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3
Information measures and design issues in

the study of mortality deceleration:
Findings for the gamma-Gompertz model

Abstract

Mortality deceleration, or the slowing down of death rates at old ages, has been repeat-
edly investigated, but empirical studies of this phenomenon have produced mixed results.
The scarcity of observations at the oldest ages complicates the statistical assessment of
mortality deceleration, even in the parsimonious parametric framework of the gamma-
Gompertz model considered here. The need for thorough verification of the ages at death
can further limit the available data. As logistical constraints may only allow to validate
survivors beyond a certain (high) age, samples may be restricted to a certain age range. If
we can quantify the effects of the sample size and the age range on the assessment of mor-
tality deceleration, we can make recommendations for study design. For that purpose, we
propose applying the concept of the Fisher information and ideas from the theory of op-
timal design. We compute the Fisher information matrix in the gamma-Gompertz model,
and derive information measures for comparing the performance of different study de-
signs. We then discuss interpretations of these measures. The special case in which the

This chapter has been published as: M. Böhnstedt, J. Gampe, and H. Putter (2021). Information measures
and design issues in the study of mortality deceleration: findings for the gamma-Gompertz model. Lifetime
Data Analysis 27, 333-356.
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26 Chapter 3 – Information measures and design issues

frailty variance takes the value of zero and lies on the boundary of the parameter space
is given particular attention. The changes in information related to varying sample sizes
or age ranges are investigated for specific scenarios. The Fisher information also allows
us to study the power of a likelihood ratio test to detect mortality deceleration depending
on the study design. We illustrate these methods with a study of mortality among late
19th-century French-Canadian birth cohorts.

3.1 Introduction

Accurately describing, understanding, and, finally, projecting the trajectory of human
mortality over age is crucial for assessing the future of human longevity, but it is also
important in actuarial sciences, population forecasting and health care planning. The sci-
entific modeling of human mortality over age has a long tradition. Around two centuries
ago, Benjamin Gompertz published his finding that the death rates of humans increase
exponentially from mid-life ages onwards (Gompertz, 1825), and this regularity has since
been confirmed time and time again in many populations, epochs, and circumstances.
Recently, however, improved and more accurate vital registration has revealed that the
increase in death rates slows down at higher ages (see, for example, Thatcher et al., 1998;
Thatcher, 1999). This decrease in the increase of death rates at older ages is termed mor-
tality deceleration.

An explanation for this initially perplexing observation was provided early on by
Beard (1959) via the so-called heterogeneity hypothesis. If the individuals in a birth
cohort are subjected to non-identical mortality risks, then those with higher risks tend to
die earlier, resulting in an increasingly selected group of survivors with lower mortality
risks. Hence, even if the individual hazards increase exponentially, the population hazard
will increase more slowly (Vaupel et al., 1979).

Although this explanation is plausible, empirical investigations have repeatedly pro-
duced mixed results (Bebbington et al., 2014). While some studies have found evidence
of a downward deviation from the exponential hazard at the oldest ages (Feehan, 2018),
others have suggested that exponential growth continues even through advanced ages
(Gavrilov and Gavrilova, 2019).

The empirical study of mortality deceleration is complicated by several issues. It is a
phenomenon that manifests in the tail of the lifespan distribution where observations ne-
cessarily become sparse, even for sizable cohorts. Whether we are able to detect mortality
deceleration will depend on the actual strength of the effect and the size of the sample.

The Gompertz model originated as an actuarial device, but its ability to capture the
age-trajectory of adult mortality in a multitude of circumstances prompted numerous at-
tempts to find underlying mechanisms that would produce exponentially increasing haz-
ards. Most attempts come from reliability theory (Gavrilov and Gavrilova, 2001) and the
biology of aging (see Kirkwood, 2015, and references therein). Whether and which of
the mechanisms will eventually apply is still an open question, however, the repeatedly
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confirmed exponential increase of mortality over much of the adult lifespan established
the Gompertz model in demography, biology, and epidemiology.

When examining mortality deceleration, we have to decide over what age range death
rates should be analyzed in order to uncover potential deviations from a Gompertz hazard.
On the one hand, using a rather wide age range – that is, starting from relatively young
ages – may run the risk that the observations at younger ages dominate the analysis, and
thus mask the deceleration that is based on relatively fewer observations at older ages.
This line of thought suggests that observations of higher ages at death might be more
informative about a potential deceleration than observations of younger ages at death.
On the other hand, using a wider age range might enable us to detect deviations from
the exponential increase of the hazard early. Moreover, using a wider age range yields a
larger sample size, and can increase the precision of the parameter estimates, particularly
of the parameters describing the exponential increase. This might enable us to detect more
easily deviations from it at higher ages. How the trade-off between these two opposing
effects would play out is not clear.

Another important aspect in all studies involving old-age mortality is data quality. In
particular, age misreporting is known to induce a downward bias of mortality at advanced
ages (Preston et al., 1999). Therefore, scientific age validation is indispensable in studies
involving individuals of very high ages (Jeune and Vaupel, 1999). In practice, performing
such individual checks is costly and time-consuming, and logistics can limit the number
of cases that can be verified. In the application presented in Section 3.6, the ages at death
could be validated for individual members of French-Canadian birth cohorts (born 1880-
1896) who survived to age 90 or older. Since extending the age range by another, say, five
years, to ages 85 and above, would imply a drastic increase in the number of cases to be
validated, a practically relevant question is how much the extra effort would expand the
information about mortality deceleration in the resulting larger data set.

All of the considerations discussed above are questions related to optimal design.
While the theory of optimal design is applied in various research fields (see Berger and
Wong, 2009, and the references therein), applications are less numerous in the area of
survival analysis. Hwang and Brookmeyer (2003) attempted to find the optimal spacing
between consecutive waves of a panel study. Becker et al. (1989) and Konstantinou et al.
(2015) discussed optimal covariate settings in proportional hazards models, and McGree
and Eccleston (2010) investigated the design aspects of covariates and sample size in
accelerated failure-time models. Here, we will study the effects of the sample size and the
age range covered by a data set on the assessment of mortality deceleration; specifically,
on the downward deviation from a Gompertz hazard.

The most commonly used approaches for describing individually heterogeneous death
risks are proportional hazards frailty models (Vaupel et al., 1979; Duchateau and Janssen,
2008; Balan and Putter, 2020). In this chapter, we focus on one specific model from
this class, the gamma-Gompertz model. The individuals share an exponentially increas-
ing Gompertz baseline hazard, but a multiplicative gamma distributed random effect (the
frailty) introduces heterogeneity of the individual mortality risks. The amount of hetero-
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geneity is determined by the frailty variance. If the frailty variance is zero the population
hazard will follow the exponential Gompertz trajectory, while a positive frailty variance
implies that the population hazard decelerates at older ages. Consequently, the statistical
assessment of mortality deceleration in the gamma-Gompertz model is reduced to infer-
ence about the frailty variance. In particular, the likelihood ratio test for a zero frailty
variance is a commonly used approach to assess this phenomenon. However, zero is
a boundary point of the parameter space for the variance parameter which violates the
usual regularity assumptions. Consequently, standard asymptotic results are not directly
applicable.

In this chapter, we propose using the concepts of the Fisher information and of op-
timal design to address issues that arise in planning and evaluating studies that assess
mortality deceleration in the setting of the gamma-Gompertz model. Within the likeli-
hood framework, the Fisher information measures the amount of information about the
model parameters that is contained in the data (Lehmann, 1999). Therefore, the Fisher
information can serve as a basis for identifying optimal designs that maximize the infor-
mation about the model parameters.

The chapter is organized as follows. Section 3.2 lays out the framework for our study
by formally introducing the gamma-Gompertz model, as well as the general concepts
of the Fisher information and of optimal designs. In Section 3.3, we present the Fisher
information and a specific information measure for the gamma-Gompertz model, and re-
late them to the power of the likelihood ratio test to detect mortality deceleration. In
Section 3.4, we discuss in detail the design issues that arise in studies of mortality decel-
eration. In Section 3.5, we assess the effects of different design choices on the information
measure, and on the power of the test for specific scenarios. In Section 3.6, we apply the
proposed concepts and methods to a French-Canadian mortality data set. In Section 3.7,
we conclude with a discussion of our findings.

3.2 Framework: Gamma-Gompertz model, Fisher information
& study design

3.2.1 Gamma-Gompertz model
We consider a continuous random variable 𝑋 that describes adult lifespans (above some
young adult age, such as 30). Its distribution is determined by the hazard function

ℎ(𝑥) = lim
Δ𝑥↘0

P(𝑥 < 𝑋 ≤ 𝑥 + Δ𝑥 | 𝑋 > 𝑥)
Δ𝑥

.

The heterogeneity hypothesis can be formalized in frailty proportional hazards models of
the form ℎ(𝑥 | 𝑍 = 𝑧) = 𝑧 · ℎ0 (𝑥). The unobserved heterogeneity of the individuals is
modeled via the positive random effect 𝑍 that affects a common baseline hazard ℎ0 (𝑥) in
a multiplicative way. Individuals with higher values 𝑧 have a higher risk at any age 𝑥, as
specified by the conditional hazard ℎ(𝑥 | 𝑍 = 𝑧); thus, 𝑍 is called the frailty.
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A popular choice for the distribution of frailties is the gamma distribution. It leads
to closed-form expressions for marginal survival and hazard functions. Furthermore, for
the gamma distribution the frailty among survivors at any age 𝑥 > 0 again is gamma dis-
tributed, only with different parameters (Vaupel et al., 1979; Hougaard, 1984; Economou
and Caroni, 2008). Moreover, Abbring and van den Berg (2007) showed that even if
the frailty at 𝑥 = 0 is not gamma distributed the frailty among survivors converges with
increasing 𝑥 to a gamma distribution for many proportional hazards frailty models.

As the name suggests, in the gamma-Gompertz model the baseline hazard has an
exponentially increasing Gompertz form, ℎ0 (𝑥) = 𝑎𝑒𝑏𝑥 . Here the parameter 𝑎 > 0
represents the initial level of mortality for 𝑥 = 0 and 𝑏 > 0 is the rate of aging. The
frailty is gamma distributed, with a mean of one and a variance of 𝜎2. The heterogeneity
in frailty, and, hence, in mortality risks, is measured by the variance parameter 𝜎2. In
a heterogeneous population with 𝜎2 > 0, there is a tendency of individuals with higher
frailty values to die at younger ages, such that the population of survivors to higher ages
consists mainly of individuals with lower mortality risks. Therefore, the marginal hazard,

ℎ(𝑥) = 𝑎𝑒𝑏𝑥

1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑥 − 1)

, (3.1)

shows a downward deviation from the exponential increase at higher ages. In a homoge-
neous population with 𝜎2 = 0, there is no such selection effect, and the marginal hazard is
again of the Gompertz form, ℎ(𝑥) = 𝑎𝑒𝑏𝑥 . Thus, the presence or the absence of mortality
deceleration is determined by the parameter 𝜎2 and can, for instance, be assessed by a
likelihood ratio test for 𝐻0 : 𝜎2 = 0 against 𝐻1 : 𝜎2 > 0.

While the parameter 𝜎2 describes the heterogeneity in frailty and mortality risks at
the starting age of the model – that is, at 𝑥 = 0 – the increasingly selected population
of survivors to higher ages will be less heterogeneous in terms of their frailty and mor-
tality risks. For example, the heterogeneity in mortality risks will be lower in the subset
of survivors to ages 90 and above than among the survivors to ages 80 and above. Con-
sequently, the age range covered by a data set will affect the ability to assess the frailty
variance, and, hence, mortality deceleration.

It is important to note that the frailty variance 𝜎2 takes a value on the boundary of its
parameter space if there is no heterogeneity (𝜎2 = 0). As this violates common regularity
assumptions, some standard asymptotic results for likelihood inference might not hold,
which will also affect the interpretation of the information measures in the following.

3.2.2 The Fisher information
We briefly recap the concept of the Fisher information, and refer to Chapter 7 in Lehmann
(1999) for further details. For a random variable 𝑋 with density 𝑓𝑋 (·; 𝜽) and parameter
vector 𝜽 = (𝜃1, 𝜃2, ..., 𝜃𝐾 )>, the Fisher information matrix 𝑰(𝜽) is defined as

𝑰(𝜽) = E
[(
𝜕

𝜕𝜽
ln 𝑓𝑋 (𝑋; 𝜽)

) (
𝜕

𝜕𝜽
ln 𝑓𝑋 (𝑋; 𝜽)

)>]
, (3.2)
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where the expectation E is with respect to the distribution of 𝑋 . Under mild regularity
conditions, expression (3.2) can be rewritten in terms of the second-order partial deriva-
tives of the log-density of 𝑋 ,

𝑰(𝜽) = −E
[

𝜕2

𝜕𝜽𝜕𝜽>
ln 𝑓𝑋 (𝑋; 𝜽)

]
. (3.3)

The Fisher information 𝑰(𝜽) is often interpreted as the amount of information a single
observation of 𝑋 contains about the model parameters 𝜽 . The information 𝑰𝒏 (𝜽) of an
iid sample 𝑋1, 𝑋2, ..., 𝑋𝑛 of size 𝑛 from the distribution of 𝑋 is then 𝑛-times as large,
𝑰𝒏 (𝜽) = 𝑛𝑰(𝜽). In many cases, the Fisher information (3.3) cannot be computed directly
because it depends on the true unknown parameter value, or because the expectation is not
analytically tractable. Thus, we often use the observed Fisher information matrix, which
for an iid sample of size 𝑛 is given by the negative second-order partial derivatives of the
log-likelihood, evaluated at the maximum likelihood estimate (MLE) 𝜽𝒏,

J (𝜽𝒏) = − 𝜕2

𝜕𝜽𝜕𝜽>

𝑛∑︁
𝑖=1

ln 𝑓𝑋 (𝑋𝑖; 𝜽)
���
𝜽=𝜽𝒏

. (3.4)

The interpretation of 𝑰(𝜽) as a measure of information is based on two different ar-

guments. Analytically, the partial derivatives 𝜕
𝜕𝜽 ln 𝑓𝑋 (𝑥; 𝜽) =

𝜕
𝜕𝜽 𝑓𝑋 (𝑥;𝜽)
𝑓𝑋 (𝑥;𝜽) in (3.2) describe

the relative change of the density 𝑓𝑋 (·; 𝜽) with respect to 𝜽 at the point 𝑥. If this change is
large for one 𝜽0, this parameter value can be better identified from a range of possible val-
ues 𝜽 . Similarly, the second-order partial derivatives 𝜕2

𝜕𝜽𝜕𝜽>
ln 𝑓𝑋 (𝑋; 𝜽) in (3.3) describe

the curvature of the log-density ln 𝑓𝑋 (·; 𝜽) with respect to 𝜽 , and, thus, the curvature of
the contributions to the log-likelihood function. A sample for which the log-likelihood
shows a clearer peak at some 𝜽0, and for which this value is, therefore, more clearly dis-
tinguished from other values 𝜽 , is viewed as more informative about the parameter than
samples with a flatter log-likelihood.

A second justification for the notion of information rests on the following result for

asymptotically normal estimators. If an estimator 𝛿𝑛 of 𝜃𝑘 satisfies
√
𝑛(𝛿𝑛 − 𝜃𝑘 )

𝑑−→
N (0, 𝑣(𝜽)), then its variance is bounded below by [𝑰(𝜽)]−1

𝑘𝑘
, which denotes the 𝑘 th di-

agonal element of the inverse of the information matrix 𝑰(𝜽) (see Lehmann and Casella,
1998, p. 462). In particular, the MLE 𝜽𝒏 attains this lower bound under suitable regularity
conditions (cf. Lehmann and Casella, 1998, p. 463),

√
𝑛(𝜽𝒏 − 𝜽) 𝑑−→ N (0, [𝑰(𝜽)]−1), (3.5)

such that each 𝜃𝑛𝑘 is asymptotically efficient,
√
𝑛(𝜃𝑛𝑘 − 𝜃𝑘 )

𝑑−→ N (0, [𝑰(𝜽)]−1
𝑘𝑘
). In

this sense, a sample is more informative if the parameters can be estimated with higher
precision.

In summary, following the exposition above, the Fisher information serves as a suit-
able measure of the information contained in a sample about the unknown parameter in
likelihood-based inference.
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3.2.3 Optimal design
The Fisher information can be instrumental for determining optimal designs. The aim
is to find a design that maximizes some scalar function of the information matrix, and
that therefore maximizes the information, in a suitably defined way, about all or some
particular model parameters.

Different criteria for defining and assessing the optimality of a design have been sug-
gested (see Silvey, 1980, for an early monograph, and Atkinson, 1988, for an early re-
view). If all elements of the parameter vector 𝜽 are of interest, two popular scalar mea-
sures of information are 𝐷- and 𝐴-optimality. A design is called 𝐷-optimal if the design
maximizes the determinant of the information matrix, det(𝑰(𝜽)). Alternatively, the cri-
terion of 𝐴-optimality refers to the trace of the inverse information matrix [𝑰(𝜽)]−1 and
states that a design is optimal if the design attains the maximum possible value for the
inverse of this trace, that is, for 1/tr( [𝑰(𝜽)]−1).

Both of these information measures are functions of the eigenvalues of the informa-
tion matrix. The determinant equals the product and the trace equals the sum of the
eigenvalues of a matrix, respectively; and the eigenvalues of [𝑰(𝜽)]−1 are the reciprocals
of the eigenvalues of 𝑰(𝜽). These eigenvalues of the information matrix are related to es-
timator precision. For an estimator 𝜽𝒏 that is asymptotically normal with the covariance
matrix given by the inverse Fisher information matrix [𝑰(𝜽)]−1 as in (3.5), a confidence
region for the parameter vector 𝜽 takes the form of an ellipsoid. The axes of the ellipsoid
are characterized by the eigenvalues and the eigenvectors of the matrix [𝑰(𝜽)]−1. More
precisely, the eigenvectors determine the direction of the axes of the ellipsoid, and the
eigenvalues are proportional to the squared lengths of the axes. Therefore, the size of the
confidence ellipsoid and the precision of the estimator largely depend on the eigenvalues
of [𝑰(𝜽)]−1. In particular, the volume of the confidence ellipsoid is proportional to the
product of the eigenvalues of [𝑰(𝜽)]−1. As a consequence, maximizing the information in
terms of 𝐷-optimality corresponds to minimizing the volume of the confidence ellipsoid.

The criteria of 𝐷- and 𝐴-optimality weigh all dimensions of the problem equally. In
contrast, the criterion of 𝐸-optimality seeks to maximize only the smallest eigenvalue
of the information matrix. This is equivalent to minimizing the largest eigenvalue of
[𝑰(𝜽)]−1, which measures the uncertainty about the parameters in the direction of the
largest axis of the confidence ellipsoid. Because the parameters are estimated with least
precision in this direction, an 𝐸-optimal design maximizes the precision in the estimation
of the least well-estimated parameter combinations.

If one particular linear combination of the parameters is of specific interest, the crite-
rion of 𝐷𝐴-optimality is applied. If 𝑨𝜽 denotes the linear combination of the parameters,
where 𝑨 is a 𝑝 × 𝐾 matrix of rank 𝑝 < 𝐾 , then, by analogy with 𝐷-optimality, one max-
imizes the determinant of the inverse of 𝑨[𝑰(𝜽)]−1𝑨>. The criterion of 𝐷𝐴-optimality
also allows us to focus on only one parameter 𝜃𝑘 . For that purpose, a matrix 𝑨 of di-
mension 1 × 𝐾 is defined with entry 1 for the 𝑘 th element, and with zeros otherwise. The
information measure then simplifies to (𝑨[𝑰(𝜽)]−1𝑨>)−1 = 1/[𝑰(𝜽)]−1

𝑘𝑘
. In a regular

setting with an asymptotically normal estimator 𝜃𝑘 that satisfies (3.5), maximizing the in-
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formation measure 1/[𝑰(𝜽)]−1
𝑘𝑘

is equivalent to minimizing the asymptotic variance of 𝜃𝑘 ,
or, in other words, maximizing its precision.

If the information matrix 𝑰(𝜽) and the derived information measures depend on the
unknown parameter vector 𝜽 , these designs are said to be only locally optimal designs for
the given values of the parameter(s). However, we can still evaluate the information mea-
sures over a range of possible parameter values to assess the robustness of the optimality
of the design against changes in the parameter values.

3.3 Information measures in the gamma-Gompertz model

In this section, we develop the concepts of Sections 3.2.2 and 3.2.3 specifically for the
gamma-Gompertz model. After providing details on the computation of the Fisher in-
formation matrix, we specify an information measure for 𝐷𝐴-optimality, and discuss its
interpretation. In Section 3.3.4, we show that this measure also plays a role in the calcu-
lation of the power of the likelihood ratio test to detect mortality deceleration.

3.3.1 Fisher information in the gamma-Gompertz model
The aim is to derive the Fisher information matrix according to (3.3) specifically for an
observation from the gamma-Gompertz model (3.1). For this model, the parameter vector
consists of three components: the Gompertz baseline parameters 𝑎 and 𝑏 and the frailty
variance 𝜎2, so that 𝜽 = (𝑎, 𝑏, 𝜎2)>. The density of lifespan 𝑋 is given by

𝑓𝑋 (𝑥; 𝑎, 𝑏, 𝜎2) = 𝑎 𝑒𝑏𝑥
[
1 + 𝜎2 𝑎

𝑏
(𝑒𝑏𝑥 − 1)

]−(
1+ 1

𝜎2

)
.

(The value 𝑥 = 0 here marks the age from which the exponentially increasing Gompertz
hazard has been established as a good model for human mortality, commonly a mid-adult
age such as 30 or 40.)

As is common in the analysis of time-to-event data, the observations are often subject
to censoring or truncation. Left truncation occurs in our context if the data are limited to
individuals who have survived beyond a certain age 𝑥, as discussed in Section 3.1. In our
case, this left-truncation age is identical for all individuals (𝑥 = 90). Censoring occurs if
some individuals are still alive at the end of follow-up. In our study, we only analyze birth
cohorts who are already extinct – that is, all members have already died – and we will not
consider right censoring. (For the calculation of the Fisher information with censoring
and truncation for a class of location-scale distributions, see Escobar and Meeker, 1998.)

For left-truncated observations, the Fisher information needs to be calculated for the
truncated (𝑋 | 𝑋 > 𝑥) with density 𝑓𝑋 |𝑋>�̆� (·; 𝜽) = 𝑓𝑋 (·; 𝜽)/𝑆𝑋 (𝑥; 𝜽) on (𝑥,∞), where
𝑆𝑋 (𝑥; 𝜽) = P(𝑋 > 𝑥; 𝜽) denotes the survival function of 𝑋 . Consequently, formula (3.3)
for the information matrix is adapted as

𝑰(𝜽) = −E
[

𝜕2

𝜕𝜽𝜕𝜽>
ln 𝑓𝑋 |𝑋>�̆� (𝑋; 𝜽) | 𝑋 > 𝑥

]
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= −
∫ (

𝜕2

𝜕𝜽𝜕𝜽>
ln 𝑓𝑋 |𝑋>�̆� (𝑢; 𝜽)

)
𝑓𝑋 |𝑋>�̆� (𝑢; 𝜽) d𝑢. (3.3’)

Computing the Fisher information matrix in the gamma-Gompertz model requires the
second-order partial derivatives of the log-density of the gamma-Gompertz model 𝑋 for
complete data, or of (𝑋 | 𝑋 > 𝑥) for left-truncated data with respect to the parameters.
The formulas are given in Section 3.8.1. Based on these, we obtain explicit formulas for
the observed Fisher information matrix J (𝜽𝒏), defined in (3.4), for a given sample with
corresponding MLE 𝜽𝒏.

In contrast, the exact calculation of the Fisher information matrix 𝑰(𝜽) in (3.3’) re-
quires taking the (negative) expectations of the second-order partial derivatives. As closed-
form expressions for these integrals do not exist, we propose approximating the expecta-
tions using numerical integration.

In the absence of an analytical expression for the Fisher information matrix 𝑰(𝜽) in the
gamma-Gompertz model, there is no closed-form function of 𝑰(𝜽) of the parameters 𝜽 ,
the sample size 𝑛, and the age at left truncation 𝑥. However, 𝑰(𝜽) can be evaluated over
a range of relevant values for these quantities in order to get an impression of how they
affect the information matrix. Further computational details are given in Section 3.8.2.

3.3.2 𝑫𝑨-optimality in the gamma-Gompertz model
In the gamma-Gompertz model, the presence or the absence of mortality deceleration is
determined by the frailty variance, which also to a large extent controls how strongly the
hazard decelerates. Thus, for the assessment of mortality deceleration, our main interest
lies in the parameter 𝜎2, while the Gompertz parameters 𝑎 and 𝑏 are treated as nuisance.
Hence, we will evaluate designs primarily according to the criterion of 𝐷𝐴-optimality,
and define the matrix 𝑨 from Section 3.2.3 as 𝑨 = (0, 0, 1). The resulting information
measure is then 1/[𝑰(𝜽)]−1

33 ; in the following, we will denote [𝑰(𝜽)]−1
33 as 𝜅2. It is impor-

tant to note that 𝜅2 still depends on the true parameter value 𝜽 , but also on the observation
scheme (such as left-truncation age 𝑥), although this is suppressed in the notation. A
design will be preferred over another if it has a smaller 𝜅2.

3.3.3 Interpretation of information measures in a non-standard set-
ting

As we noted in Section 3.2.2, the use of the Fisher information for study design can be
motivated by the result that the asymptotic covariance matrix of the MLEs is given by
the inverse Fisher information; see (3.5). This result holds under standard conditions,
which are, however, violated in the present framework of the gamma-Gompertz model,
because the frailty variance takes a value on the boundary of the parameter space if there
is no mortality deceleration (𝜎2 = 0). The asymptotic distribution of the MLE in the
gamma-Gompertz model was derived in Böhnstedt and Gampe (2019). For sufficiently
large 𝜎2 > 0, the MLE 𝜽 = (�̂�, �̂�, �̂�2)> is still asymptotically normal with covariance
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matrix [𝑰𝒏 (𝜽)]−1 as in (3.5); but for 𝜎2 = 0, the MLE has a two-component mixture
distribution. As a result, minimizing the element 𝜅2 of the inverse Fisher information
in order to find an optimal design corresponds to minimizing the asymptotic variance of
the parameter estimate �̂�2 only if the true 𝜎2 > 0 is sufficiently large. If 𝜎2 = 0, the
quantity 𝑛−1𝜅2 does not correspond to the variance of �̂�2.

Nonetheless, the element 𝜅2 can be used for the evaluation of certain design choices –
for example, for comparing different alternatives for the age range covered by a sample.
In a simulation study (for details about the scenarios see Section 3.5), we found that the
relative changes in 𝑛−1𝜅2 were very close to the relative changes in the variance of �̂�2

even if 𝜎2 = 0 (see bottom panels of Figure 3.6). This finding suggests that comparative
statements about the amount of information or the variance of �̂�2 for subsets of a sam-
ple that cover different age ranges can still be based on ratios of the corresponding 𝜅2.
Unfortunately, this does not apply for comparisons across different scenarios defined by
different 𝜽 .

Consequently, the quantity 𝜅−2 should only be related to estimator variance in cases
in which this is known to be appropriate. Otherwise, we should stick to the notion of a
measure of information; e.g., in the sense of local curvature of the log-likelihood.

3.3.4 Power of the likelihood ratio test
A common approach for assessing mortality deceleration in the framework of the gamma-
Gompertz model is a likelihood ratio test for 𝐻0 : 𝜎2 = 0 against 𝐻1 : 𝜎2 > 0. Under the
null hypothesis, the value of the variance parameter lies on the boundary of the parameter
space so that the likelihood ratio test statistic is not asymptotically chi-squared distributed
with one degree of freedom. Instead, one can adopt the results of Self and Liang (1987)
to show that, if 𝐻0 holds, the test statistic asymptotically follows a 50:50 mixture of a
chi-squared distribution with one degree of freedom and a point mass at zero. Incorrectly
assuming a chi-squared distribution with one degree of freedom for the test statistic im-
plies a larger critical value, hence fewer rejections of 𝐻0, and ultimately lower power to
detect a positive 𝜎2 > 0.

An explicit formula for the asymptotic power of the likelihood ratio test based on a
sample from a gamma-Gompertz model with frailty variance𝜎2 was derived by Böhnstedt
and Gampe (2019). According to their Lemma 6, the power 𝛽𝑛 of the likelihood ratio test
at level 𝛼 and sample size 𝑛 can be approximated by

𝛽𝑛 (𝜎2) ≈ 1 −Φ

(
Φ−1 (1 − 𝛼) −

√
𝑛𝜎2

𝜅

)
, (3.6)

where Φ(·) is the standard normal distribution function and 𝜅 is the square root of the
element of the inverse Fisher information, as defined above. (The proof can be found
in the online supplementary material of Böhnstedt and Gampe, 2019.) Thus, through
𝜅, the power of the likelihood ratio test depends on the true parameter 𝜽 , but also on
possible left truncation; that is, on the age range of the data. Based on our computation
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of the Fisher information matrix and the resulting 𝜅2, we can now also determine the
power of the likelihood ratio test theoretically, without performing extensive simulation
studies. Moreover, with regard to study design, we see from formula (3.6) that designs
that minimize 𝜅2 simultaneously maximize the power of the likelihood ratio test to detect
mortality deceleration.

3.4 Design considerations in assessing mortality deceleration

The precision of parameter estimates and the power of statistical tests to detect mortality
deceleration depend on the characteristics of the data set under study. We want to quantify
the effects that the size of the sample as well as the age range that it covers have on the in-
formation contained in the data about the phenomenon. For that purpose, we denote by I
a scalar measure of information that is derived from the Fisher information matrix 𝑰(𝜽),
such as I = det(𝑰(𝜽)) or I = 𝜅−2.

In the first part of this section, we will discuss how we can assess the effect of the age
range that is covered by the data. The age range of a data set is usually restricted because
accurate age validation is required, but it is often not feasible to perform the validation
for an extensive part of a birth cohort. As mortality deceleration occurs at the tail of
the survival distribution, studies that examine this phenomenon focus on the older ages,
and, therefore, usually collect information only on survivors beyond a certain age 𝑥. On
the one hand, the observation of a death at older ages might be expected to carry more
information about mortality deceleration than a death at younger ages. On the other hand,
the continuing selection of more robust individuals with lower frailty values leads to a
decrease in the variance of frailty among survivors to higher ages (Vaupel et al., 1979;
Hougaard, 1984; Economou and Caroni, 2008). Therefore it could become more difficult
to assess mortality deceleration for higher left-truncation ages. Moreover, observations of
deaths at younger ages can provide indirect information about the parameter 𝜎2, because
they lead to increased precision in the estimation of the Gompertz parameters 𝑎 and 𝑏.

To see how these effects trade off, we look at I𝑥+, the information measure for an
observation left-truncated at age 𝑥 for a given 𝜽 . The pattern of the absolute measure I𝑥+
across different 𝑥 tells us which age range is most informative. In addition, ratios like
I80+/I90+ quantify the change in information if observations are left-truncated at an ear-
lier age; here, at 𝑥 = 80, rather than at a later age, like 𝑥 = 90.

The Fisher information matrix 𝑰(𝜽) and derived measures such as I = 𝜅−2 correspond
to a single observation. If we want to compare the amount of information that is available
in a situation in which all survivors to ages 𝑥 = 80 and above (80+) can be studied to a
situation in which only survivors to ages 90+ can be studied, we should also take into ac-
count that the 80+ data set will include more individuals than the 90+ data set, because for
studies on mortality deceleration, all members of a cohort who survive beyond a certain
age will usually be included in the sample. For that purpose, we scale the information
measure I𝑥+ by the probability of obtaining an observation of a death at some age 𝑥+, and
define the scaled measure as I (𝑠)

𝑥+ = I𝑥+ · P(𝑋 > 𝑥).
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For scenarios with sufficiently large 𝜎2, the variance of �̂�2 can be approximated by
𝑛−1𝜅2. Thus, we can also draw conclusions about the precision of the estimate of the
frailty variance based on I = 𝜅−2. In this case, the inverse of the ratio I (𝑠)

80+/I
(𝑠)
90+ de-

scribes the relative change in the variance of �̂�2 when data on all deaths between ages 80
and 89 could be added to a data set that currently contains information only on all sur-
vivors to ages 90+. On the basis of such numbers, practitioners could decide whether it is
worthwhile to extend an existing data set to also include information on deaths at earlier
ages.

Second, let us turn to some sample size considerations. Mortality studies are generally
based on populations or a specific subset thereof, such as all survivors of a birth cohort
beyond a certain age. Thus, the sample size is not actively chosen, but simply results from
the size of the population under study. Nonetheless, sample size calculations are useful
either for judging a priori whether a data set provides enough information to produce
meaningful results, or for adequately interpreting the results in comparative studies across
different countries. Let us assume that some countries or regions are expected to have
similar mortality patterns, and that mortality deceleration has been detected in one of them
from an 80+ sample. The information contained in that sample is known to be 𝑛80+I80+.
Then, if for a second country or region only 90+ data are available, we might ask whether
these data still contain enough information to detect mortality deceleration. To get an idea
of the sample size that is required to draw reliable conclusions under the given mortality
pattern 𝜽 , we could determine the sample size 𝑛90+ of the subset of survivors to ages 90
and above, which satisfies 𝑛80+I80+ = 𝑛90+I90+.

Alternatively, sample size considerations could concern the precision of the esti-
mate �̂�2, which is given by 𝑛−1

𝑥+𝜅
2
𝑥+, if for the (assumed) mortality regime 𝜽 , the frailty

variance 𝜎2 is sufficiently large to make 𝜅2 the correct variance term (see Section 3.3.3).
For a given value of 𝜅2

𝑥+, we can either get an initial idea of the precision of �̂�2 if the
size 𝑛𝑥+ of the 𝑥+ data of the country is known, or we can determine the minimum sample
size 𝑛𝑥+ that is needed for a desired precision, and see whether potential data sets would
fulfill this requirement.

Finally, both the age range of a data set and its sample size affect the power of the
likelihood ratio test to detect mortality deceleration. For a given mortality regime 𝜽 ,
formula (3.6) allows us to assess what level of power the test will achieve if inference is
based on all survivors to ages 90+, or on all survivors to ages 80+.

As all of the above quantities for evaluating the design aspects of the age range and
the sample size depend on the true unknown parameter 𝜽 , we will present some empirical
results for specific scenarios in the next section.

3.5 Empirical results

In this section, we will study the effects of different designs on the information contained
in a data set for some specific scenarios. We assume that 𝑋 follows a gamma-Gompertz
distribution and describes lifespan after age 60; that is, 𝑥 = 0 corresponds to age 60.
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We choose three scenarios for 𝜽 , all with the same Gompertz parameters, 𝑎 = 0.015 and
𝑏 = 0.085, but with different values for the frailty variance. Scenario 𝑆1 with 𝜎2 = 0.043
corresponds to the gamma-Gompertz model estimated from the female sample in Sec-
tion 3.6. For Scenario 𝑆2 with 𝜎2 = 0.021, the frailty variance is roughly halved, rep-
resenting a less heterogeneous population for which mortality deceleration is less pro-
nounced. In Scenario 𝑆3 with 𝜎2 = 0, there is no mortality deceleration. In Section 3.8.3,
we present results for additional Scenarios 𝑆4 to 𝑆6 with the same three values for the
frailty variance as above, but different values for the Gompertz parameters. In particular,
we set 𝑎 = 0.021 and 𝑏 = 0.082 equal to the estimates obtained from a gamma-Gompertz
fit to the male sample in Section 3.6. With regard to the age range, we assess the informa-
tion measures for complete observations of 𝑋 (that is, ages 60 and above, 60+), as well
as for left-truncated observations corresponding to survivors to ages 80 and above (80+),
85+, and 90+. The effect of the sample size will be examined by considering different
sizes of the subset of survivors to ages 90+; namely, 𝑛90+ = 10,000 (small), 𝑛90+ = 20,000
(medium), or 𝑛90+ = 105,000 (large). The small and medium sizes are close to the sizes
of the male and female samples in Section 3.6. All computations are run in R (R Core
Team, 2019), and the numerical integration to calculate the Fisher information 𝑰(𝜽) is
performed using function integrate().

In a preliminary analysis, we assessed the performance of our approach of using nu-
merical integration to calculate 𝑰(𝜽). For that purpose, we generated 1,000 samples for
each of the scenarios 𝑆1 to 𝑆3, in which three initial sample sizes at age 60 were deter-
mined to yield the desired 𝑛90+ given above. For each sample, we estimated the parameters
of the gamma-Gompertz model based on the full sample (60+), and based on the subsets
of survivors to ages 80+, 85+, and 90+, by maximizing the log-likelihoods numerically
using function nlm(). We then calculated the averages of the observed Fisher infor-
mation matrices evaluated at the MLEs across the 1,000 samples of each fixed setting,
J̄ = 1

1000
∑1000
𝑟=1 J (𝜽 (𝒓)

𝒏 ). Finally, these averages were compared to the Fisher information
matrices 𝑰(𝜽), that were scaled by the theoretical size 𝑛·+ of a sample from the respective
setting. The results are reported in Table 3.3 in Section 3.8.3. As expected, mean relative
differences decrease with sample size, width of age range and size of the frailty variance.
For ages 60+ and 80+ differences are negligible throughout, and for 85+ surpass 0.02 only
in the no-frailty scenario (𝑛90+ = 10,000: 0.03389; 𝑛90+ = 20,000: 0.02114). For ages 90+
and smallest sample size 𝑛90+ = 10,000, the values are 𝑆1: 0.05487, 𝑆2: 0.06592, and 𝑆3:
0.12065.

3.5.1 Effect of the age at left truncation
In the following, we quantify how different restrictions of the age range covered by a data
set affect the amount of information that is provided by the data. We mainly focus on the
criterion for 𝐷𝐴-optimality (see Section 3.3.2), that is, I = 𝜅−2.

The left panel of Figure 3.1 shows the values of I and its scaled version I (𝑠) for Sce-
nario 𝑆1 when the observations are complete (60+) or left-truncated at higher ages (80+,
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85+, or 90+). We find that the amount of information contained in an observation de-
creases as the age of left truncation increases. This effect is even more pronounced for the
scaled measure of information I (𝑠) , because the probability of observing deaths decreases
at the higher ages. Hence, in terms of 𝜅−2, a situation in which only survivors to ages 90+
can be studied indeed provides less information than a situation in which survivors to ages
80+ can be studied, indicating that mortality deceleration is more difficult to assess for
higher ages of left truncation. The right panel of Figure 3.1 displays the ratios I𝑥+/I80+
and I (𝑠)

𝑥+ /I
(𝑠)
80+ for 𝑥 = 80, 85, 90 in Scenario 𝑆1. We see that if only data on survivors to

ages 90+ are available, more than half of the information is lost compared to the situation
in which data on survivors to ages 80+ are available. Taking into account the smaller size
of the subset of survivors to ages 90+, the loss even amounts to around 87%. The results
for Scenarios 𝑆2 and 𝑆3 are similar (cf. Figure 3.2).
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Figure 3.1: Information measure I = 𝜅−2 (black-solid line, circles) and scaled measure I (𝑠) (red-
dashed line, crosses) under Scenario 𝑆1 depending on the age range of the data (left to right: 60+,
80+, 85+, or 90+). Left: absolute values of (scaled) I, right: (scaled) ratios I𝑥+/I80+ for 𝑥 =

80, 85, 90 (connection of the values by lines is only for ease of visual inspection).

We have already briefly discussed in Section 3.3.3 the relationship between the in-
formation measure 𝜅−2 and the asymptotic variance of the estimator �̂�2. In settings with
sufficiently large 𝜎2, the variance of �̂�2 is approximately equal to 𝜅2 scaled by the in-
verse of the sample size. The top-left panel of Figure 3.6 in Section 3.8.3 verifies this for
the medium-sized Scenario 𝑆1 with different observation schemes (60+, 80+, 85+, and
90+) by comparing the empirical variance of �̂�2 across the 1,000 replications with the
scaled 𝜅2. In contrast, if 𝜎2 = 0, the asymptotic variance of �̂�2 is not given by the scaled
𝜅2, as shown in the bottom-left panel of Figure 3.6 for the medium-sized Scenario 𝑆3.
However, the relative changes in the scaled 𝜅2

𝑥+ across different age ranges 𝑥+ are in line
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Figure 3.2: Information measure I = 𝜅−2 (black-solid line, circles) and scaled measure I (𝑠) (red-
dashed line, crosses) under Scenarios 𝑆2 (top) and 𝑆3 (bottom) depending on the age range of the
data (left to right: 60+, 80+, 85+, or 90+). Left: absolute values of (scaled) I, right: (scaled) ratios
I𝑥+/I80+ for 𝑥 = 80, 85, 90.

with the relative changes in the empirical variances for both Scenario 𝑆1 (top-right panel
of Figure 3.6) and Scenario 𝑆3 (bottom-right panel of Figure 3.6). Consequently, ratios
I (𝑠)
𝑥+ /I

(𝑠)
𝑦+ can be readily interpreted in terms of information gain or variance reduction

when considering different age ranges 𝑥+ and 𝑦+, even if 𝜎2 = 0. For example, in Sce-
nario 𝑆3, about 82% of the information in the full sample 60+ is lost if only survivors to
ages 80+ can be studied.
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While the importance of the variance parameter 𝜎2 for the assessment of mortality
deceleration suggested that we should use the criterion of 𝐷𝐴-optimality, we also looked
into the performance of the other information measures introduced in Section 3.2.3. The
results for Scenarios 𝑆1 and 𝑆3 are presented in Figures 3.7 and 3.8 in Section 3.8.3. The
absolute values of the information measures and their patterns across the different age
ranges for 𝐴- and 𝐸-optimality are very close to the ones we observed for 𝐷𝐴-optimality
with I = 𝜅−2. This can be explained by the fact that the information measure for 𝐴-
optimality, that is, the inverse of the sum of the eigenvalues of [𝑰(𝜽)]−1, is dominated
by one eigenvalue of relatively large magnitude in the current setting. As this largest
eigenvalue of the inverse information matrix is at the same time the target of the criterion
for 𝐸-optimality and in this case also closely related to the measure 𝜅2 for 𝐷𝐴-optimality,
the three criteria yield very similar results. In contrast, the criterion of 𝐷-optimality
suggests somewhat larger relative losses in information when restricting the age range.
This is a consequence of directly accounting for the increased uncertainty in all directions
of the parameter space, as the eigenvalues of 𝑰(𝜽) are multiplied in the measure det(𝑰(𝜽)).

The quantity 𝜅−2, considered for 𝐷𝐴-optimality, measures the information contained
in an observation about the parameter 𝜎2, and takes into account the correlation between
�̂�2 and the estimates of the Gompertz parameters �̂� and �̂�. Alternatively, we could study
the information measure [𝑰(𝜽)]33 given by

[𝑰(𝜽)]33 = −E
[

𝜕2

𝜕
(
𝜎2)2 ln 𝑓𝑋 (𝑋; 𝜽)

]
.

This element of the Fisher information matrix describes the average curvature of the log-
density of the gamma-Gompertz model with respect to 𝜎2 for fixed Gompertz parameters
𝑎 and 𝑏. Figure 3.3 shows that in terms of this measure, the information increases with
the increasing age of left truncation in Scenarios 𝑆1 and 𝑆3. This supports the idea that
observations of later ages at death carry more information about the potential deceleration,
as measured by 𝜎2. However, looking at the scaled measure reveals that, in practice, this
effect is compensated for by the decreasing number of survivors to higher ages.

The above findings regarding the effect of the age at left truncation on the differ-
ent information measures generally hold also for the Scenarios 𝑆4 and 𝑆6 with modified
Gompertz parameters (see Figures 3.9 to 3.12 in Section 3.8.3). Increases in the age at
left truncation result in considerable information loss according to all the criteria, with the
exception of I = [𝑰(𝜽)]33, for which the information loss is only revealed if the smaller
size of the subset of survivors to higher ages is taken into account. Compared to Scenar-
ios 𝑆1 and 𝑆3, the higher initial level of mortality 𝑎 in Scenarios 𝑆4 and 𝑆6 leads to smaller
absolute values of the information measures and slightly larger information losses when
restricting the age range. This is expected because the higher initial mortality leads to
stronger selection effects and thus, a stronger decrease in the variance of frailty among
survivors to higher ages, as well as to lower probabilities of surviving to these ages.

Finally, the information measures computed in this subsection refer to single obser-
vations, such that the derived conclusions about the effects of the age at left truncation
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Figure 3.3: Information measure I = [𝑰(𝜽)]33 (black-solid line, circles) and scaled measure I (𝑠)

(red-dashed line, crosses) depending on the age range of the data (left to right: 60+, 80+, 85+, or
90+) under Scenarios 𝑆1 (left) and 𝑆3 (right).

should be valid for samples of any reasonable size under the different scenarios. Further
aspects regarding the size of data sets under study are discussed in the following.

3.5.2 Sample size considerations
Let us suppose that old-age mortality is studied in countries that experience the same or
very similar mortality patterns. It is clear that the different population sizes affect the
assessment of mortality deceleration in the different countries. If the data for the differ-
ent countries also cover different age ranges, then we want to know, for example, what
size 𝑛90+ a subset of survivors to ages 90+ would have to be to carry as much information
as a subset of survivors to ages 80+ from a different country; that is, 𝑛80+I80+ = 𝑛90+I90+.
In Scenarios 𝑆1 to 𝑆3, the ratios I80+/I90+ for I = 𝜅−2 are 2.194, 2.156, and 2.120, re-
spectively. Thus, a sample of survivors to ages 90+ needs to be more than twice as large
as a sample of survivors to ages 80+ in order to provide the same amount of information.
Moreover, the ratios are increasing in the level of heterogeneity 𝜎2. For Scenarios 𝑆4
to 𝑆6, we obtain the slightly larger ratios 2.322, 2.278, and 2.237, reflecting the stronger
selection effects in these settings.

If the underlying 𝜎2 is sufficiently large, we can use the measure 𝜅2 to draw conclu-
sions about the precision of �̂�2 for specific sample sizes. In Scenario 𝑆1, if the sample
of survivors to ages 90+ consists of about 𝑛90+ = 20,000 individuals, this would yield a
precision of the estimated frailty variance of about var(�̂�2) ≈ 𝑛−1

90+𝜅
2
90+ = 0.00165.
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3.5.3 Power of the likelihood ratio test
We now evaluate how the age range and the sample size of a data set affect the per-
formance of the likelihood ratio test for assessing mortality deceleration in the gamma-
Gompertz model. The power of the test to detect a positive 𝜎2 in Scenarios 𝑆1 and 𝑆2
based on different subsets and sample sizes is calculated from (3.6) at a level of 𝛼 = 0.05,
and is reported in Table 3.1. As expected, we find that the power of the test increases if
the sample size increases, if the age at left truncation decreases, and if the frailty vari-
ance is larger. In both scenarios, the power to detect mortality deceleration decreases by
more than two-thirds if inference is based only on survivors to ages 90+, rather than on
all survivors to ages 80+ for samples of medium size.

Table 3.1: Power 𝛽 of the likelihood ratio test, performed at the 5% level, according to formula (3.6),
under Scenarios 𝑆1 (𝜎2 = 0.043) and 𝑆2 (𝜎2 = 0.021) for three sample size settings (s – small,
m – medium, l – large) and varying age range.

Survivors to ages
60+ 80+ 85+ 90+

Scen. 𝑛 𝑛60+ 𝛽60+ 𝑛80+ 𝛽80+ 𝑛85+ 𝛽85+ 𝑛90+ 𝛽90+
𝑆1 s 73,558 0.999 33,841 0.653 20,740 0.377 10,000 0.185

m 147,116 1.000 67,681 0.892 41,480 0.593 20,000 0.278
l 772,361 1.000 355,327 1.000 217,771 0.996 105,000 0.782

𝑆2 s 76,853 0.801 35,123 0.278 21,290 0.169 10,000 0.104
m 153,706 0.970 70,245 0.440 42,581 0.251 20,000 0.135
l 806,956 1.000 368,788 0.962 223,548 0.721 105,000 0.344

The performance of the likelihood ratio test under the Scenarios 𝑆4 and 𝑆5, with modi-
fied Gompertz parameters, is documented in Table 3.4 in Section 3.8.3 and leads to the
same conclusions as above. In addition, we see that in Scenario 𝑆4 the test has lower
power to detect the positive 𝜎2 based on the survivors to ages 85+ or 90+ than in the
corresponding Scenario 𝑆1. This is due to the higher initial level of mortality 𝑎 in 𝑆4 which
reduces the heterogeneity in the mortality risks at the higher ages. The power of the test
based on survivors to ages 60+ and 80+ in Scenarios 𝑆4 and 𝑆5 is not directly comparable
to the power in the corresponding Scenarios 𝑆1 and 𝑆2, because of the different sizes of
the subsets 60+ and 80+ under the two settings for the Gompertz parameters.

Apart from calculating power values for given parameter configurations, formula (3.6)
provides a tool for determining what age range a data set should cover to ensure that the
likelihood ratio test will achieve a certain level of power. From Table 3.1, we see that
for the medium-sized Scenario 𝑆1, the likelihood ratio test will detect mortality decel-
eration in about 89.2% of cases based on the sample of survivors to ages 80+. As for
any left-truncation age 𝑥, the size of the sample 𝑥+ can be calculated based on the given
(or estimated) gamma-Gompertz parameters and a known subset size (e.g., here, 𝑛90+ =

20,000), we can determine the left-truncation age 𝑥 such that the power is increased to
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95%. For the medium-sized Scenario 𝑆1, we need to include all survivors to ages 78 and
above for the test to reach a power of 95%.

The above power calculations are based on relatively large sample sizes as motivated
by real cohort data. We have seen that the assessment of mortality deceleration can be
demanding even based on data sets of such size especially in case of restricted age ranges.
Smaller sample sizes will lower the power of the test to detect a positive frailty variance
also for the subsets of survivors to ages 60+ or 80+. A larger underlying frailty variance
leads to stronger deceleration in the hazard rate and will generally be favorable for de-
tecting the phenomenon. However, smaller sample sizes and thus increased uncertainty
about the parameters can counteract this effect, as can be seen from formula (3.6). While
the formula provides only a large-sample approximation to the power of the likelihood
ratio test, the sample sizes in human mortality studies are expected to be generally large
enough for the approximation to yield valid results.

3.6 A study on old-age mortality among French-Canadians

In this section, we apply the proposed methods for evaluating study design and deriv-
ing design recommendations to a study on old-age mortality among Catholic French-
Canadians born at the end of the 19th century.

The data set contains information on 20,917 females and 10,878 males who were born
in the Province of Quebec between 1880 and 1896, and who died in Quebec at ages 90
and above between 1970 and 2009. To validate the individual exact survival times, birth
registration documents and death certificates from Quebec’s parish register archives were
linked. Further details on the data and the validation procedure can be found in Ouellette
and Bourbeau (2014) and Ouellette (2016), who studied earlier versions of this data set
that covered only the centenarians, that is, survivors to ages 100 and above.

The analysis of the French-Canadian mortality data based on the gamma-Gompertz
model is conducted separately for the female and the male sample. The starting age of
the model is assumed to be 60, and the likelihood is adapted for the left truncation at
age 90. We obtain estimates of the frailty variance of �̂�2 = 0.043 for the females and
�̂�2 = 0.037 for the males. The likelihood ratio test for 𝐻0 : 𝜎2 = 0 leads to 𝑝-values of
0.121 for the females and 0.283 for the males, indicating that the data do not provide much
evidence against the null hypothesis of no mortality deceleration. These findings are in
contrast to those for the fitted hazards and the empirical death rates, which are displayed
in Figure 3.4, and suggest a deceleration, at least for the females. Indeed, it turns out that
the likelihood ratio test has relatively low power to detect mortality deceleration in the
given settings. According to formula (3.6) with the estimated values of the parameters,
the power of the likelihood ratio test at the 5% level based on a 90+ sample of the given
size is 28.7% in the female setting and 14.2% in the male setting, respectively. Therefore,
we want to investigate how a further extension of the data set that would include deaths
at earlier ages – say, between ages 85 and 89, or between 80 and 89 – could impact the
assessment of mortality deceleration.
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Figure 3.4: Death rates of French-Canadian females (left) and males (right): empirical death rates
(solid line, circles) with 95%-confidence intervals (gray), gamma-Gompertz fit (dashed) and Gom-
pertz fit (dotted).

First, we examine the behavior of the information measure I = 𝜅−2 for observations
from a gamma-Gompertz model with parameter values equal to the estimates obtained
from the female or the male sample, respectively. Figure 3.5 depicts the ratios I𝑥+/I90+
for left truncation at the ages 𝑥 = 80, 85, 90, as well as the ratios of the scaled mea-
sure I (𝑠) . In both the female and the male setting, an observation left-truncated at age
80 would be more than twice as informative as an observation left-truncated at age 90.
Taking into account the increasing number of observations when younger ages at death
are included by looking at I (𝑠) , observations left-truncated at age 85 are already more
than twice as informative as observations left-truncated at age 90. In other words, the
extended data set that includes all survivors to ages 85 and above would contain more
than twice as much information as the current data set of survivors to ages 90 and above.
Indeed, compared to the 90+ sample, the female 85+ sample would provide about three
times as much information, and the male 85+ sample would provide about four times as
much information.

Second, Table 3.2 summarizes the effects of expanding the age range of the current
data set on the power of the likelihood ratio test which is performed at a level of 5%.
The calculations are again based on formula (3.6), with the estimates obtained from the
female and the male samples, respectively, inserted for the parameter values. The sizes of
the expanded 85+ and 80+ data sets are computed from the known size of the population
of survivors to ages 90+ and the fitted gamma-Gompertz model. For both the female and
the male data, we find that expanding the data set to deaths between ages 85 and 89 would
more than double the power of the likelihood ratio test. For the female setting, the power
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Figure 3.5: Ratios I𝑥+/I90+ (black-solid line, circles) or I (𝑠)
𝑥+ /I (𝑠)

90+ (red-dashed line, crosses) for
the information measure I = 𝜅−2 depending on the age of left truncation 𝑥 = 80, 85, 90, under the
parameter settings estimated from the samples of French-Canadian females (left) and males (right).

of the test based on the 85+ sample is around 60.9%. In line with the considerations
in Section 3.5.3, the age of left truncation that is required in this setting to achieve the
desired power level of 80% is found to be age 82.

Table 3.2: Power 𝛽 of the likelihood ratio test, performed at the 5% level, according to formula (3.6),
under the parameter settings estimated from the French-Canadian data for different age ranges 𝑥+
and resulting sample sizes 𝑛𝑥+.

Survivors to ages
80+ 85+ 90+

Scenario 𝑛80+ 𝛽80+ 𝑛85+ 𝛽85+ 𝑛90+ 𝛽90+
Females 70,085 0.901 43,126 0.609 20,917 0.287
Males 54,577 0.627 28,369 0.316 10,878 0.142

In conclusion, our results show that the failure of the likelihood ratio test to reject the
hypothesis of no mortality deceleration in the female 90+ sample can be explained to some
extent by the low power of the test in the specific setting. Both the proposed information
measure 𝜅−2 and the power calculations for the likelihood ratio test demonstrate that an
expansion of the existing data set on French-Canadian mortality could greatly improve
the assessment of mortality deceleration in this population. In practice, these potential
improvements have to be weighed against the costs of collecting – and validating – the
additional data.
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3.7 Discussion

We have investigated the use of Fisher information-based criteria for planning and evalu-
ating studies that assess mortality deceleration in the framework of the gamma-Gompertz
model. Our aim was to derive recommendations for settings in which the parameters of
interest could be reliably estimated, and a deceleration in the death rates could be detected
with a high probability. As validation of the ages at death is often required in old-age mor-
tality studies, these settings are characterized by the age range covered by the data and
the sample size.

The essential component of the proposed methods is the computation of the Fisher
information matrix for potentially left-truncated observations from a gamma-Gompertz
model. Due to a lack of closed-form expressions, the information matrix is obtained us-
ing numerical integration of analytically determined second-order partial derivatives of
the log-density. Different criteria for evaluating study designs can be derived from the
Fisher information. Given the importance of the frailty variance parameter in assessing
mortality deceleration in the gamma-Gompertz model, we focus primarily on a crite-
rion of 𝐷𝐴-optimality, whereby the Gompertz parameters are treated as nuisance. The
resulting measure of information is the reciprocal of the element of the inverse Fisher
information that corresponds to 𝜎2. It allows us to quantify the effects of the sample size
and the age range covered by a data set on the amount of information that this data set
contains about 𝜎2. Based on the computation of the Fisher information matrix, we are
also able to calculate the power of the likelihood ratio test to detect mortality deceler-
ation in specific scenarios. As a result, recommendations can be given about what age
range a data set needs to cover for the likelihood ratio test to achieve a certain power. In
the illustration with a study on French-Canadian mortality, the information measures and
the power calculations clearly demonstrate that the assessment of mortality deceleration
could be greatly improved if the current data set, which includes only survivors to ages
90 and above, was extended to also include deaths at the earlier ages 85 to 89.

Here, we only consider changes in the age at left truncation (the age range covered
by the data) that apply to all survivors in a cohort, which is the most common setting in
demographic studies. We could, however, extend these considerations to more complex
design questions for which actually random samples could be drawn from the observed
survivors to particular ages. In such situations, the quantification of information in par-
ticular observations would be even more crucial for attaining an optimal design. However,
addressing such questions is beyond the scope of the current research.

The present work has some limitations. As our focus is on the assessment of mortality
deceleration – the deviation from the log-linear hazard trajectory of the Gompertz model
at high ages –, we have stayed within the framework of the gamma-Gompertz model here.
However, as the concepts of the Fisher information and of optimal design are defined for
any parametric model, the proposed methods should be applicable in a wider context.

When the age range can be extended to appreciably lower ages the exponential in-
crease of senescent mortality may no longer hold and questions of model choice for the
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baseline hazard arise. Established model selection techniques can help here (see Burn-
ham and Anderson, 2002). In such cases most problems discussed in this chapter would
be obsolete though. It should be noted, however, that also commonly used model choice
criteria, such as Akaike’s Information Criterion (AIC), are affected by non-standard con-
ditions induced by a boundary parameter (see Böhnstedt and Gampe, 2019).

Although the approach of using numerical integration to compute the Fisher informa-
tion matrix in the gamma-Gompertz model seems to perform well, it prevents us from
deriving general analytical formulas that describe the effects of the sample size and the
age range of a data set. Nonetheless, empirical studies for specific parameter settings and
design choices as presented here can serve as a basis for formulating recommendations.

In this context, we have to bear in mind that the gamma-Gompertz model provides
a non-standard setting, and, hence, that the information measures are not directly related
to estimator variability in the boundary case (𝜎2 = 0). We have, however, shown that
comparative statements on information gain or variance reduction are still meaningful
when designs covering different age ranges are compared.

Finally, as the assessment of the performance of different study designs for the gamma-
Gompertz model based on the Fisher information depends on the true underlying param-
eter values, it is valid only locally. Still, the robustness of the design’s performance can
be checked by evaluating the information measures using a range of possible parameter
values.

3.8 Supplementary material

3.8.1 Derivatives of gamma-Gompertz log-densities
In the following subsections, we give explicit formulas of the second-order partial deriva-
tives of the log-density of complete or left-truncated observations from a gamma-Gompertz
model. These derivatives are the basis for computing the Fisher information matrix 𝑰(𝜽)
according to formula (3.3) or (3.3’),

𝑰(𝜽) = −E
[

𝜕2

𝜕𝜽𝜕𝜽>
ln 𝑓𝑋 (𝑋; 𝜽)

]
. (3.3)

Complete data

For the gamma-Gompertz model (3.1), the log-density ln 𝑓𝑋 (·; 𝑎, 𝑏, 𝜎2) of complete
data 𝑋 takes the form

ln 𝑓𝑋 (𝑥; 𝑎, 𝑏, 𝜎2) = ln 𝑎 + 𝑏𝑥 −
(
1 + 1

𝜎2

)
ln

[
1 + 𝜎2 𝑎

𝑏

(
𝑒𝑏𝑥 − 1

)]
.

Its partial derivatives with respect to the parameters are calculated as

𝜕 ln 𝑓𝑋
𝜕𝑎

=
1
𝑎
− (𝜎2 + 1)

𝑏
· 𝑒𝑏𝑥 − 1

1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑥 − 1)

,
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𝜕 ln 𝑓𝑋
𝜕𝑏

= 𝑥 − 𝑎(𝜎2 + 1)
𝑏2 · 𝑏𝑥𝑒

𝑏𝑥 − (𝑒𝑏𝑥 − 1)
1 + 𝜎2 𝑎

𝑏
(𝑒𝑏𝑥 − 1)

, and

𝜕 ln 𝑓𝑋
𝜕𝜎2 =

1
𝜎4 ln

[
1 + 𝜎2 𝑎

𝑏

(
𝑒𝑏𝑥 − 1

)]
−

(
1 + 1

𝜎2

)
𝑎

𝑏
· 𝑒𝑏𝑥 − 1

1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑥 − 1)

.

The second-order partial derivatives equal

𝜕2 ln 𝑓𝑋
𝜕𝑎2 = − 1

𝑎2 + 𝜎
2 (𝜎2 + 1)
𝑏2 · (𝑒𝑏𝑥 − 1)2

[1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑥 − 1)]2

𝜕2 ln 𝑓𝑋
𝜕𝑎𝜕𝑏

=
(𝜎2 + 1)
𝑏2 · (𝑒𝑏𝑥 − 1) − 𝑏𝑥𝑒𝑏𝑥

[1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑥 − 1)]2

𝜕2 ln 𝑓𝑋
𝜕𝑎𝜕𝜎2 =

1
𝑏2 · 𝑎(𝑒

𝑏𝑥 − 1)2 − 𝑏(𝑒𝑏𝑥 − 1)
[1 + 𝜎2 𝑎

𝑏
(𝑒𝑏𝑥 − 1)]2

𝜕2 ln 𝑓𝑋
𝜕𝑏2 =

𝑎(𝜎2 + 1)
𝑏

·
2
𝑏
𝑥𝑒𝑏𝑥 − 2

𝑏2 (𝑒𝑏𝑥 − 1) − 𝜎2 𝑎
𝑏3 (𝑒𝑏𝑥 − 1)2 + (𝜎2 𝑎

𝑏
− 1)𝑥2𝑒𝑏𝑥

[1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑥 − 1)]2

𝜕2 ln 𝑓𝑋
𝜕𝑏𝜕𝜎2 =

𝑎

𝑏
·
[ 1
𝑏
(𝑒𝑏𝑥 − 1) − 𝑥𝑒𝑏𝑥] [1 − 𝑎

𝑏
(𝑒𝑏𝑥 − 1)]

[1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑥 − 1)]2

𝜕2 ln 𝑓𝑋
𝜕 (𝜎2)2 = − 2

𝜎6 ln
[
1 + 𝜎2 𝑎

𝑏

(
𝑒𝑏𝑥 − 1
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𝜎4

𝑎

𝑏
· 𝑒𝑏𝑥 − 1

1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑥 − 1)

+
(
1 + 1

𝜎2

)
𝑎2

𝑏2 · (𝑒𝑏𝑥 − 1)2

[1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑥 − 1)]2 . (3.7)

In the limit 𝜎2 → 0, we obtain

𝜕2 ln 𝑓𝑋
𝜕𝑎2 = − 1

𝑎2

𝜕2 ln 𝑓𝑋
𝜕𝑎𝜕𝑏

=
1
𝑏2 (𝑒

𝑏𝑥 − 1) − 1
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𝑥𝑒𝑏𝑥
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𝑎

𝑏2 (𝑒
𝑏𝑥 − 1)2 − 1

𝑏
(𝑒𝑏𝑥 − 1)
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] [
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]
𝜕2 ln 𝑓𝑋
𝜕 (𝜎2)2 = −2𝑎3

3𝑏3 (𝑒
𝑏𝑥 − 1)3 + 𝑎

2

𝑏2 (𝑒
𝑏𝑥 − 1)2,

where we have applied the rule of L’Hôpital for the last equation.
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Left-truncated data

For the gamma-Gompertz model (3.1), the log-density ln 𝑓𝑋 |𝑋>𝑦 (·; 𝑎, 𝑏, 𝜎2) for
data (𝑋 | 𝑋 > 𝑦), left-truncated at age 𝑦, takes the form

ln 𝑓𝑋 |𝑋>𝑦 (𝑥; 𝑎, 𝑏, 𝜎2) = ln 𝑓𝑋 (𝑥; 𝑎, 𝑏, 𝜎2) − ln 𝑆𝑋 (𝑦; 𝑎, 𝑏, 𝜎2)

= ln 𝑓𝑋 (𝑥; 𝑎, 𝑏, 𝜎2) + 1
𝜎2 ln

[
1 + 𝜎2 𝑎

𝑏
(𝑒𝑏𝑦 − 1)

]
,

for 𝑥 > 𝑦. The partial derivatives of the first summand have already been presented in the
preceding subsection. Thus, we focus on the second summand here, which we denote as
𝑔(𝑦; 𝑎, 𝑏, 𝜎2). The partial derivatives of 𝑔 with respect to the parameters are computed as

𝜕𝑔

𝜕𝑎
=

1
𝑏
· 𝑒𝑏𝑦 − 1

1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑦 − 1)

,

𝜕𝑔

𝜕𝑏
=
𝑎

𝑏2 · 𝑏𝑦𝑒
𝑏𝑦 − (𝑒𝑏𝑦 − 1)

1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑦 − 1)

, and

𝜕𝑔

𝜕𝜎2 = − 1
𝜎4 ln
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1 + 𝜎2 𝑎

𝑏
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)]
+ 𝑎

𝑏𝜎2 · (𝑒𝑏𝑦 − 1)
1 + 𝜎2 𝑎

𝑏
(𝑒𝑏𝑦 − 1)

.

The second-order partial derivatives read

𝜕2𝑔
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. (3.8)

In the limit 𝜎2 → 0, we have

𝜕2𝑔

𝜕𝑎2 = 0
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𝜕2𝑔

𝜕𝑎𝜕𝑏
=

1
𝑏2 · [1 − 𝑒𝑏𝑦 + 𝑏𝑦𝑒𝑏𝑦]

𝜕2𝑔

𝜕𝑎𝜕𝜎2 = − 𝑎

𝑏2 (𝑒
𝑏𝑦 − 1)2

𝜕2𝑔

𝜕𝑏2 =
𝑎

𝑏

[
2
𝑏2 (𝑒

𝑏𝑦 − 1) − 2
𝑏
𝑦𝑒𝑏𝑦 + 𝑦2𝑒𝑏𝑦

]
𝜕2𝑔

𝜕𝑏𝜕𝜎2 = −𝑎
2

𝑏3

[
𝑏𝑦𝑒𝑏𝑦 (𝑒𝑏𝑦 − 1) − (𝑒𝑏𝑦 − 1)2]

𝜕2𝑔

𝜕 (𝜎2)2 =
2𝑎3

3𝑏3 (𝑒
𝑏𝑦 − 1)3,

by again applying the rule of L’Hôpital for the last equation.

3.8.2 Computational details on the calculation of the observed Fisher
information matrix

The calculation of the observed Fisher information matrix J (𝜽𝒏) in the gamma-Gompertz
model is based on the negative second-order partial derivatives of the log-likelihood and
the maximum likelihood estimate (MLE) 𝜽𝒏 of the parameter vector 𝜽 = (𝑎, 𝑏, 𝜎2)>.

The MLE can be determined by numerical optimization of the log-likelihood using
function nlm() in R. Optimization over the log-scale of the parameters ensures non-
negativity of the parameter estimates. The numerical stability of the estimation problem
for values of 𝜎2 close to zero can be improved by providing also the analytic gradient of
the log-likelihood to the optimization routine as well as by using Taylor expansions of the
log-likelihood and the gradient if the current value of 𝜎2 is smaller than 10−5. In addition,
a number of different starting values for the parameter 𝜎2 should be considered.

Although we have derived explicit formulas for the partial derivatives of the log-
density of the gamma-Gompertz model, it turns out that the expressions for the second-
order partial derivatives with respect to 𝜎2, given in (3.7) and (3.8), are not numeri-
cally stable if 𝜎2 approaches zero. Therefore, when calculating J (𝜽𝒏), we approximate
the term ln

[
1 + 𝜎2 𝑎

𝑏
(𝑒𝑏𝑥 − 1)

]
in expressions (3.7) and (3.8) by a Taylor expansion if

�̂�2 < 10−5.

3.8.3 Additional figures and tables for empirical studies
In this section, we present additional figures and tables displaying some results of our
empirical studies in Section 3.5.

• Table 3.3 reports on the performance of the numerical integration approach for com-
puting the Fisher information 𝑰(𝜽).

• The relation between the information measure 𝜅−2 and the variance of �̂�2, as discussed
in Section 3.3.3, is illustrated in Figure 3.6.
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• The information measures corresponding to the criteria of 𝐷-, 𝐴-, and 𝐸-optimality
(see Section 3.2.3) are examined in Figures 3.7 and 3.8 for Scenarios 𝑆1 and 𝑆3, re-
spectively.

• On pages 55ff., we study the various information measures and the performance of the
likelihood ratio test for scenarios with different values for the Gompertz parameters.
More precisely, for Scenarios 𝑆4 to 𝑆6, we set 𝑎 = 0.021 and 𝑏 = 0.082, while
the values for the frailty variance are the same as in the previous scenarios, that is,
𝜎2 = 0.043 in Scenario 𝑆4, 𝜎2 = 0.021 in Scenario 𝑆5, and 𝜎2 = 0 in Scenario 𝑆6.
Figure 3.9 depicts the patterns of the criterion of 𝐷𝐴-optimality across different age
ranges for Scenarios 𝑆4 and 𝑆6, while in Figures 3.10 and 3.11 the criteria of 𝐷-,
𝐴-, and 𝐸-optimality are presented. Figure 3.12 displays the criterion [𝑰(𝜽)]33 for
Scenarios 𝑆4 and 𝑆6.
Finally, the power of the likelihood ratio test to detect a positive 𝜎2 in Scenarios 𝑆4
(𝜎2 = 0.043) and 𝑆5 (𝜎2 = 0.021) based on different age ranges and sample sizes at a
level of 𝛼 = 0.05 was calculated based on formula (3.6). The results are presented in
Table 3.4.

Table 3.3: Mean relative difference between the Fisher information 𝑰𝒏 (𝜽) and the average J̄ of
observed Fisher information matrices across 1,000 replications of Scenarios 𝑆1, 𝑆2, and 𝑆3 for
different sample sizes and age ranges.

Survivors to ages
Scenario 𝑛90+ 60+ 80+ 85+ 90+
𝑆1: 𝜎2 = 0.043 10,000 0.00027 0.00344 0.01116 0.05487

20,000 0.00019 0.00114 0.00512 0.02553
105,000 0.00009 0.00025 0.00136 0.00579

𝑆2: 𝜎2 = 0.021 10,000 0.00053 0.00356 0.01382 0.06592
20,000 0.00023 0.00134 0.00614 0.03601

105,000 0.00009 0.00033 0.00119 0.00591
𝑆3: 𝜎2 = 0 10,000 0.00816 0.01540 0.03389 0.12065

20,000 0.00611 0.01073 0.02114 0.07251
105,000 0.00249 0.00504 0.00997 0.02829
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Relation between information measures and estimator precision
0

5
0

0
0

1
5

0
0

0
2

5
0

0
0

Information and var(ŝ
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Figure 3.6: Information measure 𝑛𝜅−2 (red-dashed line, crosses) and inverse of the empirical vari-
ance of �̂�2 (black-solid line, circles) based on 1,000 samples from a gamma-Gompertz model under
the medium-sized Scenarios 𝑆1 (top) and 𝑆3 (bottom) depending on the age range of the data (left to
right: 60+, 80+, 85+, or 90+). Left: absolute values, right: relative to the value for the 60+ setting.
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Alternative information measures
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Figure 3.7: Information measures I (black-solid line, circles) and scaled measures I (𝑠) (red-dashed
line, crosses) under Scenario 𝑆1 depending on the age range of the data (left to right: 60+, 80+,
85+, or 90+). Top: I = det(𝑰(𝜽)) for 𝐷-optimality, middle: I = 1/tr( [𝑰(𝜽)]−1) for 𝐴-optimality,
bottom: I as the minimum eigenvalue of 𝑰(𝜽) for 𝐸-optimality. Left: absolute values of (scaled) I,
right: (scaled) ratios I𝑥+/I80+ for 𝑥 = 80, 85, 90.
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Figure 3.8: Information measures I (black-solid line, circles) and scaled measures I (𝑠) (red-dashed
line, crosses) under Scenario 𝑆3 depending on the age range of the data (left to right: 60+, 80+,
85+, or 90+). Top: I = det(𝑰(𝜽)) for 𝐷-optimality, middle: I = 1/tr( [𝑰(𝜽)]−1) for 𝐴-optimality,
bottom: I as the minimum eigenvalue of 𝑰(𝜽) for 𝐸-optimality. Left: absolute values of (scaled) I,
right: (scaled) ratios I𝑥+/I80+ for 𝑥 = 80, 85, 90.



3.8 Supplementary material 55

Information measures and power of the likelihood ratio test for scenarios with dif-
ferent values of the Gompertz parameters
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Figure 3.9: Information measure I = 𝜅−2 (black-solid line, circles) and scaled measure I (𝑠) (red-
dashed line, crosses) under Scenarios 𝑆4 (top) and 𝑆6 (bottom) depending on the age range of the
data (left to right: 60+, 80+, 85+, or 90+). Left: absolute values of (scaled) I, right: (scaled) ratios
I𝑥+/I80+ for 𝑥 = 80, 85, 90.
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Figure 3.10: Information measures I (black-solid line, circles) and scaled measures I (𝑠) (red-
dashed line, crosses) under Scenario 𝑆4 depending on the age range of the data (left to right: 60+,
80+, 85+, or 90+). Top: I = det(𝑰(𝜽)) for 𝐷-optimality, middle: I = 1/tr( [𝑰(𝜽)]−1) for 𝐴-
optimality, bottom: I as the minimum eigenvalue of 𝑰(𝜽) for 𝐸-optimality. Left: absolute values
of (scaled) I, right: (scaled) ratios I𝑥+/I80+ for 𝑥 = 80, 85, 90.
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Figure 3.11: Information measures I (black-solid line, circles) and scaled measures I (𝑠) (red-
dashed line, crosses) under Scenario 𝑆6 depending on the age range of the data (left to right: 60+,
80+, 85+, or 90+). Top: I = det(𝑰(𝜽)) for 𝐷-optimality, middle: I = 1/tr( [𝑰(𝜽)]−1) for 𝐴-
optimality, bottom: I as the minimum eigenvalue of 𝑰(𝜽) for 𝐸-optimality. Left: absolute values
of (scaled) I, right: (scaled) ratios I𝑥+/I80+ for 𝑥 = 80, 85, 90.
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Figure 3.12: Information measure I = [𝑰(𝜽)]33 (black-solid line, circles) and scaled measure I (𝑠)

(red-dashed line, crosses) depending on the age range of the data (left to right: 60+, 80+, 85+, or
90+) under Scenarios 𝑆4 (left) and 𝑆6 (right).

Table 3.4: Power 𝛽 of the likelihood ratio test, performed at the 5% level, according to formula (3.6),
under Scenarios 𝑆4 (𝜎2 = 0.043) and 𝑆5 (𝜎2 = 0.021) for three sample size settings (s – small,
m – medium, l – large) and varying age range.

Survivors to ages
60+ 80+ 85+ 90+

Scen. 𝑛 𝑛60+ 𝛽60+ 𝑛80+ 𝛽80+ 𝑛85+ 𝛽85+ 𝑛90+ 𝛽90+
𝑆4 s 133,506 1.000 47,165 0.678 25,090 0.352 10,000 0.157

m 267,012 1.000 94,329 0.909 50,179 0.557 20,000 0.228
l 1,401,813 1.000 495,229 1.000 263,441 0.993 105,000 0.662

𝑆5 s 143,746 0.935 50,181 0.296 26,196 0.163 10,000 0.094
m 287,493 0.998 100,362 0.470 52,392 0.239 20,000 0.119
l 1,509,337 1.000 526,901 0.975 275,058 0.692 105,000 0.281
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