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Chapter 1

Introduction

Statistical physics is built to explain the macroscopic properties in physical systems
from the probabilistic examination of underlying microscopic configurations [1]. As
the initial research of statistical physics is focused on thermodynamic systems, most
traditional examples in statistical physics are under global constraints, such as the
fixed total energy and the fixed number of particles. However, recent research on
complex systems shows that local constraints, which is implied by the heterogeneous
spatial and temporal dependencies, general existed in natural systems [2–4]. Unlike
the global constraint, which works on all units in the system with the same influence,
the local constraints work on the different groups of units in the system with different
influences. The local constraints are not only a new model, which can be used to
describe the non-physical systems with heterogeneous dependencies. It also brings
several new phenomenons for statistical physics. In particular, ensemble equivalence
is broken in networks with fixed degree sequences by the extensive local constraints
[5–7]. This breaking of ensemble equivalence exists in the whole parameter space of
networks and even without the appearance of phase transitions, which is the essential
condition of ensemble nonequivalence in traditional statistical physics. Ensemble
equivalence as a basic assumption in statistical physics has been widely explored both
practically and theoretically [8]. This breaking of ensemble equivalence in systems
with local constraints will affect many fundamental assumptions and calculations in
statistical physics. Therefore, further exploration of statistical physics needs a general
theory to describe the system with local constraints and the possible appearance of
ensemble nonequivalence.

Moreover, local constraints in complex systems also bring new problems to the
information theory. For instance, the activities of neurons in nervous systems with
heterogeneous spatial correlations give an information source with numerous inter-
acting units [9]. The temporal dependent fluctuation in financial systems breaks the
identical independent assumption of the information sources in the classical informa-
tion theory [3]. The behaviour of those new information sources is impossible to be
described by the random variables with finite outcomes as in classical information
theory. To describe them, we need statistical ensembles with local constraints. Par-
ticularly, the possible appearance of ensemble nonequivalence that is caused by the
extensive local constraints may even break the asymptotic equipartition property in
the information theory and affect the information-theoretical bounds. Hence, a non-
trivial generalization of the information theory for the system with local constraints
is needed to study the information transmission and storage in complex systems.

This thesis is an exploration of systems with local constraints. The first part
introduces two physical models with local constraints and studies the breaking of
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ensemble equivalence of it. In the second part, these physical models are used to
describe information sources and sequences with heterogeneous dependencies to find
new information-theoretical bounds and the influence of ensemble nonequivalence in
it.

The introduction has four sections. I will introduce the definition of statistical en-
sembles in section1.1. The basic conception of ensemble nonequivalence is introduced
in section1.2. The classical Shannon information theory is introduced in section1.3.
Section1.4 is the outline of this thesis.

1.1 Statistical ensembles
In the research on thermodynamic systems, to describe the behaviour of numerous
random interacted particles is a difficult task, e.g., a glass of water can easily contain
1023 molecules. Classical mechanics can be used to describe the collision between the
finite number of water molecules, but it is impossible to understand the process of
collision with 1023 units analytically. This insurmountable problem prompts physicists
to build new mechanics to describe the macroscopic behaviour of the system and still
based on the physical law already know from the microscopic view. This requirement
leads to the birth of statistical physics in the 19th century [1, 10].

Generally, the founding of statistical physics is credited to three physicists. Lud-
wig Boltzmann gives the fundamental definition of entropy by the collection of mi-
crostates [10]. James Clerk Maxwell applies the model of the probability distribution
into the description of those microstates [11]. Josiah Willard Gibbs defines statistical
ensembles and explains the laws of thermodynamic as the statistical properties of the
ensembles [1]. This pattern also can be found later in the establishment of informa-
tion theory. The initial study focuses on the analytical configurations, but the theory
is established on probabilistic explanation.

The framework of statistical physics can be explained as the application of statis-
tical methods and probability theory to large assemblies of microscopic entities and
then using the mathematical tools for dealing with large populations and approxi-
mations to connect the behaviour of the microscopic entities with the macroscopic
property. There are three basic postulates in statistical physics. The ergodic hypoth-
esis shows that each state with the same energy has the equiprobable probability to
appears in the system over long periods. The principle of indifference shows that we
can only assign equal probabilities to each state when there is insufficient information
to describe states in this system. The maximum information entropy presents that
the correct probability distribution of the states in the system with limited informa-
tion should maximum the Gibbs entropy (Information entropy) of it [1]. In the past
decades, the principle in statistical physics is not only applied in the physics system
but also generalized in chemistry, biology, economics, and even social science [12–
14], to build the relationship between the microscopic entries and the macroscopic
property of them.

The building of the statistical ensembles needs states in thermodynamic systems
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to remain ’static’. This static is that the macroscopic observable variables in the sys-
tem keep stable under the unpredictable internal particles’ motion. These observable
variables can be the total energy, the temperature, and the pressure [1]. The dif-
ference between macroscopic variables allows us to describe the systems by different
ensembles.

• Microcanonical ensemble is used to describe the system with a fixed total energy
and particle numbers. In this isolated system, the energy change between the
system and the outside environment is forbidden. States in this ensemble have
the same probability of appearing in the system. The value of the probability
is decided by the total number of microscopic configurations in this system.

• The Canonical ensemble is used to describe the system with fixed particle num-
bers and temperature. This system contacts a heat bath, which has a precise
temperature. There is an energy change between this system and the heat bath.
The probability of each state appears in this system is decided by their total
energy under the fixed temperature.

• The Grand canonical ensemble is used to describe the open system. Both the
total energy and the number of particles are not fixed. Systems described by
this ensemble will change energy and particles with the outside environment.
The probability of each state in this ensemble is decided by their total energy
and their total particles.

According to the energy isolation, the microcanonical ensemble and the canonical
ensemble are under two different constraints. The microcanonical is under ’hard’ con-
straints, as all states should have the same total energy. But the canonical ensemble
is under ’soft’ constraints, the total energy of each state in this ensemble is not the
same, but the average value should fix.

As the way to describe the interactions are decided by the property of constraints
of the statistical ensemble, the soft or hard constraints in the systems not only decide
which statistical ensemble is suitable for their descriptions but also affect the way to
describe the inner interactions [15, 16]

The traditional statistical ensemble is under global constraints like the total en-
ergy, the fixed temperature or the total number of particles in the system. But the
information sources and the process of signal generating of the complex systems are
all under heterogeneous interactions. It means the constraints in the information
source or the signal generation need to be localized to describe those heterogeneous
interactions. The localized constraint is not a new concept, it has been studied in
networks theory, where the nodes in the networks always have different degrees, and
this heterogeneous degree distribution will affect the dynamic and structure of the
networks [16–20].

However, systems that need to model in the new information theory is more gen-
eral than the binary network with fixed degree sequences. The interactions among
units in information sources may have different degrees. Thus, using the weighted
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network to model those heterogeneous dependencies is more reasonable than the bi-
nary networks. Furthermore, when the signal generated by the finite variables under
temporal dependences in long periods needs to record, the data structure we need is
not the adjacency matrix. This data structure is close to an m× n matrix, where m
represents the number of finite variables and n is the increasing length. Therefore, to
describe the systems mentioned above, new models with local constraints are needed.

1.2 Ensemble (non)equivalence
Normally, the three ensemble descriptions are unavoidable different when the sys-
tem has a finite size. There are fluctuations in the macroscopic properties of states
in the canonical and grand canonical ensemble. But when the system has numer-
ous particles (in the thermodynamic limit), all the three ensembles tend to give an
identical description. The fluctuation of macroscopic properties will vanish. This is
a basic assumption in the tradition statistical physics, which is named as ensemble
equivalence [1, 8, 21].

Specifically, in the microcanonical ensemble and the canonical ensemble, this
equivalence appears in the systems with the same total number of particles but under
’soft’ or ’hard’ constraints (according to the energy isolation). Since the canonical en-
semble is mathematically easy to calculate, the presence of the ensemble equivalence
means that the replacing of the microcanonical ensemble with the canonical ensemble
in the application of statistical physics is allowed [8]. The ensemble equivalence has
three forms,

• Thermodynamically equivalence: When the entropy of the microcanonical en-
semble and the free energy of the canonical ensemble is one-to-one related under
the Legendre transform, the two ensembles are believed under thermodynamical
equivalence.

• Macrostate equivalence: The macrostate equivalence is the equilibrium values
of the macrostate predicted by the microcanonical ensemble is the same as the
one of the canonical ensemble in the thermodynamic limit.

• Measure level equivalence: when the probability distribution of states in the
canonical ensemble Gibbs distribution)converges to the probability distribution
of the states in the microcanonical ensemble that is defined by the Boltzmann’s
equiprobability postulate, we believe the two ensembles are under measure level
equivalence.

The presence of ensemble equivalence in the thermodynamic limit shows that although
the specific action in the canonical ensemble varies from one microstate to another,
most of the microstates are still roughly equiprobable.

However, this ensemble equivalence does not always hold. Recent researches on
fluid turbulence [22, 23], star formation [24, 25] and networks [26] show that the en-
semble equivalence will break at the critical point on the boundary of phase transition.

4



This ensemble nonequivalence is caused by the nonadditivity in the system with long-
range interaction [13, 8]. More recently, in networks with fixed degree sequences, the
breaking of ensemble equivalence even has been found in the whole parameter space
under the complete absence of phase transitions [5, 7, 26]. It means the ensemble
equivalence is not only a critical phenomenon but also an intrinsic property of the
system with extensive local constraints [27, 28]. Therefore, there will always have a
non-neglected difference between different ensembles in the ensemble nonequivalent
systems.

The three forms of equivalence have three coincide ensemble nonequivalences, and
those three forms already proved equivalent in [8]. For instance, the thermodynamical
nonequivalence is the function of microcanonical entropy, not one-to-one relates to the
Legendre transform of the canonical ensemble. It can be mapped by the difference
between the prediction of macroscopic property for different ensembles. And it also
can be detected by the difference between the probability distribution of the states in
different ensembles [8].

The measure level ensemble equivalence is based on the difference between the
probability distributions of different ensembles [8]. States in the microcanonical en-
semble with the same total energy all belong to the conjugate canonical ensemble [15].
The measure-level ensemble equivalence between the two ensembles is that the proba-
bility distribution of the states in the canonical ensemble converges to the probability
distribution of the states in the microcanonical ensemble. Therefore, under measure
level ensemble nonequivalence, the difference between two probability distributions
will not vanish, and it can be quantified by the relative entropy between the micro-
canonical and canonical ensemble as

S[Pmic||Pcan] =
∑
x∈§

Pmic(x) ln Pmic(x)

Pcan(x)
, (1.1)

where § is the collection of all the possible microscopic configurations of the system
with n particles in it. Symbol Pmic(x) represents the probabilty of the state x in the
microcanonical ensemble. Symbol Pcan(x) represents the probability of the state x in
the canonical ensemble.

The indicator of the measure ensemble nonequivalence is the specific relative en-
tropy density [8, 5], which is defined as the limit of the relative entropy rescaled by
the number of particle in it

s∞ = lim
n→∞

1
n
S[Pmic||Pcan]. (1.2)

When the value of s∞ is equal to 0, we believe the system is under measure level
ensemble equivalence. When s∞ > 0, the system is believed to be under measure
level ensemble nonequivalence [8].

Ensemble nonequivalence appears in the boundary of phase transition in the sys-
tem with long-range interactions has been well studied theoretically and experimen-
tally [13, 8]. But we know little awareness about the ensemble nonequivalence in the
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system with local constraints. Compared to the one that only happens on the critical
point of parameter space, the ensemble nonequivalence in the system with local con-
straints has a more general form. In the binary networks with degree sequences, the
ensemble nonequivalence appears in the whole parameter space of it [5]. No matter
how the degree distribution of the network change, the probability distribution of the
networks’ configuration in the microcanonical always has a non-neglected difference
between the canonical ensemble. This difference will affect the generalization of sta-
tistical ensembles to complex systems with heterogeneous interaction, especially in
the information theory, as the information source and the information transmission
are all described by the probability theory. Thus, a more fundamental study about
the ensemble nonequivalence in the system with local constraints is needed.

Classical information theory has a close relationship with statistical physics. The
increasing length of the sequences in information theory is the same as the extension
of the system’s size in statistical physics. The identical probability distribution of
the information sources and the independent signal generating are all coincided with
the definition of the microscopic behaviour of the particles in statistical physics under
global constraints [29, 5]. Thus, the information-theoretical bounds as the macro-
scopic properties of the information storage and transmission are decided by the sta-
tistical properties of microscopic configurations. The ensemble nonequivalence that
may appear in the information source with heterogeneous interaction or the informa-
tion sequences with temporal dependence has a distinct influence on the information
storage and transmission. In other words, the generalization of the information theory
for the complex system should be based on the ensemble nonequivalent systems.

1.3 Information theory
The information theory is built to describe the information transmission and storage
in communication system [29]. The birth of information theory in the first half of
the twentieth century is believed to be stimulated by the dramatic development of
electronic communication systems. At that time, the worldwide electronic telegraph
network continuous works more than a half-century. The birth of the telephone and
television has already completely changed the daily life of humans. But there is still
do not have a quantifiable definition of the information [30]. The earliest attempt
to quantify information can be traced to 1924 when Nyquist introduced a theoretical
speed of information transmission depending on the change of voltage in the line [31].
In 1928, Hartley first used the word ’information’ to describe the stuff flows in the com-
munication and generalized the definition of Nyquist into the whole communication
systems as the number of possible states of the symbols transmits in this system [32].
Afterwards, in 1948, based on the probability theory, Shannon gives the first quantifi-
able definition of information (information entropy) and the information-theoretical
bounds of the information storage and transmission [33].

Shannon divided the communication system into three parts: the information
source, the channel and the receiver. These three parts can be described independently
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by the probability theory [33]. Information generated by the information sources x
can be quantified by the definition of information entropy H(x), which is equal the
expected value of each probability’s logarithm as H(x) = −

∑
x∈x p(x) log p(x) [33].

This information theory solved the two main problems in the research on artificial
communication systems at that time. One is the smallest space to store the infor-
mation generated by the information source, and the other is the maximum speed of
reliable information transmitted through a channel. Shannon found that the informa-
tion generated by the information source x is carried in the sequences {x1,x2, · · · ,xn}
to record the state of the sources in n times’ activities. Therefore, the space to store
the information generated by the information source is equivalent to the space to
store those sequences. Simultaneously, Shannon also found that to store the informa-
tion generated by the information sources only need to focus on the sequences in the
typical set, as the sum of the probability of sequences in the typical set is close to 1.
Therefore, the size of the typical set decides the size of the smallest space to store
the information carried by those sequences. This typicality is based on the asymp-
totic equipartition property (AEP). According to the generalization of AEP into joint
variables (source and receiver), Shannon also found the maximum speed of reliable
information transmission through a channel is decided by the mutual information
between the information source and receiver [33].

The rapidly developing information industry has demonstrated the effectiveness
of classical information theory. And the application of it into biology, physics, and
other disciplines also give new inspirations to solve the old problems or find new
phenomenons in those systems [15, 34, 35]. Simultaneously, the applications also bring
new issues back to the research of information theory. As in the systems like nervous
systems with billions of neurons and social networks with billions of users [9, 36],
the information sources are not a single variable but enormous interacted units. On
the other hand, the process of signal generating by the information source is not
independent. The probability of the information source to get different states is not
identical, and it is constrained by the interactions from other units and the dependence
from its past states [9]. Therefore, a new generalization of the information theory to
deal with the heterogeneous dependencies in those systems is required.

To establish the new generalization information theory, we need to find new mod-
els to describe the information sources with enormous interacted units. And we also
need to describe the process of single generating with heterogeneous dependence. The
statistical ensembles from statistical physics are suitable for this duty [15], as they are
build to describe the motion of particles with numerous interactions. The information
sources with numerous interacted units need to be modelled by the statistical ensem-
bles with local constraints. The temporal dependence in the process of the single
generating that has broken the (identical independent distribution) i.i.d. assumption
also can be modelled by the local constraints in the statistical ensemble. Therefore,
this generalization is a combination of statistical physics and information theory for
systems with local constraints.
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1.4 Outline of this thesis
This thesis has two main parts: the first part is the study of systems with local con-
straints in statistical physics, which includes Chapter 2 and Chapter 3. The second
part is the generalization of statistical ensembles with local constraints into informa-
tion theory. It also has two chapters to introduce our contributions: chapter 4 and
chapter 5.

In the second chapter, we focus on the weighted networks with core-periphery
structures, which provides a possible model that has the phase transition and local
constraint simultaneously, We find that relative fluctuation of constraints as a crite-
rion to check the ensemble nonequivalence in traditional statistical physics vanish in
the non-BEC phase while some of them do not disappear in the BEC phase. This
result shows that fluctuations of constraints are sensitive to the phase transition. By
contrast, the non-vanished relative entropy density for all positive temperatures shows
that the extensive number of constraints breaks the ensemble equivalence. Only at
zero temperature, where the effective number of constraints becomes finite, ensem-
ble equivalence is broken by BEC in a subtle way. Therefore, in the presence of
local constraints, the vanishing of relative fluctuations no longer guarantees ensemble
equivalence.

In the third chapter, we extend the discussion of ensemble nonequivalence into a
more general local constrained system, the n×m matrix ensemble G. This matrix
can be binary or weighted by setting the range of the value each entry archived. In this
matrix ensemble G, we can have the global constraint, one-side local constraints and
two-side local constraints. In this general model, ensemble equivalence is still broken
by the extensive number of constraints, both in the one-side local constraints (with
n local constraints in it) and two-side local constraints (with m+ n local constraints
in it). Surprisingly, when m is finite, the relative entropy of microcanonical and
canonical ensemble has the same order as the canonical entropy, which is as strong as
the one that appears in the boundary of phase transition caused by the non-activity.
The result breaks the former empirical cognition that the ensemble nonequivalence
should be ’strong’ but ’restricted’ as in the boundary of phase transition or ’general’
but ’weak’ as in the networks with degree sequences. Ensemble nonequivalence in the
system with local constraints can be both ’general’ and ’strong’ when the units have
a finite degree of freedom.

In the fourth chapter, the statistical ensembles with local constraints are used to
describe the information source with numerous heterogeneous interacted units. We
find the typical set of the microcanonical ensemble described information sources is
a subset of the conjugate canonical ensemble described information sources. The
classical information theory used to describe the multivariate information sources is
a special case of the canonical ensemble description when the local constraints in
the information sources are independent and identical. The microcanonical ensemble
descriptions need less space to store the information generated by them. The extra
sequences we counted in the canonical-typical set are those sequences, which have
the same sum of Hamiltonian but different constraints comparing with the states in
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the microcanonical ensemble. The size of the extra space is decided by the degree of
ensemble nonequivalence between the two ensembles. When the information sources
are under strong ensemble nonequivalence, the space we can save by using the micro-
canonical ensemble has the same order as we cost in canonical ensemble description
(in classical information theory). The information-theoretical bounds are directly
affected by the ensemble nonequivalence in it.

In the fifth chapter, we focus on signal generating with coupled dependencies.
The activity of variables in information sources is affected by the interactions be-
tween other variables and their historical behaviours. Each unit in the information
source has two different dependencies: the spatial correlations come from the inter-
action between other variables in the source, and the temporal dependencies come
from the historical sampling of itself. But all the information generated by these in-
formation sources is still carried by the information sequences, which are independent
of each other. Thus, to find the limit of information storage and transmission under
this situation, we need to use statistical ensembles with local constraints to describe
the information sequences, not focus on the information source as in traditional in-
formation theory. We find that the breaking of ensemble equivalence in the signal
generating is determined by the extensive spatial variational dependence among the
variables in the information source, not the finite temporal dependencies of each vari-
able itself. This result also explains why Shannon’s classical information theory is so
powerful. As in the classical information theory, there is only one variable or several
independent variables in the information source, so there is no spatial dependence in
this i.i.d. process. The sequences described by the classical information theory are
under ensemble equivalence. The temporal dependence realized by the hard or soft
constraints is equivalent to each other. The finite number of temporal dependence
is not enough to break the ensemble equivalence between the canonical ensemble de-
scriptions and the microcanonical ensemble descriptions. Thus, the signal generating
process described by the classical information theory will approach the actual signal
generating process, following the length increasing of the information sequences.

The last chapter gives the conclusion and some open problems about systems with
local constraints.
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