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Chapter 1

Introduction

Statistical physics is built to explain the macroscopic properties in physical systems
from the probabilistic examination of underlying microscopic configurations [1]. As
the initial research of statistical physics is focused on thermodynamic systems, most
traditional examples in statistical physics are under global constraints, such as the
fixed total energy and the fixed number of particles. However, recent research on
complex systems shows that local constraints, which is implied by the heterogeneous
spatial and temporal dependencies, general existed in natural systems [2–4]. Unlike
the global constraint, which works on all units in the system with the same influence,
the local constraints work on the different groups of units in the system with different
influences. The local constraints are not only a new model, which can be used to
describe the non-physical systems with heterogeneous dependencies. It also brings
several new phenomenons for statistical physics. In particular, ensemble equivalence
is broken in networks with fixed degree sequences by the extensive local constraints
[5–7]. This breaking of ensemble equivalence exists in the whole parameter space of
networks and even without the appearance of phase transitions, which is the essential
condition of ensemble nonequivalence in traditional statistical physics. Ensemble
equivalence as a basic assumption in statistical physics has been widely explored both
practically and theoretically [8]. This breaking of ensemble equivalence in systems
with local constraints will affect many fundamental assumptions and calculations in
statistical physics. Therefore, further exploration of statistical physics needs a general
theory to describe the system with local constraints and the possible appearance of
ensemble nonequivalence.

Moreover, local constraints in complex systems also bring new problems to the
information theory. For instance, the activities of neurons in nervous systems with
heterogeneous spatial correlations give an information source with numerous inter-
acting units [9]. The temporal dependent fluctuation in financial systems breaks the
identical independent assumption of the information sources in the classical informa-
tion theory [3]. The behaviour of those new information sources is impossible to be
described by the random variables with finite outcomes as in classical information
theory. To describe them, we need statistical ensembles with local constraints. Par-
ticularly, the possible appearance of ensemble nonequivalence that is caused by the
extensive local constraints may even break the asymptotic equipartition property in
the information theory and affect the information-theoretical bounds. Hence, a non-
trivial generalization of the information theory for the system with local constraints
is needed to study the information transmission and storage in complex systems.

This thesis is an exploration of systems with local constraints. The first part
introduces two physical models with local constraints and studies the breaking of
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ensemble equivalence of it. In the second part, these physical models are used to
describe information sources and sequences with heterogeneous dependencies to find
new information-theoretical bounds and the influence of ensemble nonequivalence in
it.

The introduction has four sections. I will introduce the definition of statistical en-
sembles in section1.1. The basic conception of ensemble nonequivalence is introduced
in section1.2. The classical Shannon information theory is introduced in section1.3.
Section1.4 is the outline of this thesis.

1.1 Statistical ensembles
In the research on thermodynamic systems, to describe the behaviour of numerous
random interacted particles is a difficult task, e.g., a glass of water can easily contain
1023 molecules. Classical mechanics can be used to describe the collision between the
finite number of water molecules, but it is impossible to understand the process of
collision with 1023 units analytically. This insurmountable problem prompts physicists
to build new mechanics to describe the macroscopic behaviour of the system and still
based on the physical law already know from the microscopic view. This requirement
leads to the birth of statistical physics in the 19th century [1, 10].

Generally, the founding of statistical physics is credited to three physicists. Lud-
wig Boltzmann gives the fundamental definition of entropy by the collection of mi-
crostates [10]. James Clerk Maxwell applies the model of the probability distribution
into the description of those microstates [11]. Josiah Willard Gibbs defines statistical
ensembles and explains the laws of thermodynamic as the statistical properties of the
ensembles [1]. This pattern also can be found later in the establishment of informa-
tion theory. The initial study focuses on the analytical configurations, but the theory
is established on probabilistic explanation.

The framework of statistical physics can be explained as the application of statis-
tical methods and probability theory to large assemblies of microscopic entities and
then using the mathematical tools for dealing with large populations and approxi-
mations to connect the behaviour of the microscopic entities with the macroscopic
property. There are three basic postulates in statistical physics. The ergodic hypoth-
esis shows that each state with the same energy has the equiprobable probability to
appears in the system over long periods. The principle of indifference shows that we
can only assign equal probabilities to each state when there is insufficient information
to describe states in this system. The maximum information entropy presents that
the correct probability distribution of the states in the system with limited informa-
tion should maximum the Gibbs entropy (Information entropy) of it [1]. In the past
decades, the principle in statistical physics is not only applied in the physics system
but also generalized in chemistry, biology, economics, and even social science [12–
14], to build the relationship between the microscopic entries and the macroscopic
property of them.

The building of the statistical ensembles needs states in thermodynamic systems
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to remain ’static’. This static is that the macroscopic observable variables in the sys-
tem keep stable under the unpredictable internal particles’ motion. These observable
variables can be the total energy, the temperature, and the pressure [1]. The dif-
ference between macroscopic variables allows us to describe the systems by different
ensembles.

• Microcanonical ensemble is used to describe the system with a fixed total energy
and particle numbers. In this isolated system, the energy change between the
system and the outside environment is forbidden. States in this ensemble have
the same probability of appearing in the system. The value of the probability
is decided by the total number of microscopic configurations in this system.

• The Canonical ensemble is used to describe the system with fixed particle num-
bers and temperature. This system contacts a heat bath, which has a precise
temperature. There is an energy change between this system and the heat bath.
The probability of each state appears in this system is decided by their total
energy under the fixed temperature.

• The Grand canonical ensemble is used to describe the open system. Both the
total energy and the number of particles are not fixed. Systems described by
this ensemble will change energy and particles with the outside environment.
The probability of each state in this ensemble is decided by their total energy
and their total particles.

According to the energy isolation, the microcanonical ensemble and the canonical
ensemble are under two different constraints. The microcanonical is under ’hard’ con-
straints, as all states should have the same total energy. But the canonical ensemble
is under ’soft’ constraints, the total energy of each state in this ensemble is not the
same, but the average value should fix.

As the way to describe the interactions are decided by the property of constraints
of the statistical ensemble, the soft or hard constraints in the systems not only decide
which statistical ensemble is suitable for their descriptions but also affect the way to
describe the inner interactions [15, 16]

The traditional statistical ensemble is under global constraints like the total en-
ergy, the fixed temperature or the total number of particles in the system. But the
information sources and the process of signal generating of the complex systems are
all under heterogeneous interactions. It means the constraints in the information
source or the signal generation need to be localized to describe those heterogeneous
interactions. The localized constraint is not a new concept, it has been studied in
networks theory, where the nodes in the networks always have different degrees, and
this heterogeneous degree distribution will affect the dynamic and structure of the
networks [16–20].

However, systems that need to model in the new information theory is more gen-
eral than the binary network with fixed degree sequences. The interactions among
units in information sources may have different degrees. Thus, using the weighted
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network to model those heterogeneous dependencies is more reasonable than the bi-
nary networks. Furthermore, when the signal generated by the finite variables under
temporal dependences in long periods needs to record, the data structure we need is
not the adjacency matrix. This data structure is close to an m× n matrix, where m
represents the number of finite variables and n is the increasing length. Therefore, to
describe the systems mentioned above, new models with local constraints are needed.

1.2 Ensemble (non)equivalence
Normally, the three ensemble descriptions are unavoidable different when the sys-
tem has a finite size. There are fluctuations in the macroscopic properties of states
in the canonical and grand canonical ensemble. But when the system has numer-
ous particles (in the thermodynamic limit), all the three ensembles tend to give an
identical description. The fluctuation of macroscopic properties will vanish. This is
a basic assumption in the tradition statistical physics, which is named as ensemble
equivalence [1, 8, 21].

Specifically, in the microcanonical ensemble and the canonical ensemble, this
equivalence appears in the systems with the same total number of particles but under
’soft’ or ’hard’ constraints (according to the energy isolation). Since the canonical en-
semble is mathematically easy to calculate, the presence of the ensemble equivalence
means that the replacing of the microcanonical ensemble with the canonical ensemble
in the application of statistical physics is allowed [8]. The ensemble equivalence has
three forms,

• Thermodynamically equivalence: When the entropy of the microcanonical en-
semble and the free energy of the canonical ensemble is one-to-one related under
the Legendre transform, the two ensembles are believed under thermodynamical
equivalence.

• Macrostate equivalence: The macrostate equivalence is the equilibrium values
of the macrostate predicted by the microcanonical ensemble is the same as the
one of the canonical ensemble in the thermodynamic limit.

• Measure level equivalence: when the probability distribution of states in the
canonical ensemble Gibbs distribution)converges to the probability distribution
of the states in the microcanonical ensemble that is defined by the Boltzmann’s
equiprobability postulate, we believe the two ensembles are under measure level
equivalence.

The presence of ensemble equivalence in the thermodynamic limit shows that although
the specific action in the canonical ensemble varies from one microstate to another,
most of the microstates are still roughly equiprobable.

However, this ensemble equivalence does not always hold. Recent researches on
fluid turbulence [22, 23], star formation [24, 25] and networks [26] show that the en-
semble equivalence will break at the critical point on the boundary of phase transition.
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This ensemble nonequivalence is caused by the nonadditivity in the system with long-
range interaction [13, 8]. More recently, in networks with fixed degree sequences, the
breaking of ensemble equivalence even has been found in the whole parameter space
under the complete absence of phase transitions [5, 7, 26]. It means the ensemble
equivalence is not only a critical phenomenon but also an intrinsic property of the
system with extensive local constraints [27, 28]. Therefore, there will always have a
non-neglected difference between different ensembles in the ensemble nonequivalent
systems.

The three forms of equivalence have three coincide ensemble nonequivalences, and
those three forms already proved equivalent in [8]. For instance, the thermodynamical
nonequivalence is the function of microcanonical entropy, not one-to-one relates to the
Legendre transform of the canonical ensemble. It can be mapped by the difference
between the prediction of macroscopic property for different ensembles. And it also
can be detected by the difference between the probability distribution of the states in
different ensembles [8].

The measure level ensemble equivalence is based on the difference between the
probability distributions of different ensembles [8]. States in the microcanonical en-
semble with the same total energy all belong to the conjugate canonical ensemble [15].
The measure-level ensemble equivalence between the two ensembles is that the proba-
bility distribution of the states in the canonical ensemble converges to the probability
distribution of the states in the microcanonical ensemble. Therefore, under measure
level ensemble nonequivalence, the difference between two probability distributions
will not vanish, and it can be quantified by the relative entropy between the micro-
canonical and canonical ensemble as

S[Pmic||Pcan] =
∑
x∈§

Pmic(x) ln Pmic(x)

Pcan(x)
, (1.1)

where § is the collection of all the possible microscopic configurations of the system
with n particles in it. Symbol Pmic(x) represents the probabilty of the state x in the
microcanonical ensemble. Symbol Pcan(x) represents the probability of the state x in
the canonical ensemble.

The indicator of the measure ensemble nonequivalence is the specific relative en-
tropy density [8, 5], which is defined as the limit of the relative entropy rescaled by
the number of particle in it

s∞ = lim
n→∞

1
n
S[Pmic||Pcan]. (1.2)

When the value of s∞ is equal to 0, we believe the system is under measure level
ensemble equivalence. When s∞ > 0, the system is believed to be under measure
level ensemble nonequivalence [8].

Ensemble nonequivalence appears in the boundary of phase transition in the sys-
tem with long-range interactions has been well studied theoretically and experimen-
tally [13, 8]. But we know little awareness about the ensemble nonequivalence in the
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system with local constraints. Compared to the one that only happens on the critical
point of parameter space, the ensemble nonequivalence in the system with local con-
straints has a more general form. In the binary networks with degree sequences, the
ensemble nonequivalence appears in the whole parameter space of it [5]. No matter
how the degree distribution of the network change, the probability distribution of the
networks’ configuration in the microcanonical always has a non-neglected difference
between the canonical ensemble. This difference will affect the generalization of sta-
tistical ensembles to complex systems with heterogeneous interaction, especially in
the information theory, as the information source and the information transmission
are all described by the probability theory. Thus, a more fundamental study about
the ensemble nonequivalence in the system with local constraints is needed.

Classical information theory has a close relationship with statistical physics. The
increasing length of the sequences in information theory is the same as the extension
of the system’s size in statistical physics. The identical probability distribution of
the information sources and the independent signal generating are all coincided with
the definition of the microscopic behaviour of the particles in statistical physics under
global constraints [29, 5]. Thus, the information-theoretical bounds as the macro-
scopic properties of the information storage and transmission are decided by the sta-
tistical properties of microscopic configurations. The ensemble nonequivalence that
may appear in the information source with heterogeneous interaction or the informa-
tion sequences with temporal dependence has a distinct influence on the information
storage and transmission. In other words, the generalization of the information theory
for the complex system should be based on the ensemble nonequivalent systems.

1.3 Information theory
The information theory is built to describe the information transmission and storage
in communication system [29]. The birth of information theory in the first half of
the twentieth century is believed to be stimulated by the dramatic development of
electronic communication systems. At that time, the worldwide electronic telegraph
network continuous works more than a half-century. The birth of the telephone and
television has already completely changed the daily life of humans. But there is still
do not have a quantifiable definition of the information [30]. The earliest attempt
to quantify information can be traced to 1924 when Nyquist introduced a theoretical
speed of information transmission depending on the change of voltage in the line [31].
In 1928, Hartley first used the word ’information’ to describe the stuff flows in the com-
munication and generalized the definition of Nyquist into the whole communication
systems as the number of possible states of the symbols transmits in this system [32].
Afterwards, in 1948, based on the probability theory, Shannon gives the first quantifi-
able definition of information (information entropy) and the information-theoretical
bounds of the information storage and transmission [33].

Shannon divided the communication system into three parts: the information
source, the channel and the receiver. These three parts can be described independently
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by the probability theory [33]. Information generated by the information sources x
can be quantified by the definition of information entropy H(x), which is equal the
expected value of each probability’s logarithm as H(x) = −

∑
x∈x p(x) log p(x) [33].

This information theory solved the two main problems in the research on artificial
communication systems at that time. One is the smallest space to store the infor-
mation generated by the information source, and the other is the maximum speed of
reliable information transmitted through a channel. Shannon found that the informa-
tion generated by the information source x is carried in the sequences {x1,x2, · · · ,xn}
to record the state of the sources in n times’ activities. Therefore, the space to store
the information generated by the information source is equivalent to the space to
store those sequences. Simultaneously, Shannon also found that to store the informa-
tion generated by the information sources only need to focus on the sequences in the
typical set, as the sum of the probability of sequences in the typical set is close to 1.
Therefore, the size of the typical set decides the size of the smallest space to store
the information carried by those sequences. This typicality is based on the asymp-
totic equipartition property (AEP). According to the generalization of AEP into joint
variables (source and receiver), Shannon also found the maximum speed of reliable
information transmission through a channel is decided by the mutual information
between the information source and receiver [33].

The rapidly developing information industry has demonstrated the effectiveness
of classical information theory. And the application of it into biology, physics, and
other disciplines also give new inspirations to solve the old problems or find new
phenomenons in those systems [15, 34, 35]. Simultaneously, the applications also bring
new issues back to the research of information theory. As in the systems like nervous
systems with billions of neurons and social networks with billions of users [9, 36],
the information sources are not a single variable but enormous interacted units. On
the other hand, the process of signal generating by the information source is not
independent. The probability of the information source to get different states is not
identical, and it is constrained by the interactions from other units and the dependence
from its past states [9]. Therefore, a new generalization of the information theory to
deal with the heterogeneous dependencies in those systems is required.

To establish the new generalization information theory, we need to find new mod-
els to describe the information sources with enormous interacted units. And we also
need to describe the process of single generating with heterogeneous dependence. The
statistical ensembles from statistical physics are suitable for this duty [15], as they are
build to describe the motion of particles with numerous interactions. The information
sources with numerous interacted units need to be modelled by the statistical ensem-
bles with local constraints. The temporal dependence in the process of the single
generating that has broken the (identical independent distribution) i.i.d. assumption
also can be modelled by the local constraints in the statistical ensemble. Therefore,
this generalization is a combination of statistical physics and information theory for
systems with local constraints.
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1.4 Outline of this thesis
This thesis has two main parts: the first part is the study of systems with local con-
straints in statistical physics, which includes Chapter 2 and Chapter 3. The second
part is the generalization of statistical ensembles with local constraints into informa-
tion theory. It also has two chapters to introduce our contributions: chapter 4 and
chapter 5.

In the second chapter, we focus on the weighted networks with core-periphery
structures, which provides a possible model that has the phase transition and local
constraint simultaneously, We find that relative fluctuation of constraints as a crite-
rion to check the ensemble nonequivalence in traditional statistical physics vanish in
the non-BEC phase while some of them do not disappear in the BEC phase. This
result shows that fluctuations of constraints are sensitive to the phase transition. By
contrast, the non-vanished relative entropy density for all positive temperatures shows
that the extensive number of constraints breaks the ensemble equivalence. Only at
zero temperature, where the effective number of constraints becomes finite, ensem-
ble equivalence is broken by BEC in a subtle way. Therefore, in the presence of
local constraints, the vanishing of relative fluctuations no longer guarantees ensemble
equivalence.

In the third chapter, we extend the discussion of ensemble nonequivalence into a
more general local constrained system, the n×m matrix ensemble G. This matrix
can be binary or weighted by setting the range of the value each entry archived. In this
matrix ensemble G, we can have the global constraint, one-side local constraints and
two-side local constraints. In this general model, ensemble equivalence is still broken
by the extensive number of constraints, both in the one-side local constraints (with
n local constraints in it) and two-side local constraints (with m+ n local constraints
in it). Surprisingly, when m is finite, the relative entropy of microcanonical and
canonical ensemble has the same order as the canonical entropy, which is as strong as
the one that appears in the boundary of phase transition caused by the non-activity.
The result breaks the former empirical cognition that the ensemble nonequivalence
should be ’strong’ but ’restricted’ as in the boundary of phase transition or ’general’
but ’weak’ as in the networks with degree sequences. Ensemble nonequivalence in the
system with local constraints can be both ’general’ and ’strong’ when the units have
a finite degree of freedom.

In the fourth chapter, the statistical ensembles with local constraints are used to
describe the information source with numerous heterogeneous interacted units. We
find the typical set of the microcanonical ensemble described information sources is
a subset of the conjugate canonical ensemble described information sources. The
classical information theory used to describe the multivariate information sources is
a special case of the canonical ensemble description when the local constraints in
the information sources are independent and identical. The microcanonical ensemble
descriptions need less space to store the information generated by them. The extra
sequences we counted in the canonical-typical set are those sequences, which have
the same sum of Hamiltonian but different constraints comparing with the states in
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the microcanonical ensemble. The size of the extra space is decided by the degree of
ensemble nonequivalence between the two ensembles. When the information sources
are under strong ensemble nonequivalence, the space we can save by using the micro-
canonical ensemble has the same order as we cost in canonical ensemble description
(in classical information theory). The information-theoretical bounds are directly
affected by the ensemble nonequivalence in it.

In the fifth chapter, we focus on signal generating with coupled dependencies.
The activity of variables in information sources is affected by the interactions be-
tween other variables and their historical behaviours. Each unit in the information
source has two different dependencies: the spatial correlations come from the inter-
action between other variables in the source, and the temporal dependencies come
from the historical sampling of itself. But all the information generated by these in-
formation sources is still carried by the information sequences, which are independent
of each other. Thus, to find the limit of information storage and transmission under
this situation, we need to use statistical ensembles with local constraints to describe
the information sequences, not focus on the information source as in traditional in-
formation theory. We find that the breaking of ensemble equivalence in the signal
generating is determined by the extensive spatial variational dependence among the
variables in the information source, not the finite temporal dependencies of each vari-
able itself. This result also explains why Shannon’s classical information theory is so
powerful. As in the classical information theory, there is only one variable or several
independent variables in the information source, so there is no spatial dependence in
this i.i.d. process. The sequences described by the classical information theory are
under ensemble equivalence. The temporal dependence realized by the hard or soft
constraints is equivalent to each other. The finite number of temporal dependence
is not enough to break the ensemble equivalence between the canonical ensemble de-
scriptions and the microcanonical ensemble descriptions. Thus, the signal generating
process described by the classical information theory will approach the actual signal
generating process, following the length increasing of the information sequences.

The last chapter gives the conclusion and some open problems about systems with
local constraints.
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Chapter 2

Ensemble nonequivalence and
Bose-Einstein condensation in
weighted networks

Abstract
The asymptotic (non)equivalence of canonical and microcanonical ensembles, describ-
ing systems with soft and hard constraints respectively, is a central concept in sta-
tistical physics. Traditionally, the breakdown of ensemble equivalence (EE) has been
associated with nonvanishing relative canonical fluctuations of the constraints in the
thermodynamic limit. Recently, it has been reformulated in terms of a nonvanish-
ing relative entropy density between microcanonical and canonical probabilities. The
earliest observations of EE violation required phase transitions or long-range inter-
actions. More recent research on binary networks found that an extensive number
of local constraints can also break EE, even in absence of phase transitions. Here
we study for the first time ensemble nonequivalence in weighted networks with local
constraints.

Unlike their binary counterparts, these networks can undergo a form of Bose-
Einstein condensation (BEC) producing a core-periphery structure where a finite
fraction of the link weights concentrates in the core. This phenomenon creates a
unique setting where local constraints coexist with a phase transition. We find sur-
viving relative fluctuations only in the condensed phase, as in more traditional BEC
settings. However, we also find a non-vanishing relative entropy density for all tem-
peratures, signalling a breakdown of EE due to the presence of an extensive number
of constraints, irrespective of BEC. Therefore, in the presence of extensively many
local constraints, vanishing relative fluctuations no longer guarantee EE 1.

1This chapter is based on:
Qi Zhang, Diego Garlaschelli, "Ensemble nonequivalence and BEC in weighted networks" arXiv
preprint arXiv:2012.09998 (2020)
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2.1 Introduction
Statistical ensembles were introduced by Gibbs [1] to mathematically describe systems
at thermodynamic equilibrium, i.e. where certain conserved macroscopic properties
(such as the total energy) are constant, while the microscopic state (i.e. the state of all
the microscopic constituents) is subject to fluctuations. For a system with n units and
discrete degrees of freedom, a statistical ensemble is a probability distribution P (W)
over the collection Wn = {W} of all the possible (unobserved) microscopic states of
the system, given a set of measurable macroscopic properties. Clearly, P (W) ≥ 0
for all W ∈ Wn and

∑
W∈Wn P (W) = 1. This distribution conceptualizes the fact

that, ideally, repeated observations of the microscopic state would retrieve different
(and independent) outcomes. It can be viewed as the probability distribution that
maximizes the Gibbs-Shannon entropy functional

S[P ] ≡ −
∑

W∈Wn

P (W) lnP (W), (2.1)

under a set of (macroscopic) constraints, therefore being maximally noncommittal
with respect to missing (microscopic) information [15].

Depending on the choice of the macroscopic properties being constrained, different
statistical ensembles can be constructed. The microcanonical ensemble Pmic(W|E)
is used to describe systems with fixed total energy E (energetic isolation), while the
canonical ensemble Pcan(W|β) is used to describe systems with fixed (inverse) tem-
perature β (thermal equilibrium) [1]. For a physical system, the inverse temperature
β equals 1/kT where T is the absolute temperature and k is Boltzmann’s constant.
In both ensembles, the microscopic state W is random, but the randomness is gov-
erned differently by the two distributions Pcan(W|β) and Pmic(W|E). In particular,
while the microcanonical ensemble assigns each realized configuration W a constant
(deterministic) value E(W) = E of the total energy (which can therefore be regarded
as a ‘hard’ constraint corresponding to energetic isolation), the canonical ensemble
assigns configurations a fluctuating (random) energy with a certain expected value
〈E〉β =

∑
W∈Wn Pcan(W|β)E(W) and a positive standard deviation σβ(E) > 0 (i.e.

the energy plays the role of a ‘soft’ constraint resulting from the contact with a heat
bath at fixed inverse temperature β).

2.1.1 Conjugate ensembles
The two ensembles can be made conjugate to each other by choosing a specific value
E∗ and simultaneously setting the total energy E(W) of each realized configuration
W in the microcanonical ensemble equal to E(W) ≡ E∗ and the inverse temperature
β in the canonical ensemble to the corresponding value β ≡ β∗ such that the resulting
average value 〈E〉β∗ of the fluctuating total energy under the canonical probability
Pcan(W|β∗) equals E∗, i.e.

〈E〉β∗ ≡ E∗. (2.2)
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For systems with finite size, the two conjugate ensembles are unavoidably differ-
ent, because in the microcanonical ensemble the hardness of the constraint implies
extra dependencies among the state of the microscopic constituents with respect to
the canonical case. However, in the thermodynamic limit (i.e. when the number of
units in the system goes to infinite) and under certain ‘natural’ circumstances, the
two associated probabilistic descriptions are expected to become effectively equiva-
lent (i.e. the canonical fluctuations and the microcanonical dependencies are both
expected to play an asymptotically vanishing role) as a result of some form of the
law of large numbers. This idea, which dates back to Gibbs himself [1] and has con-
tinued to attract a lot of interest until presently [13, 8, 5, 37], goes under the name
of ensemble equivalence (EE). When EE holds, one can treat the two ensembles as
asymptotically interchangeable, and hence use any of them based on mathematical
or computational convenience. For instance, analytical calculations are signficantly
easier in the canonical ensemble, while numerical randomizations of an initial config-
uration can be carried out more naturally in the microcanonical ensemble.

Most statistical physics textbooks still convey the message that EE is expected
to hold in general as a sort of principle at the basis of ensemble theory. The pos-
sible breakdown of EE, also known as ensemble nonequivalence (EN), is still not
discussed systematically in the literature. However, several observations of EN have
been documented over the past decades [22, 38, 39, 23–25, 40–42, 21, 43, 13, 5]. These
observations motivated various efforts aimed at elucidating both the possible physical
mechanisms at the origin of EN and, in parallel, its proper mathematical definition(s).

2.1.2 Physical mechanisms for ensemble (non)equivalence
Traditionally, the ‘natural’ circumstances generally invoked to ensure EE mainly con-
cern the presence of (loosely speaking) ‘at most weak’ interactions between the con-
stituents of the system. This condition is automatically realized when the system
consists of independent units or units with short-range interactions and sufficiently
high temperature (to stay away from possible low-temperature phases with broken
symmetries, for which the canonical average value of the energy is no longer the typ-
ical value). Indeed, violations of EE have been documented in presence of long-range
interactions (e.g. in gravitational systems) or phase transitions (e.g. in interacting
spin systems) [22, 38, 39, 23–25, 40–42, 13, 8].

However, recent research on complex systems encountered beyond the usual realm
of physics has found an additional mechanism that can break EE, even in presence
of weak (or no) interactions: namely, the presence of an extensive number of local
constraints [5, 37]. This situation is frequently found in networks with constraints on
the number of links (degree) of each node. More specifically, the binary configuration
model [44] is a widely used null model of graphs with a given degree sequence, i.e.
a given vector of node degrees. The model captures many properties found in real-
world networks, because the local character of the degree constraint can accomodate
the strong structural heterogeneity typically observed across nodes in real networks.
Unlike the traditional thermodynamic example where the total energy (and possibly
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a small, finite number of additional macroscopic properties) is a global and unique
constraint for the system, networks with given node degrees are systems with as
many constraints as the number of fundamental units, i.e. where constraints are
extensive in number and local in nature. This situation has been found to break
the equivalence of the corresponding canonical and microcanonical ensembles, even
without long-range interactions or phase transitions [5, 26, 45]. Notably, since systems
with local constraints are generic models for virtually any heterogenous system, the
new mechanism significantly widens the range of real-world cases for which EE may
break down. This novel result deserves further research.

2.1.3 Mathematical definitions of ensemble (non)equivalence
Besides the aforementioned advances in the study of the physical mechanisms at the
origin of EN, significant progress has been made in the mathematical characterization
of EN as well. Traditionally, the informal criterion [1] used to test whether two
conjugate ensembles are equivalent is checking whether the relative fluctuations of
the constraint in the canonical ensemble, e.g. the ratio σβ∗(E)/E∗ of the canonical
standard deviation to the average value of the energy, vanish in the thermodynamic
limit. If this happens, then the canonical fluctuations of the total energy are negligible
with respect to the total energy itself and, intuitively, the energy in the canonical
ensemble can be though of as an effectively deterministic quantity, very much like
in the conjugated microcanonical ensemble. Similarly, the extra dependencies among
the microscopic constituents in the microcanonical ensemble are expected to play a
smaller and smaller role, thus coming closer to the canonical case.

More recent approaches have considered different rigorous definitions of EE, which
can be beautifully summarized [8] as the following three notions: thermodynamic
equivalence (convexity of the microcanonical entropy density), macrostate equiva-
lence (equality of the expected values of macroscopic quantities under the two en-
sembles), and measure equivalence (vanishing of the relative entropy density between
the microcanonical and canonical probability distributions). Under mild conditions,
these notions have been shown to be equivalent [8]. In this paper, we use measure
equivalence as it is more transparently related to the ensemble probabilities.

As a useful result, research on the relationship between statistical physics and
combinatorics has revealed that the relative entropy between the microcanonical and
the canonical probability distributions is, under certain conditions, asymptotically
proportional to the logarithm of the determinant of the covariance matrix of the ef-
fective constraints in the canonical ensemble [37]. The effective constraints are those
that are neither redundant, i.e. trivially replicating other constraints, nor degener-
ate, i.e. deterministically restricting the canonical and microcanonical configurations
in exactly the same way. For instance, formally imposing ‘two’ constraints where
one is the total energy E and the other one is twice the total energy 2E is clearly
a redundant choice: the effective number of constraints is just one in this case. As
another example, if in addition to the energy E we impose its square value E2, then
for those values of the Lagrange multipliers such that 〈E2〉 = 〈E〉2 the variance of the
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energy will be zero also in the canonical ensemble: E will become degenerate and de-
terministically equal to its imposed value in both ensembles, so not contributing any
difference between the two (by contrast, for parameter values such that 〈E2〉 > 〈E〉2
there are no allowed configurations in the microcanonical ensemble because the hard
values of E2 and E become conflicting, thereby breaking the equivalence with the
canonical one). In general, if the problem is not ill-posed from the beginning, the
number of effective constraints coincides with the number of enforced constraints.
However, it may happen that some constraints become ineffective for certain degen-
erate values of the parameters. In any case, for a given parameter value the number
of effective constraints coincides with the rank of the covariance matrix of all imposed
constraints [37].

Since nonequivalence in the measure sense corresponds to the (super)extensivity
of the relative entropy, studying the asymptotic behaviour of the determinant of the
(effective) covariance matrix is enough in order to assess ensemble nonequivalence. It
is worth noticing that, if there is a single constraint (say, the total energy E), then
the determinant of the covariance matrix coincides with the corresponding variance
σ2
β∗(E) and the relative entropy grows asymptotically (under the necessary hypothe-

ses) as ln σ2
β∗(E) = 2 ln σβ∗(E). On the other hand, since E is a global constraint, it

is generally extensive in the number n of units of the system. Therefore the vanishing
of the relative fluctuations, i.e. σβ∗(E) = o(E), implies that the relative entropy is
subextensive, i.e. the relative entropy density vanishes in the thermodynamic limit.
This suggests that, in presence of a global constraint, the vanishing of the relative
fluctuations implies ensemble equivalence.2 How this picture changes in presence of
an extensive number of local constraints has not been investigated yet. In particu-
lar, whether the vanishing of relative fluctuations still implies ensemble equivalence
remains an open question.

2.1.4 The contribution of this chapter
This chapter connects to both lines of research described above (physical mechanisms
and mathematical definitions for EN) and its aim is therefore twofold. On the one
hand, we aim at investigating for the first (to the best of our knowledge) time the
phenomenon of EN in a model system that combines the presence of an extensive
number of local constraints with a phase transition. On the other hand, we aim at
understanding whether the intuitive criterion of vanishing relative fluctuations of the
constraints still ensures EE in this more general setting.

Concretely, we consider the weighted configuration model [44], namely a model
of weighted (as opposed to binary) networks with given strength sequence, i.e. with
given values of the strength (sum of the weights of incident links) of each node. The
weighted character of the model allows for the emergence of a phase transition that is

2Note that the converse is not necessarily true. However, observing ensemble equivalence and
non-vanishing relative fluctuations simultaneously requires some rather uncommon circumstances:
for instance, if σβ∗ (E) grows like Eα with α ≥ 1 while the entropy still grows like E, then the
relative entropy is still subextensive, while the relative fluctuations do not vanish.
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impossible to observe in the corresponding binary configuration model, namely Bose-
Einstein Condensation (BEC) [46, 19]. For the sake of clarity, it is worth mentioning
here that, although a form of BEC in networks was identified for the first time in
growing binary graphs [47], the notion we refer to here refers to static networks and
as such can only occur in weighted networks [46]. Indeed, while the configuration
model for weighted networks obeys Bose-Einstein statistics, the configuration model
for binary networks obeys Fermi-Dirac statistics [46, 19, 20]. BEC can arise in our
model by appropriately tuning the strength sequence. In particular, we are going to
show that we can make the strength sequence temperature-dependent and generate
BEC by picking a sufficiently low temperature, below a certain critical value. The
simplest such setting is one where the network has a ‘core-periphery’ structure, with
BEC appearing in the core.

We find that, for all temperatures and irrespective of whether BEC emerges, the
canonical and microcanonical ensembles are always nonequivalent as signalled by a
nonvanishing relative entropy density. On the other hand, the relative fluctuations
of all the constraints vanish when BEC is absent, while some of them do not vanish
when BEC is present. This shows that the relative fluctuations cannot distinguish
between equivalence and nonequivalence of the ensembles in this more general case
where multiple constraints are present. In fact, what they do is detecting the presence
of BEC. Therefore the traditional criterion for EE based on the vanishing of the rela-
tive fluctuations is no longer valid in presence of an extensive number of constraints,
even when applied simultaneously to all constraints. These results enrich our under-
standing of the phenomenology of EN and shed more light on its relationship with
both the extensivity of the constraints and the presence of phase transitions.

The remainder of this chapter is organized as follows. In Sec. 2.2 we rigorously
define the canonical and microcanonical ensembles of weighted networks with given
strength sequence. In Sec. 2.3 we introduce two criteria for the (non)equivalence of the
ensembles, one based on the relative entropy between the corresponding probability
distributions (measure equivalence) and one based on the relative fluctuations of the
constraints. In Sec. 2.4 we study in detail a model defined by the simplest family
of strength sequences, driven by a temperature parameter, such that we can observe
both a BEC and a non-BEC phase. In Sec. 2.5 we offer our conclusions. Finally, the
Appendix contains useful calculations needed to establish the scaling of the relative
entropy in all the regimes considered.

2.2 Canonical and microcanonical ensembles of weighted
networks

In this section, we introduce the definition of weighted networks and of canonical and
microcanonical ensembles of weighted networks with given strength sequence.
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Figure 2.1. Example of four weighted networks W1, W2, W3, W4 having the same number
n = 8 of nodes (labelled from a to h) and the same strength sequence ~s(Wi) = ~s∗ =
(11, 6, 5, 13, 8, 5, 2, 4) (i = 1, 4), but different structure (Wi 6= Wj for all i 6= j). The dashed
blocks highlight the links from node a to its neighbours: in different networks, node a can
have different neighbours and, importantly, different distributions of link weights (more or
less concentrated on specific neighbours). More homogeneous choices of ~s∗ would result in
less concentrated link weights, while more heterogeneous choices of ~s∗ would result in more
concentrated link weights.

2.2.1 Weighted network ensembles
Weighted networks are widely used to describe systems with a large number of com-
ponents and heterogeneous patterns of interaction [17]. We represent a possible con-
figuration of a weighted network with n nodes as an n×n weighted adjacency matrix
W. Each entry of the matrix wij (1 ≤ i ≤ n, 1 ≤ j ≤ n) denotes the weight of the
link between node i and node j, which is taken from the set N of natural numbers
(including zero, which corresponds to the absence of a link between i and j). In
this work, we only consider undirected networks without self-loops, thus the weighted
matrix W is a symmetric matrix (wij = wji for all i, j) and its diagonal elements are
zero (wii = 0 for all i). The number of independent entries of each such matrix is
therefore (n2) = n(n− 1)/2.

An ensemble of weighted networks on n nodes is the discrete (infinite) set Wn =

Nn(n−1)/2 of all available configurations for the matrix W and a probability dis-
tribution P (W) over Wn that is specified by a given vector ~C(W) of constraints,
which can be enforced either as a soft constraint (canonical ensemble) or as a hard
constraint (microcanonical ensemble) [44]. So the matrix W is a possible outcome of
a random variable. We will consider the weighted configuration model, for which the
constraints are the strengths of all nodes, i.e. the strength sequence ~C(W) = ~s(W),
where the strength si(W) of node i is a local sum of all the link weights that connect
i to its neighbours in the particular network W:

si(W) =
n∑
j=1

wij , i = 1,n. (2.3)

Clearly, the number of scalar constraints is n, which coincides with the number of
nodes, so this model is a perfect example of a system subject to an extensive number
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of local constraints. In fact, it is the weighted counterpart of the binary configuration
model, where EN driven by local constraints was observed for the first time [5].

A crucial consequence of the presence of local constraints in weighted networks is
illustrated in Fig.2.1, where we show an example of different networks with the same
strength sequence. For a given choice of ~s∗, in different realizations of the network
each node i can have different neighbours and different distributions of weights on the
links that connect it to those neighbours. In particular, the strength s∗i can be more
or less concentrated on specific neighbours (a property that is usually quantified by
the so-called disparity [48]). However, more homogeneous choices of ~s∗ unavoidably
result in less concentrated link weights, while more heterogeneous choices of ~s∗ impose
more concentrated link weights. This fact will allow us to consider (in Sec. 2.4)
different structural regimes ranging between two extreme limits: a constant (infinite-
temperature) strength sequence implying that on average each node is connected to
its neighbours in an equally strong way, and a ‘step-like’ (zero-temperature) strength
sequence implying an extreme concentration of link weights among a small subset of
the n nodes. In between these two limits, a certain critical temperature separates
a ‘non-condensed’ (high-temperature) phase from a ‘condensed’ (low-temperature)
phase featuring the properties of BEC.

2.2.2 Canonical weighted network ensemble
We first discuss how to implement the strength sequence constraint mathematically in
the canonical ensemble (soft constraint) [44]. Recall that in the traditional canonical
ensemble the inverse temperature β∗ is the only (scalar) parameter of the canonical
probability distribution Pcan(W|β∗), conjugate to a certain (scalar) total energy E∗ in
the corresponding microcanonical ensemble. Explicitly, Pcan(W|β∗) is the Boltzmann
distribution Pcan(W|β∗) = e−β

∗E(W)/Z(β∗) with inverse temperature β∗ = 1/kT ∗.
By contrast, in our setting the canonical distribution Pcan(W|~β∗) has to depend on
an n-dimensional vector ~β∗ of parameters, conjugate to the n-dimensional constraint
~s∗ which, in turn, defines the microcanonical ensemble. This distribution is found by
maximizing the Gibbs-Shannon entropy functional defined in Eq. (2.1) under the soft
constraint

〈~s〉~β∗ =
∑

W∈Wn

Pcan(W|~β∗)~s(W) ≡ ~s∗ (2.4)

which generalizes the conjugacy condition in Eq. (2.2). The solution to the maxi-
mization problem sees ~β∗ play the role of a vector of Lagrange multipliers coupled to
the strength sequence ~s∗, and is given by [44]

Pcan(W|~β∗) =
e−H(W,~β∗)

Z(~β∗)
, (2.5)

where the (network) Hamiltonian H(W, ~β) = ~β · ~s(W) is the linear combination of
the node strengths, the partition function Z(~β) =

∑
W∈Wn e

−H(W,~β) is a normaliza-
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tion constant, and ~β∗ is the unique parameter value realizing Eq. (2.4). Note that
Eq. (2.5) has still the form of the Boltzmann distribution, with the important caution
that the inverse temperature has been reabsorbed into the Hamiltonian. Therefore, to
keep the parallel with the traditional physical situation, in our setting, the Hamilto-
nian should be thought of as the inverse temperature times the energy, and ~β∗ as the
inverse temperature times a vector of ‘fields’, each coupled to a different constraint.
Clearly, since the probability in Eq. (2.5) must be dimensionless, the product ~β ·~s(W)
must be dimensionless as well. In Sec. 2.4, we will notice that the Hamiltonian can
be further reinterpreted as also incorporating a ‘chemical potential’ governing the
expected weight of the links in the network [20].

Notably, Pcan(W|~β∗) depends on W only through ~s(W). In particular, it gives
the same value Pcan(W∗|~β∗) to any network W∗ such that ~s(W∗) = ~s∗. Explicitly,
given the definition of node strength in Eq. (2.3), the network Hamiltonian can be
written for a generic value of ~β as

H(W, ~β) =
n∑
i=1

∑
i<j

(βi + βj)wij . (2.6)

The partition function can be easily shown [44] to be

Z(~β) =
n∏
i=1

∏
i<j

1
1− e−(βi+βj )

(2.7)

provided that βi + βj > 0 for all i, j (otherwise, the model admits no solution). The
canonical probability distribution therefore factorizes over pairs of nodes as

Pcan(W|~β) =
n∏
i=1

∏
i<j

qij(wij |~β), (2.8)

where
qij(w|~β) =

e−(βi+βj )w

[1− e−(βi+βj )]−1
(2.9)

is the probability that the weight of the link between nodes i and j takes the partic-
ular value w. Therefore different pairs of nodes are statistically independent in the
canonical ensemble (while they are not in the microcanonical one).

Note that qij(w|~β) is a geometric distribution [49, 44] with expected value

〈wij〉~β =
∑
w∈N

w qij(w|~β)

=
∑
w∈N

w
e−(βi+βj )w

[1− e−(βi+βj )]−1

=
e−(βi+βj )

1− e−(βi+βj )
(2.10)
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(representing the expected weight of the link connecting nodes i and j) and variance

Var~β(wij) =
e−(βi+βj )

[1− e−(βi+βj )]2
= 〈wij〉~β(1 + 〈wij〉~β). (2.11)

As we will discuss in detail is Sec. 2.4, Eq. (2.10) has the form of Bose-Einstein
statistics, where 〈wij〉~β plays the role of an expected occupation number for the state
labeled by nodes i and j. In an appropriate ‘low-temperature’ regime, BEC can
emerge into the model through the divergence of the occupation number 〈wij〉~β for
one (possibly degenerate) ‘ground state’ (corresponding to βi + βj → 0+), while the
occupation number for the other states remains finite [46, 44, 19]. This discussion
requires a series of considerations that we leave for later. For the moment, we notice
that Eq. (2.10) allows us to determine the special value ~β∗ corresponding to the given
strength sequence ~s∗. Summing over all nodes j 6= i, the average value of the strength
of node i is

〈si〉~β =
∑
j 6=i
〈wij〉~β =

∑
j 6=i

e−(βi+βj )

1− e−(βi+βj )
, (2.12)

whence we can reformulate Eq. (2.4) as

∑
j 6=i
〈wij〉~β∗ =

∑
j 6=i

e
−(β∗i +β

∗
j )

1− e−(β
∗
i +β

∗
j )
≡ s∗i i = 1,n (2.13)

which fixes the unique parameter value ~β∗. Notably, this value is also the one that
maximizes the (log-)likelihood [18, 44], i.e.

~β∗ = argmax~β lnPcan(W∗|~β), (2.14)

where, again, W∗ is any configuration such that ~s(W∗) = ~s∗. In general, it is not
possible to write ~β∗ explicitly as a function of ~s∗. However, Eq. (2.13) or equivalently
Eq. (2.14) can be efficiently solved numerically [49, 44] using various algorithms that
have been coded for this purpose [50, 51]. In any case, a general property (that we
will use later) is that for any two nodes i and j with the same expected strength
(s∗i = s∗j ), the corresponding parameters β∗i and β∗j obey the same equation in (2.13)
and are therefore equal. In other words, s∗i = s∗j implies β∗i = β∗j .

Once ~β∗ is calculated, we can plug it back into Eq. (2.8) to finally obtain the
probability distribution

Pcan(W|~β∗) =
n∏
i=1

∏
i<j

e
−(β∗i +β

∗
j )wij

[1− e−(β
∗
i +β

∗
j )]−1

(2.15)

that characterizes the canonical ensemble entirely. For practical purposes, ~β∗ can be
inserted into Eq. (2.9) to obtain the link weight probability qij(w|~β∗), from which
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several expected network properties can be calculated very directly. For instance,
besides the expected link weight 〈wij〉~β∗ , we can calculate the probability that nodes
i and j are connected by a link, irrepective of the weight of the latter, as follows:

p∗ij ≡ 〈Θ(wij)〉~β∗

=
∞∑
w=1

w qij(w|~β∗)

= 1− qij(0|~β∗)

= e
−(β∗i +β

∗
j )

=
〈wij〉~β∗

1 + 〈wij〉~β∗
, (2.16)

where Θ(x) denotes the Heaviside step function, defined as Θ(x) = 1 if x > 0 and
Θ(x) = 0 if x ≤ 0. Note that, if i and j belong to the condensed state where the
expected link weight 〈wij〉~β∗ diverges (β

∗
i +β∗j → 0+), then they become deterministi-

cally connected, i.e. p∗ij → 1−. By contrast, non-condensed states have 〈wij〉~β∗ <∞,
β∗i + β∗j > 0, and p∗ij < 1. The analogy with BEC will be discussed in much more
detail in Sec. 2.4.

Besides the structural properties, one of the key quantities that we will need in
order to determine EE (or the lack thereof) is the resulting canonical entropy S∗can,
obtained by inserting Eq. (2.15) into Eq. (2.1):

S∗can ≡ S[Pcan(W|~β∗)]
= 〈H(W, ~β∗)〉+ lnZ(~β∗)
= ~β∗ · 〈~s(W)〉+ lnZ(~β∗)
= ~β∗ · ~s∗ + lnZ(~β∗)
= − lnPcan(W∗|~β∗). (2.17)

Note that the calculation of the canonical entropy S∗can of the entire weighted network
ensemble only requires the knowledge of the probability of one generic network W∗

with strength sequence ~s∗, which is in turn directly calculated through Eq. (2.15).

2.2.3 Microcanonical weighted network ensemble
We now come to the microcanonical ensemble. Its governing probability distribution
Pmic(W|~s∗) can be obtained by maximizing the Gibbs-Shannon entropy functional in
Eq. (2.1) under the hard constraint

~s(W) = ~s∗ (2.18)
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that applies to each network W realized (with positive probability) in the set Wn.
The solution is obviously the uniform probability distribution

Pmic(W|~s∗) =
{

Ω−1
~s∗ ~s(W) = ~s∗

0 ~s(W) 6= ~s∗
(2.19)

where Ω~s∗ is the number of networks for which the hard constraint in Eq. (2.18) is
realized. An implicit assumption throughout this paper is that the particular strength
sequence ~s∗ is graphic, i.e. it can be realized by at least one network, so that Ω~s∗ > 0.
In this case as well, the (microcanonical) entropy is obtained by inserting Eq. (2.19)
into Eq. (2.1):

S∗mic ≡ S[Pmic(W|~s∗)]
= ln Ω~s∗

= − lnPmic(W∗|~s∗), (2.20)

which is also known as Boltzmann entropy. Note that W∗ has the same meaning as
in Eq. (2.17), therefore both the canonical and microcanonical entropies are equal to
minus the log of the corresponding probability, evaluated in any state W∗ realizing
the hard constraint in Eq. (2.18).

Note that, although the derivation of Pmic(W|~s∗) is formally much more direct
than that of Pcan(W|~β∗) in the conjugate canonical ensemble, its explicit calculation is
more challenging, as it requires the combinatorial enumeration of all the Ω~s∗ weighted
networks with strength sequence ~s∗ (as a side remark, it is precisely the local nature
of ~s∗ that makes the calculation of Ω~s∗ daunting). Here, we will employ a recently
proposed saddle-point asymptotic formula, for a generic discrete system under a K-
dimensional vector ~C∗ of effective (see Sec. 2.1.3) constraints, for the number Ω ~C∗
of microcanonical configurations [37]. The formula uses only conjugate canonical
quantities, namely the canonical entropy S∗can and the K ×K covariance matrix Σ∗
among the K constraints in the canonical ensemble, and reads [37]

Ω ~C∗ =
eS
∗
can√

det(2πΣ∗)

K∏
k=1

[1 +O(1/λ∗k)], (2.21)

where {λ∗k}Kk=1 are the eigenvalues of Σ∗. The symbol O(x) indicates a quantity with
a finite limit when divided by x as n → ∞, i.e. O(x) is asymptotically of the same
order as x. Note that, since covariance matrices are positive semidefinite, λ∗k ≥ 0
for all k. Moreover, since the constraints are assumed to be non-redundant, then
λ∗k > 0 for all k [37] (if some of the constraints were redundant, there would be
certain zero eigenvalues rendering the above equation inapplicable; that is why the
formula should be applied to a maximal set of K non-redundant constraints). Finally,
if these eigenvalues grow sufficiently fast as n → ∞, then the product on the right
hand side becomes irrelevant, in which case the knowledge of S∗can and det(2πΣ∗) is
enough in order to characterize the asymptotics of Ω ~C∗ .
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In our setting where ~C∗ = ~s∗ and K = n (node strengths are all mutually inde-
pendent as it is not possible to guess any individual node strength from the knowledge
of the other n− 1 ones), we calculate the entries of Σ∗ as

Σ∗ij ≡ Cov~β∗(si, sj)
= 〈sisj〉~β∗ − 〈si〉~β∗〈sj〉~β∗

=
∂2 lnZ(~β)
∂βi∂βj

∣∣∣∣∣
~β=~β∗

(2.22)

where Z(~β) is given by Eq. (2.7). An explicit calculation gives

Σ∗ii = Var~β∗(si)

=
∑
j 6=i

e
−(β∗i +β

∗
j )

[1− e−(β
∗
i +β

∗
j )]2

=
∑
j 6=i
〈wij〉~β∗(1 + 〈wij〉~β∗) (2.23)

for the diagonal entries (i.e. the variances of the constraints) and

Σ∗ij = Cov~β∗(si, sj)
= Var~β∗(wij)

=
e
−(β∗i +β

∗
j )

[1− e−(β
∗
i +β

∗
j )]2

= 〈wij〉~β∗(1 + 〈wij〉~β∗) (i 6= j) (2.24)

for the off-diagonal entries (i.e. the covariances between distinct constraints).
We finally obtain

S∗mic = ln Ω~s∗ (2.25)

= S∗can − ln
√

det(2πΣ∗) +
n∑
k=1

ln[1 +O(1/λ∗k)]

where we have used
√

det(2πΣ∗) =
∏n
k=1

√
2πλ∗k. Note that the eigenvalues {λ∗k}nk=1

are positive, the n node strengths being linearly independent constraints [37]. In
principle, in order to compute (the leading term of) Eq. (2.25) explicitly, we need to
specify a value for ~s∗, calculate the resulting matrix Σ∗, and the eigenvalues of the
latter. However, in Sec. 2.3 we show that the knowledge of the diagonal elements of
the covariance matrix is enough for our purposes. This result is then used in Sec. 2.4
when we consider specific choices of ~s∗.
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Figure 2.2. Illustration of the nonequivalence of ensembles of weighted networks with given
strength sequence ~s∗ in the measure sense. Schematically, the x axis represents all weighted
networks W ∈ Wn. Here, n = 8 and ~s∗ = (11, 6, 5, 13, 8, 5, 2, 4). The Ω~s∗ networks matching
the particular strength sequence ~s∗, i.e. those for which ~s(W) = ~s∗, are represented in the
middle. The y axis represents the canonical and microcanonical probabilities for each net-
work. The microcanonical distribution Pmic(W|~s∗) assigns zero probability to the networks
for which ~s(W) 6= ~s∗, and uniform probability Pmic(W∗|~s∗) = Ω−1

~s∗ to each network W∗ for
which ~s(W∗) = ~s∗. By contrast, the conjugate canonical distribution Pcan(W|~β∗) assigns
positive probability to all the networks in Wn and therefore has ‘tails’ that extend all over
the x axis. Normalization implies that, while also the canonical probability gives a constant
value Pcan(W∗|~β∗) to each network W∗ with the strength sequence ~s∗, this value is (for n
finite) smaller (lower plateau) than the corresponding microcanonical one (upper plateau):
Pcan(W∗|~β∗) < Pmic(W∗|~s∗). Indeed, the blue and red areas should be equal because of
normalization. Intuitively, the two ensembles become equivalent in the thermodynamic limit
if, sufficiently fast as n → ∞, the canonical tails vanish (the blue areas disappear) and
the canonical plateau ‘catches up’ with the microcanonical one (the red area disappears).
Measure equivalence formalizes this ‘sufficiently fast’ rigorously, finding that EE corresponds
to the condition limn→∞[lnPmic(W∗|~s∗)− lnPcan(W∗|~β∗)]/n = 0. It turns out that this
is not the case for the model discussed here: canonical and microcanonical ensembles of
weighted networks with given strength sequence are not equivalent.
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2.3 Equivalence and nonequivalence of weighted net-
work ensembles

In this section we use the knowledge of the canonical and microcanonical probability
distributions derived in the previous section in order to establish two criteria for the
equivalence of ensembles of weighted networks, namely the one based on the vanishing
of the relative entropy density between the two distributions [8] and the traditional
one based on the vanishing of the canonical relative fluctuations of the constraints [1].

2.3.1 Relative entropy density
As we have anticipated, EE can be stated mathematically using three different no-
tions, namely thermodynamic, macrostate and measure equivalence [8]. These defini-
tions turn out to be, under mild assumptions, essentially equivalent [8]. Here, we use
the definition in the measure sense, which has been recently formulated explicitly for
binary network ensembles [5, 26, 45, 37] and is based on the vanishing of a suitable
relative entropy density between the microcanonical and canonical probability distri-
butions. Our calculations generalize those results to the case of weighted networks,
for which measure equivalence has not been studied yet.

In general, the relative entropy (or Kullback-Leibler divergence) between two dis-
tributions P and Q, both having support over a discrete set Wn = {W} of configu-
rations in analogy with Eq. (2.1), is defined as

D[P ||Q] ≡
∑

W∈Wn

P (W) ln P (W)

Q(W)
(2.26)

and quantifies ‘how far’ the distribution P is from the reference distribution Q [52].
When P and Q represent the microcanonical and canonical distributions respectively,
it can be shown [5, 37] that D[P ||Q] reduces to the difference between the canonical
and microcanonical entropy, which can be both estimated on a single configuration
realizing the hard constraint (as we have indeed shown in the previous section for our
weighted network model). Moreover, its calculation asymptotically requires only the
canonical covariance matrix Σ∗ between the constraints.

We are now going to see how these general results apply to our specific case.
A visual illustration of the idea behind measure equivalence for our ensembles of
weighted networks with given strength sequence is provided in Fig. 2.2. Following
Eq. (2.26), the relative entropy between Pmic(W|~s∗) and Pcan(W|~β∗) is defined as

D∗ ≡ D[Pmic(W|~s∗)||Pcan(W|~β∗)]

=
∑

W∈Wn

Pmic(W|~s∗) ln Pmic(W|~s∗)
Pcan(W|~β∗)

. (2.27)

By inserting Eq. (2.19) into Eq. (2.27) and using the fact that Pcan(W|~β∗) has the
same value for any network W∗ matching the hard constraint ~s(W∗) = ~s∗, we confirm
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that D∗ can be estimated pointwise on W∗ as

D∗ = lnPmic(W∗|~s∗)− lnPcan(W∗|~β∗). (2.28)

Moreover, using Eqs. (2.17) and (2.20), we also confirm that it reduces to the entropy
difference

D∗ = S∗can − S∗mic. (2.29)
Now, Eq. (2.25) immediately allows us to obtain

D∗ = ln
√

det(2πΣ∗) +
n∑
k=1

ln[1 +O(1/λ∗k)] (2.30)

which depends only on the eigenvalues of the canonical covariance matrix Σ∗, whose
diagonal and off-diagonal entries are given in Eqs. (2.23) and (2.24) respectively.

The definition of measure equivalence is the vanishing of the relative entropy
density, i.e. of the ratio D∗/n, in the thermodynamic limit [8]. Explicitly, EE in the
measure sense corresponds to

d∗ ≡ lim
n→∞

D∗

n
= 0 (2.31)

or equivalently [37]
D∗ = o(n), (2.32)

where o(n) denotes a quantity that, if divided by n, vanishes as n → ∞. Equa-
tion (2.29) allows us to understand the above definition of macrostate EE as follows.
The microcanonical entropy S∗mic is the logarithm of the number of accessible con-
figurations under hard constraints, while the canonical entropy S∗can is the logarithm
of the corresponding ‘effective’ number of configurations under soft constraints. EE
requires that, as n increases, the typical configurations of the system under the two
ensembles become the same, i.e. that the (effective) numbers of configurations in
the two ensembles become closer to each other. This cannot happen if, as we keep
adding one more unit to the system, the difference between the two entropies (i.e.
the relative entropy D∗) keeps increasing by an arbitrary amount. The criterion in
Eq. (2.31) establishes that if the entropy difference per node, i.e. D∗/n, does not
vanish as n diverges, then the two ensembles cannot be equivalent.

Equation (2.32) implies that, in order to assess whether the system is under EE,
we do not need the exact value of D∗, but only its leading order with respect to n.
Then from Eq. (2.30) we see that, since the term 1+O(1/λ∗k) is at most of the same
order as

√
2πλ∗k, the presence of O(1/λ∗k) does not affect ensemble (non)equivalence:

D∗ = O

(
n∑
k=1

lnλ∗k

)
= O(ln det Σ∗). (2.33)

So, in order to check whether Eq. (2.32) holds, it is ultimately enough to check whether

ln det Σ∗ = o(n). (2.34)
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On the other hand, since our hypothesis of non-redundant constraints implies λ∗k >
0 for all k (as discussed in Sec. 2.2.3), we see that the contribution of the term∑n
k=1 ln[1 + O(1/λ∗k)] to the relative entropy in Eq. (2.30) is at most O(n). So if

ln
√

det(2πΣ∗) grows faster than O(n) then Eq. (2.30) reduces to the stronger result

D∗ ≈ ln
√

det(2πΣ∗) ≈ 1
2 ln det Σ∗, (2.35)

i.e. the leading term of the relative entropy (not only its leading order) can be cal-
culated exactly from ln det Σ∗ (throughout this paper, the symbol “x ≈ y” indicates
that the leading term of x and y is asymptotically the same, i.e. the two quantities
differ by a quantity that vanishes if divided by either x or y as n→∞). Depending
on the regimes considered later on in the paper, different techniques for calculating
(the leading order of) the determinant of the covariance matrix Σ∗ can be used. We
will discuss these techniques when needed, and refer to the Appendix for explicit
calculations. We will show that, except in a certain zero-temperature limit, the con-
ditions ensuring Eq. (2.35) are met and the leading order of the relative entropy can
be calculated exactly.

2.3.2 Relative fluctuations of the constraints
We now consider the relative fluctuations of the constraints, whose behaviour in the
thermodynamic limit is, historically, the traditional criterion used to check whether
statistical ensembles are equivalent [1]. In the standard situation, where the canonical
and microcanonical ensembles are defined through a single scalar constraint on the
total energy E, the relative fluctuations are captured by a single scalar quantity
r∗ ≡ σβ∗(E)/E∗ representing the ratio of the canonical standard deviation of the
energy to the mean energy itself. EE is then associated with the vanishing of r∗ as
n → ∞. In statistics, r∗ is called the coefficient of variation of the random variable
E with expected value E∗ and variance σ2

β∗(E)
In the case of networks with local constraints, there are n coefficients of variation

to consider. They have been calculated for both the binary and the weighted versions
of the configuration model [49]. In extreme summary, those results show that, in the
binary case (where there is a constraint on the degree k∗i for each node i = 1,n), an
upper bound 1/

√
k∗i for the relative fluctuation r∗i = σβ∗(ki)/k∗i can been established.

By contrast, in the weighted case (corresponding to the model considered here with
a constraint on the strength s∗i for each node i = 1,n), the value 1/

√
s∗i becomes a

lower bound for the relative fluctuation r∗i = σβ∗(si)/s∗i [49]. Those results have two
implications.

First, in the binary case the only regime for which general conclusions can be drawn
about the vanishing of the relative fluctuations is the so-called dense regime where the
expected degree of all nodes diverges, hence r∗i → 0. In the opposite sparse regime
where the average degree of all nodes is finite, we only have a finite upper bound
for the relative fluctuations, but their actual value depends on the specific network.
In general, however, the decreasing behaviour of the upper bound for the relative
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fluctuations in binary networks with increasing degrees is opposite to that of the
relative entropy density, which increases as the expected degree increases [5, 26, 45].

Second, in the weighted case we have a somewhat opposite situation where we can
only conclude that, in the sparse regime where the expected strengths are finite (apart
from possible hubs), the relative fluctuations do not vanish. By contrast, in the dense
case where the expected strengths diverge, the relative fluctuations can in principle
pick any value. Confusingly, even if in the weighted case the lower bound for the
relative fluctuations of the strengths goes to zero for nodes with diverging strength
s∗i , previous results seem to indicate that the realized value of r∗i in networks with
heterogeneous strength sequence actually increases for higher s∗i [49]. This behaviour
suggests that weighted networks, due to the many possible ways in which weight
can accumulate on links, can behave very differently from binary networks. This
observation requires further research and strengthens our motivation for studying
the relative fluctuations in weighted networks in different scenarios (ranging from
homogeneous to heterogenous concentrations of link weights), in conjunction with
the relative entropy and, in general, ensemble (non)equivalence.

Using Eq. (2.23), we can immediately calculate the standard deviation of each
constraint si around its expected value s∗i as

σ~β∗(si) =
√

Var~β∗(si)

=

√√√√∑
i 6=j

e
−(β∗i +β

∗
j )

[1− e−(β
∗
i +β

∗
j )]2

=

√∑
i 6=j
〈wij〉~β∗(1 + 〈wij〉~β∗)

=

√
s∗i +

∑
i 6=j
〈wij〉2~β∗ . (2.36)

The relative fluctuation of the strength is therefore

r∗i =
σ~β∗(si)

s∗i
=

√√√√ 1
s∗i

+

∑
i 6=j〈wij〉2~β∗

(
∑
i 6=j〈wij〉~β∗)

2 , (2.37)

Since 〈wij〉~β∗ ≥ 0 for all i, j, we have (
∑
i 6=j〈wij〉~β∗)

2 ≥
∑
i 6=j(〈wij〉~β∗)

2, showing that
1/
√
s∗i is indeed a lower bound for r∗i . When studying the asymptotic behaviour of

the relative fluctuations in the thermodynamic limit, we will be interested in whether
the limit

ρ∗i ≡ lim
n→∞

r∗i (2.38)

is zero (vanishing relative fluctuations) or positive (nonvanishing relative fluctuations)
for each node i = 1,n.
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2.4 BEC in weighted networks
In physical systems composed of bosons, i.e. particles obeying Bose-Einstein statistics,
BEC is a phase transition whereby, below a certain critical temperature, a finite
fraction of the total number of particles condenses in the ground state, i.e. the state
with lowest energy (or more generally in a finite number of states with lowest energy).
BEC was theoretically predicted by Satyendra Nath Bose and Albert Einstein in
1924 [53], and it has since then been observed in various physical systems. Models of
BEC have been studied in different statistical ensembles in the standard case with only
global constraints (total energy and/or total number of particles) [54–59]. Although
the detailed phenomenology exhibited by these models depends on the choice of the
energy and the structure of the interactions, it is generally found that EE breaks
down in the condensed (low-temperature) phase, as signalled by nonvanishing relative
fluctuations of the constraints.

In this Section, we are going to show that a form of BEC, even if quite different
from that found in more traditional physical settings, can also appear in our ensem-
bles of weighted networks. The possible onset of BEC in our system creates an ideal
situation where an EE-breaking phase transition can be studied in combination with
an additional and unrelated mechanism for the breakdown of EE, i.e. the presence of
local constraints, which is always active in both the condensed and the non-condensed
phases. To illustrate our results, we first make some important clarifications in or-
der to establish a rigorous link from weighted network ensembles to Bose-Einstein
statistics and then study the different phases of the model.

2.4.1 Bose-Einstein statistics in weighted networks
As we have already recalled, weighted networks with a constraint on the strength se-
quence obey Bose-Einstein statistics, as opposed to binary networks that obey Fermi-
Dirac statistics [46, 19, 20]. Indeed, inserting Eq. (2.6) into Eq. (2.5) we get the
probability of a configuration for a gas of free particles in the grandcanonical en-
semble3, where the pair i, j labels an energy state, the weight wij is the number of
particles in that state (occupation number), and the sum βi + βj can be interpreted
as

βi + βj =
εij − µ(T )

kT
. (2.39)

In the latter expression, εij represents the energy of the state, 1/kT is the inverse tem-
perature, and µ(T ) is the chemical potential (required to fix the same expected overall
number of particles for all values of T ) [20]. Indeed, as we discussed in Sec. 2.2.2, in

3In the grandcanonical ensemble, both the total energy and the total number of particles are
treated as soft constraints. With respect to the canonical ensemble, the appearance of the number of
particles as an additional soft constraint requires the introduction of an extra Lagrange multiplier,
the chemical potential.Interestingly, in the context of BEC a fourth (so-called ‘Maxwell’s Demon’)
ensemble has also been introduced where the total number of particles is soft while the total energy
is hard [54].
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our setting the energy and temperature (and in this case, the chemical potential as
well) are all reabsorbed into ~β. Therefore we can interpret the link weight wij as the
number of ‘elementary particles’ of weight, i.e. the number of quanta of unit weight,
populating the link between nodes i and j [46, 19]. The total number of such particles
in the system is the total weight W of all links in the network:

W (W) =
n∑
i=1

∑
j<i

wij =
1
2

n∑
i=1

si(W). (2.40)

The ‘weighted’ property wij ∈ N, which leads to Eqs. (2.7), (2.8) and (2.9), corre-
sponds to the possibility that the same state (pair of nodes) is occupied by indefinitely
many particles (subject to the average number dictated by the chemical protential),
which is a property of bosons. By contrast, in binary networks one has to impose
wij ∈ (0, 1), which is a property of fermions [46]. An extensive treatment of the role
of chemical potential and temperature in binary networks can be found in [20]. Here,
to properly interpret what the weighted model is doing, we should give a series of
clarifications.

First, we should make a clear distrinction beween the n ‘units’ of our system (i.e.
the nodes of the network) and the W ‘particles’ of weight that, as a formal analogy,
can be interpreted as populating the links of the network. The former are the real
constituents of our physical system, while the latter are a mathematical abstraction
used to represent the nature of the interactions (links) between such constituents. If
we imagine doubling the size of our network, we should imagine doubling the number
n of nodes: indeed, we can imagine the network ‘growing in size’ by adding one single
node at a time, but we cannot imagine adding one single pair of nodes at a time,
without actually adding n new pairs. One should also not be tempted to regard
node pairs as the fundamental units by the fact that, mathematically, the n(n− 1)/2
variables {wij} involving different pairs of nodes are independent random variables:
actually, this only occurs in the canonical ensemble and would in any case not be
true for more general choices of the constraints. Moreover, even the n(n − 1)/2
independent node pairs in the canonical ensemble cannot be assigned independent
values of the parameters, since there are only n parameters corresponding to the
Lagrange multipliers attached to each node. Explicit (and strong) consequences of
this fact will be illustrated precisely in the context of BEC. Therefore the physical
size of our system is n, and this is why in Eq. (2.31) we defined the relative entropy
density as the relative entropy divided by n in the first place. How the total weightW
varies with the system size n depends on a specific property, i.e. on how we make the
entries of ~s∗ (and the resulting value of W ∗ =

∑n
i=1 s

∗
i /2) scale with n. For instance,

we may choose to be in the sparse regime where ~s∗ remains finite as n → ∞, or in
the dense regime where ~s∗ diverges as n → ∞. As we show below, the latter is the
relevant case for BEC to emerge.

Second, we stress that, irrespective of the above, we always consider a hard num-
ber n of nodes, and this is why we compare (only) the canonical (soft value of ~s)
and microcanonical (hard value of ~s) ensembles of networks, both for fixed n (which
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sets the dimension of ~s). We do not consider the grandcanonical ensemble of network
configurations where n is soft. The grandcanonical ensemble introduced in the afore-
mentioned analogy with systems of bosons is a different one; it may be denoted as
an ensemble of weight quanta in a network with fixed n and originates from the fact
that the Hamiltonian in Eq. (2.6), and consequently the total link weight (not n) in
Eq. (2.40), is a fluctuating quantity in the canonical ensemble of network configura-
tions. The fluctuations in the (rescaled) energy H (canonical ensemble of network
configurations) are seen as fluctuations in the particle number W (grandcanonical
ensemble of weight quanta) in the Bose-Einstein analogy. Fluctuations in the particle
number have been the subject of many studies in the literature on BEC [54–59]. Note
that, in both canonical and microcanonical ensembles, the individual link weights
{wij} are fluctuating quantities, despite the fact that the total link weight W ∗ is
constant in the microcanonical ensemble. Therefore the numbers of ‘weight particles’
of individual links fluctuate in both ensembles.

Third, while we necessarily discuss the (non)equivalence of the canonical and
microcanonical ensembles in the thermodynamic limit n → ∞, the total weight W ∗
can (and, across the canonical ensemble, will in any case) be arbitrarily large even
for finite n. Indeed, the phase transition that we are about to discuss (namely,
BEC) does not per se require the limit n → ∞, while it definitely requires the limit
W ∗ → ∞. Abstractly, these two limits (and the associated phenomena of EN and
BEC respectively) may appear as mathematically unrelated. However, in practice
they are physically related once the scaling of ~s∗ with n is specified. In particular, we
are going to show that, in order to observe BEC, we need be in a dense regime where
W ∗ = O(n2). This ensures that, when taking the thermodynamic limit n → ∞ in
order to study ensemble (non)equivalence, we are automatically implying W ∗ → ∞
so that we can check for BEC at the same time.

Last, we recall that ~β · ~s(W) has to be dimensionless in order to ensure that the
probability is a number. Therefore, since wij is dimensionless, so are s∗i and β∗i . In
turn, this implies that both sides of Eq. (2.39) must be dimensionless. On the other
hand, when modelling a real system, the ‘energy’ εij may represent any physical
‘cost’ associated to the link between nodes i and j (more precisely, it represents the
cost of reinforcing wij by a unit of weight) and may therefore carry its own unit of
measure (e.g. it may depend on some distance between nodes i and j). Necessarily, the
chemical potential µ(T ) carries the same units as the energy. As for the ‘temperature’
T , it may be chosen to be dimensionless as it merely represents a control parameter
(this is the choice that we will make later); alternatively, it may carry the same
units of the energy if it is useful that temperature and energy live on the same scale.
Irrespective of this choice, in our setting the ‘Boltzmann constant’ k is simply a
constant that takes care of all dimensional units of measure and makes the ratio on
the right hand side of Eq. (2.39) dimensionless.
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2.4.2 Core-periphery networks
With the above clarifications, we can finally go back to our model. In the traditional
physical situation, in the canonical ensemble the energy εij of each state i, j is a
constant and the temperature T can be varied. Clearly, εij is independent of T , while
the chemical potential µ(T ) is chosen, as a function of temperature, in order to realize
the correct (T -independent) expected total number 〈W 〉∗ ≡ W ∗ of particles for all
values of T . In this ‘direct problem’, every state will therefore have an expected
occupation number governed by εij , T and µ(T ). In our ‘inverse’ setting, T ∗ and µ∗
are instead reabsorbed into ~β∗, which in turn is induced by the chosen value of the
strength sequence (rather than the other way around). We should therefore regard
~s∗ = ~s∗(T ) and ~β∗ = ~β∗(T ) as T -dependent, while W ∗ remains T -independent. This
means that the chemical potential µ∗(T ) should be such that

n∑
i=1

s∗i (T ) = 2W ∗ ∀T ≥ 0. (2.41)

BEC emerges when, below a certain critical temperature Tc, the occupation num-
ber of the state with minimum energy εmin = mini,j{εij} (ground state), or of a finite
number of states with lowest energy, becomes so large that it reaches a finite fraction
of the total numberW ∗ of particles. Clearly, this requires the existence of at least two
different energy levels (the ground state and at least one ‘excited’ state). Therefore
the simplest way to obtain BEC in our model is by considering a strength sequence
of the form

s∗i (T ) =

{
s∗+(T ) i = 1,n+
s∗−(T ) i = n+ + 1,n s∗+(T ) ≥ s∗−(T ), (2.42)

i.e. by partitioning the n nodes into two classes, which we call core and periphery:
the core has a finite number

n+ = O(1) (2.43)

of nodes, each having a ‘large’ strength s∗+(T ), while the periphery has an extensive
number

n− = n− n+ = O(n) (2.44)

of nodes, each having a ‘small’ strength s∗−(T ). What we mean precisely by ‘small’
and ‘large’ will be clarified below. For the moment, we notice that the BEC phase
(T < Tc) corresponds to picking a ‘condensed’ value of ~s∗(T < Tc) such that, in
the thermodynamic limit, the core takes up a finite fraction of the total weight W ∗
of all links in the network, despite having a finite size. In particular, in the zero-
temperature limit all the total weight W ∗ is in the core. By contrast, the non-
condensed phase T >Tc is one where ~s∗(T >Tc) is such that no individual link receives
a finite fraction of W ∗. In particular, the infinite-temperature limit should be such
that the energy difference between ground and excited states becomes ineffective, i.e.

32



s∗+(T →∞) = s∗−(T →∞). The different phases can be efficiently monitored by
introducing a temperature-dependent order parameter Q∗(T ), as we show below.

We stress that, since we are ultimately interested in the relative fluctuations of the
canonical constraints and in the relative entropy that can be asymptotically calculated
purely from canonical quantities according to Eq. (2.33), practically we only need to
study the canonical ensemble. The only check we need to make is that, whenever we
speak of the system being in a certain ‘phase’, this statement does not depend on the
particular ensemble. In other words, we need to show that the order parameter has
always the same value in the canonical and microcanonical ensembles.

Before studying the individual phases, let us make some general considerations,
valid for all values of T . We first find the value of ~β∗(T ) corresponding to the value
of ~s∗(T ) in Eq. (2.42). As we mentioned, s∗i (T ) = s∗j (T ) implies β∗i (T ) = β∗j (T ),
therefore the entries of ~β∗(T ) take only two values β∗+(T ) and β∗−(T ) such that

β∗i (T ) =

{
β∗+(T ) i = 1,n+
β∗−(T ) i = n+ + 1,n β∗+(T ) ≤ β∗−(T ). (2.45)

These values solve the n equations in (2.13), which here reduce to the two independent
equations

(n+ − 1)w∗+(T ) + n−w
∗
0(T ) ≡ s∗+(T ) (2.46)

(n− − 1)w∗−(T ) + n+w
∗
0(T ) ≡ s∗−(T ) (2.47)

where we have defined

w∗+(T ) =
e−2β∗+(T )

1− e−2β∗+(T )
(2.48)

as the expected link weight 〈wij〉~β∗(T ) between any two nodes in the core (i, j = 1,n+),

w∗−(T ) =
e−2β∗−(T )

1− e−2β∗−(T )
(2.49)

as the expected link weight 〈wij〉~β∗(T ) between any two nodes in the periphery (i, j =
n+ + 1,n), and

w∗0(T ) =
e−β

∗
−(T )−β

∗
+(T )

1− e−β
∗
−(T )−β

∗
+(T )

=

√
w∗+(T )w

∗
−(T )√

1 +w∗+(T )
√

1 +w∗−(T )−
√
w∗+(T )w

∗
−(T )

=
1√

1 + 1/w∗+(T )
√

1 + 1/w∗−(T )− 1
(2.50)
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as the expected link weight 〈wij〉~β∗(T ) between any node in the core and any node in
the periphery (i = 1,n+ and j = n+ + 1,n or j = 1,n+ and i = n+ + 1,n). Note
that β∗+(T ) ≤ β∗−(T ) implies w∗−(T ) ≤ w∗0(T ) ≤ w∗+(T ).

Now, solving Eqs. (2.46) and (2.47), we obtain the explicit values of β∗+(T ) and
β∗−(T ) appearing in Eq. (2.45):

β∗±(T ) =
1
2 ln

1 +w∗±(T )

w∗±(T )
=

1
2 ln

(
1 + 1

w∗±(T )

)
. (2.51)

Also note from Eq. (2.50) that

β∗+(T ) + β∗−(T ) = ln
(

1 + 1
w∗0(T )

)
. (2.52)

Also, using Eq. (2.16) we can define

p∗±(T ) ≡ e
−2β∗±(T ) =

w∗±(T )

1 +w∗±(T )
(2.53)

as the probability that a link exists (irrespective of its weight) between any two core-
core (+) or any two periphery-periphery (−) nodes, and

p∗0(T ) ≡ e
−β∗+(T )−β

∗
−(T ) =

w∗0(T )

1 +w∗0(T )
(2.54)

as the probability that a link exists (irrespective of its weight) between a core node
and a periphery node.

From Eq. (2.39), we notice that the existence of the two values above for the entries
of ~β∗(T ) implies that there are three energy levels, associated with the energies

ε∗+ = µ∗(T ) + 2kTβ∗+(T ), (2.55)
ε∗− = µ∗(T ) + 2kTβ∗−(T ), (2.56)

ε∗0 = µ∗(T ) + kT [β∗+(T ) + β∗−(T )] =
ε∗+ + ε∗−

2 , (2.57)

where ε∗+ ≤ ε∗0 ≤ ε∗− (we recall that all energy values are finite and independent of
both T and n). The appearance of three distinct energy levels out of just two values of
the fundamental Lagrange multipliers confirms the interpretation that the true units
of the system are the nodes and not the node pairs: it would indeed be impossible for
our system to exhibit exactly two energy states, or in general to engineer an arbitrary
number of energy states for the node pairs, since the only arbitrary values are those
that can be attached to nodes, not to node pairs. Also note that all the three levels
above are degenerate: the n+(n+ − 1)/2 pairs of nodes in the core have the same
expected link weight w∗+(T ) and energy ε∗+, the n−(n− − 1)/2 pairs of nodes in the
periphery have the same expected link weight w∗−(T ) and energy ε∗−, and the n+n−
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pairs of nodes across core and periphery have the same expected link weight w∗0(T )
and energy ε∗0. Therefore the ground state has energy ε∗min = ε∗+ and degeneracy
n+(n+ − 1)/2. These degeneracies are dictated by the numbers of nodes in the two
sets and cannot be assigned arbitrarily.

The occupation number of the ground state (with energy ε∗+) coincides with the
expected weight of all links between core nodes (total ‘core-core’ weight):

W ∗+(T ) =
n+(n+ − 1)

2 w∗+(T ). (2.58)

Similarly, the occupation number of the first excited state (with energy ε0) coincides
with the expected weight of all links between nodes across core and periphery (total
‘core-periphery’ weight):

W ∗0 (T ) = n+n−w
∗
0(T ). (2.59)

Finally, the occupation number of the second excited state (with energy ε−) coin-
cides with the expected weight of all links between periphery nodes (total ‘periphery-
periphery’ weight):

W ∗−(T ) =
n−(n− − 1)

2 w∗−(T ). (2.60)

By writing W ∗ as the sum of its core-core, core-periphery and periphery-periphery
components, we get

W ∗ = W ∗+(T ) +W ∗0 (T ) +W ∗−(T )

=
n+(n+ − 1)

2 w∗+(T ) + n+n−w
∗
0(T )

+
n−(n− − 1)

2 w∗−(T ). (2.61)

Using Eq. (2.41), the total weight can also be expressed as

W ∗ =
n+s

∗
+(T ) + n−s∗−(T )

2 (2.62)

which, through Eqs. (2.46) and (2.47), indeed reduces to Eq. (2.61).
We stress again that the chemical potential µ∗(T ) appearing in Eqs. (2.55), (2.56)

and (2.57) plays the role of a global Lagrange multiplier ensuring that, for all values
of T , the total expected weight is W ∗. Note that the T -independence of W ∗ allows
us to conclude immediately that its value should be of order

W ∗ = O(n2) (2.63)

because, in particular, in the non-condensed phase all the n(n− 1)/2 individual link
weights w∗±, w∗0 must be finite by definition. As we have anticipated, this result
ensures that in the thermodynamic limit (n→∞) we automatically have W ∗ →∞,
so that we can study ensemble (non)equivalence and BEC simultaneously, thereby
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‘physically’ connecting two otherwise mathematically unrelated limits. We also note
that, irrespective of temperature, the network is always in the dense regime. We can
therefore introduce the average expected link weight

w∗ ≡ 2W ∗
n(n− 1) = O(1), (2.64)

which is a T -independent, finite parameter of our model, controlling the overall link
weight in the network. Clearly,

w∗−(T ) ≤ w∗ ≤ w∗+(T ) ∀T . (2.65)

It is good to remark again that, in our ‘inverse’ problem (construction of the
conjugate canonical and microcanonical ensembles), the parameters of the model are
the values of the constraints, which here reduce to the two (diverging when n→∞)
numbers s∗±(T ). However, to allow consistent comparisons for different temperatures,
not all strength sequences are allowed, but only those that can be obtained from one
another by varying T . In particular the values s∗±(T ) have to be specified for each
value of T and be such that the total weight is always W ∗. Indeed Eq. (2.62) shows
that only two of the three quantities s∗±(T ), W ∗ are independent. By contrast, the
traditional ‘direct’ problem in physics sees the three energies ε∗± and ε∗0 (which do
not depend on T ) as the parameters of the model, plus either w∗ or the chemical
potential µ∗(T ). However, Eq. (2.57) shows that ε∗0 = (ε∗+ + ε∗−)/2, indicating only
two independent values of the energy (say ε∗±), as a result of the fact that there
are only two types of nodes. Moreover, we may set the minimum energy ε∗+ ≡ 0
without loss of generality, because any overall energy shift can be reabsorbed into the
chemical potential. We can therefore rename the only remaining independent value
of the energy as ε∗− ≡ ε∗ > 0, and similarly ε∗0 = ε∗/2 > 0. Using these replacements
into Eqs. (2.55) and (2.56), and combining the two equations, we get

µ∗(T ) = −2kTβ∗+(T ) = ε∗ − 2kTβ∗−(T ) (2.66)

which is a convenient expression for solving the ‘direct’ problem. Rearranging, we
obtain

ε∗ = 2kT [β∗−(T )− β∗+(T )] . (2.67)
and, using Eqs. (2.51) and (2.53),

e−ε
∗/kT = e2[β∗+(T )−β

∗
−(T )]

=
p∗−(T )

p∗+(T )

=
w∗−(T )[1 +w∗+(T )]

w∗+(T )[1 +w∗−(T )]
, (2.68)

which shows how the energy difference ε∗ between periphery-periphery (+) and core-
core (−) states is related to the corresponding connection probabilities p∗±(T ) and
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expected link weights w∗±(T ). Therefore the most compact way of parametrizing
the direct problem is by specifying only the two finite, positive and T -independent
numbers ε∗ and w∗, and explore the resulting network properties by finding µ(T ) (as a
function of ε∗, w∗ and T ) and varying T as a control parameter. This will indeed allow
us to easily explore the different (high- and low-temperature) phases consistently.

In our model, BEC occurs below a critical temperature Tc such that a finite fraction
of the total weight W ∗ condenses in the core, which remains of finite size (i.e. of a
finite number n+ of nodes) even when the size of the whole network diverges. This
corresponds to requiring that, as n→∞, n+ remains finite as dictated by Eq. (2.43),
W ∗ diverges, and W ∗+(T ) takes up a finite fraction of W ∗. Rigorously, we can define
this fraction (for finite n) as

Q∗n(T ) ≡
W ∗+(T )

W ∗
(2.69)

and use it to introduce the order parameter as

Q∗(T ) ≡ lim
n→∞

Q∗n(T ) = lim
n→∞

W ∗+(T )

W ∗
. (2.70)

We can then define the BEC phase as a phase emerging below a certain critical
temperature Tc such that

Q∗(T <Tc) > 0. (2.71)
By contrast, the non-BEC phase is such that

Q∗(T >Tc) = 0. (2.72)

A visual anticipation of the qualitative behaviour that our system will exhibit is
provided in Fig. 2.3.

In conjunction with BEC, we will investigate ensemble (non)equivalence. There-
fore, in each phase of the model we will consider the relative entropy between the mi-
crocanonical and canonical ensembles and the relative fluctuations of the constraints.
The criterion for measure equivalence is based on the relative entropy in Eq. (2.33),
and useful techniques for the calculation of the determinant of the covariance matrix
Σ∗ in each phase are provided in the Appendix. Clearly, from Eqs. (2.23) and (2.45)
we see that the diagonal entries Σ∗ii of Σ∗ take two possible values:

Σ∗ii(T ) = σ2
~β∗(T )

(si) =

{
Σ∗+(T ) i = 1,n+
Σ∗−(T ) i = n+ + 1,n (2.73)

where

Σ∗±(T ) =
(n± − 1)e−2β∗±(T )[

1− e−2β∗±(T )
]2 +

n∓e
−β∗+(T )−β

∗
−(T )[

1− e−β
∗
+(T )−β

∗
−(T )

]2

= (n± − 1)w∗±(T ) [1 +w∗±(T )]

+n∓w
∗
0(T ) [1 +w∗0(T )] . (2.74)
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Condensed phase Non-condensed phase

Figure 2.3. Illustration of possible realizations of a network as a function of temperature,
from higher (right) to lower (left) values of T . As a schematic example, a network with
n = 14 nodes, of which n+ are core nodes and n− = 10 are peripheral nodes, is considered.
The order parameter Q∗(T ) is zero for temperatures above the critical temperature Tc, while
it is positive for temperatures below Tc, increasing towards 1 at zero temperature. At in-
finite temperature (T →∞), there is no distinction between core and periphery: all links
have the same probability of existing and the same expected weight. At lower but super-
critical temperature (T > Tc), a quantitative (but not yet qualitative) distinction between
core and periphery appears: core-core links have higher probability and expected weight
than core-periphery links, which in turn have higher probability and expected weight than
periphery-periphery links, however all these probabilities and expected link weights are of
the same (finite) order O(1). Below a certain critical temperature (T < Tc), the distinc-
tion between core and periphery becomes qualitative and more dramatic (the core forms
a ‘condensate’): the expected link weights are of order O(n2) for core-core links (with the
corresponding connection probabilities approaching one) and O(1) for core-periphery and
periphery-periphery links. Finally, at zero temperature (T → 0) the condensate decouples
from the rest: peripheral nodes are completely disconnected and all links end up in the core,
with an expected weight still of order O(n2).
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Recalling Eq. (2.7), we remark that the canonical entropy S∗can(T ) can be easily
calculated from Eq. (2.17) as the following sum of five terms:

S∗can(T ) = ~β∗(T ) · ~s∗(T ) + lnZ[~β∗(T )]
= n+β

∗
+(T )s

∗
+(T )

+n−β
∗
−(T )s

∗
−(T )

+
n+(n+ − 1)

2 ln 1
1− e−2β∗+(T )

+
n−(n− − 1)

2 ln 1
1− e−2β∗−(T )

+n+n− ln 1
1− e−β

∗
+(T )−β

∗
−(T )

, (2.75)

while the microcanonical entropy S∗mic(T ) is in general hard to compute, as it re-
quires an explicit enumeration. However, its leading order can be obtained combining
Eqs. (2.25) and (2.75).

The relative fluctuations of the constraints take the form

r∗i (T ) =

{
r∗+(T ) i = 1,n+
r∗−(T ) i = n+ + 1,n (2.76)

where, from Eq. (2.37),

r∗±(T ) =

√
Σ∗±(T )

s∗±(T )
(2.77)

=

√
1

s∗±(T )
+

(n± − 1)[w∗±(T )]2 + n∓[w∗0(T )]
2

[s∗±(T )]
2

=

√
1

s∗±(T )
+

(n± − 1)[w∗±(T )]
2 + n∓[w∗0(T )]

2

[(n± − 1)w∗±(T ) + n∓w∗0(T )]
2 .

Therefore in the thermodynamic limit the relative fluctuations of the constraints, as
defined in Eq. (2.38), take only the two possible limiting values

ρ∗i (T ) =

{
ρ∗+(T ) i = 1,n+
ρ∗−(T ) i = n+ + 1,n (2.78)

where
ρ∗±(T ) = lim

n→∞
r∗±(T ). (2.79)

Armed with the above general results, we can now study each phase in detail.
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2.4.3 Non-condensed phase
Let us start from the non-BEC phase (T >Tc). We first consider the finite-temperature
case (Tc<T <∞) and then the infinite-temperature limit (T→∞). As all the inter-
esting phenomenology (in terms of both BEC and EN) occurs in the thermodynamic
limit n→∞, we look for the asymptotic behaviour of all quantities in that limit.

Finite (supercritical) temperature: Tc<T <∞

Since, by definition, when T >Tc there is no concentration of ‘particles’ of weight on
any of the links, all the expected link weights must be separately finite, i.e. w∗+(T >
Tc), w∗−(T > Tc) and w∗0(T > Tc) are all O(1). Consequently, from Eqs. (2.53)
and (2.54) we see that all the connection probabilities p∗+(T > Tc), p∗−(T > Tc) and
p∗0(T >Tc) are strictly smaller than one, i.e. missing links can occur anywhere in the
network. Using this fact into Eqs. (2.46), (2.47), (2.58), (2.59) and (2.60), and using
Eqs. (2.43) and (2.44), we immediately get the strength of nodes in the core, i.e.

s∗+(T >Tc) = (n+ − 1)w∗+(T >Tc) + n−w
∗
0(T >Tc)

≈ nw∗0(T >Tc)

= O(n), (2.80)

and in the periphery, i.e.

s∗−(T >Tc) = (n− − 1)w∗−(T >Tc) + n+w
∗
0(T >Tc)

≈ nw∗−(T >Tc)

= O(n). (2.81)

Similarly, for W ∗±(T >Tc), W ∗0 (T >Tc) we get

W ∗+(T >Tc) = n+(n+ − 1)w∗+(T >Tc)/2 = O(1), (2.82)
W ∗−(T >Tc) ≈ n2w∗−(T >Tc)/2 = O(n2), (2.83)
W ∗0 (T >Tc) ≈ n+ nw

∗
0(T >Tc) = O(n), (2.84)

from which we see that in this phase the total weight W ∗ is essentially all in the
periphery, i.e.

W ∗−(T >Tc) = W ∗ − o(n2) ≈W ∗, (2.85)
w∗−(T >Tc) = w∗ − o(1) ≈ w∗. (2.86)

We stress that the above result does not mean that the core is empty or that there
are no connections between core and periphery. Rather, it indicates that the total
weight of all core-core and core-periphery connections is asymptotically negligible with
respect to the total weight located inside the periphery, simply because the number of
periphery-periphery node pairs dominates the number of core-periphery and core-core
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pairs. In particular, the finite parameter w∗+(T > Tc) can take an arbitrarily large
value, without ‘moving’ the (finite and positive) value of the average link weight w∗.
All positive values of w∗+(T >Tc) are therefore allowed. By contrast, w∗−(T >Tc) is
forced to take (to leading order) only the value w∗.

Using Eqs. (2.81), (2.83) and (2.84), we write the order parameter as

Q∗(T >Tc) ≡ lim
n→∞

W ∗+(T >Tc)

W ∗

= lim
n→∞

W ∗ −W ∗−(T >Tc)−W ∗0 (T >Tc)
W ∗

= 1− lim
n→∞

n2 w∗−(T >Tc)

2W ∗

= 1− lim
n→∞

n s∗−(T >Tc)

2W ∗ ,

= 0, (2.87)

confirming the definition of non-condensed phase in Eq. (2.72) and showing that, since
both s∗−(T >Tc) and W ∗ have by construction the same value in the canonical and
microcanonical ensemble, the order parameter must be zero in both ensembles, for all
values of T > Tc. Therefore, whenever one ensemble is in the non-condensed phase,
the other ensemble is the non-condensed phase as well. Importantly, this allows us to
refer to the conjugate canonical and microcanonical ensembles ‘in the non-condensed
phase’ consistently.

To solve the ‘inverse’ problem, we use Eqs. (2.51) and (2.52) and invert Eqs. (2.80)
and (2.81) to get

β∗−(T >Tc) =
1
2 ln

(
1 + 1

w∗−(T >Tc)

)
≈ 1

2 ln
(

1 + n

s∗−(T >Tc)

)
(2.88)

and

β∗+(T >Tc) + β∗−(T >Tc) = ln
(

1 + 1
w∗0(T >Tc)

)
≈ ln

(
1 + n

s∗+(T >Tc)

)
. (2.89)

Then, subtracting Eq. (2.88) from Eq. (2.89), we get

β∗+(T >Tc) =
1
2 ln

(
1 + 1

w∗+(T >Tc)

)

≈ ln
1 + n

s∗+(T>Tc)√
1 + n

s∗−(T>Tc)

. (2.90)
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Equations (2.88) and (2.90) express β∗±(T >Tc) as a function of the two (diverging)
constraints s∗±(T >Tc), or equivalently as a function of the finite parameters w∗±(T >
Tc), which have to be specified for all values of T .

To solve the ‘direct’ problem, we first note an important consequence of Eq. (2.86):
in the large n limit, w∗−(T > Tc) and β∗−(T > Tc) are independent of temperature.
Indeed, using Eq. (2.81) and (2.86) into Eq. (2.88), we get asympotically

β∗−(T >Tc) ≈
1
2 ln

(
1 + 1

w∗

)
(2.91)

and, using Eq. (2.67),

β∗+(T >Tc) ≈
1
2 ln

(
1 + 1

w∗

)
− ε∗

2kT . (2.92)

When inserted into Eq. (2.66), the above expressions allow us to directly obtain the
chemical potential as

µ(T >Tc) = ε∗ − 2kTβ∗−(T >Tc)

≈ ε∗ − kT ln
(

1 + 1
w∗

)
+ o(T ). (2.93)

As anticipated, the above result provides the solution to the direct problem in terms
of the two finite constants ε∗ and w∗, and allows us to explore the model by varying
T throughout the non-condensed phase T >Tc.

We now consider ensemble (non)equivalence. Inserting Eqs. (2.80) and (2.81) into
Eq. (2.74), we obtain the variance of the strength of nodes in the core, i.e.

Σ∗+(T >Tc) ≈ nw∗0(T >Tc) [1 +w∗0(T >Tc)]

≈ s∗+(T >Tc)

[
1 +

s∗+(T >Tc)

n

]
= O(n), (2.94)

and in the periphery, i.e.

Σ∗−(T >Tc) ≈ nw∗−(T >Tc) [1 +w∗−(T >Tc)]

≈ s∗−(T >Tc)

[
1 +

s∗−(T >Tc)

n

]
= O(n). (2.95)

As we show in Appendix 2.A.1, it is possible to show that the leading term of the
determinant of the covariance matrix Σ∗(T >Tc) in this non-condensed phase is

det[Σ∗(T >Tc)] =
n∏
i=1

Σ∗ii(T >Tc) +O(nn−2). (2.96)
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Using Eqs. (2.74), (2.94) and (2.95) we obtain
n∏
i=1

Σ∗ii(T >Tc) = [Σ∗+(T >Tc)]
n+ [Σ∗−(T >Tc)]

n−

= O(nn). (2.97)
Inserting this result into Eq. (2.96), we find

det[Σ∗(T >Tc)] = O(nn) +O(nn−2) = O(nn), (2.98)
showing that the determinant is dominated by the diagonal entries of Σ∗(T > Tc).
Taking the logarithm, we obtain

ln det Σ∗(T >Tc) = O(n lnn) (2.99)
which, when compared with Eq. (2.34), shows that the system is under ensemble
nonequivalence. We note that the O(n lnn) scaling of ln det Σ∗(T >Tc) ensures that
Eq. (2.35) holds, so the leading order of the relative entropy can be calculated exactly
as

D∗(T >Tc) ≈
1
2 ln det Σ∗(T >Tc) ≈

1
2n lnn (2.100)

where we have used Eqs. (2.94) and (2.95) into Eq. (2.96). The above result is in
line with the scaling of the relative entropy found in the case of binary networks with
a constraint on the node degrees in the dense regime [5, 26, 45]. Another similarity
between the two models is the order of the canonical entropy:

S∗can(T >Tc) = O(n2), (2.101)
which can be easily seen from Eq. (2.75) using β∗±(T >Tc) = O(1) and s∗±(T >Tc) =
O(n), as found in Eqs. (2.80), (2.81), (2.88) and (2.90). Then Eq. (2.25) also implies

S∗mic(T >Tc) = O(n2). (2.102)
Note that, even if the relative entropy is subleading with respect to the canonical
and microcanonical entropies, it is still superextensive in the number n of units of
the system, thereby breaking ensemble equivalence as in binary networks with fixed
degrees. Therefore the result in Eq. (2.99) is another observation, for the first time
in weighted networks, of the fact that ensemble equivalence can be broken by the
presence of an extensive number of local constraints, even away from phase transitions.

Coming to the relative fluctuations of the constraints, we see from Eqs. (2.77)
and (2.79) that

r∗±(T >Tc) =

√
Σ∗±(T >Tc)

s∗±(T >Tc)

≈

√
n+ s∗±(T >Tc)

n s∗±(T >Tc)

= O

(
1√
n

)
(2.103)
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and
ρ∗±(T >Tc) = 0. (2.104)

We therefore observe that in the non-condensed phase the decay of the relative fluctu-
ations of each constraint is of the same order O(1/

√
n) as generally observed for the

global constraint (total energy) in a system with short-range interactions away from
phase transitions. However, while in the traditional situation the vanishing of the
relative fluctuations implies that the relative entropy is subextensive and that the rel-
ative entropy density vanishes in the thermodynamic limit (as discussed in Sec. 2.1.3),
here the relative entropy density does not vanish and the ensembles are not equivalent.
Therefore we find that, in systems with an extensive number of local constraints, the
vanishing of even all the relative fluctuations does not ensure ensemble equivalence.

Infinite temperature: T→∞

The extreme regime of the non-condensed phase is the infinite-temperature case,
which can be explored by taking the limit T → ∞ in the solution to the ‘direct’
problem provided by Eq. (2.93). In such a limit, Eq. (2.39) implies that β∗+(T >Tc)
and β∗−(T >Tc) converge to the same value β∗∞ given by

β∗+(T→∞) = β∗−(T→∞) = β∗∞ ≡
1
2 ln

(
1 + 1

w∗

)
. (2.105)

Then, through Eqs. (2.48), (2.49), (2.50), (2.53) and (2.54), we get

w∗+(T→∞) = w∗−(T→∞) = w∗0(T→∞) = w∗, (2.106)
p∗+(T→∞) = p∗−(T→∞) = p∗0(T→∞) = p∗, (2.107)

i.e. all node pairs have the same expected link weight w∗ and connection probability
p∗ given by

p∗ =
w∗

1 +w∗
. (2.108)

This is the characteristic situation in the infinite-temperature limit of Bose-Einstein
statistics, where each particle is equally likely distributed across all energy levels.
Here, this situation translates in the graph becoming completely homogeneous: the
distinction between core and periphery disappears as the finite difference between
energy levels becomes entirely dominated by the diverging temperature. The expected
strength of every node has the same value s∗ ≡ (n− 1)w∗:

s∗+(T→∞) = s∗−(T→∞) = s∗ = (n− 1)w∗, (2.109)

i.e. the strength sequence becomes a constant vector.
Clearly, the above result does not change the value of the order parameter in

Eq. (2.87):
Q∗(T→∞) = 0. (2.110)
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Similarly, the final results in eqs. (2.99) and (2.104) about the simultaneous breakdown
of ensemble equivalence and the vanishing of all relative fluctuations carry over to the
infinite-temperature limit, so in principle we do not have to further discuss this case.
However, the fact that the strength sequence becomes a constant vector allows us
to calculate many of the properties of the model exactly, so this example is a very
transparent and instructive one. It is therefore worth considering it in some more
detail, also because some of the following results will be useful in the (much less
trivial) zero-temperature limit as well.

In particular, Eqs. (2.105) and (2.109) imply that Eqs. (2.23) and (2.24) can be
rewritten as

Σ∗ii(T→∞) =
(n− 1)e−2β∗∞

(1− e−2β∗∞)2 = w∗(1 +w∗)(n− 1) (2.111)

for all i = 1,n and

Σ∗ij(T→∞) =
e−2β∗∞

(1− e−2β∗∞)2 = w∗(1 +w∗) (2.112)

for all i 6= j respectively. In Appendix 2.A.2 we show that the above expressions can
be used to calculate the determinant of Σ∗(T→∞) exactly as

det Σ∗(T→∞) = 2(n− 1)(n− 2)n−1 [w∗(1 +w∗)]n , (2.113)

from which we confirm, without having made the approximation in eq. (2.96), that

ln det Σ∗(T→∞) = O(n lnn) (2.114)

and that
D∗(T→∞) ≈ 1

2 ln det Σ∗(T→∞) ≈ 1
2n lnn. (2.115)

Clearly, Eqs. (2.101) and (2.102) hold in this limit as well:

S∗can(T→∞) = O(n2), S∗mic(T→∞) = O(n2). (2.116)

Finally, from eqs. (2.109) and (2.111) we see that eq. (2.77) leads in this case to a
unique value for the coefficient of variation of all the strengths:

r∗i (T→∞) =

√
Σ∗ii(T→∞)

s∗i (T→∞)
=

√
1 +w∗

(n− 1)w∗ ∀i, (2.117)

so that
ρ∗i (T→∞) = 0 ∀i, (2.118)

in accordance with eq. (2.104).
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2.4.4 Condensed phase
We now consider the BEC phase (T <Tc). We first derive general results and then
discuss the finite-temperature case and the zero-temperature limit separately.

By the definition in Eq. (2.71), the condensed phase must be such that a positive
fraction Q∗(T <Tc) > 0 of the total weight lies in the core, i.e. (to leading order)

W ∗+(T <Tc) ≈ Q∗n(T <Tc)W ∗ ≈ Q∗(T <Tc)W ∗ (2.119)

which necessarily means

w∗+(T <Tc) = O(n2), W ∗+(T <Tc) = O(n2) (2.120)

and p∗+(T <Tc) ≈ 1, i.e. the core does not have missing links (the presence of core-
core links is no longer a random event, while the weight of such links is still a random
variable). As expected, BEC corresponds to the divergence of w∗+(T < Tc), and we
now see that the speed of this divergence is of order n2 in our model. For convenience,
we may define

ψ∗+(T <Tc) = lim
n→∞

w∗+(T <Tc)

n2 (2.121)

which is finite and positive, so that

w∗+(T <Tc) ≈ ψ∗+(T <Tc)n2. (2.122)

Combining Eqs. (2.50) and (2.120) we see that

w∗0(T <Tc) ≈
1√

1 + 1/w∗−(T <Tc)− 1
, (2.123)

which inserted into Eq. (2.61) shows that, to leading order,

w∗ ≈ n+(n+ − 1)ψ∗+(T <Tc) +w∗−(T <Tc), (2.124)

an expression that relates the finite parameters of the model with each other in the
condensed phase. Therefore we see from Eq. (2.119) that

w∗−(T <Tc) ≈ [1−Q∗n(T <Tc)]w∗ (2.125)

and
W ∗−(T <Tc) ≈ [1−Q∗n(T <Tc)]W ∗. (2.126)

Inserting Eq. (2.125) into Eq. (2.123) yields

w∗0(T <Tc) ≈
1√

1 + 1
[1−Q∗n(T<Tc)]w∗

− 1
(2.127)
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and

W ∗0 (T <Tc) ≈
n+n−√

1 + 1
[1−Q∗n(T<Tc)]w∗

− 1
. (2.128)

The above expressions show that neither w∗−(T < Tc) nor w∗0(T < Tc) diverge, in-
dicating that BEC occurs only in the ground state and that p∗−(T < Tc) < 1 and
p∗0(T < Tc) < 1, i.e. there can be missing links in the periphery and between core
and periphery. Moreover, we see that W ∗0 (T <Tc) is subleading with respect to both
W ∗+(T <Tc) and W ∗−(T <Tc): although individual core-periphery links have an ex-
pected weight w∗0(T <Tc) larger than the expected weight w∗−(T <Tc) of individual
periphery-periphery links, the number n+n− of core-periphery links is of smaller or-
der with respect to the number n−(n− − 1)/2 of periphery-periphery links, and as a
result the total weight of all core-periphery links is of smaller order as well.

To obtain s∗±(T <Tc) to leading order, we use Eqs. (2.46) and (2.47):

s∗+(T <Tc) = (n+ − 1)w∗+(T <Tc) + n−w
∗
0(T <Tc)

≈ (n+ − 1)ψ∗+(T <Tc)n2, (2.129)

s∗−(T <Tc) = (n− − 1)w∗−(T <Tc) + n+w
∗
0(T <Tc)

≈ nw∗[1−Q∗n(T <Tc)]. (2.130)

Now, combining the above expressions, we see that the order parameter defined in
Eq. (2.70) can be written as

Q∗(T <Tc) = lim
n→∞

W ∗+(T <Tc)

W ∗+(T <Tc) +W ∗−(T <Tc)

= lim
n→∞

1

1 + n−(n−−1)w∗−(T<Tc)
n+(n+−1)w∗+(T<Tc)

= lim
n→∞

1

1 + n−s∗−(T<Tc)

n+s∗+(T<Tc)

=
1

1 + w∗−(T<Tc)

n+(n+−1)ψ∗+(T<Tc)

=
n+(n+ − 1)ψ∗+(T <Tc)

w∗
> 0. (2.131)

Besides quantifying the order parameter, the above calculation shows that, since the
value of Q∗(T < Tc) only depends on the values of s∗+(T < Tc) and s∗−(T < Tc)
(which by construction are the same in the canonical and microcanonical ensembles),
whenever one ensemble is in the BEC phase, the other ensemble is the BEC phase as
well, for all temperatures T < Tc. As for the non-condensed, this allows us to refer
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to the conjugate canonical and microcanonical ensembles being ‘in the same phase’
consistently. Inverting Eq. (2.131), we can also express the parameter ψ∗+(T <Tc) in
terms of the order parameter as follows:

ψ∗+(T <Tc) =
w∗Q∗(T <Tc)

n+(n+ − 1) . (2.132)

The ‘inverse’ problem is solved by inverting Eqs. (2.129) and (2.130) and using
them into Eq. (2.51) to get

β∗+(T <Tc) ≈ 1
2 ln

(
1 + 1

n2ψ∗+(T <Tc)

)
≈ 1

2n2ψ∗+(T <Tc)

≈ n+ − 1
2s∗+(T <Tc)

≈ n+(n+ − 1)
2n2w∗Q∗n(T <Tc)

, (2.133)

β∗−(T <Tc) =
1
2 ln

(
1 + 1

w∗−(T <Tc)

)
≈ 1

2 ln
(

1 + n

s∗−(T <Tc)

)
≈ 1

2 ln
(

1 + 1
w∗ [1−Q∗n(T <Tc)]

)
. (2.134)

The above equations solve the inverse problem by expressing β∗±(T <Tc) as a function
of the constraints s∗±(T <Tc), which can in turn be expressed either in terms of the
finite parameters ψ∗+(T < Tc) and w∗−(T < Tc) or in terms of Q∗n(T < Tc) and the
temperature-independent parameter w∗.

Again, the ‘direct’ problem requires finding the chemical potential µ∗(T ) as a
function of ε∗, w∗ and T . From Eq. (2.66) we get

µ∗(T <Tc) = −2kTβ∗+(T <Tc)

≈ − kT

n2ψ∗+(T <Tc)

≈ −kT n+(n+ − 1)
n2w∗Q∗n(T <Tc)

. (2.135)

We now consider the variance of the constraints. Inserting Eqs. (2.120), (2.125)
and (2.127) into Eqs. (2.74), we immediately see that

Σ∗+(T <Tc) ≈ (n+ − 1)[ψ∗+(T <Tc)]
2n4, (2.136)

Σ∗−(T <Tc) ≈ w∗−(T <Tc)[1 +w∗−(T <Tc)]n. (2.137)
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Finite (subcritical) temperature: 0<T <Tc
In this regime we have

0 < Q∗(0<T <Tc) < 1, (2.138)

which, as clear from Eqs. (2.125) and (2.127), implies

w∗−(0<T <Tc) ≈ [1−Q∗(0< T <Tc)]w
∗, (2.139)

w∗0(0<T <Tc) ≈ 1√
1 + 1

[1−Q∗(0<T<Tc)]w∗ − 1
, (2.140)

where both quantities are O(1). Using these results, it is possible to show (see Ap-
pendix 2.A.3) that the leading term of the determinant of the covariance matrix
between the constraints is

det[Σ∗(0<T <Tc)] = O(nn+3n+), (2.141)

implying
ln det[Σ∗(0<T <Tc)] = O(n lnn), (2.142)

which is the same scaling found in Eq. (2.99) for the non-condensed phase. The
criterion for measure equivalence in Eq. (2.34) is again violated, showing that ensemble
equivalence does not hold in the condensed case as well. The leading term of the
relative entropy can still be calculated exactly from Eq. (2.35) and is the same as the
one found in Eq. (2.100) for the non-condensed phase:

D∗(0<T <Tc) ≈
1
2 ln det Σ∗(0<T <Tc) ≈

1
2n lnn. (2.143)

Similarly, the canonical entropy is still of order O(n2), as can be seen by inserting
Eqs. (2.129), (2.130), (2.133) and (2.134) into Eq. (2.75). We therefore retrieve

S∗can(0<T <Tc) = O(n2), (2.144)
S∗mic(0<T <Tc) = O(n2). (2.145)

Coming to the relative fluctuations, from Eqs. (2.77), (2.79), (2.136) and (2.137)
we obtain

ρ∗+(0<T <Tc) =
1√

n+ − 1 , (2.146)

ρ∗−(0<T <Tc) = 0. (2.147)

The above result can be interpreted as follows. The term
∑
i 6=j(〈wij〉~β∗)

2/(
∑
i 6=j〈wij〉~β∗)

2

in Eq. (2.37) is an inverse participation ratio, taking values in the range [(n− 1)−1, 1]
and quantifying the inverse of the effective number of link weights contributing to the
strength of node i [49]. Here, for a node in the core, there is a finite number n+ − 1
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of dominant link weights, each equal to w∗+ = O(n2), while the remaining n− weights
are of smaller order. Taking the thermodynamic limit, these n+− 1 dominant weights
lead to the value for ρ∗+ in Eq. (2.146). By contrast, for a node in the periphery, all
the expected link weights are of the same order, so the inverse participation ratio, and
consequently the value of ρ∗− in Eq. (2.147), vanishes. It should be noted that, even
if the expected strength of the core nodes is much bigger than that of the periphery
nodes, the relative fluctuations of the core nodes do not vanish, while those of the
peripheral nodes do.

The fact that BEC occurs necessarily among the core nodes confirms that the
units of the system are the nodes, and not the node pairs: the ‘ground state pairs’ are
necessarily all and only the pairs of ‘ground state nodes’. Indeed, one cannot decide
arbitrarily which node pairs form the degenerate ground state where condensation
occurs. This would have been possible only if node pairs were the fundamental units,
by assigning the same degenerate ground state energy value to any set of node pairs
(including pairs not necessarily involving the same set of nodes). For instance, it would
have been possible to include the pairs (i, j) and (i, k), without necessarily including
the pair (j, k), in the degenerate ground state (which is instead unavoidable in our
system).

Zero temperature: T→0

We finally consider the zero-temperature limit as the extreme case of the condensed
phase. Importantly, we have to be careful how we approach the two limits T→0 and
n→∞. Indeed, we are going to show that taking the limit T→0 while n is kept fixed
leads to results that cannot be subsequently carried over to the thermodynamic limit
by taking the limit n → ∞. Since we are interested precisely in the thermodynamic
limit, we have to take a different route. To show the difference, we consider the
zero-temperature limit first in the case of finite n and then in the case of growing n.

If n is finite, the zero-temperature limit simply represents the situation where the
only populated state is the degenerate ground state corresponding to the links in the
core, i.e.

Q∗n(T→0) = 1 (2.148)
by construction. All other links are not present. As usual, if the ground state is not
degenerate, then the microcanonical entropy is zero, while if the ground state is de-
generate, then the microcanonical entropy approaches a value called residual entropy
which, for a system of fixed size, is a constant that depends only on the degener-
acy (these statements usually go under the names of Third Law of Thermodynamics
or, somehow improperly, Nernst Theorem) [60]. In our setting the ground state is
non-degenerate only if n+ = 2, in which case the link between the two core nodes
is the one with minimum energy. In the general case n+ > 2, the ground state is
degenerate and both the microcanonical and canonical entropies are strictly positive.
In any case, for finite n the zero-temperature limit is characterized by the fact that,
in both the canonical and microcanonical ensembles, all nodes in the periphery are
deterministically isolated, i.e. necessarily isolated in all realizations of the network.
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The periphery becomes completely disconnected, both internally and from the core.
Note that this is one of the degenerate situations (mentioned in Sec. 2.1.3) where,
even if the constraints are in principle all mutually independent, for certain degener-
ate parameter value(s) some of them become ‘hard’ in both ensembles, thereby not
contributing any difference between the two ensembles. Note that if we simply take
the ideal limit n→∞ starting from this zero-temperature state, we would be consid-
ering the degenerate situation where an infinite number of isolated ‘peripheral’ nodes
are added to the fully connected core. These nodes are unavoidably disconnected
in both ensembles, so their contribution to the system is purely formal. The only
variability (hence the only possible source of nonequivalence) comes from the core,
which keeps having a finite number n+ of nodes: as an extreme signature of BEC,
the condensate behaves as an effectively lower-dimensional object.

In order to access the thermodynamic limit, we therefore have to consider from
the beginning the case where n can grow indefinitely. We are going to show that
the main difference arises from the fact that the temperature can only correspond to
graphical strength sequences, which on the other hand depend on n. Therefore one
should expect a certain n-dependent temperature Tn. At that point, a temperature
value Tn > 0 that is small but finite when n is finite (allowing for certain populated
excited states besides the ground state) may actually approach zero as n diverges,
i.e. limn→∞ Tn = 0. The corresponding excited states will effectively become part
of the accessible configurations in the zero-temperature limit and contribute an extra
residual entropy.

To study this scenario, we start from the consideration that if the two limits T→0
and n → ∞ were taken simultaneously for quantities that depend on both Q∗n and
n, e.g. terms such as n(1−Q∗n), we would encounter indeterminate expressions. We
therefore need to understand how, as T goes to zero, Q∗n goes to one as a function
of n, for n large. We recall that our starting point is always the value ~s∗(T ) of
the constraints. The temperature T is a parameter that allows us to vary ~s∗(T ),
while keeping it graphic, i.e. realizable in at least one configuration of the network.
For large n, we therefore have to identify the possible states of the network, hence
the values of ~s∗(T ), closest to zero temperature, i.e. when T ' 0 (we will use the
symbol ‘'’ to denote this near-zero-temperature behaviour of any quantity, thereby
keeping the notation distinct from the symbol ‘≈’ that will still denote the leading
order of any quantity for large n). This is easily done by realizing that, if we start
from some ~s∗(T > 0) and decrease the temperature towards zero, the lowest excited
state accessible to the network (before all links condense in the core) is one where
only the smallest possible number ∆W ∗ of the W ∗ particles of weight remain out
of the core, while keeping the strength sequence ~s∗(T ' 0) in the form given by
Eq. (2.42). This state is necessarily such that s∗−(T '0) = 1 (which is the minimum
non-zero value of the strength, recalling that the strength is a non-negative integer
by construction) and can be realized in multiple ways: either by connecting the
n− peripheral nodes in pairs, thus creating n−/2 periphery-periphery links of unit
weight and energy ε∗ (in which case ∆W ∗ = n−/2), or by connecting each peripheral
node to a core node, thus creating n− core-periphery links of unit weight and energy
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ε∗/2 (in which case ∆W ∗ = n−), or finally by combining both types of situations.
Recalling the discussion in Sec. 2.4.2, in all cases the ∆W ∗ links outside of the core
have collectively the same energy ε∗n−/2 while the links in the core have zero energy;
indeed, all such configurations are equiprobable. If we also consider the next excited
states with s∗−(T '0) = 2, 3, . . . , in general we will have ∆W ∗(T '0) = n−`/2 where
` is a small (in a sense that will be clear in a moment) integer.

The above considerations imply that the possible values of Q∗n close to zero tem-
perature are of the form

Q∗n(T '0) =
W ∗ − ∆W ∗(T '0)

W ∗

= 1− n−`/2
W ∗

≈ 1− `

nw∗
. (2.149)

Basically, the above expression makes it explicit that, since the strength is a discrete
quantity, technically the temperature can only take discrete values in order to keep
the strength sequence graphic, so the role of T is taken up by ` (which is an integer)
and a low temperature corresponds to a ‘small’, i.e. finite or at most o(n), value of
`. Indeed, in the thermodynamic limit we recover

Q∗(T '0) = lim
n→∞

Q∗n(T '0) = 1, (2.150)

confirming that ` = o(n) leads to the correct zero-temperature limit. At the same
time, Eq. (2.149) shows that, to recover any finite-temperature value Q∗(T >0) < 1,
we would need ` to grow linearly in n in the thermodynamic limit (note that ` cannot
grow faster than n, because ∆W ∗ cannot grow faster than n2, which is the order of
W ∗). The ` = o(n) regime considered here is therefore genuinely different from the
positive-temperature cases discussed so far.

Having characterized the zero-temperature limit in this way, we can calculate

lim
n→∞

n[1−Q∗n(T '0)] = `

w∗
, (2.151)

from which we can obtain various asymptotic expressions. Indeed, from Eqs. (2.125)
and (2.126) we obtain

w∗−(T '0) ≈ [1−Q∗n(T '0)]w∗ ≈ `

n
(2.152)

and
W ∗−(T '0) ≈ `n

2 . (2.153)

Similarly, expanding Eqs. (2.127) and (2.128) for Q∗n close to 1, we get

w∗0(T '0) ≈
√
[1−Q∗n(T '0)]w∗ ≈

√
`

n
(2.154)
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and

W ∗0 (T '0) ≈ n+
√
`n. (2.155)

Since both W ∗−(T ' 0) and W ∗0 (T ' 0) are subleading with respect to W ∗+(T ' 0),
we have W ∗+(T ' 0) ≈ W ∗ which can be rewritten as w∗+(T ' 0)n+(n+ − 1)/2 ≈
w∗n(n− 1)/2. This implies

w∗+(T '0) ≈ w∗n2

n+(n+ − 1) (2.156)

and, from Eq. (2.121),

ψ∗+(T '0) = w∗

n+(n+ − 1) , (2.157)

consistently with Eq. (2.132).
We now note that, inserting Eqs. (2.152) and (2.156) into Eq. (2.68), we obtain

the anticipated dependence of Tn (for Tn ' 0) on n:

e−ε
∗/kTn =

w∗−(Tn'0)[1 +w∗+(Tn'0)]
w∗+(Tn'0)[1 +w∗−(Tn'0)] ≈

`

n
. (2.158)

Inverting, we find how the temperature approaches zero as n grows:

Tn ≈
ε∗

k ln(n/`)
≈ ε∗

k lnn . (2.159)

The above result, which is independent of `, connects the thermodynamic limit
n → ∞ with the zero-temperature limit T → 0 in our setting and confirms that
it would be inappropriate to first identify the ground state are the core links by
taking the limit T → 0 and subsequently let n grow. On the contrary, the zero-
temperature state turns out to be the entire set of configurations obtained displacing
a certain number of units of weight out of the core and such that ` = o(n). Inserting
Eqs. (2.152), (2.154) and (2.156) into Eqs. (2.53) and (2.54) we can characterize these
configurations through the connection probabilities

p∗+(T '0) ≈ 1− n+(n+ − 1)
w∗n2 , (2.160)

p∗−(T '0) ≈ `

n
, (2.161)

p∗0(T '0) ≈
√
`

n
, (2.162)

which in the thermodynamic limit behave as expected for the ground state, i.e.
p∗+(T→0) = 1, p∗−(T→0) = 0 and p∗0(T→0) = 0.
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Using Eqs. (2.152) and (2.154), we can calculate the strengths from Eqs. (2.129)
and (2.130) as

s∗+(T '0) ≈ (n+ − 1)ψ∗+(T '0)n2 ≈ w∗

n+
n2 (2.163)

s∗−(T '0) ≈ nw∗−(T '0) + n+w
∗
0(T '0) ≈ `. (2.164)

The ‘inverse’ problem is solved by Eqs. (2.133) and (2.134), which now become

β∗+(T '0) ≈ n+(n+ − 1)
2n2w∗

, (2.165)

β∗−(T '0) ≈ 1
2 ln n

`
≈ 1

2 lnn. (2.166)

By contrast, the solution to the ‘direct’ problem is given through the chemical poten-
tial, obtained inserting Eqs. (2.159) and (2.165) into Eq. (2.135):

µ∗(T '0) = −2kTβ∗+(T '0)

≈ −ε
∗n+(n+ − 1)
w∗n2 lnn . (2.167)

The variances of the constraints can be calculated inserting Eqs. (2.152) and (2.157)
into Eqs. (2.136) and (2.137). This yields

Σ∗+(T '0) ≈ (w∗)2

n2
+(n+ − 1)

n4, (2.168)

Σ∗−(T '0) ≈ `. (2.169)

Using the above relationships, it is possible to show (see Appendix 2.A.4) that the
leading order of the determinant of the covariance matrix is

det[Σ∗(T '0)] = O(n4n+`n−n+). (2.170)

This leads to
ln det[Σ∗(T '0)] = O(n ln `), (2.171)

which is of smaller order compared to the scalingO(n lnn) found in Eqs. (2.99), (2.114)
and (2.142) for all positive temperatures, but still signalling the breakdown of ensem-
ble equivalence. Equation (2.171) implies that the requirements ensuring the validity
of Eq. (2.35) are not met, therefore in this case the leading term of the relative entropy
cannot be calculated exactly. However, the leading order is still given by Eq. (2.33)

D∗(T '0) = O
(

ln det Σ∗(T '0)
)
= O(n ln `). (2.172)

The canonical entropy S∗can(T '0) can be calculated by using Eqs. (2.165) and (2.166)
to rewrite the sum of the five terms appearing into Eq. (2.75) as the following sum:

S∗can(T '0) =
n+(n+ − 1)

2 +
`

2n lnn+ n+(n+ − 1) lnn

+
`

2n+ n+
√
n` = O(`n lnn), (2.173)
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which, unless ` = O(n/ lnn) or bigger, is different from the scaling O(n2) obtained for
finite temperatures in Eqs. (2.101) and (2.144). This slower increase of the canonical
entropy with n confirms that in the zero-temperature limit the system behaves as
a Bose-Einstein condensate, a phenomenon that determines a strong reduction in
the dimensionality of the space of allowed configurations. Note that since the relative
entropy is of order given by Eq. (2.171), which is smaller than the order of S∗can(T '0),
the leading term of the microcanonical entropy must be

S∗mic(T '0) ≈ `

2n lnn = O(`n lnn). (2.174)

Combining Eqs. (2.163)-(2.169), we finally obtain the relative canonical fluctua-
tions

ρ∗+(T '0) =

√
n+

n+ − 1 , (2.175)

ρ∗−(T '0) =
1√
`
, (2.176)

which differ from the results in Eqs. (2.146) and (2.147) obtained in the (subcritical)
finite-temperature case. In particular, now both ρ∗−(T '0) and ρ∗−(T '0) (if ` is finite)
are non-zero. Note that, while Eq. (2.147) can be formally retrieved from Eq. (2.176)
by letting ` grow linearly in n, Eq. (2.146) cannot be retrieved from Eq. (2.175),
because the assumption ` = o(n) has already been exploited in the derivation.

2.4.5 Critical temperature: T =Tc

Having characterized the model in all regimes, we can now discuss more easily what
happens right at the critical temperature T =Tc. Clearly, a very interesting question is
whether the phase transition is of first or second order. A first-order phase transition
is obtained when the order parameter Q∗(T ) jumps discontinuously from zero to a
strictly positive value as T is lowered through Tc. In such a case, the left and right
limits of Q∗(T ) at T =Tc are different:

Q∗(T→T−c ) > Q∗(T→T+
c ) = 0. (2.177)

By contrast, the phase transition is of second order if the order parameter increases
continuously from zero to positive values as T is lowered through Tc:

Q∗(T→T−c ) = Q∗(T→T+
c ) = 0. (2.178)

In principle, in our setting we can engineer the order of the phase transition as we
like: as clear from Eq. (2.131), the value of the order parameter for values slight below
the critical temperature is governed by the value of ψ∗+(T . Tc) defined in Eq. (2.121).
So, if we choose ψ∗+(T→T−c ) > 0 the transition will be first-order, while if we choose
ψ∗+(T→T−c ) = 0 the transition will be second-order. While both choices are possible,
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the case ψ∗+(T → T−c ) > 0 is somewhat unnatural, since it would ‘forbid’ all those
strength sequences ~s∗(T <Tc) that, while being both graphic and perfectly consistent
with the definition of ‘condensed’ given in Sec. 2.4.4, are such that asymptotically
w∗+(T < Tc) < n2ψ∗+(T → T−c ) or equivalently, by virtue of Eq. (2.124), such that
w∗−(T <Tc) < w∗ − n+(n+ − 1)ψ∗+(T→T−c ). Note that the latter inequality implies
that w∗−(T ) would experience a finite jump from w∗ − n+(n+ − 1)ψ∗+(T→T−c ) < w∗

to w∗ as T is raised from a value just below Tc to a value just above Tc: as discussed
in Sec. 2.4.3, w∗ is (to leading order) the only allowed value for w∗−(T ) above the
critical temperature.

Therefore we find more appropriate to choose ψ∗+(T ) such that ψ∗+(T→T−c ) = 0.
In this way, all values of w∗−(T <Tc) in the range [0,w∗] are allowed and there is no
discontinuity for w∗−(T ) at Tc: Eq. (2.124) implies that its left limit is w∗−(T→T−c ) ≈
w∗, which coincides with its right limit w∗−(T → T+

c ) ≈ w∗ implied by Eq. (2.86).
With this choice, we can locate the critical temperature Tc by equating the right and
left limits of Eq. (2.68): since lim

T→T−c
e−ε
∗/kT = limT→T+

c
e−ε
∗/kT = e−ε

∗/kTc , the
right and left limits of

w∗−(T )[1 +w∗+(T )]

w∗+(T )[1 +w∗−(T )]
(2.179)

must coincide. This implies

1 +w∗+(T→T+
c )

w∗+(T→T+
c )

=
1 +w∗+(T→T−c )

w∗+(T→T−c )
= 1 (2.180)

since in the thermodynamic limit w∗+(T →T−c ) = ∞. The above expression in turn
implies w∗+(T→T+

c ) =∞. Note that this is consistent with the fact that, as discussed
in Sec. 2.4.3, w∗+(T >Tc) is finite but can be arbitrarily large, while not altering (to
leading order) the average weight w∗. So, w∗+(T > Tc) can grow indefinitely as T
decreases towards Tc, and take an infinite limit as T → T−c , consistently with the
fact that, for even lower temperatures, w∗+(T ) diverges with speed n2 as dictated by
Eq. (2.120). Inserting Eq. (2.180) into Eq. (2.68), we get

e−ε
∗/kTc =

w∗

1 +w∗
(2.181)

as n→∞. We therefore obtain

Tc =
ε∗

k ln
(
1 + 1

w∗
) , (2.182)

finally showing how the critical temperature depends on the expected link weight
w∗, on the energy difference ε∗ between periphery-periphery and core-core links, and
on the constant k converting the units of the ‘cost of links’ (energy) to those of the
temperature. These results explain much of the information anticipated previously in
Fig. 2.3 and summarized therein.
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Adopting the view that the order parameter is continuous through the critical
value Tc, we notice that the ‘direct’ solutions in Eqs. (2.93) and (2.135), as well
as the behaviour at the critical point T = Tc, can be combined into the general
‘phenomenological’ expression

µ∗(T ) ≈ ε∗ − kT ln
(

1 + 1
w∗ [1−Q∗n(T )]

)
+ o(T ) (2.183)

which is valid for all values of the temperature. Indeed, when T ≥ Tc the order
parameter is zero and the above expression reduces to Eq. (2.93), while when T <Tc
the order parameter takes the positive value in Eq. (2.131) and the above expression
reduces to Eq. (2.135). The extreme limits T →∞ and T → 0 can be retrieved from
Eq. (2.183) as well.

2.5 Conclusions
We have investigated the breakdown of equivalence between canonical and micro-
canonical ensembles of weighted networks with local constraints on the strength of
each node (weighted configuration model [44]). While ensemble nonequivalence in
the corresponding binary configuration model (i.e. binary networks with given node
degrees) had already been studied in detail [5, 26, 7, 45, 61], a similar analysis for
weighted networks had not been carried out so far. As a unique and novel ingredient in
the case considered here, weighted networks can undergo BEC, a phase transition that
is impossible to observe in the unweighted case. BEC emerges when a finite fraction
of the total weight of all links condenses in a finite number of links. We constructed
the simplest model exhibiting such behaviour: a network with a finite core, an infinite
periphery, and a temperature-dependent strength sequence. This setting allows us to
combine for the first time, in a single model, two completely different mechanisms that
can potentially destroy the equivalence of ensembles: a phase transition (a condition
exhibited in the earliest observations of ensemble nonequivalence [22, 38, 39, 23–
25, 40–42, 21, 43, 13]) and an extensive number of local constraints (an ingredient
found in more recent investigations on network ensembles [5, 26, 45, 37]).

We have considered two criteria for ensemble equivalence: the traditional and intu-
itive one based on the vanishing of the relative canonical fluctuations of the constraints
in the thermodynamic limit [1] and the more recent and rigorous one based on the
vanishing of the relative entropy density between microcanonical and canonical prob-
ability distributions (measure equivalence) [8]. While in the standard situation (i.e.
under only one or a finite number of global constraints) the vanishing of the relative
fluctuations implies measure equivalence, the relationship between the two criteria
had not been investigated in presence of an extensive number of local constraints
yet. Technically, while the relative fluctuations can be calculated exactly (as they
are purely canonical quantities), the relative entropy requires in principle unfeasible
microcanonical calculations but it can still be calculated asymptotically via a recently
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proposed saddle-point technique showing that its leading term is the logarithm of the
determinant of the matrix of canonical covariances between the constraints.

We found that, for all positive temperatures, the relative entropy is O(n lnn)
while the canonical and microcanonical entropies are O(n2). These behaviours mim-
ick the corresponding ones found for the binary configuration model in the dense
regime [5, 26, 45]. This result shows that, for all T >0 (including T→∞), the relative
entropy is subleading with respect to the canonical and microcanonical entropies, but
is still superextensive in the number of nodes n, which in all network models represents
the number of units (physical size) of the system. In the zero-temperature limit, we
found slower scalings for the canonical, microcanonical and relative entropies. This is
due to the fact that, in both canonical and microcanonical ensembles, the peripheral
nodes are asymptotically disconnected from all other nodes in each possible realization
of the network. In this zero-temperature limit, the condensate effectively behaves as
a lower-dimensional system, as commonly observed in the physics of BEC. Its entropy
is the residual entropy resulting from the degeneracy of the ground state. The scal-
ing of the relative entropy still indicates ensemble nonequivalence. We note that in
the binary configuration model (which obeys Fermi-Dirac rather than Bose-Einstein
statistics) the zero-temperature phase is one where the canonical and microcanonical
ensembles are instead identical, because in both ensembles the pairs of nodes below a
certain ‘Fermi energy’ (whose value coincides with the chemical potential) are surely
connected, while those above it are surely disconnected [20]. Therefore we can con-
clude that, irrespective of BEC, at all temperatures ensemble equivalence is broken
by the presence of an extensive number of local constraints, as in the binary config-
uration model (for which, however, BEC cannot occur). So the condensation phase
transition (occuring at some critical temperature Tc>0) appears to have no effect on
ensemble equivalence.

On the other hand, the calculation of the canonical relative fluctuations of the
constraints shows that they are sensitive to the phase transition, while they cannot
be used to characterize ensemble (non)equivalence as traditionally expected. Indeed,
we found that in the non-condensed phase (T > Tc) the relative fluctuations of the
strength of all the n nodes vanish in the thermodynamic limit. By contrast, in the
condensed phase (T <Tc) the relative fluctuations of the strength of the n+ nodes in
the core do not vanish, while those for the n− nodes in the periphery still do (except
in the zero-temperature limit, for which not even the relative fluctuations for the
peripheral nodes vanish). Therefore, as the temperature is lowered below the critical
temperature, there is a sudden change in the relative fluctuations but no change in
the scaling of the relative entropy. Conversely, as the temperature is further lowered
to zero, there is a sudden change in the scaling of the relative entropy, while the
relative fluctuations for the core nodes remain non-zero, albeit with a different value.
These results show that, at least in the dense case studied here, the relative entropy
and the relative fluctuations capture different aspects of the phenomenology of the
proposed model, the former being sensitive to the presence of local constraints and
the latter being sensitive to the phase transition. In any case, in presence of an
extensive number of local constraints the vanishing of (even all) the canonical relative
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fluctuations does not guarantee measure equivalence and is therefore no longer a valid
criterion for ensemble equivalence as intuitively expected.

We stress that, while the network model presented here is deliberately simple from
the structural point of view (a core-periphery network with local, but homogeneous,
constraints), it could certainly serve as a reference for more complicated models (e.g.
a core-periphery network with local and heterogeneous constraints). Indeed, ensem-
ble nonequivalence will still be manifest in such a generalized model for all positive
temperatures, because research on binary networks with given degrees has shown
that nonequivalence is due to the locality of the constraints, and not to their specific
value [5, 26, 45, 37]. Additionally, since a more heterogeneous choice of the con-
straints can only increase the number of states with different energy in the network,
we expect that BEC will still emerge below some critical temperature. In general, we
expect a qualitatively similar behaviour to the one found here, with only quantitative
differences.

The concept of ensemble equivalence is central for the foundations of statistical
physics, irrespective of the particular system being considered. The findings docu-
mented here shed new light on the breakdown of EE, on the (possibly misleading)
criteria used to detect it, and on the (so far undocumented) interplay between dif-
ferent mechanisms producing it. We hope they can inspire future research on these
subjects.
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Appendix 2.A Determinant of the covariance ma-
trix

Σ∗(T ) is the n× n canonical covariance matrix between the strengths of all nodes,
with entries

Σ∗ij(T ) =

{
Var~β∗(T )(si) i = j

Var~β∗(T )(wij) i 6= j

=

{
Σ∗ii(T ) i = j
〈wij〉~β∗(T )

[
1 + 〈wij〉~β∗(T )

]
i 6= j . (2.184)

Combining Eqs. (2.23) and (2.24) with the results discussed in Sec. 2.4.2 for our
core-periphery model, it is easy to see that, for all values of temperature, Σ∗(T ) is a
combination of four blocks

Σ∗(T ) =
[
A(T ) B(T )
C(T ) D(T )

]
, (2.185)

where A(T ) is the n+ × n+ submatrix of covariances between the strengths of nodes
in the core, with entries

Aij(T ) =

{
Σ∗+(T ) i = j
w∗+(T )[1 +w∗+(T )] i 6= j

, (2.186)

B(T ) is the n+ × n− submatrix of covariances between the strengths of nodes across
core and periphery, with entries

Bij(T ) = w∗0(T )[1 +w∗0(T )] ∀i, j, (2.187)

C(T ) is a n− × n+ matrix equal to the transpose of B(T ), and D(T ) is the n− × n−
submatrix of covariances between the strengths of nodes in the periphery, with entries

Dij(T ) =

{
Σ∗−(T ) i = j
w∗−(T )[1 +w∗−(T )] i 6= j

. (2.188)

Depending on the range of temperature values of interest, different techniques become
useful in order to calculate the determinant of Σ∗(T ). We therefore consider each
regime separately below.

2.A.1 Non-condensed phase
In the regime of finite supercritical temperature (T >Tc) discussed in Sec. 2.4.3, it is
possible to show that the asymptotic behaviour of det Σ∗(T >Tc) can be decomposed
as the product of the diagonal elements of Σ∗(T >Tc), plus a correction. Our rationale
for this decomposition comes from the fact that, as noted in Sec. 2.4.3, w∗+(T >Tc),
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w∗−(T > Tc) and w∗0(T > Tc) are all O(1), i.e. the expected link weights are all of
the same, finite order. Consequently, the block structure depicted in Eq. (2.185)
does not identify any particular difference in the order of magnitude of the entries
of Σ∗(T > Tc). Rather, an important property of Σ∗(T > Tc) in this regime is
that its diagonal entries are, on average, n times bigger than its off-diagonal ones.
Indeed, the off-diagonal entries are O(1), while the diagonal ones are O(n). Then the
asymptotic behaviour of det Σ∗(T >Tc) must be essentially dictated by the product
of the diagonal entries of Σ∗(T >Tc).

To make this intuition more rigorous, we recall that if a k × k matrix L can be
decomposed as

L = M+ εN, (2.189)

where M is a diagonal matrix with entries of finite order and εN is a perturbation,
then Jacobi’s formula applies as follows:

det L = det(M+ εN) (2.190)
= det M+ ε(det M)tr(M−1N) +O(ε2).

Moreover, if the diagonal elements of N are equal to 0, then the product M−1N is a
k× k zero matrix and therefore

tr(M−1N) = 0. (2.191)

Equation (2.191) then becomes

det L = det M+O(ε2) (2.192)

=
k∏
i=1

Lii +O(ε2).

Turning to the matrix Σ∗(T >Tc), we note that the above hypotheses apply by
setting

k ≡ n, ε ≡ 1
n

, L ≡ Σ∗(T >Tc)
n

(2.193)

and defining the entries of M and N as

Mij = δijΣ∗ij(T >Tc)/n, (2.194)
Nij = (1− δij)Σ∗ij(T >Tc), (2.195)

where δij is the Kronecker delta symbol. Equation (2.192) then becomes

det
(

Σ∗(T >Tc)
n

)
=

1
nn

n∏
i=1

Σ∗ii(T >Tc) +O(n−2)
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and, finally,

det Σ∗(T >Tc) = nn det
(

Σ∗(T >Tc)
n

)
(2.196)

=
n∏
i=1

Σ∗ii(T >Tc) +O(nn−2),

proving Eq. (2.96) used in the main text.

2.A.2 Infinite-temperature limit

In the infinite-temperature limit discussed in Sec. (2.4.3), the determinant can be cal-
culated exactly as follows. From Eqs. (2.111) and (2.112) we see that, if we introduce
a k× k matrix Zk defined as

Zk =


k− 1 1 · · · 1 1

1 k− 1 1 · · · 1
... . . . ...
1 · · · 1 k− 1 1
1 1 · · · 1 k− 1

 , (2.197)

then we can rewrite the covariance matrix as

Σ∗(T→∞) = w∗(1 +w∗)Zn. (2.198)

Clearly, the calculation of det Σ∗(T→∞) reduces to the calculation of det Zn:

det Σ∗(T→∞) = [w∗(1 +w∗)]n det Zn. (2.199)

To compute det Zk for arbitrary k, we note that

Zk = (k− 2)Ik + uTk uk = (k− 2)
(

Ik +
uTk uk
k− 2

)
, (2.200)

where Ik is the k× k identity matrix and

uk = (1, · · · , 1) (2.201)

is the k-dimensional row vector with all unit entries. Then, using Sylvester’s identity
det(Ik +XY) = det(Il +YX) (where X is a k× l matrix, Y is an l× k matrix, and
Ik and Il are k × k and l × l identity matrices respectively) with l = 1, X = uTk ,
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Y = uk and Il = 1, we get

det Zk = (k− 2)k det
(

Ik +
uTk√
k− 2

uk√
k− 2

)

= (k− 2)k det
(

1 + uk√
k− 2

uTk√
k− 2

)

= (k− 2)k
(

1 + k

k− 2

)
= 2(k− 1)(k− 2)k−1. (2.202)

Combining Eqs. (2.199) and (2.202), and setting k = n, we obtain exactly Eq. (2.113)
used in the main text.

2.A.3 Condensed phase
In the regime of subcritical temperature (T < Tc) discussed in Sec. 2.4.4, the block
structure indicated in Eq. (2.185) becomes particularly relevant, as it captures the
important differences in the order of magnitude of both diagonal and off-diagonal en-
tries of Σ∗(T <Tc) calculated using Eqs. (2.122), (2.125), (2.127), (2.136) and (2.137).
We first express each block conveniently and then proceed to the calculation of the
determinant. Inserting Eqs. (2.122) and (2.136) into Eq. (2.186), we obtain

A(T <Tc) ≈ [ψ∗+(T <Tc)]
2n4 Zn+ , (2.203)

where Zk is still the matrix defined in Eq. (2.197). Next, we note from Eq. (2.187)
that

B(T <Tc) = w∗0(T <Tc)[1 +w∗0(T <Tc)]uTn+un− , (2.204)
where uk is still given by Eq. (2.201). Similarly,

C(T <Tc) = w∗0(T <Tc)[1 +w∗0(T <Tc)]uTn−un+ . (2.205)

Finally, inserting Eq. (2.137) into Eq. (2.188), we obtain

D(T <Tc) ≈ w∗−(T <Tc)[1 +w∗−(T <Tc)]Zn− . (2.206)

Now, since A(T < Tc) is invertible, it is useful to exploit the block structure of
Σ∗(T <Tc) by expressing its determinant as

det Σ∗(T <Tc) = det A(T <Tc) det A(T <Tc), (2.207)

where

A(T <Tc) ≡ D(T <Tc) (2.208)
−C(T <Tc)A−1(T <Tc)B(T <Tc)
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is the so-called Shur complement of A(T <Tc). To calculate det A(T <Tc), we use
Eq. (2.203) and immediately obtain

det A(T <Tc) ≈ [ψ∗+(T <Tc)]
2n+n4n+ det Zn+

= O(n4n+) (2.209)

where, using Eq. (2.202),

det Zn+ = 2(n+ − 1)(n+ − 2)n+−1. (2.210)

To calculate det A(T <Tc), we first use Eq. (2.203) and obtain

A−1(T <Tc) ≈ [ψ∗+(T <Tc)]
−2n−4 Z−1

n+ , (2.211)

where, using Eq. (2.197), Z−1
k is easily calculated by direct inversion of Zk as

Z−1
k = ck


2k− 3 −1 · · · −1 −1
−1 2k− 3 −1 · · · −1
... . . . ...
−1 · · · −1 2k− 3 −1
−1 −1 · · · −1 2k− 3


=

Ik
k− 2 − cku

T
k uk

=
1

k− 2

[
Ik −

uTk uk
2(k− 1)

]
(2.212)

with
ck =

1
2(k− 1)(k− 2) . (2.213)

Inserting Eqs. (2.204),(2.205), (2.206) and (2.211) into Eq. (2.208), and noticing that

uTn−un+Z−1
n+uTn+un− = cn+n+(n+ − 2)uTn−un−

=
n+

2(n+ − 1)uTn−un− , (2.214)

we can obtain the Shur complement of A(T <Tc) as

A(T <Tc) ≈ w∗−(T <Tc)[1 +w∗−(T <Tc)]Zn− (2.215)

−n+[w
∗
0(T <Tc)]

2[1 +w∗0(T <Tc)]
2

2(n+ − 1)[ψ∗+(T <Tc)]
2n4

uTn−un−

from which we can calculate det A(T < Tc). We have to distinguish the cases 0 <
T <Tc and T ' 0, as they are characterized by different scalings of w∗−(T <Tc) and
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w∗0(T < Tc). In the rest of this section we consider the case of finite temperature,
while the zero-temperature limit is considered in the next section.

When 0<T <Tc, we recall from Eqs.(2.139) and (2.140) that both w∗−(0<T <Tc)
and w∗0(0 < T < Tc) are O(1). From Eq. (2.215) we therefore see that all the off-
diagonal entries of A(0< T < Tc) are O(1), while all the diagonal ones are O(n−).
This implies that we can use the decomposition in Eq. (2.189) where

k ≡ n−, ε ≡ 1
n−

, L ≡ A(0<T <Tc)
n−

. (2.216)

Equation (2.192) then implies

det A(0<T <Tc) =

n−∏
i=1

Aii(0<T <Tc) +O
(
n
n−−2
−

)
= O(nn−). (2.217)

Combining Eqs. (2.209) and (2.217) into Eq. (2.207), we finally obtain the full de-
terminant of Σ∗(0 < T < Tc). We are interested only in its scaling with n, which
is

det Σ∗(0<T <Tc) = O(n4n++n−) = O(nn+3n+), (2.218)
proving Eq. (2.141) used in the main text.

2.A.4 Zero-temperature limit
In the zero-temperature limit, all calculations of the previous section remain valid
until and including Eq. (2.215). The scaling of the entries of A(T ' 0) will however
be different. Indeed, we recall from Eqs.(2.152) and (2.154) that w∗−(T ' 0) ≈ `/n
and w∗0(T '0) ≈

√
`/n. Inserted into Eq. (2.215), these expressions imply that all the

diagonal entries of A(T '0) are asymptotically equal to `, while all the off-diagonal
ones are O(`/n). We can therefore use the decomposition in Eq. (2.189) where

k ≡ n−, ε ≡ 1
n

, L ≡ A(T '0). (2.219)

Equation (2.192) then implies

det A(T '0) =

n−∏
i=1

Aii(T '0) +O
(
n−2)

= `n− +O(n−2). (2.220)

Combined with Eq. (2.209) into Eq. (2.207), the above result leads to the full deter-
minant of Σ∗(T <Tc), whose scaling with n is

det Σ∗(T '0) = O(n4n+`n), (2.221)

proving Eq. (2.170) used in the main text.
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Chapter 3

Strong ensemble
nonequivalence in systems
with local constraints

Abstract
The asymptotic equivalence of canonical and microcanonical ensembles is a central
concept in statistical physics, with important consequences for both theoretical re-
search and practical applications. However, this property breaks down under certain
circumstances. The most studied violation of ensemble equivalence requires phase
transitions, in which case it has a ‘restricted’ (i.e. confined to a certain region in pa-
rameter space) but ‘strong’ (i.e. characterized by a difference between the entropies
of the two ensembles that is of the same order as the entropies themselves) form.
However, recent research on networks has shown that the presence of an extensive
number of local constraints can lead to ensemble nonequivalence even in the absence
of phase transitions. This occurs in a ‘weak’ (i.e. leading to a subleading entropy
difference) but remarkably ‘unrestricted’ (i.e. valid in the entire parameter space)
form. Here we look for more general manifestations of ensemble nonequivalence in
arbitrary ensembles of matrices with given margins. These models have widespread
applications in the study of spatially heterogeneous and/or temporally nonstationary
systems, with consequences for the analysis of multivariate financial and neural time-
series, multi-platform social activity, gene expression profiles and other Big Data.
We confirm that ensemble nonequivalence appears in ‘unrestricted’ form throughout
the entire parameter space due to the extensivity of local constraints. Surprisingly,
at the same time it can also exhibit the ‘strong’ form. This novel, simultaneously
‘strong and unrestricted’ form of nonequivalence is very robust and imposes a princi-
pled choice of the ensemble. We calculate the proper mathematical quantities to be
used in real-world applications1.

1This chapter is based on:
Qi Zhang, Diego Garlaschelli, "Strong ensemble nonequivalence in systems with local constraints"
arXiv preprint arXiv:2107.04920 (2021)
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3.1 Introduction
In statistical physics, systems with different constraints can be described by different
ensembles. For example, systems with fixed energy can be described by the mi-
crocanonical ensemble, where all microscopic configurations have precisely the same
value of the energy and are equiprobable, thereby modelling large isolated systems.
In this case, the energy is treated as a ‘hard’ constraint enforced separately on each
configuration. By contrast, systems with fixed temperature (which is the ‘dual’ ther-
modynamic quantity conjugated with the energy) can be described by the canonical
ensemble, where individual microscopic configurations can have different values of the
energy and are assigned different probabilities, but in such a way that the average
value of the energy coincides with the one defining the corresponding microcanonical
ensemble [10]. This ensemble represents systems that can exchange energy with their
environment, and the energy is in fact treated as a ‘soft’ constraint which is enforced
only as an ensemble average.

When the size of the system is finite, the two ensembles are necessarily different.
However, in the simplest and most traditional situation, the microcanonical descrip-
tion as a function of the energy becomes equivalent with the canonical description as
a function of the temperature in the thermodynamic limit (i.e., when the number of
particles in the system tends to infinity). This phenomenon is called ensemble equiv-
alence (EE) and is a basic concept in statistical mechanics as already established by
Gibbs [1]. The property of EE justifies the replacement of the (typically unfeasible)
asymptotic calculations in the microcanonical ensemble with the corresponding (much
easier) calculations in the canonical ensemble, i.e. to choose the ensemble based on
mathematical convenience.

However, over the past decades, the breakdown of EE has been observed in various
physical systems, including models of gravitation, fluid turbulence, quantum phase
separation, and networks [21, 43, 5]. When the system is under ensemble nonequiva-
lence (EN), the microcanonical description can no longer be replaced by the canonical
description in the thermodynamic limit. In this situation, many assumptions and cal-
culations that are based on EE in statistical mechanics do not hold anymore. Thus
checking for the breaking of EE is important for both practical applications and
theoretical research. Quantitatively, EN can be defined as a nonvanishing relative
entropy density between the microcanonical and canonical probability distributions
of microscopic configurations [8, 5]. This is equivalent to a nonvanishing difference
between the canonical and microcanonical entropy densities [37]. Technically, this is
the so-called measure-level EN, which (under mild assumptions) has been shown to
coincide with other definitions as well [8]. Importantly, the traditional criterion for
EE based on the vanishing of the relative canonical fluctuations of the contraints has
been recently found to break down when the latter are local in nature and extensive
in number [28].

Indeed, for the most studied systems in statistical physics, the number of con-
straints defining the ensembles of interest is finite. Traditional physical examples are
global constraints such as the total energy and the total number of particles. Non-
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physical examples of systems under global constraints have also been considered, e.g.
networks with given total numbers of edges and triangles [6]. In order to observe the
breakdown of EE in these systems, one typically needs to introduce long-range in-
teractions implying the non-additivity of the energy and possibly associated with the
onset of phase transitions [13] (in the example of networks, the underlying mechanism
is a sort of ‘frustration’ in the simultaneous realizability of the desired numbers of
edges and triangles [6]). In this form of EN, the relative entropy between canonical
and microcanonical ensembles is of the same order as the canonical entropy itself [8, 6].
This is what we will refer to as a ‘strong’ form of EN. At the same time, this form of
EN is also ‘restricted’, because it is confined to a selected (e.g. critical) region of the
space of parameters. Outside this region, EE is restored.

Recently, a new manifestation of EN has been observed in a different class of
network ensembles, where a constraint is enforced on the degree (number of links)
and/or the strength (total weight of all incident links) of each node [5, 26, 49, 28]: un-
like systems with global constraints, in these models the number of constraints grows
linearly in the number of nodes. This crucial difference implies that, at variance with
the more ‘traditional’ situation described above, the onset of EN in this class of models
is completely unrelated to phase transitions and is instead the result of the presence
of an extensive number of local constraints [37, 7, 45]. This situation is by far less
studied, because systems with local constraints are not the traditional focus of statis-
tical physics and have attracted attention only recently as models of complex systems
with built-in spatial heterogenetity [14] and/or temporal non-stationarity [62]. In
this different form of EN, the relative entropy between microcanonical and canonical
ensembles is, at least for the cases studied so far, of lower order (i.e. subleading) with
respect to the canonical entropy. For this reason, we may refer to this situation as a
‘weak’ (i.e. weaker than the one found in the presence of phase transitions) form of
EN. However, this form of EN is ‘unrestricted’, precisely because it is not confined
to specific values of the control parameters and holds in the entire parameter space.
Rather than a property of a phase (or a phase boundary), in this case EN appears to
be an intrinsic property of the system itself. In these models, no parameter value can
restore EE.

The above results indicate that, so far, EN has manifested itself either in a ‘strong
but restricted’ form (under a finite number of global constraints, but in presence of
phase transitions), or in a ‘unrestricted but weak’ form (under an extensive number
of local constraints, but without phase transitions). Clearly, a number of questions
remain open. How general is the manifestation of EN under local constraints, both
in terms of the underlying mechanism and in terms of the strength of the resulting
effect? Besides networks, can the breaking of EE be observed in additional systems
characterized by local constraints? If so, do these systems necessarily exhibit only the
weak form of EN, or can the strong form appear as well? Finally, is there a (possibly
modified) way to exploit the canonical ensemble in order to bypass the challenge of
unfeasible microcanonical calculations even when EE breaks down, i.e. even when the
two ensembles can no longer be treated interchangeably according to mathematical
convenience?
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In this chapter, we will address these problems by exploring the effects of the
presence of an extensive number of local constraints on more general ensembles than
the ones that have been considered so far to model random networks with given node
degrees [5, 26, 7, 63]. In particular, we consider the general setting where each of the n
units of the system has a number m of ‘state variables’ (or ‘degrees of freedom’), and
where constraints are defined as sums over these state variables. Surprisingly, besides
confirming the onset of an unrestricted form of EN in the thermodynamic limit where
n diverges, we also find its simultaneous manifestation in strong form. This happens
when each element of the system retains only a finite number m of degrees of freedom
in the thermodynamic limit. For brevity, we will denote this situation as the ‘strong
and unrestricted’ form of EN. To the best of our knowledge, this finding provides the
first evidence that EN, even in its strong form, does not need phase transitions and
can appear in the entire parameter space as an intrinsic property of the system, if
the latter is subject to an extensive number of local constraints. This simultaneously
‘strong and unrestricted’ form of EN is the most robust among the ones studied so far.
Spatial heterogeneity and temporal non-stationarity are simple candidate mechanisms
that can lead to this phenomenon.

To emphasize the general and important consequences of this form of EN for a
diverse range of practical applications, we consider generic ensembles of random matri-
ces with fixed margins. These ensembles, which include matrices with 0/1 (or equiva-
lently ±1) and non-negative integer entries subject to global or local constraints, arise
for instance in studies of multi-cell gene expression profiles [64], multiplex (online) so-
cial activity [65], multi-channel communication systems [29], complex networks [44],
and multivariate time series in finance [62], neuroscience [66] or other disciplines. Our
results imply that, in many practical situations, the assumption of EE is incorrect
and leads to mathematically wrong conclusions. For the benefit of the aforementioned
applications, we compensate for the ‘disconnection’ between the two ensembles by cal-
culating explicitly the correct canonical and microcanonical quantities of interest via
a generalized relationship that is either analytically computable or asymptotically de-
termined by the covariance matrix of the constraints in the canonical ensemble. These
calculations represent a practical tool for properly dealing with the consequences of
EN in all real-world situations.

3.2 General formalism

3.2.1 Matrix ensembles
A discrete n×m matrix ensemble is a set G of available configurations for an n×m
integer-valued matrix G, endowed with a suitably chosen probability distribution
P (G) over such configurations, such that

∑
G∈G P (G) = 1. An entry of the matrix

is denoted by gij (with 1 ≤ i ≤ n, 1 ≤ j ≤ m). We distinguish two main cases, the
binary case where gij takes one of the two values {0, 1} and the weighted case where
gij takes a value in the set {0, 1, 2, . . . } of non-negative integer values. The number n
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of rows in each matrix represents the number of elements (i.e. the size) of the system
being modelled. The number m of columns represents instead the number of state
variables, or degrees of freedom, for each element.

In general, each matrix G can represent one of the possible states of a (large)
real-world system. For instance, G may represent the realization of a multivariate
time series, where n is the number of units (e.g. brain regions, financial stocks, etc.)
emitting signals, and m is the number of time steps during which the signals are
recorded. G may also represent a multi-cell array of gene expression profiles, where n
is the number of cells and m the number of genes for which expression levels are being
measured. Similarly, G may represent the state of a multi-channel communication
systems, where n is the length of the sequences being transmitted from sender to
receiver (in information theory, such length defines the ‘size’ of the communication
process) and m is the number of channels. Finally, G may represent the adjacency
matrix of a bipartite graph, where n is the number of nodes in the layer of interest
(e.g. people in a co-affiliation network), while m is the number of possible dimensions
where nodes can co-occur (e.g. work, family, sport, friendship, etc.). In the special
case m = n, the network can also be interpreted as a (binary or weighted) directed
unipartite graph, i.e. one where there is a single set of n nodes that can be linked to
each other via directed edges (note that, by contrast, undirected unipartite graphs are
associated with a symmetric adjacency matrix, a property that we do not enforce in
this paper; the nonequivalence of ensembles of binary or weighted undirected graphs
with given constraints has been studied previously in [5, 7, 45, 28]).

3.2.2 Global and local constraints
In each of the examples mentioned above, the ‘true’ microscopic configuration (or
microstate) of the system can be uniquely represented by a specific ‘empirical’ matrix
G∗ in the set G of all possible states. A schematic illustration is shown in Fig. 3.1. As
ordinary in statistical mechanics, when the size of the system is large one no longer
focuses on the specific microstate G∗ (which becomes not empirically accessible),
but rather on the macrostate defined by a collection of microscopic configurations
compatible with the empirical value ~C∗ ≡ ~C(G∗) of a certain observable quantify
~C(G) playing the role of a constraint. The choice of ~C(G) determines the probability
distribution P (G) over G conditional on our knowledge of ~C∗. In other words, it
determines how our estimate of the microstate of the system concentrates around
the compatible configurations once we observe ~C∗. Intuitively, before anything is
obserbed, P (G) is uniform on G.

In ordinary statistical physics, the quantity ~C(G) is typically scalar (e.g. the total
energy) or at most low-dimensional (e.g. a vector containing the total energy and the
total number of particles), reflecting a few global conservation laws applying to a large
homogeneous system at thermodynamic equilibrium. However, in models of complex
systems ~C(G) can be high-dimensional, as it may encode a large number of local
constraints reflecting separate conservation laws imposed by spatial heterogeneity
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Figure 3.1. Schematic illustration of how the state of different real-world systems with n
elements and m degrees of freedom can be represented in an n×m matrix G. The collection
of all possible states of the system is the set of all such matrices. Typically, real-world systems
have a strong heterogeneity or nonstationarity. This empirical fact implies that their possible
states are not sufficiently characterized by the knowledge of a single global constraint (t: solid
orange box). More informative ensembles can be constructed by specifying one- (~r: solid
blue boxes) or two-sided (~r,~c: solid blue and dashed red boxes) local constraints.

and/or temporal non-stationarity. For instance, if G∗ is the observed configuration
of a complex network with n nodes (i.e. the empirical n× n adjacency matrix), it is
well known that the knowledge of purely global properties such as the overall number
of links is insufficient in order to produce a statistical ensemble of networks with
properties similar to those found in G∗. Indeed, enforcing only the total number
of links produces the popular Erdős-Rényi random graph model, whose topological
properties are way too homogenous as compared with those of real-world networks.
By contrast, if the number of links of each node is enforced separately (as in the so-
called configuration model), the resulting ensemble of graphs is found to successfully
replicate many higher-order empirical topological properties [44]. As another example,
if G∗ represents a set of synchronous time series produced by the n components of
a non-stationary system observed over m time steps, then the statistical properties
of these time series will change over time. As a result, overall time-independent
constraints will not be enough in order to produce ensembles of multivariate time
series with properties close to those of G∗, and time-dependent (i.e. local in time)
constraints will in general be needed [62].

In our setting, we consider the general case where the distribution P (G) defining
the (binary or weighted) matrix ensemble is induced by a K-dimensional vector ~C(G)

72



of constraints imposed on the matrices. We will assume that the K constraints are
all non-redundant, e.g. they are not trivial copies or linear combinations of each
other [37]. We will consider both global and local constraints. As global constraint
we will consider the scalar quantity t(G) defined as the total sum of all the entries
of the matrix G, i.e. t(G) =

∑n
i=1
∑m
j=1 gij . The number of constraints in this case

is K = 1 and the ‘empirical’ value of t will be denoted as t∗ ≡ t(G∗). As local
constraints, we will consider two possibilities: one-sided local constraints and two-
sided local constraints. A one-sided local constraint is the n-dimensional vector ~r(G)
where the entry ri(G) =

∑m
j=1 gij (i = 1,n) represents the sum of the entries of the

matrix G along its i-th row. The number of constraints is in this case K = n and the
empirical value of ~r will be denoted as ~r∗ ≡ ~r(G∗). A two-sided local contraint is a pair
of vectors (~r(G),~c(G)), where ~r(G) is still the n-dimensional vector representing the
n row sums of G, while ~c(G) is the m-dimensional vector representing the m column
sums of G, i.e. where each entry cj(G) =

∑n
i=1 gij (j = 1,m) is the sum of the entries

of G along its j-th column. The number of constraints is therefore K = n+m and
the empirical value of the pair (~r,~c) will be denoted as (~r∗,~c∗) ≡ (~r(G∗),~c(G∗)). A
visual illustration of these constraints for possible data structures of practical interest
is shown in Fig. 3.1.

Purely global constraints lead to completely homogeneous expectations for the
entries of the matrices in the ensemble. This result follows intuitively from symmetry
arguments, and will be confirmed explicitly in the specific cases considered later.
By contrast, local constraints lead to different expectations for entries in different
rows and/or columns. Since, as we mentioned above, real-world complex systems are
generally very heterogeneous in space and/or time, the only models that can capture
the main features of such systems are those constructed from (one- or two-sided) local
constraints. This is very important because, as we will show, it is precisely in presence
of local constraints (of either type) that the property of EE breaks down. This result
implies that spatial heterogeneity and/or temporal non-stationarity might be natural
origins for the breaking of EE.

3.2.3 Soft constraints: canonical ensemble
Any constraint, whether global or local, can be enforced either as a soft constraint
(canonical ensemble) or as a hard constraint (microcanonical ensemble). We start
with the case of soft constraints, i.e. when one imposes that the ensemble average

〈~C〉 ≡
∑
G∈G

P (G) ~C(G) (3.1)

is fixed to a specific value ~C∗.
The functional form of the resulting canonical probability Pcan over G is found by

maximizing Shannon’s entropy functional

Sn[P ] ≡ −
∑
G∈G

P (G) lnP (G) (3.2)
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(where the subscript n indicates that the entropy is calculated for given n), subject
to the condition 〈~C〉 = ~C∗. The result [15] of this constrained maximization problem
is the parametric solution

Pcan(G|~θ) =
e−H(G,~θ)

Z(~θ)
, (3.3)

where ~θ is a vector of Lagrange multipliers coupled to the constraint ~C, the Hamilto-
nian H(G, ~θ) = ~θ · ~C(G) is a linear combination of the constraints, and the partition
function Z(~θ) =

∑
G∈G e

−H(G,~θ) is the normalization constant.
The numerical values of the canonical probability are found by setting

P ∗can(G) ≡ Pcan(G|~θ∗) (3.4)

where ~θ∗ is the unique parameter value that realizes the ‘soft’ constraint

〈~C〉~θ∗ = ~C∗ (3.5)

where the symbol 〈·〉~θ denotes an ensemble average with respect to Pcan(G|~θ), i.e.

〈~C〉~θ =
∑
G∈G

Pcan(G|~θ) ~C(G). (3.6)

Equivalently, the unique value ~θ∗ is the one that maximizes the log-likelihood function

L∗(~θ) ≡ lnPcan(G∗|~θ), (3.7)

where G∗ is the empirical configuration, or equivalently any configuration that realizes
the empirical constraint exactly, i.e. such that ~C(G∗) = ~C∗ [15]. The uniqueness
of ~θ∗ follows whenever L∗(~θ) can be differentiated at least twice [37], as we confirm
below for all the models considered in this paper.

Inserting Eq. (3.4) into Eq. (3.2), we obtain the value of the canonical entropy

S∗can ≡ Sn[P ∗can] = −L∗(~θ∗) = − lnP ∗can(G∗) (3.8)

where we have omitted the dependence on n to simplify the notation. The last equality
is very useful, as it show that S∗can can be calculated by simply evaluating P ∗can(G)
on the single configuration G∗ [37].

3.2.4 Hard constraints: microcanonical ensemble
In the case of hard constraints, one requires that each individual configuration realizes
the value ~C∗. This means that the ‘soft’ constraint in Eq. (3.5) is replaced by the
much stricter constraint

~C(G) = ~C∗ (3.9)
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for each allowed configuration G. The microcanonical probability Pmic is found by
enforcing this stronger requirement, while still maximizing the entropy Sn[P ] defined
in Eq. (3.2). The result is the uniform distribution

P ∗mic(G) =

{
Ω−1
~C∗

~C(G) = ~C∗

0 ~C(G) 6= ~C∗
, (3.10)

where Ω ~C∗ is the number of configurations in G realizing the ‘hard’ constraint in
Eq. (3.9). The corresponding microcanonical entropy is obtained by inserting Eq. (3.10)
into Eq. (3.2):

S∗mic ≡ Sn[P ∗mic] = ln Ω ~C∗ , (3.11)

which is also known as Boltzmann entropy.
Crucially, in order to define the microcanonical ensemble it is necessary that

Ω ~C∗ > 0, i.e. that there is at least one configuration realizing the constraint. In
other words, the value of ~C∗ should be realizable in (at least) one single configura-
tion, and not only as an ensemble value. This requirement is not strictly necessary
for the canonical ensemble (even though our interpretation of ~C∗ as the ‘empirical’
value makes the requirement always natural). In any case, since in this paper we are
going to study the (non)equivalence between the two ensembles, we need both of them
to be well defined in order to be compared, for a given value of ~C∗. Therefore we
are going to assume that the value of ~C∗, irrespective of the ensemble considered, is
always realizable by at least one configuration, i.e. such that Ω ~C∗ > 0.

Notably, calculating Ω ~C∗ (especially in presence of many constraints and because
of the discrete nature of the problem of interest for us) can be a complicated enu-
meration problem. Therefore the microcanonical ensemble is typically much more
difficult to deal with mathematically than the canonical ensemble. For this reason, if
the property of EE holds, one prefers to operate in the canonical ensemble and work
out its asymptotics in the limit of large system size, trusting that the result would
return the correct asymptotics for the microcanonical ensemble as well. The above
approach is at the core of many stardard calculations in statistical mechanics text-
books, where the property of EE is typically assumed to hold in general (at least in
absence of phase transitions and long-range interactions). However, when EE breaks
down, this approach will lead to mathematically incorrect results. We will study this
problem in detail, for the ensembles considered, in the rest of the paper. To do so,
we first need to define what we mean by thermodynamic limit.

3.2.5 The thermodynamic limit
We will consider the thermodynamic limit defined as n→ +∞, i.e. when the size of
the system diverges. However, the limit is not completely defined until we also specify
how both m and ~C∗ behave as n grows.

First of all, we consider two possibilities for the behaviour of m as n diverges:
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• m remains finite as n → ∞: in this case, we have m = O(1) where O(x)
indicates a quantity that has a finite limit if divided by x as n→ +∞, i.e. O(x)
is asymptotically of the same leading order2 as x;

• m diverges as n → ∞: in this case, for simplicity and realism we assume
that m can diverge at most as fast as n, i.e. m is at most O(n); it is indeed
difficult to imagine a physical situation where the number m of state variables
characterizing each of the n units grows faster than the number n of units
themselves.

In simple words, the above assumptions mean that the number of state variables
should be either (asymptotically) independent of the number n of units being added
to the system (as in the case of ‘intrinsic’ observations, e.g. for multivariate time
series) or at most proportional to n (as in the case of ‘relational’ observations, e.g. for
networks). We will show that these two situations lead to very different asymptotic
results in terms of the strength of EN. Importantly, the requirement that m grows at
most proportionally to n implies that the number K of both one-sided (K = n) and
two-sided (K = n+m) local constraints is always extensive, i.e. K = O(n) which
grows linearly in the size n of the system, irrespective of the behaviour of m.

A separate, equally important consideration concerns the scaling of the value of
the constraint ~C∗ in the thermodynamic limit n → +∞. Also here, we distinguish
between two situations that we denote as the sparse and the dense regimes.

• We define sparse matrices those for which each of the m column sums (irrespec-
tive of whether such sums are chosen as constraints) is finite in the thermody-
namic limit, i.e. c∗j = O(1) (j = 1, . . . ,m). This implies that, in the canonical
ensemble, the expected value of any entry gij of the matrix G is on average
O(1/n); correspondingly, in the microcanonical ensemble the allowed matrices
are dominated by zeroes (whence the name ‘sparse matrices’). Note that for
the row sums one has r∗i = O(m/n) for all i. If m grew slower than n, these
row sums would vanish as n → +∞, which would imply that asympotically
no microcanonical configuration would realize the local constraints. Since we
require Ω ~C∗ > 0 (see above), this means that in the sparse case we necessarily
need m = O(n). Consequently, r∗i = O(1), r∗i /m = O(1/n) (i = 1, . . . ,n),
t∗ = O(n), and t∗/mn = O(1/n).

• By contrast, we define dense matrices those for which each of them column sums
(again, irrespective of whether they are chosen as constraints) diverges propor-
tionally to n in the thermodynamic limit, i.e. c∗j = O(n) (j = 1, . . . ,m). In the
canonical ensemble, the expected value of gij is therefore O(1), which makes
the allowed matrices in the corresponding microcanonical ensemble ‘dense’. The

2Note that the ‘big-O’ notation we use here is not always used with the same meaning throughout
the literature: some authors prefer the ‘big-Θ’ notation Θ(x) to indicate a quantity that is of the
same leading order as the argument x, and the ‘big-O’ notation to indicate only an upper bound for
it.
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row sums are now r∗i = O(m) and we have r∗i /m = O(1) (for all i) and
t∗/mn = O(1). In this case, we consider m as either remaining finite, in which
case we have m = O(1), r∗i = O(1) (i = 1, . . . ,n) and t∗ = O(n), or diverging
proportionally to n (see above), in which case we have m = O(n), r∗i = O(n)
(i = 1, . . . ,n), and t∗ = O(n2).

• Note that, in principle, in the weighted case we may even consider a sort of
superdense regime where some of the individual entries of the matrix diverge in
the thermodynamic limit. This possibility is related to a Bose-Einstein conden-
sation concentrating a finite fraction of the total weight t∗ of the matrix in a
finite number of entries [28]. However, we will not consider this extreme case
here for simplicity, as it would not arise in most real-world applications.

Combined with the scaling of ~C∗, the behaviour of m as a function of n in the
thermodynamic limit can determine different asymptotic regimes, and in particular
lead to the weak or strong form of EN. The strong form, for the cases considered
below, turns out to be possible in the regime where the matrices are dense and m is
finite as n→ +∞.

3.2.6 Ensemble (non)equivalence
There are various ways to mathematically define the property of ensemble (non)equivalence.
These include the notions of EE in the thermodynamic, macrostate and measure sense
which, under mild assumptions, can be proven to be equivalent [8]. We will adopt the
definition in the measure sense, which states that the ensembles are equivalent if the
relative entropy

Sn[P
∗
mic||P ∗can] ≡

∑
G∈G

P ∗mic(G) ln P
∗
mic(G)

P ∗can(G)
(3.12)

(which is the Kullback-Leibler divergence for given n between the microcanonical and
canonical entropies and is guaranteed to be non-negative [52]), when rescaled by n,
vanishes in the thermodynamic limit [8], i.e. if the specific relative entropy vanishes:

s[P ∗mic||P ∗can] ≡ lim
n→+∞

Sn[P ∗mic||P ∗can]
n

= 0 (3.13)

or equivalently
Sn[P

∗
mic||P ∗can] = o(n), (3.14)

where o(x) indicates a quantity that goes to zero when divided by x as n→ +∞.
Importantly, it can be shown [5, 37] that

Sn[P
∗
mic||P ∗can] = ln P

∗
mic(G∗)
P ∗can(G∗)

= S∗can − S∗mic. (3.15)

The inequality Sn[P ∗mic||P ∗can] ≥ 0, which is a general property of the relative entropy,
implies therefore S∗can ≥ S∗mic and indicates the presence of an ‘extra entropy’ in
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the canonical ensemble. This extra entropy is due to the fact that, while in the
microcanonical ensemble the constraint ~C is a deterministic quantity fixed to the value
~C∗ through the hard constraint introduced in Eq. (3.9), in the canonical ensemble it
is a random variable fluctuating around the expected value ~C∗ as dictated by the soft
constraint defined in Eq. (3.5). With respect to the canonical ensemble, the hardness
of the constraint in the microcanonical ensemble implies additional dependencies (i.e.
smaller entropy) among the entries of G. The definition of EE in Eq. (3.13) states that,
if the extra entropy Sn[P ∗mic||P ∗can], once divided by n, vanishes in the thermodynamic
limit, then the ensembles are equivalent.

From Eq. (3.15) it is clear that Eq. (3.13) is equivalent to the condition

lim
n→+∞

Sn[P ∗can]− Sn[P ∗mic]

n
= 0 (3.16)

or in other words to the asymptotic (for n large) relation

S∗mic = S∗can − o(n). (3.17)

This implies
Ω ~C∗ = eS

∗
can−o(n), (3.18)

i.e. Ω ~C∗ is approximated by eS∗can up to a subexponential (in n) correction factor. The
above asymptotics is used in statistical mechanics textbooks whenever the property of
EE is believed to hold, i.e. in absence of phase transitions or long-range interactions.
When EE does not hold, Eq. (3.18) breaks down. In this case, the extra entropy in
the canonical ensemble grows at least as fast as n. Recent research has shown that
this breakdown can happen even in complete absence of phase transitions, hence also
in situations where EE was typically believed to hold. Here we are going to show
that, additionally, the breakdown can occur with previously undocumented strength,
i.e. the extra entropy can grow as fast as the entropy itself.

Combining Eqs. (3.15) and (3.11), one obtains the following exact generalization
of Eq. (3.18), valid irrespective of whether EE holds:

Ω ~C∗ = eS
∗
can−Sn[P∗mic||P

∗
can]. (3.19)

Clearly, the above expression reduces to Eq. (3.18) in case of EE, i.e. when Eq. (3.14)
holds. Although exact, Eq. (3.19) is not very useful unless one can calculate Sn[P ∗mic||P ∗can]
explicitly. An equivalent exact expression, which only requires the knowledge of P ∗can
and is again valid even when EE does not hold, has been derived [37]:

Ω ~C∗ =
∑
G∈G

ˆ ~π

−~π

d~ψ
(2π)K

ei
~ψ[ ~C∗− ~C(G)]

=

ˆ +~π

−~π

d~ψ
(2π)K

P−1
can(G∗|~θ∗ + i~ψ) (3.20)
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(where
´ +~π
−~π d~ψ ≡

∏K
k=1
´ +π
−π dψk). We will confirm that the above expression pro-

vides the exact result in cases where the complex integral can be calculated explicitly
and Ω ~C∗ can be evaluated independently via combinatorial enumeration. Indeed,
Eq. (3.20) highlights a beautiful connection between canonical and microcanonical
probabilities through an extension to complex numbers.

When the integral in Eq. (3.20) cannot be calculated directly, it is still possible to
use a saddle-point technique leading to [37]

Ω ~C∗ =
eS
∗
can√

det(2πΣ∗)

K∏
k=1

[1 +O(1/λ∗k)]

= eS
∗
can

K∏
k=1

1 +O(1/λ∗k)√
2πλ∗k

(3.21)

where Σ∗ is the covariance matrix of the K constraints in the canonical ensemble,
whose entries are defined as

Σ∗ij = Σij
∣∣
~θ=~θ∗ (3.22)

with

Σij ≡ −∂
2L∗(~θ)
∂θi∂θj

=
∂2 lnZ(~θ)
∂θi∂θj

= 〈CiCj〉~θ − 〈Ci〉~θ〈Cj〉~θ
= Cov~θ[Ci,Cj ] (3.23)

and {λ∗k}Kk=1 are the eigenvalues of Σ∗. We recall that covariance matrices are
positive-semidefinite, so all their eigenvalues are non-negative. If λ∗k is finite, then the
quantity O(1/λ∗k) in Eq. (3.21) cannot in general be calculated explicitly, although
it generates a correction that does not change the leading order of Ω ~C∗ and S∗mic.
If λ∗k is infinite (i.e., if it diverges in the thermodynamic limit), then O(1/λ∗k) will
vanish asymptotically and we have 1 +O(1/λ∗k) = 1 + o(1). This implies that, if all
the eigenvalues of Σ∗ diverge, then Eq. (3.21), when inserted into certain expressions,
can lead to an exact result. This includes the case of local constraints, for which
K diverges in the thermodynamic limit. We will therefore discuss the asymptotic
behaviour of the eigenvalues of Σ∗ in each of the examples considered later.

Equation (3.21) generalizes Eq. (3.18) to the case where EE does not necessarily
hold. Note that our initial assumption that the K constraints are non-redundant
implies that λ∗k > 0 for all k, i.e. Σ∗ is positive-definite [37]. Keeping this assumption
also in the thermodynamic limit (as ensured by our choice of both global and local
constraints defined above), we note two consequences. First, since Eq. (3.23) shows
that Σ∗ is the Hessian matrix of second derivatives of −L∗(~θ), the fact that Σ∗ is
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positive-definite implies that ~θ∗ is a unique global maximum for L∗(~θ) [37], confirming
what we had anticipated previously. Second, the product in Eq. (3.21) is at most of
the same order as the denominator. Therefore, in full generality, we can exploit
Eq. (3.21) to rewrite Eq. (3.19) as

Ω ~C∗ = eS
∗
can−O(αn), (3.24)

where we have defined [37]

αn ≡ ln
√

det(2πΣ∗) = 1
2

K∑
k=1

ln(2πλ∗k). (3.25)

We can now make three important considerations. First, Eq. (3.24) means that

Sn[P
∗
mic||P ∗can] = O(αn), (3.26)

showing that the speed of growth of Sn[P ∗mic||P ∗can] with n can be calculated explicitly
through Eq. (3.25) using the knowledge of Σ∗, which requires only the canonical
ensemble. This is useful when microcanonical calculations are unfeasible. Second, if
K is finite, or if K diverges but all (except possibly a finite number of) the eigenvalues
of Σ∗ diverge, then the product inside Eq. (3.21) gives a subleading contribution to
Sn[P ∗mic||P ∗can], which therefore has the same asymptotic behaviour as αn:

Sn[P
∗
mic||P ∗can] = αn[1 + o(1)]. (3.27)

This result, which is stronger than Eq. (3.26), means that in such a case one can obtain
exact estimates of quantities that depend on Sn[P ∗mic||P ∗can], using only the knowledge
of αn. Third, Eq. (3.26) shows that the definition of EE given by Eq. (3.14) coincides
with

αn = o(n) (3.28)

which, again, can be ascertained by evaluating only Σ∗ and avoiding any microcanon-
ical calculation. Indeed, Eq. (3.28) can be formulated as an equivalent definition of
EE in the measure sense [37]. If αn grows faster than o(n), then the system is under
EN.

3.3 Weak and strong ensemble nonequivalence
In this section we illustrate the main results, i.e. we identify systems for which the
breaking of EE occurs in a form that is at the same time ‘strong’ and ‘unrestricted’
and we calculate the relative entropy in various such systems. To this end, we first
make some general considerations leading to a rigorous definition of ‘strong’ EN and
subsequently study specific examples within our matrix ensembles.

80



3.3.1 Relative entropy ratio
Equation (3.21) reveals that the asymptotic behaviour of Ω ~C∗ depends on that of K
and of the eigenvalues of the covariance matrix Σ∗. We can indeed convince ourselves
of this fact by looking at results of previous studies from a novel perspective.

Specifically, if K = o(n) and if we exclude phase transitions, then Eq. (3.21) leads
to Eq. (3.18), i.e. the ensembles are equivalent. This includes the traditional situation
where one has a finite number of constraints, as well as more complicated cases where
the number of constraints is subextensive (e.g. random graphs with constraints on
a subextensive subset of node degrees [63]). In order to break EE in this case, one
needs phase transitions corresponding to singularities of the partition function [8].
For instance, in the case of graphs with fixed numbers of edges and triangles (or
wedges) [67], there is a region in parameter space where one gets Sn[P ∗mic||P ∗can] =
O(n2) and therefore Ω ~C∗ = eS

∗
can−O(n2). Since also S∗can and S∗mic are O(n2) in this

case, it follows that
Sn[P

∗
mic||P ∗can] = O(S∗can) (3.29)

(note that in general S∗can ≥ S∗mic due to the non-negativity of the Kullback-Leibler
divergence and to Eq. (3.15), therefore O(S∗can) is necessarily the leading order). This
is what we have previously referred to as a form of EN that is ‘restricted’ (i.e. valid
only in a certain region in parameter space arising from a phase transition and outside
which EE is restored) but ‘strong’ (i.e. where the relative entropy is of the same order
as the entropy itself).

If K = O(n), then Eq. (3.18) is in general no longer valid. For instance, in the
case of sparse graphs with fixed degrees (K = n), all the eigenvalues of Σ∗ are finite
in the thermodynamic limit [5, 7]; one indeed obtains Sn[P ∗mic||P ∗can] = O(n) [5] and
hence Ω ~C∗ = eS

∗
can−O(n). Note that in this case the product in Eq. (3.21) (which

in general cannot be calculated exactly) is of the same order as the denominator
and should be taken into account. In the case of dense graphs with fixed degrees
(again K = n), all the eigenvalues of Σ∗ are instead O(n) [7]; one indeed obtains
Sn[P ∗mic||P ∗can] = O(n lnn) [7] and hence Ω ~C∗ = eS

∗
can−O(n lnn). The product in

Eq. (3.21) is in this case negliglible with respect to the denominator, which can be
calculated exactly. In any case, since S∗can and S∗mic are still O(n2) for both sparse
and dense networks with fixed degrees, these situations correspond to

Sn[P
∗
mic||P ∗can] = o(S∗can), (3.30)

i.e. to what we have defined ‘weak’ EN. On the other hand, this type of EN is not
associated with phase transitions (which are indeed absent in the mentioned examples
of graphs with fixed degrees) and is therefore ‘unrestricted’, i.e. valid in the entire
parameter space.

The above considerations suggest that, in order to rigorously define the strength
of EN, we may define the ratio

Rn ≡
Sn[P ∗mic||P ∗can]
Sn[P ∗can]

= 1− Sn[P ∗mic]

Sn[P ∗can]
(3.31)
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between the relative entropy and the canonical entropy, calculated for fixed n, and
consider its limit as n→ +∞, i.e.

R∞ ≡ lim
n→∞

Rn

= lim
n→∞

Sn[P ∗mic||P ∗can]
Sn[P ∗can]

= 1− lim
n→∞

Sn[P ∗mic]

Sn[P ∗can]
. (3.32)

For brevity, we will call Rn the relative entropy ratio and R∞ the limiting relative
entropy ratio. Note that the inequality S∗can ≥ S∗mic ≥ 0 implies 0 ≤ Rn ≤ 1 for all
n > 0. The condition characterizing our notion of strong EN in Eq. (3.29) coincides
with R∞ being strictly positive. The value of R∞ in that case quantifies exactly the
asymptotic proportionality between Sn[P ∗mic||P ∗can] and Sn[P ∗can], which is otherwise
left unquantified by Eq. (3.29) alone. We will therefore adopt the strict inequality

R∞ > 0 (3.33)

(which in turns implies the breakdown of Eq. (3.28), the converse being in general
not true) as our definition of strong EN. By contrast, the condition characterizing
our notion of weak EN in Eq. (3.30) can be rephrased as the equality R∞ = 0. Note
that one may have R∞ = 0 also in cases where the ensembles are equivalent. We will
therefore adopt the condition R∞ = 0, in conjunction with the violation of Eq. (3.28),
as our definition of weak EN. Note that our discussion following Eq. (3.21) implies
that, if all but at most a finite number of the eigenvalues of Σ∗ diverge, then the
exact value of R∞ can be retrieved by replacing Sn[P ∗mic||P ∗can] with αn given by
Eq. (3.25), i.e. using only the canonical covariances between the constraints, without
microcanonical calculations.

Note that Eq. (3.19) implies

Ω ~C∗ = eS
∗
can(1−Rn) = O

((
eS
∗
can
)1−R∞

)
. (3.34)

So, in presence of strong nonequivalence (R∞ > 0), Ω ~C∗ is of strictly smaller or-
der compared with the ordinary estimate in Eq. (3.18). This is actually due to the
canonical ensemble having much bigger entropy than the microcanonical one: indeed,
Eq. (3.15) implies

S∗mic = S∗can(1−Rn) (3.35)

and, inverting,
S∗can =

1
1−Rn

S∗mic. (3.36)

Note that the factor 1/(1−Rn) can be arbitrarily large since Rn can be arbitrarily
close to 1.
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Given the above definitions of ‘weak’ and ‘strong’ EN in terms of the limiting
relative entropy ratio, in what follows we will consider the specific ensembles of ma-
trices introduced in the previous section, under both global and local constraints, and
calculate the value of αn and R∞ in each case.

3.3.2 Global constraints
As already discussed, ensembles of (binary or weighted) n×m matrices with a global
constraint are defined by requiring that the single quantity t(G) =

∑n
i=1
∑m
j=1 gij

takes, either ‘hardly’ or ‘softly’, a specific value t∗ ≡ t(G∗). For this simple choice
of the constraint, both S∗can and S∗mic can be calculated exactly. This allows us to
check that the complex integral in Eq. (3.20) indeed provides the exact value of Ωt∗ .
Moreover, we can confirm the correctness of the asymptotic formula in Eq. (3.21).
All these approaches show that for both binary and weighted matrices with a global
constraint the canonical and microcanonical ensembles are equivalent.

Binary matrices under a global constraint

Let us start with the case when the global constraint t∗ is imposed on binary matrix
ensembles characterized by gij ∈ {0, 1}. The calculation of the canonical entropy S∗can
is straightforward (see Appendix) by first calculating the likelihood

Pcan(G∗|θ) =
e−θ t

∗

(1 + e−θ)mn
(3.37)

and then looking for the value θ∗ that maximizes Pcan(G∗|θ) or, equivalently, realizes
the soft constraint 〈t〉θ∗ = t∗. The result is

θ∗ = ln mn− t
∗

t∗
. (3.38)

Using Eq. (3.8), we can then easily evaluate S∗can from Eqs. (3.37) and (3.38) as

S∗can = − lnPcan(G∗|θ∗) = ln (mn)mn

(t∗)t
∗
(mn− t∗)mn−t∗

. (3.39)

The calculation of the microcanonical entropy S∗mic is in this case even simpler
than that of the canonical one, since the number Ωt∗ of configurations realizing the
hard constraint t(G) = t∗ is simply the number of ways in which t∗ ‘ones’ can be
placed in mn available positions, i.e. the binomial coefficient Ωt∗ = (mnt∗ ). This
implies

S∗mic = ln Ωt∗ = ln
(
mn

t∗

)
. (3.40)

Importantly, it is possible to confirm that, upon extending the argument of the likeli-
hood to the complex domain and calculating Pcan(G∗|θ∗+ iψ), the integral formula in
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Eq. (3.20) returns a value of Ωt∗ that produces the exact value of the microcanonical
entropy S∗mic given in Eq. (3.40):

S∗mic = ln
ˆ +π

−π

dψ
2π P

−1
can(G∗|θ∗ + iψ)

= ln
ˆ +π

−π

dψ
2π

(1 + e−θ
∗−iψ)mn

e−(θ
∗+iψ) t∗

= ln
(
mn

t∗

)
, (3.41)

where the (instructive) calculation justifying the last equality is reported in the Ap-
pendix.

Combining the expressions for S∗mic and S∗can into Eq. (3.15), we obtain the relative
entropy between the two ensembles:

Sn[P
∗
mic||P ∗can] = ln (mn)mn(

mn

t∗

)
(t∗)t

∗
(mn− t∗)mn−t∗

. (3.42)

In this simple example, the inequality Sn[P ∗mic||P ∗can] > 0 clearly arises from the
presence of dependencies among the entries of G in the microcanonical ensemble
and the absence of such dependencies in the canonical one. Indeed, while in the
microcanonical ensemble the hard constraint t(G) = t∗ makes all the entries of G
mutually dependent, in the canonical ensemble the soft constraint 〈t〉θ∗ = t∗ leaves
each entry gij independent and identically (Bernoulli-)distributed with probability

p(gij |θ∗) =
e−θ

∗gij

1 + e−θ∗
, gij ∈ {0, 1} (3.43)

(see Appendix). Consequently, while in the microcanonical ensemble the constraint
t(G) is a deterministic quantity fixed to the value t∗, in the canonical ensemble t(G)
is a random variable with expected value t∗ and variance

Σ∗ = Varθ∗ [t] = nm
e−θ

∗

(1 + e−θ∗)2 = t∗
(

1− t∗

mn

)
(3.44)

(see Appendix), where Σ∗ is the only (recall that hereK = 1) of the covariance matrix
Σ∗ introduced in Eq. (3.23).

As discussed in Subsection 3.2.6, Sn[P ∗mic||P ∗can] and Σ∗ are asymptotically related
through Eq. (3.26), and the (non)equivalence of canonical and microcanonical ensem-
bles is decided by the asymptotic behaviour of these two quantities. We will confirm
both results in the particular case under consideration here. However, for compact-
ness, we do this in conjunction with the weighted case, after introducing the latter
below.
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Weighted matrices under a global constraint

We now consider the case when the global constraint t∗ is enforced on weighted
matrices where gij is a non-negative integer. As we show in the Appendix, in the
canonical ensemble the likelihood can be calculated as

Pcan(G∗|θ) = e−θ t
∗
(1− e−θ)mn (3.45)

and is maximised by the parameter value

θ∗ = ln mn+ t∗

t∗
(3.46)

(note the change of sign with respect to the binary case) realizing the soft constraint
〈t〉θ∗ = t∗. The canonical entropy is therefore

S∗can = − lnPcan(G∗|θ∗) = ln (mn+ t∗)mn+t
∗

(t∗)t
∗
(mn)mn

. (3.47)

In the microcanonical ensemble, the number Ωt∗ of configurations realizing the
hard constraint t(G) = t∗ coincides with the number of so-called weak compositions
of the positive integer t∗ into exactly mn parts, i.e. the number of ways of writing
the positive integer t∗ as the sum of an ordered sequence of mn non-negative integers
(note that two sequences that differ in the order of their terms represent different
configurations). This number is given by the negative binomial coefficient Ωt∗ =

(mn+t
∗−1

t∗ ) [68], whence

S∗mic = ln Ωt∗ = ln
(
mn+ t∗ − 1

t∗

)
. (3.48)

In this case as well, one can confirm that the integration of the complex quantity
P−1
can(G∗|θ∗ + iψ) as specified in Eq. (3.20) produces precisely the same value of Ωt∗

used in Eq. (3.48) (see Appendix), thus retrieving the exact entropy

S∗mic = ln
ˆ +π

−π

dψ
2π P

−1
can(G∗|θ∗ + iψ)

= ln
ˆ π

−π

dψ
2π

(1− e−θ∗−iψ)−mn

e−(θ
∗+iψ)t∗

= ln
(
mn+ t∗ − 1

t∗

)
. (3.49)

The relative entropy Sn[P ∗mic||P ∗can], calculated using Eq. (3.15), equals

Sn[P
∗
mic||P ∗can] = ln (mn+ t∗)mn+t

∗(
mn+ t∗ − 1

t∗

)
(t∗)t

∗
(mn)mn

. (3.50)
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Again, the origin of a non-zero relative entropy lies in the presence of dependencies
among all the entries of G in the microcanonical ensemble, where they are coupled
by the hard constraint t(G) = t∗, and in the absence of such dependencies in the
canonical ensemble, where each entry gij is independent and now geometrically (see
Appendix) distributed with probability

p(gij |θ∗) = e−θ
∗gij (1− e−θ∗), gij ∈ {0, 1, 2, . . . }. (3.51)

As a consequence, while in the microcanonical ensemble the constraint t(G) is fixed to
the constant value t∗, in the canonical ensemble it is a random variable with expected
value t∗ and variance

Σ∗ = Varθ∗ [t] = nm
e−θ

∗

(1− e−θ∗)2 = t∗
(

1 + t∗

mn

)
(3.52)

(see Appendix).

Ensemble equivalence for matrices under a global constraint

We can now study, in a combined fashion, the (non)equivalence of the canonical
and microcanonical ensembles of both binary and weighted matrices with a global
constraint t∗. To this end, we preliminarly notice that the reason why the quantity
(k+l−1

l ) is called negative binomial is the fact that it can be formally rewritten as the
following binomial coefficient with negative signs:(

k+ l− 1
l

)
= (−1)l

(
−k
l

)
. (3.53)

The above relation allows us to conveniently rewrite the relative entropy for the
weighted case appearing in Eq. (3.50) as

Sn[P
∗
mic||P ∗can] = ln (−mn)−mn(

−mn
t∗

)
(t∗)t

∗
(−mn− t∗)−mn−t∗

. (3.54)

Upon comparison with the corresponding Eq. (3.42) valid in the binary case, we can
express the relative entropy in general as

S±n [P
∗
mic||P ∗can] = ln (±mn)±mn(

±mn
t∗

)
(t∗)t

∗
(±mn− t∗)±mn−t∗

, (3.55)

where the superscript “+” applies to binary matrices (note that t∗ ≤ mn in this case)
and the superscript “−” applies to weighted matrices. Note that the expression for the
weighted case can be formally retrieved by changing the sign of m in the expression
valid for the binary case.
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As we discussed in Subsection 3.2.6, checking for (non)equivalence requires study-
ing the asymptotic behaviour of the relative entropy. In this case, we can calculate
the asymptotic behaviour of S±n [P ∗mic||P ∗can] explicitly from the exact expression given
by Eq. (3.55). Note that, in both the sparse and dense case (see Subsection 3.2.5),
t∗ and mn diverge in the thermodynamic limit. We can therefore apply Stirling’s
formula

k! =
√

2πk
(
k

e

)k
[1 + o(1)] (3.56)

to Eq. (3.55), which yields

S±n [P
∗
mic||P ∗can] =

1
2 ln

[
2πt∗

(
1− t∗

±mn

)]
[1 + o(1)] . (3.57)

For purely pedagogical reasons, we check that the asymptotic behaviour found
above is consistent with the one we would retrieve by using the expansion in Eq. (3.21),
which leads to Eq. (3.26) and reduces the problem of the calculation of S±n [P ∗mic||P ∗can]
to that of its leading order αn. To this end, we note that in this case the matrix Σ∗,
being a 1× 1 matrix, coincides with its only eigenvalue

(λ∗)± = t∗
(

1− t∗

±mn

)
, (3.58)

where we have used Eq. (3.44) for binary (+) and Eq. (3.52) for weighted (−) matrices.
Therefore

α±n = ln
√

2π(λ∗)±

=
1
2 ln

[
2πt∗

(
1− t∗

±mn

)]
, (3.59)

which has indeed the same leading order as Eq. (3.57), thereby confirming the cor-
rectness of the saddle-point calculation. As an even stronger result, we are under
the conditions for which Eq. (3.27) holds, a relationship that can be confirmed by
comparing Eqs. (3.57) and (3.59). It should also be noted that, since t∗ diverges in
the thermodynamic limit, so does (λ∗)± and Eq. (3.21) leads to

Ω±t∗ =
eS
±
n [P∗can]√

2πt∗
(

1− t∗
±mn

) [1 + o(1)], (3.60)

which is precisely what we get by applying Eq. (3.56) to the binomial and negative
binomial coefficients appearing in the exact expression for Ω±t∗ in the binary and
weighted case respectively.

As stated in Eq. (3.28), checking whether the ensembles are equivalent boils down
to checking whether αn = o(n). Note that the only effect of the asymptotic scaling
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of t∗ is that the quantity 1− t∗/(±mn) in Eq. (3.59) converges to 1 in the sparse
case t∗/mn = O(1/n) and to a different, but still finite and positive constant in the
dense case t∗/mn = O(1) (see Subsection 3.2.5). Therefore in both cases we have
αn = O(ln t∗) = O(lnmn). This implies αn = o(n) independently of the asymptotic
behaviour of m. This result shows that, in presence of a global constraint, both binary
and weighted matrices are under EE, irrespective of the scaling of t∗ and m. This
finding confirms, in a generalized setting, the result obtained for networks with a
given total number of links [5]. Since EE is preserved, we avoid the calculation of the
limiting relative entropy ratio R∞ defined in Eq. (3.32) in this case.

3.3.3 One-sided local constraints
We now consider ensembles of binary and weighted n×m matrices with one-sided
local constraints, i.e. under the requirement that the n-dimensional vector ~r(G) with
entries ri(G) =

∑m
j=1 gij (i = 1,n) takes a specific value ~r∗ ≡ ~r(G∗). Note that,

unlike the case of global constraints, here the number of constraints is extensive. As
in the case with global constraints, it turns out that both S∗can and S∗mic can still be
calculated exactly. Therefore we can again confirm the correctness of both the exact
integral formula in Eq. (3.20) and the asymptotic expansion in Eq. (3.21). Despite
these extensions are mathematically straightforward, we find a deep physical differ-
ence with respect to the case with global constraints: the presence of an extensive
number of local constraints implies the breaking of the equivalence of canonical and
microcanonical ensembles for both binary and weighted matrices. The calculation of
the limiting relative entropy ratio R∞ allows us to quantify the strength of nonequiv-
alence and also to identify the conditions leading to the ‘strong and unrestricted’
form.

Binary matrices under one-sided local constraints

Let us first examine the case when the one-sided local constraints ~r∗ are imposed on
ensembles of binary matrices. As we show in the Appendix, in the canonical ensemble
the likelihood is

Pcan(G∗|~θ) =
e−

~θ·~r∗∏n
i=1(1 + e−θi)m

(3.61)

and reaches its maximum when the parameter ~θ takes the value ~θ∗ with entries

θ∗i = ln m− r
∗
i

r∗i
i = 1,n, (3.62)

corresponding to the soft constraint 〈~r〉 ~θ∗ = ~r∗. Substituting Eq. (3.62) into Eq. (3.61),
we obtain the canonical entropy as

S∗can = − lnPcan(G∗|~θ∗)

=
n∑
i=1

ln mm

(r∗i )
r∗i (m− r∗i )

m−r∗i
. (3.63)
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Let us now turn to the microcanonical ensemble. Since the constraints are only
one-sided, it is immediate to realize that the number Ω~r∗ of configurations realizing
the hard constraint ~r(G) = ~r∗ is a product of row-specific binomial coefficients, so
that the microcanonical entropy S∗mic can still be calculated exactly as the following
simple generalization of Eq. (3.40):

S∗mic = ln Ω~r∗ = ln
n∏
i=1

(
m

r∗i

)
=

n∑
i=1

ln
(
m

r∗i

)
. (3.64)

For the same reason, S∗mic can also be exactly retrieved by explicitly integrating the
complex-valued quantity Pcan(G∗|~θ∗+ i ~ψ) as prescribed by Eq. (3.20) (see Appendix):

S∗mic = ln
ˆ +~π

−~π

d~ψ
(2π)nP

−1
can(G∗|~θ∗ + i~ψ)

= ln
n∏
i=1

ˆ +π

−π

dψi
2π

(1 + e−θ
∗
i −iψi)m

e−(θ
∗
i +iψi)r∗i

=
n∑
i=1

ln
(
m

r∗i

)
. (3.65)

Combining the above results, we can calculate the relative entropy from Eq. (3.15)
as

Sn[P
∗
mic||P ∗can] =

n∑
i=1

ln mm(
m

r∗i

)
(r∗i )

r∗i (m− r∗i )m−r
∗
i

. (3.66)

The above quantity encodes the following difference between the two ensembles: in
the microcanonical ensemble, the hard constraint ~r(G) = ~r∗ makes all the entries in
each row of G mutually dependent, while leaving different rows independent of each
other; on the other hand, in the canonical ensemble the soft constraint 〈~r〉~θ∗ = ~r∗

leaves all entries of the matrix independent. As in the case with a global constraint,
each entry gij is still Bernoulli-distributed, but now with row-specific probability

p(gij |~θ∗) =
e−θ

∗
i gij

1 + e−θ
∗
i

, gij ∈ {0, 1}, (3.67)

as we show in the Appendix. Correspondingly, in the microcanonical ensemble ~r is
a deterministic vector fixed to the value ~r∗, while in the canonical ensemble it is a
random vector with expected value ~r∗. The covariance matrix Σ∗ between the entries
of ~r (i.e. between the n constraints) in the canonical ensemble is a diagonal matrix
with entries

Σ∗ij = δijr
∗
i

(
1− r∗i

m

)
(3.68)
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where δij = 1 if i = j and δij = 0 if i 6= j (see Appendix). This implies that the
eigenvalues {λ∗i }ni=1 of Σ∗ are

λ∗i = r∗i

(
1− r∗i

m

)
i = 1,n. (3.69)

Again, we are going to discuss the (non)equivalence of the two ensembles together
with the corresponding case of weighted matrices, after studying the latter below.

Weighted matrices under one-sided local constraints

We now move to the case when the one-sided local constraints ~r∗ are imposed on
ensembles of weighted matrices. The canonical ensemble under such constraints is
characterized by the likelihood

Pcan(G∗|~θ) =
e−

~θ·~r∗∏n
i=1(1− e−θi)−m

, (3.70)

which is maximized by the parameter value ~θ∗ with entries

θ∗i = ln m+ r∗i
r∗i

i = 1,n (3.71)

realizing the soft constraint 〈~r〉 ~θ∗ = ~r∗ (see Appendix). If we insert Eq. (3.71) into
Eq. (3.70), we get

S∗can = − lnPcan(G∗|~θ∗)

=
n∑
i=1

ln (m+ r∗i )
m+r∗i

(r∗i )
r∗imm

. (3.72)

The microcanonical entropy S∗mic is instead given by the following generalization
of Eq. (3.48):

S∗mic = ln Ω~r∗ =
n∑
i=1

ln
(
m+ r∗i − 1

r∗i

)
, (3.73)

where we have expressed the number Ω~r∗ of configurations realizing the hard con-
straint ~r(G) = ~r∗ as a product of row-specific negative binomial coefficients. Again,
the microcanonical entropy can be obtained equivalently from Eq. (3.20) as follows
(see Appendix):

S∗mic = ln
ˆ +~π

−~π

d~ψ
(2π)nP

−1
can(G∗|~θ∗ + i~ψ)

= ln
n∏
i=1

ˆ +π

−π

dψi
2π

(1− e−θ∗i−iψi)−m

e−(θ
∗
i +iψi)r∗i

=
n∑
i=1

ln
(
m+ r∗i − 1

r∗i

)
. (3.74)
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The relative entropy, which can be obtained from Eq. (3.15) as usual, equals

Sn[P
∗
mic||P ∗can] =

n∑
i=1

ln (m+ r∗i )
m+r∗i(

m+ r∗i − 1
r∗i

)
(r∗i )

r∗imm
(3.75)

and encodes the difference between the microcanonical ensemble, where the entries
of each row of G are mutually coupled by the hard constraint ~r(G) = ~r∗ (while
different rows are independent), and the canonical ensemble, where all entries of G
are independent and geometrically (see Appendix) distributed with row-dependent
probability

p(gij |~θ∗) = e−θ
∗
i gij (1− e−θ∗i ), gij ∈ {0, 1, 2, . . . }. (3.76)

As a consequence, while in the microcanonical ensemble the constraint ~r is fixed to
the value ~r∗, in the canonical ensemble it is a random vector fluctuating around ~r∗
according to the diagonal covariance matrix Σ∗ with entries

Σ∗ij = δijr
∗
i

(
1 + r∗i

m

)
(3.77)

(see Appendix) and eigenvalues

λ∗i = r∗i

(
1 + r∗i

m

)
i = 1,n. (3.78)

Ensemble nonequivalence for matrices under one-sided local constraints

We can now compactly discuss the (non)equivalence of canonical and microcanonical
ensembles of both binary and weighted matrices under one-sided local constraints.
As for the case of global constraints discussed in Subsection 3.3.2, we still have an
exact knowledge of the canonical entropy, the microcanonical entropy, and the relative
entropy. Moreover, these quantities can all be written, using Eq. (3.53), in compact
expressions formally valid for both binary (+) and weighted (−) matrices. Indeed, the
canonical entropy can be expressed by combining the expressions for Sn[P ∗can] = S∗can
in Eqs. (3.63) and (3.72) into the unified formula

S±n [P
∗
can] =

n∑
i=1

ln m±m

(r∗i )
r∗i (m∓ r∗i )

±m−r∗i
(3.79)

and, similarly, the microcanonical entropy can be obtained by formally combining
Eqs. (3.64) and (3.73) into

S±n [P
∗
mic] =

n∑
i=1

ln
[
(±1)r∗i

(
±m
r∗i

)]
. (3.80)

91



The above expressions can be used to calculate the relative entropy as

S±n [P
∗
mic||P ∗can] =

n∑
i=1

ln (±m)±m(
±m
r∗i

)
(r∗i )

r∗i (±m− r∗i )±m−r
∗
i

(3.81)

which indeed combines the expressions given in Eq. (3.66) for binary (+) matrices
and Eq. (3.75) for weighted (−) matrices. Equation (3.81) extends Eq. (3.55) to the
case of one-sided local constraints. We now consider different regimes.

• In the sparse case where r∗i = O(1) (for all i) and m = O(n) (see Subsec-
tion 3.2.5), we can use Stirling’s formula, given by Eq. (3.56), to expand m!
(but not r∗i !) appearing in the (negative) binomial coefficient to get(

±m
r∗i

)
≈ (±m)r

∗
i

r∗i !
(3.82)

and consequently

S±n [P
∗
mic||P ∗can] ≈

n∑
i=1

ln er
∗
i r∗i !

(r∗i )
r∗i

= O(n). (3.83)

• In the dense case where both r∗i (for all i) and m are O(n), as discussed in
Subsection 3.2.5 (so that r∗i /m converges to a finite constant), we can use
Stirling’s formula to expand both m! and r∗i ! into Eq. (3.81) to obtain

S±n [P
∗
mic||P ∗can] =

1
2

n∑
i=1

ln
[
2πr∗i

(
1− r∗i
±m

)]
[1 + o(1)]

= O(n lnn) (3.84)

for binary (+) (in which case r∗i ≤ m) and weighted (−) matrices.

• In the dense case where both m and r∗i are finite, there is no asymptotic ex-
pansion that allows to simplify Eq. (3.81) in general, so S±n [P ∗mic||P ∗can] has to
be evaluated explicitly (simple examples are provided below). The important
general consideration is that, irrespective of the specific values of m and r∗i ,

S±n [P
∗
mic||P ∗can] = O(n). (3.85)

Again, we can confirm that the above asymptotic expressions are consistent with
what we would obtain from Eq. (3.26), which follows from the saddle-point approxi-
mation given by Eq. (3.21). To see this, noting that here K = n and that Eqs. (3.68)
and (3.77) indicate that (Σ∗)± is a diagonal matrix with entries

(Σ∗ij)
± = δijr

∗
i

(
1− r∗i
±m

)
(3.86)
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for binary (+) and weighted (−) one-sided constraints respectively, we can compactly
express Eq. (3.25) as

α±n = ln
√

det [2π(Σ∗)±]

=
1
2

n∑
i=1

ln
[
2π(Σ∗ii)±

]
=

1
2

n∑
i=1

ln
[
2πr∗i

(
1− r∗i
±m

)]
. (3.87)

In the dense regime with diverging m, the conditions guaranteeing the strong result
in Eq. (3.27) (all but a finite number of diverging eigenvalues of Σ∗) hold, as can be
confirmed by comparing Eqs. (3.84) and (3.87). Moreover, noticing from Eq. (3.56)
that ekk!/kk =

√
2πk[1 + o(1)], we see that Eq. (3.87) confirms the asymptotic

behaviour of the relative entropy obtained also in Eqs. (3.83) and (3.85) for the
other two regimes, under the respective assumptions on the scaling of m and k.
Coincidentally, we also see that the stronger result in Eq. (3.27) turns out to be a
very good approximation for the relative entropy even in these two regimes where,
technically, the required conditions are not met. This means that, for the one-sided
dense case with finite m, we can rewrite Eq. (3.26) asymptotically (i.e. for large n)
as

S±n [P
∗
mic||P ∗can] = C1(m)α±n

= C1(m) ln
√

det[2π(Σ∗)±] (3.88)

where C1(m) is a finite and positive constant. Moreover, from the known inequality
ekk!/kk ≥

√
2πk for the factorial, we see that C1(m) ≥ 1 as implied by comparing

Eqs. (3.81) and (3.87). Finally, we also know from Stirling’s approximation that
C1(m) is not much bigger than 1, i.e. C1(m) & 1, and that it rapidly approaches 1:
indeed when m diverges Eq. (3.27) holds exactly, which implies

lim
m→∞

C1(m) = 1. (3.89)

The fact that, in all regimes, S±n [P ∗mic||P ∗can] (or equivalently αn) is at least of order
O(n) shows that Eq. (3.28) is violated and that EE breaks down for both binary and
weighted matrices under one-sided local constraints, irrespective of the density and of
the behaviour of m. This important finding generalizes the result, documented so far
only for ensembles of binary graphs with given degree sequence [5, 7, 45] (and possibly
modular structure [26]) and weighted graphs with given strength sequence [28], that
EE breaks down in the presence of an extensive (i.e. growing like n) number of local
constraints. Here, this result is extended to more general ensembles of matrices, i.e.
asymmetric, rectangular matrices describing e.g. bipartite graphs, multivariate time
series, multiplex social activity, multi-cast communication systems and multi-cell gene
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expression profiles with variable m. More importantly, this generalized setting allows
for a qualitatively new phenomenon to emerge, namely the onset of ‘strong’ EN, as
we now show.

Indeed, we can investigate the ‘strength’ of nonequivalence by comparing the
asymptotic behaviour of the relative entropy with that of the canonical entropy given
by Eq. (3.79). This expression can be evaluated in the usual three regimes as follows.

In the sparse case with r∗i = O(1) and m = O(n), noticing that asymptotically
(for large n) we have (m∓ r∗i )

±m−r∗i ≈ m±m−r∗i e∓r∗i , Eq. (3.79) reduces to

S±n [P
∗
can] ≈

n∑
i=1

r∗i ln e
±1m

r∗i
= O(n lnn), (3.90)

which dominates over the orderO(n) of the corresponding relative entropy S±n [P ∗mic||P ∗can]
calculated previously in Eq. (3.83) for the sparse case. This implies that the limit-
ing relative entropy ratio defined in Eq. (3.32) is R±∞ = 0 for both binary (+) and
weighted (−) constraints, meaning that in this case the breaking of EE is still ‘weak’
as in the case of graphs with local constraints.

In the dense case with r∗i = O(n) and m = O(n), Eq. (3.79) can be evaluated as

S±n [P
∗
can] =

n∑
i=1

[
±m ln m

m∓ r∗i
+ r∗i ln m∓ r

∗
i

r∗i

]
= O(n2) (3.91)

which, again, dominates over the order O(n lnn) of the corresponding relative entropy
calculated in Eq. (3.84). Therefore we still have R±∞ = 0 (weak nonequivalence).

Finally, the dense case where both m and r∗i remain finite as n→∞ is the subject
of the rest of this Section. Equation (3.79) implies that

S±n [P
∗
can] = O(n) (3.92)

which, upon comparison with Eq. (3.85), shows that now the relative entropy grows as
fast as the canonical entropy, signalling the ‘strong’ form of EN. Using the combined
expressions given in Eqs. (3.79) and (3.80), we can explicitly calculate the relative
entropy ratio introduced in Eq. (3.31) as follows:

R±n = 1−

∑n
i=1 ln

[
(±1)r∗i (±mr∗i )

]
∑n
i=1 ln m±m

(r∗i )
r∗
i (m∓r∗i )

±m−r∗
i

> 0. (3.93)

Using Eqs. (3.87) and (3.88), we obtain the alternative asymptotic (for large n) ex-
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Figure 3.2. Strong ensemble nonequivalence, signalled by a positive limiting entropy ratio
R+
∞ > 0, for binary matrices under homogeneous one-sided local constraints (r∗i = r∗ ∀i) in

the dense case with finite m and r∗. (a) R+
∞ as a function of p∗ = r∗/m for various values of

m. Note that R+
∞ is larger for smaller m and for values of p∗ more distant from the uniform

case (p∗ = 1/2). (b) R+
∞ as a function of m for various values of p∗. Note that, as m grows,

R+
∞ decays like ln(2πm)/m.

pression

R±n =
S±n [P

∗
mic||P ∗can]

S±n [P ∗can]

= C1(m)
α±n∑n

i=1 ln m±m

(r∗i )
r∗
i (m∓r∗i )

±m−r∗
i

=
C1(m)

2

∑n
i=1 ln

[
2πr∗i

(
1− r∗i

±m

)]
∑n
i=1 ln m±m

(r∗i )
r∗
i (m∓r∗i )

±m−r∗
i

. (3.94)

Comparing Eqs. (3.93) and (3.94) confirms that, as noticed above, C1(m) ≈ 1 also
for finite m.

In general, taking the thermodynamic limit n→∞ in Eq. (3.93) or (3.94) requires
the specification of the value of r∗i for all i. For the sake of illustration, we can consider
the simplest case where each constraint has the same value r∗i = r∗ (i = 1,n). Note
that the resulting canonical entropy of matrices with constant one-sided constraint r∗,
given by Eq. (3.79), coincides with the canonical entropy of matrices with the implied
global constraint t∗ = nr∗, given by Eqs. (3.39) and (3.47) in the binary and weighted
case respectively. However, the microcanonical entropy in the one-sided case, given
by Eq. (3.80), is strictly smaller than the corresponding one for matrices with the
implied global constraint t∗ = nr∗, given by Eqs. (3.40) and (3.48) in the binary and
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weighted case respectively. From Eq. (3.93) we immediately find

R±∞ = lim
n→∞

R±n = 1−
ln
[
(±1)r∗(±mr∗ )

]
ln m±m

(r∗)r
∗
(m∓r∗)±m−r

∗
> 0, (3.95)

confirming strong nonequivalence as defined in Eq. (3.33). To gain numerical and
visual insight about the behaviour of R±∞ in Eq. (3.95), let us consider the binary and
weighted cases separately.

In the binary case, Eq. (3.62) implies that, if r∗i = r∗ for all i, then the Lagrange
multipliers θ∗i are all equal to

θ∗+ ≡ ln m− r
∗

r∗
. (3.96)

Then, writing p∗ ≡ r∗/m = e−θ
∗
+/(1 + e−θ

∗
+) ∈ (0, 1), from Eq. (3.95) we obtain

R+
∞ = 1−

ln (mr∗)

ln mm

(r∗)r
∗
(m−r∗)m−r∗

(3.97)

= 1−
ln ( m

p∗m)

ln mm

(p∗m)p
∗m(m−p∗m)m−p∗m

> 0.

Using the above expression, in Fig. 3.2 we plot R+
∞ as a function of either p∗ (for

fixed m) or m (for fixed p∗). We see that, for a wide range of values of p∗, R+
∞

remains appreciably large for values of m up to one hundred. Moreover, values of p∗
closer to 0 or 1 than to 1/2 make R+

∞ larger. So, for empirical applications where
the level of ‘multiplexity’ is moderate (i.e. small m), and especially away from the
uniform case (p∗ = 1/2), there is a significant entropy reduction from the canonical
to the microcanonical ensemble. By contrast, as m increases while p∗ remains fixed,
R+
∞ decreases like ln 2πm

m , as can be easily realized by applying Stirling’s formula
to Eq. (3.97). This coincides with the system progressively moving to the different
regime where both m and r∗i grow as n grows, which results in weak EN and R+

∞ = 0
as previously noticed. Similarly, if r∗i remains finite while m grows, we enter the
sparse regime for which R+

∞ = 0 as previously noticed.
In the weighted case, Eq. (3.71) implies that if r∗i = r∗ for all i, then θ∗i = θ∗− for

all i with
θ∗− ≡ ln m+ r∗

r∗
. (3.98)

Then, writing q∗ ≡ e−θ
∗
− = r∗

m+r∗ ∈ (0, 1), from Eq. (3.95) we obtain

R−∞ = 1−
ln (m+r∗−1

r∗ )

ln (m+r∗)m+r∗

mm(r∗)r
∗

(3.99)

= 1−
ln ((m−1+q∗)/(1−q∗)

mq∗/(1−q∗) )

m
1−q∗ ln m

1−q∗ −m lnm− mq∗
1−q∗ ln mq∗

1−q∗
> 0.
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Figure 3.3 shows the behaviour of R−∞ either as a function of q∗ (with m fixed) or
as a function of m (with q∗ fixed). Considerations similar to the binary case apply.
The main difference is that, while R+

∞ has a symmetric behaviour around the value
p∗ = 1/2 (arising from the fundamental symmetry of exchanging p∗ with 1− p∗ and
gij = 1 with gij = 0 in the binary case), R−∞ decreases monotonically as a function of
q∗ (due to the lack of any symmetry of that sort in the weighted case). So now R−∞
is larger for smaller m and q∗.

The above results illustrate what we had anticipated previously, i.e. that if m is
finite (and the matrices are necessarily dense) then the ensembles feature a strong form
of EN. Here, this form of EN is also ‘unrestricted’, as it holds irrespective of the value
of ~C∗ or ~θ∗, i.e. throughout the parameter space. To the best of our knowledge, this
is the first evidence of a situation for which EN occurs in a simultaneously ‘strong
and unrestricted’ form, i.e. the most robust manifestation of the breaking of EE
documented so far. Its ultimate origin is the presence of an extensive number of local
constraints, and not of phase transitions.
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Figure 3.3. Strong ensemble nonequivalence, signalled by a positive limiting entropy ratio
R−∞ > 0, for weighted matrices under homogeneous one-sided local constraints (r∗i = r∗ ∀i)
in the dense case with finite m and r∗. (a) R−∞ as a function of q∗ = r∗

m+r∗ for various values
of m. Note that R−∞ is larger for smaller m and q∗. (b) R−∞ as a function of m for various
values of q∗. As in the binary case, R−∞ decays like ln(2πm)/m as m grows.

3.3.4 Two-sided local constraints
We now discuss binary and weighted matrices under two-sided local constraints (~r(G),~c(G)),
where ~r(G) is still the n-dimensional vector of row sums while ~c(G) is the m-
dimensional vector of column sums, with entries cj(G) =

∑n
i=1 gij (j = 1, . . . ,m).

We constrain both vectors to a given value (~r∗,~c∗) ≡ (~r(G∗),~c(G∗)). Note that the
number of constraints is still extensive. Unlike the case of one-sided constraints, for
two-sided constraints it is not possible to calculate the exact number Ω~r∗,~c∗ of con-
figurations in the microcanonical ensemble. By contrast, all canonical calculations
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can still be carried out analytically (although the value of the Lagrange multipliers
can be determined only via implicit expressions). Therefore, as we show below, the
matrix Σ∗ of canonical covariances between the constraints becomes a crucial tool to
calculate the asymptotic behaviour of the relevant microcanonical quantities.

Binary matrices under two-sided local constraints

As usual, we start from the binary case. As shown in the Appendix, in the canonical
ensemble the likelihood is

Pcan(G∗|~α, ~β) = e−~α·~r
∗−~β·~c∗∏n

i=1
∏m
j=1[1 + e−(αi+βj )]

(3.100)

and is maximized by the parameter values (~α∗, ~β∗) defined implicitly by the following
set of n+m coupled nonlinear equations:

r∗i =
m∑
j=1

e
−(α∗i+β

∗
j )

1 + e
−(α∗i+β

∗
j )

, i = 1,n, (3.101)

c∗j =
n∑
i=1

e
−(α∗i+β

∗
j )

1 + e
−(α∗i+β

∗
j )

, j = 1,m. (3.102)

Unfortunately, in general these equations cannot be solved analytically to express
(~α∗, ~β∗) as an explicit function of (~r∗,~c∗). This is due to the fact that the presence
of both row and column constraints couples all parameters. However, the equations
can be solved numerically and the unique solution (~α∗, ~β∗) can then be inserted into
Pcan(G|~α, ~β). This gives complete analytical control over the canonical ensemble. In
particular, the canonical entropy is

S∗can = − lnPcan(G∗|~α∗, ~β∗) (3.103)

= ~α∗ · ~r∗ + ~β∗ ·~c∗ +
n∑
i=1

m∑
j=1

ln[1 + e
−(α∗i+β

∗
j )].

Note that, since this model has additional constraints with respect to the one-sided
case with the same row sums ~r∗, the canonical entropy above cannot be larger than
the corresponding one-sided canonical entropy given by Eq. (3.63), i.e. we have the
following upper bound:

S∗can ≤
n∑
i=1

ln mm

(r∗i )
r∗i (m− r∗i )

m−r∗i
. (3.104)

On the other hand, the microcanonical entropy S∗mic cannot be computed analyt-
ically, although the asymptotic formulas based on Eqs. (3.24) and (3.25) can be used
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to estimate it from the canonical covariance matrix Σ∗. As we show later, this leads
to an asymptotic estimate of the relative entropy based on Eq. (3.26). As for the
canonical entropy, the microcanonical one cannot be larger than the corresponding
one given by Eq. (3.64) in the one-sided case with the same row sums, with the only
difference that now the resulting upper bound is tight:

S∗mic <
n∑
i=1

ln
(
m

r∗i

)
. (3.105)

Indeed, the configurations matching both the row and the column constraints in the
two-sided case form a proper subset of the configurations matching only the row
constraints in the one-sided case.

It should be noted that in the microcanonical ensemble both ~r and ~c are deter-
ministic vectors fixed to the values ~r∗ and ~c∗ respectively, while in the canonical
ensemble they are random vectors with expected values ~r∗ and ~c∗. In the micro-
canonical ensemble, the hard constraints (~r(G),~c(G)) = (~r∗,~c∗) create mutual de-
pendencies among all the entries of G. In the canonical ensemble, the soft constraint
(〈~r〉~α∗ , 〈~c〉~β∗) = (~r∗,~c∗) leaves all entries of G independent. As in all other canonical
binary ensembles considered above, each entry gij is Bernoulli-distributed, but now
with its specific parameters:

p(gij |~α∗, ~β∗) =
e−(α

∗
i+β

∗
i )gij

1 + e−(α
∗
i ,β∗i )

, gij ∈ {0, 1}, (3.106)

as shown in the Appendix.
For illustration, we consider the special case where the column sums are all equal

to each other, i.e. c∗j = c∗ for all j. In this case, since the corresponding Lagrange
multipliers must also be all equal to each other (β∗j = β∗ for all j), it is indeed possible
to solve for the parameters explicitly. Indeed, Eqs. (3.101) and (3.102) reduce to the
n+ 1 independent equations

r∗i = m
e−(α

∗
i+β

∗)

1 + e−(α
∗
i+β

∗)
, i = 1,n, (3.107)

c∗ =
n∑
i=1

e−(α
∗
i+β

∗)

1 + e−(α
∗
i+β

∗)
, (3.108)

where the second equation is simply the consistency condition c∗ =
∑n
i=1 r

∗
i /m im-

plied by the first one. This means that the parameter β∗ is actually redundant,
as it could in principle be reabsorbed into a shift of all the α∗i ’s. In any case, the
combination α∗i + β∗ is found explicitly by inverting Eq. (3.107):

α∗i + β∗ = ln m− r
∗
i

r∗i
. (3.109)
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Note that, inserting this value into the expression for S∗can in Eq. (3.103), we obtain
exactly the canonical entropy found previously in Eq. (3.63) for the binary ensemble
with one-sided (row) constraints specified by the same vector ~r∗, i.e. the bound in
Eq. (3.104) is fully saturated:

S∗can = ~α∗ · ~r∗ +mβ∗c∗ +m

n∑
i=1

ln[1 + e−(α
∗
i+β

∗)]

=
n∑
i=1

ln mm

(r∗i )
r∗i (m− r∗i )

m−r∗i
. (3.110)

Indeed, the two canonical ensembles are indistinguishable and all their properties
are the same. However, the corresponding microcanonical ensembles remain very
different, because in the two-sided case each of the m column sums has to match
the exact value c∗ separately, while in the one-sided case only the total sum mc∗ of
all the m column sums (which is necessarily implied by the row constraints) has to
be matched exactly. Indeed Eq. (3.105) is a tight bound that cannot be saturated.
Similarly, the covariance matrix Σ∗ is now a (n+m)× (n+m) matrix (calculated
later) and its determinant is different from the one obtained in the one-sided case,
where the matrix is n× n.

Again, we are going to discuss the (non)equivalence of the two ensembles together
with the corresponding case of weighted matrices, after studying the latter below.

Weighted matrices under two-sided local constraints

We now discuss EN in weighted matrices with two-sided local constraints. The like-
lihood (see Appendix) is now

Pcan(G∗|~α, ~β) = e−~α·~r
∗−~β·~c∗∏n

i=1
∏m
j=1[1− e−(αi+βj )]−1

(3.111)

and is maximized by the unique parameter values (~α∗, ~β∗) defined implicitly through
the n+m coupled nonlinear equations

r∗i =
m∑
j=1

e
−(α∗i+β

∗
j )

1− e−(α
∗
i+β

∗
j )

, i = 1,n, (3.112)

c∗j =
n∑
i=1

e
−(α∗i+β

∗
j )

1− e−(α
∗
i+β

∗
j )

, j = 1,m. (3.113)
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that can be solved numerically. The solution (~α∗, ~β∗), when inserted into Pcan(G|~α, ~β),
completely characterizes the canonical ensemble. The resulting canonical entropy is

S∗can = − lnPcan(G∗|~α∗, ~β∗) (3.114)

= ~α∗ · ~r∗ + ~β∗ ·~c∗ −
n∑
i=1

m∑
j=1

ln[1− e−(α
∗
i+β

∗
j )]

and an upper bound is provided by the canonical entropy given in Eq. (3.72) for the
one-sided case with the same row constraints ~r∗:

S∗can ≤
n∑
i=1

ln (m+ r∗i )
m+r∗i

(r∗i )
r∗imm

. (3.115)

As in the binary two-sided case, the microcanonical entropy S∗mic cannot be com-
puted explicitly, but it can still be evaluated asymptotically from the determinant of
the canonical covariance matrix Σ∗ using Eqs. (3.24) and (3.25). Correspondingly,
the relative entropy can be computed using Eq. (3.26). The microcanonical entropy
given by Eq. (3.73) for the corresponding one-sided case is still a strict upper bound
for the two-sided entropy:

S∗mic <
n∑
i=1

ln
(
m+ r∗i − 1

r∗i

)
. (3.116)

As in the corresponding binary case, in the microcanonical ensemble both ~r and
~c are deterministic and fixed to the values ~r∗ and ~c∗, while in the canonical ensemble
they are random with expected values ~r∗ and ~c∗. The coupled hard constraints
(~r(G),~c(G)) = (~r∗,~c∗) create mutual dependencies among all the entries of G in the
microcanonical ensemble. By contrast, the soft constraint (〈~r〉~α∗ , 〈~c〉~β∗) = (~r∗,~c∗)
leaves all entries of G independent in the canonical ensemble. In the latter, as for
all weighted matrices discussed so far, each entry gij is geometrically distributed, but
now with its specific parameters:

p(gij |~α∗, ~β∗) = e−(α
∗
i+β

∗
i )gij

[
1− e−(α∗i+β∗i )

]
(3.117)

for gij ∈ {0, 1, 2, . . . }, as we show in the Appendix.
Here as well, the special case where the column sums are all equal to each other

(c∗j = c∗ for all j) provides a nice example. The corresponding Lagrange multipliers
are in this case all equal to each other (β∗j = β∗ for all j) and this allows us to solve
for all parameters explicitly. In particular, Eqs. (3.112) and (3.113) reduce to the
n+ 1 independent equations

r∗i = m
e−(α

∗
i+β

∗)

1− e−(α∗i+β∗)
, i = 1,n, (3.118)

c∗ =
n∑
i=1

e−(α
∗
i+β

∗)

1− e−(α∗i+β∗)
, (3.119)
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where, again, the second equation is equivalent to the consistency condition c∗ =∑n
i=1 r

∗
i /m. Inverting Eq. (3.118), we obtain explicitly

α∗i + β∗ = ln m+ r∗i
r∗i

(3.120)

which, if inserted into the expression for S∗can in Eq. (3.114), produces exactly the
canonical entropy found previously in Eq. (3.72) for the weighted ensemble with one-
sided (row) constraints specified by the same vector ~r∗:

S∗can = ~α∗ · ~r∗ +mβ∗c∗ −m
n∑
i=1

ln[1− e−(α∗i+β∗)]

=
n∑
i=1

ln (m+ r∗i )
m+r∗i

(r∗i )
r∗imm

. (3.121)

The upper bound in Eq. (3.115) is therefore fully saturated. Again, while the canonical
ensembles are identical for the two cases, the microcanonical ensembles remain very
different and the microcanonical entropy under two-sided constraints is strictly smaller
than the one under one-sided constraints: the upper bound in Eq. (3.116) cannot be
saturated. Similarly, the determinant of the covariance matrix Σ∗, which here is
a (n+m)× (n+m) matrix (that we calculate later on), is different from the one
obtained in the one-sided case.

The (non)equivalence of the two ensembles is discussed below, in conjunction with
the case of two-sided binary matrices.

Ensemble nonequivalence for matrices under two-sided local constraints

To investigate EN in the two-sided case, it is convenient to preliminary combine the
results obtained so far in the binary (+) and weighted (−) cases as follows.

The canonical entropy S±n [P
∗
can] can be evaluated by combining Eqs. (3.103)

and (3.114), as well as the corresponding upper bounds given by Eqs. (3.104) and (3.115),
into

S±n [P
∗
can] = ~α∗ · ~r∗ + ~β∗ ·~c∗ ±

n∑
i=1

m∑
j=1

ln[1± e−(α
∗
i+β

∗
j )]

≤
n∑
i=1

ln m±m

(r∗i )
r∗i (m∓ r∗i )

±m−r∗i
(3.122)

(see Eq. (3.79) for a comparison). It is easy to check that, in all the three regimes
considered (sparse, dense with diverging m, dense with finite m), the above canonical
entropy has the same qualitative behaviour as the corresponding quantity obtained
previously in Eq. (3.79) for the one-sided case.
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Unlike the one-sided case, the microcanonical entropy cannot be evaluated exactly,
neither through a direct combinatorial formula nor via the complex integral approach,
and we only have strict upper bounds given by Eqs. (3.105) and (3.116) in the binary
and weighted case respectively, which we can combine as follows:

S±n [P
∗
mic] <

n∑
i=1

ln
[
(±1)r∗i

(
±m
r∗i

)]
(3.123)

(see Eq. (3.80) for a comparison).
We can now discuss EN in a combined fashion for binary and weighted matrices.

While we cannot calculate the relative entropy exactly, we can correctly evaluate its
asymptotic scaling via Eq. (3.26), because the canonical covariance matrix (Σ∗)±
between the constraints can still be calculated analytically as a function of the pa-
rameters (~α∗, ~β∗), in both the binary and weighted cases. In particular, it is easy
to see that the entries (Σ∗ij)

± are arranged into a block structure, with a square
n× n diagonal block (i, j ∈ [1,n]) representing the covariance matrix between pairs
of row sums, a square m ×m diagonal block (i, j ∈ [n + 1,n +m]) representing
the covariance matrix between pairs of column sums, and two rectangular (n×m
and m× n) off-diagonal blocks representing the covariances between row and column
sums (i ∈ [1,n], j ∈ [n+ 1,n+m] and i ∈ [n+ 1,n+m], j ∈ [1,n]). As we show in
the Appendix, these entries are

(Σ∗ij)
± =



δij
∑m
k=1

e−(α
∗
i+β

∗
k
)[

1± e−(α∗i+β∗k)
]2 i, j ∈ [1,n],

e
−(α∗i+β

∗
j−n)[

1± e−(α
∗
i+β

∗
j−n)

]2 i ∈ [1,n], j ∈ [n+ 1,n+m]

e
−(α∗j+β

∗
i−n)[

1± e−(α
∗
j+β

∗
i−n)

]2 i ∈ [n+ 1,n+m], j ∈ [1,n]

δij
∑n
k=1

e
−(α∗

k
+β∗j−n)[

1± e−(α
∗
k
+β∗j−n)

]2 i, j ∈ [n+ 1,n+m]

. (3.124)

The above expression is the generalization of Eq. (3.86) to the case of two-sided con-
straints. Once the values of ~r∗ and ~c∗ are specified, one can calculate the determinant
of the above matrix and, through Eq. (3.26), the leading order of the relative entropy
S±n [P

∗
mic||P ∗can]. As we show in the Appendix, the order of α±n confirms the same

scalings for the relative entropy found previously in Eqs. (3.83), (3.84) and (3.85) for
the one-sided case: namely, α±n = O(n) in the sparse regime, α±n = O(n lnn) in the
dense regime with m = O(n), and α±n = O(n) in the dense regime with finite m.

In practice, unlike the one-sided case, calculating the values of S±n [P ∗mic||P ∗can]
and R±∞ (or bounds for them) as explicit functions of the constraints is not easy
in general. It is however possible, and instructive, to consider a special case where
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S±n [P
∗
mic||P ∗can] and R±∞ in this two-sided case (given the vectors ~r∗ and ~c∗) can be

related to the corresponding values obtained in the one-sided case with the same
vector ~r∗ (but without a constraint on ~c∗). Indeed, if we consider again the special
case with constant column constraints (c∗j = c∗, j = 1,m) then from our previous
results in Eqs. (3.110) and (3.121) we recall that, for any given value of n, the two-
sided canonical entropy S±n [P ∗can] is exactly equal to the one-sided canonical entropy
given in Eq. (3.79) corresponding to the same vector ~r∗, while of course the two-sided
microcanonical entropy S±n [P ∗mic] is strictly smaller than the one-sided one given in
Eq. (3.80). This automatically implies that S±n [P ∗mic||P ∗can] in the two-sided case is
strictly larger than the corresponding one-sided relative entropy given in Eq. (3.81).
This proves that the scaling of the relative entropy is always at least O(n), irrespective
of the density and of the value of m: in all regimes, EE breaks down for binary and
weighted matrices under two-sided local constraints, as found in the one-sided case.
The presence of the extra column constraints is not changing the qualitative behaviour
of the relative entropy, but only its numerical value. Since the assumption of constant
column sums only changes the values, but not the order, of the relative entropy, we
expect that the scalings remain unchanged in the general case as well.

Moreover, EN has again the strong form (R±∞ > 0) in the sparse regime with
finite m, because the value of R±n = 1− S±n [P ∗mic]/S

±
n [P

∗
can] in the two-sided case

is strictly larger than the corresponding one calculated previously for the one-sided
case. In particular, we can use Eq. (3.93) to establish the following lower bound in
the two-sided case with constant column constraints and finite m:

R±n > 1−

∑n
i=1 ln

[
(±1)r∗i (±mr∗i )

]
∑n
i=1 ln m±m

(r∗i )
r∗
i (m∓r∗i )

±m−r∗
i

> 0. (3.125)

The above inequality proves strong EN in this case as well. Again, we expect that
relaxing the assumption of constant column sums will change only the value of R±n ,
but not its strict positivity.

Finally, we can also establish an upper bound for R±n by rewriting Eq. (3.26)
asymptotically for large n, in analogy with Eq. (3.88), as

S±n [P
∗
mic||P ∗can] = C2(m)α±n (3.126)

where C2(m) is a finite positive constant and noticing that, since the covariance
matrix (Σ∗)± is positive-definite, we can use Hadamard’s inequality stating that the
determinant of a positive-definite matrix is less than or equal to the product of the
diagonal entries of the matrix. This means

α±n = ln
√

det [2π(Σ∗)±] ≤ α̃±n (3.127)

where, using Eq. (3.124), we have introduced

α̃±n =
1
2

n∑
i=1

ln
[
2π(Σ∗ii)±

]
+

1
2

m∑
j=1

ln
[
2π(Σ∗jj)±

]
. (3.128)
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Now, using Eqs. (3.109) and (3.120) in the binary and weighted case respectively, it
is easy to show that, in the two-sided case with constant column sums, the first n
diagonal entries of (Σ∗)± are identical to the n diagonal entries of the covariance
matrix in the corresponding one-sided case given by Eq. (3.86), i.e.

(Σ∗ii)
± = r∗i

(
1− r∗i
±m

)
, i = 1,n. (3.129)

Inserting the above expression into Eq. (3.128), and noticing that the last sum in the
latter is strictly positive, we can write

α̃±n <
1
2

n∑
i=1

ln
[
2πr∗i

(
1− r∗i
±m

)]
. (3.130)

Combining Eqs. (3.126), (3.127) and (3.130) we obtain the upper bound (for large n)

R±n = C2(m)
α±n

S±n [P ∗can]
(3.131)

≤ C2(m)
α̃±n

S±n [P ∗can]

<
C2(m)

2

∑n
i=1 ln

[
2πr∗i

(
1− r∗i

±m

)]
∑n
i=1 ln m±m

(r∗i )
r∗
i (m∓r∗i )

±m−r∗
i

=
C2(m)

C1(m)

1−

∑n
i=1 ln

[
(±1)r∗i (±mr∗i )

]
∑n
i=1 ln m±m

(r∗i )
r∗
i (m∓r∗i )

±m−r∗
i

 ,

where we have used Eqs. (3.93) and (3.94) established in the one-sided case. Compar-
ing Eq. (3.131) with Eq. (3.125) we see that we must have C2(m)/C1(m) > 1. We
conjecture that, in analogy with C1(m) in the one-sided case, C2(m) & 1. Moreover,
here as well we know that limm→∞ C2(m) = 1 as in Eq. (3.89). This means that we
expect that, for n large, C2(m)/C1(m) ≈ 1 so that the upper bound in Eq. (3.131)
approaches the lower bound in Eq. (3.125), which is therefore a very good estimate
of the actual value of R±n in the two-sided case with constant column constraints:

R±n ≈ 1−

∑n
i=1 ln

[
(±1)r∗i (±mr∗i )

]
∑n
i=1 ln m±m

(r∗i )
r∗
i (m∓r∗i )

±m−r∗
i

. (3.132)

Upon comparison with Eq. (3.93), we see that R±n remains practically unchanged with
respect to the one-sided case with the same value of ~r∗.

Note that the above result means that the decrease ∆mic in microcanonical entropy
introduced by the extra column constraints is subleading with respect to the canonical

105



entropy. Indeed, denoting with {·}h a quantity evaluated in the h-sided case (where
h = 1, 2), and exploiting again the identity of the canonical entropies {S±n [P ∗can]}1 =
{S±n [P ∗can]}2 and our conjecture C2(m)/C1(m) ≈ 1, we can use Eqs. (3.15) and the
results obtained so far to express the decrease in microcanonical entropy as

∆mic = {S±n [P ∗mic]}1 − {S±n [P ∗mic]}2
= {S±n [P ∗mic||P ∗can]}2 − {S±n [P ∗mic||P ∗can]}1
= C2(m){α±n }2 −C1(m){α±n }1
< C2(m){α̃±n }2 −C1(m){α±n }1

≈ C1(m)

2

m∑
j=1

ln
[
2π(Σ∗jj)±

]
= C1(m)

m

2 ln
n∑
k=1

2π e−(α∗k+β∗)[
1± e−(α∗k+β∗)

]2

= C1(m)
m

2 ln
n∑
k=1

[
2π r

∗
i

m

(
1− r∗i
±m

)]
, (3.133)

which is of order O(lnn), while the canonical entropy is of order O(n) in the dense
case with finite m considered here.

Clearly, if we additionally consider constant row constraints, i.e. r∗i = r∗ for
i = 1,n (where necessarily r∗ = c∗m/n), then in analogy with Eq. (3.95) we can
establish the following explicit lower bound for the value of R±∞ in the two-sided case
with constant row and column constraints:

R±∞ > 1−
ln
[
(±1)r∗(±mr∗ )

]
ln m±m

(r∗)r
∗
(m∓r∗)±m−r

∗
> 0. (3.134)

Our expectation in Eq. (3.132) suggests that the above lower bound is a very good
approximation for the actual value of R±∞:

R±∞ ≈ 1−
ln
[
(±1)r∗(±mr∗ )

]
ln m±m

(r∗)r
∗
(m∓r∗)±m−r

∗
, (3.135)

leading to the same result as in Eq. (3.95) for the one-sided case.
The above results generalize the finding of strong EN to the two-sided case, again

in the dense regime with finite m. The results do not change qualitatively, and
apparently only slightly quantitatively, with respect to the one-sided case. This result
points again at the fact that it is the extensivity of the constraints that plays the key
role for EN: adding a finite number m of (column) constraints does not relevantly
change the picture already obtained in the one-sided case.

106



3.4 Discussion and conclusions
We have studied the problem of EN in the general context of n×m matrices with
given constraints. Such matrices can represent high-dimensional data such as multi-
variate time series, expression profiles, multiplex social activity, and other relational
or structured data encountered in many settings. Their entries can either be binary
(Boolean) or weighted (non-negative integers). The constraints imposed on these ma-
trices represent sums over either all the entries of the matrix (single global constraint)
or over individual rows (local one-sided constraints) and possibly also columns (lo-
cal two-sided constraints). These constraints take the form of linear terms into the
Hamiltonian at the exponent of the maximum-entropy probability distribution char-
acterizing the matrix ensemble.

Global constraints do not account for the heterogeneity (either spatial or tem-
poral, i.e. nonstationarity) in the physical data-generating process, as they lead to
probability distributions with identical parameters for all the entries of the matrix.
By contrast, local constraints produce probability distributions with different local
(row- and possibly column-specific) parameters. Most modern data structures are
heterogeneous and/or nonstationary, and are therefore characterized by (at least) the
type of local constraints considered here. Indeed, maximum-entropy ensembles with
local constraints are being increasingly used, either as null models for pattern de-
tection or even as generative models and inference methods whenever there is only
partial, local information available about the system [44, 14].

We have shown that local constraints break the asymptotic (i.e. for large n) equiv-
alence of canonical and microcanonical ensembles, where the constraints are enforced
in a soft and hard manner respectively. By contrast, global constraints preserve EE.
Mathematically, EE is encountered when the relative entropy between the canonical
and microcanonical probability distributions is o(n). Importantly, the breakdown
of EE observed here under local constraints occurs without phase transitions, which
would require nonlinear constraints in the Hamiltonian and are therefore deliberately
excluded from the cases we considered. The form of EN we observe under local con-
straints is also ‘unrestricted’, i.e. it holds for any value of the model parameters
(here, for any graphical value of the constraints), while the mechanism for EN based
on phase transitions requires specific parameters or phases. Our results hold in all
regimes of density and for all values of m, and therefore generalize a recently discov-
ered, alternative mechanism for the breakdown of EE observed so far in ensembles
of binary graphs with given degree sequence [5, 26, 7, 45] and weighted graphs with
given strength sequence [28].

At the same time, our results highlight a qualitatively new finding. While the
systems with local constraints studied in the past exhibited a ‘weak’ degree of EN
(where the relative entropy is of smaller order compared with the canonical entropy,
while still growing at least linearly in n), here we identified a regime for which EN is as
‘strong’ as in presence of phase transitions (i.e. with the relative entropy being of the
same order as the canonical entropy). This regime is obtained when both m and the
expected value of each entry of the matrix are finite, i.e. O(1). In practice, this means
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that the data structure is one where n grows as the size of the system grows, while m
remains finite. This circumstance is naturally encountered e.g. when n represents a
large number of timesteps during which a small number m of synchronous time series
are observed (e.g. for EEG signals), or when n represents a large number of genes
for which expression levels are observed in a small number m of cells at the same
time, or when n represents a large number of users whose activities or preferences are
recorded for a small number m of platforms, items, or other dimensions.

The simultaneously ‘strong’ and ‘unrestricted’ form of EN discussed here has never
been documented so far, to the best of our knowledge. Indeed, in all the settings
that had been studied previously, m was necessarily equal to n since the matrices
represented the special case of square adjacency matrices of graphs, therefore the
regime leading to strong EN could not be observed.

EN has important practical consequences. A traditional expectation in statistical
physics is that, in absence of phase transitions or long-range interactions, ensembles
are equivalent and it is therefore legitimate to freely choose the ensemble to work
with, e.g. based purely on mathematical or computational convenience. For instance,
if the ensemble is used as a null model for a real system, one may either want to
randomize the data numerically by keeping certain quantities fixed (in which case the
microcanonical ensemble is the most efficient choice) or prefer an exact mathematical
characterization of the probability of each configuration in the ensemble (in which case
the canonical ensemble is the easiest to work with). This view has been challenged by
the recent discovery of EN under local constraints. Nonequivalence imposes a princi-
pled choice of the ensemble, that can no longer be based on practical convenience. For
instance, if one has reasons to believe that the hypothesis underlying the null model,
or the partial information available about the system, should be treated as a hard
constraint, then one is forced to choose the microcanonical ensemble. By contrast,
if one believes the constraints should be treated as soft (for instance to account for
possible measurement errors leading to noisy values of the constraints in the data),
then one should take the canonical route.

Our observation of strong EN shows that the quantitative differences between
the two descriptions of the same system are much bigger than previously encoun-
tered in the case of weak EN. These big quantitative differences are exemplified by
Eqs. (3.34), (3.35) and (3.36). A ‘wrong’ choice of the ensemble can therefore lead
to major errors in the estimation of the probability distribution characterizing the
ensemble, of the resulting entropy, of the expected values of higher-order properties
that are nonlinear functions of the constraints, etc. Conclusions of statistical analyses
can therefore be highly biased.

However, besides this warning, the findings presented here are intended to offer
also a constructive solution. The fact that it is possible to rigorously quantify the dif-
ferences between the two ensembles via the explicit calculation of the relative entropy
ratio Rn and its limiting value R∞ implies that one can still make a convenient choice
of the ensemble, while at the same time being able to retrieve the desired results for
the other ensemble via the calculated value of R∞. In other words, besides being a
warning signal for strong EN, R∞ is also a concrete tool allowing researchers to switch
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more easily between alternative descriptions of the same system, by compensating for
their irreducible differences. The calculations carried out here can hopefully serve as
useful references for future quantitative research in a variety of domains.
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Appendix 3.A Global constraints
Here we derive the main mathematical expressions for the case of global constraints
on our ensembles of binary and weighted matrices. This corresponds to the case
where the constraint ~C(G) is a simple scalar quantity C(G) defined as the total
value C(G) ≡ t(G) ≡

∑n
i=1
∑m
j=1 gij . There is only one scalar Lagrange multiplier

θ entering the definition of the Hamiltonian

H(G, θ) = θ t(G) = θ

n∑
i=1

m∑
j=1

gij . (3.136)

The above Hamiltonian is the same for both binary and weighted matrices under a
global constraint. However, the calculation of the partition function (hence of all the
other properties) is different in the two cases.

3.A.1 Binary matrices under a global constraint
Let us consider binary matrices first (gij = 0, 1). The partition function can be
calculated as follows:

Z(θ) =
∑
G∈G

e−H(G,θ)

=
∑
G∈G

e
−θ
∑n

i=1

∑m

j=1 gij

=
∑
G∈G

n∏
i=1

m∏
j=1

e−θgij

=
n∏
i=1

m∏
j=1

∑
gij=0,1

e−θgij

=
n∏
i=1

m∏
j=1

(1 + e−θ)

= (1 + e−θ)mn. (3.137)

This leads to

Pcan(G|θ) =
e−H(G,θ)

Z(θ)

=
e−θ t(G)

(1 + e−θ)mn

=
n∏
i=1

m∏
j=1

e−θgij

1 + e−θ
(3.138)
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and to Eq. (3.37) in the main text. Notice that Eq. (3.138) reveals that each entry gij
of the matrix G is a Bernoulli-distributed random variable taking the value gij = 1
with probability p(1|θ) = e−θ/(1 + e−θ) and the value gij = 0 with probability
p(0|θ) = 1/(1 + e−θ), i.e.

p(gij |θ) =
e−θgij

1 + e−θ
. (3.139)

(the entries of G are therefore i.i.d.). The expected value of gij is

〈gij〉θ ≡
∑

gij=0,1
gijp(gij |θ) =

e−θ

1 + e−θ
, (3.140)

while its variance is

Varθ[gij ] ≡ 〈g2
ij〉θ − 〈gij〉2θ =

e−θ

(1 + e−θ)2 . (3.141)

The resulting expected value and variance of the constraint t(G) are

〈t〉θ =
n∑
i=1

m∑
j=1
〈gij〉θ = nm

e−θ

1 + e−θ
, (3.142)

Varθ[t] =
n∑
i=1

m∑
j=1

Varθ[gij ] = nm
e−θ

(1 + e−θ)2 , (3.143)

the latter identity following from the fact that, since all the entries of G are mutually
independent, the variance of the constraint t(G) is the sum of all variances.

Now, we have to find the parameter value θ∗ that solves Eq. (3.5) or equivalently
maximizes the log-likelihood lnPcan(G∗|θ). This can be done by setting the expected
value 〈t〉θ∗ equal to the desired value t∗, which leads to

e−θ
∗
=

t∗

mn− t∗
, (3.144)

and to Eq. (3.38) in the main text. Inserting Eq. (3.144) into the expressions for
Pcan(G∗|θ) and Varθ[t] leads to the values of S∗can and Varθ∗ [t] given in Eqs. (3.39)
and (3.44) in the main text. One can easily confirm that Varθ∗ [t] coincides with the
only (K = 1) entry of the 1× 1 covariance matrix Σ∗ obtained through Eq. (3.23),
i.e.

Σ∗ =
∂2 lnZ(θ)

∂θ2

∣∣∣∣
θ=θ∗

= t∗
(

1− t∗

mn

)
= Varθ∗ [t] (3.145)
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and, trivially,
det(Σ∗) = t∗

(
1− t∗

mn

)
. (3.146)

The calculation of the microcanonical entropy S∗mic is in this case trivial and given
by Eq. (3.40) in the main text. Given the simplicity of this example, it is instructive
to show explicitly that the integral formula in Eq. (3.20), which can be calculated
exactly in this case, gives the correct value of Ωt∗ . To do this, we use Eq. (3.138) to
obtain the complex-valued quantity

Pcan(G∗|θ∗ + iψ) = e−(θ
∗+iψ)t∗

[1 + e−(θ
∗+iψ)]mn

(3.147)

and use Eq. (3.20) to calculate Ωt∗ as

Ωt∗ =
1

2π

ˆ π

−π
[1 + e−(θ

∗+iψ)]mne(θ
∗+iψ)t∗dψ. (3.148)

To calculate the above integral, we change variable from ψ to z ≡ e−(θ
∗+iψ), so that

dz = de−(θ∗+iψ) = −izdψ and dψ = idz/z. Then the integral becomes

Ωt∗ =
i

2π

ˆ e−(θ∗+iπ)

e−(θ∗−iπ)
(1 + z)mnz−(t

∗+1)dz. (3.149)

and, using the binomial formula

(1 + x)l =
l∑

k=0

(
l

k

)
xl−k, (3.150)

we obtain

Ωt∗ =
i

2π

mn∑
k=1

(
mn

k

)ˆ e−(θ∗+iπ)

e−(θ∗−iπ)
zmn−k−t

∗−1dz. (3.151)

Now, each integral in the above sum can be calculated using Cauchy’s residue theorem,
from which we know that the integral is non-zero only when the exponent of z is −1,
in which case it equals −2πi. This selects the only value k = mn− t∗ in the sum, so
that

Ωt∗ =
i

2π

(
mn

mn− t∗

)
(−2πi) =

(
mn

t∗

)
, (3.152)

which coincides with the binomial coefficient used in Eq. (3.40).

3.A.2 Weighted matrices under a global constraint
We now consider the case of weighted matrices (gij = 0, 1, 2, . . . ,+∞) with a global
constraint t∗. The Hamiltonian is still given by Eq. (3.136), while the partition
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function is now calculated differently as follows:

Z(θ) =
∑
G∈G

e−H(G,θ)

=
∑
G∈G

e
−θ
∑n

i=1

∑m

j=1 gij

=
∑
G∈G

n∏
i=1

m∏
j=1

e−θgij

=
n∏
i=1

m∏
j=1

+∞∑
gij=0

e−θgij

=
n∏
i=1

m∏
j=1

1
1− e−θ

=
1

(1− e−θ)mn
. (3.153)

The canonical probability is therefore

Pcan(G|θ) =
e−H(G,θ)

Z(θ)

= e−θ t(G)(1− e−θ)mn

=
n∏
i=1

m∏
j=1

e−θgij (1− e−θ), (3.154)

which leads to Eq. (3.45) in the main text. Equation (3.154) shows that all the entries
of G are i.i.d. random variables, in this case distributed according to a geometric
distribution with success probability e−θ:

p(gij |θ) = e−θgij (1− e−θ). (3.155)

The expected value of gij is now

〈gij〉θ =
+∞∑
gij=0

gijp(gij |θ) =
e−θ

1− e−θ (3.156)

and its variance is

Varθ[gij ] ≡ 〈g2
ij〉θ − 〈gij〉2θ =

e−θ

(1− e−θ)2 (3.157)
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(note the change of sign at the denominator with respect to Eq. (3.141)), from which
we calculate the expected value and variance of the constraint t(G) as

〈t〉θ =
n∑
i=1

m∑
j=1
〈gij〉θ = nm

e−θ

1− e−θ , (3.158)

Varθ[t] =
n∑
i=1

m∑
j=1

Varθ[gij ] = nm
e−θ

(1− e−θ)2 . (3.159)

The maximum-likelihood parameter value θ∗ is found by setting the expected value
〈t〉θ∗ equal to t∗, resulting in

e−θ
∗
=

t∗

mn+ t∗
(3.160)

(notice again the change of sign with respect to the binary case) and to Eq. (3.46) in
the main text. Substituting Eq. (3.160) into Eqs. (3.154) and (3.159) produces the
expressions for S∗can and Varθ∗ [t] shown in Eqs. (3.47) and (3.52) in the main text.
As for the binary case, one can easily confirm that Varθ∗ [t] coincides with

Σ∗ =
∂2 lnZ(θ)

∂θ2

∣∣∣∣
θ=θ∗

= t∗
(

1 + t∗

mn

)
= Varθ∗ [t] (3.161)

so that
det(Σ∗) = t∗

(
1 + t∗

mn

)
. (3.162)

Again, it is instructive to show that the complex integral in Eq. (3.20) gives
the exact result corresponding to the microcanonical entropy reported in Eq. (3.48).
Calculating the quantity

Pcan(G∗|θ∗ + iψ) = e−(θ
∗+iψ)t∗

[1− e−(θ∗+iψ)]−mn
(3.163)

and inserting it into Eq. (3.20) yields

Ωt∗ =
1

2π

ˆ π

−π

e(θ
∗+iψ)t∗

[1− e−(θ∗+iψ)]mn
dψ. (3.164)

We first perform the change of variable y ≡ e−(θ∗+iψ), dψ = idy/y and rearrange the
integral as

Ωt∗ =
i

2π

ˆ e−(θ∗+iπ)

e−(θ∗−iπ)
y−(t

∗+1)
(

1
1− y

)mn
dy (3.165)

=
i

2π

ˆ e−(θ∗+iπ)

e−(θ∗−iπ)
y−(t

∗+1)
(

1 + y

1− y

)mn
dy.
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Then we perform a second change of variable z ≡ y/(1− y), dy = dz/(z + 1)2

and apply the binomial formula in Eq. (3.150) twice to obtain

Ωt∗ =
i

2π

mn∑
k=0

(
mn

k

)ˆ z+

z−

(
z

z + 1

)−(t∗+1) zk

(z + 1)2 dz

=
i

2π

mn∑
k=0

(
mn

k

)ˆ z+

z−

zk−t
∗−1(z + 1)t∗−1dz

=
i

2π

mn∑
k=0

(
mn

k

) t∗−1∑
h=0

(
t∗ − 1
h

)ˆ z+

z−

zk+h−t
∗−1dz

where we have defined
z± ≡

e−(θ
∗±iπ)

1− e−(θ∗±iπ)
. (3.166)

Using again the residue theorem, the only non-zero integral is obtained for h = t∗− k,
which selects the value

Ωt∗ =
1

2πi

mn∑
k=0

(
mn

k

)(
t∗ − 1
k− 1

)
(−2πi)

=
mn∑
k=0

(
mn

k

)(
t∗ − 1
k− 1

)

=
mn∑
k=0

(
mn

k

)(
t∗ − 1
t∗ − k

)
=

(
t∗ +mn− 1

t∗

)
(3.167)

(where we have used the generalized Vandermonde’s identity). The above calculation
retrieves exactly the negative binomial coefficient used in Eq. (3.48).

Appendix 3.B One-sided local constraints
We now consider the case of one-sided local constraints on ensembles of binary and
weighted n×m matrices. The constraint ~C(G) is now an n-dimensional (K = n)
vector ~r(G) where the entry ri(G) =

∑m
j=1 gij is the i-th row sum of the matrix G.

Correspondingly, there is an n-dimensional vector ~θ of Lagrange multipliers and the
Hamiltonian is

H(G, ~θ) = ~θ · ~r(G) =
n∑
i=1

θiri(G) =
n∑
i=1

θi

m∑
j=1

gij (3.168)

for both binary and weighted matrices. The calculation of the resulting properties of
binary and weighted ensembles is discussed separately below.
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3.B.1 Binary matrices under one-sided local constraints
In the binary case, the partition function Z(~θ) can be calculated from Eq. (3.168)
according to the following generalization of Eq. (3.137):

Z(~θ) =
∑
G∈G

e−H(G,~θ)

=
∑
G∈G

e
−
∑n

i=1 θi
∑m

j=1 gij

=
∑
G∈G

n∏
i=1

m∏
j=1

e−θigij

=
n∏
i=1

m∏
j=1

∑
gij=0,1

e−θigij

=
n∏
i=1

m∏
j=1

(1 + e−θi)

=
n∏
i=1

(1 + e−θi)m. (3.169)

The resulting canonical probability is

Pcan(G|~θ) =
e−H(G,~θ)

Z(~θ)

=
e−

~θ·~r(G)∏n
i=1(1 + e−θi)m

=
n∏
i=1

m∏
j=1

e−θigij

1 + e−θi
, (3.170)

which leads to Eq. (3.61) in the main text. As in the case of binary matrices under
a global constraint, each entry gij of the matrix G is a Bernoulli-distributed random
variable. However, while all these entries are still independent, the parameter of the
distribution depends on the row being considered:

p(gij |~θ) =
e−θigij

1 + e−θi
. (3.171)

Consequently, Eqs. (3.140) and (3.141) generalize to

〈gij〉~θ ≡
∑

gij=0,1
gijp(gij |~θ) =

e−θi

1 + e−θi
, (3.172)

Var~θ[gij ] ≡ 〈g2
ij〉~θ − 〈gij〉

2
~θ
=

e−θi

(1 + e−θi)2 . (3.173)
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We can therefore calculate the expected value of each constraint ri(G) as

〈ri〉~θ =
m∑
j=1
〈gij〉~θ = m

e−θi

1 + e−θi
, i = 1,n. (3.174)

Similarly, the variance of ri is

Var~θ[ri] =
m∑
j=1

Var~θ[gij ] = m
e−θi

(1 + e−θi)2 , i = 1,n (3.175)

while all covariances between different constraints are zero, because of the indepen-
dence of distinct entries of G:

Cov~θ[ri, rj ] =
m∑
k=1

m∑
l=1

Cov~θ[gik, gjl] = 0, i 6= j. (3.176)

We can combine Eqs. (3.175) and (3.176) as follows:

Cov~θ[ri, rj ] = δijm
e−θi

(1 + e−θi)2 , (3.177)

where δij = 1 if i = j and δij = 0 if i 6= j.
Now, the parameter value ~θ∗ that maximizes the log-likelihood is found by equat-

ing the expected value 〈~r〉~θ∗ with the desired value ~r∗. Inverting Eq. (3.174), this
leads to

e−θ
∗
i =

r∗i
m− r∗i

i = 1,n (3.178)

or equivalently to Eq. (3.62) in the main text. The expression for the canonical
entropy S∗can given in Eq. (3.63) in the main text follows from substituting Eqs.(3.178)
into Eq. (3.170). Similarly, the expression for the entries of the n × n covariance
matrix Σ∗ given in Eq. (3.68) in the main text follows from combining Eqs. (3.177)
and (3.178). Note that Eq. (3.68) can also be obtained by differentiating the logarithm
of Eq. (3.169) as prescribed by Eq. (3.23):

Σ∗ij =
∂2 lnZ(~θ)
∂θi∂θj

∣∣∣∣∣
~θ=~θ∗

= δijr
∗
i

(
1− r∗i

m

)
= Cov~θ∗ [ri, rj ]. (3.179)

These results imply

det(Σ∗) =
n∏
i=1

r∗i

(
1− r∗i

m

)
. (3.180)
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The microcanonical entropy S∗mic can be directly calculated as Eq. (3.64) in the
main text. We can still confirm that its value is exactly retrieved by using the integral
formula in Eq. (3.20). From Eq. (3.170) we obtain

Pcan(G∗|~θ∗ + i~ψ) =
n∏
i=1

e−(θ
∗
i +iψi)r∗i

[1 + e−(θ
∗
i +iψi)]m

. (3.181)

Using Eq. (3.20), we can calculate Ω~r∗ by exploiting again the binomial theorem, a
change of variables (zi ≡ e−(θ

∗
i +iψi), dzi = −izidψi) and the residue theorem as in

Eqs. (3.149), (3.151) and (3.152):

Ω~r∗ =

ˆ +~π

−~π

d~ψ
(2π)n

n∏
i=1

[1 + e−(θ
∗
i +iψi)]m

e−(θ
∗
i +iψi)r∗i

=
n∏
i=1

ˆ +π

−π

dψi
2π

[1 + e−(θ
∗
i +iψi)]m

e−(θ
∗
i +iψi)r∗i

=
n∏
i=1

ˆ +π

−π

dψi
2π

m∑
k=0

(
m

k

)
e−(θ

∗
i +iψi)(k−r∗i )

=
n∏
i=1

ˆ θ∗i +iπ

θ∗i −iπ

dzi
(−2πi)

m∑
k=0

(
m

k

)
zi
k−r∗i −1

=
n∏
i=1

(−2πi)
(−2πi)

(
m

r∗i

)

=
n∏
i=1

(
m

r∗i

)
(3.182)

which coincides with Eq. (3.64).
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3.B.2 Weighted matrices under one-sided local constraints
In the weighted case, the partition function is given by the following generalization
of Eq. (3.153):

Z(~θ) =
∑
G∈G

e−H(G,~θ)

=
∑
G∈G

e
−
∑n

i=1 θi
∑m

j=1 gij

=
∑
G∈G

n∏
i=1

m∏
j=1

e−θigij

=
n∏
i=1

m∏
j=1

+∞∑
gij=0

e−θigij

=
n∏
i=1

1
(1− e−θi)m . (3.183)

The resulting canonical probability is

Pcan(G|~θ) =
e−H(G,~θ)

Z(~θ)

=
e−

~θ·~r(G)∏n
i=1(1− e−θi)−m

=
n∏
i=1

m∏
j=1

e−θigij

(1− e−θi)−1 , (3.184)

leading to Eq. (3.70) in the main text. As in the case of weighted matrices under a
global constraint, each entry gij of the matrix G is an independent and geometrically
distributed random variable. On the other hand, as in the case of binary matrices
under local constraints, the parameter of the distribution depends on the row being
considered:

p(gij |~θ) = e−θigij (1− e−θi). (3.185)

The resulting expected value and variance of gij are given by the following general-
izations of Eqs. (3.156) and (3.157):

〈gij〉~θ ≡
∑

gij=0,1
gijp(gij |~θ) =

e−θi

1− e−θi , (3.186)

Var~θ[gij ] ≡ 〈g2
ij〉~θ − 〈gij〉

2
~θ
=

e−θi

(1− e−θi)2 . (3.187)
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The expected value of each constraint ri(G) is therefore

〈ri〉~θ =
m∑
j=1
〈gij〉~θ = m

e−θi

1− e−θi , i = 1,n, (3.188)

while the covariances between different constraints are

Cov~θ[ri, rj ] = δijm
e−θi

(1− e−θi)2 . (3.189)

As usual, note the change of sign at the denominator of Eqs. (3.188) and (3.189) with
respect to the corresponding Eqs. (3.174) and (3.177) valid in the binary case.

Using Eq. (3.188), we set 〈~r〉~θ∗ = ~r∗ and solve for ~θ∗, finding

e−θ
∗
i =

r∗i
m+ r∗i

i = 1,n (3.190)

as the parameter value that maximizes the log-likelihood. From the above expression,
we get Eq. (3.71) and, using Eq. (3.184), Eq. (3.72) in the main text.

Similarly, the expression for the entries of the n× n covariance matrix Σ∗ given
in Eq. (3.68) in the main text follows from combining Eqs. (3.175), (3.176) and (3.178).
Note that Eq. (3.68) can also be obtained by differentiating the logarithm of Eq. (3.169)
as prescribed by Eq. (3.23):

Σ∗ij =
∂2 lnZ(~θ)
∂θi∂θj

∣∣∣∣∣
~θ=~θ∗

= δijr
∗
i

(
1 + r∗i

m

)
= Cov~θ∗ [ri, rj ]. (3.191)

So, in analogy with the binary case,

det(Σ∗) =
n∏
i=1

r∗i

(
1 + r∗i

m

)
. (3.192)

The microcanonical entropy S∗mic can be directly calculated as Eq. (3.73) in the
main text. We can still confirm that its value is correctly retrieved by using the
integral formula in Eq. (3.20). From Eq. (3.184) we obtain

Pcan(G∗|~θ∗ + i~ψ) =
n∏
i=1

e−(θ
∗
i +iψi)r∗i

[1− e−(θ∗i +iψi)]−m
. (3.193)

Using Eq. (3.20), we can calculate Ω~r∗ by exploiting again the binomial theorem as

Ω~r∗ =

ˆ ~π

−~π

d~ψ
(2π)n

n∏
i=1

e(β
∗
i +iψi)(r∗i )

[1− e−(β∗i +iψi)]m
. (3.194)
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We can use the change of variables yi ≡ e−(β
∗
i +iψi), dψi = −idyi/yi and the relation

(1− yi)−m = (1 + yi
1−yi )

m to calculate Ω~r∗ as

Ω~r∗ =
n∏
i=1

ˆ β∗i +iπ

β∗i −iπ

dyi
2πi

(
1 + yi

1− yi

)m
y
−r∗i−1
i (3.195)

=
n∏
i=1

ˆ β∗i +iπ

β∗i −iπ

dyi
2πi

m∑
k=0

(
m

k

)
y
−r∗i−1
i

(
yi

1− yi

)k
.

Using another change of variables zi = yi/(1− yi), yi = zi/(zi + 1), dyi = dzi/(zi + 1)2,
and denoting u∗i = e

−(β∗
i
+iπ)

1−e−(β∗
i
+iπ) , we find

Ω~r∗ =
n∏
i=1

ˆ u∗i

−u∗i

dzi
2πi

m∑
k=0

(
m

k

)(
zi

zi + 1

)−r∗i −1 (zi)k

(zi + 1)2

=
n∏
i=1

ˆ u∗i

−u∗i

dzi
2πi

m∑
k=0

(
m

k

)
(zi + 1)r

∗
i−1(zi)

k−r∗i −1

=
n∏
i=1

ˆ u∗i

−u∗i

dzi
2πi

m∑
k=0

(
m

k

) r∗i−1∑
l=0

(
r∗i − 1
l

)
z
l+k−r∗i −1
i .

Now, according to Cauchy’s residue theorem, only when l+ k = r∗i we get a non-zero
value. This allows us to further write

Ω~r∗ =
n∏
i=1

m∑
k=1

(
m

k

)(
r∗i − 1
k− 1

)
=

n∏
i=1

(
m+ r∗i − 1

r∗i

)
,

which coincides with Eq. (3.74) in the main text.

Appendix 3.C Two-sided local constraints

We now discuss ensembles of binary and weighted n×m matrices with two-sided local
constraints. In this case ~C(G) is (n+m)-dimensional (K = n+m) and specified
by the two vectors (~r(G),~c(G)), where ~r(G) is still the n-dimensional vector of
row sums of the matrix G (as in the one-sided case) and, additionally, ~c(G) is the
m-dimensional vector of column sums of G, with entries cj(G) =

∑n
i=1 gij (j =

1,m). The corresponding Lagrange multipliers take the form (~α, ~β) where ~α is n-
dimensional and coupled to ~r(G), while ~β is m-dimensional and coupled to ~c(G).
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The corresponding Hamiltonian is

H(G, ~α, ~β) =
n∑
i=1

αiri(G) +
m∑
j=1

βjcj(G)

=
n∑
i=1

m∑
j=1

(αi + βj)gij . (3.196)

As usual, the binary and weighted cases are discussed separately below.

3.C.1 Binary matrices under two-sided local constraints
Starting from the Hamiltonian in Eq. (3.196), the partition function of the canonical
binary matrix ensemble can be still calculated exactly as a simple generalization of
Eq. (3.169):

Z(~α, ~β) =
∑
G∈G

e−H(G,~α,~β)

=
∑
G∈G

e
−
∑n

i=1

∑m

j=1(αi+βj )gij

=
∑
G∈G

n∏
i=1

m∏
j=1

e−(αi+βj )gij

=
n∏
i=1

m∏
j=1

∑
gij=0,1

e−(αi+βj )gij

=
n∏
i=1

m∏
j=1

[1 + e−(αi+βj )]. (3.197)

The resulting probability is

Pcan(G|~α, ~β) =
e−H(G,~α,~β)

Z(~α, ~β)

=
e−~α·~r(G)−~β·~c(G)∏n

i=1
∏m
j=1[1 + e−(αi+βj )]

=
n∏
i=1

m∏
j=1

e−(αi+βj )gij

1 + e−(αi+βj )
. (3.198)

As in the case of binary matrices under global and one-sided local constraints, each
entry gij of the matrix G is still an independent and Bernoulli-distributed random
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variable, now controlled by the two parameters αi and βj . We can write the proba-
bility of gij as

p(gij |~α, ~β) = e−(αi+βj )gij

1 + e−(αi+βj )
. (3.199)

The expected value of gij is now

〈gij〉~α,~β ≡
∑

gij=0,1
gij p(gij |~α, ~β) = e−(αi+βj )

1 + e−(αi+βj )
(3.200)

and the variance is

Var
~α,~β [gij ] ≡ 〈g2

ij〉~α,~β − 〈gij〉
2
~α,~β

=
e−(αi+βj )

[1 + e−(αi+βj )]2
. (3.201)

The resulting expected values of the constraints are

〈ri〉~α,~β =
m∑
j=1

e−(αi+βj )

1 + e−(αi+βj )
, i = 1,n, (3.202)

〈cj〉~α,~β =
n∑
i=1

e−(αi+βj )

1 + e−(αi+βj )
, j = 1,m. (3.203)

The unique parameter values (~α∗, ~β∗) that maximize the likelihood are found as
usual by imposing that the expected values (〈~r〉

~α∗,~β∗ , 〈~c〉~α∗,~β∗) match the desired
values (~r∗,~c∗). Unfortunately, in this case the values (~α∗, ~β∗) cannot be determined
analytically as a function of (~r∗,~c∗), but they are defined implicitly by imposing

(~r∗,~c∗) = (〈~r〉
~α∗,~β∗ , 〈~c〉~α∗,~β∗), (3.204)

which leads to Eqs. (3.101) and (3.102) in the main text.
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3.C.2 Weighted matrices under two-sided local constraints
In the canonical ensemble of weighted matrices under two-sided local constraints, the
partition function is the following generalization of Eq. (3.183):

Z(~α, ~β) =
∑
G∈G

e−H(G,~α,~β)

=
∑
G∈G

e
−
∑n

i=1

∑m

j=1(αi+βj )gij

=
∑
G∈G

n∏
i=1

m∏
j=1

e
−
∑n

i=1

∑m

j=1(αi+βj )gij

=
n∏
i=1

m∏
j=1

+∞∑
gij=0

e−(αi+βj )gij

=
n∏
i=1

m∏
j=1

1
1− e−(αi+βj )

. (3.205)

The resulting canonical probability is

Pcan(G|~α, ~β) =
e−H(G,~α,~β)

Z(~α, ~β)

=
e−~α·~r(G)−~β·~c(G)∏n

i=1
∏m
j=1 [1− e−(αi+βj )]

−1

=
n∏
i=1

m∏
j=1

e−(αi+βj )gij

[1− e−(αi+βj )]−1 . (3.206)

As in the case of weighted matrices under global and one-sided local constraints, each
entry gij of the matrix G is an independent geometrically distributed random variable
defined by the probability

p(gij |~α, ~β) = e−(αi+βj )gij [1− e−(αi+βj )], (3.207)

which is now controlled by the entry-specific pair of parameters αi,βj . The expected
value of gij is

〈gij〉~α,~β ≡
+∞∑
gij=0

gijp(gij |~α, ~β) = e−(αi+βj )

1− e−(αi+βj )
(3.208)

and the variance is

Var
~α,~β [gij ] ≡ 〈g2

ij〉~α,~β − 〈gij〉
2
~α,~β

=
e−(αi+βj )

[1− e−(αi+βj )]2
. (3.209)
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The expected values of the constraints are

〈ri〉~α,~β =
m∑
j=1

e−(αi+βj )

1− e−(αi+βj )
, i = 1,n, (3.210)

〈cj〉~α,~β =
n∑
i=1

e−(αi+βj )

1− e−(αi+βj )
, j = 1,m. (3.211)

As in the two-sided binary case, the values (~α∗, ~β∗) maximizing the likelihood cannot
be determined analytically as a function of the empirical values (~r∗,~c∗), but they are
defined implicitly by imposing the equality

(~r∗,~c∗) = (〈~r〉
~α∗,~β∗ , 〈~c〉~α∗,~β∗) (3.212)

between the empirical and the expected values of the constraints. This equality leads
to Eqs. (3.112) and (3.113) in the main text.

3.C.3 Determinant of the covariance matrix for two-sided local
constraints

The covariance matrix (Σ∗)± in binary (+) and weighted (−) ensembles of matrices
under two-sided local constraints is an (n +m) × (n +m) matrix. It contains all
covariances among the n row sums, all covariances among the m column sums, and
all the covariances between row and column sums. If we order the constraints by
considering first the n row sums ~r∗ and then the m column sums ~c∗ into the (n+m)-
dimensional vector ~C∗ = (~r∗,~c∗), and combine Eqs. (3.197) and (3.205) into the
general partition function

Z±(~α, ~β) =
n∏
i=1

m∏
j=1

[1± e−(αi+βj )]±1 (3.213)
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valid for binary (+) and weighted (−) matrices, we can determine the entries of Σ±
by applying the definition in Eq. (3.23). This yields

Σ±ij =



∂2 lnZ±(~α, ~β)
∂αi∂αj

i, j ∈ [1,n],

∂2 lnZ±(~α, ~β)
∂αi∂βj−n

i ∈ [1,n], j ∈ [n+ 1,n+m]

∂2 lnZ±(~α, ~β)
∂αi−n∂βj

i ∈ [n+ 1,n+m], j ∈ [1,n]

∂2 lnZ±(~α, ~β)
∂βi−n∂βj−n

i, j ∈ [n+ 1,n+m]

=


Cov±

~α,~β
[ri, rj ] i, j ∈ [1,n],

Cov±
~α,~β

[ri, cj−n] i ∈ [1,n], j ∈ [n+ 1,n+m]

Cov±
~α,~β

[ci−n, rj ] i ∈ [n+ 1,n+m], j ∈ [1,n]
Cov±

~α,~β
[ci−n, cj−n] i, j ∈ [n+ 1,n+m]

and, following Eq. (3.22),

(Σ∗ij)
± = (Σij)±

∣∣
(~α,~β)=(~α∗,~β∗) . (3.214)

It is easy to see that (Σ∗)± is a combination of four blocks

(Σ∗)± =

[
(A∗)± (B∗)±
(C∗)± (D∗)±

]
, (3.215)

where each block has entries as described below. What determines these entries is the
elements gij of the (binary or weighted) adjacency matrix G that different constraints
have in common. The covariance between contraints that have no gij in common is
zero (as such constraints are independent), while the covariance between constraints
that share a term gij receives from that term a contribution equal to

Var±
~α∗,~β∗

[gij ] =
e
−(α∗i+β

∗
j )

[1± e−(α
∗
i+β

∗
j )]2

, (3.216)

obtained combining Eqs. (3.201) and (3.209).
• Block (A∗)± is the n×n covariance matrix between the row sums, with entries

(A∗ij)
± = Cov±

~α∗,~β∗
[ri, rj ]

=
∂2 lnZ±(~α, ~β)

∂αi∂αj

∣∣∣∣∣
(~α,~β)=(~α∗,~β∗)

= δij

m∑
k=1

e−(α
∗
i+β

∗
k
)[

1± e−(α∗i+β∗k)
]2 . (3.217)
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Note that (A∗)± is a diagonal matrix, since different row sums are all indepen-
dent.

• Block (B∗)± is the n×m matrix of covariances between row sums and column
sums, with entries

(B∗ij)
± = Cov±

~α∗,~β∗
[ri, cj ]

=
∂2 lnZ±(~α, ~β)

∂αi∂βj

∣∣∣∣∣
(~α,~β)=(~α∗,~β∗)

=
e
−(α∗i+β

∗
j )[

1± e−(α
∗
i+β

∗
j )
]2 , (3.218)

where we now see that the matrix is not diagonal, as reach row sum ri shares
the entry gij with the column sum cj .

• Similarly, block (C∗)± is the m×n matrix of covariances between column sums
and row sums, and is therefore the transpose of (B∗)±, as follows also from the
fact that (Σ∗)± must be symmetric. Indeed its entries are

(C∗ij)
± = Cov±

~α∗,~β∗
[ci, rj ]

=
∂2 lnZ±(~α, ~β)

∂αj∂βi

∣∣∣∣∣
(~α,~β)=(~α∗,~β∗)

=
e
−(α∗j+β

∗
i )[

1± e−(α
∗
j+β

∗
i )
]2 . (3.219)

• Finally, block (D∗)± is the m×m matrix of covariances among the column
sums, with entries

(D∗ij)
± = Cov±

~α∗,~β∗
[ci, cj ]

=
∂2 lnZ±(~α, ~β)

∂βi∂βj

∣∣∣∣∣
(~α,~β)=(~α∗,~β∗)

= δij

n∑
k=1

e
−(α∗

k
+β∗j )[

1± e−(α
∗
k
+β∗j )

]2 . (3.220)

Like (A∗)±, (D∗)± is a diagonal matrix, since different column sums are all
independent.
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Combining Eqs. (3.215), (3.217), (3.218), (3.219) and (3.220) proves Eq. (3.124) in
the main text.

Now, in order to calculate the scaling of the determinant of (Σ∗)±, we follow the
definition by Leibniz as

det[(Σ∗)±] =
∑

σ∈Zn+m

sgn(σ)
n+m∏
l=1

(Σ∗l,σl)
±, (3.221)

where σ is a permutation of the first n+m integers that exchanges (without replace-
ment) each of these integers i with another such integer j = σi, Zn+m is the set of
all such (n+m)! permutations, and the symbol sgn(σ) represents the parity of σ:
sgn(σ) = +1 when σ is an even permutation (i.e. obtained by combining an even
number of pairwise exchanges of the type j = σi and i = σj) and sgn(σ) = −1 when
σ is an odd permutation (i.e. obtained by combining an odd number of pairwise
exchanges). Let us call σ0 the identity permutation, i.e. the one such that σ0

i = i for
all i, and Z0

n+m ≡ Zn+m\σ0 the set of all other permutations. Clearly, sgn(σ0) = +1
because σ0 involves an even number (zero) of exchanges. We can therefore rewrite
Eq. (3.221) as

det[(Σ∗)±] = ∆0 + ∆′ (3.222)
where

∆0 =
n+m∏
l=1

(Σ∗
l,σ0
l
)± =

n∏
i=1

(A∗ii)
±

m∏
j=1

(D∗jj)
± (3.223)

is the product of the diagonal entries of (Σ∗)± and

∆′ =
∑

σ∈Z0
n+m

sgn(σ)
n+m∏
l=1

(Σ∗l,σl)
±. (3.224)

We are going to show that ∆′ is at most of the same order of ∆0. Setting cn = 1/n
in the sparse regime (for which we recall that m = O(n) necessarily) and cn = 1 in
the dense regime (for which m can be either finite or O(n)), we note that each entry
of the blocks (B∗)± and (C∗)± is of order O(cn), while each of the diagonal entries
of block (A∗)± is of order O(cnm) and each of the diagonal entries of block (D∗)±
is of order O(cnn). In general, the order of ∆0 is therefore

∆0 = O ((cnn)
m(cnm)n) (3.225)

as clear from Eq. (3.223).
To this end, we note that each permutation σ appearing in Eq. (3.224) can be

expressed as a combination of a certain number (say a > 0) of exchanges of pairs of
the first n+m integers. It is easy to see that all the (n2) exchanges of pairs of the
first n integers give a zero contribution to ∆′, because they lead to terms of the type
(Σ∗i,j)

± = 0 where i, j ∈ [0,n] with i 6= j (combination of exchanges that lead again
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Figure 3.4. Illustration of the permutations producing the non-zero contributions to the
determinant of the covariance matrix, as described in the text.

to i = j are such that j = σi = i and therefore do not lead to new permutations:
they are already accounted for in permutations with lower a). Similarly, all the (m2 )
exchanges of pairs of the next m integers give a zero contribution to ∆′, because
they lead to terms of the type (Σ∗i,j)

± = 0 where i, j ∈ [n+ 1,n+m] with i 6= j.
Therefore the only exchanges leading to nonzero contributions to ∆′ are the nm
exchanges across the first n integers and the next m integers, i.e. those that lead
to terms (Σ∗i,j)

± > 0 where i ∈ [0,n] and j ∈ [n + 1,n +m] or j ∈ [0,n] and
i ∈ [n+ 1,n+m] in Eq. (3.224). Each of these nontrivial contributing permutations
involves a (unrepeated) exchanges of integers, where a ∈ [1,nm]. Compared with the
identity σ0, each of these permutations replaces a of the first n diagonal entries and
a of the next m diagonal entries of (Σ∗)± appearing in Eq. (3.223) with a number 2a
of non-zero off-diagonal entries in blocks (B∗)± and (C∗)± (see Fig. 3.4).

Each such permutation therefore gives a contribution of order (cnn)m−a(cnm)n−a

to the summation in Eq. (3.224). Individually, each such contribution is subleading
with respect to the term ∆0. However, collectively all the contributions involving the
same number a of exchanges contribute a term of order Ea(cnn)m−a(cnm)n−a where
Ea is the number of unrepeated exchanges of a pairs. The order of Ea is given by the
number of distinct choices of a exchanges out of the nm possible ones, which is (nma ).
This estimate does not control for the fact that, for each a, some of the exchanges
reduce to simpler permutations already accounted for by smaller values of a, however
the leading order is correct. Since nm is large, we can apply Stirling’s approximation
to (nm)! and estimate the order of Ea as

Ea = O

((
nm

a

))
= O

(
(nm)a

a!

)
(3.226)

as in Eq. (3.82). Therefore all the permutations realized by a exchanges collectively
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give a contribution of order

Ea(cnn)
m−a(cnm)n−a = O

(
(cnn)m(cnm)n

a!

)
(3.227)

and sign (−1)a to the sum in Eq. (3.224), so ∆′ can be rewritten as a sum over a
(with a = 1,nm) of terms of alternating sign. Qualitatively, and with an abuse of
notation, the order of the entire sum defining det[(Σ∗)±] in Eq. (3.221) is (except
for accidental cancellations due to particular combinations of values of the entries of
(Σ∗)±)

O(det[(Σ∗)±]) =
nm∑
a=1

O

(
(−1)a(cnn)m(cnm)n

a!

)
= O

(
(cnn)

m(cnm)ne−1)
= O ((cnn)

m(cnm)n) . (3.228)

We therefore see that the order of ∆′ does not exceed that of ∆0, so the leading
order of det[(Σ∗)±] is

det[(Σ∗)±] = O(∆0) = O ((cnn)
m(cnm)n) . (3.229)

In other words, the off-diagonal terms of (Σ∗)± do not alter the order obtained by
multiplying the diagonal terms. For finite m, we therefore have

α±n = ln
√

det [2π(Σ∗)±]
= O (m ln(cnn) + n ln(cnm)) . (3.230)

In the sparse case where cn = 1/n and m = O(n), we have

α±n = O (n) , (3.231)

while in the dense case with cn = 1 and m = O(n) we have

α±n = O (n lnn) , (3.232)

and finally in the dense case with cn = 1 and finite m we have

α±n = O (n) , (3.233)

confirming the same scalings for the relative entropy obtained in Eqs. (3.83), (3.84)
and (3.85) for the one-sided case.
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Chapter 4

New information-theoretic
bounds for systems with local
constraints

Abstract
The information-theoretic bounds are the limit of space to store the information
generated by the information source and the limit of speed to reliable transmit infor-
mation through a channel. In classical information theory, those bounds are deter-
mined by the Shannon entropy of the information sources. However, recent research
shows that information sources in non-physical systems such as social networks or
nervous systems are not a single variable with finite outcomes but a composition of
numerous interacting units. Furthermore, these heterogeneous dependencies imply
local constraints in those information sources. Thus, to find the new information-
theoretical bounds of them, statistical ensembles with local constraints are used to
describe those new information sources in this work. We find that under ensemble
equivalence, information-theoretical bounds of information sources described by dif-
ferent statistical ensembles are equivalent. When heterogeneous dependencies implied
local constraints break the ensemble equivalence, the information storage space of the
information source described by the microcanonical ensemble with hard constraints
is smaller than that of the canonical ensemble one with soft constraints. The extra
sequences in the typical set of the canonical ensemble described sources have the same
sum of Hamiltonian with the microcanonical ensemble one. But the constraints of
each state in the sequence are not equal to hard constraints. Therefore, there is a
tradeoff between the choosing of different ensembles to describe those information
sources. Using the microcanonical one with hard constraints costs more calculation
to obtain the probability distribution but requires less information storage space.
Choosing the canonical one needs more space to store the information but requires
less calculation to hold the ’soft’ constraints1.

1This chapter is based on the coming paper:
Qi Zhang, Diego Garlaschelli, "New information-theoretic bounds for systems with local constraints"
(2021)
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4.1 Introduction
The birth of modern information theory can be traced to 1948 when Shannon gave
the first quantifiable definition of information in his fundamental paper [33]. It is
believed to be promoted by the rapid progress of electronic communication systems
in the first half of the 20th century. When all the engineers in the communication
industry are desire to know what the smallest space needs to store the information
that is generated by different information sources, and what is the maximum speed of
reliable information transmission through a channel, i.e., the information-theoretical
bounds of the communication systems [29].

To find the information-theoretical bounds of the communication systems, Shan-
non creatively divides the communication systems into three parts: the information
source, the channel and the receiver. And all of them are described by the probability
theory, e.g., information sources and the receivers are described by random variables;
the channel used to transport the information is modelled by conditional probability.
The smallest space needs to store the information generated by information sources is
decided by the information entropy, which is the probabilistic uncertainty of the infor-
mation source [33]. The maximum speed of reliable information transmission (channel
capacity) is equal to the mutual information between the information source and re-
ceiver, which is determined by the conditional probability that is used to describe the
channel [29].

Compared with 1948, the information needs to store and transmit in natural and
artificial systems right now is much more complex, e.g., the activity of the neurons
in the nervous system [9], the appearing of retweets and comments in a social net-
work [36]. Information sources in these systems are not a single variable in the
traditional information theory. Instead, they have numerous units, and almost all
units are entangled with each other by different interactions. Thus, using the random
variables with finite outcomes to model those new information sources is impossible,
as the single variable can not describe the heterogeneous interactions among units.

Actually, signal generation by these information sources is not like the sampling
of a random variable. It is closer to the change of the particles’ status in the ther-
modynamic system under localized macroscopic properties [27]. Thus, the space to
store the information that is generated by the billions of users in Twitter when there
is break news in the real world, or the limit of information storage in the nervous
system like the brain is equivalent to the quantify of the macroscopic property in
thermodynamic systems with numerous particles. Fortunately, the signal generation
at different times by those new information sources are still independent. Thus, we
can not use the random variable with finite outcomes to describe those information
sources. But we can use statistical ensembles from statistical physics to describe the
status change of those heterogeneous interacted units and find the new information-
theoretical bounds [1, 37, 27, 28].

In statistical physics, statistical ensembles are introduced by Gibbs to model the
macroscopic properties of the numerous particles in the thermodynamic system from
microscopic behaviour of them based on the probability theory [1]. In traditional
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statistical physics, the particles are identical, and this is why all the ensembles are
under global constraints, such as the fixed total energy or temperature. However,
in the new information sources, the heterogeneous interacted units are not identical.
The heterogeneous interactions among all units will imply local constraints. Thus,
to describe new information sources, we need the statistical ensembles with localized
macroscopic constraints [27].

In ensemble theory, systems with different constraints will be described by differ-
ent statistical ensembles [1]. The microcanonical ensemble is used to describe systems
with fixed total energy E∗, and the canonical ensemble is used to describe the system
with fixed temperature β = 1/KT , where K is the Boltzmann constant, T is the
absolute temperature. Obviously, from the energy isolation, the restriction in the mi-
crocanonical ensemble is harder than that in the canonical ensemble [15]. Thus, when
the local constraints implied by the heterogeneous interactions among the units in the
information sources have a different macroscopic property (hard or soft), the infor-
mation sources also need to be described by different statistical ensembles. When the
local constraints are hard, those information sources need to be described by the mi-
crocanonical ensemble. When the local constraints are soft, those information sources
need to be described by the canonical ensemble [26, 45]. The two ensembles will con-
jugate with each other by setting the parameter β = β∗ to make the average total
energy in the canonical ensemble equal to the fixed total energy in the microcanonical
ensemble,〈E〉 = E∗.

When the system has finite sizes, the two ensembles are certainly different. But
in the thermodynamic limit (number of particles goes to infinite), the fluctuation of
constraints in the canonical ensemble will vanish. The microcanonical ensemble can
be replaced by the canonical ensemble, which is mathematically easy to calculate [8].
This phenomenon is called ensemble equivalence (EE). The existence of EE also shows
that the information carried by different ensemble descriptions of the thermodynamic
system is the same. However, recent research on networks and system with long-range
interactions also show that in the boundary of phase transitions or when the system is
under extensive local constraints, this ensemble equivalence will be broken [8, 5, 27].
This ensemble nonequivalence (EN) will directly influence the information-theoretical
bounds of the new information sources with different statistical ensembles descriptions
under local constraints. As detecting the limits needs the length of the sequences used
to record the status changing in the information sources goes to infinite.

In Shannon’s setting, the information generated by the random variable described
information source is carried by the sequences use to record the status changing of the
information source, and most of the information is carried by equiprobable sequences
that belong to the typical set of it [29]. Thus, the smallest space of information
storage is determined by the size of the typical set. And the influence of ensemble
nonequivalence in information sources with heterogeneous interacted units will be
manifested by the difference between the typical sets of different ensembles.

In this chapter, the statistical ensembles with local constraints are used to de-
scribe the information sources with heterogeneous interacting units to find the new
information-theoretical bounds of them [27]. As the extensive local constraints in the
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new information source will lead the EN, we also need to check the influence of EN on
the new information-theoretical bounds. We find that the information storage space
of the microcanonical ensemble described information sources is smaller than the con-
jugate canonical ensemble one. As the typical set of the microcanonical ensemble is
smaller than the conjugate canonical ensemble. The extra sequences in the typical
set of the canonical ensemble have the same sum of Hamilitonian as sequences in the
typical set of the microcanonical ensemble. But the local constraints of information
sources are not the same. This result shows that using the microcanonical ensemble
with hard constraints to describe information sources with heterogeneous interacting
units needs less space to store the information generated by it than the conjugate
canonical ensembles. But it needs cost more power on the calculations to obtain the
probability distributions. Therefore, there is a tradeoff in the choosing of ensembles.
Using the microcanonical ensemble needs less information storage space but cost more
energy in the initial calculation. Using the canonical ensemble will reduce the energy
cost in the initial calculation but requires more information storage space.

4.2 Ensemble described information sources
To describe those new information sources, we need a reasonable mathematical model
to quantify the heterogeneous interactions. Actually, the quantification of interactions
among different units is not a new problem in scientific research. Networks model as a
specific case of the random matrix has already been widely used in different research
fields to describe those interactions [12, 14]. Thus, in the following discussion, infor-
mation sources with heterogeneous interacted units will be described by the random
matrix with marginal sums as local constraints [27]. According to the traditional
information theory, the limit of space to store the information generated by the ran-
dom variable described information source is determined by the uncertainty of the
information source. Therefore, to find new information-theoretical bounds, we also
need to find the probability distribution of possible states of the random matrix with
local constraints based on statistical ensembles.

According to statistical physics, the appearance of each state in the thermody-
namic system with numerous particles is random. But the different macroscopic
properties will determine the probability of each state’s presence. For example, in the
microcanonical ensemble, the total energy E∗ of each state is equal to each other, so
each state has the same probability. In the canonical ensemble, the total energy of
each state is different, but the temperature β∗ is fixed. Therefore, the probability of
each state in the canonical ensemble is determined by β∗ and the total energy of each
state [1]. Thus, the different macroscopic properties of local constraints will affect the
choice of ensembles to describe it.

Here, we use the n×m matrix G (m can equal to n) to represent the possible
configurations of the interacted units in the information sources [27]. Each unit gij
in the matrix G represents the degree of interaction in this system, and it will have
different physical means when there is a different definition of i and j. The con-
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straint of the matrix is ~C(G), and it is determined by the macroscopic property of
the interactions among units in the information sources If the interactions are homo-
geneous, the constraints will be global, which is is the sum of all units in the matrix,
C(G) =

∑n
i=1
∑m
j=1 gij . When interactions are heterogeneous, the constraints will

be localized as the column and row sum of the matrix ~C(G) = [~c,~r]. The column
local constraints is a vector withm units in it, ~c = [c1, c2, · · · , cj , · · · , cm], each unit is
the sum of all the elements in column j of matrix G as cj =

∑n
i=1 gij . This represents

the sum of one kind of property of all the particles in the information source. The row
constraints is ~r = [r1, r2, · · · , ri, · · · , rn], each unit is equal to ri =

∑m
j=1 gij [27]. It

represents the total influence of the particle i in the information source. Two examples
of information sources that need to be modelled by the matrix with local constraints
are shown in FIG.4.1

Figure 4.1. The left figure shows the retweets in social media. It can be treated as a
bipartite network, where the m users retweet the n users’ tweets, each gji here represents
retweet from user j to user i. The right figure shows the activity of the neurons in the
nervous system, i and j represents the spatial position of each neuron, gji here can be 0 or
1, to represents the activity of neurons in the position j, i. The local constraints in the two
information sources can be the sum of all the activated neurons in the specific region in the
nervous system or the fixed total number of retweets for each user in the social networks.
The changing of all the units’ state in the two systems is determined by the interactions with
each other.

To analytically get the details of the interactions among the numerous units is
difficult. Normally, we have the local constraints ~C(G) and the size of the information
sources. Thus, to obtain the probability distribution of the states of the information
source with the partial information, we need based on the maximum entropy principle
introduced by Jaynes [15].

As the macroscopic property of the constraints will decide the ensemble used to
describe it [7] so when the constraints are hard, each state of the information source
have the same value of constraints as ~C∗, the information source needs to be described
by the microcanonical ensemble. The probability of each state in the microcanonical
ensemble described information source Gmic is

Pmic(G) = Ω−1
~C∗

, (4.1)

where Ω ~C∗ = |{G ∈ Gmic : ~C(G) = ~C∗}| is the number of states in microcanonical

135



ensemble with hard constraints ~C∗. The Shannon entropy of the microcanonical
ensemble Smic = ln Ω ~C∗ is also decided by the number of configurations in it.

If constraints are soft. Only the average value of the constraints in each state
of the ensemble is required to equal to the hard constraints in the microcanonical
ensemble as 〈~C(G)〉 = ~C∗, then the information source needs to be described by the
conjugate canonical ensemble. The probability of each state of the canonical ensemble
described information source Gcan is equal to

Pcan(G) = e−H(G,~β∗)/Z(~θ∗), (4.2)

where ~β∗ represnt parameters, which realize 〈C(G)〉~θ equal to C
∗ [15]. The partition

function Z(~β∗) is a normalization constant equal to Z(~β∗) =
∑
e−H(G,~β∗), which is

the sum of e−H(G,~β∗) of all the possible configuration of G in canonical ensemble. The
Hamiltonian H = ~C(G) · ~β∗ is a liner combination of the constraints and parameter
~β∗.

According to the definition of the partition function and the Hamiltonian, we can
rewrite the probability Pcan(G) as a product of all the interactions’ probability in the
information source as

Pcan(G) =
n∏
i=1

m∏
j=1

e
−β∗ijgij∑

gij∈g e
−β∗ijgij

(4.3)

where g is the collection of all possible configuration of gij [27]. It means the localized
interactions are independent. Thus, when the interaction is homogeneous, the param-
eter will be set equal to each other as β∗ij = β∗. And then, the canonical ensemble
is a n×m extension of the random variable. It means the classical description is a
special case of the canonical ensemble descriptions.

In traditional information theory, the information generated by random variable
described information sources are carried by sequences use to record the status chang-
ing of random variables [29]. In ensemble described information sources with local
constraints, the information generated by it is carried by ensemble sequences. When
using different ensembles to describe information sources, we will have different en-
semble sequences. The structure of the microcanonical ensemble sequences A(l)

mic and
canonical ensemble sequence A(l)

can with length l are shown in Fig.4.2.
The limit of information storage space is determined by the size of the correspond-

ing typical set.
Let G∗ denotes the state in the microcanonical ensemble with constraints ~C∗,

then probability of microcanonical ensemble sequence A(l)
mic is equal to

P (A(l)
mic) =

l∏
k=1

Pmic(G∗) = Ω−l~C∗ = e−lSmic . (4.4)

As each state have the same probability, so all the microcanonical ensemble sequences
have the same probability. According to the asymptotic equipartition property (AEP),
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Figure 4.2. As we mentioned before, the states of the new information source are analogue
to the recording of the behaviours of numerous particles. Thus, each ensemble sequence is
the recording of the interacting units’ behaviours in l times. In microcanonical ensemble
sequences A(l)

mic, each state G∗k have the same constraints ~C(G∗k) = ~C∗. But in canonical
ensemble sequences A(l)

can, the total energy of each state is different. The average value of the
constraints of all states should equal the hard constraints in the conjugate microcanonical
ensemble 〈~C(G)〉 = ~C∗.

microcanonical ensemble sequences have the same probability. Thus, all of them
belong to the typical set of it [29].

The number of ensemble sequences in typical set of the microcanonical ensemble
|T εmic| = 1/P (A(l)

mic) is equal to elSmic . The smallest space need to store the informa-
tion generated by the microcanonical ensemble described information source is equal
to

ln |T εmic| = l× Smic. (4.5)

It is connected with the possible number of configurations in the microcanonical
ensemble with hard constraints ~C∗.

The canonical ensemble sequence A(l)
can is generated by the canonical ensemble

Gcan. According to Jaynes’s work [15], the probability of each state in the canonical
ensemble should realize the average value of constraints equal to hard constraints
in the microcanonical ensemble as 〈~C(G)〉 = ~C∗, and maximization the Shannon
entropy Scan of it. Thus, probability of the canonical ensemble sequences A(l)

can still
equal to the production of all the l states as

P (A(l)
can) =

l∏
k=1

Pcan(Gk). (4.6)

The smallest space to store the information carried by the canonical ensemble se-
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quences A(l)
can still can be estimated by the AEP as

lim
l→∞

1
l

lnP (A(l)
can) = lim

l→∞

1
l

l∑
k=1

lnPcan(Gk)

→ E[lnPcan(G)]

= Scan.

(4.7)

The Scan is the Shannon entropy of the canonical ensemble. It is defined as Scan =
−
∑

G∈Gcan Pcan(G) lnPcan(G). When symbol 〈·〉 represents the average value, canon-
ical entropy Scan = 〈H + lnZ(~θ∗)〉 will equal to Scan = 〈~C〉 · ~θ∗ + lnZ(~θ∗). In the
setting of ensemble conjugation, the hard constraints equal to the average value of
soft constraints as 〈~C〉 = ~C∗. It makes the value of Scan equals to ~C∗ · ~θ∗ + lnZ(~θ∗),
which is only based on the probability of state G∗ and equal to logarithm of Pcan(G∗).

As not all states in the canonical ensemble have the same probability, thus the
probability of each canonical ensemble sequence may also be different. Therefore, to
find the limit of information storage for the canonical ensemble described information
source, we need to find the typical set of it. When use the ε to represent the bias be-
tween the canonical entropy function and the limit of the average value of lnPcan(G),
probability of canonical ensemble sequence in typical set A(l)

T εcan
have the property

e−l(Scan+ε) ≤ P (A(l)
T εcan

) ≤ e−l(Scan−ε). (4.8)

If the value of ε is equal to 0, then the ensemble sequences belong to the typical set
of canonical ensembles can be identified by the sum of Hamiltonian in the ensemble
sequences as

T ε=0
can = {A(l)

can|
l∑

k=1
H(Gk, ~θ∗) = l×H(G∗, ~θ∗)}. (4.9)

This result shows that all sequences in the typical set of the conjugate microcanonical
ensemble belong to the typical set of the canonical ensemble.

The number of ensemble sequences in the typical set is equal to |T ε=0
can | and the

smallest space needs to store the information is also equal to ln |T ε=0
can | as

ln |T ε=0
can | = l× Scan = l× [ ~C∗ · ~θ∗ + lnZ(~θ∗)]. (4.10)

The result shows that states in the canonical ensemble with constraints ~C(G) =
~C∗.determine the limit of information storage.

The generating of ensemble sequences by statistical ensembles with local con-
straints is independent. The space needs to store the information carried by the
different kinds of ensemble sequences still decided by the Shannon entropy of the
ensemble, which is used to describe the information source.
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4.3 Information storage under ensemble nonequiv-
alence

The measure-level ensemble equivalence is that the canonical probability distribution
converges to the conjugate microcanonical one in the thermodynamic limit [8]. Under
ensemble nonequivalence, there is always a difference between the two probability
distributions, even in the thermodynamic limit. Specifically, probability of states with
the constraints C∗ in the canonical ensemble is smaller than that in the microcanonical
ensemble Pmic(G∗) > Pcan(G∗). It is why the conjugate canonical ensemble always
has a bigger Shannon entropy than the microcanonical ensemble [45].

The measure-level ensemble nonequivalence is easy to be shown in the probability
distribution of the states as in FIG.4.3. And this difference can be quantified by the

Figure 4.3. Probability distribution of states in the microcanonical and conjugate canonical
ensemble under EE (a) and EN (b).

relative entropy between probability distributions of the microcanonical and canonical
ensemble as

S(Pmic||Pcan) =
∑

G∈Gcan

Pmic(G) ln Pmic(G)

Pcan(G)
. (4.11)

The probability of states in microcanonical with constraints ~C 6= ~C∗ is equal to 0, so
the relative entropy is decided by states in the two ensembles with constraints ~C∗.
And the value of it is equal to S(Pmic||Pcan) = lnPmic(G∗)− lnPcan(G∗), which is
the difference between the Shannon entropy of the two ensembles, S(Pmic||Pcan) =
Scan − Smic. It directly connects with the difference of the typical set’s size.

The relative entropy is difficult to obtain, as the value of Ω ~C∗ is hard to calculate.
However, according to the assumption that all the microscopic configurations in the
microcanonical ensemble are the subset of the conjugate canonical ensemble, the
number of configurations in the microcanonical ensemble can be estimated by the
δ-function as Ω ~C∗ =

∑
G∈G

´ ~π
−~π

d~ψ
(2π)K

ei
~ψ[ ~C∗− ~C(G)], which can be simplied as the

function of the canonical probability Ω ~C∗ =
´ +~π
−~π

d~ψ
(2π)K

P−1
can(G∗|~β∗ + i~ψ) [37].
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When the integration is hard to calculate we can still use the saddle-point tech-
nique to approach number of configurations in the microcanonical ensemble as

Ω ~C∗ =
eS
∗
can√

det(2πΣ∗)

K∏
k=1

[1 +O(1/λ∗k)], (4.12)

which is based on the covariance matrix of constraints Σ∗ [37]. Therefore, the relative
entropy between the microcanonical and canonical ensemble is equal to

S(Pmic||Pcan) =
1
2

W∑
w=1

ln 2πλ∗w
[1 +O(1/λ∗w)]2

, (4.13)

where λ∗w is the wth no-zero eigenvalue of the covariance matrix of constraints in the
canonical ensemble Σ∗, W is the total number of constraints in the systems. When
the matrix is under two-sided local constraints, the value of W = n+m [27].

Each entry Σ∗kl in the covariance matrix reprensents the covariance between local
constraints Ck and Cl, Σ∗kl = Cov[Ck,Cl]~β∗ . The constraint Ck or Cl here can be the
column local constraint r∗i or c∗j in the canonical ensemble. The value of Σ∗kl equal to

Σ∗kl =
∂2 lnZ(~β∗)
∂β∗
k
∂β∗
l

. It can be obtained from the partial differential of the logarithm of
partition function of the canonical ensemble lnZ(~θ∗). More details of the proofs can
be found in [37].

According to Eq.(4.5) and Eq.(4.10), we can find the difference between the size of
typical sets of different ensembles described information sources are connected with
the relative entropy between the ensembles. This relative entropy is the indicator
that is used to detect the measure-level ensemble nonequivalence. Thus, the EN in
the information sources will directly affect the information-theoretical bounds of the
new information sources.

As the Shannon entropy of the microcanonical ensemble is smaller than the con-
jugate canonical ensemble, the typical set of the microcanonical ensemble described
information sources is also smaller than the canonical ensemble one. It means using
the canonical ensemble to describe the information source with heterogeneous inter-
acting units needs extra space to store the sequences that belong to the typical set
of the canonical ensemble but not include in the typical set of the microcanonical
ensemble. Moreover, this extra space is determined by the relative entropy between
the two ensembles, or in other words, it will be affected by the degree of ensemble
nonequivalence. Especially when each unit in the information source has a finite de-
gree of freedom, there is a strong ensemble nonequivalence [27], the gap between the
limit of space to store the information generated by the different ensemble described
information source has the same order as the limit under the canonical ensemble
descriptions.

The space requires to store the set of the extra sequences T (l)
α̃n

in the typical set
of the canonical ensemble but not belong to the typical set of the microcanonical
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ensemble is equal to

ln |T (l)
α̃n
| = l× 1

2

W∑
w=1

ln 2πλ∗w
[1 +O(1/λ∗w)]2

. (4.14)

Since sequences belong to the typical set of the canonical ensemble should have the
sum of each state’s Hamiltonian as l×H(G∗, ~θ∗) and ensemble sequences generate
by the microcanonical ensemble are all belong to the typical set of the canonical
ensemble. Thus the extra sequences T εα̃n should satisfy the following condition:

Tα̃n = {T (l)
can|

l∑
k=1

~C(Gk) = l× ~C∗, ~C(Gk) 6= ~C∗}. (4.15)

If χcan is a collection of all the ensemble sequences generated by the canonical
ensemble described information source, and χmic represents all the ensemble sequences
generated by the microcanonical ensemble, then the relationship between the typical
set of them under ensemble equivalence or nonequivalence is shown as in FIG.4.4.

Figure 4.4. Every ensemble sequence generated by the microcanonical ensemble belongs to
the typical set of it. But not all the ensemble sequences of the canonical ensemble are included
in T εcan. When the information source is under EE, the typical set of the microcanonical
ensemble T εmic is close to the typical set of the canonical ensemble as shown in (b). When
the information sources are under EN, there is a non-vanished difference between the typical
set of the canonical ensemble and the microcanonical ensemble like in (c).

Then we want to know if the difference between the information-theoretical bounds
that is quantified by ln |T εα̃n | is bigger enough to affect the choice of the ensembles
to describe information source? To solve this problem, we need to compare the limit
of the extra space to store the set Tα̃n with the space needs to store the information
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that is generated by the canonical ensemble as

lim
l→∞

r =
ln |T εα̃n |
ln |T εcan|

=

1
2
∑K
k=1

ln(2πλ∗
k
)

[1+O(1/λ∗w)]2

−~θ∗ · ~C∗ − lnZ(~θ∗)
. (4.16)

If the limit value r is bigger than 0, then the space saved by choosing the micro-
canonical ensemble is bigger enough. This will happens when the information source
with heterogeneous interacted units are under strong ensemble nonequivalence [27].
When the information source is under EE, the information-theoretical bounds of the
different ensemble described information source is the same. Such as the information
sources described by the ER model and the matrix with global constraints.

The proof details are in the appendix. When information sources need to be
described by the matrix with local constraints, the ratio r is bigger than 0, and close
to r ∼ ln(2πm)

m , where m is the degree of freedom for each unit in the information
source [27]. Proof also can be found in the appendix.

4.4 Ensemble nonequivalence and channel capacity
As we already mentioned before, the information-theoretical bounds include the limit
of information storage and the maximum speed of reliable information transmission
through a channel. Here, to find the possible influence of EN on the channel capacity,
we suppose there is a zero-less ensemble channel, which can transmit all the infor-
mation generated by the ensemble described information sources correct. Then the
information R should be transmitted through the channel is equal to

R =

{
l× Smic, microcanonical ensemble
l× Scan, canonical ensemble (4.17)

When the number of codes that can be used to carry the information is fixed, us-
ing the microcanonical ensemble to describe the information source will leave more
redundancy for the information transmission. Furthermore, this redundancy can be
quantified by the covariance of the matrix in the conjugate canonical ensemble.

4.5 Conclusions
In this chapter, we show that the information-theoretical bounds of the information
sources with numerous heterogeneous interacting units are still decided by the uncer-
tainty of the information sources, which are quantified by the Shannon entropy. As
the random variable with finite outcomes is not enough to describe the new informa-
tion sources, so we have introduced the statistical ensembles with local constraints
to model those heterogeneous interactions. Thus, the new information-theoretical
bounds are decided by the entropy of those statistical ensembles. As these new infor-
mation sources have a huge number of units, the entropy of the statistical ensemble
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described information sources would be affected by the possible appearance of ensem-
ble nonequivalence. Under this case, different ensemble descriptions have different
Shannon entropy. Using the microcanonical ensemble to describe the information
source with interacting units needs a smaller information storage space, but the prob-
ability distribution of the microcanonical ensemble is hard to calculate. Using the
canonical ensemble to describe the new information sources is easy to get the proba-
bility distribution but requires more information storage space. The extra sequences
that need to store in the canonical ensemble descriptions are those sequences with the
same sum of Hamiltonian as the sequences in the typical set of the microcanonical
ensemble, but the constraints of each state are not equal to the hard constraints of the
microcanonical ensemble. The size of the extra typical sets can be approached by the
covariance matrix of constraints in the canonical ensemble. It means the difference
between the information-theoretical bounds of different ensemble descriptions of the
ensemble nonequivalent information sources is affected by the fluctuation in the local
constraints. It has reinforced the conclusions in the traditional information theory
that the uncertainty of the information sources will affect the information-theoretical
bounds.

Appendix 4.A ERmodel described information sources
ER model G(n, p) represents the probability of the system with n units, and each
pair of units have a probability of p to connect with each other. The constraint in
the ER model is the total number of interactions among the units in the information
source. It still can be described by the microcanonical and the canonical ensemble
when constraints in it have different properties.

As the number of the possible links in the ER model is equal to n(n− 1)/2, the
hard constraint C∗ in the microcanonical ensemble is equal to the expectation value
of the total number of links as p× n(n− 1)/2. Thus, the probability of each state in
the microcanonical ensemble with these hard constraints is

Pmic(G∗) = 1/
(
n(n− 1)/2

C∗

)
. (4.18)

Each state has the same probability to appears in the process of signal generation.
The value of the probability is decided by the total number of configurations with the
same constraints.

When the ER model is under ’soft’ constraints, each state of the information
source does not need to have the same value of total interactions; only the average
value of total interactions is equal to the C∗. Then the value of p is equal to 2C∗

n(n−1) ,
probability of the state of the information source described by the canonical ensemble
is

Pcan(G) = pC(G)(1− p)
1
2n(n−1)−C(G). (4.19)

The canonical entropy is equal to − lnPcan(G∗). When the value of soft constraints
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is equal to C∗, the canonical entropy is

Scan =−C∗ ln 2C∗ + n(n− 1)
2 ln[n(n− 1)]

− (
n(n− 1)

2 −C∗) ln(n(n− 1)− 2C∗).
(4.20)

If the information source described by the microcanonical ER model ensembles is used
to generate the information sequences with length l, the space to store the information
that is generated by the microcanonical description is equal to

ln |T ε=0
mic | = l× ln

(
n(n− 1)/2

C∗

)
, (4.21)

where T ε=0
mic is the typical set of the microcanonical ensemble information sequence.

When information sources are described by the canonical ER model, the space to
store the information that is generated by it is equal to

ln |T ε=0
can | = l× Scan = −l× lnPcan(G∗). (4.22)

It is decided by the canonical entropy of the ER model.
The difference between the limit of information storage of the information source

described by different ensembles is related to the relative entropy between the mi-
crocanonical and canonical ER model, which is equal to Scan − Smic when the two
ensembles are conjugate with each other. We can get the result of relative entropy
based on Stirling’s formula as

S(Pmic||Pcan) ≈ ln
√

2πC∗(1− 2C∗/[n(n− 1)]). (4.23)

In the thermodynamic limit, the two ER model ensembles are equivalent to each
other, as the limit value of the relative entropy density is equal to 0

lim
n→∞

1
n
S(Pmic||Pcan) = 0. (4.24)

The space can be saved from canonical ensemble description to microcanonical
ensemble description is equal to l×S(Pmic||Pcan), but compared with the total space
needs in the canonical ensemble description, it is not so important, as the space ratio
r will equal to 0 in the thermodynamic limit

r =
S(Pmic||Pcan)

Scan
= 0. (4.25)

Therefore, using the microcanonical ensemble only saves finite space of the information
storage. The ensemble equivalence allows us to choose the canonical ensemble, which
is mathematically easy to obtain.
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Appendix 4.B Matrix described information sources
Matrix is a general model widely used to describe natural systems with heterogeneous
interactions. [27]. The heterogeneous interactions among the units imply the local
constraints in it. It means this information sources described by the matrix ensembles
are under ensemble nonequivalence.

Thus, checking if the limit of information storage of the matrix ensemble described
information source will be affected by the ensemble nonequivalence as we predicted
is significant for our theory. We will start with matrice under global constraint, then
extend the discussion to the local constrained one.

4.B.1 Matrix with global constraint
Global constraint is the sum of all the elements in each matrix is fixed as C(G) =∑n,m
i=1,j=1 gij . When the global constraint is hard, the constraint of each state in the

matrix ensemble is equal to each other as C∗. The system can be described by the
microcanonical ensemble. If the global constraint is soft, the average value of each
matrix’s constraints is equal to the hard constraints, 〈C(G)〉 = C∗, the system can be
described by the canonical ensemble. States both in the microcanonical and canonical
ensemble with constraints equal to C∗ is represented by G∗.

The probability of each state in the matrix described by the microcanonical en-
semble is equal to

Pmic(G∗) =
1

ΩC∗
, (4.26)

where ΩC∗ is the total number of states with global constraint equals to C∗.
In the matrix described by the canonical ensemble, the Hamiltonian of each matrix

H = θ∗ ·C(G) (4.27)

decides the probability of it. The θ∗ is the maximum likelihood parameter realized
〈C(G)〉 = C∗ and maximum the Shannon entropy. Thus, the probability of each
state in the canonical ensemble is equal to

Pcan(G) =
e−H(G,θ∗)

Z(θ∗)
, (4.28)

Z(θ∗) is the partition function, and it is a normalization constant equal to Z(θ∗) =∑
G∈G e

−H .
If the matrix with global constraints is used as an information source, then the

information generated from it is carried by a set of matrix ensemble sequences with
length l.

When the global constrained matrix is described by the microcanonical ensemble,
the space to store the information generated by it is equal to

ln |T εmic| = l× Smic = l× ln ΩC∗ . (4.29)
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For the canonical ensemble described matrix information sources, the space to
store the information generated by it is equal to

ln |T εcan| = l× Scan = −l× lnPcan(G∗). (4.30)

Relative entropy between the two ensembles’ probability distribution is equal to
Scan − Smic. It can be estimated by the determinant of the covariance matrix of
constraints in the canonical ensemble as

S(Pmic||Pcan) ≈ ln
√

2πΣ∗ = 1
2 ln 2π∂

2 lnZ(θ∗)
∂θ∗2

. (4.31)

When the elements in the matrix is chosen from different set, partition func-
tion Z(θ∗) is also different. For example when the element in the matrix is equal
to 1 or 0, this matrix is binary matrix, the partition function of it is equal to
Z(θ∗) = (e−θ

∗
+ 1)mn. If the element in the matrix is chosen from the whole natural

number set, the matrix is a weighted matrix, the partition function of it is equal to
Z(θ∗) = (1− e−θ∗)−mn. According to the relationship between θ∗ and C∗ in the two
different matrices, we can find the value of relative entropy of binary matrix is equal
to S(Pmic||Pcan) = 1

2 ln[2πC∗(1−C∗/(mn))], and the relative entropy of weighted
matrix is equal to S(Pmic||Pcan) = 1

2 ln[2πC∗(1 +C∗/(mn))].
Because the value of S(Pmic||Pcan) for the two different kinds of matrices are both

grows like o(n), the two different ensemble descriptions are equivalent to each other
in the thermodynamic limit.

The ratio of space that can be saved from canonical ensemble description to mi-
crocanonical ensemble description is

r = [
1
2 ln 2π∂

2 lnZ(θ∗)
∂θ∗2

]/[−θ∗ ·C∗ − lnZ(θ∗)]. (4.32)

The value r of the binary matrix under global constraint is equal to

r =
1
2

ln[2πC∗(1−C∗/(mn))]
mn ln(mn)−C∗ lnC∗ − (mn−C∗) ln(mn−C∗) . (4.33)

The value of r for the weighted matrix ensemble under global constraints is equal to

r =
1
2

ln[2πC∗(1 +C∗/(mn))]
(mn+C∗) ln(mn+C∗)−mn ln(mn)−C∗ lnC∗ , (4.34)

When n goes to infinite, the r is equal to 0 both in the two matrices. Therefore,
when the system with global constraint is used as the information source, it is under
ensemble equivalence. The space saved from canonical to microcanonical ensemble
description can be neglected.
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4.B.2 Matrix with local constraints
The local constraints of the information sources are implied by the heterogeneous
interactions among the units in it. The local constraint is the sum of all the elements
in each row or column in the matrix ensemble. According to the research in [27],
matrix ensemble with local constraints is under ensemble nonequivalence. When the
value of rows in the matrix under local constraints is finite m � ∞, the ensemble
nonequivalence is as strong as the one in the boundary of phase transition [8].

In this section, we will introduce how the heterogeneous interaction will affect
the limit of information storage. As the coupled constraints only can be analytically
solved in two particular cases, we will put all the calculations on the matrix with
one-sided local constraints [27].

Them×nmatrix ensemble under local column constraints ~C∗ = [c∗1, c∗2, · · · , c∗i , · · · , c∗n]
has n constraints in it. Each c∗i is the sum of all the elements in the column i as
c∗i =

∑m
j=1 gij . The property of constraints decides which ensembles will be used to

describe this local constrained matrix.
In the microcanonical ensemble description, each state still have the same value

of constraints as ~C∗, and the probability of it is equal to

Pmic(G∗) = 1/Ω ~C∗ , (4.35)

where Ω ~C∗ is the number of states in the matrix described by the microcanoni-
cal ensemble. In binary matrix, Ω ~C∗ =

∏n
i=1 (

m
r∗i
). In weighted matrix, Ω ~C∗ =∏n

i=1 (
m+r∗i−1

r∗i
). The space to store the information generated by it is equal to

ln |T ε=0
mic | = l× Smic = l× ln Ω ~C∗ , (4.36)

both in the binary and weighted matrix.
When the local column constraints are soft, the matrix needs to be described by

the canonical ensemble. The probability of states in the canonical ensemble is also
based on the Hamiltonian of it, which is defined as H =

∑n
i=1 β

∗
i c
∗
i . Where β∗i is

the correspond parameter which maximum the Shannon entropy and realized the
〈~C(G)〉 = ~C∗. Therefore, the probability of states in the canonical matrix ensemble
is

Pcan(G) =
e−H

Z(~β∗)
. (4.37)

The information generated by it is also carried in the canonical matrix ensemble
sequences. The space to store the information is equal to

ln |T ε=0
can | = l× Scan = −l× lnPcan(G∗). (4.38)

The space saved from the canonical description to the microcanonical ensemble
description can be estimated by the function of the determinant of the covariance
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matrix of constraints in the canonical ensemble as

S(Pmic||Pcan) =
1
2

n∑
k=1

ln
2πλ∗k

[1 +O(1/λ∗k)]
2

≈ 1
2

n∑
k=1

ln[2π∂
2 lnZ(~β∗)
∂β∗k

2 ].
(4.39)

As different matrices have different difference of partition function, so the relative
entropy is also different. Partition function of binary matrix under is equal to
Z(~β∗) =

∏n
i=1(e

−β∗i + 1)m. In weighted matrix, partition function is equal to
Z(~β∗) =

∏n
i=1(1− e−β

∗
)−m. Then the value of relative entropy for binary matrix

is equal to S(Pmic||Pcan) = 1
2
∑n
i=1 ln[2π r

∗
i (m−r

∗
i )

m ]. In weighted matrix, the value of
relative entropy is equal to S(Pmic||Pcan) = 1

2
∑n
i=1 ln[2π r

∗
i (m+r∗i )

m ]. Both of those
two matrix are under ensemble nonequivalence. The space can be saved from the
canonical ensemble description to the microcanonical ensemble description has the
same order as the increase of the ensemble sequences’ length. The ratio r is still
defined as

r = [
1
2

n∑
k=1

ln[2π∂
2 lnZ(~β∗)
∂β∗k

2 ]]/[−~β∗ · ~C∗ − lnZ(~β∗)]. (4.40)

In the binary matrix ensemble under local column constraints, the value of r is equal
to

r = 1− [
n∑
i=1

ln
(
m

r∗i

)
]/[

n∑
i=1

ln[mm/r∗i
r∗i (m− r∗i )m−r

∗
i ]]. (4.41)

In the weighted matrix ensemble, the value of r is equal to

r = 1− [
n∑
i=1

ln
(
m+ r∗i − 1

r∗i

)
]/[

n∑
i=1

ln[ (m− r
∗
i )
m−r∗i

mmr∗i
r∗i

]. (4.42)

When the matrix is in the thermodynamic limit, the limit value of r grows like ln(2πm)
m .

Thus, when the freedom of each element is finite m � ∞, the ratio is fixed. When
the value of m is growing like O(n), the ratio is close to 0. It means compare with
canonical ensemble description, using the microcanonical ensemble will save r% of
the space.

Under two-sided local constraints, it is impossible to calculate the number of
states in the microcanonical ensemble. The increased number of constraints will
decrease the possible configurations in the microcanonical ensemble, so the space to
store the information generated by it is even smaller than the one with local column
constraints [27]. The ensemble nonequivalence will affect the information-theoretical
bounds.
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Chapter 5

Information theory with
coupled sources under
ensemble nonequivalence

Abstract
Information theory is build to describe information transmission and storage in differ-
ent systems. Restricted by the initial setting of the electronic communication system,
the traditional information theory is based on a fundamental assumption that the sig-
nal generation by those information sources has an identical probability distribution
and is independent of time. However, recent research on nervous systems and social
networks shows that the information flows in those systems are generated by the nu-
merous interacting units, and the signal generation in those systems is under temporal
dependencies. It means the classical information theory based on the i.i.d assump-
tion cannot deal with the coupled sources with temporal and spatial dependencies in
non-artificial communication systems.

Motivated by the recent works on systems with local constraints in statistical
physics, a generalization of information theory with coupled sources is built to find the
limits of information transmission and storage based on the descriptions of information
sequences with statistical ensembles under local constraints in this work. We find
that the microcanonical ensemble description or the Boltzmann entropy is closer to
the real limit of information storage than the canonical ensemble description with soft
constraints or Shannon entropy. We also find that the classical information theory
is a particular case of the canonical ensemble description when the dependencies
are homogeneous. Moreover, the effectivity of classical information theory only holds
when the microcanonical ensemble description and the canonical ensemble description
of the signal generation are under the ensemble equivalence. Our result also shows
that the finite temporal dependences of units in the information source are not enough
to break the ensemble equivalence. The ensemble nonequivalence is formed by the
extensive spatial interactions among all the units 1.

1This chapter is based on the coming paper:
Qi Zhang, Diego Garlaschelli, "Information theory with coupled source under ensemble nonequiva-
lence" (2021)
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5.1 Introduction

The classical information theory established in 1948 by Shannon is build to estimate
the information-theoretical bounds of the information storage and the information
transmission in communication systems [33]. This theory is based on an essential
assumption that the information source works independently with an identical prob-
ability distribution (i.i.d) in the process of signal generation. According to this as-
sumption, Shannon found that almost all the information generated by the i.i.d.
information source x is carried by a set of equiprobable sequences {x1,x2, · · · ,xn},
which is named as typical set T (n)

ε . Therefore, the smallest space needs to store the
information generated by the information source is equal to the logarithm of the car-
dinality of the typical set ln |T (n)

ε |. This limit of information storage will converge
to the n× s(x) as a function of Shannon entropy s(x) of the information sources
when (n → ∞) the length of sequences goes to infinite [29]. This typicality is the
asymptotic equipartition property (AEP). It also can be found in statistical physics,
which shows that the equilibrium behaviour of a system in the thermodynamic limit
is determined by typical microstates [8].

The signal generation under the i.i.d. assumption as a stationary process ig-
nores the possible temporal and spatial dependencies between the units in information
sources. However, in natural systems, especially when there are multivariates in the
information source, these dependencies generally exist. For example, in the vertebrate
retina, the activity of neurons is determined by pairwise correlations among neurons,
and the limited energy can be used for each neuron simultaneously [69]. The pairwise
correlations are spatial interactions among all the neurons. The finite energy that
can be used by each neuron in the whole process of signal generation is the tempo-
ral constraint. The spatial and temporal dependencies also exist in the changes of
cars’ flow in the urban traffic networks [70] and fluctuations of the stock market [3].
These heterogeneous dependencies among the units in the information source make
it impossible to find the limit of information storage by the classical AEP [71, 30].
Also, it may affect the symbol rate used to reliable transport the information through
different channels. Thus, we need a new theory to describe the signal generation with
spatial and temporal dependencies and find the information-theoretical bounds.

According to the classical information theory, the information generated by the
source is carried by information sequences, which are used to record the behaviour of
units in information sources. So even when the signal generation of the multivariate
source is under spatial and temporal dependencies, the information generated by it
is still carried by the multivariate information sequences {~x1, ~x2, · · · , ~xn}. Thus, to
find the information-theoretical bounds of those non-stationary signal generations, we
should focus on the information sequences, not the information sources.

However, those sequences with heterogeneous dependencies and the increased
length are impossible to be described by random variables with finite outcomes, but
those macroscopic properties are analogue with the that in states of thermodynamic
systems. Both of them have numerous interacting units, and the numbers of units
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go to infinite in the thermodynamic limit. It means statistical ensembles in physics
can be used to describe the multivariate and heterogeneous dependent information
sequences, to find its information-theoretical bounds [1, 27].

In statistical physics, systems with different macroscopic properties need to be
described by different ensembles. The microcanonical ensemble is used to describe
systems with fixed total energy E∗. The canonical ensemble is used to describe sys-
tems with fixed temperature β = 1/kT [1, 49, 27]. The two ensembles will conjugate
with each other by setting the parameter β in the canonical ensemble equal to β∗,
which makes the average value of the total energy in the canonical ensemble equal to
the fixed total energy in the microcanonical ensemble (〈E〉 = E∗) [15].

Normally, in the thermodynamic limit, the two conjugate ensemble descriptions
are believed to be equivalent. The microcanonical ensemble can be replaced by the
canonical ensemble, which is mathematically easy to calculate. This one phenomenon
is called ensemble equivalence (EE) [8]. However, in the past decades, the breakdown
of EE also has been observed in various physical systems [39, 25, 21]. Especially
when there are extensive local constraints in the system, the EE breaks in the whole
parameter space of this system [5, 27]. Therefore, when statistical ensembles are
used to describe the information sequences with different macroscopic properties,
their information-theoretical bounds are affected by the possible appearance of the
ensemble nonequivalence (EN).

In this work, a matrix ensemble with local constraints is used to describe the in-
formation sequences that are generated in the signal generation with heterogeneous
dependencies. These heterogeneous dependencies are quantified by the total corre-
lation (multi-information) among units in sequences [72]. We find that the classical
information theory is a particular case of the canonical ensemble description with soft
constraints. We also prove that the effectivity of the classical AEP in information
theory is based on the EE of the signal generation. Most importantly, we find that
the EN in the non-stationary process is led by the variable spatial interactions among
units in the source, not the finite temporal dependence.

5.2 Ensemble described information sequences
In traditional statistical physics, statistical ensembles are under global constraints
such as the fixed total energy and fixed temperature. The interactions among all units
are homogeneous. However, this assumption breaks when the statistical ensembles
are used to describe the information sequences generated by the information source
with heterogeneous dependent units since the interactions among those units are
homogeneous and time variant. It means the description of the information sequences
needs the statistical ensemble with local constraints [27].

The information sequences are generated by the information source with hetero-
geneous spatial interactions and temporal dependencies. If the information source
has m finite units, then the information generated by it in n times sampling should
be recorded by the m× n matrix X. Each unit xji represents the state of unit j
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in information source at time i, and matrix X represents a particular state of the
information sequences.

According to the definition of matrix should above, the spatial dependence among
m units in the information source at different time can be modelled by the column local
constraints ~c = [c1, c2, · · · , ci, · · · , cn], where ci is the sum of all the units in column i
of matrix X as ci =

∑m
j=1 xij . The temporal dependence of each variable in the infor-

mation sources is modelled by the row local constraints ~r = [r1, r2, · · · , rj , · · · , rm],
where each rj =

∑n
i=1 xji is the sum of all the element in the jth row of matrix X.

In nervous systems, rj represents the total energy theta can be used by the neuron
Xj in the whole signal generation, ci represents the total energy that can be used by
m interacting units in time i.

The relationship between local constraints in the matrix ensemble and the depen-
dencies in ensemble sequences is shown in FIG.5.1.

Figure 5.1. The status of m units in different times show in (a). The red and blue colour
of each node represents it is active or non-active. The selected nodes (the big nodes with
the black circle as margin) are used as units in the information source. The green line across
different layers represents temporal dependence. The red line among nodes in each layer
represents the spatial interaction among them. The localization of the two dependencies in
the matrix shows in (b). The spatial interactions among all the units in the information
source at time i are quantified by the column local constraints ci. The temporal dependence
of unit j is represented by the row local constraints rj .

When the dependence is homogeneous, the information sequences should be mod-
elled by the matrix ensemble with global constraints as t∗ =

∑n
i=1
∑m
j=1 xji, which

is the sum of all elements in the sequence [27].
The statistical ensemble is a probability distribution of all possible states in a

specific thermodynamic system. The macroscopic property of constraints determines
the value of probability for each state. For example, when the constraints are hard,
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states of it are equiprobable. When the constraints are soft, the probability of each
state is different. The two different kinds of constraints represent two different ways
to describe the signal generation under dependencies. When the constraints are hard,
we need the microcanonical ensemble. Otherwise, when the constraints are soft, we
need the canonical ensemble [15].

5.2.1 Canonical ensemble description
When heterogeneous dependencies in sequences are soft, the constraints of each mi-
croscopic configuration are different. The average value of the constraints for all the
sequences is equal to the hard constraints in the conjugate microcanonical ensemble.
Then the sequences will be described by the canonical ensemble.

The probability of each state in the canonical ensemble is a parameter solution
under the realization of the average constraints and the maximization of Shannon
entropy

Pcan(X|~β) = e−H(X,~β)/Z(~β). (5.1)

Vector ~β is an extension of the maximum likelihood parameter β base on extensive
local constraints in it [27].

The partition function Z(~β) is a normalization constant, which collect the ex-
ponential function of all the possible configurations of the sequences X as Z(~β) =∑

X∈X e
−H(X,~β). The symbol H(X, ~β) represents the Hamiltonian of a sequence X.

It is a liner combination of constraint and maximum likelihood parameter, H(X, ~β) =
~C(X) · ~β [15].

The microcanonical ensemble and canonical ensemble are conjugate with each
other by setting the parameter ~β = ~β∗, to make the average value of constraints
〈~C(X)〉 in the canonical ensemble is equal to hard constraints ~C∗ in the microcanon-
ical ensemble as

〈~C(X)〉 =
∑

X∈X
Pcan(X|~β∗) ~C(X) = ~C∗, (5.2)

where X represents the collection of all the possible information sequences.
As constraints ~C(X) is the sum of elements in each column and row, the prob-

ability of a sequence in the conjugate canonical ensemble is equal to the product of
the probability of each unit in each sequence as

Pcan(X|~β∗) =
n∏
i=1

m∏
j=1

e
−xijβ∗ij∑

xij∈§ij e
−xijβ∗ij

. (5.3)

The value of Pcan(X|~β∗) is governed by the parameter ~β∗ and the value of each units
xij in sequence X. The symbol §ij represents the collection of all the possible values
of xij .
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Then, according to the classical information theory, it is easy to find that the
smallest space to store the information carried by canonical ensemble sequences is
equal to the Shannon entropy of it as

Scan =
∑

X∈X
Pcan(X|~β∗) lnPcan(X|~β∗). (5.4)

This result coincides with the consequence in Shannon’s information theory that the
smallest space needs to store the information is determined by its uncertainty. How-
ever, the quantification of the uncertainty is affected by the appearance of heteroge-
neous interactions.

The Eq.5.3 shows that each unit in the sequence X under soft constraints is
independent. Probability of each unit to gets value xij is governed by the localized
parameter β∗ij . Thus, the canonical ensemble is equal to the production of the marginal
probability of each unit as

Pcan(X|~β∗) =
n∏
i=1

m∏
j=1

P (xji). (5.5)

Comparing with the microcanonical ensemble that realization all the constraints ex-
actly, the canonical one is more like the localization of the dependencies on each unit
in the information sequence.

When the two local constraints are working simultaneously, sequences are under
coupled local constraints. The Hamiltonian is equal toH =

∑n
i=1 α

∗
i ci+

∑
j=1m β

∗
j rj .

Then, we can get the probability distribution and the Shannon entropy of this canon-
ical ensemble description. Details of the calculation are shown in the Appendix 5.C.

When only column-local constraints work on the signal generation or the signal
generation is only constrained by soft spatial interactions among all the units in
information sources, the canonical ensemble description of this signal generation still
can be described by the coupled local constraints, but with the row local constraints
equal to each other as r∗j = r∗ and β∗j = β∗. Then the Hamiltonian should equal to
H =

∑m
j=1

∑n
i=1(β

∗ + α∗i )xji. The partition function and the Shannon entropy of
this canonical ensemble can be found in the Appendix 5.B. It also can be described
by the one-sided local constraints matrix in [27].

When the signal generation is only limited by the soft temporal dependence or
when the units in the multivariate information source are independent, the signal
generation also can be described by the coupled local constraints canonical ensembles
with the unit in column local constraints equal to each other as c∗i = c∗. The corre-
sponding maximum likelihood parameter is also equal to each other as α∗i = α∗ The
Hamiltonian of this canonical ensemble description is H =

∑m
j=1

∑n
i=1(β

∗
j + α∗)xji.

The Shannon entropy can be found in the Appendix 5.A.

5.2.2 Microcanonical ensemble description
In the microcanonical ensemble description, constraints of each state have the same
value ~C∗. The column and row local constraints are fixed exactly in each matrix.
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Thus, in the signal generation, the possible state of each unit in the information
source will be limited by the spatial dependencies and temporal interactions exactly.
For example, the activity of neurons in the nervous system is decided by the energy
that the neuron can use in signal generation. The fixed column local constraints ~c∗
means the total energy that can be used by all neurons each time is finite. The fixed
row local constraints ~r∗ mean the total energy that can be used by each neuron in
the whole process of signal generation is finite. Then the more energy cost by other
units in the information source, the less energy will be left for the specific one to have
different states. For each unit, the more energy cost in the past, the less will be left
for the future.

The hard constraints of information sequences require the probability of each state
with constraints ~C∗ equal to each other as

Pmic(X|~C∗) = 1/Ω ~C∗ , (5.6)

where Ω ~C∗ = |Xmic| represents the total number of sequences with constraint ~C∗ in
the microcanonical ensemble.

According to the AEP, we can find that all sequences in the microcanonical ensem-
ble belong to the typical set Tmic of it. Space needs to store the information carried
by the typical set is equal to the Boltzmann entropy of information sequence X [10]

Smic = ln |Tmic| = ln Ωmic. (5.7)

The value of it is determined by the total number of configurations of information
sequence with hard constraints ~C∗.

The Ω ~C∗ is hard to calculate analytical, especially when information sequences
are under coupled constraints. However, according to the mechanism in [37], we
can estimate the value of it by the covariance matrix of constraints in the canonical
ensemble.

In the two conjugate ensembles, the total number of states in the microcanonical
ensemble is equal to the number of states in the canonical ensemble with constraints
equal to ~C∗ [37]. Thus, the number of states in the microcanonical ensemble can be
calculated from the canonical probability distribution with Dirac delta function (δ
function) as

Ω ~C∗ =
∑

X∈X

ˆ ~π

−~π

d~ψ
(2π)K e

i ~ψ[ ~C∗− ~C(X)]

=

ˆ ~π

−~π

d~ψ
(2π)K P

−1
can(X∗|~θ∗ + i ~ψ).

(5.8)

The integral is difficult to calculate when it is under coupled constraints [37]. But
it is still possible to use saddle point technology to approach the value of Ω ~C∗ as

Ω ~C∗ =
eScan√

det(2πΣ∗)

K∏
k=1

[1 +O(1/λ∗k)], (5.9)
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where Σ∗ is the covariance matrix of constraints in the canonical ensemble whose
entries are defined as

Σ∗ij ≡
∂2 lnZ(~θ)
∂θi∂θj

|
~θ=~θ∗

= Cov[Ci,Cj ]~θ∗
= 〈CiCj〉~θ∗ − 〈Ci〉~θ∗〈Cj〉~θ∗ ,

(5.10)

The {λ∗k} is the eigenvalue of covariance matrix Σ∗ [37]. K is the number of con-
straints in the matrix X

Then we can have the Boltzmann entropy of the microcanonical ensemble Smic =
ln Ω ~C∗ is equal to the Shannon entropy of the conjugate canonical ensemble minus
the correction part based on the covariance matrix of constraints in the canonical
ensemble as

Smic = Scan − ln
√

det(2πΣ∗) +
K∑
k=1

ln[1 +O(1/λ∗k)]. (5.11)

The correction part
∑K
k=1 ln[1 +O(1/λ∗k) is negligible when the eigenvalue value of

the covariance matrix λ∗k is big enough. Thus, the space to store the information
carried by the microcanonical ensemble sequences is smaller than the canonical one.
Because the hard constraint in the microcanonical ensemble strictly modelled the
influence of heterogeneous dependencies in information sequences. Therefore, the
microcanonical ensemble description is closer to the natural process of signal genera-
tion under heterogeneous dependence than the canonical ensemble one, which is the
maximum entropy approximation.

5.3 Total correlations of information sequences
The nonnegligible difference between the microcanonical and canonical ensemble de-
scription of the information sequences shows that the two different descriptions of the
heterogeneous dependencies in the information sequences contains different informa-
tion about the signal generation with temporal and spatial dependencies. However,
we do not know, if this difference is related with the correaltions among units in the
information sequences. Therefore, it is important to check if the nonnegligible en-
semble difference is a manifestation of the correaltions of the units in the information
sequences.

The matrix ensemble X gives a possible model for us to quantify the dependence
among all units in information sequences as the total correlations C [72]

C =
∑

X∈X
P (X) ln P (X)∏n

i=1
∏m
j=1 P (xji)

. (5.12)

The symbol X represents the collection of all possible configurations of sequences X
under heterogeneous dependencies.
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However, with heterogeneous dependencies, both the actual probability P (X)
of the sequence X and the production of the marginal probability of each unit∏n
i=1
∏m
j=1 P (xij) are difficult to calculate. Therefore, the two different ensemble

descriptions show above that are based on the maximum entropy principle proposed
by Jaynes [15] give a way to approach the probability P (X) and the production of
marginal probability

∏n
i=1
∏m
j=1 P (xij) from the biased information we know.

The probability of the matrix X with constraints ~C(X) to appear in the signal
generation is decided by the number of configurations Ω ~C(X) in it. The microcanoni-
cal ensemble description strictly satisfies the requirement of signal generation. Thus,
when the constraints are fixed, the probability P (X) in the definition of total corre-
lations can be replaced by the probability of states in the microcanonical ensemble
description as

P (X) = Pmic(X|~C∗). (5.13)

The production of each unit’s marginal probability in Eq.5.12 is based on the as-
sumption that the probability of each unit P (xji) can be calculated independently.
However, when there is heterogeneous dependence, we can only use the canonical
ensemble to approach the production of marginal probabilities, as the canonical en-
semble has localized the dependencies of all the units in the sequence by the parameter
βji. Thus, we can have the production of the marginal probability of the matrix X
as

n∏
i=1

m∏
j=1

P (xji) = Pcan(X|~β∗). (5.14)

It is determined by the parameter ~β∗ and the corresponding constraints ~C(X) simul-
taneously.

Therefore, the total correlation in sequences with constraints ~C∗ (the hard con-
straints in microcanonical ensemble, and the average value of constraints in canonical
ensemble) can be approached by the relative entropy S(Pmic||Pcan) between the two
ensembles as

C = S(Pmic||Pcan) =
∑

X∈X
Pmic(X|~C∗) ln Pmic(X|~C∗)

Pcan(X|~β∗)
(5.15)

The probability of states in microcanonical ensemble with constraints not equal to
~C∗ is 0, so the total correlation also can be calculated as

C = lnPmic(X∗)− lnPcan(X∗), (5.16)

where X∗ represents sequence with constraints ~C∗ [27].
The Shanon entopy of the canonical ensemble is equal to Scan = lnPcan(X∗). The

Boltzmann entropy of the microcanonical ensembl equal to Smic = lnPmic(X∗).Thus,
the total correaltions C is the difference between the shannon entropy and Boltzmann
entropy of the sequences with heterogeneous dependencies.
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As the relative entropy density is the indicator of the measure ensemble nonequiv-
alence [8], the total correlation C of the matrices X also has a close relationship with
the EN in it.

Because the microcanonical entropy can be obtained by the covariance matrix of
constraints in the canonical ensemble, we can find that the total correlation also can
be calcualted by the covariance matrix of constraints in the canonical ensemble as

C = ln
√

det(2πΣ∗)− ln
K∏
k=1

[1 +O(1/λ∗k)]. (5.17)

This result shows that the extra information needs to describe states in the canoni-
cal ensemble is determined by the relative fluctuation between the constraints in the
canonical ensemble and the conjugate microcanonical ensemble. The bigger the fluc-
tuation, the more difference between the two ensembles. The more information we
need to store under the canonical ensemble description.

5.4 Classical information theory with ensemble de-
scription

As we already mentioned before, the ensemble description is an extension of the
classical information theory with heterogeneous dependencies. Thus, in this part, we
will show that the classical information theory is a particular case of the ensemble
description of information sequences.

First, we will introduce the typical description of signal generating in classical
information theory.

In classical information theory, there is a basic assumption that each unit in the
sequence is independent. Moreover, the probability distribution of each unit to get dif-
ferent values is the same (independent-identical-distribution). For example, in the bi-
nary information source x, the probability of the sequence A = [a1, a2, · · · , ai, · · · , an]
with t units equal to 1 is

P (A|t) = pt(1− p)n−t, (5.18)

where p is the probability of the information source x to have the value of 1, and t is
the total number of units with value 1 in the sequence.

When the length n of the sequence A goes to infinite, and the probability p of each
unit to get value 1 fixed, we can find the average number of units in the sequence A
to has value 1 is equal to 〈t〉 = t∗ = n× p. It is a manifestation of the large number
law.

The information that is generated by the information source x is carried by in-
formation sequences A in the typical set Tε. This typical set can be detected by the
AEP as

1
n

lnP (A|t) = t

n
ln p+ n− t

n
ln(1− p). (5.19)
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When the length n → ∞, the value of t
n in the rescaled proability 1

n lnP (A|t) will
equal to t∗

n = p. Thus, the limit of the rescaled probability is equal to

lim
n→∞

1
n

lnP (A|p) = p ln p+ (1− p) ln(1− p), (5.20)

which is the minus of the Shannon entropy of the information source x. The Shannon
entropy s(x) of the information source is equal to

s(x) = − t
∗

n
ln t
∗

n
− n− t∗

n
ln n− t

∗

n
. (5.21)

Therefore, the typical set Tε is the collection of all the sequences that satisfy the
following condition

Tε = {A|e−n(s(x)−ε) ≤ P (A) ≤ e−n(s(x)−ε)}. (5.22)

The space to store sequences in the typical set is equal to ln |Tε=0| = n× s(x). The
result shows one of the main results in Shannon’s information theory that the space
needs to store the information generated by the information source is decided by the
uncertainty of the information source, which is the Shannon entropy of the information
source x [33].

Next we will prove that the classical information theory is a particular case of the
canonical ensemble described information sequences with coupled constraints when
the parameter β∗ij is equal to each other as β∗, and m = 1. It is also can be described
by the canonical ensemble under global constraints t =

∑n
i=1 ai.

When use the canonical ensemble undee global constraints to describe the infor-
mation sequence in the classical information theory, the Hamiltonian of classical case
is equal to H(A) = t · β∗. The partition function is equal to Z(β∗) = (1 + e−β

∗
)n.

Probability of the sequence with global constraint equal to t is

Pcan(A|(β∗, t)) =
e−tβ

∗

(1 + e−β∗)n
. (5.23)

The soft constraints require the average value of global constraints in the canonical
ensemble equals to t∗ as

〈t〉can =
∑

A∈Xcan

t(A)Pcan(A|β∗, t) = t∗. (5.24)

Thus, the probability of unit ai to have the value of 1 in the canonical ensemble is
equal to

p =
e−β

∗

1 + e−β∗
=
t∗

n
. (5.25)

The Shannon entropy of the information source under canonical ensemble description
is equal to

scan(x) = −[
t∗

n
ln t
∗

n
+
n− t∗

n
ln n− t

∗

n
]. (5.26)
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Hence, the typical set of sequences in the classical information theory can be obtained
from the AEP as

lim
n→∞

1
n

lnPcan(A|β∗, t) =
1
n

n∑
i=1

ln p(ai)

→ E ln p(x)
= −scan(x),

(5.27)

The sequences in the typical set should satisfy the following condition

Tcan = {A|e−nscan(x)−ε ≤ P (A) ≤ e−nscan(x)+ε}. (5.28)

According to the relationship show in Eq.5.23, we find sequences that belong to the
typical set also can be represented by the Shannon entropy of the canonical ensemble.
As the sum of n rescaled entropy scan(x) is equal to

n× scan(x) =
t∗t
∗
(n− t∗)n−t∗

nn

= lnPcan(A|(β∗, t∗))
= Scan

(5.29)

Thus, the space to store the information carried by those sequences is equal to

ln |T can
ε | = Scan = n× s(x). (5.30)

The result of the canonical ensemble description is equivalent to the classical descrip-
tion of the information sources. It proves that when the interactions in the information
sequences are homogeneous, the classical description in information theory is a special
case of the canonical ensemble description.

Then we need to check what happens when we use the microcanonical ensemble
to describe the classical signal generating of the binary information source x. The mi-
crocanonical ensemble description is different from the canonical one. The probability
of these sequences with t∗ units have a value 1 can be obtained by the microcanonical
ensemble description as

Pmic(A|t∗) = 1/
(
n

t∗

)
. (5.31)

All the sequences in the microcanonical ensemble belong to the typical set Tmic of
it, so the smallest space needs to store the information carried by those sequences
ln |Tmic| is equal to the Boltzmann entropy of the microcanonical ensemble

ln |Tmic| = ln
(
n

t∗

)
= ln Ωmic = Smic, (5.32)

where Ωmic is the total number of sequences under this hard constraints t∗. We
can find that the canonical ensemble description showed above is equivalent to the
classical information theory when the i.i.d. assumption hold.
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The difference between the space to store the information carried by the sequences
in the two ensembles is equal to

ln |Tcan| − ln |Tmic| = Scan − Smic. (5.33)

It is the total correlations C in the sequence A

C =
∑
A∈A

Pmic(A|t∗) ln Pmic(A|t∗)
Pcan(A|θ∗)

. (5.34)

When it is rescaled n,

1
n

C =
1
n
[ln nn

t∗t
∗
(n− t∗)n−t∗

− ln
(
n

t∗

)
], (5.35)

It is equal to the relative entropy density between the two ensembles.
According to the Stirling approximation, the limit of the rescaled difference is

equal to 0
lim
n→∞

1
n

C = lim
n→∞

1
n
[
1
2 ln 2πt∗(1− t∗

n
)] = 0. (5.36)

It means the canonical ensemble will converge to the microcanonical one in the ther-
modynamic limit. It also shows that the limit of the information storage is the same
in the two ensemble descriptions.

In statistical physics, this is the measure-level ensemble equivlaence [8]. The
logarithm difference ln |Tcan| − ln |Tmic| is the relative entropy

ln |Tcan| − ln |Tmic| = Scan − Smic = S(Pmic||Pcan), (5.37)

which grows like o(n).
The microcanonical ensemble description has realized the constraints in the signal

generation exactly. The classical information theory under this case is a particular
example of the canonical ensemble. It means the effectiveness of the classical in-
formation theory is based on the EE between the microcanonical ensemble and the
canonical ensemble with the global constraints t∗.

5.5 Extensive number of constraints and ensemble
nonequivalence

As already strictly prov proved in Chapter 3, that the ensemble nonequivalence is
generally exist in the systems with extensive local constraints. When we use K
to represents the numbers of constraints in a systems. In the matrix under global
constraints, there is only one constraint, K = 1. When the m× n matrix is under
row local constraits, there is m constraints in it, K = m. If the matrix is under
column local constraints, then there is K = n constraints in it. The matrix under
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coupled local constraints has K = m+ n constraints. The extension of constraints in
the matrix X is a localization of dependencies in information sequences. According to
the canonical ensemble description, the units in the matrix under global constraints
have a homogeneous interactions. When the matrix are under row local constraints,
the units can be divided into m parts and each part have the same interactions.
Obviously, when the m× n matrix under coupled constraints, the interactions have
be localized to each unit.

The classical information theory is a special case of the global constrained canoni-
cal ensemble description, when the matrix X only has one row m = 1 and n columns,
t =

∑n
i=1 x1i [27]. It is under EE, and the limit of information storage in the two

ensemble descriptions is equivalent.
The single generation by the m independent variables with different probability

distribution in the network information theory is an m extension of the global con-
strained classical information theory. We can use the matrix with the finite row local
constraints ~r to describe the sequences generated by the i.i.d multivariate information
source in the network information theory [27, 30]. There are K = m constraints in
it. It is also under EE. We can find the description of it in Appendix 5.A.

If we only focus on the spatial dependences, there will be n constraints in the
sequence, K = n. The sequences generated by this non-stationary process can be
represented by the states of the matrices with local column constraint ~c. According
to Stirling’s approximation, the limit of rescaled total correlations is bigger than 0 as

lim
n→∞

1
n

n∑
i=1

[
1
2 ln 2πc∗i (1−

c∗i
m
)] > 0. (5.38)

Sequences with this spatial dependence are under EN. Details of proof are in Appendix
5.B.

The coupled local constraints are the two kinds of dependences work simultane-
ously, ~C(X) = [~c,~r]. There are K = m+ n constraints in it. The probability of the
microcanonical ensemble is difficult to calculate, but we can still get the conjugate
canonical probability as

Pcan(X|~θ∗) =
n∏
i=1

m∏
j=1

e
−(α∗i+β

∗
j )xji

e
−(α∗i+β

∗
j ) + 1

. (5.39)

According to the results in [27], those sequences are also under EN.
The constraints’ extension has two paths: the first one is from global to row-local

constraints, then coupled local constraints, the second one is from global to column-
local constraints, then to the coupled local constraints. As we already know, both of
the two paths will break the EE, but the difference in the two paths will show which
kind of dependence subleading the breaking of EE.

In order to check how is the total correlation will change when the constraint is
extended in the system, we set a series of models with homogeneous dependencies.
The homogeneous spatial interaction means the ci in the column local constraint is
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equal to each other as c∗. The homogeneous temporal dependencies need each element
in the row local constraints equal to each other as rj = r∗. And the global constraint
is equal to t∗ = n× c∗ = m× r∗. All the three special cases can be described by
coupled constraints matrix ensemble with different definitions of Hamilotonian. Thus,
we have a series of models where the spatial interactions and temporal dependencies
are homogeneous but still under extensive local constraints.

The signal generation by multivariate information source under the same temporal
dependencies should have the same value with row local constraint r∗j = r∗. The
canonical entropy of this matrix ensemble is equal to

S
(K=m)
can = m× ln nn

r∗r
∗
(n− r∗)n−r∗

. (5.40)

As we already mentioned before, it is a m times linear extension of the single inde-
pendent identical signal generating in the classical information theory, and it is under
EE.

In information sequences with homogeneous spatial interactions in the information
sources, the canonical entropy should equal to

SK=n
can = n× ln nn

r∗r
∗
(n− r∗)n−r∗

. (5.41)

It is equivalent to the signal generated by the multivariate information source with
an identical probability distribution, but variables in the information source are not
independent. It has nonneglected dependencies among them.

If the homogeneous spatial interactions and temporal dependencies work simulta-
neously, information sequences with these coupled constraints have the same column
and row local constraint as c∗i = c∗, r∗j = r∗. The canonical entropy of this matrix
ensemble should equal to

S
(K=m+n)
can = n× ln mm

c∗c
∗
(m− c∗)m−c∗

(5.42)

when we focus on the spatial interactions.
The canonical entropy is equal to

S
(K=m+n)
can = m× ln nn

r∗r
∗
(n− r∗)n−r∗

(5.43)

when the calculation is focused on the temporal dependencies. It is also equivalent
to the matrix ensemble with one side column local constraints,

Canonical entropies show above are all equivalent to the one with global constraints
t∗, when the r∗ is replaced by r∗ = t∗/m, or the c∗ is replaced by c∗ = t∗/n. It shows
that the canonical ensemble description of information Sequences under four different
local constraints that are implied by the homogeneous dependencies are equivalent to
each other,

S
(K=1)
can = S

(K=m)
can = S

(K=n)
can = S

(K=m+n)
can . (5.44)
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Thus, under soft constraints, the four homogeneous signal generations have the same
information-theoretical bounds. The space to store the information generated by it
is the same.

However, the Boltzmann entropy of information sequences with the four different
dependences is different. Under the global constraint, it is equal to

S
(K=1)
mic = ln

(
mn

t∗

)
. (5.45)

Under row-local constraints, the Boltzmann entropy is equal to

S
(K=m)
mic = m× ln

(
n

r∗

)
. (5.46)

When it is under column-local constraints, the Boltzmann entropy is equal to

S
(K=n)
mic = n× ln

(
m

c∗

)
. (5.47)

When the two dependence is working Simultaneously, the Boltzmann entropy of the
hard constrained sequences is difficult to calculate, but we can still get the approx-
imation by the Eq (5.11), and the value of it is smaller than S

(K=n)
mic . Thus, the

relationship between the four Boltzmann entropy is

S
(K=1)
mic > S

(K=m)
mic > S

(K=n)
mic > S

(K=m+n)
mic . (5.48)

The relationship between the breaking of ensemble equivalence and the extension of
constraints is shown in Fig.5.2.

These results show above proved that the temporal dependence of each indepen-
dent variable in information sources is not enough to break the EE between the hard
and soft constraint’s description of information sequences. This EE allows classical in-
formation theory can be applied in the independent multivariate information sources
system to estimate the limit of information storage [30].

5.6 Information transmission with coupled sources
In classical information theory, the maximum speed of reliable information transmis-
sion through a channel is the channel capacity. It is the other vital bounds of the
information theory, and it is equal to the mutual information between the information
source x and the received signal y [33].

To transport the information carried by matrix X with local constraints, we still
need to code it by codes G with length L. In the receiver, we will receive a matrix
Y. The information we will transport through this channel is equal to L×R, and it
is decided by the uncertainty from the channel H(X|Y) and the information carried
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Figure 5.2. The relationship between the constraints’ extension and the breaking of EE
is shown in (a). The extension of constraints in matrix described systems have two paths.
First, the constraints is extend from global constraint to row local constraints then to cou-
pled constraints. The other path is the extendtion from global constraints to column local
constraints then coupled constraints. Systems are still under EE when the constraints extend
from global to row local constraints (K = 1 → K = m), but when the constraints extend
to the coupled local constraints from row local constraints K = m → K = m+ n, the EE
is broken. On the other path, the extension of global constraint to column local constraints
already breaks the EE. Obviously, the extension from column local constraints to coupled
local constraints is already under EN. This result shows that the extension of global con-
straints to finite numbers local constraints is not enough to break the EE. Only when the
extension of local constraints has the same order as the increasing of system’s size, or even
faster, EE will break by the extension of constraints. On the other hand, the relationship
between the canonical entropy and microcanonical entropy of the systems with extensive
constraints under homogeneous dependencies in (b) shows that the non-vanished fluctuation
of the constraints in the canonical ensemble does not lead to the breaking of EE. The EN
is formed by the reduction of possible configurations of sequences in the microcanonical en-
semble. Because the canonical ensemble with soft constraints has the same Shannon entropy
when it is under homogeneous local and global constraints. But the Boltzmann entropy of
the microcanonical ensemble with hard constraints is declined.
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by the sequences X sent to the receiver I(X; Y). Thus, we will have the relationship
as

L×R = H(X|Y) + I(X; Y) ≥ S(X). (5.49)

In the zero-error channel, the matrix we received Y is the matrix we sent X, the
value of H(X|Y) = 0, the mutual information I(X; Y) = S(X), then the effective
information we need transport is equal to the Shannon entropy of the sequence S(X).
When the message we received is a random matrix, the mutual information I(X; Y) =
0, but the channel uncertainty is equal to H(X|Y) = S(X).

Both in the two cases, the smallest information needs to transport are all decided
by the entropy of the sequences S(X). Thus, the symbol rate R = S(G)/L or the
channel capacity is also affected by the hard or soft constraints in this signal generation
process. When using the microcanonical to describe the sequences, the Boltzmann
entropy Smic is smaller than the Shannon entropy in the conjugate canonical ensemble
Scan. Thus, the symbol rate Rmic needs for the microcanonical ensemble is smaller
than the symbol rate Rcan,

Rmic ≤ Rcan. (5.50)

It means the microcanonical ensemble with local constraints is reliable than the canon-
ical ensemble one when we use the same channel to transport the information carried
by the sequences ensemble. Because it needs less information carried for each symbol
in the code, the system will have more redundancy.

5.7 Conclusions
The information is not only the bits that flow in the electronic communication systems.
It also generally exists in the natural systems, e.g., the activity of neurons in the
nervous system and the fluctuation of the financial system. The birth of classical
information theory ignores the interactions and dependencies among the information
sources, as it is limited by the initial structure of artificial communication systems.
However, this imperfection has been amplified when the classical information theory
is attempted to describe the signal generation in natural systems with heterogeneous
dependencies and interactions.

The existence of heterogeneous dependencies in the signal generation has broken
the i.i.d assumption in the classical information theory, which is the cornerstone of the
finding that the uncertainty of information sources decides the limit of the information
storage. Thus, finding the information-theoretical bounds (i.e., the limit of informa-
tion storage and channel capacity) of the natural signal generation should focus on
the information sequences, not the interacting and temporal dependent information
source.

The information sequence with heterogeneous interactions has an extensive length.
It is analogous to the state in the thermodynamic system. That is why statistical
ensembles can be used to describe the information sequences in this work.
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In ensemble descriptions of the information sequence, the heterogeneous depen-
dencies imply local constraints in the statistical ensemble. The microcanonical en-
semble description requires all the local constraints fixed in the information sequences
generated by the heterogeneous interacting information sources. It is closer to the
real process of signal generation in natural systems. On the contrary, the canonical
ensemble description is a maximum entropy approximation of the signal generation.
The total correlation is equal to the relative entropy between the microcanonical and
canonical ensemble, which is the indicator of the measure level EN. It means the EN
appearance in the heterogeneous interacted signal generation also has a connection
with the degree of dependences among the units in it.

The sequences described by the microcanonical ensemble with hard local con-
straints need less space to store the information carried by them compared with the
canonical one. In the information transmission, the microcanonical ensemble also
needs a lower symbol rate to transport the information than the canonical ensemble.
Both results show that the microcanonical ensemble description is better than the
canonical one from the limit of information storage. However, the probability distri-
bution of the microcanonical ensemble is mathematically difficult to calculate than
the canonical ensemble. Thus, when we want to build a communication system with a
multi-coupled source, we still need to consider the trade-off between the cost of calcu-
lation to maintain the hard constraints in the microcanonical ensemble and the waste
of space and channel capacity to use the canonical ensemble with soft constraints.

We also find that the classical information theory under the i.i.d. assumption is a
special case of the canonical ensemble description when the column-local constraints
have the same value or when the sequences have homogeneous spatial dependence.
The effectiveness of the classical information theory is based on the EE between the
canonical ensemble and the natural signal generation.

This non-stationary process also gives a chance to learn how is the extension of
constraints causes EN in a system. From the canonical ensemble description, the
global constraints and two different local constraints are special cases of the coupled
constraints matrix ensemble. The extension of constraints in it has two paths. The
first one is from global constraints to row local constraints then coupled constraints.
The second one is from global constraints to column local constraints, then coupled
constraints. The matrix under global constraints and finite row local constraints is in
the EE. However, this equivalence will break when there are column-local constraints
and coupled constraints. The column-local constraints are used to describe the spatial
interaction among the units in the information source. Thus, the EN in sequences is
caused by the spatial interactions among the units in the signal generation, not the
temporal dependence of finite independent variables in the information source. Even
the row local constraints also have influences on all the units in sequences.

The same Shannon entropy and the decreased Boltzmann entropy in the process
of constraints’ extention illustrate that the breaking of EE is caused by the reduction
of the possible configurations in the microcanonical ensemble when there are homo-
geneous dependencies. This mechanism is different from the traditional one, which
shows that the EN is caused by the non-vanished fluctuation of constraints in the
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canonical ensemble. This finding extended our understanding of the EN in statistical
physics.
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Appendix 5.A Row local constraints and multivari-
ate independence source

There is m rows in the matrices X, which means there are m units in the information
source. The signal generation of the multivariate independent information source is
under ensemble equivalence, as there is a finite number of local constraints in it, and
there is no phase transition in the information sequence [27]. This signal generation
still can be described by the classical information theory. Then according to the AEP,
we can find the limit of information storage.

The sequence generated by the information source ~x = [b1, b2, · · · , bj , · · · , bm] with
m independent variables is an m× n matrix B. As the m units in the information
source are independent with each other, the sequence B can be divided into m row
vectors B = {~R1; ~R2; · · · ; ~Rm}. Each row vectors ~Rj of the matrix B has n elements
in it. According to the classical information theory, the m i.i.d. random variables
may have different probability to get different value, so the probability of sequence B
to appear in the signal generation is equal to

P (B) =
m∏
j=1

P ( ~Rj) =
m∏
j=1

p
rj
j (1− pj)n−rj . (5.51)

Here we still focus on the binary information sequence. Thus, pj is the probability of
each unit in row j to have value 1. The rj is the number of units in row j to have a
value of 1, and it will affect the process of signal generating when different constraints
model it.

The value of pj can be obtained by the average value of total units with value 1
in each row as pj = r∗j/n. When the jth variable is represented by bj , then the AEP
will be generalized as

1
n

lnP (B) =
m∑
j=1

[
r∗j
n

ln r
∗
i

n
+
n− r∗j
n

ln
n− r∗j
n

]

→ −
m∑
j=1

s(bj)

(5.52)

Sequences belonging to the typical set of this system with multivariate independence
information source should satisfy the following condition

Tε = {B|e
−n
∑m

j=1 s(bj )−ε ≤ P (B) ≤ e−n
∑m

j=1 s(bj )+ε}. (5.53)

The space to store the information carried by it is equal to

ln |Tε| = n×
m∑
j=1

s(bj). (5.54)
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This result shows that the uncertainty of the information source still decides the limit
of information storage. Even there are m independent variables in it.

Next, we will introduce the ensemble description of the information sequence gen-
erated by the multivariate independent information sources.

Canonical ensemble description- The information sequence B generated by
the independent variables with different probability distribution can be modeled by
the matrix X with the row local constraints ~r(X) = [r∗1, r∗2, · · · , r∗m], where r∗j =∑n
i=1 xji. The maximum likelihood parameter ~β = [β∗1 ,β∗2 , · · · ,β∗m] has m elements.

The Hamiltonian is still the linear combination of the constraints and parameters
H(X) =

∑m
j=1 β

∗
j r
∗
j . In the binary case, the partition function of this matrix ensemble

is

Z(~β) =
m∏
j=1

(1 + e
−β∗j )n. (5.55)

Then we can have the canonical probability of the state X with row local constraints
~r(X) as

Pcan(X) =
m∏
j=1

e
−β∗j r

∗
j

(1 + e
−β∗j )n

. (5.56)

The parameter β∗j is decided by the corresponding average value of row local con-
straints 〈rj〉.

Space to store the information carried by the information sequences B still can be
quantified by the AEP. The rescaled logarithm of the probability is equal to

1
n

lnPcan(X) =
1
n

m∑
j=1

n∑
i=1

ln e
−β∗j xji

1 + e
−β∗j

. (5.57)

When the length n goes to infinite, the probability of the units in jth row to have
value 1 is equal to average value of xji as

〈xji〉 =
e
−β∗j

1 + e
−β∗j

=
r∗j
n

. (5.58)

The sum of the logarithms of the probability for the m× n units will equal the sum
of the m variables Shannon entropy

lim
n→∞

1
n

lnPcan(X) = lim
n→∞

m∑
j=1

[
r∗j
n

ln
r∗j
n

+
n− r∗j
n

ln
n− r∗j
n

]

→
m∑
j=1

s(bj).
(5.59)

Then space to store the information carried by the sequences in the typical set T ε=0
can ,

which satisfy the following condition

T ε=0
can = {X|Pcan(X) = e

n
∑m

j=1 s(bj )} (5.60)
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The logarithm of the number of sequence in the typical set also equal to ln |Tcan| =
n
∑m
j=1 s(bj), which is the Shannon entropy of the sequences Scan(X)

ln |T ε=0
can | = Scan(X) =

m∑
j=1

ln[ nn

r∗j
r∗j (n− r∗j )

n−r∗j
]. (5.61)

It is equal to the ln |Tε| = n×
∑m
j=1 s(bj) in the classical information theory. This

result shows that the method in the classical information theory is a particular case
of the canonical ensemble description.

Microcanonical ensemble description- The microcanonical ensemble under
the hard constraints needs the total number of units with the value 1 in each row of all
the sequences X are fixed the same as ~r∗ = [r∗1, r∗2, · · · , r∗j , · · · , r∗m]. The probability
of each sequence decided by the total number of configurations of this local row
constrained sequences with constraints ~r∗ as

Pmic(X) = 1/
m∏
j=1

(
n

r∗j

)
. (5.62)

All the sequences in the microcanonical ensemble belong to the typical set of it, the
space to store the information carried by it is equal to the Boltzmann entropy of the
sequences as

ln |T (~r∗)
mic | =

m∑
j=1

ln
(
n

r∗j

)
= ln Ω~r∗ . (5.63)

The rescaled difference between the logarithm of the two ensemble’s probability is
close to the rescaled total correaltions 1

nC as

1
n

C =
1
n

m∑
j=1

[ln nn

r∗j
r∗j (n− r∗j )

n−r∗j
− ln

(
n

r∗j

)
] (5.64)

The asymptotic behaviour of 1
nC decided by m, in this work, m = o(n), thus the

limit of 1
nC is equal to 0 as

lim
n→∞

1
n

C = lim
n→∞

1
n

m∑
j=1

[
1
22πr∗j (1−

r∗j
n
)] = 0. (5.65)

The signal generalization by the classical independent multivariate information sources
is under ensemble equivalence. That is why we can still use the AEP in the estimation
of information-theoretical bounds.

Appendix 5.B Column local constraints and non-
stationary process

In the binary matrix X, when the constraints are the time-variation total energy can
be used by all the m units in different times, the process recorded by the matrices
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ensemble X is under column local constraints ~c∗(X) = [c∗1, c∗2, · · · c∗n]. At time i, the
constraint is the sum of all the units in column i of matrice X as c∗i =

∑m
j=1 xji. The

probability of the variable getting different values in the signal generation will change
with time, so applying the classical information theory in this process is impossible,
but we can still use the ensemble descriptions.

Microcanonical ensemble description- In the microcanonical ensemble de-
scription of sequences, the probability of each state is based on the total number of
configurations in it as

Pmic(X|~c∗) = 1/
n∏
i=1

(
m

c∗i

)
. (5.66)

Obviously, all the sequences with hard constraints still belong to the typical set of it,
so the space to store the information carried by it is equal to the Boltzmann entropy
of it as

ln |T (~c∗)
mic | = − lnPmic(X|~c∗) =

n∑
i=1

ln
(
m

c∗i

)
. (5.67)

This is the smallest space need to store the information generated under the con-
straints ~c∗.

Canonical ensemble description- We need the canonical ensemble to describe
the sequences X with soft constraints. The correspond parameter ~α∗ = [α∗1, · · · ,α∗n]
has n elements in it. The Hamiltonian of the binary matrix still is a linear combination
of the parameter and constraints, H =

∑n
i=1 ciα

∗
i . The partition function is equal to

Z(~α∗) =
n∏
i=1

(e−α
∗
i + 1)m, (5.68)

and the probability of each sequence in the system is equal to

Pcan(X|~α∗) =
n∏
i=1

e−α
∗
i ci

(e−α
∗
i + 1)m

. (5.69)

The average value of xji equal to

〈xji〉 =
e−α

∗
i

e−α
∗
i + 1

=
c∗i
m

. (5.70)

This condition imply the relationship between the parameter α∗i and the correspond-
ing constraints c∗i as

e−α
∗
i =

c∗i
m− c∗i

. (5.71)

The space to store the information carried by it can not be approached by the AEP,
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but we can find the Shannon entropy of the whole sequences as

Scan =
n∑
i=1

α∗i c
∗
i + lnZ(~α∗)

=
n∑
i=1

[−c∗i ln c∗i
m− c∗i

+m ln m

m− c∗i
]

=
n∑
i=1

[ln mm

c∗i
c∗i (m− c∗i )

m−c∗i
].

(5.72)

Under this constraint, it is difficult to find the typical set of the sequences by the
classical information theory, but we can still find the difference of the rescaled loga-
rithm of the probability between microcanonical and canonical ensemble is equal to
the rescaled total correlations in the sequence as 1

n ln Pmic(D)
Pcan(D)

= 1
nC, which is equal

to
1
n

C =
1
n

n∑
i=1

[ln mm

c∗i
c∗i (m− c∗i )

m−c∗i
− ln

(
m

c∗i

)
]. (5.73)

As we already know the total correlations is equal to the relative entropy, thus the
difference between the rescaled logarithm of the probability is equal to the relative
entropy density as 1

nC = 1
nS(Pmic||Pcan). When the value of n goes to infinite, the

limit
lim
n→∞

1
n

C = O(n) > 0, (5.74)

so this signal generation is under ensemble nonequivalence.
The total correlation between the microcanonical ensemble and canonical ensemble

of the matrix X with column local constraints ~c∗ grows like O(n) in the thermody-
namic limit. It means the information carried by the typical set of the two ensemble
descriptions is different under the spatial interactions. This difference also manifested
in the appearance of measure level ensemble nonequivalence in it.

Appendix 5.C Coupled local constraints and multi-
coupled process

In the former two subsections, we have introduced the ensemble description of the
information generating with independent spatial or temporal dependencies. They are
modelled by the matrix ensemble with local column or row constraints. In this subsec-
tion, we will study what will happens when the two constraints work simultaneously
~C(X) = [~c,~r].

Canonical ensemble description- As we know, under the coupled local con-
straints, the maximum likelihood parameter will be ~θ = [~α, ~β]. The constraint ~c is
the local column constraints. The ~r is the local row constraints. The corresponding
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parameters ~θ also comes from the maximum likelihood parameter of row and column
local constraints. The Hamiltonian is still the linear combination of constraints and
parameters as

H =
n∑
i=1

m∑
j=1

(αi + βj)xji. (5.75)

We still focus on the binary matrix, so the partition function of these sequences with
coupled local constraints is

Z(~θ) =
n∏
i=1

m∏
j=1

[e−(αi+βj ) + 1]. (5.76)

Probability of the sequence X to appears in the signal generating process is equal to

Pcan(X) =
n∏
i=1

m∏
j=1

e
−(α∗i+β

∗
j )xji

e
−(α∗i+β

∗
j ) + 1

. (5.77)

The probability of each unit in matrix X is decided by the value of xji and the
corresponding parameter αi and βj . The smallest space needs to store the information
carried by them is still equal to the Shannon entropy of it as

Scan =
n∑
i=1

m∑
j=1

(αi + βj)〈xji〉+ lnZ(~θ). (5.78)

The average value of xji is difficult to get exactly, but we can still find the exact value
of it under the special setting of the constraints.

Appendix 5.D Homogeneous dependencies under dif-
ferent constraints

As a special case of heterogeneous dependencies, homogeneous dependencies gives a
chance for us to check what will happens when the canonical ensemble descriptions are
equivalent under different constraints, but the microcanonical ensemble descriptions
are different. Obviously, the global constraints and one-sided local constraints (both
the column and row local constraints) are all the special cases of the coupled con-
straints under homogeneous dependencies. Thus, in this part, we will introduce the
coupled constrained ensemble descriptions of the signal generation with homogeneous
dependencies under different constraints.

5.D.1 Global constraint t∗

The canonical ensemble description of the information sequence under global con-
straints is a special case of the coupled local constraints when there is only one con-
straint, and the corresponding maximum likelihood parameter is equal to α∗ + β∗.
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The Hamiltonian of it is equal to

H =
n∑
i=1

m∑
j=1

(α∗ + β∗)xji. (5.79)

The partition function will be

Z(θ∗) =
n∏
i=1

m∏
j=1

[e−(α
∗+β∗) + 1] = [e−(α

∗+β∗) + 1]mn. (5.80)

The probability of the states under this special case is equal to

Pcan(X) =
e
−
∑m

j=1

∑n

i=1(α
∗+β∗)xji

[e−(α
∗+β∗) + 1]mn

. (5.81)

When the sum of all elements in sequence is equal to t, the probability of X to
appears in the signal generation is equal to that in the canonical ensemble with global
constraints t∗ as

Pcan(X) =
e−(α

∗+β∗)t

[e−(α
∗+β∗) + 1]mn

. (5.82)

When the average value of the total number of units in the information sequence
with value 1 〈t〉 = t∗ as

〈t〉 =
∑

X∈X
t(X)Pcan(X) = t∗. (5.83)

We can have the parameter α∗ + β∗ is equal to

e−(α
∗+β∗) =

t∗

mn− t∗
. (5.84)

Then we can find the Shannon entropy of the information sequence with the number
of constraints equal to 1 is equal to lnPcan(X|t∗) as

S
(K=1)
can = ln mnmn

t∗t
∗
(mn− t∗)mn−t∗

. (5.85)

Then microcanonical ensemble description of the information sequence with global
constraints t∗ have Ωt∗ states in it. Thus, the probability of each state in it is equal
to

Pmic(X|t∗) =
1

Ωt∗
= 1/

(
mn

t∗

)
. (5.86)

Therefore, the Boltzmann entropy of the microcanonical ensemble with global con-
straints is equal to

S
(K=1)
mic = ln

(
mn

t∗

)
(5.87)
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According to Stirling’s approximation and the results in [27], the difference between
the Shannon entropy of canonical and the microcanonical ensemble is equal to

S
(K=1)
can − S(K=1)

mic =
1
2 ln

[
2πt∗

(
1− t∗

±mn

)]
[1 + o(1)] . (5.88)

Thus, it is under ensemble equivalence.

5.D.2 Row local constraints
When we use r∗ = t∗/m as the row local constraints, there are m constraints in the
information sequence. It also can be model by the matrix with coupled constraints,
when the elements in the column local constraints is equal to each other as c∗i = c∗

but the elements in the row local constraints is ~r∗. We will have another special
case of the coupled constrained ensemble description, which is that the interactions
among all the units in the information sources are identified in the whole process of
signal generating, but the temporal dependence of each unit is different. Then the
corresponding parameter will change as α∗i = α∗. Thus, the Hamiltonian of this
special case will be

H =
n∑
i=1

m∑
j=1

(α∗ + β∗j )xji. (5.89)

The partition function of this coupled local constraints sequences will be

Z(~θ∗) =
n∏
i=1

m∏
j=1

[e−(α
∗+β∗j ) + 1]. (5.90)

We can get the probability of states in the sequences under this special constraints as

Pcam(X|~θ∗) =
n∏
i=1

m∏
j=1

e
−(α∗+β∗j )xji

e
−(α∗+β∗j ) + 1

. (5.91)

Because each element in the column local constraints are equal to each other as
c∗i = c∗, the average value of xji in this sequence is equal to

〈xji〉 =
e
−(α∗+β∗j )

e
−(α∗+β∗j ) + 1

=
r∗j
n

. (5.92)

It implies the relationship between α∗ + β∗j and r∗j as

e
−(α∗+β∗j ) =

r∗j
n− r∗j

. (5.93)
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The Shannon entropy of this sequences under this local constraints is equal to

S
(K=m)
can = lnPcan(X∗|~θ∗)

=
n∑
i=1

m∑
j=1

[(α∗ + β∗j )〈xji〉] + lnZ(~θ∗)

=
n∑
i=1

m∑
j=1

[−
r∗j
n

ln
r∗j

n− r∗j
] + lnZ(~θ∗)

=
n∑
i=1

m∑
j=1

[−
r∗j
n

ln
r∗j

n− r∗j
+ ln n

n− r∗j
]

=
m∑
j=1

[−r∗j ln
r∗j

n− r∗j
+ ln nn

(n− r∗j )n
]

=
m∑
j=1

[ln nn

r∗j
r∗j (n− r∗j )

n−r∗j
],

(5.94)

It also equals the Shannon entropy of the sequences under one-sided row local con-
straints.

The microcanonical ensemble description of this special case is equal to the one
where there are only row local constraints in the information sequence. Thus, we can
have the Boltzmann entropy of this information source as

S
(K=m)
mic =

m∑
j=1

ln
(
n

r∗j

)
(5.95)

It is also under ensemble equivalence [27].

5.D.3 Column local constraints
When all the elements in the row constraints is equal to each other as r∗j = r∗, the
column local constraints still remain as ~c∗, the corresponding maximum likelihood
parameter will be ~θ∗ = [~α∗, ~β∗], but all the elements in ~β∗ is equal to each other as
β∗j = β∗. Then the Hamiltonian of this coupled constrained canonical ensemble will
be

H =
n∑
i=1

m∑
j=1

(α∗i + β∗)xji. (5.96)

The partition function need to consider all the possible configurations as

Z(~θ∗) =
n∏
i=1

m∏
j=1

[e−(α
∗
i+β

∗) + 1]. (5.97)
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Probability of states under this constraint is equal to

Pcam(X|~θ∗) =
n∏
i=1

m∏
j=1

e−(α
∗
i+β

∗)xji

e−(α
∗
i+β

∗) + 1
. (5.98)

The average value of each element 〈xij〉 is

〈xij〉 =
e−(α

∗
i+β

∗)

e−(α
∗
i+β

∗) + 1
. (5.99)

Each element in the row local constraints is equal to each other as r∗j = r∗, so the
average value of element xji should also equal to the c∗i

m . Thus, we will have the
relationship follows

e−(α
∗
i+β

∗)

e−(α
∗
i+β

∗) + 1
=
c∗i
m

, e−(α∗i+β∗) = c∗i
m− c∗i

. (5.100)

The smallest space to store the information carried by the canonical ensemble de-
scribed sequences is equal to the Shannon entropy of it as

S
(K=n)
can = lnPcam(X∗|~θ∗)

= ~C∗ · ~θ∗ + lnZ(~θ∗)

=
n∑
i=1

m∑
j=1

[(α∗i + β∗)
e−(α

∗
i+β

∗)

e−(α
∗
i+β

∗) + 1

+ ln[e−(α∗i+β∗) + 1]]

=
n∑
i=1

m∑
j=1

[−
c∗i
m

ln c∗i
m− c∗i

+ ln m

m− c∗i
]

=
n∑
i=1

[− ln c∗i
c∗i

(m− c∗i )
c∗i

+ ln mm

(m− c∗i )m
]

=
n∑
i=1

ln mm

c∗i
c∗i (m− c∗i )

m−c∗i
,

(5.101)

It is the same as the Shannon entropy of the sequences under soft constraints when
there is only column local constraints ~c∗.

The microcanonical ensemble description is also equal to the one when there only
has column-local constraints. Therefore, the entropy of this microcanonical ensemble
description is equal to

S
(K=n)
mic =

n∑
i=1

ln
(
m

c∗i

)
. (5.102)

According to the results in section 5.B, this coupled constrianted information sequence
is under ensemble nonequivlaence.
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Chapter 6

Conclusions

Statistical physics deals with the description of systems with many interacting mi-
croscopic constituents and develops tools to characterize the macroscopic properties
emerging in the so-called thermodynamic limit, where the number of constituents
goes to infinity. Formally, this is achieved by introducing the concept of statistical
ensemble, i.e. a collection of (unobservable) microscopic configurations of the system,
each of which is assigned a certain probability that is calculated from certain (observ-
able) macroscopic constraints. Traditionally, the constraints considered in physics are
global conserved quantities, such as the total energy and the total number of parti-
cles. There are different ways in which the constraints can be enforced, and different
resulting ensembles. The two most important possibilities are the microcanonical
ensemble, where the constraint is enforced in a hard fashion (i.e. every configura-
tion in the ensemble matches the constraint exactly, as in an isolated system with
a fixed total energy), and the canonical ensemble, where the constraint is enforced
in a soft fashion (i.e. the constraint is met as an ensemble average, as in a system
with fluctuating energy in a thermal bath at fixed temperature). Traditionally, these
two ensembles are believed to become asymptotically the same in the thermodynamic
limit, a notion that goes under the name of ensemble equivalence. Ensemble equiva-
lence implies that, as the system becomes larger, it does not matter which of the two
descriptions is adopted; in particular, the canonical and microcanonical entropies per
particle become the same.

However, evidence has accumulated that ensemble equivalence can break down
in certain circumstances. The most studied scenario where this can happen is the
presence of phase transitions. In this case there are certain phases, or regions in
parameter space, where ensemble equivalence breaks down (the canonical and micro-
canonical entropies per particle are different) and other phases where it is restored. A
much more recent scenario for the breakdown of ensemble equivalence is the presence
of local constraints in the system, i.e. constraints attached to each of the fundamental
units, or at least a finite fraction of them: in other words, the number of constraints
is extensive in the size of the system. An example is that of networks with a given
number of connections (degree) for each node separately. In this case, it turns out
that ensemble equivalence is broken throughout the entire parameter space, as in fact
the simplest such models do not even have phase transitions.

In this thesis, we studied novel aspects of the breakdown of ensemble equivalence
under local constraints and identified for the first time, to the best of our knowledge,
their impact on certain key results in information theory.

In Chapter 1 we set the stage by introducing the main notions and establishing
an informal analogy between ensembles in statistical physics and typical sequences in
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information theory. Systems with given macroscopic properties in statistical physics
have a direct analogue in typical sets in information theory, which are in turn at the
basis of several key results, including the maximum compressibility of data and the
minimum rate of information transmission to preserve lossless communication.

In Chapter 2 we introduced the first model that studies ensemble nonequivalence
in presence of both an extensive number of local constraints and a phase transition.
The model is also the first one wherein ensemble nonequivalence is studied on weighted
networks, i.e. networks where links can carry different weights. By making the con-
straints of each node of the network depend on a global temperature-like parameter,
we showed that it is possible to induce a form of Bose-Einstein condensation whereby
a finite fraction of the total link weights concentrates among a finite number of nodes.
We also showed that the traditional criterion for ensemble equivalence, i.e. the vanish-
ing of the relative fluctuations for the constraints in the canonical ensemble, becomes
incorrect in the case of local constraints: nonvanishing relative fluctuations capture
the onset of the condensation transition, but they do not capture the breakdown of
ensemble equivalence. This is quite different from what people have been intuitively
reasoning so far about relative fluctuations, and shows that the novel mechanism
based on local constraints is quite subtle.

In Chapter 3 we significantly extended the framework of systems with local con-
straints, from the case of networks with constraints on each node to that of generic
systems that can be described by rectangular matrices with constraints on the row
and/or column sums. Such constrained matrices can represent a wide range of sys-
tems with spatial heterogeneity and/or temporal non-stationarity. We found that, in
this more general setting, ensemble nonequivalence can occur in an even stronger way,
with the difference between canonical and microcanonical entropies being of the same
order as the entropies themselves. Such form of ensemble nonequivalence is as strong
as the traditional one encountered in presence of phase transitions, while at the same
time maintaining the property of being unrestricted in parameter space, as happens
for the other known systems with local constraints. Therefore, it is the most robust
form of nonequivalence documented so far. For many specific settings, we calculated
explicitly the mathematical quantities distinguishing the two ensembles.

In Chapter 4 me made a major leap from statistical physics to information theory
in order to investigate the consequences of ensemble nonequivalence for the com-
pression of modern big data structures such as large networks or long multivariate
time series. We first established a rigorous analogy between typical sets, i.e. the
collectively most probable outcomes of an information source, and microcanonical
ensembles as subsets of the canonical configurations of a physical system. We then
showed that, when ensemble equivalence holds, the analogy is actually an identity:
the microcanonical configurations coincide with the typical set of the canonical en-
semble, implying no difference between sources subject to hard and soft constraints.
However, when ensemble equivalence breaks down, the typical set of the canonical
ensemble is irreducible to the microcanonical ensemble. In this case, we showed
that, for hard constraints, standard information-theoretic results have to be gener-
alized using the calculations of Chapter 3. We revised in particular the traditional
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information-theoretic bounds for data compression based on Shannon entropy. We
found that microcanonical sources require less storage space but more computational
costs, while the opposite is true for canonical sources. This highlights a novel trade-off
between memory and computation.

Finally, in Chapter 5 we considered an even more general setting with multiple
information sources (such as those generating multivariate time series in finance or
neuroscience) where constraints can couple both the outputs of different sources at the
same time (spatial constraints) and the outputs of the same source at different times
(temporal constraints). We found that temporal constraints never break ensemble
equivalence, while spatial constraints do break it if the number of sources is finite.
Again, while for canonical sources the standard Shannon theory remains valid, for
microcanonical sources various information-theoretic quantities have to be corrected
using the calculations of Chapter 3. Moreover, we find that the normalized (per
output) total correlation between all sources subject to hard constraints coincides
with the normalized (per output) difference between canonical and microcanonical
entropies, which in turn only requires the knowledge of the covariance matrix be-
tween the canonical constraints and can therefore be calculated explicitly. If spatial
constraints are deactivated, ensemble equivalence is restored and the normalized total
correlation vanishes, so the microcanonical outputs become asymptotically mutually
independent just like the canonical outputs.
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Samenvatting

Statistische fysica houdt zich bezig met de beschrijving van systemen die zijn opge-
bouwd uit heel veel microscopische bestanddelen die met elkaar wisselwerken. Zij
ontwikkelt methoden om de macroscopische eigenschappen te karakteriseren die ge-
vonden worden men het aantal bestanddelen naar het oneindige laat gaan, de zoge-
naamde thermodynamische limiet. De introductie van het z.g. statistisch ensemble,
een verzameling van (niet-waarneembare) microscopische configuraties van het sys-
teem, die elk een bepaalde waarschijnlijkheid krijgen toegewezen en die wordt bere-
kend op basis van bepaalde (waarneembare) macroscopische randvoorwaarden, spelt
hierbij een grote rol. In de natuurkunde zijn de randvoorwaarden doorgaans groothe-
den die op globale schaal behouden zijn, zoals de totale energie en het totale aantal
deeltjes. Er zijn verschillende manieren om deze randvoorwaarden op te leggen, elk
leidend tot een ander ensembles. De twee belangrijkste zijn het microcanonieke en
het canonieke ensemble. Bij het microcanonike ensemble wordt de randvoorwaarde
op een harde manier afgedwongen (namelijk elke configuratie in het ensemble moet
aan de randvoorwaarde voldoen, zoals b.v. in een geïsoleerd systeem met een vaste
totale energie). Bij het canonieke ensemble daarentegen, wordt, de randvoorwaarde
op een zachte manier afgedwongen (aan de randvoorwaarde wordt gemiddeld voldaan,
zoals in een systeem met fluctuerende energie die in contact staat met een warmtebad
met vaste temperatuur). In het algemeen wordt aangenomen dat deze twee ensembles
in de thermodynamische limiet asymptotisch identiek worden, een begrip dat bekend
staat als ensemble equivalentie. Ensemble equivalentie houdt in dat, naarmate het
systeem groter wordt, het niet uitmaakt welke van de twee beschrijvingen wordt geno-
men; in het bijzonder, de canonieke en microcanonieke entropieën per deeltje worden
hetzelfde.

Er zijn echter aanwijzingen dat ensemble equivalentie onder bepaalde omstandig-
heden verdwijnt, bijvoorbeeld in de buurt van faseovergangen. In bepaalde fasen,
gebieden in de parameterruimte, is geen ensemble equivalentie (de canonieke en mi-
crocanonieke entropieën per deeltje zijn verschillend) en in andere fasen is het wel.
Onlangs heeft men zich gerealiseerd dat ensemble equivalentie ook afwezig kan zijn
als het systeem lokale randvoorwaarden heeft, d.w.z. randvoorwaarden die aan elk
van de fundamentele eenheden zijn verbonden, of ten minste met een eindige fractie
ervan. Het aantal randvoorwaarden schaalt dan met de grootte van het systeem. Net-
werken met een gegeven aantal verbindingen (graad) voor elk knooppunt afzonderlijk
zijn hiervan een voorbeeld. In dat geval blijkt dat ensemble equivalentie nergens in
de parameterruimte van toepassing is, omdat zelfs het meest eenvoudige model niet
eens een faseovergang vertoont.

In dit proefschrift bestuderen wij nieuwe aspecten van de afwezigheid van ensem-
ble equivalentie bij lokale randvoorwaarden en identificeren wij de impact daarvan
op bepaalde sleutelbegrippen in de informatietheorie. In Hoofdstuk 1 leggen wij de
basis door de belangrijkste begrippen te introduceren en een informele analogie vast
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te stellen tussen ensembles in de statistische fysica en de “typische set” in de infor-
matietheorie. Systemen met gegeven macroscopische eigenschappen in de statistische
fysica krijgen hierdoor een analogon in zo’n typische set. Laatstgenoemden zijn van
groot belang voor zaken als de maximale compressibiliteit van data en de minimale
snelheid van informatieoverdracht om verliesvrije communicatie te behouden.

In Hoofdstuk 2 introduceren wij het eerste model waarin wij ensemble niet-equivalentie
bestuderen, met zowel een extensief aantal lokale randvoorwaarden als een faseover-
gang. Het model is het eerste waarbij ensemble niet-equivalentie wordt bestudeerd
op gewogen netwerken, d.w.z. netwerken waar lijnen (verbindingen) verschillende
gewichten kunnen dragen. Door de randvoorwaarden van elk knooppunt van het net-
werk afhankelijk te maken van een globale, op een temperatuur lijkende parameter,
tonen wij aan dat het mogelijk is om een vorm van Bose-Einstein condensatie tot
stand te brengen waarbij een eindige fractie van de totale lijngewichten zich concen-
treert tussen een eindig aantal knooppunten. Ook laten wij zien dat het traditionele
criterium voor ensemble equivalentie, n.l. het verdwijnen van de relatieve fluctuaties
van de randvoorwaarden in het canonieke ensemble, in het geval van lokale randvoor-
waarden niet meer van toepassing is. De relatieve fluctuaties zijn karakteristiek voor
het begin van de condensatieovergang, maar niet voor het verbreken van ensemble
equivalentie. Dit is echt nieuw, en laat zien dat het nieuwe mechanisme op basis van
lokale randvoorwaarden vrij subtiel is.

In Hoofdstuk 3 breiden wij het raamwerk van systemen met lokale randvoorwaar-
den aanzienlijk uit, van het geval van netwerken met randvoorwaarden bij elk knoop-
punt tot dat van generieke systemen die kunnen worden beschreven door rechthoekige
matrices met randvoorwaarden die gelden voor de rij- en/of kolomsommen. Dergelijke
matrices kunnen een breed scala aan systemen vertegenwoordigen met ruimtelijke he-
terogeniteit en/of temporele niet-stationariteit. In deze meer algemene setting, blijkt
ensemble niet-equivalentie op een nog sterkere manier op te kunnen treden, waarbij
het verschil tussen canonieke en microcanonieke entropieën van dezelfde orde is als de
entropieën zelf. Deze vorm van ensemble niet-equivalentie is even sterk als die wordt
aangetroffen bij de aanwezigheid van faseovergangen, maar behoudt tegelijkertijd de
eigenschap dat zij onbeperkt is in de parameterruimte, zoals het geval is bij de andere
bekende systemen met lokale, randvoorwaarden. Het is dan ook de meest robuuste
vorm van niet-equivalentie die tot dusver is gevonden. Voor een groot aantal speci-
fieke instellingen hebben wij expliciet de wiskundige grootheden berekend die de twee
ensembles van elkaar onderscheiden.

In Hoofdstuk 4 maak ik een grote sprong van de statistische natuurkunde naar
de informatietheorie om de gevolgen van ensemble-ongelijkwaardigheid te onderzoe-
ken voor de compressie van moderne grote gegevensstructuren zoals grote netwer-
ken of lange multivariate tijdreeksen. Eerst stellen wij een rigoureuze analogie vast
tussen “typische sets”, d.w.z. het collectief meest waarschijnlijke uitkomsten van
een informatiebron, en microcanonieke ensembles als deelverzamelingen van de cano-
nieke configuraties van een fysisch systeem. Vervolgens tonen wij aan dat, wanneer
ensemble-equivalentie geldt, de analogie in feite een identiteit is: de microcanonieke
configuraties vallen samen met de “typische sets” van het canonieke ensemble, wat in-
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houdt dat er geen verschil is tussen bronnen die onderworpen zijn aan harde en zachte
randvoorwaarden. Wanneer de ensemble-equivalentie echter wegvalt, is de “typische
set” van het canonieke ensemble onherleidbaar tot het microcanonieke ensemble. In
dit geval laten wij zien dat, voor harde randvoorwaarden, de standaard informatie-
theoretische resultaten met behulp van de methoden van hoofdstuk 3 moeten worden
veralgemeniseerd. Wij hebben in het bijzonder de traditionele informatietheoretische
grenzen voor gegevenscompressie op basis van Shannon-entropie herzien. Wij zien dat
microcanonieke bronnen minder opslagruimte vergen maar meer rekenkracht, terwijl
het omgekeerde geldt voor canonieke bronnen. Dit wijst op een nieuwe wisselwerking
en afweging tussen geheugen en rekenkracht.

Ten slotte bestuderen wij in Hoofdstuk 5 een nog algemenere setting. Wij kijken
naar systemen met meerdere informatiebronnen, zoals die welke multivariate tijdreek-
sen genereren (vaak gezien in de financiële wereld of in de neurowetenschappen) waar
randvoorwaarden zowel de outputs van verschillende bronnen tegelijkertijd kunnen
koppelen (ruimtelijke randvoorwaarden) als de outputs van dezelfde bron op verschil-
lende tijdstippen (temporele randvoorwaarden). Wij vinden dat temporele randvoor-
waarden nooit ensemble equivalentie doorbreken, terwijl ruimtelijke randvoorwaarden
wel doen als het aantal bronnen eindig is. Nogmaals, terwijl voor canonieke bronnen
de standaard Shannon theorie geldig blijft, moeten voor microcanonieke bronnen ver-
schillende informatietheoretische grootheden worden gecorrigeerd met behulp van de
berekeningen van Hoofdstuk 3. Bovendien vinden wij dat de (per output) genorma-
liseerde totale correlatie tussen alle bronnen die onderhevig zijn aan harde randvoor-
waarden samenvalt met het (per output) genormaliseerde verschil tussen canonieke en
microcanonieke entropieën. Dit vereist, uitsluitend de kennis van de covariantiema-
trix tussen de canonieke randvoorwaarden en kan daarom expliciet worden berekend.
Als ruimtelijke randvoorwaarden worden opgeheven, wordt ensemble equivalentie her-
steld en verdwijnt de genormaliseerde totale correlatie, dus de microcanonieke outputs
wordt asymptotisch wederzijds onafhankelijk, net als de canonieke outputs.
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