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5
Joint modeling of interval counts of

recurrent events and death

Abstract

When a recurrent event process is ended by death, this may imply dependent censoring
if the two processes are associated. Such dependent censoring would have to be modeled
to obtain a valid inference. Moreover, the dependence between the recurrence process
and the terminal event may be the primary topic of interest. Joint frailty models for
recurrent events and death, which include a separate dependence parameter, have been
proposed for exactly observed recurrence times. However, in many situations, only the
number of events experienced during consecutive time intervals are available. We propose
a method for estimating a joint frailty model based on such interval counts and observed
or independently censored terminal events. The baseline rates of the two processes are
modeled by piecewise constant functions, and Gaussian quadrature is used to approxi-
mate the marginal likelihood. Covariates can be included in a proportional rates setting.
The observation intervals for the recurrent event counts can differ between individuals.
Furthermore, we adapt a score test for the association between recurrent events and death
to the setting in which only individual interval counts are observed. We study the per-
formance of both approaches via simulation studies, and exemplify the methodology in

This chapter has been published as: M. Böhnstedt, H. Putter, A. Dańko, M.J. Dańko, and J. Gampe (2021).
Joint modeling of interval counts of recurrent events and death. Biometrical Journal 63, 323–340.
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110 Chapter 5 – Joint modeling of interval counts of recurrent events and death

a biodemographic study of the dependence between budding rates and mortality in the
species Eleutheria dichotoma.

5.1 Introduction

Studies of recurrent events, in which an individual can experience the same type of event
repeatedly over time, are common in various fields of applications (Cook and Lawless,
2007). Examples range from medical studies of the recurrence of adverse symptoms,
such as epileptic seizures, asthma attacks, or tumor relapse; to investigations of repeated
insurance claims; to biodemographic studies of fertility (recurrent reproductive events) in
particular animal species.

In some cases, the exact occurrence times can be observed, but often only the numbers
of events that were experienced in specific time intervals are available. Such interval
counts of recurrent events may result if, for example, patients only report the number of
adverse events that they experience between two hospital visits, or the number of offspring
produced by an animal is collected on a monthly basis only. In the latter example, the
observation intervals would be the same for all individuals, while in the former example,
we would expect the intervals between the two visits to vary from patient to patient.

The recurrent event process is often terminated by another event – most commonly by
death – which usually cannot be assumed to be independent of the recurrent event pro-
cess. Consequently, the terminal event introduces dependent censoring of the recurrence
process, and this has to be taken into account to render a valid inference. Therefore, the
two processes, the recurrent event process and the terminal event, have to be modeled
jointly.

In many medical applications, the dependence of the two processes will be positive;
that is, a higher recurrence rate of the (adverse) symptoms will be accompanied by a
higher hazard of death. In other contexts, however, the direction of the association be-
tween the recurrence process and the terminal event is not clear at the outset, and will be
a matter of interest in itself.

Our motivating example examines fertility and mortality in Eleutheria dichotoma, a
marine hydrozoan for which the association between fertility and mortality has not previ-
ously been studied in detail. Reproduction and survival in E. dichotoma were investigated
in a laboratory experiment for several months (Dańko et al., 2020). Individual survival
times and the number of offspring that were produced by each individual within succes-
sive intervals of several days were recorded. The intervals resulted from the laboratory
procedures and varied across individuals. These data were used to estimate the patterns
of fertility and mortality over age, but the dependence between the two processes is also
of biological interest.

It has been suggested that in some species, there is a trade-off between reproduction
and survival. This idea is based on the assumption that individuals that produce a higher
number of offspring are able to devote fewer resources to maintenance, and will, therefore,
tend to die earlier. The claim that there is a cost of reproduction effect is in contrast to the



5.1 Introduction 111

hypothesis that individuals who are stronger will be able to both produce more offspring
and survive longer. Therefore, in addition to modeling the shape of age-specific fertility
and mortality, the aim of the analysis is to find out which of the two explanations the data
on E. dichotoma support. Thus, we will model fertility and mortality jointly to assess how
the two processes are related in this species.

Several approaches to jointly modeling recurrent events and death have been pro-
posed. We focus here on the joint frailty model introduced by Liu et al. (2004), because
it allows for positive and negative associations between the recurrences and death. The
dependence between the two processes is modeled by a shared individual random effect
that acts on both the rate of recurrence and the hazard of death, possibly in different di-
rections. In other frailty models, frailty has the same effect on the recurrence rate and the
hazard of death. Thus, these models are restricted to a positive association (see Huang
and Wang (2004) in the setting with exact recurrence times, or Lancaster and Intrator
(1998) in the setting with interval counts). As marginal models for recurrent events in the
presence of death leave the dependence between the two processes unspecified, they are
not suitable for our purposes (see Cook and Lawless (1997) and Ghosh and Lin (2003) in
the setting with exact recurrence times, or Zhao et al. (2013) in the setting with interval
counts). Sinha and Maiti (2004) proposed a model similar to that of Liu et al. (2004),
which is based on interval counts, but assumes that observation intervals are the same for
all individuals, and that the termination time is discrete.

Estimation of the joint frailty model introduced by Liu et al. (2004) has so far only
been based on observed recurrence times. For this setting, several methods of estimation
have been developed: Liu et al. (2004) used a Monte Carlo EM algorithm, whereas Liu
and Huang (2008) and Rondeau et al. (2007) applied Gaussian quadrature to the marginal
likelihood. Moreover, a test for the association between recurrent events and a terminal
event in the joint frailty model was derived by Balan et al. (2016), which was also based
on observed recurrence times. It builds on concepts that are similar to the test proposed by
Huang et al. (2004) for the association between two event processes in clustered survival
data.

In this chapter, we propose methods for making inferences in the joint frailty model
when only individual interval counts of the recurrent events are observed, and these ob-
servation intervals can vary between individuals. We will adapt the method of Liu and
Huang (2008) for the estimation of the joint frailty model, and we will adjust the score
test developed by Balan et al. (2016) to the setting in which only interval counts are avail-
able.

The chapter is structured as follows. In Section 5.2, we describe the joint frailty
model for recurrent events and death, as well as the setting of individual interval counts.
In Section 5.3, we present our approach of using Gaussian quadrature to estimate the joint
frailty model based on interval counts, and adapt the score test for association in the joint
frailty model. In Section 5.4, we assess the performance of the estimation method and the
test in simulation studies. In Section 5.5, we apply the proposed methods to the data on
E. dichotoma, followed by a discussion in Section 5.6.
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5.2 Joint frailty model and interval counts

Before presenting the estimation and test procedure in the next section, we will introduce
in the following the joint frailty model, which allows us to model the dependence of the
recurrent event process and the terminal event. We then derive the likelihood function for
data that only contain interval counts of the recurrent events.

We consider a sample of 𝑚 independent individuals denoted by 𝑖, 𝑖 = 1, . . . , 𝑚. Each
individual 𝑖 is observed from time 𝑡0 = 0 until the end of its follow-up 𝑋𝑖 . The time 𝑋𝑖
is either a censoring time 𝐶𝑖 , which is independent of the recurrent event process and the
terminal event, such as end of study; or it is the time 𝐷𝑖 of the terminal event, whichever
comes first: 𝑋𝑖 = min (𝐶𝑖 , 𝐷𝑖). For simplicity, we assume that the terminal event is death,
and denote by 𝛿𝑖 = 𝟙{𝐷𝑖 ≤ 𝐶𝑖} the death indicator, where 𝟙{·} is the indicator function.
𝑌𝑖 (𝑡) = 𝟙{𝑡 ≤ 𝑋𝑖}, 𝑡 ≥ 0, is the at-risk indicator at time 𝑡. We define two additional
counting processes 𝑁𝐷∗

𝑖
(𝑡) = 𝟙{𝐷𝑖 ≤ 𝑡} and 𝑁𝐷

𝑖
(𝑡) = 𝟙{𝑋𝑖 ≤ 𝑡, 𝛿𝑖 = 1}, where 𝑁𝐷∗

𝑖
(𝑡)

refers to the actual (but potentially unobserved) terminal event, whereas 𝑁𝐷
𝑖
(𝑡) is the

counting process of an observed terminal event, respectively.
For the recurrent event process, we denote with 𝑁𝑅∗

𝑖
(𝑡) the number of events of in-

dividual 𝑖 in the interval [0, 𝑡]. However, we only observe 𝑁𝑅
𝑖
(𝑡) = 𝑁𝑅∗

𝑖
(min (𝑡, 𝑋𝑖)).

The increments of the recurrence process over small intervals [𝑡, 𝑡 + d𝑡) are d𝑁𝑅∗
𝑖

(𝑡) =

𝑁𝑅∗
𝑖

((𝑡 + d𝑡)−) − 𝑁𝑅∗
𝑖

(𝑡−). Here, 𝑡− denotes the left-hand limit.
Additional observed characteristics of individual 𝑖 are collected in the covariate vec-

tor 𝒛𝑖 , whereas unobserved characteristics are summarized in a frailty value 𝑢𝑖 . The 𝑢𝑖
are realizations of a positive random variable 𝑈, independent across individuals. The ob-
served data on individual 𝑖 up to time 𝑡 are collected in 𝑂𝑖 (𝑡) = {𝑌𝑖 (𝑠), 𝑁𝑅𝑖 (𝑠), 𝑁𝐷𝑖 (𝑠),
0 ≤ 𝑠 ≤ 𝑡; 𝒛𝑖}.

As in Liu et al. (2004), the recurrence process is characterized by the intensity
𝑌𝑖 (𝑡)𝜆𝑖 (𝑡), for which we assume

P(d𝑁𝑅𝑖 (𝑡) = 1 | F𝑡− , 𝐷𝑖 ≥ 𝑡) = 𝑌𝑖 (𝑡)𝜆𝑖 (𝑡)d𝑡 with

𝜆𝑖 (𝑡)d𝑡 = dΛ𝑖 (𝑡) = P(d𝑁𝑅∗𝑖 (𝑡) = 1 | 𝒛𝑖 , 𝑢𝑖 , 𝐷𝑖 ≥ 𝑡),
(5.1)

where F𝑡 = 𝜎{𝑂𝑖 (𝑠), 0 ≤ 𝑠 ≤ 𝑡, 𝑢𝑖; 𝑖 = 1, ..., 𝑚}.
Analogously, for the terminal event

P(d𝑁𝐷𝑖 (𝑡) = 1 | F𝑡− ) = 𝑌𝑖 (𝑡)ℎ𝑖 (𝑡)d𝑡 with

ℎ𝑖 (𝑡)d𝑡 = d𝐻𝑖 (𝑡) = P(d𝑁𝐷∗
𝑖 (𝑡) = 1 | 𝒛𝑖 , 𝑢𝑖 , 𝐷𝑖 ≥ 𝑡).

The joint frailty model for recurrent events and death, as proposed by Liu et al. (2004),
is then specified as

𝜆𝑖 (𝑡) = 𝑢𝑖 𝑒𝜷
>𝒛𝑖𝜆0 (𝑡),

ℎ𝑖 (𝑡) = 𝑢𝛾𝑖 𝑒
𝜶>𝒛𝑖 ℎ0 (𝑡),

(5.2)

with baseline rates 𝜆0 (𝑡) and ℎ0 (𝑡) that are common to all individuals.
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The shared frailty 𝑢 enters both the recurrent event rate and the hazard rate of the
terminal event, thereby introducing both dependence between the recurrences within one
individual, as well as the association between the recurrences and the terminal event. The
parameter 𝛾 determines the direction and the strength of the association between the two
processes. If 𝛾 > 0, a higher rate of recurrence implies a higher mortality risk; if 𝛾 < 0,
a higher rate of recurrence implies a lower mortality risk. If 𝛾 = 0, the rate of recurrence
does not affect the mortality risk.

The frailties 𝑢𝑖 are often assumed to follow a gamma distribution with mean one and
variance 𝜃. In the following, we will more generally assume that the 𝑢𝑖 stem from a
distribution with density 𝑔𝜃 (𝑢) with parameter 𝜃.

The covariates 𝒛𝑖 enter in (5.2) in a proportional rates or a proportional hazards for-
mulation, but can have different effects 𝜶 and 𝜷 on the terminal event and the recurrence
process, respectively.

In the simplest setting, the exact times of event occurrence are observed. In many
cases, however, only the number of events that occurred in a sequence of consecutive
time intervals is available. More precisely, we observe individual interval counts 𝑛𝑖 𝑗
as realizations of 𝑁𝑖 𝑗 = 𝑁𝑅

𝑖
(𝑡𝑖 𝑗 ) − 𝑁𝑅

𝑖
(𝑡𝑖 𝑗−1). The 𝑁𝑖 𝑗 give the number of recurrent

events experienced by individual 𝑖 in the interval 𝐼𝑖 𝑗 = (𝑡𝑖 𝑗−1, 𝑡𝑖 𝑗 ], 𝑗 = 1, ..., 𝐽𝑖 . The 𝑡𝑖 𝑗
correspond to the observation times of individual 𝑖, for instance, times of hospital visits
in medical studies or, as in our example, generated by the lab logistics. Thus, both the
positions of the 𝐼𝑖 𝑗 and the total number of intervals 𝐽𝑖 can vary across individuals. The
follow-up times 𝑋𝑖 are still exactly observed so that 𝑡𝑖𝐽𝑖 = 𝑋𝑖 .

As the frailties 𝑢𝑖 are unobservable, the inference is based on the marginal likelihood
that is obtained by integrating the conditional likelihood given the frailties 𝑢𝑖 over the
frailty distribution 𝑔𝜃 (𝑢). The conditional likelihood of the joint frailty model (5.2) based
on exactly observed recurrence times was developed in Liu et al. (2004). For the current
setting, the likelihood factor for the recurrence times (formula (7) in Liu et al., 2004) has to
be replaced by the contribution of the interval counts of the recurrent events. From (5.1)
and (5.2), it follows that (𝑁𝑖 𝑗 | 𝒛𝑖 , 𝑢𝑖 , 𝐷𝑖 ≥ 𝑡𝑖 𝑗 ) has a Poisson distribution with mean
𝑢𝑖𝜇𝑖 𝑗 where 𝜇𝑖 𝑗 =

∫
𝐼𝑖 𝑗
𝑒𝜷

>𝒛𝑖𝜆0 (𝑠)d𝑠. Therefore, the likelihood contribution 𝐿 (𝑐)
𝑖

(𝑢𝑖) of
individual 𝑖 conditional on its frailty value 𝑢𝑖 is given by

𝐿
(𝑐)
𝑖
(𝑢𝑖) =

𝐽𝑖∏
𝑗=1

exp (−𝑢𝑖𝜇𝑖 𝑗 ) (𝑢𝑖𝜇𝑖 𝑗 )𝑛𝑖 𝑗
𝑛𝑖 𝑗 !

[𝑢𝛾
𝑖
𝑒𝜶

>𝒛𝑖 ℎ0 (𝑥𝑖)] 𝛿𝑖 exp
{
−

∫ 𝑥𝑖

0
𝑢
𝛾

𝑖
𝑒𝜶

>𝒛𝑖 ℎ0 (𝑠)d𝑠
}
.

This leads to the marginal likelihood contributions

𝐿𝑖 =

∫ ∞

0
𝐿
(𝑐)
𝑖

(𝑢) 𝑔𝜃 (𝑢) d𝑢 . (5.3)

In general, this integral does not have a closed-form expression.
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5.3 Methods

In the first part of this section, we elaborate the estimation procedure of the joint frailty
model based on interval counts with different individual observation intervals. Then,
in Section 5.3.2, we demonstrate how the score test for dependence between the two
processes can be adapted to the case of interval-count data.

5.3.1 Estimation of the joint frailty model based on interval counts
For observed recurrence times, Liu and Huang (2008) suggested using Gaussian quadra-
ture to approximate the marginal likelihood of the joint frailty model. The approximated
likelihood can then be maximized directly, since the integral is replaced by a weighted
sum of function values. More specifically, Liu and Huang (2008) applied Gauss-Hermite
quadrature, which for a function 𝑓 (𝑥) uses the approximation∫ ∞

−∞
𝑓 (𝑥) 𝑒−𝑥2

d𝑥 ≈
𝑄∑︁
𝑞=1

𝑤𝑞 𝑓 (𝑥𝑞) .

The quadrature points 𝑥𝑞 are the roots of the 𝑄th-order Hermite polynomial, and 𝑤𝑞 are
the corresponding weights. This approach is applicable to marginal likelihoods that are
integrated over normal random effects, for which∫ ∞

−∞
𝐿 (𝑐) (𝑣) 𝜙(𝑣) d𝑣 ≈

𝑄∑︁
𝑞=1

�̃�𝑞 𝐿
(𝑐) (𝑥𝑞) 𝜙(𝑥𝑞), (5.4)

with the standard normal density 𝜙(·), and modified quadrature points 𝑥𝑞 =
√

2𝑥𝑞 to-
gether with weights �̃�𝑞 =

√
2𝑤𝑞𝑒𝑥

2
𝑞 . For non-normal random effects, Liu and Huang

(2008) used the probability integral transformation proposed by Nelson et al. (2006). If
the random effect density is 𝑔𝜃 (𝑢) with corresponding distribution function 𝐺 𝜃 (𝑢), then
the integral over the density 𝑔𝜃 (𝑢) is transformed into an integral over standard normal
random effects. This is achieved by noting that 𝑎 = Φ−1 (𝐺 𝜃 (𝑢)) follows a standard nor-
mal distribution if the 𝐺 𝜃 (𝑢), which follow a standard uniform, are transformed by the
inverse of the standard normal distribution function Φ(·).

We apply this quadrature approach to the marginal likelihood of the joint frailty
model based on interval counts of recurrent events; see equation (5.3). Substituting
𝑢 = 𝐺−1

𝜃
(Φ(𝑎)) in the marginal likelihood contributions, we obtain

𝐿𝑖 =

∫ ∞

0
𝐿
(𝑐)
𝑖

(𝑢) 𝑔𝜃 (𝑢) d𝑢 =

∫ ∞

−∞
𝐿
(𝑐)
𝑖

(𝐺−1
𝜃 (Φ(𝑎))) 𝜙(𝑎) d𝑎 .

These 𝐿𝑖 can directly be approximated using Gauss-Hermite quadrature as

𝐿𝑖 ≈
𝑄∑︁
𝑞=1

𝐿
(𝑐)
𝑖

(𝐺−1
𝜃 (Φ(𝑥𝑞))) 𝜙(𝑥𝑞) �̃�𝑞 ,
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with 𝑥𝑞 and �̃�𝑞 as defined in (5.4). The approximate marginal likelihood of the joint
frailty model is then given by

𝑚∏
𝑖=1

𝑄∑︁
𝑞=1

𝐿
(𝑐)
𝑖

(𝐺−1
𝜃 (Φ(𝑥𝑞))) 𝜙(𝑥𝑞) �̃�𝑞 . (5.5)

To actually maximize the approximate likelihood (5.5), we have to specify the baseline
rates 𝜆0 (𝑡) and ℎ0 (𝑡), as well as the frailty distribution 𝑔𝜃 (𝑢). Similar to Liu and Huang
(2008), we model the baseline rates as piecewise constant functions

𝜆0 (𝑡) =
𝐾𝑅∑︁
𝑘=1

𝜆0𝑘𝟙{𝑡 ∈ 𝐼𝑅𝑘 } and ℎ0 (𝑡) =
𝐾𝐷∑︁
𝑘=1

ℎ0𝑘𝟙{𝑡 ∈ 𝐼𝐷𝑘 } . (5.6)

This choice is particularly suitable if no prior knowledge of the shapes of the two rates
𝜆0 (𝑡) and ℎ0 (𝑡) is available. The specifications of the intervals 𝐼𝑅

𝑘
= (𝑡𝑅

𝑘−1, 𝑡
𝑅
𝑘
], 𝑘 =

1, ..., 𝐾𝑅, and 𝐼𝐷
𝑘

= (𝑡𝐷
𝑘−1, 𝑡

𝐷
𝑘
], 𝑘 = 1, ..., 𝐾𝐷 , can differ between the recurrent event

process and the death process in terms of both their lengths Δ𝑅
𝑘
= 𝑡𝑅

𝑘
− 𝑡𝑅

𝑘−1 and Δ𝐷
𝑘

=

𝑡𝐷
𝑘
− 𝑡𝐷

𝑘−1 and their total numbers 𝐾𝑅 and 𝐾𝐷 . (The intervals for the piecewise constant
baseline rates should not, however, be confused with the intervals in which the numbers
of recurrent events 𝑛𝑖 𝑗 are observed; see Section 5.2.)

The baseline rate 𝜆0 (𝑡) of the recurrence process enters the likelihood (5.5) through
the conditional means 𝑢𝑖𝜇𝑖 𝑗 of the interval counts 𝑁𝑖 𝑗 given the frailty value 𝑢𝑖 . Under
the piecewise constant rate model, 𝜇𝑖 𝑗 is computed as

𝜇𝑖 𝑗 =

∫
𝐼𝑖 𝑗

𝑒𝜷
>𝒛𝑖𝜆0 (𝑠)d𝑠 = 𝑒𝜷

>𝒛𝑖
𝐾𝑅∑︁
𝑘=1

𝜆0𝑘 max{0,min(𝑡𝑅𝑘 , 𝑡𝑖 𝑗 ) − max(𝑡𝑅𝑘−1, 𝑡𝑖 𝑗−1)}.

Piecewise constant baseline rates offer more flexibility than parametric models, such as
the Weibull model, while at the same time remaining more tractable than purely nonpara-
metric models. Previous studies have suggested that a moderate number of intervals – i.e.,
between 8 and 10 intervals – yields satisfactory estimation results (Liu and Huang, 2008;
Lawless and Zhan, 1998).

The performance of the piecewise constant model is usually improved when the inter-
val cut-points 𝑡𝑘 are based on quantiles of the recurrence and the survival times, respec-
tively. In the current setting in which only interval counts of recurrent events are observed,
the exact recurrence times are unknown. If, however, the individual observation intervals
𝐼𝑖 𝑗 are relatively short compared with the total follow-up, we can approximate quantiles
by creating a set from the observation times 𝑡𝑖 𝑗 , with each repeated 𝑛𝑖 𝑗 times, 𝑗 = 1, ..., 𝐽𝑖 ,
𝑖 = 1, ..., 𝑚; and then determining the cut-points 𝑡𝑅

𝑘
as quantiles of this set of times.

Parameter estimation in the joint frailty model is then done by maximizing the ap-
proximate marginal log-likelihood; that is, the logarithm of (5.5). The standard errors
for the parameter estimates can be obtained from the inverse of the negative Hessian of
the approximate marginal log-likelihood. Further computational details can be found in
Section 5.7.1.
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5.3.2 Score test for the association between recurrences and death
The joint frailty model for recurrent events and death is rather complex, with estimation
procedures that are more involved than those needed for the fitting of two separate models,
one for the recurrent event process and one for the survival process. Investigating whether
the two processes are associated – and, consequently, whether joint modeling is required
– is a useful first step. Moreover, the question of whether there is an association – and, if
so, whether it is positive or negative – can be a stand-alone issue, not necessarily followed
by fitting a joint model.

Balan et al. (2016) proposed a correlation score test for the association between recur-
rences and terminal events in the joint frailty model for settings with observed recurrence
times. Their test can be performed by fitting separate models for the recurrence times and
the survival data, and, thus, without fitting the joint frailty model. In addition, the sign
of the test statistic is an indicator of the direction of the association. In the following, we
show that this score test can be adapted to the setting with interval counts of recurrent
events, provided the survival times are exactly observed.

A test for association in the joint frailty model (5.2) corresponds to a test of 𝐻0 : 𝛾 = 0
against 𝐻1 : 𝛾 ≠ 0. All other parameters, including those for the baseline rate models, are
treated as nuisance parameters, and denoted by 𝜼. The score test of Balan et al. (2016) is
based on the score function for 𝛾 under the null hypothesis; that is,

𝑈𝛾 (0, 𝜼) =
𝜕

𝜕𝛾
ℓ(𝛾, 𝜼) |𝛾=0,

where ℓ is the marginal log-likelihood of the joint frailty model. The authors showed
that the score, evaluated at the maximum likelihood estimate under 𝐻0, that is, (0, �̂�0), is
proportional to the covariance of the estimated martingale residuals of the terminal event
and the ‘posterior’ estimates of the log-frailties for the recurrent events given the observed
data. More formally, defining

𝐾𝑖 (𝑢, 𝑡) = 𝑢𝑁
𝑅
𝑖
(𝑡−)+𝛾𝑁𝐷

𝑖
(𝑡−) exp

{
−𝑢𝑒𝜷>𝒛𝑖Λ0 (𝑡) − 𝑢𝛾𝑒𝜶

>𝒛𝑖𝐻0 (𝑡)
}
, (5.7)

with the cumulative baseline rates Λ0 (𝑡) =
∫ 𝑡
0 𝜆0 (𝑠) d𝑠 and 𝐻0 (𝑡) =

∫ 𝑡
0 ℎ0 (𝑠) d𝑠, Balan

et al. (2016) derived that

𝑈𝛾 (0, �̂�0) =
𝑚∑︁
𝑖=1

[
𝑁𝐷𝑖 (𝑥𝑖) − 𝑒�̂�

>𝒛𝑖𝐻0 (𝑥𝑖)
] ∫ ∞

0 ln (𝑢) 𝐾𝑖 (𝑢, 𝑥𝑖) 𝑔𝜃 (𝑢) d𝑢∫ ∞
0 𝐾𝑖 (𝑢, 𝑥𝑖) 𝑔𝜃 (𝑢) d𝑢

=

𝑚∑︁
𝑖=1

𝑀𝐷
𝑖

· �ln (𝑢𝑖) .
(5.8)

The 𝑀𝐷
𝑖

are estimates of the martingale residuals of the terminal event model 𝑀𝐷
𝑖

=

𝑁𝐷
𝑖
(𝑥𝑖)−

∫ 𝑥𝑖
0 𝑒𝜶

>𝒛𝑖 ℎ0 (𝑠)d𝑠. The �ln (𝑢𝑖) are the posterior estimates of the log-frailty values
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given the observed data from the recurrent event process: �ln (𝑢𝑖) = E[ln𝑈𝑖 | 𝑂𝑖 (𝑥𝑖)]. For
gamma distributed frailties 𝑢𝑖 with mean one and variance 𝜃, one obtains

�ln(𝑢𝑖) = 𝜓 (
1
𝜃
+ 𝑁𝑅𝑖 (𝑥𝑖)

)
− ln

(
1
𝜃
+ 𝑒𝜷

>
𝒛𝑖 �Λ0 (𝑥𝑖)

)
, (5.9)

where 𝜓(·) is the digamma function.
Because of the zero-mean constraint of the 𝑀𝐷

𝑖
, the second line of (5.8) is proportional

to the correlation 𝑟 = cor(̂𝑴𝑫, �ln(𝒖)) between the martingale residuals and the estimated
log-frailties. Consequently, Balan et al. (2016) based the correlation score test on the test
statistic

𝑡 = 𝑟

√︂
𝑚 − 2
1 − 𝑟2 , (5.10)

which, under the null hypothesis, asymptotically follows a 𝑡-distribution with 𝑚 − 2 de-
grees of freedom.

It turns out that in the setting in which only interval counts of the recurrent events
are available, but exact survival times (or censoring times) are observed, equation (5.8)
still holds. We show this result in Section 5.7.2. Therefore, the test statistic 𝑡 in (5.10) is
still valid. Furthermore, for gamma distributed frailties, the estimates �ln (𝑢𝑖) can still be
determined using formula (5.9). The latter formula involves estimates 𝜃 of the frailty vari-
ance, the covariate effect �̂� on the recurrence rate, and the cumulative baseline rate Λ̂0;
all determined under 𝐻0. These can be obtained by fitting a mixed Poisson model to
the interval counts of the recurrent events (see, for instance, Lawless and Zhan, 1998,
who assume a piecewise constant baseline rate function 𝜆0). We generally recommend
to estimate the shared frailty model for the interval counts using a flexible specification
such as (5.6) for the baseline rate. A simple parametric model like, for example, the
Weibull model, although appealing due to its parsimony, always bears the risk of mis-
specification and consequently misleading test results. The estimates of the martingale
residuals 𝑀𝐷

𝑖
can be derived from a Cox proportional hazards model fitted to the survival

data {𝑋𝑖 , 𝛿𝑖 , 𝒛𝑖; 𝑖 = 1, ..., 𝑚}.

5.4 Simulation study

5.4.1 Performance of the estimation method
To evaluate the performance of the proposed method for estimating the parameters of the
joint frailty model based on interval counts of recurrent events and survival times, we
conducted a simulation study.

Several different aspects will affect the estimation results, both on the part of the
model specification but also on the part of the observable data. The latter include the
number and lengths of the intervals for the recurrent event counts and whether they are
the same for all individuals in the sample or not. The amount of independent censoring
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will also have an impact. Among the former aspects, the size of the frailty variance and
the sign of the dependence parameter are expected to influence the estimation, but also
the number of intervals used in the piecewise constant specification of the baseline rates
(and consequently the total number of parameters to be estimated) will matter.

We generated data for 𝑚 = 200 individuals from the joint frailty model (5.2). For
the baseline rates 𝜆0 (𝑡) and ℎ0 (𝑡), we chose the form of Weibull hazards, (𝑎/𝑏) (𝑡/𝑏)𝑎−1,
with shape parameter 𝑎 equal to 1.5 or 3 and scale parameter 𝑏 equal to 1/3 and 1.35,
respectively. A single binary covariate that takes values 0 or 1 with probability 0.5 was
included, and had the same effect on the hazard of death and the rate of recurrence (𝛼 =

𝛽 = 1). Frailties were simulated from a gamma distribution with mean one and different
variances 𝜃 ∈ {0.25, 0.5, 0.75}. We considered both cases of positive (𝛾 = 1) and negative
association (𝛾 = −1) between the recurrence process and the terminal event. Additionally,
we looked at one setting with a relatively small value for the frailty variance, 𝜃 = 0.05,
that was inspired by the results of the data set on Eleutheria dichotoma, see Section 5.5.
In this setting, two values for the dependence parameter |𝛾 | = 1 or |𝛾 | = 5 were studied.

Independent censoring was considered in two versions: either an end-of-study cen-
soring at time 𝑡 = 2 for all individuals still alive then or individual censoring times which
occurred uniformly over the total follow-up window [0, 2].

Regarding the observation times 𝑡𝑖 𝑗 , which determine the intervals during which the
recurrent events are counted, we examined two scenarios. In Scenario I the observation
times were the same for all individuals. We set 𝑡𝑖 𝑗 = 0.2 𝑗 , 𝑗 = 0, ..., 10, such that we
observed individual interval counts in up to 10 intervals of equal length 0.2. We also
studied one scenario with 𝑡𝑖 𝑗 = 0.1 𝑗 , 𝑗 = 0, ..., 20, leading to up to 20 individual interval
counts. In Scenario II the observation times 𝑡𝑖 𝑗 varied across individuals. This scenario
mimicked a study in which participants have scheduled visit times, but actually could be
early or late for their visits. This was implemented as follows: the scheduled times were
𝑡0
𝑗
= 0.2 𝑗 , 𝑗 = 0, ..., 10, but the actual observation times for each individual were obtained

by adding a random noise 𝜀𝑖 𝑗 to the scheduled times so that 𝑡𝑖 𝑗 = 𝑡0𝑗 + 𝜀𝑖 𝑗 . The 𝜀𝑖 𝑗 were
drawn from a uniform distribution on [−0.1, 0.1] (except for 𝜀𝑖0 = 0 and 𝜀𝑖10 as uniform
on [−0.1, 0]) and hence the 𝑡𝑖 𝑗 varied across individuals.

For the estimation of the joint frailty model, we assumed that the frailties were gamma
distributed, and that the baseline rates were specified as piecewise constant functions on
10 intervals of equal length, 𝑡𝑅

𝑘
= 𝑡𝐷

𝑘
= 0.2𝑘 . Thus, under Scenario I and 𝑡𝑖 𝑗 = 0.2 𝑗 the

intervals for the rate pieces coincided with the observation intervals for the counts. We
also studied the impact of an increase of the number of intervals to 20. Approximation
of the likelihood was based on 𝑄 = 30 quadrature points. All computations were run in
R (R Core Team, 2019), see Section 5.7.1 for further details. In all settings we ran 200
replications.

The results of the simulation study under Scenario I with frailty variance 𝜃 = 0.5 are
shown in Figures 5.1 and 5.2, both for positive and negative dependence |𝛾 | = 1 and for
both independent censoring schemes (A: end-of-study censoring at 𝑡 = 2, and B: uniform
censoring times in [0, 2]).
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Figure 5.1: Box plots of the parameter estimates (top) and estimated standard errors (bottom) in
the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1) under two schemes
of independent censoring (CensA: at end of study 𝐶 = 2, CensB: uniform on [0, 2]). Left to
right: covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and
frailty variance (𝜃), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true parameter
value (top) or empirical standard deviation (bottom); gray, dotted lines mark 10% deviations from
respective value.
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From the box plots of the estimates of the covariate effects 𝛼 and 𝛽, the dependence
parameter 𝛾, and the frailty variance 𝜃 in Figure 5.1, we can see that the method performs
satisfactorily. Censoring scheme A is considerably milder than scheme B (for an illustra-
tion see Table 5.4 in Section 5.8.1), and the corresponding loss in information is reflected
in a moderately increased variability in the estimates and, as could be expected, also in
the estimated standard errors (Figure 5.1, bottom). For the frailty variance 𝜃, variability
in estimates and estimated standard errors is higher for negative dependence (𝛾 = −1)
than for positive dependence. This is also true for the dependence parameter 𝛾 itself. The
estimated standard errors for the covariate effects 𝛼 and 𝛽, the dependence parameter 𝛾,
and the frailty variance 𝜃 are compared with the empirical standard deviations of the re-
spective estimates across the replications in the bottom panels of Figure 5.1. The general
magnitude of the standard errors is well captured.

Figure 5.2 displays the estimates of the cumulative baseline rates for positive depen-
dence for both censoring schemes A and B. The averages of the estimates are very close to
the true underlying rates. The stronger loss of observations in scheme B leads to markedly
increased variability of the estimates toward the end of the follow-up window, which is
an obvious consequence of the decreasing number of individuals under study over time.
This low number of observations results in part from individuals experiencing a terminal
event. Additionally, even fewer individuals (in this setting, less than 5%) are observed
in the interval [1.8, 2), which corresponds to the last piece of the baseline rates, due to
independent censoring under scheme B. In contrast, censoring scheme A is benign.

For the other settings of the simulation study we restricted our attention to the inde-
pendent censoring scheme B. With its uniformly distributed censoring times it produces a
relatively challenging loss of observations. So the results we report here are conservative
in the sense that they hold despite this appreciable amount of censoring. Section 5.8.1
illustrates the results of the other simulation settings analogous to Figures 5.1 and 5.2.
Here we summarize the main results of the various scenarios.

If we change the frailty variance to 𝜃 = 0.25 or 𝜃 = 0.75, we note that also in these
settings the biases of the parameter estimates, if present at all, are small. In general, vary-
ing the true underlying frailty variance mainly affects the variability of the estimates. The
estimates of the covariate effects and the frailty variance show increased variability for
larger frailty variance. In contrast, the estimates of the dependence parameter show less
variability for larger frailty variance, because the increased heterogeneity among the in-
dividual patterns makes it easier to assess the dependence between the recurrence process
and survival.

If the true frailty variance is close to zero (𝜃 = 0.05) the estimates of the dependence
parameter are still only modestly biased but the variability of the �̂� increases strongly.
This had to be expected, since the identification of the dependence hinges on the variation
in the individual frailty. If the true value of |𝛾 | = 1, then the estimated values may turn
out with the wrong sign of the dependence parameter, particularly if the true dependence
is negative. Thus, weak dependence is difficult to identify in case of low variability in
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Figure 5.2: Estimates (gray, solid) of the cumulative rate of recurrence (left) and of death (right)
based on samples of size 𝑚 = 200 which were generated from a joint frailty model with positive
dependence for two schemes of independent censoring. Top: end-of-study censoring at 𝑡 = 2
(CensA), bottom: uniform censoring on [0, 2] (CensB). Red, solid line gives the true cumulative
baseline rate; black, dashed line is the mean of the 200 estimates.

frailty. However, if the dependence is strong, |𝛾 | = 5, then, despite the variability of the
estimates, the sign of the dependence is correctly estimated.

If we modify the width of the observation intervals from 0.2 to 0.1 we first note the
following: if we keep the specification of the baseline rate of recurrence as piecewise
constant on the 10 intervals with 𝑡𝑅

𝑘
= 0.2𝑘 as before, then the additional information

provided by the finer observation intervals would not be used by the estimation method



122 Chapter 5 – Joint modeling of interval counts of recurrent events and death

(see Section 5.7.3 for a proof). Therefore, we also specify the baseline rates as piecewise
constant functions on 20 intervals, that is 𝑡𝑅

𝑘
= 𝑡𝐷

𝑘
= 0.1𝑘 . Apart from increased variability

in the rate estimates near the end of the follow-up window, there is little change to the
estimation results with width 0.2.

If we allow the observation intervals to vary across individuals (Scenario II), then we
find that the method performs equally well as for fixed observation intervals, with the
exception of the estimates for the last baseline rate pieces. In this simulation, we used
fixed intervals for the baseline rates though, to unify the presentation of results. In appli-
cations we would recommend to choose the cut-points 𝑡𝑅

𝑘
and 𝑡𝐷

𝑘
based on (approximate)

quantiles of the event times, as described earlier, to increase precision of the baseline rate
estimates.

If we replace the baseline rates by a parametric Weibull specification (which here
is correct), then there is only very modest change in the other parameter estimates of
the model as well as their standard errors, so the main advantage is in the less variable
estimation of the two baseline rates. This is, however, counterbalanced by the risk of
model misspecification so we advise the use of piecewise constant rates unless one has a
good understanding of the underlying processes that justifies a parametric choice.

Overall, the proposed method for estimating the joint frailty model based on interval
counts yielded reliable results in this simulation study and different scenarios behaved in
the way we had anticipated beforehand.

5.4.2 Performance of the score test
In a second set of simulations, we investigated the performance of the score test in the
setting with interval counts of recurrent events.

For this purpose, we again generated data for 𝑚 = 200 individuals from the joint
frailty model (5.2). The covariate effects, values for the variance of the gamma frailties,
and baseline rates were the same as in Section 5.4.1. Here, however, we considered not
only different directions but also different strengths of the association between the re-
currence process and the terminal event; namely, 𝛾 ∈ {−1,−0.5, 0, 0.5, 1}. Counts were
again observed in 10 intervals of equal length 0.2 (Scenario I) or of varying length (Sce-
nario II). We studied two schemes of independent censoring, scheme A with censoring
time 𝐶 = 2, and scheme B with uniformly distributed censoring times on [0, 2]. We ran
1000 replications for each setting to determine the size or power of the test.

The score test involves fitting separate models to the recurrence data and the survival
data. First, we fitted a shared gamma frailty model to the individual interval counts of
the recurrent events, assuming that (𝑁𝑖 𝑗 | 𝑢𝑖) follows a Poisson distribution with mean
𝑢𝑖 �̃�𝑖 𝑗 , where �̃�𝑖 𝑗 =

∫
𝐼𝑖 𝑗
𝑒𝛽

>𝑧𝑖 �̃�0 (𝑠) d𝑠. The baseline recurrence rate �̃�0 (·) was modeled

as piecewise constant, as in (5.6), with pieces defined by the cut-points 𝑡𝑅
𝑘
= 0.2𝑘 , 𝑘 =

0, ..., 10. The estimates �ln (𝑢𝑖) were then determined according to formula (5.9). Second,
we estimated a Cox proportional hazards model from the survival data {𝑋𝑖 , 𝛿𝑖 , 𝑧𝑖; 𝑖 =

1, ..., 𝑚} using function coxph() from package survival (Therneau and Grambsch,
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2000) to obtain the martingale residuals 𝑀𝐷
𝑖

of the terminal event. Finally, we calculated

the test statistic based on the correlation between the 𝑀𝐷
𝑖

and the �ln (𝑢𝑖).
Table 5.1 reports the size and the power of the score test, performed at a level of 5%,

depending on the true underlying dependence parameter 𝛾 and frailty variance 𝜃. The
proportion of a type I error, that is, of falsely rejecting the hypothesis of no dependence
(𝛾 = 0), was affected most strongly by the censoring scheme. If 𝐶 = 2, which implies a
modest proportion of independently censored cases (see Table 5.6 in Section 5.8.2), then
the level of the test is met or exceeded only slightly. For strong independent censoring
(scheme B), which implies that roughly half of the observations are censored and quite
some of them early during the follow-up, then this loss of information increases the pro-
portion of a type I error, particularly for the frailty variance 𝜃 = 0.75. This is a noteworthy
result, and hence the test should be regarded with caution, if there is strong (and early)
censoring in the data.

Table 5.1: Power and size of the score test, performed at the 5% level, in the joint frailty model with
varying dependence parameter 𝛾 ∈ {−1,−0.5, 0, 0.5, 1}, frailty variance 𝜃 ∈ {0.25, 0.5, 0.75}, and
independent censoring 𝐶 ∼ U [0, 2] or 𝐶 = 2, across 1000 replications each.

Dependence 𝛾
censoring 𝜃 −1 −0.5 0 0.5 1
𝐶 ∼ U [0, 2] 0.25 0.960 0.586 0.066 0.514 0.932

0.5 1.000 0.905 0.062 0.872 1.000
0.75 1.000 0.984 0.091 0.974 1.000

𝐶 = 2 0.25 0.999 0.788 0.057 0.799 1.000
0.5 1.000 0.990 0.039 0.992 1.000
0.75 1.000 1.000 0.040 1.000 1.000

Regarding the power of the score test, as expected, we found that the power increased
with the strength of the dependence, that is, |𝛾 |, and with the magnitude of the frailty
variance. In the settings with the larger frailty variances 𝜃 = 0.5 and 𝜃 = 0.75 and stronger
dependence |𝛾 | = 1, the score test detected the association in all cases. We note that for
the samples for which the association was detected by the score test, the direction of
the dependence was always identified correctly. An extension of the simulation settings
suggested that the score test can detect associations even for small values of the frailty
variance as long as the association is sufficiently strong, that is, |𝛾 | is sufficiently large
(see Table 5.7 in Section 5.8.2).

Furthermore, we assessed the performance of the score test for Scenario II in which
the observation intervals vary across individuals. Results for the setting with 10 scheduled
visit times and 10 pieces for the baseline rate are displayed in Table 5.10 of Section 5.8.2.
The proportion of false rejections of the hypothesis of no dependence are again a bit
higher than the nominal level due to the high percentage of censoring. The power of the
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test is comparable to the values obtained in Scenario I, although the power in the settings
with negative dependence is a bit lower here.

Additional results on the performance of the score test for modifications of Scenario I
and II are given in Section 5.8.2.

In conclusion, the results of the simulation study provide further evidence that the
score test is a powerful method for assessing the association between recurrent events and
the terminal event, also in a setting in which only interval counts of the recurrent events
are observed.

5.5 Fertility and mortality in Eleutheria dichotoma

To illustrate the proposed methods, we use data from a biodemographic study on the
fertility and mortality of Eleutheria dichotoma (Dańko et al., 2020), which was briefly
introduced in Section 5.1. E. dichotoma is a marine organism that passes through several
life-cycle stages: i.e., planula larva, polyp, and medusa stages. The colonial polyps (hy-
droids) asexually produce medusae. The medusae can then reproduce both sexually (by
producing larvae) and asexually (by producing medusa buds).

In this study, asexually budded medusae were collected directly from the hydroid
colony and reared for three generations – each of which was, in turn, obtained through
the asexual budding of medusae. In our analysis, we focus on the age trajectory of the
budding rate (asexual reproduction) and the mortality of one of the medusa generations,
as well as on the association between the two processes.

Age 𝑡0 = 0 of a medusa corresponds to the point in time when it detaches from its
hydroid colony or from its ancestor medusa. The medusae were followed individually,
and were observed until death or censoring. This occurred when either the study ended, a
laboratory accident (e.g., water evaporation) led to the loss of the medusa, or the medusa
was absorbed by a large bud of the same individual. The animals were checked for newly
released larvae and buds roughly three times per week. The resulting observation times
differed across individuals, with interval lengths between 1 and 11 days.

Salinity is an important factor that affects the physiological responses of species like
E. dichotoma, both at the level of the hydroid colony that produced the medusae under
study, and at the level of the medusae themselves. Four combinations of salinity lev-
els were studied here (low(hydroid)–low(medusa), medium–medium, low–medium, and
medium–low); for more details, see Dańko et al. (2020).

The data set contains 𝑚 = 141 individuals, with the following group sizes in the
four experimental conditions: 36 low–low, 40 medium–medium, 32 low–medium, and
33 medium–low. The individuals produced between 0 and 27 buds over their life course,
with a mean of 8.99. Follow-up times varied between 9 and 217 days, with a median of
98 days; and 34 individuals (24%) were censored. Figure 5.3 exemplarily shows the data
for 14 individuals.

To assess whether the recurrent budding process and survival are associated in E. di-
chotoma, we first conducted the score test that was presented in Section 5.3.2. For fitting
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Figure 5.3: Interval counts of budding and survival (dead: cross, censored: circle) for 14 medusae
E. dichotoma.

the shared frailty model to the individual bud counts, we assumed that the frailty vari-
able was gamma distributed. Moreover, for the piecewise constant baseline budding rate,
we defined cut-points 𝑡𝑅

𝑘
at 0, 16, 22, 27, 32, 40, 47, 63, 85, 111, and 220 days. These cut-

points were obtained as (approximative) deciles of the recurrent event times, as described
at the end of Section 5.3.1. We included two binary covariates for the salinity levels at the
polyp stage and the medusa stage, respectively.

The martingale residuals of the terminal event were obtained from a Cox proportional
hazards model fitted to the survival data, including the two covariates on the salinity
levels.

The parameter estimates of the two separately fitted models, the Cox model for the
survival data, and the shared frailty model for the budding rate based on interval counts,
are shown in Table 5.2.

The correlation between the martingale residuals from the Cox regression and the
estimated log-frailties from the budding model is 𝑟 = −0.434, yielding a test statistic of
𝑡 = −5.676 with a 𝑝-value of 7.729·10−8. Thus, the result of the score test clearly suggests
that reproduction and mortality are negatively associated – i.e., that a higher budding rate
is associated with lower mortality – which implies that a joint model should be used to
analyze these data on E. dichotoma.

Therefore, we estimated a joint frailty model for reproduction and mortality for these
data, including the two covariates on salinity. Frailties were again assumed to stem from
a gamma distribution. For the baseline budding rate, the same specification was used as
in the separate model (see above). For the baseline hazard of death, we used a piecewise



126 Chapter 5 – Joint modeling of interval counts of recurrent events and death

Table 5.2: Parameter estimates (with standard errors) for different models fitted to the E. dichotoma
data set.

Joint frailty model Separate models
Shared frailty model Cox PH model

Mortality
Polyp (low salinity) −0.493 (0.299) – −0.376 (0.201)
Medusa (low salinity) 2.201 (0.432) – 1.392 (0.218)

Budding
Polyp (low salinity) 0.052 (0.069) 0.057 (0.066) –
Medusa (low salinity) 0.574 (0.071) 0.600 (0.068) –

Association
Dependence 𝛾 −4.941 (1.557) – –
Frailty variance 𝜃 0.051 (0.018) 0.036 (0.017) –

constant function with cut-points 𝑡𝐷
𝑘

at 0, 60, 67, 72, 85, 98, 103, 114, 132, 153, and 220
days; again, the cut-points were taken from approximate deciles of the survival times.
For the Gaussian quadrature in the marginal likelihood (see equation (5.5)), 𝑄 = 30
quadrature points were used.

The parameter estimates of the joint model are also displayed in Table 5.2. Interest-
ingly, the dependence parameter 𝛾 was estimated as −4.941 along with a frailty variance
of 0.051. The negative value of �̂� indicated that individuals with higher rates of asex-
ual reproduction tended to have a lower mortality risk than individuals with lower rates
of asexual reproduction. This finding that higher rates of reproduction were accompa-
nied by longer survival stands in contrast to the idea of a trade-off between reproduction
and survival. Regarding the salinity levels, we found that the salinity experienced by the
polyps did not have a noticeable effect on the reproduction or survival of the medusae.
In contrast, individuals who were exposed to low salinity at the medusa stage were found
to have both higher fertility and mortality rates than those exposed to medium salinity.
Finally, Figure 5.4 shows the estimates of the age-specific budding and death rates. The
budding rate peaked at about 20 days of age before gradually declining to a non-zero level
at later ages. The death rates increased markedly after about 60 days of age.

To conclude, while the results presented here are in agreement with the findings of
Dańko et al. (2020), they also provide additional insight into the association between the
asexual reproduction and survival of E. dichotoma. In addition to the biological implica-
tions of the dependence itself, due to the association between the two processes, the re-
current event process is censored by the terminal event (death) non-independently, which
warrants the joint modeling of the two processes.
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Figure 5.4: Estimated baseline rates of budding (left) and death (right) for the E. dichotoma data
set.

5.6 Discussion

We have presented a method for estimating the joint frailty model for recurrent events
and death in situations in which only individual interval counts of the recurrence pro-
cess are observed. When modeling the baseline rates as piecewise constant, the marginal
likelihood can be approximated using Gaussian quadrature, and can then be maximized
directly. In addition, we have shown that the score test for the association between recur-
rences and death (Balan et al., 2016) is also applicable in the setting with interval counts.
The test is based on the correlation between the martingale residuals of the terminal event
and the estimates of the log-frailties, which are obtained by separately fitting a Cox pro-
portional hazards model to the survival data and a shared frailty model to the interval
counts of recurrent events. Our simulation studies demonstrated that both the estimation
method and the score test perform well.

We also found that when applying the proposed methods to data on fertility and mor-
tality in E. dichotoma, the rate of asexual reproduction and the mortality risk are nega-
tively associated. While this finding is interesting from a biological point of view, it also
demonstrates the necessity of allowing positive and negative dependence in a model such
as the relatively complex joint frailty model (5.2). Moreover, the E. dichotoma example
illustrates the advantages of using the piecewise constant rate model. On the one hand,
the shape of the budding rate, which is characterized by a sharp peak at younger ages
and a gradual leveling off to a non-zero level at older ages, is hard to capture using a
simple parametric model. On the other hand, the data structure of the interval counts,
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in which the observation times vary across individuals, makes it difficult to construct a
purely nonparametric estimate of the baseline rate.

Implementing the estimation method in the joint frailty model involves making sev-
eral choices, such as decisions regarding the distribution of the frailties, the number of
quadrature points, and the number of pieces included in the baseline rate models. For the
frailty distribution, we assumed that frailties follow a gamma distribution in both the sim-
ulation study and the application. The use of a gamma distribution is a popular choice for
the distribution of frailties, and, with respect to the score test, it has the benefit of yielding
closed-form expressions for the estimated log-frailties. However, the quadrature approach
is equally able to accommodate the log-normal distribution or any frailty distribution that
has a closed-form inverse distribution function. Yet, the performance of the quadrature
approach relies on the quality of the approximation of the marginal likelihood, which, in
turn, depends on the number of quadrature points. Liu and Huang (2008) suggested using
𝑄 = 30 quadrature points for gamma frailty models, and in our experience, this number
yields reliable results. In practice, we recommend fitting the model for several increasing
values of 𝑄 until the estimates stabilize. For the piecewise constant rate models, using a
moderate number of up to 10 intervals for the rates seems to produce good results. Using
a larger number of intervals for the baseline rates generates a larger number of parame-
ters to be estimated, which, in turn, increases computational costs, and might affect the
numeric stability of the method.

One of the limitations of the approach presented here is that, in the joint frailty model,
the association between recurrences and death is modeled via a dependence parameter
acting on a shared frailty. If, however, the individuals are not sufficiently heterogeneous
– that is, if the frailty variance is not sufficiently large – the dependence parameter is not
meaningful, and the association cannot be assessed.

Another restriction is imposed by the piecewise constant rate models. While these
models can capture a variety of different shapes of the baseline rates, using more flexible
rates – and, in particular, smooth rates – might be desirable in some applications. Further
work is needed on how to incorporate smooth rate models with automatic smoothing
parameter selection.

Finally, the observation times in our application are fixed by the experimental set-up,
even though in real-world applications, particularly in medicine, the observation times
may depend on the recurrence process. For instance, patients may visit the doctor more
often when they are in worse condition. This is taken into account in a model developed
by Zhao et al. (2013), which considers interval counts of recurrent events in the presence
of death and a dependent observation process. However, the authors adopted a marginal
approach that left the association between the recurrences and death unspecified.
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5.7 Appendix

5.7.1 Computational details
We implemented our estimation approach in R (R Core Team, 2019), using function
gauss.quad() from package statmod (Smyth, 1998) to determine the quadrature
points and weights, and function nlm() for numerical optimization of the approximate
marginal log-likelihood.

The Hessian of the log-likelihood can be obtained directly from the output of the
function nlm(). However, in some cases, computation of the Hessian using function
hessian() from package numDeriv (Gilbert and Varadhan, 2019) yields more stable
results.

To ensure that the Hessian of the approximate log-likelihood with piecewise constant
baseline rates is invertible, it can be necessary to fit the joint frailty model with small,
fixed ridge penalties on the logarithm of the baseline rates. The standard errors are then
calculated based on the Hessian of the penalized log-likelihood.

5.7.2 Derivation of the score test
In this section, we show that the score 𝑈𝛾 (𝛾, 𝜼) of the joint frailty model (5.2) has the
same form independently of whether exact recurrence times or only interval counts of the
recurrent events are available, as long as the recurrence process is observed up to exactly
known follow-up times.

Let us start by rewriting the individual contributions (5.3) to the marginal likelihood
for interval counts
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If we now evaluate the score at (𝛾, 𝜼) = (0, �̂�0), we obtain
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which is the first line of (5.8).

5.7.3 Likelihood with fixed observation times
In this section, we study the likelihood of the joint frailty model (5.2) based on indi-
vidual interval counts of recurrent events in one particular setting. Specifically, the ob-
servation times are assumed to be the same for all individuals and the baseline rate of
recurrence 𝜆0 (𝑡) is modeled as a piecewise constant function. We will show that if the
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observation intervals are finer than the intervals for the rate pieces, the score depends on
the individual’s interval counts only through the sums of these counts over each baseline
rate piece.

For that purpose, suppose the observation times 𝑡𝑖 𝑗 are given by 𝑡𝑖 𝑗 = 𝑡 𝑗 for 𝑗 =

0, ..., 𝐽𝑖 − 1, and the last observation time 𝑡𝑖𝐽𝑖 = 𝑋𝑖 is equal to the follow-up time 𝑋𝑖 .
The interval counts 𝑛𝑖 𝑗 , observed over the intervals 𝐼𝑖 𝑗 = (𝑡𝑖 𝑗−1, 𝑡𝑖 𝑗 ], enter the likelihood
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where |𝐼 | denotes the length of the interval 𝐼. Now let 𝐾𝑖 be the index 𝑘 of the interval 𝐼𝑅
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which depends only on the individual’s follow-up time 𝑋𝑖 , but not on the other observation
times 𝑡𝑖 𝑗 , 𝑗 = 0, ..., 𝐽𝑖 − 1.
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=

𝐾𝑅∏
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𝐽𝑖∏
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𝜆
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𝑛𝑖 𝑗 ·𝟙{𝐼𝑖 𝑗 ⊂𝐼𝑅𝑘 }

=
©«
𝐾𝑅∏
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𝜆

∑𝐽𝑖
𝑗=1 𝑛𝑖 𝑗 ·𝟙{𝐼𝑖 𝑗 ⊂𝐼

𝑅
𝑘
}

0𝑘
ª®¬ ©«
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( |𝐼𝑖 𝑗 ∩ 𝐼𝑅𝑘 |)
𝑛𝑖 𝑗 ·𝟙{𝐼𝑖 𝑗 ⊂𝐼𝑅𝑘 }ª®¬ . (5.14)

Note that �̃�𝑖𝑘 =
∑𝐽𝑖
𝑗=1 𝑛𝑖 𝑗 · 𝟙{𝐼𝑖 𝑗 ⊂ 𝐼𝑅

𝑘
} gives the number of recurrent events which indi-

vidual 𝑖 experiences over the time interval [0, 𝑋𝑖] ∩ 𝐼𝑅𝑘 . Hence, the first factor of expres-
sion (5.14) depends on the counts 𝑛𝑖 𝑗 which were observed over the smaller intervals 𝐼𝑖 𝑗
only via the counts �̃�𝑖𝑘 corresponding to the larger intervals 𝐼𝑅

𝑘
.

Inserting (5.13) and (5.14) into (5.11) yields

©«
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ª®¬ .
Consequently, if the observation intervals are finer than the rate intervals the likeli-

hood is proportional to an expression that depends only on recurrent event interval counts
corresponding to the larger rate intervals.

5.8 Supplementary material: Extended simulation study

In this section, we present additional figures and tables illustrating the results of our sim-
ulation study. Subsection 5.8.1 focuses on the performance of the method for estimating
the joint frailty model based on individual interval counts of recurrent events. Subsec-
tion 5.8.2 deals with the performance of the score test for the association between the
recurrent events and death.

5.8.1 Performance of the estimation method
The basic set-up for the simulation study was described in Section 5.4.1. Table 5.3 gives
an overview of the scenarios covered in this supplementary material. All samples in-
clude 𝑚 = 200 individuals. Data were generated from a joint frailty model with a binary
covariate having effects 𝛼 = 𝛽 = 1 on the hazard of death and the rate of recurrence.
Independent censoring occurs uniformly over the total follow-up window [0, 2].
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In Section 5.4.1, we focused on scenarios in which the values of the frailty variance 𝜃
and the dependence parameter 𝛾 are fixed at 𝜃 = 0.5 and 𝛾 = ±1. Here, we also study the
effect of varying the frailty variance by including scenarios with 𝜃 ∈ {0.25, 0.75}. More-
over, we present settings with 𝜃 = 0.05 which are motivated by the estimates obtained in
the application (see Section 5.5).

Regarding the observation times 𝑡𝑖 𝑗 , that define the intervals for which the recurrent
event counts are observed, these times can be fixed and the same for all individuals (Sce-
nario I) or varying across individuals (Scenario II), as explained in Section 5.4.1. In
Scenarios I.G and II.D, the widths of these observation intervals are changed as well.

The baseline rates are generally specified as piecewise constant (pwc) functions on
𝐾𝑅 = 𝐾𝐷 = 𝐾∗ intervals of equal length, where we also assess the impact of increasing
𝐾∗ from 10 to 20 (Scenarios I.F and I.G). In contrast, in Scenario I.E, a simple parametric
model is used for the baseline rates by assuming (in this case correctly) a Weibull model.

Concerning the independent censoring, in Section 5.4.1, we have compared uniform
censoring over the total follow-up window with the alternative of end-of-study censoring
at 𝑡 = 2. Table 5.4 reports on the resulting proportions of censoring under the different
mechanisms across 200 replications.

Table 5.3: Simulation settings.

Scenario |𝛾 | 𝜃 obs. times 𝑡𝑖 𝑗 rates 𝐾∗ Figure
Varying the frailty variance in Scenario I

I.A 1 0.25 0.2 𝑗 pwc 10 5.5
I.B 1 0.75 0.2 𝑗 pwc 10 5.6
I.C 1 0.05 0.2 𝑗 pwc 10 5.7
I.D 5 0.05 0.2 𝑗 pwc 10 5.8

Varying the specification of the baseline rates in Scenario I
I.E 1 0.5 0.2 𝑗 Weibull - 5.9
I.F 1 0.5 0.2 𝑗 pwc 20 5.10

Varying the width of the observation intervals in Scenario I
I.G 1 0.5 0.1 𝑗 pwc 20 5.11

Varying the frailty variance in Scenario II
II.A 1 0.25 0.2 𝑗 + 𝜀𝑖 𝑗 pwc 10 5.12
II.B 1 0.5 0.2 𝑗 + 𝜀𝑖 𝑗 pwc 10 5.13
II.C 1 0.75 0.2 𝑗 + 𝜀𝑖 𝑗 pwc 10 5.14

Varying the width of the observation intervals in Scenario II
II.D 1 0.5 0.1 𝑗 + 𝜀𝑖 𝑗 pwc 10 5.15
The 𝜀𝑖 𝑗 are drawn from a uniform distribution (see Section 5.4.1).
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Scenario I.A (𝜽= 0.25)
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Figure 5.5: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (𝜃), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 1.
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Scenario I.B (𝜽= 0.75)
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Figure 5.6: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (𝜃), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 1.
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Scenario I.C (𝜽= 0.05, 𝜸= ±1)
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Figure 5.7: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (𝜃), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 1.
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Scenario I.D (𝜽= 0.05, 𝜸= ±5)
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Figure 5.8: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 5) and negative dependence (𝛾 = −5). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (𝜃), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 5.
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Scenario I.E (𝜽= 0.5, Weibull rates)
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Figure 5.9: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (𝜃), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 1.
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Scenario I.F (𝜽= 0.5, Up to 10 counts, K∗ = 20)
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Figure 5.10: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (𝜃), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 1.
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Scenario I.G (𝜽= 0.5, Up to 20 counts, K∗ = 20)
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Figure 5.11: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (𝜃), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 1.
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Scenario II.A (𝜽= 0.25)
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Figure 5.12: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (𝜃), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 1.
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Scenario II.B (𝜽= 0.5)
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Figure 5.13: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (𝜃), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 1.
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Scenario II.C (𝜽= 0.75)
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Figure 5.14: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (𝜃), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 1.
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Scenario II.D (𝜽= 0.5, Up to 20 visits)
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Figure 5.15: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (𝜃), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 1.
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Table 5.4: Proportion of censoring under different censoring mechanisms for the joint frailty model
with frailty variance 𝜃 = 0.5 in 200 replications of Scenario I.

censoring proportion
𝛾 censoring min mean max
1 𝐶 ∼ U [0, 2] 0.445 0.564 0.650

𝐶 = 2 0.040 0.091 0.140
−1 𝐶 ∼ U [0, 2] 0.365 0.484 0.580

𝐶 = 2 0.000 0.032 0.065

5.8.2 Performance of the score test
The general design of the simulation study regarding the score test was laid out in Sec-
tion 5.4.2. In this supplementary material, we present the results for additional scenar-
ios as summarized in Table 5.5. The samples of 𝑚 = 200 individuals each are drawn
from a joint frailty model with a binary covariate with effects 𝛼 = 𝛽 = 1 on the hazard
of death and the rate of recurrence. Independent censoring is taken to occur uniformly
over the total follow-up window [0, 2]. We assess the power or size, respectively, of
the score test for the different combinations of the dependence parameter 𝛾 varying in
Γ = {−1,−0.5, 0, 0.5, 1} and the frailty variance 𝜃 varying in Θ = {0.25, 0.5, 0.75}.

In Scenario I.A, we extend this to consider stronger dependence, 𝛾 = ±5, and a smaller
frailty variance, 𝜃 = 0.05, inspired by the estimates we obtained for the real data (see
Section 5.5).

To study the effect of the width of the observation intervals for the recurrent event
counts, the observation times 𝑡𝑖 𝑗 are fixed and the same for all individuals in Scenario I,
but varying across individuals in Scenario II. Moreover, the test performance based on
finer observation intervals is examined for each of the scenarios (Scenarios I.C and II.B).

The baseline rate of recurrence is specified as a piecewise constant function on 𝐾𝑅 =

10 or 𝐾𝑅 = 20 intervals of equal length.
In Section 5.4.1, two versions of independent censoring were considered: uniform

censoring over the total follow-up window or end-of-study censoring at 𝑡 = 2. The result-
ing proportions of censored individuals under the two mechanisms across 1000 replica-
tions are given in Table 5.6.
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Table 5.5: Simulation settings for the score test with dependence parameter varying in Γ =

{−1,−0.5, 0, 0.5, 1} and frailty variance varying in Θ = {0.25, 0.5, 0.75}.

Scenario 𝛾 𝜃 obs. times 𝑡𝑖 𝑗 𝐾𝑅 Table
Varying the frailty variance in Scenario I

I.A Γ ∪ {±5} Θ ∪ {0.05} 0.2 𝑗 10 5.7
Varying the specification of the baseline rate in Scenario I

I.B Γ Θ 0.2 𝑗 20 5.8
Varying the width of the observation intervals in Scenario I

I.C Γ Θ 0.1 𝑗 20 5.9
Varying the observation times across individuals (Scenario II)

II.A Γ Θ 0.2 𝑗 + 𝜀𝑖 𝑗 10 5.10
Varying the width of the observation intervals in Scenario II

II.B Γ Θ 0.1 𝑗 + 𝜀𝑖 𝑗 10 5.11
The 𝜀𝑖 𝑗 are drawn from a uniform distribution (see Section 5.4.1).

Table 5.6: Proportion of censoring under different censoring mechanisms for the joint frailty model
with dependence parameter 𝛾 = 0 in 1000 replications of Scenario I.

censoring proportion
𝜃 censoring min mean max
0.25 𝐶 ∼ U [0, 2] 0.365 0.516 0.625

𝐶 = 2 0.000 0.019 0.070
0.5 𝐶 ∼ U [0, 2] 0.400 0.516 0.645

𝐶 = 2 0.000 0.020 0.055
0.75 𝐶 ∼ U [0, 2] 0.405 0.515 0.645

𝐶 = 2 0.000 0.019 0.060

Table 5.7: Power and size of the score test, performed at the 5% level, in the joint frailty
model with varying dependence parameter 𝛾 ∈ {−5,−1,−0.5, 0, 0.5, 1, 5} and frailty variance 𝜃 ∈
{0.05, 0.25, 0.5, 0.75}, across 1000 replications each.

Dependence 𝛾
𝜃 −5 −1 −0.5 0 0.5 1 5
0.05 0.938 0.290 0.142 0.081 0.116 0.263 0.931
0.25 1.000 0.960 0.586 0.066 0.514 0.932 1.000
0.5 1.000 1.000 0.905 0.062 0.872 1.000 1.000
0.75 1.000 1.000 0.984 0.091 0.974 1.000 1.000
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Table 5.8: Power and size of the score test, performed at the 5% level, in the joint frailty model with
varying dependence parameter 𝛾 ∈ {−1,−0.5, 0, 0.5, 1}, frailty variance 𝜃 ∈ {0.25, 0.5, 0.75}, and
𝐾𝑅 = 20, across 1000 replications each.

Dependence 𝛾
𝜃 −1 −0.5 0 0.5 1
0.25 0.948 0.525 0.058 0.530 0.929
0.5 0.998 0.878 0.070 0.870 1.000
0.75 1.000 0.974 0.087 0.975 1.000

Table 5.9: Power and size of the score test, performed at the 5% level, in the joint frailty model with
varying dependence parameter 𝛾 ∈ {−1,−0.5, 0, 0.5, 1}, frailty variance 𝜃 ∈ {0.25, 0.5, 0.75}, up
to 20 counts, and 𝐾𝑅 = 20, across 1000 replications each.

Dependence 𝛾
𝜃 −1 −0.5 0 0.5 1
0.25 0.955 0.556 0.062 0.533 0.940
0.5 0.999 0.890 0.063 0.873 1.000
0.75 1.000 0.979 0.090 0.977 1.000

Table 5.10: Power and size of the score test, performed at the 5% level, in the joint frailty model
with varying dependence parameter 𝛾 ∈ {−1,−0.5, 0, 0.5, 1}, frailty variance 𝜃 ∈ {0.25, 0.5, 0.75},
and observation times varying across individuals (Scenario II), across 1000 replications each.

Dependence 𝛾
𝜃 −1 −0.5 0 0.5 1
0.25 0.943 0.533 0.071 0.543 0.962
0.5 1.000 0.879 0.075 0.875 0.998
0.75 1.000 0.978 0.065 0.971 1.000

Table 5.11: Power and size of the score test, performed at the 5% level, in the joint frailty model
with varying dependence parameter 𝛾 ∈ {−1,−0.5, 0, 0.5, 1}, frailty variance 𝜃 ∈ {0.25, 0.5, 0.75},
up to 20 visits, and 𝐾𝑅 = 10, across 1000 replications each.

Dependence 𝛾
𝜃 −1 −0.5 0 0.5 1
0.25 0.941 0.540 0.079 0.511 0.947
0.5 1.000 0.890 0.074 0.863 1.000
0.75 1.000 0.989 0.069 0.981 1.000
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Supporting information

Source code to reproduce the simulation studies and perform the analysis of Section 5.5 is
available as Supporting Information at https://onlinelibrary.wiley.com/doi/10.1002/bimj.
201900367.
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6
Incorporating delayed entry into the joint

frailty model for recurrent events and
a terminal event

Abstract

In studies of recurrent events, joint modeling approaches are often needed to allow for
potential dependent censoring by a terminal event such as death. Joint frailty models for
recurrent events and death with an additional dependence parameter have been studied for
cases in which individuals are observed from the start of the event processes. However,
the samples are often selected at a later time, which results in delayed entry. Thus, only
individuals who have not yet experienced the terminal event will be included in the study.
We propose a method for estimating the joint frailty model from such left-truncated data.
The frailty distribution among the selected survivors differs from the frailty distribution in
the underlying population if the recurrence process and the terminal event are associated.
The correctly adjusted marginal likelihood can be expressed as a ratio of two integrals
over the frailty distribution, which may be approximated using Gaussian quadrature. The
baseline rates are specified as piecewise constant functions, and the covariates are as-
sumed to have multiplicative effects on the event rates. We assess the performance of the

This chapter has been submitted for publication as: M. Böhnstedt, J. Gampe, M.A.A. Caljouw, and H. Put-
ter. Incorporating delayed entry into the joint frailty model for recurrent events and a terminal event.
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estimation procedure in a simulation study, and apply the method to estimate age-specific
rates of recurrent urinary tract infections and mortality in an older population.

6.1 Introduction

Repeated occurrences of the same type of event in one individual arise in various applica-
tions. Examples of such recurrent event data include incidents of myocardial infarction,
recurrent infections, fractures, or tumor relapses.

If the individual is additionally at risk of experiencing a terminal event such as death,
which will stop the recurrent event process, this might induce dependent censoring of the
recurrence process. Therefore, approaches for jointly modeling the two processes of the
recurrent events and the terminal event have been developed. Moreover, studies might
explicitly address the question of whether there is an association between the processes
by asking, for instance, whether individuals who experience more recurrences also have
a higher risk of experiencing the terminal event. Specific joint models can provide ad-
ditional insights into the direction and the strength of the association between the event
processes.

The choice of the time scale 𝑡, along which the recurrence process and the terminal
event process are assumed to evolve, depends on the specific application. In clinical stud-
ies, the time since randomization is often used as the time scale; whereas in demographic
studies of fertility, for instance, the most relevant time scale is age.

For a given time scale, the event processes can, in some cases, be observed from the
time origin 𝑡0. Consider, for example, a medical study in which the time since the disease
onset or diagnosis is used as the time scale. If each individual is observed from the disease
onset or diagnosis onwards, then all individuals enter the study at time 𝑡0 = 0.

However, studies are often initiated at a later point in time when the two processes
have already started. If in the above setting patients do not participate in the clinical study
until some period of time after their diagnosis, individual times of study entry will differ
from 0, and might also vary between patients. Similarly, in studies of certain diseases
in old-age populations, such as in register-based studies of cardiovascular disease and
mortality, age can be considered the natural time scale (see, for instance, Modig et al.,
2013). The individuals included in such analyses have already reached a certain advanced
age by the beginning of the study period.

In these cases, the data are left-truncated in the sense that the individuals can enter the
study only if they have not yet experienced the terminal event. If the recurrence process
and the terminal event process are associated, this sample of survivors is not a random
sample of the underlying population. Rather, the sample is comprised of individuals who
tend to have a lower risk of experiencing the terminal event, and – if there is a positive
association between the two processes – to also have a lower risk of experiencing recurrent
events. Thus, to obtain valid inferences, correctly adjusting for the truncation is crucial.

The example we use in this study to illustrate our method focuses on recurrent urinary
tract infections (UTIs) in older residents of long-term care facilities (LTCF). The original
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study by Caljouw et al. (2014) investigated whether cranberry capsules are effective in
preventing UTIs. Given that around 34% of the elderly study population died during the
follow-up period, recurrent UTIs and mortality had to be modeled jointly. The original
study used time since randomization as the time scale. By contrast, we have chosen
to use age as the main time scale of the event processes, as mortality and, presumably,
UTI recurrences naturally depend on age. Because the participants were between 64 and
102 years old when they entered the study, the observations are then left-truncated. In
our analysis, we seek to assess the effects of the cranberry treatment, to estimate the age-
specific rates of UTIs and death, and to determine whether there is an association between
UTIs and death risks.

While different joint models for recurrent events and death have been proposed, we
focus here on the joint frailty model introduced by Liu et al. (2004). This model has
been applied repeatedly in medical studies (e.g., to study recurrent cancer events as in
Rondeau et al., 2007, or recurrent heart failure hospitalizations as in Rogers et al., 2016),
and extended in several directions (e.g., to the setting of nested case-control studies in
Jazić et al., 2019). The joint frailty model allows us to examine the shape of the rates of
recurrence and death, as well as the potential dependence between the two processes. The
dependence is introduced by a shared individual random effect entering both the rate of
recurrence and the hazard of death. An additional parameter determines whether the pro-
cesses are positively or negatively associated, and how strong this association is. In other
models, the frailty affects both event rates in the same way (Huang and Wang, 2004), or
the dependence between the processes is left completely unspecified (Cook and Lawless,
1997; Ghosh and Lin, 2003). A common approach to estimating the joint frailty model
that we consider here is using Gaussian quadrature to approximate the marginal likelihood
(Liu and Huang, 2008; Rondeau et al., 2007). We will see that in this framework, the set-
ting with left-truncated data can be handled in a straightforward manner by adapting the
likelihood.

Incorporating left truncation, which is also called delayed entry, has received varying
levels of attention in studies based on different frailty models and joint models. Several
studies have discussed handling left truncation in shared frailty models for clustered sur-
vival data (e.g., Jensen et al., 2004; van den Berg and Drepper, 2016). In a recurrent event
setting, Balan et al. (2016) considered event dependent selection; i.e., individuals were
included in the study only if they had experienced at least one recurrent event in a given
time period. Recurrent event studies with selection dependent on survival were briefly
discussed in Cook and Lawless (2007), but not specifically in the context of frailty mod-
els. It has been argued that for the joint frailty model for recurrent events and death, as
specified by Liu et al. (2004), delayed entry can be easily incorporated (Rondeau et al.,
2007). However, to our knowledge, no detailed account of this approach has previously
been provided. At the time of writing, the R package frailtypack, which can be used
for fitting a variety of frailty models, does not provide functionality for estimating the
joint frailty model from left-truncated data (according to the manual of version 3.3.2, date
2020-10-07, Rondeau et al., 2020). Extensions to left-truncated data have been considered
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in some other joint models for recurrent events and death. Emura et al. (2017) introduced
a joint frailty-copula model for two event times that can be adapted to accommodate left
truncation and recurrent event data. Outside of the class of shared frailty models, Cai et al.
(2017) proposed a model for longitudinal measurements, recurrent events, and a terminal
event with inferences based on estimation equations that can be generalized to allow for
left-truncated data. Liu et al. (2012) presented an estimating equation procedure for a
partial marginal model of recurrent events in the presence of a terminal event with left
truncation. In the context of joint models for longitudinal data and death, estimation pro-
cedures based on left-truncated data have been derived for different models with shared
random effects (see, for example, van den Hout and Muniz-Terrera, 2016; Crowther et al.,
2016; Piulachs et al., 2021).

In this chapter, we propose a method for estimating the joint frailty model for recur-
rent events and a terminal event, as introduced by Liu et al. (2004), when data are left-
truncated. Our approach adapts the method of Liu and Huang (2008), who use Gaussian
quadrature to approximate the marginal likelihood of the joint frailty model.

The chapter is structured as follows. Section 6.2 first presents the joint frailty model
and the corresponding likelihood in the usual setting without truncation, and then shows
the adjustments for left-truncated data. The method of estimation is detailed in Sec-
tion 6.3, and its performance is assessed via simulation studies in Section 6.4. We illus-
trate the approach using the data set on recurrent UTIs in Section 6.5, and conclude with
a discussion in Section 6.6.

6.2 Joint frailty model and left truncation

The joint frailty model for recurrent events and a terminal event has been applied most
frequently in situations in which the time of the terminal event is subject to independent
right-censoring only. In the following, we will first present the model and the correspond-
ing likelihood for such right-censored data. Then, we will lay out how certain assumptions
and, in particular, the likelihood function are adjusted to the case of left-truncated data.
Throughout, we will often refer to the terminal event as death for the sake of simplicity.

6.2.1 Joint frailty model
We consider independent individuals 𝑖, 𝑖 = 1, ..., 𝑚, who can experience recurrent events
between time 𝑡0 = 0 and the time 𝐷𝑖 of the terminal event. Let𝐶𝑖 denote a censoring time,
which is assumed to be independent of the recurrence and terminal event processes. An
individual can then be observed only up to his or her follow-up time 𝑋𝑖 = min(𝐶𝑖 , 𝐷𝑖),
and 𝛿𝑖 = 𝟙{𝐷𝑖 ≤ 𝐶𝑖} will indicate whether the terminal event occurred before censoring,
with the indicator function 𝟙{·}. The at-risk indicator at time 𝑡 ≥ 0 is given by 𝑌𝑖 (𝑡) =

𝟙{𝑡 ≤ 𝑋𝑖}, if individuals enter the study at 𝑡0 = 0.
The number of recurrent events experienced by individual 𝑖 up to time 𝑡 is recorded by

the actual recurrent event process 𝑁𝑅∗
𝑖

(𝑡). Similarly, we define the actual counting process
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of the terminal event as 𝑁𝐷∗
𝑖

(𝑡) = 𝟙{𝐷𝑖 ≤ 𝑡}. However, due to right-censoring, we can
only observe the processes 𝑁𝐷

𝑖
(𝑡) = 𝟙{𝑋𝑖 ≤ 𝑡, 𝛿𝑖 = 1} and 𝑁𝑅

𝑖
(𝑡) =

∫ 𝑡
0 𝑌𝑖 (𝑠)d𝑁

𝑅∗
𝑖

(𝑠)
= 𝑁𝑅∗

𝑖
(min (𝑡, 𝑋𝑖)). Here, d𝑁𝑅∗

𝑖
(𝑡) = 𝑁𝑅∗

𝑖
((𝑡 + d𝑡)−) − 𝑁𝑅∗

𝑖
(𝑡−) is the increment of the

recurrence process, equal to the number of events in the small interval [𝑡, 𝑡 + d𝑡), with 𝑡−

as the left-hand limit.
The observed data of individual 𝑖 up to time 𝑡 are given by O𝑖 (𝑡) = {𝑌𝑖 (𝑠), 𝑁𝑅𝑖 (𝑠),

𝑁𝐷
𝑖
(𝑠), 0 ≤ 𝑠 ≤ 𝑡; 𝒛𝑖}, including the observed time-fixed covariate vector 𝒛𝑖 . Individual

risks will depend on the covariates as well as on the unobservable frailty value 𝑢𝑖 , where
the frailties 𝑢𝑖 are independent realizations of a positive random variable𝑈.

In the joint frailty model introduced by Liu et al. (2004), the observed recurrence
process is assumed to have the intensity 𝑌𝑖 (𝑡)𝜆𝑖 (𝑡 |𝑢𝑖) with

P(d𝑁𝑅𝑖 (𝑡) = 1 | F𝑡− , 𝐷𝑖 ≥ 𝑡) = 𝑌𝑖 (𝑡)𝜆𝑖 (𝑡 |𝑢𝑖)d𝑡
𝜆𝑖 (𝑡 |𝑢𝑖)d𝑡 = dΛ𝑖 (𝑡 |𝑢𝑖) = P(d𝑁𝑅∗𝑖 (𝑡) = 1 | 𝒛𝑖 , 𝑢𝑖 , 𝐷𝑖 ≥ 𝑡).

(6.1)

Here, F𝑡 = 𝜎{O𝑖 (𝑠), 0 ≤ 𝑠 ≤ 𝑡, 𝑢𝑖; 𝑖 = 1, ..., 𝑚} denotes the 𝜎-algebra generated by
the frailty and the observed data. The terminal event process is characterized by the
intensity 𝑌𝑖 (𝑡)ℎ𝑖 (𝑡 |𝑢𝑖) with

P(d𝑁𝐷𝑖 (𝑡) = 1 | F𝑡− ) = 𝑌𝑖 (𝑡)ℎ𝑖 (𝑡 |𝑢𝑖)d𝑡
ℎ𝑖 (𝑡 |𝑢𝑖)d𝑡 = d𝐻𝑖 (𝑡 |𝑢𝑖) = 𝑃(d𝑁𝐷∗

𝑖 (𝑡) = 1 | 𝒛𝑖 , 𝑢𝑖 , 𝐷𝑖 ≥ 𝑡).
(6.2)

The first lines in (6.1) and (6.2) follow from the assumption that the censoring mechanism
is conditionally independent of the two event processes given the process history.

Following Liu et al. (2004), we specify the intensities as

𝜆𝑖 (𝑡 |𝑢𝑖) = 𝑢𝑖 𝑒𝜷
>𝒛𝑖 𝜆0 (𝑡),

ℎ𝑖 (𝑡 |𝑢𝑖) = 𝑢𝛾𝑖 𝑒
𝜶>𝒛𝑖 ℎ0 (𝑡).

(6.3)

The baseline rates of recurrence and death, 𝜆0 (𝑡) and ℎ0 (𝑡), are affected by the covari-
ates 𝒛𝑖 through a multiplicative model with effects 𝜷 and 𝜶, respectively. The inclusion
of the frailty 𝑢 in the recurrence rate accommodates heterogeneity across individuals and
dependence between the recurrences within one individual. The association between the
recurrent events and death results from the fact that the shared frailty 𝑢 also enters the
hazard of death. Due to the additional parameter 𝛾, the model can capture associations
of variable magnitudes and in different directions. For positive 𝛾 > 0, individuals with
a higher rate of recurrence will also be subject to a higher hazard of death. For 𝛾 < 0,
a higher rate of recurrence implies a lower hazard of death. If 𝛾 = 0, the intensities
in (6.3) do not share any parameters, and the censoring of the recurrence process by death
is non-informative.

A common choice for the distribution of the frailty 𝑈 is a gamma distribution with a
mean of one and a variance of 𝜃. We will more generally consider that the frailties 𝑢𝑖 fol-
low a distribution with a density of 𝑔𝜃 (𝑢) and a corresponding distribution function𝐺 𝜃 (𝑢)
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with parameter 𝜃. This assumption refers to the initial distribution of frailties in the popu-
lation at time 𝑡0 = 0. However, if 𝛾 ≠ 0, the distribution of frailties in the population will
change over time due to selection effects, which will cause the population at time 𝑡 to be
composed of survivors with lower mortality risks.

We now formulate the likelihood of the joint frailty model (6.3) when individuals are
observed from time 𝑡0 = 0. Let 𝑡𝑖 𝑗 , 𝑗 = 1, ..., 𝐽𝑖 , be the observed recurrence times of
individual 𝑖. Based on the arguments stated in Liu et al. (2004), the conditional likelihood
contribution of individual 𝑖 given his or her frailty value 𝑢𝑖 can be written as

𝐿
(𝑐)
𝑖

(𝑢𝑖) =

𝐽𝑖∏
𝑗=1
𝜆𝑖 (𝑡𝑖 𝑗 |𝑢𝑖)

 exp
{
−

∫ ∞

0
𝑌𝑖 (𝑠)𝜆𝑖 (𝑠 |𝑢𝑖) d𝑠

}
· ℎ𝑖 (𝑥𝑖 |𝑢𝑖) 𝛿𝑖 exp

{
−

∫ ∞

0
𝑌𝑖 (𝑠)ℎ𝑖 (𝑠 |𝑢𝑖) d𝑠

}
=


𝐽𝑖∏
𝑗=1
𝑢𝑖𝑒

𝜷>𝒛𝑖𝜆0 (𝑡𝑖 𝑗 )
 exp

{
−

∫ 𝑥𝑖

0
𝑢𝑖𝑒

𝜷>𝒛𝑖𝜆0 (𝑠) d𝑠
}

(6.4)

·
[
𝑢
𝛾

𝑖
𝑒𝜶

>𝒛𝑖 ℎ0 (𝑥𝑖)
] 𝛿𝑖

exp
{
−

∫ 𝑥𝑖

0
𝑢
𝛾

𝑖
𝑒𝜶

>𝒛𝑖 ℎ0 (𝑠) d𝑠
}
.

The marginal likelihood 𝐿𝑖 of the observed data of individual 𝑖 is obtained by integrating
the above expression over the frailty distribution,

𝐿𝑖 =

∫ ∞

0
𝐿
(𝑐)
𝑖

(𝑢) d𝐺 𝜃 (𝑢) =
∫ ∞

0
𝐿
(𝑐)
𝑖

(𝑢) 𝑔𝜃 (𝑢) d𝑢. (6.5)

6.2.2 Adjusting for left truncation
We will now extend the above framework to allow for left truncation, that is, individuals
entering the study at times that may be later than 𝑡0 = 0. Before deriving the likelihood
for the left-truncated data, we introduce some additional notations and assumptions.

A sample of 𝑚𝑉 independent individuals 𝑖, 𝑖 = 1, ..., 𝑚𝑉 , is left-truncated if the in-
dividuals 𝑖 enter the study only at times 𝑉𝑖 ≥ 𝑡0, with strict inequality for at least some
individuals. Then, the observation of individual 𝑖 is conditional on his or her survival
up to the entry time, 𝐷𝑖 > 𝑉𝑖 , and events can only be observed in the interval [𝑉𝑖 , 𝑋𝑖].
Hence, the at-risk indicator 𝑌𝑖 (𝑡) of Section 6.2.1 is replaced by 𝑉𝑌𝑖 (𝑡) = 𝟙{𝑉𝑖 ≤ 𝑡 ≤ 𝑋𝑖}.

As a consequence, the observed recurrent event process 𝑉𝑁𝑅𝑖 (𝑡) =
∫ 𝑡
0 𝑉𝑌𝑖 (𝑠)d𝑁𝑅∗𝑖 (𝑠)

= [𝑁𝑅∗
𝑖

(min (𝑡, 𝑋𝑖))−𝑁𝑅∗𝑖 (𝑉𝑖)]𝟙{𝑡 > 𝑉𝑖} in this setting records only the recurrences after
study entry at 𝑉𝑖 . Analogously, the left-truncated counting process of the terminal event
is given by 𝑉𝑁

𝐷
𝑖
(𝑡) = 𝟙{𝑉𝑖 ≤ 𝑋𝑖 ≤ 𝑡, 𝛿𝑖 = 1}. The observed data for individual 𝑖 are then

𝑉O𝑖 (𝑡) = {𝑉𝑌𝑖 (𝑠), 𝑉𝑁𝑅𝑖 (𝑠), 𝑉𝑁𝐷𝑖 (𝑠), 𝑉𝑖 ≤ 𝑠 ≤ 𝑡; 𝒛𝑖;𝑉𝑖}, and the 𝜎-algebra is modified as
𝑉F𝑡 = 𝜎{𝑉O𝑖 (𝑠), 0 ≤ 𝑠 ≤ 𝑡, 𝑢𝑖; 𝑖 = 1, ..., 𝑚𝑉 }.
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In addition to the assumption of conditionally independent censoring already made in
Section 6.2.1, we further assume that the truncation times𝑉𝑖 are conditionally independent
of the recurrence and terminal event processes given the process history. Hence, the
intensity of the observed recurrence process is given by 𝑉𝑌𝑖 (𝑡)𝜆𝑖 (𝑡 |𝑢𝑖) and (6.1) is adapted
as

P(d 𝑉𝑁𝑅𝑖 (𝑡) = 1 | 𝑉F𝑡−, 𝐷𝑖 ≥ 𝑡) = 𝑉𝑌𝑖 (𝑡)𝜆𝑖 (𝑡 |𝑢𝑖). (6.1’)

The intensity of the observed terminal event process is, correspondingly, 𝑉𝑌𝑖 (𝑡)ℎ𝑖 (𝑡 |𝑢𝑖),
such that (6.2) is modified as

P(d 𝑉𝑁𝐷𝑖 (𝑡) = 1 | 𝑉F𝑡−) = 𝑉𝑌𝑖 (𝑡)ℎ𝑖 (𝑡 |𝑢𝑖). (6.2’)

Based on this, we can develop the likelihood of the joint frailty model (6.3) for left-
truncated data. The conditional likelihood contribution of individual 𝑖 given 𝑢𝑖 is con-
structed in analogy to (6.4), with 𝑌𝑖 (𝑠) replaced by 𝑉𝑌𝑖 (𝑠), and appropriately restricting
to the observed recurrence times 𝑡𝑖 𝑗 ≥ 𝑣𝑖; that is,

𝑉𝐿
(𝑐)
𝑖

(𝑢𝑖) =

∏
𝑡𝑖 𝑗 ≥𝑣𝑖

𝜆𝑖 (𝑡𝑖 𝑗 |𝑢𝑖)
 exp

{
−

∫ ∞

0
𝑉𝑌𝑖 (𝑠)𝜆𝑖 (𝑠 |𝑢𝑖) d𝑠

}
· ℎ𝑖 (𝑥𝑖 |𝑢𝑖) 𝛿𝑖 exp

{
−

∫ ∞

0
𝑉𝑌𝑖 (𝑠)ℎ𝑖 (𝑠 |𝑢𝑖) d𝑠

}
=


∏
𝑡𝑖 𝑗 ≥𝑣𝑖

𝑢𝑖𝑒
𝜷>𝒛𝑖𝜆0 (𝑡𝑖 𝑗 )

 exp
{
−

∫ 𝑥𝑖

𝑣𝑖

𝑢𝑖𝑒
𝜷>𝒛𝑖𝜆0 (𝑠) d𝑠

}
·
[
𝑢
𝛾

𝑖
𝑒𝜶

>𝒛𝑖 ℎ0 (𝑥𝑖)
] 𝛿𝑖

exp
{
−

∫ 𝑥𝑖

𝑣𝑖

𝑢
𝛾

𝑖
𝑒𝜶

>𝒛𝑖 ℎ0 (𝑠) d𝑠
}
.

(6.6)

The marginal likelihood contribution is again obtained by integrating out the frailty. How-
ever, as the frailty distribution in the sample of survivors differs from the frailty distribu-
tion at time 𝑡0, we need to integrate over the conditional frailty distribution given survival
to the time of entry into the study. This point has previously been discussed in the context
of clustered survival data by van den Berg and Drepper (2016) and Eriksson et al. (2015)
and for general state duration models by Lawless and Fong (1999). More formally, the
marginal likelihood contribution of individual 𝑖 is thus

𝑉𝐿𝑖 =

∫ ∞

0
𝑉𝐿

(𝑐)
𝑖

(𝑢) d𝐺 𝜃 (𝑢 | 𝐷𝑖 > 𝑣𝑖 , 𝑉𝑖 = 𝑣𝑖 , 𝒛𝑖) =
∫ ∞

0
𝑉𝐿

(𝑐)
𝑖

(𝑢) d𝐺 𝜃 (𝑢 | 𝐷𝑖 > 𝑣𝑖 , 𝒛𝑖),
(6.7)

under the assumption that the truncation time 𝑉𝑖 is independent of 𝑢.
In particular, if 𝛾 > 0 such that the recurrence process and the mortality process

are positively associated, individuals who survived up to time 𝑣 will tend to have lower
frailty values than individuals who died before time 𝑣, for given 𝒛𝑖 . Hence, the frailty
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distribution among survivors beyond time 𝑣, 𝐺 𝜃 (𝑢 | 𝐷 > 𝑣), will tend to have more
probability mass at lower values 𝑢 than the frailty distribution 𝐺 𝜃 (𝑢) in the underlying
population at time 𝑡0. Consequently, neglecting the effect of the survivor selection on the
frailty distribution in the sample and constructing a marginal likelihood as

𝑉𝐿
naive
𝑖 =

∫ ∞

0
𝑉𝐿

(𝑐)
𝑖

(𝑢) d𝐺 𝜃 (𝑢) =
∫ ∞

0
𝑉𝐿

(𝑐)
𝑖

(𝑢) 𝑔𝜃 (𝑢) d𝑢, (6.8)

would lead to an invalid inference if 𝛾 ≠ 0. We will illustrate the resulting biases in the
parameter estimates in a simulation study in Section 6.4.

For computing the correct marginal likelihood (6.7), we first apply Bayes’ theorem to
find that

𝑔𝜃 (𝑢 |𝐷𝑖 > 𝑣𝑖 , 𝒛𝑖) =
P(𝐷𝑖 > 𝑣𝑖 | 𝑢, 𝒛𝑖) 𝑔𝜃 (𝑢)

P(𝐷𝑖 > 𝑣𝑖 | 𝒛𝑖)
=

exp
{
−

∫ 𝑣𝑖
0 ℎ𝑖 (𝑠 |𝑢) d𝑠

}
𝑔𝜃 (𝑢)∫ ∞

0 P(𝐷𝑖 > 𝑣𝑖 | 𝑢) 𝑔𝜃 (𝑢) d𝑢
, (6.9)

where we suppress the dependence on the covariates 𝒛𝑖 in the last expression for notational
convenience. Combining equations (6.6), (6.7), and (6.9), we can express the marginal
likelihood contribution 𝑉𝐿𝑖 of individual 𝑖 with left-truncated data as∫ ∞

0

[∏
𝑡𝑖 𝑗 ≥𝑣𝑖 𝜆𝑖 (𝑡𝑖 𝑗 |𝑢)

]
exp

{
−

∫ 𝑥𝑖
𝑣𝑖
𝜆𝑖 (𝑠 |𝑢) d𝑠

}
ℎ𝑖 (𝑥𝑖 |𝑢) 𝛿𝑖 exp

{
−

∫ 𝑥𝑖
0 ℎ𝑖 (𝑠 |𝑢) d𝑠

}
𝑔𝜃 (𝑢) d𝑢∫ ∞

0 P(𝐷𝑖 > 𝑣𝑖 | 𝑢) 𝑔𝜃 (𝑢) d𝑢
.

(6.10)
Interestingly, the formula for 𝑉𝐿𝑖 in (6.10) could have been equivalently derived as

the marginal (with respect to the frailty) probability of the recurrence and follow-up data
on individual 𝑖, conditional on individual 𝑖 being included in the study, 𝐷𝑖 > 𝑣𝑖 . To see
this, let us denote by 𝐸𝑖 the event that individual 𝑖 has follow-up time 𝑥𝑖 with indicator 𝛿𝑖
and the observed recurrence times 𝑡𝑖 𝑗 over [𝑣𝑖 , 𝑥𝑖], and consider

P(𝐸𝑖 | 𝐷𝑖 > 𝑣𝑖) =
P(𝐸𝑖 ∩ {𝐷𝑖 > 𝑣𝑖})

P(𝐷𝑖 > 𝑣𝑖)
=

P(𝐸𝑖)
P(𝐷𝑖 > 𝑣𝑖)

=

∫ ∞
0 P(𝐸𝑖 | 𝑢) 𝑔𝜃 (𝑢) d𝑢∫ ∞

0 P(𝐷𝑖 > 𝑣𝑖 | 𝑢) 𝑔𝜃 (𝑢) d𝑢
.

As the integrals over the frailty distribution in (6.10) will not, in general, have closed-
form expressions, we will use numerical integration in the following.

6.3 Estimation of the joint frailty model

Liu and Huang (2008) proposed using Gaussian quadrature to approximate the marginal
likelihood of frailty proportional hazards models, including the joint frailty model (6.3).
In combination with a piecewise constant specification of the baseline rates, this approach
allows for the direct maximization of the approximated likelihood.
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The aim of Gaussian quadrature is to replace the integral of a function with a weighted
sum of function values. The Gauss-Hermite quadrature rule gives an approximation for a
specific integral of a function 𝑓 (𝑥),∫ ∞

−∞
𝑓 (𝑥)𝑒−𝑥2

d𝑥 ≈
𝑄∑︁
𝑞=1

𝑤𝑞 𝑓 (𝑥𝑞).

The quadrature points 𝑥𝑞 need to be determined as the roots of the 𝑄th-order Hermite
polynomial, while 𝑤𝑞 specify corresponding weights. As the marginal likelihood of a
model with normal random effects is easily rewritten in the above form, it follows that
such a likelihood can be approximated as∫ ∞

−∞
𝐿 (𝑐) (𝑏) 𝜙(𝑏) d𝑏 ≈

𝑄∑︁
𝑞=1

�̃�𝑞 𝐿
(𝑐) (𝑥𝑞) 𝜙(𝑥𝑞), (6.11)

where 𝜙(·) denotes the standard normal density, while 𝑥𝑞 =
√

2𝑥𝑞 and �̃�𝑞 =
√

2𝑤𝑞𝑒𝑥
2
𝑞

are modified quadrature points and weights, respectively. Marginal likelihoods integrated
over non-normal random effects can be expressed as an integral of the form in (6.11) by
applying the probability integral transformation (see Nelson et al., 2006; Liu and Huang,
2008). We show in Section 6.7.1 how this quadrature approach can be used to derive an
approximation of the marginal likelihood of the joint frailty model with left truncation.

The evaluation of the approximate marginal likelihood depends on the specific form
of the baseline rates 𝜆0 (𝑡) and ℎ0 (𝑡). As suggested by Liu and Huang (2008), we adopt a
piecewise constant model for these functions,

𝜆0 (𝑡) =
𝐾𝑅∑︁
𝑘=1

𝜆0𝑘𝟙{𝑡 ∈ 𝐼𝑅𝑘 } and ℎ0 (𝑡) =
𝐾𝐷∑︁
𝑘=1

ℎ0𝑘𝟙{𝑡 ∈ 𝐼𝐷𝑘 }.

with intervals 𝐼𝑅
𝑘
= (𝑡𝑅

𝑘−1, 𝑡
𝑅
𝑘
], 𝑘 = 1, ..., 𝐾𝑅, and 𝐼𝐷

𝑘
= (𝑡𝐷

𝑘−1, 𝑡
𝐷
𝑘
], 𝑘 = 1, ..., 𝐾𝐷 . Specifi-

cations with a moderate number of up to 10 intervals and the cut-points 𝑡𝑘 , 𝑘 ≥ 1, which
have been determined based on the quantiles of the observed event times, are generally
expected to lead to good results in practice (see Cook and Lawless, 2007; Liu and Huang,
2008). In the setting with left truncation, appropriate choices have to be made for the
starting points of the first intervals, 𝑡𝑅0 and 𝑡𝐷0 . Depending on the study design, they might
be set equal to the lowest study entry time, min𝑖 𝑣𝑖 , or a lower value 𝑡∗ ≥ 𝑡0.

The direct maximization of the marginal likelihood would also be possible if the base-
line rates were assumed to follow a simple parametric model, such as the Weibull model.
Nonetheless, we recommend the use of the more flexible piecewise constant rate models,
unless prior knowledge allows for an informed choice of a specific parametric model.

Finally, the parameter estimates in the joint frailty model with left-truncated data are
obtained by maximizing the approximate marginal log-likelihood. The calculation of the
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standard errors is based on the inverse of the negative Hessian matrix of the approxi-
mate marginal log-likelihood. We give additional details on the implementation in Sec-
tion 6.7.2.

6.4 Simulation study

To evaluate the performance of the proposed method for estimating the parameters of the
joint frailty model in case of left-truncated data, we conducted a simulation study. We
will also demonstrate which biases can arise if the likelihood is not correctly adjusted to
the survivor selection, in particular, to the selection effects on the frailty distribution.

Estimator performance will depend on various aspects of the observation scheme.
One aspect is the distribution of the study entry times 𝑉𝑖 , in which both the range of the
distribution and its shape matter. Furthermore, the censoring mechanism – that is, the
length of the individual follow-up periods and the number of additional drop-outs – will
influence the performance of the method. To study these issues, we will first present a
base scenario, and will then assess how different observational settings affect the results.

6.4.1 Settings
In the base scenario, we generated data from a joint frailty model (6.3). The time scale 𝑡
is the age of the individual. The hazard of death and the rate of recurrence are each
affected by a single binary covariate, which is drawn from a Bernoulli distribution with
parameter 0.5. The regression coefficients are 𝛼 = 0.5 (death) and 𝛽 = 0.5 (recurrence),
respectively. The frailty values are realizations of a gamma distribution with a mean of
one and a variance of 𝜃 = 0.5. The values of the dependence parameter 𝛾 were chosen to
cover a positive (𝛾 = 0.5) and a negative (𝛾 = −0.5) association between the recurrence
process and death, as well as the case in which the recurrence rate does not affect the
mortality risk (𝛾 = 0).

The baseline rates ℎ0 (𝑡) and 𝜆0 (𝑡) were designed to mimic a study in an older popu-
lation among whom the death rates as well as the recurrent event rates increase exponen-
tially with age. Hence, we chose for both baseline rates the Gompertz-Makeham form,
𝑎𝑒𝑏𝑡 + 𝑐, where 𝑡 = 0 corresponds to age 75. By setting 𝑎 = 0.984, 𝑏 = 0.045, and 𝑐 = 0
for the recurrence process (𝜆0 (𝑡)), and 𝑎 = 0.108, 𝑏 = 0.07, and 𝑐 = 0.12 for the survival
process (ℎ0 (𝑡)), the baseline rates were comparable to the estimated rates for the high risk
group in the data example in Section 6.5.

To arrive at the left-truncated samples, the following steps were combined. For each
individual, a survival time 𝐷 (i.e., age > 75) and an entry time into study 𝑉 were sim-
ulated. Only those individuals who survived beyond his or her entry time – that is, for
whom 𝐷 > 𝑉 – were included in the final sample (i.e., were ‘observed’). Therefore, the
distribution of entry times 𝑉 that are observed in the final sample depends on both the
mortality model in (6.3) and the initial distribution of the truncation times before selec-
tion.
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In the base scenario, our aim was to have entry times in the final sample that were
distributed across the total age range – here, ages 75 to 95 – with higher numbers of study
entries at the younger ages than at the older ages. This scheme will be referred to as
truncation pattern A in the following.

To obtain a final observed sample with such characteristics, the entry times 𝑉 were
drawn from a truncated normal distribution defined on the age range 75 to 95. More
specifically, the truncated normal distribution was specified to have a mode equal to the
maximum age of 95 with parameter values chosen so that the distribution of the observed
study entry times in the truncated sample had the desired shape (the left panel of Figure 6.1
illustrates this procedure). The initial number of generated survival times was chosen such
that the final truncated samples had an average size of about 𝑚𝑉 = 500 individuals.

An independent censoring mechanism was imposed in the following way. For most
individuals, the censoring times were the end of a planned individual follow-up period
of 𝑡𝐶 = 4 years. However, some of the follow-up times were longer than four years,
and some premature random drop-outs occurred. Again, this was done in response to
the situation that we observed in the data application of Section 6.5. Accordingly, we
generated random durations from a mixture distribution with an 85% point mass at 𝑡𝐶 ,
a 10% uniform distribution on [0, 𝑡𝐶 ], and a 5% uniform distribution on [𝑡𝐶 , 𝑡𝐶 + 0.5],
with the latter two covering the drop-outs before 𝑡𝐶 and the longer follow-up periods,
respectively. These random durations were added to the individual 𝑉𝑖 , and the individual
censoring time 𝐶𝑖 was the minimum of this sum and age 95.

The right panel of Figure 6.1 illustrates how the mechanisms of truncation and censor-
ing jointly determine the number of individuals at risk at any time 𝑡 across the age range
[75, 95]. Truncation pattern A causes the number of individuals at risk to increase steeply
at the early ages, and then to decrease only gradually across the age range. However, due
to the relatively short individual follow-up times, the number of individuals at risk across
ages is considerably smaller than the total sample size of about 500.

In the setting with a positive association between the recurrence and mortality pro-
cess (𝛾 = 0.5), additional simulation scenarios were set up by varying the censoring and
truncation patterns.

First, we considered the effect of changing the planned individual follow-up times to
𝑡𝐶 = 1 year or 𝑡𝐶 = 8 years, respectively. Longer individual follow-up times increase
the number of individuals who are under observation at a certain time 𝑡, and are therefore
expected to improve the estimator performance.

Second, we explored a scenario with a more unimodal distribution of the study entry
times in which relatively few individuals entered the study at the youngest and the oldest
ages (see Figure 6.1). This is truncation pattern B. To obtain a final sample with these
characteristics, we simulated the initial truncation times again from a truncated normal
distribution on the age range 75 to 95. However, in this scenario, the distribution had a
mode equal to 90, that is, within the above age range.

Finally, we examined a setting with a wider age range of [64, 105]. If 𝑡 = 0 was
now expected to correspond to age 64, but the Gompertz-Makeham rates were expected
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to agree with the rates of the base scenario over [75, 95], the parameters needed to be
adapted. This was achieved by maintaining the values of 𝑏 and 𝑐, but setting 𝑎 = 0.6 or
𝑎 = 0.05 for the recurrence and death processes, respectively. The initial distributions of
the study entry times were adapted to produce truncation patterns A or B on the wider
age range [64, 105]. In all of the additional scenarios, the truncated samples again had
a target size of 𝑚𝑉 = 500 individuals. The parameter values for the distributions of the
study entry times and the initial sample sizes for the different scenarios can be found in
Section 6.7.3.
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Figure 6.1: Distribution of the ages at study entry (left) and the number of individuals at risk across
the age range [75, 95] (right) for one simulated sample from the base scenario with truncation
pattern A (shaded bars, red line) or truncation pattern B (gray bars, black line), both with planned
individual follow-ups of four years.

6.4.2 Estimation and results
The estimation of the joint frailty model was carried out under the assumptions of gamma
distributed frailties with a mean of one and piecewise constant models for the two baseline
rates 𝜆0 (𝑡) and ℎ0 (𝑡). For both rates, 10 intervals were used that were denoted by 𝐼𝑅

𝑘

(recurrence process) and 𝐼𝐷
𝑘

(mortality), 𝑘 = 1, ..., 10. The intervals were determined
by the deciles of the observed recurrence and survival times, respectively. We set 𝑡𝑅0 =

𝑡𝐷0 = 75 (or 𝑡𝑅0 = 𝑡𝐷0 = 64) equal to the starting point of the respective age range and
𝑡𝑅10 = 𝑡𝐷10 equal to the maximum follow-up time in the sample. The marginal likelihood
was approximated using non-adaptive Gauss-Hermite quadrature with 𝑄 = 30 quadrature
points. We ran 200 replications in each setting. All computations were performed in R (R
Core Team, 2020). Further details on the implementation are provided in Section 6.7.2.
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Figures 6.2 and 6.3 illustrate the results of the base scenario with different underlying
associations, 𝛾 ∈ {−0.5, 0, 0.5}. The top panels of Figure 6.2 show that the covariate
effects 𝛼 and 𝛽, the dependence parameter 𝛾, and the frailty variance 𝜃 are estimated
without significant bias. The estimated standard errors of these parameters in the bot-
tom panels of Figure 6.2 are largely in line with the empirical standard deviations of the
respective parameter estimates across the replications. Nevertheless, we notice that the
estimator performance varies for different true values of the dependence parameter.

This pattern can be explained to some extent by different survivor selection effects.
The truncated sample consists of survivors, who tend to have lower mortality risks. If
the recurrence process and the mortality process are positively associated, this implies
that the frailty values and the recurrence rates are lower in the sample of survivors. In
the current setting, this lower frailty variance in the sample is favorable for the estima-
tion of 𝜃; whereas the low recurrence rate, which is associated with higher probabilities
of having no observed recurrent event, increases the variability in the corresponding es-
timated covariate effect 𝛽. The opposite effects are observed if the event processes are
negatively associated. If the recurrence rate has no effect on survival (𝛾 = 0), the method
still yields reliable results, and the parameters exclusively affecting survival are estimated
with higher levels of precision.

The estimates of the baseline rates, displayed for the base scenario with positive de-
pendence 𝛾 = 0.5 in Figure 6.3, also perform satisfactorily.

It is instructive to look at how the results change if the effects of survivor selection
on the frailty distribution in the sample are not taken into account correctly. As Fig-
ures 6.4 and 6.5 show, if the inference is based on the naively constructed marginal like-
lihood (6.8), biases can be seen in all parameter estimates in case the recurrence process
and the mortality process are associated. Moreover, as the estimated standard errors for
the covariate effects are substantially smaller than those obtained using the correct like-
lihood, they do not adequately reflect the uncertainty in the parameter estimates. The
baseline rates of recurrence and death are increasingly underestimated for advancing age
in the base scenario with positive dependence (𝛾 = 0.5), as depicted in Figure 6.5. This is
because in a setting with a positive association, the distribution of frailty among the sur-
vivors tends to be concentrated at lower values. Accordingly, for negative associations,
the recurrence rate will be overestimated at the older ages, while the hazard of death will
again be underestimated at the older ages. Hence, failing to construct the marginal likeli-
hood based on the correct distribution of the frailty, see (6.7), introduces marked biases in
the estimates and the standard errors. Only if the event rates are not associated (𝛾 = 0) is
the distribution of frailty among survivors equal to the initial frailty distribution 𝐺 𝜃 , such
that the naive marginal likelihood coincides with the correct marginal likelihood (6.7) and
yields valid inferences.

Lastly, we want to examine the results for the additional simulation scenarios with
modified censoring and truncation patterns. The figures illustrating these results can be
found in Section 6.7.3. In the scenario with a planned individual follow-up of only 𝑡𝐶 = 1
year, we find increased variability in all parameter estimates (see Figures 6.8 and 6.9).
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Figure 6.2: Box plots of the parameter estimates (top) and estimated standard errors (bottom) in the
joint frailty model for positive (𝛾 = 0.5), no (𝛾 = 0), or negative (𝛾 = −0.5) dependence under the
base scenario. Left to right: covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence
parameter (𝛾), and frailty variance (𝜃) based on 200 truncated samples with a target size of 500.
The red dashed line marks the true parameter value (top) or empirical standard deviation (bottom);
the gray dotted lines mark 10% deviations from the respective value.
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Figure 6.3: Estimates (gray) of the baseline rate of recurrence (left) and of death (right) based on
200 truncated samples with a target size of 500 generated from a joint frailty model with positive
dependence (𝛾 = 0.5) under the base scenario. The red bold line gives the true baseline rate.

This is expected, because with shorter individual follow-up times, fewer individuals are
observed at a given age 𝑡 than in the base scenario. Further extending the planned indi-
vidual follow-up times of the base scenario from 𝑡𝐶 = 4 to 𝑡𝐶 = 8 years does not lead to
considerable improvements, apart from some reduced variability in the estimates of the
frailty variance and the baseline rates.

A change in the distribution of the study entry times can markedly influence the es-
timation results. In the modified base scenario with truncation pattern B, the estimated
covariate effects �̂� and 𝛽 are more variable than under truncation pattern A, occasionally
with negative estimates (see Figure 6.10). In addition, the first piece of each of the base-
line rates shows an upward bias (cf. top panels of Figure 6.11) because few individuals
entered the study at the younger ages. Although the intervals for the rate pieces were
constructed to contain roughly equal numbers of observed events, the first intervals cover
a relative large age range with few individuals under study at a given age 𝑡 due to the
delayed entry.

The last scenario combines a wider age range [64, 105] and truncation times spread
across the whole age range according to pattern A or B, with individual follow-ups
planned for 𝑡𝐶 = 4 years. This setting is more demanding because the amount of in-
formation available at a given age 𝑡 is considerably smaller than it is in the scenarios with
age range [75, 95]. Therefore, the variability in the estimates tends to increase, and the
estimates of the dependence parameter and the frailty variance exhibit a small downward
bias (see Figure 6.10).
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Figure 6.4: Box plots of the parameter estimates (top) and estimated standard errors (bottom) based
on the naive likelihood of the joint frailty model for positive (𝛾 = 0.5), no (𝛾 = 0), or negative (𝛾 =

−0.5) dependence under the base scenario. Left to right: covariate effect on mortality (𝛼) and on
recurrences (𝛽), dependence parameter (𝛾), and frailty variance (𝜃) based on 200 truncated samples
with a target size of 500. The red dashed line marks the true parameter value (top) or empirical
standard deviation (bottom); the gray dotted lines mark 10% deviations from the respective value.
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Figure 6.5: Estimates (gray) of the baseline rate of recurrence (left) and of death (right) based on
the naive likelihood for 200 truncated samples with a target size of 500 generated from a joint frailty
model with positive dependence (𝛾 = 0.5) under the base scenario. The red bold line gives the true
baseline rate.

Overall, the simulation studies suggest that the proposed method for the estimation of
the joint frailty model based on left-truncated data performs satisfactorily. The parameter
estimates are largely unbiased if the study design ensures that a reasonable number of
individuals are under observation across time 𝑡. Including a relatively large number of
individuals early on and a preferably stable number of study entries across the remaining
time range benefits the estimation. In addition, the individual follow-up times should
be sufficiently long given the total time window and the sample size. As expected, the
patterns of censoring and truncation that cause more information to be lost negatively
affect the estimator performance.

6.5 Recurrent infections and mortality in an older population

We use the proposed method to analyze recurrent urinary tract infections and mortality
in an institutionalized elderly population. The data come from a double-blind, random-
ized, placebo-controlled trial in long-term care facilities that aimed to assess the effect of
cranberry capsules on the occurrence of UTIs in vulnerable older persons (Caljouw et al.,
2014). At baseline, the participants were stratified into two groups of high or low UTI
risk depending on whether they had diabetes mellitus, a urinary catheter, or at least one
treated UTI in the preceding year. Within these two strata, the participants were randomly
assigned to the treatment or the control group. The participants took cranberry or placebo
capsules twice a day over a period of one year. Occurrences of UTIs were recorded by
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the treating physicians according to a clinical definition based on international practice
guidelines for LTCF residents, and a strict definition based on scientific criteria. We focus
here on the occurrence of the more broadly defined clinical UTIs.

The final study population consisted of 928 individuals, most of whom were women
(703; 75.8%). Of these individuals, 516 were considered to be at high baseline UTI risk,
while 412 were considered to be at low baseline UTI risk. Individuals entered the study
between ages 64 and 102, as shown in the left panel of Figure 6.6, and were followed on
average for about a year (mean: 332 days, median: 372 days). A total of 317 participants
(34.2%) died during the study period. The number of observed UTIs per individual ranged
from zero to 10, with 62.2% of the individuals having no UTIs, 20.8% having one UTI,
and 17.0% experiencing two or more UTIs during the follow-up period.

Unlike in the original study, we modeled recurrent UTIs and mortality to evolve with
age, where 𝑡0 = 0 corresponded to age 64. Because of the specific distribution of the
ages at study entry in conjunction with the short individual follow-up times, relatively
few individuals were under observation at a given age, in particular at the youngest and
oldest ages, as the right panel of Figure 6.6 shows.
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Figure 6.6: Distribution of ages at study entry (left) and number of individuals under observation
across the age range (right) in the cranberry data set, separately for the groups with high baseline
UTI risk (gray bars, black solid line) and low baseline UTI risk (shaded bars, red dashed line).

We estimated the joint frailty model for UTIs and overall mortality with age as the
time scale separately for the groups with high and low baseline UTI risk. Two binary
covariates for treatment and gender were included, and frailties were assumed to follow
a gamma distribution with a mean of one. The baseline rate of UTI recurrence and the
hazard of death were specified as piecewise constant functions with 10 intervals over
the age range 64 to 103 in the high risk group and 64 to 104 in the low risk group.
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Separately for the two risk groups, the cut-points for the intervals were determined based
on the deciles of the observed recurrence or death times, respectively. The likelihood was
approximated using non-adaptive Gaussian quadrature with 30 nodes.

The parameter estimates for both risk groups are reported in Table 6.1. In the group
with a high baseline UTI risk, the infection rates varied between participants with an
estimated frailty variance of 𝜃 = 0.380 (SE: 0.086). In particular, individuals with a
higher rate of recurrent infections tended to also experience higher mortality risks, as
indicated by the positive estimate of the dependence parameter, �̂� = 0.181 (SE: 0.084).
The participants in the low risk group seemed to be more heterogeneous (𝜃 = 1.122, SE:
0.316), but the analysis did not detect an association between the occurrence of UTIs and
survival (�̂� = 0.058, SE: 0.044). The results suggest that the cranberry capsules did not
have a noticeable effect on the occurrence of UTIs irrespective of the baseline UTI risk.
When we look at gender differences, we see that males and females experienced similar
infection rates, while males had higher mortality levels than females in both groups.

Table 6.1: Parameter estimates (with standard errors) for the joint frailty model fitted to the cran-
berry data set, separately by risk group.

High baseline UTI risk Low baseline UTI risk
Recurrent UTIs

Treatment (cranberry) 0.000 (0.161) 0.189 (0.217)
Gender (male) 0.061 (0.218) −0.384 (0.381)

Mortality
Treatment (cranberry) 0.107 (0.152) −0.001 (0.197)
Gender (male) 0.396 (0.178) 0.787 (0.210)

Association
Dependence 𝛾 0.181 (0.084) 0.058 (0.044)
Frailty variance 𝜃 0.380 (0.086) 1.122 (0.316)

The estimated baseline rates displayed in Figure 6.7 demonstrate nicely the age de-
pendence of the recurrence rate and the hazard of death. For the individuals with a high
baseline UTI risk, both the rate of recurrent infection and the mortality risk showed a
general tendency to increase with age, although the small number of observations leads
to considerable uncertainty at the highest ages. In addition, the individuals with a high
baseline UTI risk tended to experience higher rates of recurrent infection and death than
the individuals with a low baseline UTI risk.

The original study, which used a different time scale, reported a positive treatment
effect of the intake of cranberry capsules only in the group with a high baseline UTI risk
and only for the outcome of UTI incidence (first infection during follow-up). When all
recurrent UTIs were analyzed in a gamma-frailty model, no treatment effect was detected,
which is in line with the findings presented here.
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Figure 6.7: Estimated baseline rates (solid) of recurrence (left) and mortality (right) with ±2 SE-
confidence bounds (dashed) for the cranberry data, separately for the groups with high baseline UTI
risk (top) and low baseline UTI risk (bottom).

6.6 Discussion

We have proposed a method for estimating the joint frailty model for recurrent events
and a terminal event based on left-truncated data. The marginal likelihood of the model
can be expressed as a ratio of two integrals over the frailty distribution, each of which
is approximated using Gauss-Hermite quadrature. The direct maximization of the ap-
proximate marginal likelihood is possible if the baseline rates are specified as piecewise
constant functions.
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The simulation studies presented here have shown that the estimation procedure per-
forms satisfactorily in general, and have demonstrated how different observation schemes
affect the estimator performance. While any pattern of truncation or censoring results
in incomplete information, study designs should still aim to provide enough information
to meet the needs of a model as complex as the joint frailty model. Having a sufficient
number of individuals under observation across most of the time range, and especially at
the start of the process, seems to be crucial for the method to yield reliable results.

Allowing for left truncation in frailty models requires us to consider carefully how the
frailty distribution in the sample of survivors may differ from the frailty distribution in
the underlying population due to selection effects. We illustrated through simulations the
biases that can arise in the parameter estimates of the joint frailty model if this difference
in the frailty distributions is ignored.

Extending the framework of the joint frailty model to incorporate delayed entry al-
lowed us to study age-specific rates of recurrent urinary tract infections and death in an
older population. Similarly, the proposed approach enables researchers to use the joint
frailty model in a wider variety of contexts in which subjects are included in a study only
if they have not yet experienced the terminal event. Apart from clinical studies with de-
layed entry, these contexts may include register-based studies of event processes evolving
with age as the main time scale, with individuals entering at different ages.

For a complete specification of the model and the approximate likelihood function,
we need to choose a frailty distribution as well as the number of quadrature points and
the intervals for the baseline rates. Although the simulation study and the application
covered only the common choice of a gamma distribution for the frailties, the quadrature
approach can be employed with other frailty distributions that have a closed-form inverse
distribution function, or a log-normal distribution. The number of quadrature points then
determines the accuracy of the integral approximations in the marginal likelihood, as
well as the computation time. In line with previous recommendations for gamma frailty
models (see Liu and Huang, 2008), we used 𝑄 = 30 quadrature points, which produced
good results in a reasonable period of time in our settings. Regarding the baseline rate
functions, the number of intervals corresponds to the number of parameters for the rates,
and should thus be selected to allow for sufficient flexibility of the shape of the rates, while
retaining numerical stability and the computational feasibility of the method. Adequate
results can often be obtained with moderate numbers of up to 10 intervals.

Nevertheless, in some applications, it may seem appealing to aim for smooth rate
estimates, such as through the use of penalized splines. However, automatic smoothing
parameter selection in joint frailty models is an issue that needs further investigation.

Moreover, the current approach is limited to applications in which there is heterogene-
ity in recurrence rates. Due to the specific dependence structure in the joint frailty model
considered here, the association between the recurrence process and the terminal event
process cannot be assessed if the frailty variance is close to zero.

Finally, in some applications, it might be of interest to extend the proposed method
to use information on recurrences before entry into the study. These additional event
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times can be included in the marginal likelihood, and are expected to lead to increased
precision in the estimation of the model for the recurrence process. However, when using
such an approach, researchers should reflect critically on the quality of the retrospectively
collected data, as recollections by study participants may be less reliable than data drawn
from other sources, such as registries.

6.7 Supplementary material

6.7.1 Approximation of the marginal likelihood using Gaussian quad-
rature

In this section, we will elaborate on the use of Gauss-Hermite quadrature for approximat-
ing the marginal likelihood of the joint frailty model. We will first recap the quadrature
approach as proposed by Liu and Huang (2008) in the setting with right-censoring only,
and then show how to adapt the method to the setting with left truncation.

An approximation to marginal likelihoods integrated over normal random effects based
on Gauss-Hermite quadrature was already presented in Section 6.3. But the marginal like-
lihoods of the joint frailty model given in Section 6.2 involve integrals over non-normal
random effects. Thus, we use the probability integral transformation (Nelson et al., 2006;
Liu and Huang, 2008) to rewrite the integrals over the random effect 𝑢 with distribu-
tion function 𝐺 𝜃 (𝑢) as integrals over standard normal random effects. This relies on the
fact that the 𝐺 𝜃 (𝑢) have a standard uniform distribution, such that their transformations
𝑎 = Φ−1 [𝐺 𝜃 (𝑢)] follow a standard normal distribution, if Φ(·) denotes the standard nor-
mal distribution function.

For the marginal likelihood contribution (6.5) of individual 𝑖 in the joint frailty model
without truncation, the substitution 𝑢 = 𝐺−1

𝜃
[Φ(𝑎)] yields

𝐿𝑖 =

∫ ∞

0
𝐿
(𝑐)
𝑖

(𝑢) 𝑔𝜃 (𝑢) d𝑢 =

∫ ∞

−∞
𝐿
(𝑐)
𝑖

(𝐺−1
𝜃 [Φ(𝑎)]) 𝜙(𝑎) d𝑎.

We can then employ Gauss-Hermite quadrature as in (6.11) to arrive at the approximate
marginal likelihood contribution of the form

𝐿𝑖 ≈
𝑄∑︁
𝑞=1

𝐿
(𝑐)
𝑖

(𝐺−1
𝜃 [Φ(𝑥𝑞)]) 𝜙(𝑥𝑞) �̃�𝑞 .

In the setting with left-truncated data, the marginal likelihood of the joint frailty model
has a slightly more complex structure. In (6.10), the marginal likelihood contribution 𝑉𝐿𝑖
of individual 𝑖 is expressed as a ratio of two integrals over the density 𝑔𝜃 (𝑢). Hence,
we will approximate the likelihood by applying the above approach separately to the two
integrals,

𝑉𝐿𝑖 =

∫ ∞
0 𝑉𝐿

(𝑐)
𝑖

(𝑢) exp {−𝐻𝑖 (𝑣𝑖 |𝑢)} 𝑔𝜃 (𝑢) d𝑢∫ ∞
0 exp {−𝐻𝑖 (𝑣𝑖 |𝑢)} 𝑔𝜃 (𝑢) d𝑢
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≈
∑𝑄

𝑞=1 𝑉𝐿
(𝑐)
𝑖

(𝐺−1
𝜃
[Φ(𝑥𝑞)]) exp {−𝐻𝑖 (𝑣𝑖 |𝐺−1

𝜃
[Φ(𝑥𝑞)])} 𝜙(𝑥𝑞) �̃�𝑞∑𝑄

𝑞=1 exp {−𝐻𝑖 (𝑣𝑖 |𝐺−1
𝜃
[Φ(𝑥𝑞)])} 𝜙(𝑥𝑞) �̃�𝑞

,

with 𝑉𝐿
(𝑐)
𝑖

(𝑢) given in (6.6). The approximate marginal likelihood of the joint frailty
model with left truncation is then given by

𝑚𝑉∏
𝑖=1

∑𝑄

𝑞=1 𝑉𝐿
(𝑐)
𝑖

(𝐺−1
𝜃
[Φ(𝑥𝑞)]) exp {−𝐻𝑖 (𝑣𝑖 |𝐺−1

𝜃
[Φ(𝑥𝑞)])} 𝜙(𝑥𝑞) �̃�𝑞∑𝑄

𝑞=1 exp {−𝐻𝑖 (𝑣𝑖 |𝐺−1
𝜃
[Φ(𝑥𝑞)])} 𝜙(𝑥𝑞) �̃�𝑞

.

In the naive likelihood (6.8), there is only one integral over the frailty distribution, and
hence only one approximation is required,

𝑉𝐿
naive
𝑖 =

∫ ∞

0
𝑉𝐿

(𝑐)
𝑖

(𝑢) 𝑔𝜃 (𝑢) d𝑢 ≈
𝑄∑︁
𝑞=1

𝑉𝐿
(𝑐)
𝑖

(𝐺−1
𝜃 [Φ(𝑥𝑞)]) 𝜙(𝑥𝑞) �̃�𝑞 .

6.7.2 Computational details
We used R (R Core Team, 2020) to implement the estimation procedure. The quadra-
ture points and weights were calculated using function gauss.quad() from pack-
age statmod (Smyth, 1998). For numerical optimization of the approximate marginal
log-likelihood, we applied function nlm(), which performs minimization based on a
Newton-type algorithm, to the negative log-likelihood. The Hessian of the marginal
log-likelihood was approximated numerically using function hessian() from package
numDeriv (Gilbert and Varadhan, 2019).

As the frailty variance and the parameters of the piecewise constant baseline rates
are restricted to be non-negative, the log-likelihood was maximized with respect to the
log-transform of these parameters, which guaranteed non-negative estimates. The delta-
method was then applied to derive the respective standard errors.

However, when specifying the baseline rates as piecewise constant functions, the nu-
merically computed Hessian of the log-likelihood may in some cases not be invertible.
To overcome this issue, one can add to the log-likelihood small, fixed ridge penalties
(e.g., with penalty parameter 10−6) on the logarithm of the rate parameters and derive the
Hessian matrix from this penalized log-likelihood.

6.7.3 Supplement to the simulation studies

Generation of different truncation patterns

A brief description of how the truncation patterns A and B were generated was already
given in Section 6.4. For both patterns, truncation times were simulated from a truncated
normal distribution defined on the corresponding age range [75, 95] or [64, 105]. How-
ever, the parameters 𝜇 and 𝜎2 of the underlying normal distribution were chosen such that
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the density of the resulting truncated normal distribution was either increasing over the
whole age range with mode equal to the maximum age or unimodal with a mode within
the age range. These two distinct shapes yielded the desired truncation patterns A (TrA)
or B (TrB) in the final samples. Table 6.2 reports, for the different settings, the parame-
ter values for the distribution of the truncation times as well as the initial sample size 𝑀
needed to obtain truncated samples with an average size of 𝑚𝑉 = 500.

When implementing the simulation study in R, we used function rtruncnorm()
from package truncnorm (Mersmann et al., 2018) for drawing random numbers from
a truncated normal distribution.

Table 6.2: Initial sample size 𝑀 and parameter values for the distribution of the truncation times.

𝛾 age range pattern 𝑀 𝜇 𝜎2

0.5 [75, 95] TrA 1.07 · 104 109 124
0.5 [75, 95] TrB 1.20 · 104 90 18
0.5 [64, 105] TrA 7.65 · 104 120 225
0.5 [64, 105] TrB 4.75 · 104 93 52
0 [75, 95] TrA 3.50 · 104 115 110

−0.5 [75, 95] TrA 3.44 · 104 115 109

Additional figures for the simulation results

The following figures illustrate the impact of different censoring and truncation patterns
on the performance of the estimation procedure. All settings are modifications of the
base scenario with positive dependence 𝛾 = 0.5, that was presented in Section 6.4. In
particular, samples with a target size of 𝑚𝑉 = 500 were generated from a joint frailty
model with covariate effects 𝛼 = 𝛽 = 0.5, frailty variance 𝜃 = 0.5, and Gompertz-
Makeham baseline rates.

• In Figures 6.8 and 6.9, the effect of different censoring mechanisms is studied by
comparing the estimation results for different lengths of the planned individual follow-
up 𝑡𝐶 ∈ {1, 4, 8} years.

• Changes in the distribution of truncation times are examined in Figures 6.10 and 6.11.
The displayed settings assume different distributions of the study entry times in the
final sample, both in terms of the shape (TrA: truncation pattern A, or TrB: truncation
pattern B) and the support of the distribution (75+: ages 75 to 95, or 64+: ages 64 to
105).
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Figure 6.8: Box plots of the parameter estimates (top) and estimated standard errors (bottom) in
the joint frailty model with positive dependence (𝛾 = 0.5) as in the base scenario with truncation
pattern A for ages 75+, but varying the planned individual follow-up 𝑡𝐶 ∈ {1, 4, 8}. Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (𝜃) based on 200 truncated samples with a target size of 500. The red dashed line marks
the true parameter value (top) or empirical standard deviation (bottom); the gray dotted lines mark
10% deviations from the respective value.
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Figure 6.9: Estimates (gray) of the baseline rate of recurrence (left) and of death (right) based on
200 truncated samples with a target size of 500 generated from a joint frailty model with positive
dependence (𝛾 = 0.5). As in the base scenario truncation follows pattern A for ages 75+, but
planned individual follow-up is 𝑡𝐶 = 1 (top) or 𝑡𝐶 = 8 (bottom) year(s). The red bold line gives the
true baseline rate. (Note the different scales of the vertical axes.)
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Figure 6.10: Box plots of the parameter estimates (top) and estimated standard errors (bottom) in
the joint frailty model with positive dependence (𝛾 = 0.5) as in the base scenario with 𝑡𝐶 = 4,
but truncation times distributed with different shapes (TrA: truncation pattern A, TrB: truncation
pattern B) and across different age ranges (75+: [75, 95], 64+: [64, 105]). Left to right: covariate
effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty variance (𝜃)
based on 200 truncated samples with a target size of 500. The red dashed line marks the true
parameter value (top) or empirical standard deviation (bottom); the gray dotted lines mark 10%
deviations from the respective value.
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Figure 6.11: Estimates (gray) of the baseline rate of recurrence (left) and of death (right) based on
200 truncated samples with a target size of 500 generated from a joint frailty model with positive
dependence (𝛾 = 0.5) and planned individual follow-up of 𝑡𝐶 = 4 years as in the base scenario.
Truncation times are distributed according to pattern B across ages [75, 95] (top; TrB, 75+) or
according to pattern A across ages [64, 105] (bottom; TrA, 64+). The red bold line gives the true
baseline rate. (Note the different scales of the horizontal and vertical axes.)
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