lnn) (2.114)

and that
D∗(T→∞) ≈ 1

2 ln det Σ∗(T→∞) ≈ 1
2n lnn. (2.115)

Clearly, Eqs. (2.101) and (2.102) hold in this limit as well:

S∗can(T→∞) = O(n2), S∗mic(T→∞) = O(n2). (2.116)

Finally, from eqs. (2.109) and (2.111) we see that eq. (2.77) leads in this case to a
unique value for the coefficient of variation of all the strengths:

r∗i (T→∞) =

√
Σ∗ii(T→∞)

s∗i (T→∞)
=

√
1 +w∗

(n− 1)w∗ ∀i, (2.117)

so that
ρ∗i (T→∞) = 0 ∀i, (2.118)

in accordance with eq. (2.104).
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2.4.4 Condensed phase
We now consider the BEC phase (T <Tc). We first derive general results and then
discuss the finite-temperature case and the zero-temperature limit separately.

By the definition in Eq. (2.71), the condensed phase must be such that a positive
fraction Q∗(T <Tc) > 0 of the total weight lies in the core, i.e. (to leading order)

W ∗+(T <Tc) ≈ Q∗n(T <Tc)W ∗ ≈ Q∗(T <Tc)W ∗ (2.119)

which necessarily means

w∗+(T <Tc) = O(n2), W ∗+(T <Tc) = O(n2) (2.120)

and p∗+(T <Tc) ≈ 1, i.e. the core does not have missing links (the presence of core-
core links is no longer a random event, while the weight of such links is still a random
variable). As expected, BEC corresponds to the divergence of w∗+(T < Tc), and we
now see that the speed of this divergence is of order n2 in our model. For convenience,
we may define

ψ∗+(T <Tc) = lim
n→∞

w∗+(T <Tc)

n2 (2.121)

which is finite and positive, so that

w∗+(T <Tc) ≈ ψ∗+(T <Tc)n2. (2.122)

Combining Eqs. (2.50) and (2.120) we see that

w∗0(T <Tc) ≈
1√

1 + 1/w∗−(T <Tc)− 1
, (2.123)

which inserted into Eq. (2.61) shows that, to leading order,

w∗ ≈ n+(n+ − 1)ψ∗+(T <Tc) +w∗−(T <Tc), (2.124)

an expression that relates the finite parameters of the model with each other in the
condensed phase. Therefore we see from Eq. (2.119) that

w∗−(T <Tc) ≈ [1−Q∗n(T <Tc)]w∗ (2.125)

and
W ∗−(T <Tc) ≈ [1−Q∗n(T <Tc)]W ∗. (2.126)

Inserting Eq. (2.125) into Eq. (2.123) yields

w∗0(T <Tc) ≈
1√

1 + 1
[1−Q∗n(T<Tc)]w∗

− 1
(2.127)
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and

W ∗0 (T <Tc) ≈
n+n−√

1 + 1
[1−Q∗n(T<Tc)]w∗

− 1
. (2.128)

The above expressions show that neither w∗−(T < Tc) nor w∗0(T < Tc) diverge, in-
dicating that BEC occurs only in the ground state and that p∗−(T < Tc) < 1 and
p∗0(T < Tc) < 1, i.e. there can be missing links in the periphery and between core
and periphery. Moreover, we see that W ∗0 (T <Tc) is subleading with respect to both
W ∗+(T <Tc) and W ∗−(T <Tc): although individual core-periphery links have an ex-
pected weight w∗0(T <Tc) larger than the expected weight w∗−(T <Tc) of individual
periphery-periphery links, the number n+n− of core-periphery links is of smaller or-
der with respect to the number n−(n− − 1)/2 of periphery-periphery links, and as a
result the total weight of all core-periphery links is of smaller order as well.

To obtain s∗±(T <Tc) to leading order, we use Eqs. (2.46) and (2.47):

s∗+(T <Tc) = (n+ − 1)w∗+(T <Tc) + n−w
∗
0(T <Tc)

≈ (n+ − 1)ψ∗+(T <Tc)n2, (2.129)

s∗−(T <Tc) = (n− − 1)w∗−(T <Tc) + n+w
∗
0(T <Tc)

≈ nw∗[1−Q∗n(T <Tc)]. (2.130)

Now, combining the above expressions, we see that the order parameter defined in
Eq. (2.70) can be written as

Q∗(T <Tc) = lim
n→∞

W ∗+(T <Tc)

W ∗+(T <Tc) +W ∗−(T <Tc)

= lim
n→∞

1

1 + n−(n−−1)w∗−(T<Tc)
n+(n+−1)w∗+(T<Tc)

= lim
n→∞

1

1 + n−s∗−(T<Tc)

n+s∗+(T<Tc)

=
1

1 + w∗−(T<Tc)

n+(n+−1)ψ∗+(T<Tc)

=
n+(n+ − 1)ψ∗+(T <Tc)

w∗
> 0. (2.131)

Besides quantifying the order parameter, the above calculation shows that, since the
value of Q∗(T < Tc) only depends on the values of s∗+(T < Tc) and s∗−(T < Tc)
(which by construction are the same in the canonical and microcanonical ensembles),
whenever one ensemble is in the BEC phase, the other ensemble is the BEC phase as
well, for all temperatures T < Tc. As for the non-condensed, this allows us to refer
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to the conjugate canonical and microcanonical ensembles being ‘in the same phase’
consistently. Inverting Eq. (2.131), we can also express the parameter ψ∗+(T <Tc) in
terms of the order parameter as follows:

ψ∗+(T <Tc) =
w∗Q∗(T <Tc)

n+(n+ − 1) . (2.132)

The ‘inverse’ problem is solved by inverting Eqs. (2.129) and (2.130) and using
them into Eq. (2.51) to get

β∗+(T <Tc) ≈ 1
2 ln

(
1 + 1

n2ψ∗+(T <Tc)

)
≈ 1

2n2ψ∗+(T <Tc)

≈ n+ − 1
2s∗+(T <Tc)

≈ n+(n+ − 1)
2n2w∗Q∗n(T <Tc)

, (2.133)

β∗−(T <Tc) =
1
2 ln

(
1 + 1

w∗−(T <Tc)

)
≈ 1

2 ln
(

1 + n

s∗−(T <Tc)

)
≈ 1

2 ln
(

1 + 1
w∗ [1−Q∗n(T <Tc)]

)
. (2.134)

The above equations solve the inverse problem by expressing β∗±(T <Tc) as a function
of the constraints s∗±(T <Tc), which can in turn be expressed either in terms of the
finite parameters ψ∗+(T < Tc) and w∗−(T < Tc) or in terms of Q∗n(T < Tc) and the
temperature-independent parameter w∗.

Again, the ‘direct’ problem requires finding the chemical potential µ∗(T ) as a
function of ε∗, w∗ and T . From Eq. (2.66) we get

µ∗(T <Tc) = −2kTβ∗+(T <Tc)

≈ − kT

n2ψ∗+(T <Tc)

≈ −kT n+(n+ − 1)
n2w∗Q∗n(T <Tc)

. (2.135)

We now consider the variance of the constraints. Inserting Eqs. (2.120), (2.125)
and (2.127) into Eqs. (2.74), we immediately see that

Σ∗+(T <Tc) ≈ (n+ − 1)[ψ∗+(T <Tc)]
2n4, (2.136)

Σ∗−(T <Tc) ≈ w∗−(T <Tc)[1 +w∗−(T <Tc)]n. (2.137)
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Finite (subcritical) temperature: 0<T <Tc
In this regime we have

0 < Q∗(0<T <Tc) < 1, (2.138)

which, as clear from Eqs. (2.125) and (2.127), implies

w∗−(0<T <Tc) ≈ [1−Q∗(0< T <Tc)]w
∗, (2.139)

w∗0(0<T <Tc) ≈ 1√
1 + 1

[1−Q∗(0<T<Tc)]w∗ − 1
, (2.140)

where both quantities are O(1). Using these results, it is possible to show (see Ap-
pendix 2.A.3) that the leading term of the determinant of the covariance matrix
between the constraints is

det[Σ∗(0<T <Tc)] = O(nn+3n+), (2.141)

implying
ln det[Σ∗(0<T <Tc)] = O(n lnn), (2.142)

which is the same scaling found in Eq. (2.99) for the non-condensed phase. The
criterion for measure equivalence in Eq. (2.34) is again violated, showing that ensemble
equivalence does not hold in the condensed case as well. The leading term of the
relative entropy can still be calculated exactly from Eq. (2.35) and is the same as the
one found in Eq. (2.100) for the non-condensed phase:

D∗(0<T <Tc) ≈
1
2 ln det Σ∗(0<T <Tc) ≈

1
2n lnn. (2.143)

Similarly, the canonical entropy is still of order O(n2), as can be seen by inserting
Eqs. (2.129), (2.130), (2.133) and (2.134) into Eq. (2.75). We therefore retrieve

S∗can(0<T <Tc) = O(n2), (2.144)
S∗mic(0<T <Tc) = O(n2). (2.145)

Coming to the relative fluctuations, from Eqs. (2.77), (2.79), (2.136) and (2.137)
we obtain

ρ∗+(0<T <Tc) =
1√

n+ − 1 , (2.146)

ρ∗−(0<T <Tc) = 0. (2.147)

The above result can be interpreted as follows. The term
∑
i 6=j(〈wij〉~β∗)

2/(
∑
i 6=j〈wij〉~β∗)

2

in Eq. (2.37) is an inverse participation ratio, taking values in the range [(n− 1)−1, 1]
and quantifying the inverse of the effective number of link weights contributing to the
strength of node i [49]. Here, for a node in the core, there is a finite number n+ − 1
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of dominant link weights, each equal to w∗+ = O(n2), while the remaining n− weights
are of smaller order. Taking the thermodynamic limit, these n+− 1 dominant weights
lead to the value for ρ∗+ in Eq. (2.146). By contrast, for a node in the periphery, all
the expected link weights are of the same order, so the inverse participation ratio, and
consequently the value of ρ∗− in Eq. (2.147), vanishes. It should be noted that, even
if the expected strength of the core nodes is much bigger than that of the periphery
nodes, the relative fluctuations of the core nodes do not vanish, while those of the
peripheral nodes do.

The fact that BEC occurs necessarily among the core nodes confirms that the
units of the system are the nodes, and not the node pairs: the ‘ground state pairs’ are
necessarily all and only the pairs of ‘ground state nodes’. Indeed, one cannot decide
arbitrarily which node pairs form the degenerate ground state where condensation
occurs. This would have been possible only if node pairs were the fundamental units,
by assigning the same degenerate ground state energy value to any set of node pairs
(including pairs not necessarily involving the same set of nodes). For instance, it would
have been possible to include the pairs (i, j) and (i, k), without necessarily including
the pair (j, k), in the degenerate ground state (which is instead unavoidable in our
system).

Zero temperature: T→0

We finally consider the zero-temperature limit as the extreme case of the condensed
phase. Importantly, we have to be careful how we approach the two limits T→0 and
n→∞. Indeed, we are going to show that taking the limit T→0 while n is kept fixed
leads to results that cannot be subsequently carried over to the thermodynamic limit
by taking the limit n → ∞. Since we are interested precisely in the thermodynamic
limit, we have to take a different route. To show the difference, we consider the
zero-temperature limit first in the case of finite n and then in the case of growing n.

If n is finite, the zero-temperature limit simply represents the situation where the
only populated state is the degenerate ground state corresponding to the links in the
core, i.e.

Q∗n(T→0) = 1 (2.148)
by construction. All other links are not present. As usual, if the ground state is not
degenerate, then the microcanonical entropy is zero, while if the ground state is de-
generate, then the microcanonical entropy approaches a value called residual entropy
which, for a system of fixed size, is a constant that depends only on the degener-
acy (these statements usually go under the names of Third Law of Thermodynamics
or, somehow improperly, Nernst Theorem) [60]. In our setting the ground state is
non-degenerate only if n+ = 2, in which case the link between the two core nodes
is the one with minimum energy. In the general case n+ > 2, the ground state is
degenerate and both the microcanonical and canonical entropies are strictly positive.
In any case, for finite n the zero-temperature limit is characterized by the fact that,
in both the canonical and microcanonical ensembles, all nodes in the periphery are
deterministically isolated, i.e. necessarily isolated in all realizations of the network.
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The periphery becomes completely disconnected, both internally and from the core.
Note that this is one of the degenerate situations (mentioned in Sec. 2.1.3) where,
even if the constraints are in principle all mutually independent, for certain degener-
ate parameter value(s) some of them become ‘hard’ in both ensembles, thereby not
contributing any difference between the two ensembles. Note that if we simply take
the ideal limit n→∞ starting from this zero-temperature state, we would be consid-
ering the degenerate situation where an infinite number of isolated ‘peripheral’ nodes
are added to the fully connected core. These nodes are unavoidably disconnected
in both ensembles, so their contribution to the system is purely formal. The only
variability (hence the only possible source of nonequivalence) comes from the core,
which keeps having a finite number n+ of nodes: as an extreme signature of BEC,
the condensate behaves as an effectively lower-dimensional object.

In order to access the thermodynamic limit, we therefore have to consider from
the beginning the case where n can grow indefinitely. We are going to show that
the main difference arises from the fact that the temperature can only correspond to
graphical strength sequences, which on the other hand depend on n. Therefore one
should expect a certain n-dependent temperature Tn. At that point, a temperature
value Tn > 0 that is small but finite when n is finite (allowing for certain populated
excited states besides the ground state) may actually approach zero as n diverges,
i.e. limn→∞ Tn = 0. The corresponding excited states will effectively become part
of the accessible configurations in the zero-temperature limit and contribute an extra
residual entropy.

To study this scenario, we start from the consideration that if the two limits T→0
and n → ∞ were taken simultaneously for quantities that depend on both Q∗n and
n, e.g. terms such as n(1−Q∗n), we would encounter indeterminate expressions. We
therefore need to understand how, as T goes to zero, Q∗n goes to one as a function
of n, for n large. We recall that our starting point is always the value ~s∗(T ) of
the constraints. The temperature T is a parameter that allows us to vary ~s∗(T ),
while keeping it graphic, i.e. realizable in at least one configuration of the network.
For large n, we therefore have to identify the possible states of the network, hence
the values of ~s∗(T ), closest to zero temperature, i.e. when T ' 0 (we will use the
symbol ‘'’ to denote this near-zero-temperature behaviour of any quantity, thereby
keeping the notation distinct from the symbol ‘≈’ that will still denote the leading
order of any quantity for large n). This is easily done by realizing that, if we start
from some ~s∗(T > 0) and decrease the temperature towards zero, the lowest excited
state accessible to the network (before all links condense in the core) is one where
only the smallest possible number ∆W ∗ of the W ∗ particles of weight remain out
of the core, while keeping the strength sequence ~s∗(T ' 0) in the form given by
Eq. (2.42). This state is necessarily such that s∗−(T '0) = 1 (which is the minimum
non-zero value of the strength, recalling that the strength is a non-negative integer
by construction) and can be realized in multiple ways: either by connecting the
n− peripheral nodes in pairs, thus creating n−/2 periphery-periphery links of unit
weight and energy ε∗ (in which case ∆W ∗ = n−/2), or by connecting each peripheral
node to a core node, thus creating n− core-periphery links of unit weight and energy
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ε∗/2 (in which case ∆W ∗ = n−), or finally by combining both types of situations.
Recalling the discussion in Sec. 2.4.2, in all cases the ∆W ∗ links outside of the core
have collectively the same energy ε∗n−/2 while the links in the core have zero energy;
indeed, all such configurations are equiprobable. If we also consider the next excited
states with s∗−(T '0) = 2, 3, . . . , in general we will have ∆W ∗(T '0) = n−`/2 where
` is a small (in a sense that will be clear in a moment) integer.

The above considerations imply that the possible values of Q∗n close to zero tem-
perature are of the form

Q∗n(T '0) =
W ∗ − ∆W ∗(T '0)

W ∗

= 1− n−`/2
W ∗

≈ 1− `

nw∗
. (2.149)

Basically, the above expression makes it explicit that, since the strength is a discrete
quantity, technically the temperature can only take discrete values in order to keep
the strength sequence graphic, so the role of T is taken up by ` (which is an integer)
and a low temperature corresponds to a ‘small’, i.e. finite or at most o(n), value of
`. Indeed, in the thermodynamic limit we recover

Q∗(T '0) = lim
n→∞

Q∗n(T '0) = 1, (2.150)

confirming that ` = o(n) leads to the correct zero-temperature limit. At the same
time, Eq. (2.149) shows that, to recover any finite-temperature value Q∗(T >0) < 1,
we would need ` to grow linearly in n in the thermodynamic limit (note that ` cannot
grow faster than n, because ∆W ∗ cannot grow faster than n2, which is the order of
W ∗). The ` = o(n) regime considered here is therefore genuinely different from the
positive-temperature cases discussed so far.

Having characterized the zero-temperature limit in this way, we can calculate

lim
n→∞

n[1−Q∗n(T '0)] = `

w∗
, (2.151)

from which we can obtain various asymptotic expressions. Indeed, from Eqs. (2.125)
and (2.126) we obtain

w∗−(T '0) ≈ [1−Q∗n(T '0)]w∗ ≈ `

n
(2.152)

and
W ∗−(T '0) ≈ `n

2 . (2.153)

Similarly, expanding Eqs. (2.127) and (2.128) for Q∗n close to 1, we get

w∗0(T '0) ≈
√
[1−Q∗n(T '0)]w∗ ≈

√
`

n
(2.154)
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and

W ∗0 (T '0) ≈ n+
√
`n. (2.155)

Since both W ∗−(T ' 0) and W ∗0 (T ' 0) are subleading with respect to W ∗+(T ' 0),
we have W ∗+(T ' 0) ≈ W ∗ which can be rewritten as w∗+(T ' 0)n+(n+ − 1)/2 ≈
w∗n(n− 1)/2. This implies

w∗+(T '0) ≈ w∗n2

n+(n+ − 1) (2.156)

and, from Eq. (2.121),

ψ∗+(T '0) = w∗

n+(n+ − 1) , (2.157)

consistently with Eq. (2.132).
We now note that, inserting Eqs. (2.152) and (2.156) into Eq. (2.68), we obtain

the anticipated dependence of Tn (for Tn ' 0) on n:

e−ε
∗/kTn =

w∗−(Tn'0)[1 +w∗+(Tn'0)]
w∗+(Tn'0)[1 +w∗−(Tn'0)] ≈

`

n
. (2.158)

Inverting, we find how the temperature approaches zero as n grows:

Tn ≈
ε∗

k ln(n/`)
≈ ε∗

k lnn . (2.159)

The above result, which is independent of `, connects the thermodynamic limit
n → ∞ with the zero-temperature limit T → 0 in our setting and confirms that
it would be inappropriate to first identify the ground state are the core links by
taking the limit T → 0 and subsequently let n grow. On the contrary, the zero-
temperature state turns out to be the entire set of configurations obtained displacing
a certain number of units of weight out of the core and such that ` = o(n). Inserting
Eqs. (2.152), (2.154) and (2.156) into Eqs. (2.53) and (2.54) we can characterize these
configurations through the connection probabilities

p∗+(T '0) ≈ 1− n+(n+ − 1)
w∗n2 , (2.160)

p∗−(T '0) ≈ `

n
, (2.161)

p∗0(T '0) ≈
√
`

n
, (2.162)

which in the thermodynamic limit behave as expected for the ground state, i.e.
p∗+(T→0) = 1, p∗−(T→0) = 0 and p∗0(T→0) = 0.
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Using Eqs. (2.152) and (2.154), we can calculate the strengths from Eqs. (2.129)
and (2.130) as

s∗+(T '0) ≈ (n+ − 1)ψ∗+(T '0)n2 ≈ w∗

n+
n2 (2.163)

s∗−(T '0) ≈ nw∗−(T '0) + n+w
∗
0(T '0) ≈ `. (2.164)

The ‘inverse’ problem is solved by Eqs. (2.133) and (2.134), which now become

β∗+(T '0) ≈ n+(n+ − 1)
2n2w∗

, (2.165)

β∗−(T '0) ≈ 1
2 ln n

`
≈ 1

2 lnn. (2.166)

By contrast, the solution to the ‘direct’ problem is given through the chemical poten-
tial, obtained inserting Eqs. (2.159) and (2.165) into Eq. (2.135):

µ∗(T '0) = −2kTβ∗+(T '0)

≈ −ε
∗n+(n+ − 1)
w∗n2 lnn . (2.167)

The variances of the constraints can be calculated inserting Eqs. (2.152) and (2.157)
into Eqs. (2.136) and (2.137). This yields

Σ∗+(T '0) ≈ (w∗)2

n2
+(n+ − 1)

n4, (2.168)

Σ∗−(T '0) ≈ `. (2.169)

Using the above relationships, it is possible to show (see Appendix 2.A.4) that the
leading order of the determinant of the covariance matrix is

det[Σ∗(T '0)] = O(n4n+`n−n+). (2.170)

This leads to
ln det[Σ∗(T '0)] = O(n ln `), (2.171)

which is of smaller order compared to the scalingO(n lnn) found in Eqs. (2.99), (2.114)
and (2.142) for all positive temperatures, but still signalling the breakdown of ensem-
ble equivalence. Equation (2.171) implies that the requirements ensuring the validity
of Eq. (2.35) are not met, therefore in this case the leading term of the relative entropy
cannot be calculated exactly. However, the leading order is still given by Eq. (2.33)

D∗(T '0) = O
(

ln det Σ∗(T '0)
)
= O(n ln `). (2.172)

The canonical entropy S∗can(T '0) can be calculated by using Eqs. (2.165) and (2.166)
to rewrite the sum of the five terms appearing into Eq. (2.75) as the following sum:

S∗can(T '0) =
n+(n+ − 1)

2 +
`

2n lnn+ n+(n+ − 1) lnn

+
`

2n+ n+
√
n` = O(`n lnn), (2.173)
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which, unless ` = O(n/ lnn) or bigger, is different from the scaling O(n2) obtained for
finite temperatures in Eqs. (2.101) and (2.144). This slower increase of the canonical
entropy with n confirms that in the zero-temperature limit the system behaves as
a Bose-Einstein condensate, a phenomenon that determines a strong reduction in
the dimensionality of the space of allowed configurations. Note that since the relative
entropy is of order given by Eq. (2.171), which is smaller than the order of S∗can(T '0),
the leading term of the microcanonical entropy must be

S∗mic(T '0) ≈ `

2n lnn = O(`n lnn). (2.174)

Combining Eqs. (2.163)-(2.169), we finally obtain the relative canonical fluctua-
tions

ρ∗+(T '0) =

√
n+

n+ − 1 , (2.175)

ρ∗−(T '0) =
1√
`
, (2.176)

which differ from the results in Eqs. (2.146) and (2.147) obtained in the (subcritical)
finite-temperature case. In particular, now both ρ∗−(T '0) and ρ∗−(T '0) (if ` is finite)
are non-zero. Note that, while Eq. (2.147) can be formally retrieved from Eq. (2.176)
by letting ` grow linearly in n, Eq. (2.146) cannot be retrieved from Eq. (2.175),
because the assumption ` = o(n) has already been exploited in the derivation.

2.4.5 Critical temperature: T =Tc

Having characterized the model in all regimes, we can now discuss more easily what
happens right at the critical temperature T =Tc. Clearly, a very interesting question is
whether the phase transition is of first or second order. A first-order phase transition
is obtained when the order parameter Q∗(T ) jumps discontinuously from zero to a
strictly positive value as T is lowered through Tc. In such a case, the left and right
limits of Q∗(T ) at T =Tc are different:

Q∗(T→T−c ) > Q∗(T→T+
c ) = 0. (2.177)

By contrast, the phase transition is of second order if the order parameter increases
continuously from zero to positive values as T is lowered through Tc:

Q∗(T→T−c ) = Q∗(T→T+
c ) = 0. (2.178)

In principle, in our setting we can engineer the order of the phase transition as we
like: as clear from Eq. (2.131), the value of the order parameter for values slight below
the critical temperature is governed by the value of ψ∗+(T . Tc) defined in Eq. (2.121).
So, if we choose ψ∗+(T→T−c ) > 0 the transition will be first-order, while if we choose
ψ∗+(T→T−c ) = 0 the transition will be second-order. While both choices are possible,
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the case ψ∗+(T → T−c ) > 0 is somewhat unnatural, since it would ‘forbid’ all those
strength sequences ~s∗(T <Tc) that, while being both graphic and perfectly consistent
with the definition of ‘condensed’ given in Sec. 2.4.4, are such that asymptotically
w∗+(T < Tc) < n2ψ∗+(T → T−c ) or equivalently, by virtue of Eq. (2.124), such that
w∗−(T <Tc) < w∗ − n+(n+ − 1)ψ∗+(T→T−c ). Note that the latter inequality implies
that w∗−(T ) would experience a finite jump from w∗ − n+(n+ − 1)ψ∗+(T→T−c ) < w∗

to w∗ as T is raised from a value just below Tc to a value just above Tc: as discussed
in Sec. 2.4.3, w∗ is (to leading order) the only allowed value for w∗−(T ) above the
critical temperature.

Therefore we find more appropriate to choose ψ∗+(T ) such that ψ∗+(T→T−c ) = 0.
In this way, all values of w∗−(T <Tc) in the range [0,w∗] are allowed and there is no
discontinuity for w∗−(T ) at Tc: Eq. (2.124) implies that its left limit is w∗−(T→T−c ) ≈
w∗, which coincides with its right limit w∗−(T → T+

c ) ≈ w∗ implied by Eq. (2.86).
With this choice, we can locate the critical temperature Tc by equating the right and
left limits of Eq. (2.68): since lim

T→T−c
e−ε
∗/kT = limT→T+

c
e−ε
∗/kT = e−ε

∗/kTc , the
right and left limits of

w∗−(T )[1 +w∗+(T )]

w∗+(T )[1 +w∗−(T )]
(2.179)

must coincide. This implies

1 +w∗+(T→T+
c )

w∗+(T→T+
c )

=
1 +w∗+(T→T−c )

w∗+(T→T−c )
= 1 (2.180)

since in the thermodynamic limit w∗+(T →T−c ) = ∞. The above expression in turn
implies w∗+(T→T+

c ) =∞. Note that this is consistent with the fact that, as discussed
in Sec. 2.4.3, w∗+(T >Tc) is finite but can be arbitrarily large, while not altering (to
leading order) the average weight w∗. So, w∗+(T > Tc) can grow indefinitely as T
decreases towards Tc, and take an infinite limit as T → T−c , consistently with the
fact that, for even lower temperatures, w∗+(T ) diverges with speed n2 as dictated by
Eq. (2.120). Inserting Eq. (2.180) into Eq. (2.68), we get

e−ε
∗/kTc =

w∗

1 +w∗
(2.181)

as n→∞. We therefore obtain

Tc =
ε∗

k ln
(
1 + 1

w∗
) , (2.182)

finally showing how the critical temperature depends on the expected link weight
w∗, on the energy difference ε∗ between periphery-periphery and core-core links, and
on the constant k converting the units of the ‘cost of links’ (energy) to those of the
temperature. These results explain much of the information anticipated previously in
Fig. 2.3 and summarized therein.
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Adopting the view that the order parameter is continuous through the critical
value Tc, we notice that the ‘direct’ solutions in Eqs. (2.93) and (2.135), as well
as the behaviour at the critical point T = Tc, can be combined into the general
‘phenomenological’ expression

µ∗(T ) ≈ ε∗ − kT ln
(

1 + 1
w∗ [1−Q∗n(T )]

)
+ o(T ) (2.183)

which is valid for all values of the temperature. Indeed, when T ≥ Tc the order
parameter is zero and the above expression reduces to Eq. (2.93), while when T <Tc
the order parameter takes the positive value in Eq. (2.131) and the above expression
reduces to Eq. (2.135). The extreme limits T →∞ and T → 0 can be retrieved from
Eq. (2.183) as well.

2.5 Conclusions
We have investigated the breakdown of equivalence between canonical and micro-
canonical ensembles of weighted networks with local constraints on the strength of
each node (weighted configuration model [44]). While ensemble nonequivalence in
the corresponding binary configuration model (i.e. binary networks with given node
degrees) had already been studied in detail [5, 26, 7, 45, 61], a similar analysis for
weighted networks had not been carried out so far. As a unique and novel ingredient in
the case considered here, weighted networks can undergo BEC, a phase transition that
is impossible to observe in the unweighted case. BEC emerges when a finite fraction
of the total weight of all links condenses in a finite number of links. We constructed
the simplest model exhibiting such behaviour: a network with a finite core, an infinite
periphery, and a temperature-dependent strength sequence. This setting allows us to
combine for the first time, in a single model, two completely different mechanisms that
can potentially destroy the equivalence of ensembles: a phase transition (a condition
exhibited in the earliest observations of ensemble nonequivalence [22, 38, 39, 23–
25, 40–42, 21, 43, 13]) and an extensive number of local constraints (an ingredient
found in more recent investigations on network ensembles [5, 26, 45, 37]).

We have considered two criteria for ensemble equivalence: the traditional and intu-
itive one based on the vanishing of the relative canonical fluctuations of the constraints
in the thermodynamic limit [1] and the more recent and rigorous one based on the
vanishing of the relative entropy density between microcanonical and canonical prob-
ability distributions (measure equivalence) [8]. While in the standard situation (i.e.
under only one or a finite number of global constraints) the vanishing of the relative
fluctuations implies measure equivalence, the relationship between the two criteria
had not been investigated in presence of an extensive number of local constraints
yet. Technically, while the relative fluctuations can be calculated exactly (as they
are purely canonical quantities), the relative entropy requires in principle unfeasible
microcanonical calculations but it can still be calculated asymptotically via a recently
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proposed saddle-point technique showing that its leading term is the logarithm of the
determinant of the matrix of canonical covariances between the constraints.

We found that, for all positive temperatures, the relative entropy is O(n lnn)
while the canonical and microcanonical entropies are O(n2). These behaviours mim-
ick the corresponding ones found for the binary configuration model in the dense
regime [5, 26, 45]. This result shows that, for all T >0 (including T→∞), the relative
entropy is subleading with respect to the canonical and microcanonical entropies, but
is still superextensive in the number of nodes n, which in all network models represents
the number of units (physical size) of the system. In the zero-temperature limit, we
found slower scalings for the canonical, microcanonical and relative entropies. This is
due to the fact that, in both canonical and microcanonical ensembles, the peripheral
nodes are asymptotically disconnected from all other nodes in each possible realization
of the network. In this zero-temperature limit, the condensate effectively behaves as
a lower-dimensional system, as commonly observed in the physics of BEC. Its entropy
is the residual entropy resulting from the degeneracy of the ground state. The scal-
ing of the relative entropy still indicates ensemble nonequivalence. We note that in
the binary configuration model (which obeys Fermi-Dirac rather than Bose-Einstein
statistics) the zero-temperature phase is one where the canonical and microcanonical
ensembles are instead identical, because in both ensembles the pairs of nodes below a
certain ‘Fermi energy’ (whose value coincides with the chemical potential) are surely
connected, while those above it are surely disconnected [20]. Therefore we can con-
clude that, irrespective of BEC, at all temperatures ensemble equivalence is broken
by the presence of an extensive number of local constraints, as in the binary config-
uration model (for which, however, BEC cannot occur). So the condensation phase
transition (occuring at some critical temperature Tc>0) appears to have no effect on
ensemble equivalence.

On the other hand, the calculation of the canonical relative fluctuations of the
constraints shows that they are sensitive to the phase transition, while they cannot
be used to characterize ensemble (non)equivalence as traditionally expected. Indeed,
we found that in the non-condensed phase (T > Tc) the relative fluctuations of the
strength of all the n nodes vanish in the thermodynamic limit. By contrast, in the
condensed phase (T <Tc) the relative fluctuations of the strength of the n+ nodes in
the core do not vanish, while those for the n− nodes in the periphery still do (except
in the zero-temperature limit, for which not even the relative fluctuations for the
peripheral nodes vanish). Therefore, as the temperature is lowered below the critical
temperature, there is a sudden change in the relative fluctuations but no change in
the scaling of the relative entropy. Conversely, as the temperature is further lowered
to zero, there is a sudden change in the scaling of the relative entropy, while the
relative fluctuations for the core nodes remain non-zero, albeit with a different value.
These results show that, at least in the dense case studied here, the relative entropy
and the relative fluctuations capture different aspects of the phenomenology of the
proposed model, the former being sensitive to the presence of local constraints and
the latter being sensitive to the phase transition. In any case, in presence of an
extensive number of local constraints the vanishing of (even all) the canonical relative
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fluctuations does not guarantee measure equivalence and is therefore no longer a valid
criterion for ensemble equivalence as intuitively expected.

We stress that, while the network model presented here is deliberately simple from
the structural point of view (a core-periphery network with local, but homogeneous,
constraints), it could certainly serve as a reference for more complicated models (e.g.
a core-periphery network with local and heterogeneous constraints). Indeed, ensem-
ble nonequivalence will still be manifest in such a generalized model for all positive
temperatures, because research on binary networks with given degrees has shown
that nonequivalence is due to the locality of the constraints, and not to their specific
value [5, 26, 45, 37]. Additionally, since a more heterogeneous choice of the con-
straints can only increase the number of states with different energy in the network,
we expect that BEC will still emerge below some critical temperature. In general, we
expect a qualitatively similar behaviour to the one found here, with only quantitative
differences.

The concept of ensemble equivalence is central for the foundations of statistical
physics, irrespective of the particular system being considered. The findings docu-
mented here shed new light on the breakdown of EE, on the (possibly misleading)
criteria used to detect it, and on the (so far undocumented) interplay between dif-
ferent mechanisms producing it. We hope they can inspire future research on these
subjects.

59



Appendix 2.A Determinant of the covariance ma-
trix

Σ∗(T ) is the n× n canonical covariance matrix between the strengths of all nodes,
with entries

Σ∗ij(T ) =

{
Var~β∗(T )(si) i = j

Var~β∗(T )(wij) i 6= j

=

{
Σ∗ii(T ) i = j
〈wij〉~β∗(T )

[
1 + 〈wij〉~β∗(T )

]
i 6= j . (2.184)

Combining Eqs. (2.23) and (2.24) with the results discussed in Sec. 2.4.2 for our
core-periphery model, it is easy to see that, for all values of temperature, Σ∗(T ) is a
combination of four blocks

Σ∗(T ) =
[
A(T ) B(T )
C(T ) D(T )

]
, (2.185)

where A(T ) is the n+ × n+ submatrix of covariances between the strengths of nodes
in the core, with entries

Aij(T ) =

{
Σ∗+(T ) i = j
w∗+(T )[1 +w∗+(T )] i 6= j

, (2.186)

B(T ) is the n+ × n− submatrix of covariances between the strengths of nodes across
core and periphery, with entries

Bij(T ) = w∗0(T )[1 +w∗0(T )] ∀i, j, (2.187)

C(T ) is a n− × n+ matrix equal to the transpose of B(T ), and D(T ) is the n− × n−
submatrix of covariances between the strengths of nodes in the periphery, with entries

Dij(T ) =

{
Σ∗−(T ) i = j
w∗−(T )[1 +w∗−(T )] i 6= j

. (2.188)

Depending on the range of temperature values of interest, different techniques become
useful in order to calculate the determinant of Σ∗(T ). We therefore consider each
regime separately below.

2.A.1 Non-condensed phase
In the regime of finite supercritical temperature (T >Tc) discussed in Sec. 2.4.3, it is
possible to show that the asymptotic behaviour of det Σ∗(T >Tc) can be decomposed
as the product of the diagonal elements of Σ∗(T >Tc), plus a correction. Our rationale
for this decomposition comes from the fact that, as noted in Sec. 2.4.3, w∗+(T >Tc),
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w∗−(T > Tc) and w∗0(T > Tc) are all O(1), i.e. the expected link weights are all of
the same, finite order. Consequently, the block structure depicted in Eq. (2.185)
does not identify any particular difference in the order of magnitude of the entries
of Σ∗(T > Tc). Rather, an important property of Σ∗(T > Tc) in this regime is
that its diagonal entries are, on average, n times bigger than its off-diagonal ones.
Indeed, the off-diagonal entries are O(1), while the diagonal ones are O(n). Then the
asymptotic behaviour of det Σ∗(T >Tc) must be essentially dictated by the product
of the diagonal entries of Σ∗(T >Tc).

To make this intuition more rigorous, we recall that if a k × k matrix L can be
decomposed as

L = M+ εN, (2.189)

where M is a diagonal matrix with entries of finite order and εN is a perturbation,
then Jacobi’s formula applies as follows:

det L = det(M+ εN) (2.190)
= det M+ ε(det M)tr(M−1N) +O(ε2).

Moreover, if the diagonal elements of N are equal to 0, then the product M−1N is a
k× k zero matrix and therefore

tr(M−1N) = 0. (2.191)

Equation (2.191) then becomes

det L = det M+O(ε2) (2.192)

=
k∏
i=1

Lii +O(ε2).

Turning to the matrix Σ∗(T >Tc), we note that the above hypotheses apply by
setting

k ≡ n, ε ≡ 1
n

, L ≡ Σ∗(T >Tc)
n

(2.193)

and defining the entries of M and N as

Mij = δijΣ∗ij(T >Tc)/n, (2.194)
Nij = (1− δij)Σ∗ij(T >Tc), (2.195)

where δij is the Kronecker delta symbol. Equation (2.192) then becomes

det
(

Σ∗(T >Tc)
n

)
=

1
nn

n∏
i=1

Σ∗ii(T >Tc) +O(n−2)
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and, finally,

det Σ∗(T >Tc) = nn det
(

Σ∗(T >Tc)
n

)
(2.196)

=
n∏
i=1

Σ∗ii(T >Tc) +O(nn−2),

proving Eq. (2.96) used in the main text.

2.A.2 Infinite-temperature limit

In the infinite-temperature limit discussed in Sec. (2.4.3), the determinant can be cal-
culated exactly as follows. From Eqs. (2.111) and (2.112) we see that, if we introduce
a k× k matrix Zk defined as

Zk =


k− 1 1 · · · 1 1

1 k− 1 1 · · · 1
... . . . ...
1 · · · 1 k− 1 1
1 1 · · · 1 k− 1

 , (2.197)

then we can rewrite the covariance matrix as

Σ∗(T→∞) = w∗(1 +w∗)Zn. (2.198)

Clearly, the calculation of det Σ∗(T→∞) reduces to the calculation of det Zn:

det Σ∗(T→∞) = [w∗(1 +w∗)]n det Zn. (2.199)

To compute det Zk for arbitrary k, we note that

Zk = (k− 2)Ik + uTk uk = (k− 2)
(

Ik +
uTk uk
k− 2

)
, (2.200)

where Ik is the k× k identity matrix and

uk = (1, · · · , 1) (2.201)

is the k-dimensional row vector with all unit entries. Then, using Sylvester’s identity
det(Ik +XY) = det(Il +YX) (where X is a k× l matrix, Y is an l× k matrix, and
Ik and Il are k × k and l × l identity matrices respectively) with l = 1, X = uTk ,
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Y = uk and Il = 1, we get

det Zk = (k− 2)k det
(

Ik +
uTk√
k− 2

uk√
k− 2

)

= (k− 2)k det
(

1 + uk√
k− 2

uTk√
k− 2

)

= (k− 2)k
(

1 + k

k− 2

)
= 2(k− 1)(k− 2)k−1. (2.202)

Combining Eqs. (2.199) and (2.202), and setting k = n, we obtain exactly Eq. (2.113)
used in the main text.

2.A.3 Condensed phase
In the regime of subcritical temperature (T < Tc) discussed in Sec. 2.4.4, the block
structure indicated in Eq. (2.185) becomes particularly relevant, as it captures the
important differences in the order of magnitude of both diagonal and off-diagonal en-
tries of Σ∗(T <Tc) calculated using Eqs. (2.122), (2.125), (2.127), (2.136) and (2.137).
We first express each block conveniently and then proceed to the calculation of the
determinant. Inserting Eqs. (2.122) and (2.136) into Eq. (2.186), we obtain

A(T <Tc) ≈ [ψ∗+(T <Tc)]
2n4 Zn+ , (2.203)

where Zk is still the matrix defined in Eq. (2.197). Next, we note from Eq. (2.187)
that

B(T <Tc) = w∗0(T <Tc)[1 +w∗0(T <Tc)]uTn+un− , (2.204)
where uk is still given by Eq. (2.201). Similarly,

C(T <Tc) = w∗0(T <Tc)[1 +w∗0(T <Tc)]uTn−un+ . (2.205)

Finally, inserting Eq. (2.137) into Eq. (2.188), we obtain

D(T <Tc) ≈ w∗−(T <Tc)[1 +w∗−(T <Tc)]Zn− . (2.206)

Now, since A(T < Tc) is invertible, it is useful to exploit the block structure of
Σ∗(T <Tc) by expressing its determinant as

det Σ∗(T <Tc) = det A(T <Tc) det A(T <Tc), (2.207)

where

A(T <Tc) ≡ D(T <Tc) (2.208)
−C(T <Tc)A−1(T <Tc)B(T <Tc)
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is the so-called Shur complement of A(T <Tc). To calculate det A(T <Tc), we use
Eq. (2.203) and immediately obtain

det A(T <Tc) ≈ [ψ∗+(T <Tc)]
2n+n4n+ det Zn+

= O(n4n+) (2.209)

where, using Eq. (2.202),

det Zn+ = 2(n+ − 1)(n+ − 2)n+−1. (2.210)

To calculate det A(T <Tc), we first use Eq. (2.203) and obtain

A−1(T <Tc) ≈ [ψ∗+(T <Tc)]
−2n−4 Z−1

n+ , (2.211)

where, using Eq. (2.197), Z−1
k is easily calculated by direct inversion of Zk as

Z−1
k = ck


2k− 3 −1 · · · −1 −1
−1 2k− 3 −1 · · · −1
... . . . ...
−1 · · · −1 2k− 3 −1
−1 −1 · · · −1 2k− 3


=

Ik
k− 2 − cku

T
k uk

=
1

k− 2

[
Ik −

uTk uk
2(k− 1)

]
(2.212)

with
ck =

1
2(k− 1)(k− 2) . (2.213)

Inserting Eqs. (2.204),(2.205), (2.206) and (2.211) into Eq. (2.208), and noticing that

uTn−un+Z−1
n+uTn+un− = cn+n+(n+ − 2)uTn−un−

=
n+

2(n+ − 1)uTn−un− , (2.214)

we can obtain the Shur complement of A(T <Tc) as

A(T <Tc) ≈ w∗−(T <Tc)[1 +w∗−(T <Tc)]Zn− (2.215)

−n+[w
∗
0(T <Tc)]

2[1 +w∗0(T <Tc)]
2

2(n+ − 1)[ψ∗+(T <Tc)]
2n4

uTn−un−

from which we can calculate det A(T < Tc). We have to distinguish the cases 0 <
T <Tc and T ' 0, as they are characterized by different scalings of w∗−(T <Tc) and
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w∗0(T < Tc). In the rest of this section we consider the case of finite temperature,
while the zero-temperature limit is considered in the next section.

When 0<T <Tc, we recall from Eqs.(2.139) and (2.140) that both w∗−(0<T <Tc)
and w∗0(0 < T < Tc) are O(1). From Eq. (2.215) we therefore see that all the off-
diagonal entries of A(0< T < Tc) are O(1), while all the diagonal ones are O(n−).
This implies that we can use the decomposition in Eq. (2.189) where

k ≡ n−, ε ≡ 1
n−

, L ≡ A(0<T <Tc)
n−

. (2.216)

Equation (2.192) then implies

det A(0<T <Tc) =

n−∏
i=1

Aii(0<T <Tc) +O
(
n
n−−2
−

)
= O(nn−). (2.217)

Combining Eqs. (2.209) and (2.217) into Eq. (2.207), we finally obtain the full de-
terminant of Σ∗(0 < T < Tc). We are interested only in its scaling with n, which
is

det Σ∗(0<T <Tc) = O(n4n++n−) = O(nn+3n+), (2.218)
proving Eq. (2.141) used in the main text.

2.A.4 Zero-temperature limit
In the zero-temperature limit, all calculations of the previous section remain valid
until and including Eq. (2.215). The scaling of the entries of A(T ' 0) will however
be different. Indeed, we recall from Eqs.(2.152) and (2.154) that w∗−(T ' 0) ≈ `/n
and w∗0(T '0) ≈

√
`/n. Inserted into Eq. (2.215), these expressions imply that all the

diagonal entries of A(T '0) are asymptotically equal to `, while all the off-diagonal
ones are O(`/n). We can therefore use the decomposition in Eq. (2.189) where

k ≡ n−, ε ≡ 1
n

, L ≡ A(T '0). (2.219)

Equation (2.192) then implies

det A(T '0) =

n−∏
i=1

Aii(T '0) +O
(
n−2)

= `n− +O(n−2). (2.220)

Combined with Eq. (2.209) into Eq. (2.207), the above result leads to the full deter-
minant of Σ∗(T <Tc), whose scaling with n is

det Σ∗(T '0) = O(n4n+`n), (2.221)

proving Eq. (2.170) used in the main text.
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