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Part I

Assessing mortality deceleration

11





2
Detecting mortality deceleration:

Likelihood inference and model selection
in the gamma-Gompertz model

Abstract

We study the asymptotic properties of the maximum likelihood estimator and the likeli-
hood ratio test in the gamma-Gompertz model for local alternatives. We also show that
the standard AIC is biased in this model due to the boundary parameter.

2.1 Introduction

Benjamin Gompertz (1825) pioneered human mortality research by demonstrating that
death rates for adults increase exponentially with age. Since then, the Gompertz distri-
bution has been widely used to model adult lifespans. It was not until more and better
data at high ages became available that the overall validity of the Gompertz distribution
was called into question. Downward deviations from an exponentially increasing haz-
ard (‘mortality deceleration’) were observed when data for the oldest-old were analyzed

This chapter has been published as: M. Böhnstedt and J. Gampe (2019). Detecting mortality deceleration:
Likelihood inference and model selection in the gamma-Gompertz model. Statistics and Probability Letters
150, 68–73, Copyright Elsevier B.V. 2019.
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14 Chapter 2 – Likelihood inference in the gamma-Gompertz model

(Thatcher et al., 1998). This kind of mortality deceleration results if hazards differ be-
tween individuals, and a proportional hazards (PH) frailty model is the standard approach
used to model such heterogeneity (Vaupel et al., 1979; Wienke, 2010).

If we denote by 𝑌 the continuous random variable that describes adult lifespans (typ-
ically above age 30) and its hazard by

ℎ(𝑦) = lim
Δ𝑦↘0

P(𝑦 ≤ 𝑌 < 𝑦 + Δ𝑦 |𝑌 ≥ 𝑦)/Δ𝑦, (2.1)

a PH frailty model is of the form ℎ(𝑦 |𝑍 = 𝑧) = 𝑧 · ℎ0 (𝑦), where 𝑍 is a positive random
effect (‘frailty’), ℎ0 (𝑦) is a baseline hazard, and ℎ(𝑦 |𝑍 = 𝑧) denotes the conditional hazard
of an individual at age 𝑦, given that his or her frailty is 𝑍 = 𝑧. If the baseline hazard is
an exponential function, ℎ0 (𝑦) = 𝑎𝑒𝑏𝑦 with parameters 𝑎 > 0, 𝑏 > 0, and the random
effect 𝑍 has a gamma distribution with mean one and variance 𝜎2, we obtain the so-called
gamma-Gompertz model. The variance parameter 𝜎2 describes the heterogeneity in the
risks of death: i.e., individuals with higher frailty values tend to die earlier, while more
robust individuals tend to survive. While all individual hazards ℎ(𝑦 |𝑍) are exponentially
increasing, the resulting marginal hazard,

ℎ(𝑦) = 𝑎𝑒𝑏𝑦

1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑦 − 1)

, (2.2)

shows a downward deviation from the exponential trajectory if 𝜎2 > 0. The deviation is
discernible at high ages, when differential mortality has played out sufficiently. If 𝜎2 = 0
– i.e., if there is no heterogeneity – model (2.2) reduces to a plain Gompertz model with
hazard ℎ(𝑦) = 𝑎𝑒𝑏𝑦 . The choice of the gamma distribution for the frailty 𝑍 is both
mathematically convenient and theoretically justified (Abbring and van den Berg, 2007).

The question of whether mortality deceleration is present or an exponential hazard fits
even at advanced ages has been repeatedly discussed (e.g., Gavrilova and Gavrilov, 2015).
For the gamma-Gompertz model, the question is reduced to whether 𝜎2 > 0 or 𝜎2 = 0.
In the latter case, the parameter 𝜎2 is on the boundary of the parameter space, which
violates the standard assumptions that underlie the asymptotic properties of likelihood-
based inference. Thus, asymptotic results need to be derived for this setting.

In this chapter, we consider the asymptotic distribution of the likelihood ratio test
(LRT) statistic for 𝐻0 : 𝜎2 = 0 in the gamma-Gompertz model. As we are interested in
deriving large-sample approximations of the power of the LRT to detect 𝜎2 > 0, we will
work within a framework of local alternatives (Lehmann, 1999). We will also consider
model selection based on the Akaike information criterion (AIC, Akaike, 1974). In the
gamma-Gompertz model, the standard AIC is not an asymptotically unbiased estimator
of the Akaike information. We derive the bias using a local misspecification framework
(Hjort and Claeskens, 2003).

The rest of the chapter is structured as follows. In Section 2.2, we introduce some fur-
ther notations and assumptions. In Section 2.3, we derive the asymptotic distribution of
the maximum likelihood estimator (MLE) in the gamma-Gompertz model. In Section 2.4,
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we establish the asymptotic distribution of the likelihood ratio test statistic, and provide
a large-sample approximation to the power of the LRT to detect a positive 𝜎2. In Sec-
tion 2.5, we show that the standard AIC is a biased estimator of the Akaike information
in the gamma-Gompertz model. We conclude with a discussion in Section 2.6.

2.2 Preliminaries

We consider a sample of 𝑛 iid lifespans 𝑦 from a gamma-Gompertz density 𝑓 (𝑦, [) where
the parameter vector [ = (𝑎, 𝑏, 𝜎2)> consists of the elements \ = (𝑎, 𝑏)>, resulting from
the Gompertz baseline, and the gamma-variance 𝜎2. The density is

𝑓 (𝑦, [) =
{
𝑎𝑒𝑏𝑦

[
1 + 𝜎2 𝑎

𝑏

(
𝑒𝑏𝑦 − 1

) ]−(1+ 1
𝜎2 ) for 𝜎2 > 0

𝑎𝑒𝑏𝑦 exp
{
− 𝑎
𝑏
(𝑒𝑏𝑦 − 1)

}
for 𝜎2 = 0.

(2.3)

The framework of local alternatives assumes that the observations 𝑦 are generated
from a density

𝑓true (𝑦) = 𝑓 (𝑦, \0, 𝛾0 + 𝛿/
√
𝑛), (2.4)

where \0 is a 𝑝-dimensional parameter vector, and 𝛾 = 𝛾0 + 𝛿/
√
𝑛 is a 𝑞-dimensional

parameter vector perturbed around a (known) 𝛾0 in the direction of 𝛿. In the gamma-
Gompertz model (2.2), we have \ = (𝑎, 𝑏)>, so 𝑝 = 2, and 𝛾 is the single (𝑞 = 1)
boundary parameter 𝛾 = 𝜎2, with 𝛾0 = 0 and 𝛿 =

√
𝑛𝜎2 ≥ 0.

The asymptotic distribution of the MLEs in the general framework (2.4) was derived
by Hjort and Claeskens (2003) under the usual regularity conditions, which require that
the true parameter is an inner point of the parameter space. Hjort (1994) considered a
boundary parameter, but exclusively dealt with the 𝑡-distribution as an extension of the
normal model. Self and Liang (1987) presented asymptotic distributions of MLEs and
likelihood ratio test statistics in the presence of boundary parameters, but while assuming
a fixed true model, rather than allowing for a local specification as in (2.4).

To state our main results, we introduce some further notations, closely following
Hjort and Claeskens (2003). We denote by 𝑈 (𝑦) = 𝜕 ln 𝑓 (𝑦, \0, 𝛾0)/𝜕\ and 𝑉 (𝑦) =

𝜕 ln 𝑓 (𝑦, \0, 𝛾0)/𝜕𝛾 the score functions with respect to \ and 𝛾, respectively, of the log-
likelihood of a single observation 𝑦 from 𝑓true, with both evaluated at the point (\, 𝛾) =

(\0, 𝛾0). Let 𝐽full be the corresponding information matrix; i.e., 𝐽full is the variance-
covariance matrix of the score vector (𝑈 (𝑦)>, 𝑉 (𝑦))>, with blocks 𝐽00, 𝐽01, 𝐽10, and 𝐽11.

In the following, 𝑌 = (𝑌1, . . . , 𝑌𝑛) denotes a random sample of size 𝑛 from den-
sity (2.4), and we abbreviate [ = (\>, 𝛾)> and [0 = (\>0 , 𝛾0)>. We can express the
log-likelihood as ℓ𝑛 ([,𝑌 ) =

∑𝑛
𝑖=1 ln 𝑓 (𝑌𝑖 , \, 𝛾). Similarly, the averages of the score func-

tions are denoted by �̄�𝑛 = 𝑛−1 ∑𝑛
𝑖=1𝑈 (𝑌𝑖) and �̄�𝑛 = 𝑛−1 ∑𝑛

𝑖=1𝑉 (𝑌𝑖), with the shorthand
notation �̄�𝑛 = (�̄�>

𝑛 , �̄�𝑛)>.
When 𝛾 could lie on the boundary of the parameter space, the derivatives of the log-

likelihood have to be taken from the appropriate side. It is also important to note that
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these derivatives need to exist, and that they have to be bounded on intersections of neigh-
borhoods of the true parameter value and the parameter space (see Self and Liang, 1987).

The derivation of the asymptotic distribution of the MLEs is based on the follow-
ing result showing the weak convergence of the averaged score vector. It was given as
Lemma 3.1 in Hjort and Claeskens (2003). Their proof carries over to the boundary set-
ting considered here.

Lemma 2.1. Under the sequence of local alternatives (2.4), the score vector is asymptot-
ically normally distributed,(√

𝑛�̄�𝑛√
𝑛�̄�𝑛

)
𝑑−→

(
𝐽01𝛿
𝐽11𝛿

)
+

(
𝑀

𝑁

)
, with

(
𝑀

𝑁

)
∼ N𝑝+1 (0, 𝐽full).

2.3 Asymptotic distribution of maximum likelihood estimator

In the setting with one boundary parameter, the MLE is asymptotically distributed as the
projection of a normal random vector onto the subspace of admissible parameter values.

Theorem 2.2. Under the sequence of models (2.4) and with a normally distributed ran-
dom vector (𝐴>, 𝐵)> ∼ N (0, 𝐽−1

full), it holds that(√
𝑛(\̂ − \0)√
𝑛(�̂� − 𝛾0)

)
𝑑−→

(
𝐴

𝐵 + 𝛿

)
· 𝟙{𝐵+𝛿>0} +

(
𝐴 + 𝐽−1

00 𝐽01 (𝐵 + 𝛿)
0

)
· 𝟙{𝐵+𝛿≤0},

where 𝟙· is the indicator function.

Remark 2.1. Theorem 2.2 applies not only to the gamma-Gompertz model, but more
generally to parametric models with one boundary parameter. In particular, the theorem
holds for other gamma-PH models if the parameters of the baseline hazard are not bound-
ary parameters. This includes the gamma-exponential and the gamma-Weibull model.

Proof. Two cases need to be distinguished: namely, that the log-likelihood ℓ𝑛 is maxi-
mized at �̂� > 𝛾0 or at �̂� = 𝛾0 (cf. Hjort, 1994). In the first case, we have 𝜕ℓ𝑛 ([̂)/𝜕\ = 0
and 𝜕ℓ𝑛 ([̂)/𝜕𝛾 = 0. If we apply, first, the usual Taylor arguments and, second, the result
of Lemma 2.1 on the limiting distribution of the score vector, we find that for a maximum
at �̂� > 𝛾0, (√

𝑛(\̂ − \0)√
𝑛(�̂� − 𝛾0)

)
𝑑
= 𝐽−1

full

(√
𝑛�̄�𝑛√
𝑛�̄�𝑛

)
𝑑−→

(
0
𝛿

)
+ 𝐽−1

full

(
𝑀

𝑁

)
=

(
𝐴

𝐵 + 𝛿

)
. (2.5)

In the second case, when the maximum occurs at �̂� = 𝛾0, we have 𝜕ℓ𝑛 ([̂)/𝜕\ = 0, but
𝜕ℓ𝑛 ([̂)/𝜕𝛾 ≤ 0 and �̂� = 𝛾0, such that(√

𝑛(\̂ − \0)√
𝑛(�̂� − 𝛾0)

)
𝑑
=

(
𝐽−1

00
√
𝑛�̄�𝑛

0

)
𝑑−→

(
𝐽−1

00 𝐽01𝛿 + 𝐽−1
00 𝑀

0

)
. (2.6)
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Direct calculations show that 𝐽−1
00 𝐽01𝛿 + 𝐽−1

00 𝑀 can be expressed as 𝐴 + 𝐽−1
00 𝐽01 (𝐵 + 𝛿). If

the last component of 𝐽−1
full (

√
𝑛�̄�>

𝑛 ,
√
𝑛�̄�𝑛)> in (2.5) is denoted by Δ𝑛, and if Ω𝑛 denotes

the set of samples for which the estimate �̂� > 𝛾0, then Δ𝑛, and Ω𝑛 are (asymptotically)
equivalent in the following sense:

𝟙Ω𝑛
− 𝟙{Δ𝑛>0}

P−→ 0. (2.7)

This convergence is verified in Section 2.7.

The following corollary explicitly gives the asymptotic distribution of the MLEs for
the gamma-Gompertz model.

Corollary 2.3. Under the sequence of true gamma-Gompertz models (2.4) with \0 =

(𝑎, 𝑏)>, 𝛾0 = 0, and 𝛿 =
√
𝑛𝜎2, the MLEs �̂�, �̂�, and �̂�2 asymptotically follow mixture

distributions given by

√
𝑛(�̂� − 𝑎) 𝑑−→ Φ

(
𝛿

^

)
T N 1 (`𝛿 , Σ1, 𝑠, 𝑡) +Φ

(
−𝛿
^

)
N

(
−𝑐13
𝑐33

𝛿, 𝑐11 −
𝑐2

13
𝑐33

)
√
𝑛(�̂� − 𝑏) 𝑑−→ Φ

(
𝛿

^

)
T N 1 (`𝛿 , Σ2, 𝑠, 𝑡) +Φ

(
−𝛿
^

)
N

(
−𝑐23
𝑐33

𝛿, 𝑐22 −
𝑐2

23
𝑐33

)
√
𝑛�̂�2 𝑑−→ Φ

(
𝛿

^

)
T N (𝛿, ^2, 0,∞) +Φ

(
−𝛿
^

)
𝜒2

0 .

Here, the 𝑐𝑘𝑙 are the elements of 𝐽−1
full, with ^2 = 𝑐33, Φ(·) is the cdf of the standard

normal distribution and 𝜒2
0 denotes a point mass at zero. T N 1 (`, Σ, 𝑠, 𝑡) is the marginal

distribution of the first component of a truncated bivariate normal distribution with mean
vector `, covariance matrix Σ, and the lower and upper truncation limits 𝑠 = (−∞, 0)>

and 𝑡 = (∞,∞)>, respectively; where in particular, `𝛿 = (0, 𝛿)>, Σ1 =

(
𝑐11 𝑐13
𝑐13 𝑐33

)
, and

Σ2 =

(
𝑐22 𝑐23
𝑐23 𝑐33

)
.

Remark 2.2. Two special cases of Corollary 2.3 are of particular interest: First, if 𝛿 =√
𝑛𝜎2 is sufficiently large, we obtain the standard result of asymptotic normality of the

MLEs. Second, if 𝛿 = 0 – i.e., if the true model is a pure Gompertz model – we obtain
the typical mixture weights of 0.5.

Proof. Define 𝑍 = (𝑍1, 𝑍2, 𝑍3)> ∼ N ((0, 0, 𝛿)>, 𝐽−1
full), which is distributed as (𝐴>,

𝐵 + 𝛿)>, and the projection matrix

𝑇 =

(
𝐼 𝐽−1

00 𝐽01
0 0

)
=

©«
1 0 −𝑐13/𝑐33
0 1 −𝑐23/𝑐33
0 0 0

ª®¬ ,
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to express the result of Theorem 2.2 as

√
𝑛([̂ − [0)

𝑑−→ [̂∗ = 𝑍 · 𝟙{𝑍3>0} + 𝑇𝑍 · 𝟙{𝑍3≤0} . (2.8)

As the components of 𝑇𝑍 are independent of 𝑍3 ∼ N (𝛿, ^2), it follows that

P[[̂∗ ≤ 𝑧] = P[[̂∗ ≤ 𝑧 |𝑍3 > 0]P[𝑍3 > 0] + P[[̂∗ ≤ 𝑧 |𝑍3 ≤ 0]P[𝑍3 ≤ 0]

= P[𝑍 ≤ 𝑧 |𝑍3 > 0]Φ
(
𝛿

^

)
+ P[𝑇𝑍 ≤ 𝑧]Φ

(
−𝛿
^

)
.

Now for [̂𝑛 = (�̂�, �̂�, �̂�2)> and [0 = (𝑎, 𝑏, 0)>, a large-sample approximation to
P[
√
𝑛([̂𝑛 − [0) ≤ 𝑢] based on (2.8) is given by

P[[̂∗ ≤ 𝑢] = Φ

(
𝛿

^

)
P[𝑍 ≤ 𝑢 |𝑍3 > 0] +Φ

(
−𝛿
^

)
P[𝑇𝑍 ≤ 𝑢],

where 𝑇𝑍 is normally distributed with mean 𝑇 (0, 0, 𝛿)> = (−𝛿𝑐13/𝑐33,−𝛿𝑐23/𝑐33, 0)>
and covariance matrix

𝑇𝐽−1
full𝑇

> =
©«
𝑐11 − 𝑐2

13/𝑐33 𝑐12 − 𝑐13𝑐23/𝑐33 0
𝑐12 − 𝑐13𝑐23/𝑐33 𝑐22 − 𝑐2

23/𝑐33 0
0 0 0

ª®¬ .
The result of Corollary 2.3 follows by determining the marginal distributions.

2.4 Asymptotics for the likelihood ratio test

This section deals with the asymptotics of the LRT for 𝐻0 : 𝜎2 = 0 vs. 𝐻1 : 𝜎2 > 0 in
the gamma-Gompertz model in the framework of local alternatives (2.4). After presenting
the limiting distribution of the likelihood ratio test statistic, we will provide a formula that
approximates the power of the test to detect 𝜎2 > 0 in large samples.

The likelihood ratio test statistic based on a sample 𝑌 = (𝑌1, . . . , 𝑌𝑛) is defined as

−2 ln_𝑛 (𝑌 ) = 2[ℓ𝑛 ([̂, 𝑌 ) − ℓ𝑛 ([̂𝐺 , 𝑌 )],

where [̂𝐺 = (�̂�𝐺 , �̂�𝐺 , 0)> with the MLE (�̂�𝐺 , �̂�𝐺)> for the Gompertz model. Under the
non-standard condition of testing the boundary parameter 𝜎2, the test statistic does not
converge to the standard chi-squared distribution, but rather to a mixture; see

Theorem 2.4. Under the sequence of local alternatives (2.4), the test statistic of a LRT
for 𝐻0 : 𝜎2 = 0 is asymptotically distributed as

−2 ln_𝑛 (𝑌 )
𝑑−→

{
max

(
0,
𝑍3
^

)}2
with 𝑍3 ∼ N (𝛿, ^2).
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Corollary 2.5. In terms of the cumulative distribution function, we find that
P[−2 ln_𝑛 (𝑌 ) ≤ 𝑧] asymptotically equals

Φ
(√
𝑧 − 𝛿

^

)
−Φ

(
− 𝛿
^

)
Φ

(√
𝑧 − 𝛿

^

)
−Φ

(
−√𝑧 − 𝛿

^

) 𝐹𝜒2
1

(
𝑧, ncp =

𝛿2

^2

)
+Φ

(
−𝛿
^

)
𝐹𝜒2

0
(𝑧),

which is a combination of a non-central chi-squared distribution with one degree of free-
dom and non-centrality parameter 𝛿2/^2, and a point mass at zero.

Remark 2.3. Setting 𝛿 = 0 – i.e., 𝜎2 = 0 – we obtain the asymptotic distribution of the
LRT statistic under 𝐻0 as 1

2 𝜒
2
1+

1
2 𝜒

2
0 , which is a 50:50 mixture of a chi-squared distribution

with one degree of freedom and a point mass at zero.

Remark 2.4. Theorem 2.4 is also valid for other gamma-PH models, such as the gamma-
Weibull model. The limiting distribution will depend on the respective model via the
element ^2 of the inverse information matrix.

Proof (of Theorem 2.4). We again distinguish two cases depending on whether the esti-
mate �̂�2 does or does not lie on the boundary of the parameter space. If the likelihood is
maximized at �̂�2 = 0, we have [̂ = [̂𝐺 , and, hence, −2 ln_𝑛 (𝑌 ) = 0. If the likelihood is
maximized at some point with �̂�2 > 0, a second-order Taylor expansion yields (see also
Hjort and Claeskens, 2003, Section 3.3)

2[ℓ𝑛 ([̂, 𝑌 ) − ℓ𝑛 ([0, 𝑌 )]
𝑑
=

(√
𝑛�̄�𝑛√
𝑛�̄�𝑛

)>
𝐽−1

full

(√
𝑛�̄�𝑛√
𝑛�̄�𝑛

)
and

2[ℓ𝑛 ([̂𝐺 , 𝑌 ) − ℓ𝑛 ([0, 𝑌 )]
𝑑
=
√
𝑛�̄�>

𝑛 𝐽
−1
00
√
𝑛�̄�𝑛.

The quadratic form of the full score vector
√
𝑛(�̄�>

𝑛 , �̄�𝑛)> can be calculated as 𝑛[�̄�>
𝑛 𝐽

−1
00 �̄�𝑛+

^2 (�̄�𝑛 − 𝐽10𝐽
−1
00 �̄�𝑛)

> (�̄�𝑛 − 𝐽10𝐽
−1
00 �̄�𝑛)]. Consequently, if �̂�2 > 0, the likelihood ratio test

statistic, −2 ln_𝑛 (𝑌 ), fulfills

− 2 ln_𝑛 (𝑌 )
𝑑
= 𝑛^2 (�̄�𝑛 − 𝐽10𝐽

−1
00 �̄�𝑛)

> (�̄�𝑛 − 𝐽10𝐽
−1
00 �̄�𝑛). (2.9)

From the asymptotic normality of
√
𝑛(�̄�>

𝑛 , �̄�𝑛)> given in Lemma 2.1, we obtain that√
𝑛(�̄�𝑛 − 𝐽10𝐽

−1
00 �̄�𝑛) is asymptotically normally distributed with mean 𝛿/^2 and vari-

ance ^−2. Hence, (2.9) is distributed as the square of a normal random variable with
mean 𝛿/^ and unit variance. The proof is completed by noting that 𝑍3/^ ∼ N (𝛿/^, 1)
and recalling from the proof of Corollary 2.3 that �̂�2 > 0 if 𝑍3 > 0 and �̂�2 = 0 if 𝑍3 ≤ 0.

One reason for working under the framework in (2.4) is that it allows us to derive
large-sample approximations of the power of the LRT to detect 𝜎2 > 0.

Lemma 2.6. Under the sequence of local alternatives (2.4), the power 𝛽𝑛 of the LRT for
𝐻0 : 𝜎2 = 0 at level 𝛼 based on a gamma-Gompertz sample of size 𝑛 is approximately
equal to

𝛽𝑛 (𝛿) ≈ 1 −Φ

(
Φ−1 (1 − 𝛼) − 𝛿

^

)
= 1 −Φ

(
Φ−1 (1 − 𝛼) −

√
𝑛𝜎2

^

)
.

The proof is deferred to Section 2.7.
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2.5 AIC for the gamma-Gompertz model

In this section, we study the AIC for the gamma-Gompertz model. The AIC is a popular
tool for model selection. In the standard setting, the AIC is defined as

AIC = −2 ℓ𝑛 ([̂, 𝑌 ) + 2(𝑝 + 1). (2.10)

The AIC aims to give an unbiased estimate of the Akaike information, the expected rela-
tive Kullback-Leibler distance between the true data-generating density and the best para-
metric approximation 𝑓 (𝑦, [̂), which is determined by inserting the MLE [̂ for [. To
obtain such an unbiased estimate, the term −2 ℓ𝑛 ([̂, 𝑌 ) is penalized by twice the num-
ber of parameters in definition (2.10), which here is 2(𝑝 + 1) = 2 · 3. This results from
asymptotic considerations that, again, require regularity conditions that do not hold for
the gamma-Gompertz model. We find that formula (2.10) needs to be modified, as stated
in

Theorem 2.7. Under the sequence of local alternatives (2.4), an asymptotically unbiased
estimator of the Akaike information of the gamma-Gompertz model is given by

AIC∗ = −2 ℓ𝑛 ([̂, 𝑌 ) + 2 · 3 − 2Φ
(
−𝛿
^

)
.

Proof. Here we give only an outline of the proof, and provide further details in Sec-
tion 2.7.

The relative distance between the true underlying distribution 𝑔 of 𝑋 and an approxi-
mating parametric density 𝑓 (., [) is measured by E𝑋 [ln 𝑓 (𝑋, [)]. In practice, the un-
known parameter [ is estimated from a sample 𝑌 generated from 𝑔, and the estimator is
denoted by [̂(𝑌 ). The Akaike information, which is to be estimated by (2.10), takes the
form (Akaike, 1974)

− 2E𝑌 [E𝑋 [ln 𝑓 (𝑋, [̂(𝑌 ))]] . (2.11)

With the previous notation and [̂ = [̂(𝑌 ), an unbiased estimator of (2.11) is given by

− 2 ℓ𝑛 ([̂, 𝑌 ) + 2E𝑌 [ℓ𝑛 ([̂, 𝑌 ) − ℓ𝑛 ([0, 𝑌 )]︸                             ︷︷                             ︸
=:𝑆1

+ 2E𝑌 [E𝑋 [ℓ𝑛 ([0, 𝑋) − ℓ𝑛 ([̂, 𝑋)]]︸                                     ︷︷                                     ︸
=:𝑆2

. (2.12)

Based on a Taylor expansion of the log-likelihood about [0 and with the limiting dis-
tribution of the score given in Lemma 2.1, we can show that 𝑆2 is asymptotically equal
to

−2E𝑌 [
√
𝑛([̂ − [0)]>

(
𝐽01𝛿
𝐽11𝛿

)
︸                              ︷︷                              ︸

=:𝑆21

+E𝑌 [
√
𝑛([̂ − [0)>𝐽full

√
𝑛([̂ − [0)]︸                                      ︷︷                                      ︸

=:𝑆22

. (2.13)

Exploiting the result on the limiting distribution of the MLE (2.8) and the arguments
presented above yields

𝑆21 ≈ −2
{[
𝛿

^

𝜙(−𝛿/^)
[1 −Φ(−𝛿/^)] + 𝐽11𝛿

2
] [

1 −Φ

(
−𝛿
^

)]
+ 𝐽10𝐽

−1
00 𝐽01𝛿

2Φ

(
−𝛿
^

)}
. (2.14)
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With regard to 𝑆22, we have to combine (2.8) with the results on the mean of quadratic
forms of random vectors, to arrive at

𝑆22 ≈
[
1 −Φ

(
−𝛿
^

)]
[3+ 𝛿2𝐽11 +

𝛿

^

𝜙(−𝛿/^)
[1 −Φ(−𝛿/^)] ] + [2+ 𝛿2𝐽10𝐽

−1
00 𝐽01]Φ

(
−𝛿
^

)
. (2.15)

Finally, 𝑆1 in (2.12) is shown to be asymptotically equivalent to 𝑆22 in (2.13); and by
inserting (2.14) and (2.15) into (2.12), we obtain the postulated result. All of these steps
are laid out in more detail in Section 2.7.

2.6 Discussion

In this chapter, we have studied likelihood inference in the gamma-Gompertz model.
Standard likelihood theory does not apply in this case because of the boundary param-
eter 𝜎2. The limiting distributions of the MLEs and of the likelihood ratio test statistic
were found to be mixtures. The results can be extended to other gamma-PH models, in
which the baseline hazard differs from the exponential Gompertz hazard. Our findings
further indicated that under the non-standard conditions of the gamma-Gompertz model,
the common definition of the AIC was biased. We also found, however, that the bias term
depended on the unknown parameter 𝜎2, which complicated immediate bias correction.
Future work will investigate alternative model selection tools.

2.7 Supplementary material: Technical appendix and proofs

ad Theorem 2.2: Proof of equation (2.7)
Using a second-order Taylor expansion about [0, the log-likelihood can be approximated
by a parabola in 𝛾, which has its maximum at �̂�, satisfying

√
𝑛(�̂� − 𝛾0) =

[
−1
𝑛

𝜕2ℓ𝑛

𝜕𝛾2 (\̂, 𝛾0)
]−1 √

𝑛�̄�𝑛 (\̂, 𝛾0), (2.16)

if the right-hand side is positive, and at �̂� = 𝛾0 otherwise. While the first term, −𝑛−1·
𝜕2ℓ𝑛 (\̂, 𝛾0)/𝜕𝛾2, tends to 𝐽11, the second term,

√
𝑛�̄�𝑛, is expanded in a first-order Taylor

series as
√
𝑛�̄�𝑛 (\̂, 𝛾0) ≈

√
𝑛�̄�𝑛 (\0, 𝛾0) +

√
𝑛(\̂ − \0)>

1
𝑛

𝜕2ℓ𝑛
𝜕𝛾𝜕\

(\0, 𝛾0).

Note that −𝑛−1𝜕2ℓ𝑛 (\0, 𝛾0)/𝜕𝛾𝜕\ tends to 𝐽10 and that
√
𝑛(\̂ − \0) is distributed on Ω𝑛

as the first components of 𝐽−1
full (

√
𝑛�̄�>

𝑛 ,
√
𝑛𝑉𝑛)> according to (2.5). From this it follows

directly that on the set Ω𝑛 the right-hand side of (2.16) can be approximated to first-order
by Δ𝑛.
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Proof of Lemma 2.6
The power 𝛽𝑛 is the probability to correctly reject 𝐻0, if 𝐻0 does not hold. For a LRT at
level 𝛼, we reject 𝐻0 if the 𝑝-value is smaller than 𝛼. If 𝑡obs is the value of the test statistic
for the observed sample, the 𝑝-value is computed according to Corollary 2.5 as

𝑝 = P[−2 ln_𝑛 (𝑌 ) ≥ 𝑡obs |𝐻0] ≈ 1 −
(
1
2
𝐹𝜒2

1
(𝑡obs) +

1
2
𝐹𝜒2

0
(𝑡obs)

)
.

Since 𝑡obs ≥ 0 by definition, 𝐹𝜒2
0
(𝑡obs) = 1. Furthermore,

𝐹𝜒2
1
(𝑡obs) =

𝛾

(
1
2 ,
𝑡obs
2

)
Γ

(
1
2

) =

√
𝜋erf

(√︃
𝑡obs
2

)
√
𝜋

= erf

(√︂
𝑡obs
2

)
,

using the gamma function Γ(𝑣) =
∫ ∞
0 𝑢𝑣−1𝑒−𝑢 d𝑢, the lower incomplete gamma function

𝛾(𝑣, 𝑤) =
∫ 𝑤
0 𝑢𝑣−1𝑒−𝑢 d𝑢 and the error function erf (𝑥) = 2/

√
𝜋
∫ 𝑥
0 𝑒−𝑢

2 d𝑢. Moreover,
1/2+ 1/2 erf(𝑥/

√
2) = Φ(𝑥), and from this 𝑝 = 1−Φ(√𝑡obs). Under the true model (2.4),

we know from Theorem 2.4 that 𝑡obs is a realization of a random variable that is asymp-
totically distributed as max{0, 𝑍3/^}2. Thus,

𝛽𝑛 (𝛿) = P [𝑝 < 𝛼 |true 𝛿] ≈ P [1 −Φ(max{0, 𝑍3/^}) < 𝛼] .

Rearranging the terms and exploiting the normality of 𝑍3/^ proves Lemma 2.6.

ad Theorem 2.7:
Proof of (2.13):
A Taylor expansion of the log-likelihood about [0 yields

𝑆2 = 2E𝑌 [E𝑋 [− ([̂ − [0)>𝑛�̄�𝑛 ([0, 𝑋) −
1
2
([̂ − [0)>H([0, 𝑋) ([̂ − [0) + 𝑅1]]

= E𝑌 [2 ([̂ − [0)>E𝑋 [−𝑛�̄�𝑛 ([0, 𝑋)] + ([̂ − [0)>E𝑋 [−H([0, 𝑋)] ([̂ − [0) + 𝑅1]

with H denoting the Hessian matrix of the log-likelihood and a remainder term 𝑅1
𝑛→∞−→ 0.

Inserting E𝑋 [−H([0, 𝑋)] = 𝑛𝐽full and the asymptotic mean of �̄�𝑛 from Lemma 2.1, we
obtain (2.13).

Proof of (2.14):
Based on the limiting distribution of the MLE given in (2.8), the expectation E𝑌 [

√
𝑛([̂ −

[0)] in 𝑆21 can be approximated by

E[𝑍 · 𝟙{𝑍3>0} + 𝑇𝑍 · 𝟙{𝑍3≤0}] = E[𝑍 | 𝑍3 > 0]
[
1 −Φ

(
−𝛿
^

)]
+ E[𝑇𝑍]Φ

(
−𝛿
^

)
.
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Here, E[𝑍 | 𝑍3 > 0] is the mean vector of a truncated trivariate normal distribution.
Using the results of Gupta and Tracy (1978) on the moments of such distributions, it can
be shown that

E[𝑍 | 𝑍3 > 0] = ^
(
−𝐽−1

00 𝐽01
1

)
𝜙(−𝛿/^)

[1 −Φ(−𝛿/^)] +
(
0
𝛿

)
.

Direct calculations then give (2.14).

Proof of (2.15)
According to (2.8) in combination with the continuous mapping theorem, the quadratic
form

√
𝑛([̂ − [0)>𝐽full

√
𝑛([̂ − [0) of the MLE in (2.13) converges in distribution to

𝑍>𝐽full𝑍 𝟙{𝑍3>0} + (𝑇𝑍)>𝐽full𝑇𝑍 𝟙{𝑍3≤0} .

Thus, the mean 𝑆22 of the quadratic form is asymptotically equal to

𝑆22 ≈ E[(𝑍 |𝑍3 > 0)>𝐽full (𝑍 |𝑍3 > 0)]
[
1 −Φ

(
−𝛿
^

)]
+ E[(𝑇𝑍)>𝐽full (𝑇𝑍)]Φ

(
−𝛿
^

)
,

which is a weighted sum of means of quadratic forms in the random vectors (𝑍 |𝑍3 > 0)
and 𝑇𝑍 , respectively. For any 𝑘-dimensional random vector 𝑋 with E[𝑋] = `, Cov[𝑋] =
Σ and a constant, symmetric (𝑘 × 𝑘)-matrix 𝐴, E[𝑋>𝐴𝑋] = tr(𝐴Σ) + `>𝐴`, where
tr(·) denotes the trace of a matrix. To use this result here, the covariance matrix of the
truncated (𝑍 |𝑍3 > 0) is required. It can be obtained from the results of Gupta and Tracy
(1978) as 𝐽−1

full + 𝐺, where 𝐺 equals{
𝛿^

𝜙(−𝛿/^)
1 −Φ(−𝛿/^) − ^

2
[

𝜙(−𝛿/^)
1 −Φ(−𝛿/^)

]2
} (
𝐽−1

00 𝐽01𝐽10𝐽
−1
00 −𝐽−1

00 𝐽01
−𝐽10𝐽

−1
00 1

)
.

We omit the remaining straightforward computations, which result in (2.15).

Proof of the asymptotic equivalence of 𝑆1 and 𝑆22:
Another Taylor expansion of the log-likelihood about [̂ yields

ℓ𝑛 ([0, 𝑌 ) = ℓ𝑛 ([̂, 𝑌 ) + ([0 − [̂)>𝑛�̄�𝑛 ([̂, 𝑌 ) +
1
2
([0 − [̂)>H([̂, 𝑌 ) ([0 − [̂) + 𝑅2,

with a remainder term 𝑅2
𝑛→∞−→ 0. Thus, 𝑆1 can be approximated by

E𝑌 [2 ([̂ − [0)>𝑛�̄�𝑛 ([̂, 𝑌 )] + E𝑌 [([̂ − [0)> [−H([̂, 𝑌 )] ([̂ − [0) + 𝑅2] . (2.17)

To evaluate the first summand, we study �̄�𝑛 ([̂, 𝑌 ) for the two cases �̂�2 > 0 and �̂�2 = 0. In
the first case, the MLE is an inner point of the parameter space, and, given the definition
of the MLE, we have �̄�𝑛 ([̂, 𝑌 ) = 0, such that in this case ([̂ − [0)>𝑛�̄�𝑛 ([̂, 𝑌 ) = 0. In the
second case, we know that �̄�𝑛 ([̂, 𝑌 ) = 0 and �̄�𝑛 ([̂, 𝑌 ) ≤ 0, but as (�̂� − 𝛾0) = 0, we still
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have ([̂−[0)>𝑛�̄�𝑛 ([̂, 𝑌 ) = 0. Consequently, the first term in (2.17) vanishes. With regard
to the second summand, we argue that −H([̂, 𝑌 ) approximates reasonably well 𝑛𝐽full (see
also Hjort and Claeskens, 2003). Thus, 𝑆1 is asymptotically equal to

E𝑌 [
√
𝑛([̂ − [0)>𝐽full

√
𝑛([̂ − [0)],

which is equivalent to 𝑆22 in (2.13).
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