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4
Shifting attention to old age:

Detecting mortality deceleration using
focused model selection

Abstract

The decrease in the increase in death rates at old ages is a phenomenon that has repeatedly
been discussed in demographic research. While mortality deceleration can be explained
as an effect of selection in heterogeneous populations, this phenomenon can be difficult
to assess statistically because it relates to the tail of the lifespan distribution. By using
a focused information criterion (FIC) for model selection, we can directly target model
performance at those advanced ages at death. We analyze this question in the framework
of the gamma-Gompertz model that is reduced to the competing Gompertz model without
mortality deceleration if the variance parameter lies on the boundary of the parameter
space. We develop a new version of the FIC for this non-standard condition. In a simu-
lation study, the new FIC is shown to outperform other methods in detecting mortality
deceleration. We apply the approach to mortality data for extinct French-Canadian birth
cohorts, and we extend the method to include additional covariate information.

This chapter has been submitted for publication as: M. Böhnstedt, H. Putter, N. Ouellette, G. Claeskens,
and J. Gampe. Shifting attention to old age: Detecting mortality deceleration using focused model selection.
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64 Chapter 4 – Focused model selection for mortality deceleration

4.1 Introduction

Almost two centuries ago, Benjamin Gompertz noted that death rates of humans increase
exponentially with age from mid-life onwards (Gompertz, 1825). Makeham (1860) sup-
plemented Gompertz’s mortality model by a constant, and thus age-independent, com-
ponent to provide a better fit at younger ages. By the 1930s, Perks (1932) had become
aware that the Gompertz-Makeham hazard overestimated actual death rates at advanced
ages, and suggested replacing the exponential part with a logistic function for graduation
of mortality. The logistic hazard follows the Gompertz trajectory for the lower ages, but
gradually deviates – that is, increases less quickly – at advanced ages. This slowdown in
mortality rates late in life is now commonly known as mortality deceleration.

The study of death rates at high ages gained increased attention when, starting in the
1970s, progress against mortality became noticeable also among the elderly. This con-
tinuing improvement of death rates at old ages (Rau et al., 2008) is the primary reason for
longevity increases in high income countries. Thus, accurately describing the trajectory
of mortality at advanced ages is of great interest to actuaries, demographers, and aging
researchers, as it has important implications for pension funds, life insurance, social sup-
port systems, and public health planning. Understanding and projecting the numbers of
the oldest-old are essential for aging populations, and hinge on having proper estimates
of mortality late in life.

As vital statistics improved and more detailed information became available for indi-
viduals who survive to very old ages, the early findings of mortality deceleration were
replicated for more recent data (Horiuchi and Wilmoth, 1998; Thatcher et al., 1998;
Richards, 2008; Feehan, 2018). However, the phenomenon of mortality deceleration has
also been contested, with some scholars arguing that there is a continued exponential in-
crease in mortality with age (Gavrilov and Gavrilova, 2011, 2019), and that the apparent
slowdown in death rates with advancing age is primarily attributable to data errors (New-
man, 2018). It is indeed the case that exaggeration in the reporting of age and the failure
to remove deceased individuals from registers (due to unreported deaths) can result in an
overestimation of the number of long-lived individuals, which will bias death rates down-
wards at the most advanced ages (Preston et al., 1999). Thus, for individuals who die at
very old ages, a thorough scientific validation of the reported age at death is mandatory
(Jeune and Vaupel, 1999).

Such age validation procedures involve linking individual birth (or baptism) records
with death certificates, which is usually a tedious and time-consuming task. Thus, the
amount of available data is often limited. Furthermore, mortality deceleration occurs in
the tail of the survival distribution, where data are unavoidably scarce. For these reasons,
the statistical assessment of this phenomenon is challenging, and standard methods may
fail to identify deviations from the Gompertz hazard for the very old. The questions of
whether and, if so, how statistical inference can be improved to tackle these challenges
are addressed in this chapter.
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To illustrate how rapidly the number of observations declines with age, Figure 4.1
shows for French-Canadians born between 1880 and 1896 the empirical death rates by
age at ages 90 and above, as well as the number of deaths at each age. We can see that
75% of all deaths in this population had already occurred by age 96 for women and by
age 95 for men. While we have sizable samples for this population (about 20,000 women
and about 10,000 men), the information about (potential) mortality deceleration has to be
extracted from relatively scant data in the tail.
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Figure 4.1: Top: Death rates (on log scale) with 95% confidence intervals for French-Canadian
females (left) and males (right). Bottom: Frequency distribution of ages at death.

Much of present-day survival analysis is nonparametric, and thus avoids parametric
distributional assumptions about the times to event. For the specific questions addressed
here, a parametric framework proves both adequate and instrumental. The exponential
increase of mortality over much of the adult lifespan has been established empirically for
numerous populations, in different periods, and under varied social circumstances. Re-
search results that dismiss mortality deceleration (Gavrilov and Gavrilova, 2011, 2019)
support the use of a Gompertz hazard also at advanced ages. The possibility of treat-
ing this problem in a parsimonious parametric framework is attractive given the limited
amount of data from which information on deceleration can be drawn.

In this chapter, we will discuss the statistical assessment of mortality deceleration in
the framework of the gamma-Gompertz model, which is a particular parametrization of
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the logistic hazard introduced by Perks (1932). This model belongs to the class of pro-
portional hazards frailty models, which represent the standard approach for formalizing
individually heterogeneous hazards of death (Vaupel et al., 1979; Wienke, 2011). As was
already noted by Beard (1959), in such a model, frail individuals with higher mortality
levels tend to die at younger ages, while more robust individuals with lower death risks
tend to survive to higher ages, which leads to a deceleration of the average hazard with
age.

In the gamma-Gompertz model, an exponentially increasing (Gompertz) baseline haz-
ard is multiplied by a gamma distributed random effect (the frailty). If the variance 𝜎2 of
the gamma frailty takes a positive value, then the population hazard shows a downward
deviation from the Gompertz hazard at advanced ages. If the variance parameter takes
the value of zero, the population hazard is exponentially increasing. Thus, answering the
question of whether mortality does or does not decelerate at advanced ages corresponds
to selecting the gamma-Gompertz model or the Gompertz model. However, the single
additional parameter 𝜎2 of the gamma-Gompertz model lies on the boundary of the pa-
rameter space if the true model is the Gompertz model. As this boundary constraint on the
parameter violates the usual regularity assumptions, the inference and the model selection
have to be adapted to this non-standard condition.

Traditional approaches to inference in this context either employ a likelihood ratio
test for 𝜎2 = 0, which has low power to detect actual deceleration, or model selection
via Akaike’s information criterion (AIC, Akaike, 1974). While information criteria, like
the AIC, select a ‘best’ model regardless of the specific estimand that is of interest, we
propose using a focused information criterion (FIC, Claeskens and Hjort, 2003) that se-
lects the model that performs ‘best’ for a specific parameter of interest, called the focus
parameter. Applying the FIC is particularly appealing in our context, as it will allow us
to choose a focus parameter that is directly affected by the presence or the absence of
mortality deceleration; for example, the hazard at some advanced age.

Technically, the FIC is constructed as an unbiased estimator of the limiting risk of an
estimator of the focus parameter, and the candidate model with the smallest FIC value is
selected. While the standard version of the FIC aims to minimize the mean squared error
(MSE) of the estimator of the focus parameter, the criterion has been generalized to other
risk measures, such as 𝐿𝑝-risks (Claeskens et al., 2006). Still, all of these model selection
criteria have been developed based on general likelihood theory under the standard regu-
larity assumptions, which are violated in our setting. Therefore, we will derive versions
of the FIC that allow us to choose between two models in which the additional parameter
may lie on the boundary of the parameter space.

The chapter is structured as follows. In Section 4.2, we summarize models for late-
life mortality, and discuss the specific parametrization of the gamma-Gompertz model.
We also present traditional methods for detecting mortality deceleration in this frame-
work. Then, in Section 4.3, we propose the FIC as a new approach for assessing this
phenomenon. We introduce the method for a single sample, and, in Section 4.4, we study
the performance of the FIC in a simulation study, and compare it with the performance
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of an AIC that is adjusted to the presence of the boundary constraint. In Section 4.5, we
apply the new model selection criteria to the French-Canadian mortality data presented
in Figure 4.1. We describe the data source and the age validation procedure, and apply
the method to the samples of females and males separately. Additionally, we incorporate
effects for different birth cohorts. We conclude with a discussion in Section 4.6.

4.2 Mortality at advanced ages

4.2.1 Hazard models
To model mortality at advanced ages, we consider the continuous random variable 𝑌 ,
which describes adult lifespans from mid-life onwards. Its distribution can be charac-
terized by the hazard function, the instantaneous death rate at age 𝑦 given survival up
to 𝑦,

ℎ(𝑦) = lim
Δ𝑦↘0

𝑃(𝑦 < 𝑌 ≤ 𝑦 + Δ𝑦 |𝑌 > 𝑦)
Δ𝑦

.

The value 𝑦 = 0 corresponds to the age from which we start modeling, typically age 50 or
60. The Gompertz distribution is characterized by an exponentially increasing trajectory
ℎ(𝑦) = 𝑎𝑒𝑏𝑦 , with two positive parameters 𝑎 and 𝑏. Makeham (1860) extended the hazard
by an age-independent constant 𝑐 ≥ 0 to ℎ(𝑦) = 𝑎 𝑒𝑏𝑦 +𝑐 to achieve a better fit at younger
ages.

The replacement of the exponential component by a logistic term was suggested by
Perks (1932) in order to allow for a slower-than-exponential increase in death rates at the
highest ages, while keeping the proven Gompertz shape before that point. In its general
form, the logistic hazard is

ℎ(𝑦) = 𝐴𝑒𝑏𝑦

1 + 𝐵𝑒𝑏𝑦
with 𝐴 > 0, 𝐵 ≥ 0. (4.1)

If 𝐵 = 0, then the hazard (4.1) reduces to the Gompertz model with 𝐴 = 𝑎. The logistic
hazard can be viewed as a simple device to capture potential mortality deceleration by one
additional parameter. However, Beard (1959) already noted that a hazard of the form (4.1)
arises when individuals are submitted to Gompertz hazards with individually varying pa-
rameters 𝑎. If the distribution of 𝑎 follows a gamma distribution, then an average hazard
of logistic shape results.

In contemporary statistical terminology, Beard’s finding would be called a propor-
tional hazards frailty model of the form ℎ(𝑦 |𝑍 = 𝑧) = 𝑧 · ℎ0 (𝑦) (Duchateau and Janssen,
2008; Wienke, 2011). Here, a positive random effect 𝑍 (called frailty) acts multiplica-
tively on a common baseline hazard ℎ0 (𝑦), such that ℎ(𝑦 |𝑍 = 𝑧) denotes the conditional
hazard of an individual at age 𝑦, given that his or her frailty is 𝑍 = 𝑧. The random ef-
fect 𝑍 assigns heterogeneous mortality risks to individuals in a cohort who, apart from
those risks, share a common ‘law’ of mortality (the baseline). As a result of selection,
frail individuals with higher mortality levels tend to die at younger ages, while the more
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robust individuals with lower death risks tend to survive to higher ages. Consequently,
the population hazard, averaged over the survivors at each age, deviates from the baseline
shape; and the larger the initial heterogeneity, the stronger the deviation is.

The frailty 𝑍 is often assumed to follow a gamma distribution with mean one and
variance 𝜎2 (Vaupel et al., 1979). The choice of the gamma distribution, which may be
deemed ad hoc, is not only mathematically convenient, but is also theoretically justified.
Abbring and van den Berg (2007) proved that the distribution of the heterogeneity among
survivors, once selection took effect, converges to a gamma distribution for a large class
of proportional hazards frailty models, even if the frailty is not gamma distributed from
the outset.

The so-called gamma-Gompertz model is obtained if the gamma frailty is multiplied
to an exponentially increasing Gompertz baseline hazard, ℎ0 (𝑦) = 𝑎𝑒𝑏𝑦 . The resulting
marginal hazard is

ℎ(𝑦) = 𝑎𝑒𝑏𝑦

1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑦 − 1)

. (4.2)

If 𝜎2 > 0, there is heterogeneity in the risk of death, and the selection of more robust
individuals will take place. If 𝜎2 = 0, there is no heterogeneity, and the marginal hazard
is exponentially increasing, such that ℎ(𝑦) = 𝑎𝑒𝑏𝑦 . Hence, in the framework of the
gamma-Gompertz model, the statistical assessment of mortality deceleration is reduced
to inference on the parameter 𝜎2.

The gamma-Gompertz hazard (4.2) is a straightforward reparametrization of the logis-
tic hazard (4.1), with 𝐴 = 𝑎/(1−𝜎2 𝑎

𝑏
) and 𝐵 = 𝜎2𝑎

𝑏
/(1−𝜎2 𝑎

𝑏
); and in both versions the

Gompertz hazard is retained if the third parameter equals zero, that is, 𝜎2 = 0 or 𝐵 = 0, re-
spectively. The gamma-Gompertz formulation explicitly signalizes the role of individual
heterogeneity and its impact on and the progression of selection among survivors.

It is important to note that the parameter 𝜎2 measures population heterogeneity at the
starting age of the model (corresponding to 𝑦 = 0). Due to the continuing selection of ro-
bust individuals, the variance of frailty among the survivors decreases with age. Thus, the
higher the age at which we start our observation, the lower the heterogeneity in mortality
is among the individuals in the sample. The age at the beginning of the observation will,
therefore, have an impact on the resulting inference.

The inference in the gamma-Gompertz model involves the frailty variance 𝜎2, which
is a parameter that lies on the boundary of its parameter space in the absence of mor-
tality deceleration (𝜎2 = 0). This violates the standard assumptions that underlie the
asymptotic properties of the likelihood-based inference, which, in turn, affects the tradi-
tional approaches for assessing mortality deceleration that are presented in the following
section.

4.2.2 Traditional approaches to inference
Two methods are commonly used for assessing mortality deceleration in the framework
of the gamma-Gompertz model: a likelihood ratio test for a zero frailty variance, and
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model selection between the gamma-Gompertz model and the Gompertz model based on
the AIC.

The likelihood ratio test for homogeneity in the gamma-Gompertz model, where
𝐻0 : 𝜎2 = 0 and 𝐻1 : 𝜎2 > 0, is non-standard in that, under the null hypothesis, the
parameter 𝜎2 lies on the boundary of the parameter space. Consequently, the asymp-
totic distribution of the likelihood ratio test statistic under 𝐻0 is no longer a chi-squared
distribution with one degree of freedom. However, using the results of Self and Liang
(1987), it can be shown that under the null hypothesis, the likelihood ratio test statistic
asymptotically follows a 50:50 mixture of a point mass at zero and a chi-squared distri-
bution with one degree of freedom, 1

2 𝜒
2
0 + 1

2 𝜒
2
1 . Tests based on the wrong assumption of

a 𝜒2
1-distribution of the test statistic occasionally appear in studies of mortality decelera-

tion (Pletcher, 1999). Ignoring the issue of the boundary parameter and using the incor-
rect distribution of the test statistic lowers the power to (correctly) decide in favor of the
gamma-Gompertz model. But even when the test statistic is correctly assumed to follow
a 1

2 𝜒
2
0 +

1
2 𝜒

2
1-distribution, the likelihood ratio test has low power to detect mortality decel-

eration in the gamma-Gompertz model. This is especially likely to be the case when the
inference has to be based on age-restricted samples, such as a sample of individuals who
survived beyond age 90 (see Section 4.7.2 for an illustration).

A popular alternative approach for assessing mortality deceleration is model selection
based on the AIC (Richards, 2008; Gavrilova and Gavrilov, 2015). The AIC targets an
unbiased estimate of the Akaike information; that is, of the expected relative Kullback-
Leibler distance between the true data-generating mechanism and the best parametric
approximation. Under standard conditions, the AIC is therefore defined as −2ℓ + 2𝑘 ,
where the log-likelihood ℓ, evaluated at the maximum likelihood estimate, is penalized
by the number 𝑘 of parameters in the model. This common definition has, however, been
found to be biased under the non-standard conditions of the gamma-Gompertz model
(Böhnstedt and Gampe, 2019). Thus, the standard version of the AIC is not a valid tool
for model selection in the setting of the gamma-Gompertz model. In Section 4.3.4, we
will present a modified version of the AIC that is adjusted to the presence of a boundary
parameter.

4.3 Focused information criterion for mortality deceleration

The preceding considerations indicate that neither a testing strategy, particularly if it is
low-powered, nor an all-purpose model selection criterion will adequately assess the oc-
currence of mortality deceleration. Focused information criteria (FIC) have been intro-
duced to address problems of this kind, and we propose selecting the model based on
a new version of the FIC that takes the boundary constraint on the frailty variance into
account.
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4.3.1 Rationale for FIC
Statistical analyses are performed for particular purposes, and acknowledging the specific
purpose when choosing the statistical model is the key concept of a FIC. In the following
exposition, we use the terminology and notation of Claeskens and Hjort (2003).

Observations 𝑦𝑖 , 𝑖 = 1, . . . , 𝑛 (here: ages at death) are assumed to be generated by a
parametric density 𝑓 (𝑦). The parameters of the model are split into a 𝑑-vector 𝜽 , which
characterizes the narrow model, and an additional 𝑞-vector 𝜸 for the extended model. The
narrow model is obtained for one particular value 𝜸0, which is fixed and known. In the
current application, the density of the gamma-Gompertz model (4.2) is

𝑓 (𝑦) = 𝑎𝑒𝑏𝑦
{
1 + 𝜎2 𝑎

𝑏
(𝑒𝑏𝑦 − 1)

}−(
1+ 1

𝜎2

)
.

The parameter 𝜽 = (𝑎, 𝑏)> is the Gompertz part of the model, so 𝑑 = 2. The single
additional parameter is 𝛾 = 𝜎2 with 𝛾0 = 0, so 𝑞 = 1.

The original FIC is derived in a framework of local misspecification (Hjort and
Claeskens, 2003), where a sample of size 𝑛 is assumed to be generated from a density

𝑓true (𝑦) = 𝑓 (𝑦, 𝜽0, 𝜸0 + 𝜹/
√
𝑛), (4.3)

with the parameter vector 𝜸 = 𝜸0 + 𝜹/
√
𝑛 perturbed in the direction of 𝜹. Selection is

between the null model, where 𝜸 is fixed at the known value 𝜸0; the full model, including
both 𝜽 and 𝜸; and, if 𝑞 > 1, any model including 𝜽 , but only a subset of the components
of 𝜸 and the remaining fixed at the respective values in 𝜸0. For the current setting, selec-
tion is only between the null model with 𝜎2 = 0, that is, the Gompertz model; and the full
model including 𝜎2, that is, the gamma-Gompertz model. Due to the boundary constraint
on the frailty variance, 𝛿 =

√
𝑛𝜎2 is subject to the a priori restriction 𝛿 ≥ 0. Therefore,

we will restrict the framework in the following to the choice of including or not including
a single parameter with a boundary constraint; that is, 𝑞 = 1 and 𝛾 ≥ 𝛾0.

The focus is the parameter of interest, which depends on the underlying density (4.3)
via 𝜽 and 𝜸. The focus is commonly denoted by 𝜇, and we define 𝜇true = 𝜇(𝜽 , 𝛾0+𝛿/

√
𝑛).

Based on the maximum likelihood estimators 𝜽null in the null model and (𝜽 full, �̂�) in the
full model, the focus parameter is estimated as �̂�null = 𝜇(𝜽null, 𝛾0) or �̂�full = 𝜇(𝜽 full, �̂�).
For each model 𝑀 , 𝑀 ∈ {null, full}, the estimator �̂�𝑀 converges in distribution,

√
𝑛( �̂�𝑀−

𝜇true)
𝑑−→ Λ𝑀 .

The FIC selects the model that performs ‘best’ for the focus parameter 𝜇. If it is
based on the general 𝐿𝑝-loss, the FIC aims to estimate without bias the limiting 𝐿𝑝-risk
of �̂�𝑀 ; that is, 𝑟𝑝 (𝑀) = E[|Λ𝑀 |𝑝]. The model for which this limiting risk is smaller is
selected by the criterion. Of particular interest is a FIC based on the MSE (𝑝 = 2, as for
the original version, Claeskens and Hjort, 2003), constructed as an estimator of E[Λ2

𝑀
];

and a FIC based on the mean absolute error (MAE, 𝑝 = 1), constructed as an estimator
of E[|Λ𝑀 |].
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4.3.2 FIC with a parameter on the boundary of the parameter space
Under standard regularity conditions, when general likelihood theory applies, the asymp-
totic normality of the maximum likelihood estimator implies that the Λ𝑀 are normally
distributed (Claeskens and Hjort, 2003). In the non-standard setting considered here, Λfull
is not normally distributed because the maximum likelihood estimator (𝜽 full, �̂�) converges
in distribution to a mixture with two components (Böhnstedt and Gampe, 2019). The lim-
iting distribution depends on the information matrix 𝐽full of the full model evaluated at
the null model (𝜽0, 𝛾0). We denote by 𝐽00, 𝐽01, 𝐽10, and 𝐽11, the four blocks of 𝐽full corre-
sponding to the components 𝜽 and 𝛾 of the parameter vector; and by 𝜅2 the element of the
inverse information matrix 𝐽−1

full, which corresponds to 𝛾. Then, the following convergence
in distribution holds for the estimator of the frailty variance

√
𝑛(�̂� − 𝛾0)

𝑑−→ max (0, 𝐷) with 𝐷 ∼ N (𝛿, 𝜅2).

For the limiting distribution of the estimator of the focus parameter, it can be shown that

√
𝑛( �̂�null − 𝜇true)

𝑑−→ Λnull = Λ0 + 𝜔𝛿 and

√
𝑛( �̂�full − 𝜇true)

𝑑−→ Λfull =

{
Λ0 + 𝜔(𝛿 − 𝐷) if 𝐷 > 0
Λ0 + 𝜔𝛿 if 𝐷 ≤ 0

, (4.4)

where Λ0 ∼ N (0, 𝜏2
0 ) is independent of 𝐷, 𝜏2

0 =

(
𝜕𝜇

𝜕𝜽

)>
𝐽−1

00
𝜕𝜇

𝜕𝜽 and 𝜔 = 𝐽10𝐽
−1
00
𝜕𝜇

𝜕𝜽 − 𝜕𝜇

𝜕𝛾

(cf. Section 10.2 in Claeskens and Hjort, 2008).
To define a FIC, we need to derive E[|Λ|] or E[Λ2] from (4.4), depending on whether

we intend to base the criterion on the limiting 𝐿1- or 𝐿2-risk of the estimator �̂�.
As in the original version of the FIC, the limiting MSE of �̂� is considered first. How-

ever, as we will demonstrate in the following, the FIC based on the 𝐿2-risk has some
drawbacks in the current setting, which makes the 𝐿1-risk an attractive alternative.

From equation (4.4) we can determine E[Λ2] for the null and the full model:

E[Λ2
null] = 𝜏

2
0 + 𝜔2𝛿2 and

E[Λ2
full] = 𝜏

2
0 + 𝜔2

{
𝛿2Φ

(
−𝛿
𝜅

)
− 𝜅𝛿𝜙

(
𝛿

𝜅

)
+ 𝜅2Φ

(
𝛿

𝜅

)}
,

(4.5)

where Φ(·) and 𝜙(·) denote the cdf and the pdf of the standard normal distribution, respec-
tively. The FICMSE would be constructed as an unbiased estimator of the MSEs in (4.5),
and the model with the smaller FIC value would be selected.

As has already been pointed out by Claeskens and Hjort (2008, Section 5.3), in the
case of a single additional parameter 𝛾, the so-called tolerance radius does not depend on
the focus 𝜇. This radius signifies the deviation 𝛿 for which the MSE of the null model
estimator is smaller than that of the full model estimator; that is, E[Λ2

null] ≤ E[Λ2
full].

From (4.5), we see that the two risks are the same for 𝜔 = 0, and that if 𝜔 ≠ 0 the
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tolerance radius encompasses all 𝛿 with 𝛿 < 0.8399𝜅. We can still define a pre-test
strategy for assessing mortality deceleration, which is based on the quantity 𝛿/𝜅, where
𝛿 =

√
𝑛(�̂� − 𝛾0) =

√
𝑛�̂�2 and 𝜅 is derived from the observed Fisher information. If

𝛿/𝜅 ≤ 0.8399, the estimator �̂�null based on the Gompertz model is used; whereas if
𝛿/𝜅 > 0.8399, the estimator �̂�full based on the gamma-Gompertz model is used. We note
here that 𝛿 is not an unbiased estimator of 𝛿, with the bias depending in a complex way on
𝛿 and 𝜅. In appraising this pre-test-based model choice, we can see that for large samples,
the local power of this strategy is approximately the same as the power of a likelihood
ratio test for 𝐻0 : 𝜎2 = 0 at the 20% level (cf. Section 4.7.3).

Although strategies based on the limiting 𝐿2-risks of the estimator �̂� are common, the
derived pre-test strategy has drawbacks. On the one hand, the performance of this strategy
does not depend on the chosen focus parameter; while on the other, the equal penalty
for squared bias and variance of the estimators in the 𝐿2-risk might not be suitable for
choosing whether to include a heterogeneity parameter.

Consequently, using risk measures other than the 𝐿2-risk can be more appropriate, as
was already suggested in Claeskens et al. (2006). Formulas for the general limiting 𝐿𝑝-
risk of �̂�𝑀 were derived there under regularity conditions where Λ𝑀 follows a normal
distribution for each of the models. In our non-standard setting, the limiting distribution
of the full model estimator in (4.4) is not normal, but we can still derive the limiting
𝐿1-risk of the estimators �̂�null and �̂�full as follows (see Section 4.7.4 for details):
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and
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Thus, we define the FICMAE of the null model and the full model as the estimators
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respectively. Based on this new model selection criterion FICMAE, the full model is chosen
if the estimated MAE of its estimator of the focus parameter 𝜇 is smaller than the MAE
for the null model estimator. In contrast to the MSE, the tolerance radius determined by
the MAE of �̂�𝑀 does depend on the focus parameter via 𝜔 and 𝜏0.
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4.3.3 Choice of the focus parameter
The central concept and virtue of the FIC approach is that it allows us to consolidate a sci-
entific question in a focus parameter, and to customize the model selection to the specific
focus. In the context of mortality deceleration, two focus parameters suggest themselves.
The first parameter is the frailty variance, since it determines whether mortality decel-
eration is present, so 𝜇 = 𝜎2. The second focus parameter targets the deceleration of the
hazard function, measured by the second derivative of the log-hazard at some (high) age 𝑦
so that 𝜇 = [ln ℎ(𝑦)] ′′.

For 𝜇 = 𝜎2 the expressions in (4.6) take the form

E[|Λnull |] = 𝛿 and E[|Λfull |] = 𝜅
√︂

2
𝜋
− 𝜅𝜙

(
−𝛿
𝜅

)
+ 𝛿Φ

(
−𝛿
𝜅

)
.

Consequently, model choice based on the FICMAE results in the gamma-Gompertz model
if 𝛿/𝜅 > 0.6399. If we view this as a pre-test strategy, then it has asymptotically the same
local power as the likelihood ratio test for 𝐻0 : 𝜎2 = 0 at a level of 26%.

If we choose 𝜇 = [ln ℎ(𝑦)] ′′ the choice of the age 𝑦 should be such that it marks an
age in the tail of the distribution where deceleration occurs, but which still lies within the
range of observed lifespans.

While the above choices of the focus parameter are natural and allow for immediate
interpretations, we could also select as the focus any function that characterizes the distri-
bution of lifespans, such as the survival function or the log-hazard. The effects of different
focus parameters on the model selection will be briefly illustrated in the simulation study
in Section 4.4, and recommendations will be given in Section 4.6.

4.3.4 A modified AIC for the gamma-Gompertz model
As we mentioned in Section 4.2.2, the standard AIC is biased as an estimator of the Akaike
information in the presence of a boundary parameter, and should therefore not be used
for assessing mortality deceleration. However, Böhnstedt and Gampe (2019) explicitly
derived the bias of the standard AIC for the gamma-Gompertz model (4.2) under the local
misspecification framework (4.3) as 2Φ (−𝛿/𝜅). This bias depends via 𝛿 =

√
𝑛𝜎2 on the

unknown value of the frailty variance, and it cannot be estimated without bias if the true
variance is small. Thus, the bias cannot be removed completely, but it can be reduced if
we correct the standard AIC using the estimator 2Φ

(
−𝛿/𝜅

)
of the bias term. Hence, we

define a modified version of the AIC for the gamma-Gompertz model as

AIC∗ = −2 ℓ + 2 · 3 − 2Φ
(
−𝛿
𝜅

)
. (4.7)

The performance of this modified AIC∗ for detecting mortality deceleration is studied in
the next section.
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4.4 Simulation study

To examine the performance of the proposed FICMAE in assessing mortality deceleration,
we conducted a simulation study. In addition to considering different choices for the
focus, the study compares the behavior of the FICMAE with that of the pre-test based on
𝐿2-risks, and with that of the AIC∗ defined in (4.7).

The following factors will affect the performance of the different strategies: the size
of the true frailty variance 𝜎2; the sample size 𝑛; and the starting age used when observing
lifespans, with a younger starting age being more favorable for detecting actual mortality
deceleration.

For the frailty variance (at 𝑦 = 0), three different scenarios were considered:
𝜎2 = 0.0625 (𝑆1) and 𝜎2 = 0.03 (𝑆2) with Gompertz parameters 𝑎 = 0.013, 𝑏 = 0.092.
Scenario 𝑆3 is a pure Gompertz model with 𝑎 = 0.0198, 𝑏 = 0.0726 (and 𝜎2 = 0). Sce-
nario 𝑆1 was chosen to resemble the mortality pattern in the data on French-Canadian
females that are analyzed in the following section. Scenario 𝑆2 mimics a population with
the same Gompertz baseline hazard, but lower heterogeneity in the risk of death. By com-
paring Scenarios 𝑆1 and 𝑆2, we will therefore be able to single out the effect of the size
of the frailty variance on the performance of the selection strategies. Note that the frailty
variances were set to levels comparable to those estimated from the French-Canadian
data. Lastly, Scenario 𝑆3 was inspired by a fit of the Gompertz model to the female data.

To cover the latter two aspects, survival times were generated from the gamma-
Gompertz model (4.2), with 𝑦 = 0 corresponding to age 60. However, the model selection
was based only on subsets of individuals reaching certain ages. Motivated by the French-
Canadian data, we considered individuals who survived to ages 90 or higher (90+). Ad-
ditional comparisons based on the larger subsets of individuals who survived to ages 85+
and 80+ are presented in Section 4.7.6.

For each scenario 𝑆1 to 𝑆3, three different initial sample sizes (at age 60) were chosen,
such that the size of the 90+ subset approximately equals 𝑛90+ = 10,000 (small), 𝑛90+ =

20,000 (medium) or 𝑛90+ = 105,000 (large). The sample sizes may look unusually large,
but they cover a realistic range of population-based data. Recall that the French-Canadian
data presented in Figure 4.1 contain information on about 20,000 women and 10,000 men.

For each 90+ sample, the log-likelihoods for the Gompertz model and the gamma-
Gompertz model were maximized using function nlm() in R (R Core Team, 2018);
further computational details are given in Section 4.7.1. Then, the best model is selected
based on the FICMAE for different focus parameters, the MSE pre-test of 𝛿 < 0.8399𝜅,
and the AIC∗. We ran 1,000 replications for each setting.

The left panel of Figure 4.2 compares the performance of the three selection ap-
proaches in Scenario 𝑆1 (𝜎2 = 0.0625) across the various sample sizes. The FICMAE
with focus parameter 𝜇 = [ln ℎ(100)] ′′ clearly outperforms the other two methods, as it
detects mortality deceleration more often. The proportion of correct decisions in favor of
the gamma-Gompertz model increases with the sample size for all three methods, and is
close to one for the setting with a large sample size. However, for the setting with a small
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Figure 4.2: Proportion of decisions in favor of the gamma-Gompertz model. Left: Scenario 𝑆1 for
sample sizes 𝑛90+ = 10,000, 𝑛90+ = 20,000, and 𝑛90+ = 105,000 (left to right) based on FICMAE
with 𝜇 = [ln ℎ(100)] ′′ (black-solid-circle), pre-test (red-dashed-cross), and AIC∗ (blue-dotted-
triangle). Right: Scenarios 𝑆1, 𝑆2, and 𝑆3 (left to right) all with 𝑛90+ = 20,000 based on FICMAE
with 𝜇 = [ln ℎ(100)] ′′ (black circle), 𝜇 = [ln ℎ(110)] ′′ (red cross), and 𝜇 = 𝜎2 (blue triangle).

(medium) sample size, the proportion of correct decisions based on the FICMAE is 82.6%
(37.1%) higher than that based on the AIC∗.

The right panel of Figure 4.2 illustrates the performance of the FICMAE depending
on the magnitude of the frailty variance, and on the choice of the focus parameter in the
medium sample size setting. We display the results for the focus parameters 𝜇 = 𝜎2,
𝜇 = [ln ℎ(100)] ′′, and 𝜇 = [ln ℎ(110)] ′′. The ability of the method to detect deviations
from the Gompertz hazard naturally decreases when the frailty variance decreases. For
Scenario 𝑆2, in which the frailty variance is about half as large as it is in Scenario 𝑆1, the
proportion of correct decisions is about 35% smaller than it is for 𝑆1. If the true model
is the Gompertz model (𝑆3), then the proportion of decisions in favor of the gamma-
Gompertz model is about 25% for the medium sample size. As the FICMAE performs
equally well for all three focus parameters, the age 𝑦 at which 𝜇 = [ln ℎ(𝑦)] ′′ is evaluated
does not seem to matter. It also turns out that the focus parameters 𝜇 = 𝜎2 and 𝜇 =

[ln ℎ(𝑦)] ′′ perform better than, for instance, 𝜇 = ln ℎ(𝑦) or 𝜇 = 𝑆(𝑦); as is shown in
Section 4.7.5. Although the focus age 𝑦 did not affect the results in the simulation study,
other aspects may render one choice more reasonable than another. In the medium-sized
Scenario 𝑆1, in which around 20,000 individuals reach age 90, more than a thousand will,
on average, also reach age 100, but fewer than 10 will reach age 110. Consequently, a
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focus age of 𝑦 = 100 will probably produce more reliable results than a focus age of
𝑦 = 110.
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Figure 4.3: Left: Box plots of FICMAE values with 𝜇 = [ln ℎ(100)] ′′ for the null and the full model
in Scenario 𝑆1 with 𝑛90+ = 20,000 and empirical MAE of focus estimates �̂� (red-dashed). Right:
Empirical MAE of selected �̂� for 𝜇 = [ln ℎ(100)] ′′ in Scenario 𝑆1 for sample sizes 𝑛90+ = 10,000,
𝑛90+ = 20,000, and 𝑛90+ = 105,000 (left to right) based on FICMAE (black-solid-circle), pre-test
(red-dashed-cross), and AIC∗ (blue-dotted-triangle).

The concept of the FICMAE as an estimator of the limiting MAE of �̂� is illustrated
in the left panel of Figure 4.3, which shows a box plot of the FICMAE values with 𝜇 =

[ln ℎ(100)] ′′ for 1,000 replications of the medium-sized Scenario 𝑆1. We see that for both
the null and the full model, the empirical MAEs of the estimators �̂�null and �̂�full are close
to the average of the respective FIC scores. As a consequence, the empirical MAE of the
selected estimators in the 1,000 replications – that is, �̂�full for those replications, where
FICMAE (full) < FICMAE (null), and �̂�null otherwise – should be smaller than it is for other
selection criteria. The right panel of Figure 4.3 verifies for Scenario 𝑆1, that the estimator
�̂� of 𝜇 = [ln ℎ(100)] ′′ has the smallest empirical MAE when the model selection is based
on the FICMAE with 𝜇 = [ln ℎ(100)] ′′, rather than on the pre-test or the AIC∗.

Overall, the findings of the simulation study support the claim that the proposed
FICMAE is a suitable tool for detecting mortality deceleration in the framework of the
gamma-Gompertz model, which outperforms the competing approaches of the pre-test
and AIC∗.
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4.5 Mortality of French-Canadians at high ages

4.5.1 Data and age validation
To demonstrate the performance of the proposed FIC, we analyze data on French-Canadian
cohorts born between 1880 and 1896. The data were illustrated in Figure 4.1.

When French missionaries settled in Quebec in the 17th century, they followed the
Catholic tradition of registering all baptisms, marriages, and burials in parish registers.
Starting in 1679, two copies of the registrations were made, with one being kept at the
parish, while the other was sent to the government body responsible for civil registration.
This practice was continued until the end of the 20th century. Thus, this data collection
is an invaluable resource for historical demography, among other disciplines (Desjardins,
1998). The data set that we analyze here covers virtually all Catholic French-Canadians
(20,917 females and 10,878 males) who were born in the Province of Quebec during the
1880-1896 period, and who died at age 90 or older in Quebec between 1970 and 2009.
These 1880-1896 birth cohorts were fully extinct by the end of 2009.

To confirm a reported age at death (date of death minus date of birth), the date of
birth reported on the death certificate has to be verified using the baptism record in the
corresponding parish register, and is often additionally verified using historic census re-
turns. Although the historic French-Canadian parish registers contain information on all
baptisms and are available on microfilm, the identification of individual entries in the reg-
isters continues to be time-consuming. The appropriate parish has to be identified using
the information on the province and the names of the parents, and the individual register
entry has to be looked up (for details, see Bourbeau and Desjardins, 2002).

The core of the data set was compiled by Beaudry-Godin (2010), who individually
validated ages at death using the parish registers of all Catholic French-Canadians who
died as centenarians – i.e., at age 100 or older – between 1970 and 2004. The data were
further extended and validated to cover deaths until 2009 (Ouellette and Bourbeau, 2014;
Ouellette, 2016), and the deaths of individuals aged 90-99 were added.

4.5.2 Comparison of information criteria
We fit the gamma-Gompertz model and the Gompertz model to the female and the male
data separately via maximum likelihood. For that purpose, we set age 60 as the starting
age of the models, and take into account left truncation at age 90. Then, we choose
between the gamma-Gompertz model and the Gompertz model based on the AIC∗, pre-
test, and FICMAE for the focus parameters 𝜇 = 𝜎2 and 𝜇 = [ln ℎ(100)] ′′.

Figure 4.4 shows the fit of the gamma-Gompertz model and the Gompertz model,
respectively, to the empirical death rates (single years of age) for the French-Canadian
cohorts. The estimated frailty variance in the gamma-Gompertz model is �̂�2 = 0.043 for
the female population and �̂�2 = 0.037 for the male population. A likelihood ratio test
for 𝐻0 : 𝜎2 = 0 results in a 𝑝-value of 0.121 for females and 0.283 for males, such that
the hypothesis of no mortality deceleration would not be rejected at the usual levels of
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significance. Table 4.1 also shows that based on the modified AIC∗, the Gompertz model
is selected, if only just, for females and for males. By contrast, based on the pre-test
and the FICMAE, the gamma-Gompertz model is selected for females, and the Gompertz
model is selected for males. Hence, it appears that unlike other methods, the FICMAE
detects mortality deceleration in the female sample. Figure 4.4 also supports this finding
of a deceleration in the female mortality rates.
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Figure 4.4: Death rates (on log scale) of French-Canadian females (left) and males (right): empirical
death rates (solid-circle), gamma-Gompertz fit (dashed), Gompertz fit (dotted), and 95%-confidence
band for the Gompertz log-hazard (gray).

Table 4.1: Values of different model selection criteria for the gamma-Gompertz model (GG) and
the Gompertz model using data on French-Canadians.

Females Males
GG Gompertz GG Gompertz

AIC∗ 101390.3 101390.0 48364.10 48363.01
FICMAE : 𝜇 = 𝜎2 4.065 6.200 4.316 3.890
FICMAE : 𝜇 = [ln ℎ(100)] ′′ 0.098 0.149 0.120 0.108
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4.5.3 Including effects of year of birth
The analysis so far has split the data by gender, but combined all birth cohorts in one
model. This was done primarily in order to retain sufficiently large samples, which, as
the simulations showed, is an important issue in the assessment of mortality deceleration,
even if the samples can be considered sizable based on common statistical standards. But
it is obvious that such a pooling of birth cohorts can increase the heterogeneity in mortality
risks, and may thus yield a larger frailty variance, which, in turn, affects the assessment
of mortality deceleration. This concern is particularly relevant if mortality patterns have
improved over time at advanced ages (Vaupel et al., 2021). Including information on the
year of birth has been shown to be important in different contexts (Richards et al., 2006).

We have, therefore, chosen to include the effect of year of birth in the analysis by al-
lowing the parameters of the gamma-Gompertz model to vary by cohort, and have adapted
our model selection approach accordingly. While the inclusion of cohort effects implies
a more flexible approach to modeling, it also reduces the parsimony of the model, which
is critical in this application. In the following, we will focus on the female sample in
undertaking this considerably more complex analysis. The male sample is only half of
the size of the female sample, and does not allow for a reliable statistical analysis in the
extended setting introduced below.

The data cover 17 single-year birth cohorts made up of between about 700 and 2000
individuals. These cohort sizes, in conjunction with the restricted age range of 90+, are
insufficient for an analysis by single years of birth. For this reason, we group the data
into multi-year birth cohorts of roughly equal sizes by combining individuals with the
following birth years: 1880-1884, 1885-1888, 1889-1891, 1892-1894, and 1895-1896. In
the remainder of this section, we will refer to these five multi-year birth cohorts, which
are, on average, made up of 4183.4 individuals.

As a gamma-Gompertz model in which all parameters are cohort-specific would still
have five times as many parameters to be estimated as the plain gamma-Gompertz model
considered in Section 4.5.2, we seek to identify a model that is more parsimonious, but is
still appropriately flexible. To do so, we consult data for the respective cohorts between
ages 60 and 109 from the Canadian Human Mortality Database (CHMD, 2020). The
CHMD data are collected at the level of the Canadian provinces and territories, including
the Province of Quebec. These data can be used to identify potential trends across cohorts
in the Gompertz part of the gamma-Gompertz model, which is largely determined at the
mid-adult ages. Although the data for Quebec in the CHMD cover a wider population,
French-Canadians constitute the majority in the age groups considered here, so that these
data can serve for this purpose. (A comparison of the two data sources has already been
provided in Ouellette, 2016.) More precisely, we use the CHMD data (number of deaths
and total exposure times at each age) for Quebec to estimate Gompertz models with a
starting age of 60, separately for each of the five cohorts (maximizing a Poisson likelihood
for death counts; see, for instance, Keiding, 1990). The parameter estimates suggest that
there is a linear trend in the Gompertz parameter 𝑎 across cohorts, while the Gompertz
parameter 𝑏 stays roughly constant for the cohorts under study (see Figure 4.9).
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This gamma-Gompertz model, in which there is a linear trend in the parameter 𝑎 and
a single parameter 𝑏, but with each cohort having its own frailty variance, is estimated
and analyzed in the following. This model is a restricted version of the gamma-Gompertz
model in which all parameters vary by cohort. Nonetheless, it still provides an adequate
description of the mortality patterns in the female French-Canadian cohorts studied here.
More formally, we modify the gamma-Gompertz model with hazard (4.2) in the following
way: The parameters for cohort 𝑐, 𝑐 = 1, ..., 𝐶, are given by

𝑎𝑐 = 𝑎0 + 𝑎1 · 𝑧1𝑐 , 𝑏𝑐 ≡ 𝑏0, and 𝜎2
𝑐 = 𝜎2

0 exp (𝒛>2 𝜻), (4.8)

where 𝑎0 and 𝜎2
0 are the parameters of a reference cohort 𝑐∗ and 𝜻 ∈ R𝐶−1 describes

cohort-specific deviations from the frailty variance. The parameter 𝑏0 > 0 applies to all
cohorts, whereas the linear trend in the initial level of mortality 𝑎𝑐 is governed by the
slope 𝑎1 ∈ R (but such that 𝑎𝑐 > 0) with 𝑧1𝑐 = (𝑐 − 𝑐∗) and 𝒛1 = (𝑧11, ..., 𝑧1𝐶 )>. The
vector 𝒛2 of length (𝐶 − 1) consists of cohort dummies.

We fit model (4.8) to the individual survival times of the female cohorts in the French-
Canadian data via maximum likelihood. The middle cohort is used as reference and, as
before, age 60 is set as the starting age of the model, and left truncation at age 90 is
taken into account. The parameter estimates and the corresponding standard errors are
summarized in Table 4.2. The negative estimate of 𝑎1 indicates a decrease in the initial
level of mortality for the later cohorts, and, hence, that mortality has indeed improved.
The estimated frailty variances are comparatively high for the first three cohorts, but are
decreasing for the last two cohorts, reaching a value close to zero for the most recent
cohort. These results are in line with the impression conveyed by the empirical death
rates of the five cohorts displayed in Figure 4.5.

Table 4.2: Parameter estimates (with standard errors) for gamma-Gompertz model (4.8) with cohort
effects for French-Canadian females.

�̂�0 �̂�1 �̂�0 �̂�2
1 �̂�2

2 �̂�2
3 �̂�2

4 �̂�2
5

0.0122 −0.0006 0.0932 0.1089 0.0989 0.0757 0.0471 0.0089
(0.0035) (0.0002) (0.0113) (0.0379) (0.0399) (0.0401) (0.0406) (0.0413)

Performing focused model selection is considerably more challenging in this extended
setting with cohort effects, even in the still relatively parsimonious gamma-Gompertz
model specified in (4.8). In the framework of local misspecification, as introduced in
Section 4.3.1, the full model is now defined as the gamma-Gompertz model (4.8) with
cohort effects. The null model – that is, the simplest candidate model – should still be
the plain Gompertz model without cohort effects. Thus, the parameter vector of the full
model is split into the Gompertz part 𝜽 = (𝑎0, 𝑏0)>, so still with 𝑑 = 2, and the additional
𝜸 = (𝜎2

0 , 𝑎1, 𝜻
>)> with 𝜸0 = (0, 0, 0>)>, so 𝑞 = (𝐶 + 1).

Thus, selection is no longer only between the full model and the null model (as was
the case in Section 4.5.2), as we can now choose from an extended list of candidate
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Figure 4.5: Death rates (on log scale) of
French-Canadian females grouped into five
cohorts: empirical death rates (solid-circle)
and fit of model (4.8) (dashed).
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models. On this list of candidate models are also the plain gamma-Gompertz model with-
out cohort effects, as well as the Gompertz and gamma-Gompertz models in which only
the parameter 𝑎 varies linearly across cohorts, while the other parameters are constant.
The relevant candidate models are shown in Table 4.3, where a model is denoted by 𝑀 ,
𝑀 ⊆ {1, ..., 𝑞}, if it includes all parameters 𝛾 𝑗 with 𝑗 ∈ 𝑀 . Mortality deceleration is
generally present in those models 𝑀 that include the parameter 𝜎2

0 . But we have to be
careful when drawing conclusions about this phenomenon from the models with cohort-
specific frailty variances 𝜎2

𝑐 . If the frailty variances of some of the cohorts are relatively
large, while those of other cohorts are close to zero, it may be assumed that mortality
deceleration is present for the former, but not for the latter cohorts. The distinct advan-
tage of focused model selection is that we can choose cohort-specific focus parameters,
such as the frailty variance 𝜇 = 𝜎2

𝑐 of cohort 𝑐, which then allow us to assess mortality
deceleration separately for each cohort.

Table 4.3: Overview of candidate models in the framework of model (4.8).

Model 𝑀 Parameters No. of
𝑎𝑐 𝑏𝑐 𝜎2

𝑐 param.
Gompertz, plain (null) 𝑀 = ∅ 𝑎0 𝑏0 0 2
Gompertz with linear trend in 𝑎 𝑀 = {2} 𝑎0 + 𝑎1𝑧1𝑐 𝑏0 0 3
gamma-Gompertz (GG), plain 𝑀 = {1} 𝑎0 𝑏0 𝜎2

0 3
GG with linear trend in 𝑎 𝑀 = {1, 2} 𝑎0 + 𝑎1𝑧1𝑐 𝑏0 𝜎2

0 4
GG with cohort-specific 𝜎2 𝑀 = {1, 3, ..., 𝑞} 𝑎0 𝑏0 𝜎2

𝑐 2 + 𝐶
GG as in (4.8) (full) 𝑀 = {1, ..., 𝑞} 𝑎0 + 𝑎1𝑧1𝑐 𝑏0 𝜎2

𝑐 3 + 𝐶

The current selection framework also differs from the previous setting in Section 4.3
from a more technical point of view. Previously, we had to choose whether to include
a single parameter with a boundary constraint (𝑞 = 1 and 𝛾 ≥ 𝛾0). Here, we have to
choose whether to include none, some, or all of the components of the parameter vector 𝜸
where only the first component is subject to a boundary constraint (𝑞 > 1 and 𝛾1 ≥ 𝛾01).
Consequently, the results from Section 4.3.2 do not apply in the current setting, and new
formulas for the FICMAE (𝑀) for each of the candidate models 𝑀 have to be derived. We
refer the interested reader to Section 4.7.8 for these derivations of the limiting 𝐿1-risks of
the focus estimators.

To better evaluate the approach of focused model selection in the setting with cohort
effects, we seek to compare model selection based on the new FICMAE with that based
on the AIC. However, due to the presence of the boundary parameter 𝜎2

0 in some of
the candidate models, the standard AIC is again found to be biased. As in the case of
the modified AIC∗ for the plain gamma-Gompertz model presented in Section 4.3.4, we
derived a modified AIC∗ with a bias correction term for the models listed in Table 4.3 (see
Section 4.7.9 for a sketch of the derivations).



4.5 Mortality of French-Canadians at high ages 83

Finally, we apply the two model selection strategies to the five female cohorts in the
French-Canadian data. We choose between the candidate models of Table 4.3 based on
the AIC∗, and based on the FICMAE with cohort-specific focus parameters 𝜇 = 𝜎2

𝑐 and
𝜇 = [ln ℎ𝑐 (100)] ′′, where ℎ𝑐 (𝑦) is the gamma-Gompertz hazard (4.2) with parameters 𝑎𝑐 ,
𝑏𝑐 , and 𝜎2

𝑐 according to (4.8). The selected models are presented in Table 4.4.

Table 4.4: Selected models for data on French-Canadian females.

Multi-year FICMAE AIC∗

birth cohort 𝑐 𝜇 = 𝜎2
𝑐 𝜇 = [ln ℎ𝑐 (100)] ′′

1880-1884 gamma-Gompertz full 
1885-1888 gamma-Gompertz full
1889-1891 gamma-Gompertz gamma-Gompertz full
1892-1894 Gompertz Gompertz
1895-1896 Gompertz Gompertz, linear trend in 𝑎

While the AIC∗ selects a single best model irrespective of whether the interest is
in one particular cohort, the cohort-specific focus parameters for the FICMAE make a
clear differentiation, and may select different models for different cohorts of interest.
More specifically, based on the AIC∗ the full gamma-Gompertz model (4.8) with a linear
trend in 𝑎, constant 𝑏, and cohort-specific frailty variances 𝜎2

𝑐 is selected. By contrast,
based on the FICMAE, models with mortality deceleration are selected only for the first
three cohorts, whereas models without mortality deceleration are selected for the two
most recent cohorts. These selection results seem plausible given the parameter estimates
reported in Table 4.2 and the mortality rates displayed in Figure 4.5. (The reader might
notice that for the 1892-1894 cohort, the Gompertz model without mortality deceleration
is selected based on the FICMAE, although the estimated frailty variance �̂�2

4 is larger than
that for the pooled cohorts for which the gamma-Gompertz model was selected. Here, we
have to keep in mind the smaller sample size of the cohort, which affects the performance
of the FICMAE.)

Furthermore, the selection results nicely illustrate that based on the FICMAE, different
models might be favored for the same cohort if different focus parameters are chosen.
If the interest lies in the cohort’s frailty variance, the plain gamma-Gompertz model is
selected for the first two cohorts; but if the interest lies in the second derivative of the
cohort’s log-hazard, the full model is selected for these two cohorts. This is reasonable
because the estimated frailty variances of the first two cohorts are close (�̂�2

1 = 0.1089 and
�̂�2

2 = 0.0989), which suggests that cohort-specific deviations from the frailty variance
would not markedly improve the estimator performance regarding the frailty variances
𝜎2

1 and 𝜎2
2 . In contrast, all gamma-Gompertz parameters are involved in the estimation

of the log-hazard, such that an estimator based on the full model with cohort-specific
frailty variances and a trend in 𝑎, which consequently takes into account the higher initial
mortality 𝑎𝑐 in the first two cohorts, would, on average, perform better.
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4.6 Discussion

Motivated by the issue of how mortality deceleration can be assessed at high ages, we
have extended the FIC, as introduced by Claeskens and Hjort (2003), to a non-standard
setting in which we are choosing between two models that differ by one parameter that
takes a value on the boundary of the parameter space if the smaller model is the true
model. We considered two versions of the FIC that aim to minimize the limiting MAE or
MSE of the estimator of the focus, respectively. When targeting the MAE, we obtained
the new model selection criterion FICMAE. When targeting the MSE, the model selection
does not depend on the chosen focus, but a pre-test strategy was defined. In addition, we
presented the new AIC∗, which reduces the bias of the original AIC that occurs when the
selection concerns a parameter that lies on the boundary of the parameter space in the
narrow model.

The proposed model selection criteria provide new tools for the assessment of mor-
tality deceleration in the framework of the gamma-Gompertz model. While traditional
approaches either have low power to detect mortality deceleration or are not valid in the
presence of boundary-constrained parameters, the methods developed here are adapted to
the non-standard setting. An advantage of the FICMAE is that, by choosing an appropriate
focus parameter, it can be targeted directly at the quantities that reveal mortality decel-
eration. We recommend using as the focus parameter the frailty variance or the second
derivative of the log-hazard at some advanced age. Both potential choices readily translate
into the presence or the absence of mortality deceleration, as the focus parameter takes a
value of zero if there is no deceleration.

The results of our simulation studies indicate that the FICMAE, especially with the
recommended choices of the focus parameter, outperforms the competing approaches of
the pre-test and the AIC∗ in detecting mortality deceleration. This observation was made
for different magnitudes of the frailty variance, and with different sample sizes. We found
that the FICMAE performs substantially better than the AIC∗, particularly for small sam-
ples.

Mortality deceleration addresses properties of the tail of the lifespan distribution,
and inference about the tail behavior requires sufficiently large samples. Moreover, it
is equally important that the models are sufficiently parsimonious so that the question of
interest can be isolated in a few parameters that inference can center on. While the size of
our data set on French-Canadian Catholics born at the end of the 19th century is relatively
large, the male sample contains only half as many observations as the female sample. In
contrast to the other methods, the FICMAE detected mortality deceleration in the sample
of females. However, all of the methods point towards a Gompertz model, and hence
towards no mortality deceleration for the French-Canadian males.

As we demonstrated, focused model selection allows us to include additional infor-
mation, such as differences across birth cohorts. At the same time, however, the number
of candidate models and the demands for data tend to increase. The analysis of the fe-
male sample with cohort effects pinpointed the differences between traditional (AIC∗)
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and focused criteria. The within-cohort heterogeneity was estimated to decline, and the
gamma-Gompertz model was selected only for the three earlier cohorts.

Data on mortality at advanced ages are often limited due to the complexity of age
validation procedures or the availability of the historic documents required for verifying
alleged ages at death. As the ability to detect features that are contained in the distribution
tail depends on having sufficient information in the data, it is worth investigating how our
sampling and validation efforts can be optimized. This includes reconsidering both the
required sample sizes and the age range over which data are collected. Here, we were
limited to ages at death above 90, which is a rather high starting age compared to the
starting ages in other studies. Thus, if further data collection efforts are planned, it may
be more advantageous to extend the age range to lower ages. Böhnstedt et al. (2021) have
offered some tools to address such questions.

While the set-up in this article was restricted to individual-level data, many studies
on aging rely on aggregated data in which death counts and exposure times are available
for given age-intervals. However, an extension of the approach to aggregated data is
straightforward if we keep the assumption of the parametric model. Consequently, the
new tools for the assessment of mortality deceleration presented here will be applicable to
a variety of data sets collected for different human and non-human populations. For data
on humans, the application of the Gompertz hazard is well-studied and well-established,
both across time and across populations. For data on non-human species, we might want
to consider relaxing the assumption of a parametric model for the hazard. More research
is needed to understand how more flexible hazard shapes can be incorporated by, for
example, using splines and penalized likelihood.

Although our development of the FICMAE was motivated by the specific problem of
assessing mortality deceleration, the method could be used in a range of other contexts in
which there is a need to choose between parametric models that differ only by one parame-
ter with a boundary constraint, such as when assessing heterogeneity in other proportional
hazards frailty models, or when choosing between a Poisson model and an over-dispersed
negative binomial model. Linear mixed models are another model class where some pa-
rameters, in that case variance components, are restricted to be non-negative and where a
focused search is useful (Cunen et al., 2020).
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4.7 Supplementary material

4.7.1 Computational issues
The maximum likelihood estimates of the parameters of the gamma-Gompertz model
are determined via numerical optimization in R (R Core Team, 2018). Non-negativity
of the parameter estimates is achieved by maximizing the log-likelihood over the log-
transformed parameters. Nevertheless, values of the frailty variance 𝜎2 that are close
to zero cause numerical difficulties. Here, we briefly describe the steps that we took to
increase the numerical stability of the estimation problem.

We maximize the log-likelihood via the R-function nlm(), where we can also supply
the analytic gradient of the objective function. In addition, Taylor expansions of the log-
likelihood and its gradient are used if the current value of 𝜎2 is smaller than 10−5. The
numerically identified maximum �̂�2 might still depend on the starting value that was
provided to the optimization routine. We therefore recommend running the optimization
with a number of different starting values for the frailty variance and choosing the fit with
the largest value of the log-likelihood as the final estimate.

For calculating the FICMAE values, we need estimates not only of the model param-
eters, but also of the information matrix 𝐽full. For that purpose, we analytically derive
the matrix 𝐻 (𝑎, 𝑏, 𝜎2) of second-order derivatives of the log-likelihood for the gamma-
Gompertz model, and again use a Taylor expansion if 𝜎2 < 10−5. 𝐽full is then estimated
as −𝑛−1𝐻 (�̂�, �̂�, �̂�2); and 𝜅2 is the bottom right element of its inverse.

4.7.2 Power of the likelihood ratio test
A likelihood ratio test (LRT) for homogeneity in the gamma-Gompertz model, where
𝐻0 : 𝜎2 = 0 and 𝐻1 : 𝜎2 > 0, may have low power to detect mortality deceleration.
To illustrate this property, we summarize the results for two of the scenarios that were
described in Section 4.4. In particular, we show the extent to which a smaller underlying
frailty variance or a smaller sample size can decrease the power of the test, which is
performed at a significance level of 5%. We also compare the power of the LRT in a situa-
tion in which only individuals who survived beyond age 90 can be studied to a situation
in which observations for individuals who survived beyond age 80 or 85 are available.

Figure 4.6 illustrates how strongly the power of the test is affected by the three fea-
tures. The left panel displays the results for Scenario 𝑆1 (frailty variance 𝜎2 = 0.0625),
while the right panel shows the results for Scenario 𝑆2 in which the frailty variance was
roughly halved (𝜎2 = 0.03). Within each panel, we can see the loss in power that occurs
if only individuals who survived beyond age 90 (90+) can be studied, instead of individ-
uals who survived beyond age 80 (80+) or 85 (85+). For example, in the medium-sized
Scenario 𝑆1, the power of the LRT decreases by more than 45% if the test is based on the
90+ subset instead of on the 85+ subset.
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Figure 4.6: Power of the LRT at the 5% level to detect mortality deceleration in the gamma-
Gompertz model depending on the age range of the data (left to right: 80+, 85+, or 90+). The
depicted scenarios are 𝑆1 (left) and 𝑆2 (right) with the sample sizes 𝑛90+ = 10,000 (blue-dotted-
triangle), 𝑛90+ = 20,000 (red-dashed-cross), and 𝑛90+ = 105,000 (black-solid-circle).

4.7.3 Local power of the LRT and the pre-test
The local power of the LRT for homogeneity in the gamma-Gompertz model is derived in
Böhnstedt and Gampe (2019). Under the sequence of local alternatives (4.3), the power
of the LRT for 𝐻0 : 𝜎2 = 0 at level 𝛼 based on a gamma-Gompertz sample of size 𝑛 can
be approximated by

1 −Φ

(
Φ−1 (1 − 𝛼) − 𝛿

𝜅

)
= 1 −Φ

(
Φ−1 (1 − 𝛼) −

√
𝑛𝜎2

𝜅

)
. (4.9)

The pre-test derived in Section 4.3.2 selects the gamma-Gompertz model if 𝛿/𝜅 > 0.8399.

Due to 𝛿/𝜅 𝑑−→ max (0, 𝐷/𝜅), we have P
[
𝛿/𝜅 ≤ 𝑧

]
≈ Φ (𝑧 − 𝛿/𝜅) 𝟙{𝑧≥0}. As a conse-

quence, the power of the pre-test with critical region 𝛿/𝜅 > 0.8399 is determined as

P
[
𝛿

𝜅
> 0.8399

���fixed 𝛿
]
≈ 1 −Φ

(
0.8399 − 𝛿

𝜅

)
. (4.10)

Comparing (4.10) and (4.9), we find that for large samples, the pre-test has approximately
the same power as the LRT for 𝐻0 : 𝜎2 = 0 at level �̃� satisfying Φ−1 (1 − �̃�) = 0.8399,
which is �̃� = 1 −Φ(0.8399) ≈ 0.2005.
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4.7.4 Derivation of FICMAE with a single additional parameter on
the boundary of the parameter space

The FICMAE of a model with focus estimator �̂�, where
√
𝑛( �̂� − 𝜇true)

𝑑−→ Λ, is derived
as an estimate of E[|Λ|]. For the null model, �̂�null converges to a normal distribution,
Λnull = (Λ0 + 𝜔𝛿) ∼ N (𝜔𝛿, 𝜏2

0 ). Therefore, E[|Λnull |] is calculated as the expected value
of the folded normal random variable |Λ0 + 𝜔𝛿 |; that is,

E[|Λnull |] = E[|Λ0 + 𝜔𝛿 |] = 2𝜏0𝜙
(
𝜔𝛿

𝜏0

)
+ 2𝜔𝛿

{
Φ

(
𝜔𝛿

𝜏0

)
− 1

2

}
. (4.11)

For the full model, we have Λfull = Λ0 − 𝜔(𝐷 − 𝛿)𝟙{𝐷>0} + 𝜔𝛿𝟙{𝐷≤0}, with 𝐷 ∼
N (𝛿, 𝜅2) independent of Λ0, such that

E[|Λfull |] = E[|Λfull | | 𝐷 ≤ 0]P[𝐷 ≤ 0] + E[|Λfull | | 𝐷 > 0]P[𝐷 > 0]

= E[|Λ0 + 𝜔𝛿 |]Φ
(
−𝛿
𝜅

)
+ E[|Λ0 − 𝜔(𝐷 − 𝛿) | | 𝐷 > 0]Φ

(
𝛿

𝜅

)
. (4.12)

The first expectation is the same as (4.11). For the computation of the second expec-
tation, we define the normally distributed random vector 𝑿 = (Λ0, 𝐷)> and its affine
transformation 𝒀 = (Λ0 − 𝜔(𝐷 − 𝛿), 𝐷)>, which is also normally distributed, with mean
vectors 𝝁𝑋 = 𝝁𝑌 = (0, 𝛿)> and covariance matrices

Cov[𝑿] =
(
𝜏2

0 0
0 𝜅2

)
and Cov[𝒀] =

(
𝜏2

0 + 𝜔2𝜅2 −𝜔𝜅2

−𝜔𝜅2 𝜅2

)
.

Then, E[|Λ0 − 𝜔(𝐷 − 𝛿) | | 𝐷 > 0] can be rewritten as

E[|𝑌1 | | 𝑌2 > 0] = E[𝑌1 | 𝑌1 > 0, 𝑌2 > 0] P[𝑌1 > 0, 𝑌2 > 0]
P[𝑌2 > 0]

+ E[−𝑌1 | −𝑌1 ≥ 0, 𝑌2 > 0] P[𝑌1 ≤ 0, 𝑌2 > 0]
P[𝑌2 > 0] . (4.13)

The expected values of one component of a bivariate truncated normal distribution are
more easily found for bivariate normal distributions with zero mean vectors, unit vari-
ances, and possible correlations. Transforming 𝒀 into such a normally distributed random

vector 𝒁 = ((𝜏2
0 + 𝜔2𝜅2)−1/2𝑌1, (𝑌2 − 𝛿)/𝜅)> with covariances −𝜔𝜅/

√︃
𝜏2

0 + 𝜔2𝜅2, and
noting that

E[𝑌1 | 𝑌1 > 0, 𝑌2 > 0] =
√︃
𝜏2

0 + 𝜔2𝜅2 E
[
𝑍1

���𝑍1 > 0, 𝑍2 > −𝛿
𝜅

]
,

we can apply the results of Tallis (1961) to obtain E[𝑌1 | 𝑌1 > 0, 𝑌2 > 0] in (4.13) as
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Analogously, E[−𝑌1 | −𝑌1 ≥ 0, 𝑌2 > 0] in (4.13) is computed as√︃

𝜏2
0 + 𝜔2𝜅2
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Combining these two results, we find that E[|Λ0−𝜔(𝐷−𝛿) | | 𝐷 > 0] in (4.12) is equal to√︃

𝜏2
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2
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. (4.14)

Inserting (4.11) and (4.14) into (4.12) yields the postulated result

E[|Λfull |] =
[
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2

}
.
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4.7.5 Other focus parameters
In our simulation studies, we also assessed the performance of the FICMAE for several
other focus parameters, such as quantiles of the survival distribution or the log-hazard
and the survival function at different advanced ages. Overall, the frailty variance, 𝜇 = 𝜎2,
and the second derivative of the log-hazard, 𝜇 = [ln ℎ(𝑦)] ′′, yielded the best results.
Figure 4.7 illustrates the proportion of decisions in favor of the gamma-Gompertz model
in several settings, when the focus is placed on the second derivative of the log-hazard at
age 100, the log-hazard at age 100 or 110, or the survival function at age 100. While the
choice of 𝜇 = [ln ℎ(100)] ′′ again results in the highest proportion of decisions in favor of
the gamma-Gompertz model, the choice of 𝜇 = 𝑆(100) performs almost as well. When
the focus is put on the log-hazard, the age at which the function is evaluated apparently
makes a difference, in that 𝜇 = ln ℎ(110) leads to a better performance of the FICMAE
than 𝜇 = ln ℎ(100). However, survival beyond age 110 is relatively rare in some of our
simulated settings, and we should be careful when putting the focus on ages for which
there are too few data points.
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Figure 4.7: Proportion of decisions in favor of the gamma-Gompertz model based on FICMAE with
𝜇 = [ln ℎ(100)] ′′ (black-solid-circle), 𝜇 = ln ℎ(100) (gray-dot-dashed-square), 𝜇 = ln ℎ(110) (red-
dashed-cross), and 𝜇 = 𝑆(100) (blue-dotted-triangle). Left: Decisions in Scenario 𝑆1 for sample
sizes 𝑛90+ = 10,000, 𝑛90+ = 20,000, and 𝑛90+ = 105,000 (left to right). Right: Decisions in
Scenarios 𝑆1, 𝑆2, and 𝑆3 (left to right) all with 𝑛90+ = 20,000.
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4.7.6 Impact of the age range on the performance of the FICMAE

So far, we have, motivated by the data application, considered only samples of individuals
who survived beyond age 90. However, the amount of heterogeneity in mortality risk
within the population decreases with age due to selection. Therefore, it is of interest to
study the performance of the FICMAE according to the age range of the sample. Figure 4.8
depicts the proportion of correct decisions in favor of the gamma-Gompertz model based
on the FICMAE with 𝜇 = [ln ℎ(100)] ′′ in different settings when the sample consisted of
all individuals who had reached at least age 80, 85, or 90. We see that, in general, the
probability of detecting mortality deceleration increases if the sample covers a wider age
range. For Scenario 𝑆1 with the target sample size of 𝑛90+ = 10,000, the proportion of
correct decisions increases by more than a third if we observe all individuals who had
reached at least age 85 instead of only those individuals who had reached at least age 90.
Both the larger sample size of the 85+ subset and the greater amount of heterogeneity in
the mortality risk of this subset played a part in this result.
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Figure 4.8: Proportion of correct decisions in favor of the gamma-Gompertz model based on the
FICMAE with 𝜇 = [ln ℎ(100)] ′′ depending on the age range of the data (left to right: 80+, 85+, or
90+). The depicted scenarios are 𝑆1 (left) and 𝑆2 (right) with sample sizes 𝑛90+ = 10,000 (blue-
dotted-triangle), 𝑛90+ = 20,000 (red-dashed-cross), and 𝑛90+ = 105,000 (black-solid-circle).
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4.7.7 Preliminary analysis of CHMD data

1880 1885 1890 1895

0.
01
2

0.
01
4

0.
01
6

Estimates of a in Gompertz fits
 based on CHMD data, females

Cohort

â
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Figure 4.9: Estimates of Gompertz parameters 𝑎 (left) and 𝑏 (right) with 95% confidence intervals
based on data for Quebec females between ages 60 and 109 from the CHMD. Fitted linear and
constant trend, respectively, is marked by red, dashed line.

4.7.8 Derivation of FICMAE for the model with cohort effects
We derive formulas for the FICMAE under the framework of local misspecification (4.3)
for the setting that the parameter vector 𝜸 has dimension 𝑞 > 1, but only its first compo-
nent is subject to a boundary constraint, 𝛾1 ≥ 𝛾01.

A candidate model 𝑀 includes the components 𝛾 𝑗 for 𝑗 ∈ 𝑀 , while the remaining
components, that is, 𝛾 𝑗 for 𝑗 ∈ 𝑀𝑐 = {1, ..., 𝑞}\𝑀 , are fixed at the respective values
in 𝜸0. Thus, the focus estimator for model 𝑀 is �̂�𝑀 = 𝜇(�̂�𝑀 , �̂�𝑀 , 𝜸0,𝑀𝑐 ) with the
maximum likelihood estimator (�̂�>𝑀 , �̂�>

𝑀 )> for model 𝑀 . The FICMAE (𝑀) of a model 𝑀

is, as before, determined as an estimate of E[|Λ𝑀 |], where
√
𝑛( �̂�𝑀 − 𝜇true)

𝑑−→ Λ𝑀 . The
limiting results will again involve Λ0 and 𝝎, defined in Section 4.3.2, where 𝝎 is now a
vector of length 𝑞. Similarly, we now consider normal random vectors

𝑫 ∼ N𝑞 (𝜹, 𝑄) and 𝑬 = 𝑄−1𝑫 ∼ N𝑞 (𝑄−1𝜹, 𝑄−1),

independent of Λ0, and the 𝑞 × 𝑞 lower-right submatrix 𝑄 of the inverse information
matrix 𝐽−1

full, which corresponds to 𝜸.
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The limiting distribution of focus estimators �̂�𝑀 under the framework (4.3) for the
case that some or all of the components of 𝜸 are subject to a boundary constraint is given
in Theorem 10.2 of Claeskens and Hjort (2008) as

√
𝑛( �̂�𝑀 − 𝜇true)

𝑑−→ Λ𝑀 = Λ0 + 𝝎> (𝜹 − 𝜋>𝑀 �̂�𝑀 ),

where �̂�𝑀 is the random maximizer of 𝑬>
𝑀 𝒕 − 1

2 𝒕
>𝑄−1

𝑀
𝒕 over all 𝒕 ∈ Ω𝑀 . Here, the

set Ω𝑀 ⊂ R |𝑀 | describes the parameter space of (𝜸𝑀 − 𝜸0,𝑀 ) and 𝜋𝑀 is a projection
matrix of dimension |𝑀 | × 𝑞 mapping a vector 𝒗 = (𝑣1, 𝑣2, ..., 𝑣𝑞)> onto the vector 𝒗𝑀
that contains the |𝑀 | components 𝑣 𝑗 for 𝑗 ∈ 𝑀 . In particular, we have 𝑬𝑀 = 𝜋𝑀𝑬 ∼
N |𝑀 | (𝜋𝑀𝑄−1𝜹, 𝑄−1

𝑀
) and 𝑄𝑀 = (𝜋𝑀𝑄−1𝜋>

𝑀
)−1.

In the following, we will consider different types of candidate models 𝑀 and deter-
mine the limiting risk E[|Λ𝑀 |] based on the specific Ω𝑀 and the resulting �̂�𝑀 . The
FICMAE is obtained by replacing the unknowns 𝜹, 𝝎, 𝜏2

0 , and 𝑄 in the formulas for
E[|Λ𝑀 |] by their estimates.

For some choices of the focus parameter 𝜇, the derivations given below need to be
adapted. If, for example, 𝜇 = 𝜎2

𝑐 , it follows that 𝜕𝜇

𝜕𝜽 = 0, such that 𝜏2
0 = 0 and the

variable Λ0 is deterministic.

𝑴 = ∅

If 𝑀 = ∅, the focus estimator �̂�null converges to a normal distribution, Λ𝑀 = (Λ0+𝝎>𝜹) ∼
N (𝝎>𝜹, 𝜏2

0 ). Hence, E[|Λ𝑀 |] is calculated as the expected value of the folded normal
random variable |Λ0 + 𝝎>𝜹 |, so

E[|Λ∅ |] = 2𝜏0𝜙
(
𝝎>𝜹

𝜏0

)
+ 2𝝎>𝜹

[
Φ

(
𝝎>𝜹

𝜏0

)
− 1

2

]
. (4.15)

𝑴 ∌ 1

If 1 ∉ 𝑀 , the parameter vector 𝜸𝑀 is not subject to boundary constraints, such that
Ω𝑀 = R |𝑀 | and �̂�𝑀 = 𝑄𝑀𝑬𝑀 . The limiting variable Λ𝑀 = Λ0 +𝝎> (𝜹 − 𝜋>

𝑀
𝑄𝑀𝑬𝑀 ) is

a linear transformation of the normal random vector (Λ0, (𝑄𝑀𝑬𝑀 )>)> and is therefore
normally distributed with mean𝑚𝑀 = 𝝎> (𝐼−𝑉𝑀𝑄−1)𝜹 and variance 𝜏2

𝑀
= 𝜏2

0 +𝝎
>𝑉𝑀𝝎,

where 𝑉𝑀 = 𝜋>
𝑀
𝑄𝑀 𝜋𝑀 . Thus, the limiting 𝐿1-risk of Λ𝑀 is again found as the mean of

a folded normal distribution,

E[|Λ𝑀 |] = 2𝜏𝑀𝜙
(
𝑚𝑀

𝜏𝑀

)
+ 2𝑚𝑀

[
Φ

(
𝑚𝑀

𝜏𝑀

)
− 1

2

]
.
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𝑴 = {1}

If 𝑀 = {1}, that is, the model 𝑀 includes only the boundary parameter 𝛾1, the parameter
space is restricted to the non-negative real numbers, Ω{1} = R+

0 . Therefore, we have
𝑡𝑀 = 0 · 𝟙{𝑄𝑀𝐸𝑀 ≤0} +𝑄𝑀𝐸𝑀 · 𝟙{𝑄𝑀𝐸𝑀>0}. The limiting variable is then given by

Λ{1} = Λ0 + 𝝎>𝜹 · 𝟙{𝑄𝑀𝐸𝑀 ≤0} + 𝝎> (𝜹 − 𝜋>𝑀𝑄𝑀𝐸𝑀 ) · 𝟙{𝑄𝑀𝐸𝑀>0},

and the risk E[|Λ{1} |] can be calculated as

E[|Λ{1} | | 𝑄𝑀𝐸𝑀 ≤ 0]P[𝑄𝑀𝐸𝑀 ≤ 0] + E[|Λ{1} | | 𝑄𝑀𝐸𝑀 > 0]P[𝑄𝑀𝐸𝑀 > 0]
= E[|Λ0 + 𝝎>𝜹 |]P[𝑄𝑀𝐸𝑀 ≤ 0]

+ E[|Λ0 + 𝝎> (𝜹 − 𝜋>𝑀𝑄𝑀𝐸𝑀 ) | | 𝑄𝑀𝐸𝑀 > 0]P[𝑄𝑀𝐸𝑀 > 0] .

The first expectation was given in (4.15) and the computation of the second expecta-
tion follows along the lines of the computation of the second expectation in (4.12), see
Section 4.7.4. We consider the normal random vector 𝒀 = (Λ0 + 𝝎> (𝜹 − 𝜋>

𝑀
𝑄𝑀𝐸𝑀 ),

𝑄𝑀𝐸𝑀 )>, which is a linear transformation of 𝑿 = (Λ0, 𝑄𝑀𝐸𝑀 )>, and note that E[|Λ0 +
𝝎> (𝜹 − 𝜋>

𝑀
𝑄𝑀𝐸𝑀 ) | | 𝑄𝑀𝐸𝑀 > 0] equals E[|𝑌1 | | 𝑌2 > 0] and thus,

E[𝑌1 | 𝑌1 > 0, 𝑌2 > 0]P[𝑌1 > 0 | 𝑌2 > 0] + E[−𝑌1 | −𝑌1 > 0, 𝑌2 > 0]P[𝑌1 ≤ 0 | 𝑌2 > 0] .

In order to apply the results of Tallis (1961) on the expected values of the components
of bivariate truncated normal distributions with zero mean vector and unit variances, we
work with the transformed 𝒁 with components 𝑍𝑘 = 𝜏−1

𝑌𝑘
(𝑌𝑘 − 𝑚𝑌𝑘 ), where 𝑚𝑌𝑘 = E[𝑌𝑘 ]

and 𝜏2
𝑌𝑘

= var[𝑌𝑘 ], 𝑘 = 1, 2. This yields

E[𝑌1 | 𝑌1 > 0, 𝑌2 > 0] = 𝜏𝑌1E[𝑍1 | 𝑍1 > 𝑢1, 𝑍2 > 𝑢2] + 𝑚𝑌1

= 𝜏𝑌1

𝜙(𝑢1)Φ
(
−𝑢2−𝜌𝑢1√

1−𝜌2

)
+ 𝜌𝜙(𝑢2)Φ

(
−𝑢1−𝜌𝑢2√

1−𝜌2

)
P[𝑌1 > 0, 𝑌2 > 0] + 𝑚𝑌1 ,

where 𝑢𝑘 = −𝑚𝑌𝑘/𝜏𝑌𝑘 , 𝜌 = 𝜌𝑌 𝜏
−1
𝑌1
𝜏−1
𝑌2

, and 𝜌𝑌 = cov(𝑌1, 𝑌2), and, analogously,

E[−𝑌1 | −𝑌1 > 0, 𝑌2 > 0] = 𝜏𝑌1

𝜙(−𝑢1)Φ
(
−𝑢2−𝜌𝑢1√

1−𝜌2

)
− 𝜌𝜙(𝑢2)Φ

(
𝑢1−𝜌𝑢2√

1−𝜌2

)
P[𝑌1 ≤ 0, 𝑌2 > 0] − 𝑚𝑌1 .

Combining these two results and using the symmetry of the normal distribution as well
as that P[𝑌1 ≤ 0 | 𝑌2 > 0] = 1 − P[𝑌1 > 0 | 𝑌2 > 0], we find that E[|Λ0 + 𝝎> (𝜹 −
𝜋>
𝑀
𝑄𝑀𝐸𝑀 ) | | 𝑄𝑀𝐸𝑀 > 0] is equal to

𝜏𝑌1

P[𝑌2 > 0]

{
2𝜙(𝑢1)Φ

(
−𝑢2 − 𝜌𝑢1√︁

1 − 𝜌2

)
+ 𝜌𝜙(𝑢2)

[
2Φ

(
−𝑢1 − 𝜌𝑢2√︁

1 − 𝜌2

)
− 1

]}
+ 𝑚𝑌1 (2P[𝑌1 > 0 | 𝑌2 > 0] − 1) .
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Consequently, the limiting risk E[|Λ{1} |] is found to be

E[|Λ{1} |] =
{
2𝜏0𝜙

(
𝝎>𝜹

𝜏0

)
+ 2𝝎>𝜹

[
Φ

(
𝝎>𝜹

𝜏0

)
− 1

2

]}
P[𝑌2 ≤ 0]

+ 2𝜏𝑌1

{
𝜙(𝑢1)Φ

(
−𝑢2 − 𝜌𝑢1√︁

1 − 𝜌2

)
+ 𝜌𝜙(𝑢2)

[
Φ

(
−𝑢1 − 𝜌𝑢2√︁

1 − 𝜌2

)
− 1

2

]}
+ 2𝑚𝑌1

(
P[𝑌1 > 0 | 𝑌2 > 0] − 1

2

)
P[𝑌2 > 0] .

𝑴 % {1}

In the last case, the model 𝑀 includes the boundary parameter 𝛾1, but also some or all
of the remaining components of 𝜸. The maximizer �̂�𝑀 of 𝑬>

𝑀 𝒕 − 1
2 𝒕

>𝑄−1
𝑀
𝒕 has to be

determined over the parameter space Ω𝑀 = R+
0 × R |𝑀 |−1. If the first component of

𝑄𝑀𝑬𝑀 is positive, then �̂�𝑀 = 𝑄𝑀𝑬𝑀 ; but if the first component of 𝑄𝑀𝑬𝑀 is negative
or zero, then 𝑡1 is set to zero and the remaining components of �̂�𝑀 maximize 𝑬>

𝑀 𝒕 −
1
2 𝒕

>𝑄−1
𝑀
𝒕 for 𝑡1 = 0. More formally, we have

�̂�𝑀 = 𝐺>
𝑀𝑅𝑀𝐺𝑀𝑬𝑀 · 𝟙{𝐹𝑀𝑄𝑀𝑬𝑀 ≤0} +𝑄𝑀𝑬𝑀 · 𝟙{𝐹𝑀𝑄𝑀𝑬𝑀>0},

where we defined a 1 × |𝑀 | projection matrix 𝐹𝑀 mapping a vector of length |𝑀 | onto
its first component, and a ( |𝑀 | − 1) × |𝑀 | projection matrix 𝐺𝑀 mapping a vector of
length |𝑀 | onto all but its first component, as well as 𝑅𝑀 = (𝐺𝑀𝑄−1

𝑀
𝐺>
𝑀
)−1. The limiting

variable takes the form

Λ𝑀 = Λ0 + 𝝎> (𝜹 − 𝜋>𝑀𝐺>
𝑀𝑅𝑀𝐺𝑀𝑬𝑀 ) · 𝟙{𝐹𝑀𝑄𝑀𝑬𝑀 ≤0}

+ 𝝎> (𝜹 − 𝜋>𝑀𝑄𝑀𝑬𝑀 ) · 𝟙{𝐹𝑀𝑄𝑀𝑬𝑀>0},

such that the limiting risk of the focus estimator �̂�𝑀 is given by

E[|Λ𝑀 |] = E[|Λ0 + 𝝎> (𝜹 − 𝜋>𝑀𝐺>
𝑀𝑅𝑀𝐺𝑀𝑬𝑀 ) | | 𝐹𝑀𝑄𝑀𝑬𝑀 ≤ 0]P[𝐹𝑀𝑄𝑀𝑬𝑀 ≤ 0]

+ E[|Λ0 + 𝝎> (𝜹 − 𝜋>𝑀𝑄𝑀𝑬𝑀 ) | | 𝐹𝑀𝑄𝑀𝑬𝑀 > 0]P[𝐹𝑀𝑄𝑀𝑬𝑀 > 0] .

For computing the first expectation, we consider the normal random vector

𝑿 =

(
Λ0
𝑬𝑀

)
∼ N1+|𝑀 |

((
0

𝜋𝑀𝑄
−1𝜹

)
,

(
𝜏2

0 0
0 𝑄−1

𝑀

))
,

and its linear transformation

𝒀 =

(
Λ0 + 𝝎> (𝜹 − 𝜋>

𝑀
𝐺>
𝑀
𝑅𝑀𝐺𝑀𝑬𝑀 )

𝐹𝑀𝑄𝑀𝑬𝑀

)
∼ N2

((
𝑚𝑌1

𝑚𝑌2

)
,

(
𝜏2
𝑌1

𝜌𝑌

𝜌𝑌 𝜏2
𝑌2

))
.

One can show that 𝜌𝑌 = −𝝎>𝜋>
𝑀
𝐺>
𝑀
𝑅𝑀𝐺𝑀𝐹

>
𝑀

= 0. Consequently, the components
of 𝒀 are jointly normally distributed and uncorrelated, and hence, independent. The first
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expectation in the expression for E[|Λ𝑀 |] therefore simplifies to E[|𝑌1 |], which is the
mean of a folded normal random variable, that is,

E[|Λ0 + 𝝎> (𝜹 − 𝜋>𝑀𝐺>
𝑀𝑅𝑀𝐺𝑀𝑬𝑀 ) |] = 2𝜏𝑌1𝜙

(
𝑚𝑌1

𝜏𝑌1

)
+ 2𝑚𝑌1

[
Φ

(
𝑚𝑌1

𝜏𝑌1

)
− 1

2

]
.

For computing the second expectation, we define another linear transformation of 𝑿,
namely,

𝑾 =

(
Λ0 + 𝝎> (𝜹 − 𝜋>

𝑀
𝑄𝑀𝑬𝑀 )

𝐹𝑀𝑄𝑀𝑬𝑀

)
∼ N2

((
𝑚𝑊1

𝑚𝑊2

)
,

(
𝜏2
𝑊1

𝜌𝑊

𝜌𝑊 𝜏2
𝑊2

))
,

such that

E[|Λ0 + 𝝎> (𝜹 − 𝜋>𝑀𝑄𝑀𝑬𝑀 ) | | 𝐹𝑀𝑄𝑀𝑬𝑀 > 0] = E[|𝑊1 | | 𝑊2 > 0] .

Using once again the law of total expectation, the latter can be calculated as

E[𝑊1 | 𝑊1 > 0,𝑊2 > 0]P[𝑊1 > 0 | 𝑊2 > 0]
+ E[−𝑊1 | −𝑊1 > 0,𝑊2 > 0]P[𝑊1 ≤ 0 | 𝑊2 > 0] .

We rewrite these expectations in terms of a centered random vector 𝒁 with unit variances,
where 𝑍𝑘 = 𝜏−1

𝑊𝑘
(𝑊𝑘 − 𝑚𝑊𝑘

), 𝑘 = 1, 2, to apply the results of Tallis (1961),

E[𝑊1 | 𝑊1 > 0,𝑊2 > 0] = 𝜏𝑊1E[𝑍1 | 𝑍1 > 𝑢1, 𝑍2 > 𝑢2] + 𝑚𝑊1

= 𝜏𝑊1

𝜙(𝑢1)Φ
(
−𝑢2−𝜌𝑢1√

1−𝜌2

)
+ 𝜌𝜙(𝑢2)Φ

(
−𝑢1−𝜌𝑢2√

1−𝜌2

)
P[𝑊1 > 0,𝑊2 > 0] + 𝑚𝑊1 ,

with 𝑢𝑘 = −𝑚𝑊𝑘
/𝜏𝑊𝑘

and 𝜌 = 𝜌𝑊 𝜏
−1
𝑊1
𝜏−1
𝑊2

, and

E[−𝑊1 | −𝑊1 > 0,𝑊2 > 0] = 𝜏𝑊1

𝜙(𝑢1)Φ
(
−𝑢2−𝜌𝑢1√

1−𝜌2

)
− 𝜌𝜙(𝑢2)Φ

(
𝑢1−𝜌𝑢2√

1−𝜌2

)
P[𝑊1 ≤ 0,𝑊2 > 0] − 𝑚𝑊1 .

Combining these two expressions, we obtain that E[|𝑊1 | | 𝑊2 > 0] equals

𝜏𝑊1

P[𝑊2 > 0]

{
2𝜙(𝑢1)Φ

(
−𝑢2 − 𝜌𝑢1√︁

1 − 𝜌2

)
+ 𝜌𝜙(𝑢2)

[
2Φ

(
−𝑢1 − 𝜌𝑢2√︁

1 − 𝜌2

)
− 1

]}
+ 𝑚𝑊1 (2P[𝑊1 > 0 | 𝑊2 > 0] − 1) .

Finally, the above results lead to
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E[|Λ𝑀 |] =
{
2𝜏𝑌1𝜙

(
𝑚𝑌1

𝜏𝑌1

)
+ 2𝑚𝑌1

[
Φ

(
𝑚𝑌1

𝜏𝑌1

)
− 1

2

]}
P[𝑊2 ≤ 0]

+ 2𝜏𝑊1

{
𝜙(𝑢1)Φ

(
−𝑢2 − 𝜌𝑢1√︁

1 − 𝜌2

)
+ 𝜌𝜙(𝑢2)

[
Φ

(
−𝑢1 − 𝜌𝑢2√︁

1 − 𝜌2

)
− 1

2

]}
+ 2𝑚𝑊1

(
P[𝑊1 > 0 | 𝑊2 > 0] − 1

2

)
P[𝑊2 > 0] .

4.7.9 A modified AIC for the model with cohort effects
In this section, we study the AIC for the (gamma-)Gompertz models with cohort effects
which are listed in Table 4.3. We show that the standard AIC is biased as an estimator of
the Akaike information for the models that include the boundary parameter 𝜎2

0 and define
a modified AIC∗ with a bias correction term.

The modified AIC

We work within the framework of local misspecification (4.3) for the setting that the
parameter vector 𝜸 has dimension 𝑞 > 1, and only its first component is subject to a
boundary constraint, 𝛾1 ≥ 𝛾01. The candidate models 𝑀 always include the full 𝑑-
dimensional parameter vector 𝜽 , but only those components 𝛾 𝑗 of 𝜸 for which 𝑗 ∈ 𝑀 .
The standard AIC for such a model 𝑀 is defined as

AIC𝑀 = −2ℓ𝑀 (�̂�𝑀 ;𝑌 ) + 2(𝑑 + |𝑀 |),

where the log-likelihood ℓ𝑀 for a sample 𝑌 under model 𝑀 is evaluated at the maximum
likelihood estimate under model 𝑀 , that is, �̂�𝑀 = (�̂�>𝑀 , �̂�>

𝑀 )>. Let us denote by 𝜋𝑀 a
|𝑀 | × 𝑞 projection matrix mapping a vector 𝒗 = (𝑣1, 𝑣2, ..., 𝑣𝑞)> onto the vector 𝒗𝑀 that
contains the |𝑀 | components 𝑣 𝑗 for 𝑗 ∈ 𝑀 , and by 𝑄 the 𝑞 × 𝑞 lower-right submatrix of
the information matrix 𝐽−1

full, which corresponds to 𝜸, and finally 𝑄𝑀 = (𝜋𝑀𝑄−1𝜋>
𝑀
)−1.

We will find that for models 𝑀 that include the boundary parameter 𝛾1 = 𝜎2
0 , the standard

AIC has bias 2Φ
(
−[𝑄𝑀 ]−1/2

11 [𝑄𝑀 𝜋𝑀𝑄−1𝜹]1

)
, where [𝑄𝑀 ]11 is the top-left element of

𝑄𝑀 and [𝑄𝑀 𝜋𝑀𝑄−1𝜹]1 is the first component of 𝑄𝑀 𝜋𝑀𝑄−1𝜹. We therefore define a
modified version of the AIC for the models 𝑀 , listed in Table 4.3, as

AIC∗
𝑀 =

{
−2ℓ𝑀 (�̂�𝑀 ;𝑌 ) + 2(𝑑 + |𝑀 |), if 𝑀 ∌ 1,
−2ℓ𝑀 (�̂�𝑀 ;𝑌 ) + 2(𝑑 + |𝑀 |) − 2Φ

(
−[�̂�𝑀 ]−1/2

11 [�̂�𝑀 𝜋𝑀 �̂�−1�̂�]1

)
, if 𝑀 3 1.

(4.16)

Outline of proof

We give a sketch of the derivations leading to the modified AIC in (4.16) here and provide
further details on pp. 101 ff.
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The AIC of a model 𝑀 is derived as an asymptotically unbiased estimator of the
expected relative Kullback-Leibler distance

− 2E𝑌 [E𝑋 [ln 𝑓 (𝑋; �̂�𝑀 (𝑌 ))]], (4.17)

which measures the distance between the true underlying distribution from which 𝑋 and
𝑌 are generated and the best parametric approximation 𝑓 (·, �̂�𝑀 ) (Akaike, 1974). An
unbiased estimator of the Akaike information (4.17) is given by

−2 ℓ𝑀 (�̂�𝑀 ;𝑌 ) + 2E𝑌 [ℓ𝑀 (�̂�𝑀 ;𝑌 ) − ℓ𝑀 (𝜼0,𝑀 ;𝑌 )]︸                                       ︷︷                                       ︸
=:𝐴1

+ 2E𝑌 [E𝑋 [ℓ𝑀 (𝜼0,𝑀 ; 𝑋) − ℓ𝑀 (�̂�𝑀 ; 𝑋)]]︸                                               ︷︷                                               ︸
=:𝐴2

,
(4.18)

where the MLE �̂�𝑀 = �̂�𝑀 (𝑌 ) is based on the sample 𝑌 of size 𝑛. Using a Taylor
expansion of the log-likelihood of model 𝑀 evaluated at the MLE �̂�𝑀 about the null
point 𝜼0,𝑀 = (𝜽>0 , 𝜸>

0,𝑀 )>, the term 𝐴2 is found to be asymptotically equivalent to

− 2E𝑌 [
√
𝑛(�̂�𝑀 − 𝜼0,𝑀 )>]

(
𝐽01𝜹

𝜋𝑀 𝐽11𝜹

)
︸                                       ︷︷                                       ︸

=:𝐴21

+E𝑌 [
√
𝑛(�̂�𝑀 − 𝜼0,𝑀 )>𝐽𝑀

√
𝑛(�̂�𝑀 − 𝜼0,𝑀 )]︸                                                   ︷︷                                                   ︸

=:𝐴22

.

(4.19)
Here, 𝐽𝑀 is the information matrix for model 𝑀 , with blocks 𝐽00, 𝐽01,𝑀 = 𝐽01𝜋

>
𝑀

,
𝐽10,𝑀 = 𝜋𝑀 𝐽10, and 𝐽11,𝑀 = 𝜋𝑀 𝐽11𝜋

>
𝑀

. The derivation of result (4.19) involves the lim-
iting distribution of the score vector under model 𝑀 . Let us denote by 𝑼(𝑦) and 𝑽 (𝑦) the
score functions with respect to 𝜽 and 𝜸 of the log-likelihood of a single observation 𝑦 from
𝑓true in (4.3), where 𝑼 and 𝑽 are evaluated at the null model (𝜽>0 , 𝜸>

0 )
>. For a sample 𝑌

of size 𝑛, the averaged score vectors are �̄�𝑛 = 𝑛−1 ∑𝑛
𝑖=1 𝑼(𝑌𝑖) and �̄�𝑛 = 𝑛−1 ∑𝑛

𝑖=1 𝑽 (𝑌𝑖).
According to the multivariate central limit theorem, and under the framework (4.3), the
score vector of model 𝑀 converges in distribution to a normal random vector (see Hjort
and Claeskens, 2003, for a proof in the regular setting that can be seen to carry over to the
current setting),( √

𝑛�̄�𝑛√
𝑛�̄�𝑛,𝑀

)
𝑑−→

(
𝐽01𝜹

𝜋𝑀 𝐽11𝜹

)
+

(
𝑲
𝑵𝑀

)
, with

(
𝑲
𝑵𝑀

)
∼ N𝑑+|𝑀 | (0, 𝐽𝑀 ). (4.20)

Further approximations of the expressions 𝐴21 and 𝐴22 in (4.19) rely on the limiting
distribution of the MLE �̂�𝑀 under model 𝑀 . As stated in Theorem 10.2 in Claeskens and
Hjort (2008), under the framework (4.3) in case some or all components of 𝜸 are subject
to boundary constraints, the MLE tends to the following limiting variable,( √

𝑛(�̂�𝑀 − 𝜽0)√
𝑛(�̂�𝑀 − 𝜸0,𝑀 )

)
𝑑−→

(
𝐽−1

00 (𝐽01𝜹 + 𝑲 − 𝐽01,𝑀 �̂�𝑀 )
�̂�𝑀

)
, (4.21)
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where �̂�𝑀 is the random maximizer of 𝑬>
𝑀 𝒕 − 1

2 𝒕
>𝑄−1

𝑀
𝒕 over all 𝒕 ∈ Ω𝑀 , and Ω𝑀 is the

parameter space of (𝜸𝑀 − 𝜸0,𝑀 ). Based on this, we obtain

𝐴21 ≈ 𝜹>𝐽10𝐽
−1
00 𝐽01𝜹 + E[ �̂�𝑀 ]>𝜋𝑀𝑄−1𝜹,

𝐴22 ≈ 𝜹>𝐽10𝐽
−1
00 𝐽01𝜹 + E[𝑲>𝐽−1

00 𝑲] + E[ �̂�>𝑀𝑄−1
𝑀 �̂�𝑀 ] .

(4.22)

As for a 𝑘-dimensional random vector 𝑿 with E[𝑿] = 𝒎, Cov[𝑿] = Σ, and a constant
𝑘 × 𝑘 symmetric matrix 𝐵, it holds that

E[𝑿>𝐵𝑿] = tr(𝐵Σ) + 𝒎>𝐵𝒎, (4.23)

where tr(·) denotes the trace of a matrix, we can rewrite 𝐴22 in (4.22) as

𝐴22 ≈ 𝜹>𝐽10𝐽
−1
00 𝐽01𝜹 + 𝑑 + tr(𝑄−1

𝑀E[ �̂�𝑀 �̂�
>
𝑀 ]). (4.24)

Regarding 𝐴1 in (4.18), it can be shown to be asymptotically equivalent to 𝐴22 in (4.19).
Combining the above results yields

− 2ℓ𝑀 (�̂�𝑀 ;𝑌 ) + 2𝑑 − 2E[ �̂�𝑀 ]>𝜋𝑀𝑄−1𝜹 + 2tr(𝑄−1
𝑀E[ �̂�𝑀 �̂�

>
𝑀 ]) (4.25)

as an asymptotically unbiased estimator of the Akaike information (4.17) for model 𝑀 .
Similar to the derivations of the FICMAE in Section 4.7.8, we need to consider the different
types of candidate models 𝑀 with the specific Ω𝑀 and resulting �̂�𝑀 to determine more
specific forms of (4.25).

𝑴 = ∅

If 𝑀 = ∅, then (4.25) simplifies to the standard AIC,

AIC∗
∅ = −2ℓnull (�̂�null;𝑌 ) + 2𝑑.

𝑴 ∌ 1

If 1 ∉ 𝑀 , the parameter vector 𝜸𝑀 is not subject to boundary constraints, such that Ω𝑀 =

R |𝑀 | and �̂�𝑀 = 𝑄𝑀𝑬𝑀 ∼ N |𝑀 | (𝑄𝑀 𝜋𝑀𝑄−1𝜹, 𝑄𝑀 ). The term tr(𝑄−1
𝑀
E[ �̂�𝑀 �̂�

>
𝑀 ]) is then

calculated as

tr(𝑄−1
𝑀Cov[ �̂�𝑀 ]) + tr(𝑄−1

𝑀E[ �̂�𝑀 ]E[ �̂�𝑀 ]>) = |𝑀 | + 𝜹>𝑄−1𝜋>𝑀𝑄𝑀 𝜋𝑀𝑄
−1𝜹,

because the trace is a linear mapping and invariant under cyclic permutations. Hence, the
asymptotically unbiased estimator (4.25) in this case again takes the form of the standard
AIC,

AIC∗
𝑀 = −2ℓ𝑀 (�̂�𝑀 ;𝑌 ) + 2(𝑑 + |𝑀 |).
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𝑴 = {1}

If the model 𝑀 includes only the boundary parameter 𝛾1, then

�̂�𝑀 = 0 · 𝟙{𝑄𝑀𝐸𝑀 ≤0} +𝑄𝑀𝐸𝑀 · 𝟙{𝑄𝑀𝐸𝑀>0},

with the indicator function 𝟙{· }, a scalar 𝑄𝑀 , and 𝑄𝑀𝐸𝑀 ∼ N1 (𝑄𝑀 𝜋𝑀𝑄−1𝜹, 𝑄𝑀 ).
Consequently, the moments of 𝑡𝑀 can be computed as

E[𝑡𝑀 ] = 0 · P[𝑄𝑀𝐸𝑀 ≤ 0] + E[𝑄𝑀𝐸𝑀 | 𝑄𝑀𝐸𝑀 > 0] · P[𝑄𝑀𝐸𝑀 > 0],
E[𝑡2𝑀 ] = E[(𝑄𝑀𝐸𝑀 )2 | 𝑄𝑀𝐸𝑀 > 0] · P[𝑄𝑀𝐸𝑀 > 0] .

Applying the formulas for the moments of the truncated normal distribution, we find that

E[𝑡𝑀 ] = 𝑄1/2
𝑀
𝑢 [1 −Φ(−𝑢)] +𝑄1/2

𝑀
𝜙(−𝑢),

E[𝑡2𝑀 ] =
{
𝑄𝑀

[
1 − 𝑢𝜙(−𝑢)

1 −Φ(−𝑢) −
(

𝜙(−𝑢)
1 −Φ(−𝑢)

)2
]
+

[
𝑄

1/2
𝑀
𝑢 +𝑄1/2

𝑀

𝜙(−𝑢)
1 −Φ(−𝑢)

]2
}

· [1 −Φ(−𝑢)],

where 𝑢 = E[𝑄𝑀𝐸𝑀 ]/
√︁

var[𝑄𝑀𝐸𝑀 ] = 𝑄1/2
𝑀
𝜋𝑀𝑄

−1𝜹.
After inserting these expressions into formula (4.25), some straightforward calcula-

tions and replacing the unknowns by their estimates lead to

AIC∗
{1} = −2ℓ{1} (�̂� {1};𝑌 ) + 2(𝑑 + 1) − 2Φ(−�̂�1/2

{1}𝜋{1}�̂�
−1�̂�).

𝑴 % {1}

If the model 𝑀 includes the boundary parameter 𝛾1 and some or all of the remaining
components of 𝜸, then

�̂�𝑀 = 𝐺>
𝑀𝑅𝑀𝐺𝑀𝑬𝑀 · 𝟙{𝐹𝑀𝑄𝑀𝑬𝑀 ≤0} +𝑄𝑀𝑬𝑀 · 𝟙{𝐹𝑀𝑄𝑀𝑬𝑀>0},

where 𝐹𝑀 is a 1 × |𝑀 | projection matrix mapping a vector of length |𝑀 | onto its first
component, 𝐺𝑀 is a ( |𝑀 | − 1) × |𝑀 | projection matrix mapping such a vector onto all
but its first component, and 𝑅𝑀 = (𝐺𝑀𝑄−1

𝑀
𝐺>
𝑀
)−1. The moments of �̂�𝑀 can again be

determined based on the law of total expectation, that is,

E[ �̂�𝑀 ] = E[𝐺>
𝑀𝑅𝑀𝐺𝑀𝑬𝑀 | 𝐹𝑀𝑄𝑀𝑬𝑀 ≤ 0] · P[𝐹𝑀𝑄𝑀𝑬𝑀 ≤ 0]

+ E[𝑄𝑀𝑬𝑀 | 𝐹𝑀𝑄𝑀𝑬𝑀 > 0] · P[𝐹𝑀𝑄𝑀𝑬𝑀 > 0] .

We first note that 𝐺>
𝑀
𝑅𝑀𝐺𝑀𝑬𝑀 and 𝐹𝑀𝑄𝑀𝑬𝑀 are independent (cf. p. 95), such that

the condition 𝐹𝑀𝑄𝑀𝑬𝑀 ≤ 0 in the first expectation can be dropped. Moreover, from
𝐹𝑀𝑄𝑀𝑬𝑀 ∼ N1 (𝐹𝑀𝑄𝑀 𝜋𝑀𝑄−1𝜹, 𝐹𝑀𝑄𝑀𝐹

>
𝑀
), we have P[𝐹𝑀𝑄𝑀𝑬𝑀 ≤ 0] = Φ(−𝑢𝑀 )
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with 𝑢𝑀 = (𝐹𝑀𝑄𝑀𝐹>
𝑀
)−1/2𝐹𝑀𝑄𝑀 𝜋𝑀𝑄−1𝜹 = [𝑄𝑀 ]−1/2

11 [𝑄𝑀 𝜋𝑀𝑄−1𝜹]1. Finally, the
moments of 𝑄𝑀𝑬𝑀 conditional on 𝐹𝑀𝑄𝑀𝑬𝑀 > 0 are found by applying the results
of Gupta and Tracy (1978) on truncated trivariate normal distributions. In the end, we
arrive at

E[ �̂�𝑀 ] = 𝐺>
𝑀𝑅𝑀𝐺𝑀 𝜋𝑀𝑄

−1𝜹 · Φ(−𝑢𝑀 )
+𝑄𝑀 𝜋𝑀𝑄−1𝜹 · [1 −Φ(−𝑢𝑀 )] + (𝐹𝑀𝑄𝑀𝐹>

𝑀 )−1/2𝑄𝑀𝐹
>
𝑀𝜙(−𝑢𝑀 ),

E[ �̂�𝑀 �̂�
>
𝑀 ] = 𝐺>

𝑀𝑅𝑀𝐺𝑀Φ(−𝑢𝑀 ) + 𝐺>
𝑀𝑅𝑀𝐺𝑀 𝜋𝑀𝑄

−1𝜹𝜹>𝑄−1𝜋>𝑀𝐺
>
𝑀𝑅𝑀𝐺𝑀Φ(−𝑢𝑀 )

+𝑄𝑀 [1 −Φ(−𝑢𝑀 )] −
𝑄𝑀𝐹

>
𝑀
𝐹𝑀𝑄𝑀

𝐹𝑀𝑄𝑀𝐹
>
𝑀

𝑢𝑀𝜙(−𝑢𝑀 )

+ 2𝑄𝑀 𝜋𝑀𝑄−1𝜹
𝐹𝑀𝑄𝑀

(𝐹𝑀𝑄𝑀𝐹>
𝑀
)1/2 𝜙(−𝑢𝑀 )

+𝑄𝑀 𝜋𝑀𝑄−1𝜹𝜹>𝑄−1𝜋>𝑀𝑄𝑀 [1 −Φ(−𝑢𝑀 )] . (4.26)

Inserting these expressions in (4.25), using some algebra, and replacing the unknowns by
their estimates results in

AIC∗
𝑀 = −2ℓ𝑀 (�̂�𝑀 ;𝑌 ) + 2(𝑑 + |𝑀 |) − 2Φ

(
−(𝐹𝑀 �̂�𝑀𝐹>

𝑀 )−1/2𝐹𝑀 �̂�𝑀 𝜋𝑀 �̂�
−1�̂�

)
.

Additional proofs and derivations

Proof of (4.19)

A Taylor expansion of the log-likelihood of model 𝑀 at the MLE �̂�𝑀 about 𝜼0,𝑀 yields

𝐴2 = 2E𝑌 [E𝑋 [−(�̂�𝑀 − 𝜼0,𝑀 )>𝑛�̄�𝑛,𝑀 (𝜼0,𝑀 ; 𝑋)

− 1
2
(�̂�𝑀 − 𝜼0,𝑀 )>H𝑀 (𝜼0,𝑀 ; 𝑋) (�̂�𝑀 − 𝜼0,𝑀 ) + 𝑅2]]

≈ E𝑌 [2
√
𝑛(�̂�𝑀 − 𝜼0,𝑀 )>E𝑋 [−

√
𝑛�̄�𝑛,𝑀 (𝜼0,𝑀 ; 𝑋)]

+ (�̂�𝑀 − 𝜼0,𝑀 )>E𝑋 [−H𝑀 (𝜼0,𝑀 ; 𝑋)] (�̂�𝑀 − 𝜼0,𝑀 )],

where �̄�𝑛,𝑀 = (�̄�>
𝑛 , �̄�

>
𝑛,𝑀 )>, H𝑀 is the Hessian matrix of the log-likelihood of model 𝑀 ,

and 𝑅2 is a remainder term with 𝑅2
𝑛→∞−→ 0. Using the limiting distribution of the

score (4.20) and that E𝑋 [−H𝑀 (𝜼0,𝑀 ; 𝑋)] = 𝑛𝐽𝑀 , we obtain (4.19).

Proof of (4.22)

Using the limiting distribution of the MLE given in (4.21), 𝐴21 can be rewritten as,

𝐴21 ≈ E
[
(𝐽01𝜹 + 𝑲 − 𝐽01,𝑀 �̂�𝑀 )>𝐽−1

00
]
𝐽01𝜹 + E[ �̂�𝑀 ]>𝜋𝑀 𝐽11𝜹

= 𝜹>𝐽10𝐽
−1
00 𝐽01𝜹 + E[𝑲]>𝐽−1

00 𝐽01𝜹 + E[ �̂�𝑀 ]>𝜋𝑀 (𝐽11 − 𝐽10𝐽
−1
00 𝐽01)𝜹.
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Because E[𝑲] = 0 and noting that 𝑄 = (𝐽11 − 𝐽10𝐽
−1
00 𝐽01)−1, this is the first part of (4.22).

Similarly, we can approximate 𝐴22,

𝐴22 ≈ E
[
(𝐽01𝜹 + 𝑲 − 𝐽01,𝑀 �̂�𝑀 )>𝐽−1

00 𝐽00𝐽
−1
00 (𝐽01𝜹 + 𝑲 − 𝐽01,𝑀 �̂�𝑀 )

+2(𝐽01𝜹 + 𝑲 − 𝐽01,𝑀 �̂�𝑀 )>𝐽−1
00 𝐽01,𝑀 �̂�𝑀 + �̂�

>
𝑀 𝐽11,𝑀 �̂�𝑀

]
= E

[
(𝐽01𝜹 + 𝑲)>𝐽−1

00 (𝐽01𝜹 + 𝑲)
]
− 2E

[
(𝐽01𝜹 + 𝑲)>𝐽−1

00 𝐽01,𝑀 �̂�𝑀
]

+ E[ �̂�>𝑀 𝐽10,𝑀 𝐽
−1
00 𝐽01,𝑀 �̂�𝑀 ] + 2E

[
(𝐽01𝜹 + 𝑲)>𝐽−1

00 𝐽01,𝑀 �̂�𝑀
]

− 2E[ �̂�>𝑀 𝐽10,𝑀 𝐽
−1
00 𝐽01,𝑀 �̂�𝑀 ] + E[ �̂�>𝑀 𝐽11,𝑀 �̂�𝑀 ]

= 𝜹>𝐽10𝐽
−1
00 𝐽01𝜹 + 2𝜹>𝐽10𝐽

−1
00 E[𝑲] + E[𝑲>𝐽−1

00 𝑲]
+ E[ �̂�>𝑀 (𝐽11,𝑀 − 𝐽10,𝑀 𝐽

−1
00 𝐽01,𝑀 ) �̂�𝑀 ],

which with E[𝑲] = 0 and 𝑄𝑀 = (𝐽11,𝑀 − 𝐽10,𝑀 𝐽
−1
00 𝐽01,𝑀 )−1 is the second part of (4.22).

Proof of (4.24)

According to (4.23), we have

E[𝑲>𝐽−1
00 𝑲] = tr(𝐽−1

00 𝐽00) + E[𝑲]>𝐽−1
00 E[𝑲] = 𝑑,

E[ �̂�>𝑀𝑄−1
𝑀 �̂�𝑀 ] = tr(𝑄−1

𝑀Cov[ �̂�𝑀 ]) + E[ �̂�𝑀 ]>𝑄−1
𝑀E[ �̂�𝑀 ]

= tr(𝑄−1
𝑀E[ �̂�𝑀 �̂�

>
𝑀 ]) − tr(𝑄−1

𝑀E[ �̂�𝑀 ]E[ �̂�𝑀 ]>) + E[ �̂�𝑀 ]>𝑄−1
𝑀E[ �̂�𝑀 ],

where the last two expressions cancel because the trace is invariant under cyclic permuta-
tions and the last term is scalar.

Proof of the asymptotic equivalence of 𝑨1 and 𝑨22 in (4.19)

To show that 𝐴1 in (4.18) is asymptotically equivalent to 𝐴22 in (4.19), we consider the
following Taylor expansion of the log-likelihood of model 𝑀 at the null point about the
MLE,

ℓ𝑀 (𝜼0,𝑀 ;𝑌 ) = ℓ𝑀 (�̂�𝑀 ;𝑌 ) + (𝜼0,𝑀 − �̂�𝑀 )>𝑛�̄�𝑛,𝑀 (�̂�𝑀 ;𝑌 )

+ 1
2
(𝜼0,𝑀 − �̂�𝑀 )>H𝑀 (�̂�𝑀 ;𝑌 ) (𝜼0,𝑀 − �̂�𝑀 ) + 𝑅1,

with a remainder term 𝑅1
𝑛→∞−→ 0. Then, we see that

𝐴1 = 2E𝑌 [ℓ𝑀 (�̂�𝑀 ;𝑌 ) − ℓ𝑀 (𝜼0,𝑀 ;𝑌 )]
= 2E𝑌 [(�̂�𝑀 − 𝜼0,𝑀 )>𝑛�̄�𝑛,𝑀 (�̂�𝑀 ;𝑌 )]

+ E𝑌 [(�̂�𝑀 − 𝜼0,𝑀 )> [−H𝑀 (�̂�𝑀 ;𝑌 )] (�̂�𝑀 − 𝜼0,𝑀 ) + 𝑅1] .
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The term involving the score vector is equal to zero. If the MLE �̂�𝑀 is an inner point of the
parameter space, then by definition �̄�𝑛,𝑀 (�̂�𝑀 ;𝑌 ) = 0. If some components of the MLE,
say �̂� 𝑗 for 𝑗 ∈ 𝐵 ⊂ 𝑀 , lie on the boundary of the parameter space, then �̄�𝑛 (�̂�𝑀 ;𝑌 ) = 0
and �̄�𝑛,𝐵𝑐 (�̂�𝑀 ;𝑌 ) = 0, while �̄�𝑛,𝐵 (�̂�𝑀 ;𝑌 ) ≠ 0, but because (�̂�𝐵 − 𝜸0,𝐵) = 0, we still
have (�̂�𝑀 − 𝜼0,𝑀 )>𝑛�̄�𝑛,𝑀 (�̂�𝑀 ;𝑌 ) = 0.

Regarding the term involving the Hessian matrix, one can argue that −H𝑀 (�̂�𝑀 ;𝑌 )
reasonably well approximates 𝑛𝐽𝑀 (see also Claeskens and Hjort, 2008, Section 6.5),
which proves the assertion.

Proof of (4.26)

The first lines in the expressions for E[ �̂�𝑀 ] and E[ �̂�𝑀 �̂�
>
𝑀 ], respectively, in (4.26) follow

from 𝐺>
𝑀
𝑅𝑀𝐺𝑀𝑬𝑀 ∼ N |𝑀 | (𝐺>

𝑀
𝑅𝑀𝐺𝑀 𝜋𝑀𝑄

−1𝜹, 𝐺>
𝑀
𝑅𝑀𝐺𝑀 ).

The remaining lines correspond to the product of P[𝐹𝑀𝑄𝑀𝑬𝑀 > 0] and E[𝑄𝑀𝑬𝑀 |
𝐹𝑀𝑄𝑀𝑬𝑀 > 0] or E[(𝑄𝑀𝑬𝑀 ) (𝑄𝑀𝑬𝑀 )> | 𝐹𝑀𝑄𝑀𝑬𝑀 > 0], respectively. The con-
ditional expectations can be computed componentwise using the results of Gupta and
Tracy (1978). For that purpose, we define random vectors 𝑿 = ( [𝑄𝑀𝑬𝑀 ]1, [𝑄𝑀𝑬𝑀 ]𝑘 ,
[𝑄𝑀𝑬𝑀 ]𝑙)> made up of the first, 𝑘 th, and 𝑙 th component of 𝑄𝑀𝑬𝑀 , for 𝑘, 𝑙 ∈ 𝑀 . Then,
the 𝑿 have a trivariate normal distribution with mean vector given by the corresponding
components of 𝑄𝑀 𝜋𝑀𝑄−1𝜹 and covariance matrix equal to the corresponding submatrix
of 𝑄𝑀 . The transformed vectors 𝒀 = diag( [𝑄𝑀 ]−1/2

11 , [𝑄𝑀 ]−1/2
𝑘𝑘

, [𝑄𝑀 ]−1/2
𝑙𝑙

) (𝑿 − E[𝑿])
have a trivariate normal distribution with zero mean vector, unit variances, and corre-
lations 𝜌𝑠𝑡 = [𝑄𝑀 ]𝑠𝑡 [𝑄𝑀 ]−1/2

𝑠𝑠 [𝑄𝑀 ]−1/2
𝑡𝑡 , for 𝑠, 𝑡 ∈ {1, 𝑘, 𝑙}. The 𝑘 th component of

E[𝑄𝑀𝑬𝑀 | 𝐹𝑀𝑄𝑀𝑬𝑀 > 0] can then be expressed as

E[𝑋2 | 𝑋1 > 0] = [𝑄𝑀 ]1/2
𝑘𝑘

E[𝑌2 | 𝑌1 > −𝑢𝑀 ] + [𝑄𝑀 𝜋𝑀𝑄−1𝜹]𝑘 , 𝑘 ∈ 𝑀,

where still 𝑢𝑀 = [𝑄𝑀 ]−1/2
11 [𝑄𝑀 𝜋𝑀𝑄−1𝜹]1. According to the formulas in Section 4 of

Gupta and Tracy (1978),

E[𝑌2 | 𝑌1 > −𝑢𝑀 ] = 𝜌1𝑘
𝜙(−𝑢𝑀 )

1 −Φ(−𝑢𝑀 ) ,

such that

E[𝑄𝑀𝑬𝑀 | 𝐹𝑀𝑄𝑀𝑬𝑀 > 0] = 𝑄𝑀 𝜋𝑀𝑄−1𝜹 + (𝐹𝑀𝑄𝑀𝐹>
𝑀 )−1/2𝑄𝑀𝐹

>
𝑀

𝜙(−𝑢𝑀 )
1 −Φ(−𝑢𝑀 ) .

Similarly, the components E[[𝑄𝑀𝑬𝑀 ]𝑘 [𝑄𝑀𝑬𝑀 ]𝑙 | [𝑄𝑀𝑬𝑀 ]1 > 0] of the condi-
tional expectation of (𝑄𝑀𝑬𝑀 ) (𝑄𝑀𝑬𝑀 )> correspond to E[𝑋2𝑋3 | 𝑋1 > 0], and hence,
equal

[𝑄𝑀 ]1/2
𝑘𝑘

[𝑄𝑀 ]1/2
𝑙𝑙

E[𝑌2𝑌3 | 𝑌1 > −𝑢𝑀 ] + [𝑄𝑀 ]1/2
𝑘𝑘

E[𝑌2 | 𝑌1 > −𝑢𝑀 ] · [𝑄𝑀 𝜋𝑀𝑄−1𝜹]𝑙
+ [𝑄𝑀 ]1/2

𝑙𝑙
E[𝑌3 | 𝑌1 > −𝑢𝑀 ] · [𝑄𝑀 𝜋𝑀𝑄−1𝜹]𝑘 + [𝑄𝑀 𝜋𝑀𝑄−1𝜹]𝑘 · [𝑄𝑀 𝜋𝑀𝑄−1𝜹]𝑙 .
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Consulting again Section 4 in Gupta and Tracy (1978), to find

E[𝑌2𝑌3 | 𝑌1 > −𝑢𝑀 ] = 𝜌𝑘𝑙 − 𝑢𝑀 𝜌1𝑘 𝜌1𝑙
𝜙(−𝑢𝑀 )

1 −Φ(−𝑢𝑀 ) ,

this leads to E[(𝑄𝑀𝑬𝑀 ) (𝑄𝑀𝑬𝑀 )> | 𝐹𝑀𝑄𝑀𝑬𝑀 > 0] being equal to

𝑄𝑀 −
𝑄𝑀𝐹

>
𝑀
𝐹𝑀𝑄𝑀

𝐹𝑀𝑄𝑀𝐹
>
𝑀

· 𝑢𝑀
𝜙(−𝑢𝑀 )

1 −Φ(−𝑢𝑀 )

+ 2𝑄𝑀 𝜋𝑀𝑄−1𝜹
𝐹𝑀𝑄𝑀

(𝐹𝑀𝑄𝑀𝐹>
𝑀
)1/2 · 𝜙(−𝑢𝑀 )

1 −Φ(−𝑢𝑀 ) +𝑄𝑀 𝜋𝑀𝑄
−1𝜹𝜹>𝑄−1𝜋>𝑀𝑄𝑀 .
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