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1
Introduction

1.1 Introduction

The heterogeneity between individuals is a key aspect in the statistical studies of various
phenomena, including mortality and recurrent infections or fertility events. The standard
approach for incorporating the differences in observed individual characteristics into the
analysis are regression models. However, unobserved individual characteristics often add
to the variability in the data as well. Therefore, the statistical models also need to take
this unobserved heterogeneity between individuals into account.

When studying duration data that describe the time until an event of interest occurs,
the heterogeneity between individuals will also lead to changes in the composition of the
sample over time. These selection effects can have serious implications for the statistical
analysis in different contexts. In mortality studies, for instance, the sample of survivors to
a certain age may have different characteristics than the initial population. Similar effects
arise in longitudinal studies if the latent characteristics affect not only the longitudinal
component, but also the survival time of the individuals. Thus, in settings with delayed
entry, the analysis is based on the selective sample of individuals who survived to the
point of entering the study. Even if there is no delayed entry, an association between the
longitudinal component and the survival time will result in a dependent drop-out mecha-
nism.

The modeling of unobserved heterogeneity has greatly advanced in recent decades. A
common approach to modeling the latent information is through random effects. In the
analysis of time-to-event data, such a random effect is usually referred to as frailty. In
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2 Chapter 1 – Introduction

the following section, we give a brief general introduction to frailty modeling of survival
data. Then, we present the two specific frailty models that we study in this thesis to
investigate recurrent events, such as repeated infections or fertility events, and old-age
mortality, respectively. An outline of the thesis is provided in Section 1.5.

1.2 Frailty modeling of survival data

Time-to-event data are commonly modeled through the hazard function, which describes
the instantaneous probability of the occurrence of the event of interest for individuals who
have not yet experienced the event. As these risks of the occurrence of an event can natu-
rally differ between individuals, the statistical models have to allow for heterogeneity. To
account for the differences that are attributable to observed characteristics, covariates can
be included in the analysis. However, in most cases, not all characteristics that cause the
hazards to vary between individuals can be observed. Frailty models provide an appealing
approach to accounting for such unobserved heterogeneity. For example, in the class of
frailty proportional hazards models, this type of heterogeneity is incorporated through a
positive random effect, the frailty, that acts multiplicatively on a common baseline haz-
ard. For univariate survival data, such frailty models have already been proposed by Beard
(1959) and Vaupel et al. (1979).

Unobserved heterogeneity can also arise in studies of multivariate survival data. When
analyzing clustered survival data, such as survival times of individuals from different
families, the risks of experiencing the event may vary across the clusters. Shared frailty
models, in which the value of the random effect is common to all individuals in a cluster,
not only take into account the heterogeneity between clusters, but also relax the assump-
tion of independence between the individuals within a cluster. Similarly, shared frailty
models are applied in recurrent event studies in which the same type of event can occur
repeatedly in the same individual. Individual-specific random effects can then accom-
modate individual differences in the event rates, as well as the dependence between the
recurrence times within an individual. An overview of frailty modeling for multivariate
survival data has been provided by, among others, Hougaard (2000).

An important feature of survival data is that they are usually subject to censoring or
truncation. For example, if we only know that the individual has not yet experienced
the event of interest at a certain point in time, the observation is right-censored. If an
individual is included in the study only if he or she has not yet experienced the event of
interest by some point in time – that is, if the event time is larger than a certain value
– the observation is left-truncated. The statistical methods need to be adapted to such
observation schemes. But given that even with these adjustments, the loss of information
caused by the incomplete observations may pose considerable challenges for the analysis,
this issue should be taken into consideration already when the study is designed.

Another central issue that should be taken into account in time-to-event analysis is
that selection effects can occur if there is heterogeneity in the event rates. In studies of a
single failure event, the individuals who survive up to a certain point in time will tend to
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have lower failure risks than the individuals who already had a failure before that point
in time. In the context of frailty models, this implies that the frailty distribution in the
sample of survivors changes over time. Ignoring such selection effects may have serious
consequences for the inference results.

The issues outlined above also play an important role in the study of the two distinct
frailty models that are investigated in this thesis. In the first part, we consider a specific
proportional hazards frailty model for univariate survival data that is used as a framework
for assessing a demographic phenomenon known as mortality deceleration. In the second
part, we examine inference in a joint frailty model for recurrent events and a terminal
event under different observation schemes. In the following sections, we briefly intro-
duce the two models, and provide some background on the applications and the statistical
approaches used in this thesis.

1.3 Assessing mortality deceleration

The first part of this thesis was motivated by studies on old-age mortality patterns, which
have frequently observed that human death rates slow down at advanced ages. This mor-
tality deceleration can be described through a specific proportional hazards frailty model.
However, non-standard conditions for the inference and limited data availability can com-
plicate the statistical analysis. Thus, our aim is to investigate both traditional and new
approaches to assessing mortality deceleration in this setting.

1.3.1 The gamma-Gompertz model
The observation that human mortality rates increase exponentially over most of the adult
lifespan was already made by Gompertz (1825). However, later investigations based on
improved vital registration records suggested that death rates slow down at the oldest ages
(Thatcher et al., 1998). Such a downward deviation from the exponentially increasing
hazard at high ages is called mortality deceleration, and can be explained by selection
effects due to heterogeneous mortality risks. As individuals with higher mortality risks
tend to die at younger ages, the population of survivors to advanced ages tends to be made
up of individuals with lower mortality risks. This, in turn, results in a comparatively lower
population hazard at these advanced ages.

Mortality deceleration can therefore be examined in the framework of a frailty pro-
portional hazards model. The individual risks at any age 𝑥 are specified in terms of the
conditional hazards ℎ(𝑥 |𝑍 = 𝑧) = 𝑧 · ℎ0 (𝑥) for given frailty value 𝑍 = 𝑧, with ℎ0 (𝑥) de-
noting the baseline hazard. More specifically, we consider the gamma-Gompertz model
in which the individual risks are defined by an exponentially increasing Gompertz base-
line hazard, ℎ0 (𝑥) = 𝑎𝑒𝑏𝑥 , that is multiplied by a gamma distributed frailty. The frailty
variance 𝜎2 describes the amount of heterogeneity in mortality risks. In the presence of



4 Chapter 1 – Introduction

heterogeneity, indicated by a positive value of the frailty variance, the marginal population
hazard,

ℎ(𝑥) = 𝑎𝑒𝑏𝑥

1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑥 − 1)

, 𝑥 ≥ 0, 𝑎, 𝑏 > 0, 𝜎2 ≥ 0,

decelerates at older ages, as illustrated in Figure 1.1. If there is no heterogeneity and
the frailty variance is zero, the population hazard is of the same exponentially increasing
Gompertz form as the individual hazards. Hence, in the setting of the gamma-Gompertz
model, the frailty variance determines whether the population hazard does or does not
decelerate at older ages, and the statistical assessment of the phenomenon will therefore
largely depend on this variance parameter.
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Figure 1.1: Hazard (left) and log-hazard (middle) of the gamma-Gompertz model with parameters
𝑎 = 0.014, 𝑏 = 0.088, and 𝜎2 = 0.1 (black-solid) or 𝜎2 = 0 (gray-dashed). Right: Frailty
distribution at the starting age of 60 (solid) and among survivors to ages 90 and above (dashed), or
to ages 100 and above (dotted), which illustrates that the distribution of frailty among survivors to
higher ages is concentrated at lower values, and has smaller variance.

Assuming a fully parametric model for human adult mortality may seem restrictive in
light of the advances in semiparametric and nonparametric survival analysis. However,
the simple relation of a linear increase of the log mortality rate with age, which is imposed
by the Gompertz model, has been repeatedly found to hold across a large part of the age
range for human adults in various studies covering different countries and time periods.
In addition to its importance in actuarial studies and demography, the Gompertz model
has been applied in research on the biology of aging. While the search for an explanation
for the exponential increase in mortality with age is still ongoing, it has been shown that
models of damage accumulation in specific systems can produce such patterns (Gavrilov
and Gavrilova, 2001; Kirkwood, 2015).
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1.3.2 Old-age mortality studies: challenges and design
Several challenges arise in the study of mortality deceleration. In the setting of the
gamma-Gompertz model, the absence of mortality deceleration corresponds to a value
of zero for the frailty variance, which lies on the boundary of the parameter space. The
presence of such a ‘boundary parameter’ introduces a non-standard condition, such that
the standard asymptotic results for likelihood-based inference, which are derived under
regularity conditions, will generally not apply (Self and Liang, 1987). Therefore, the
statistical techniques for assessing mortality deceleration need to be adapted to the non-
standard setting.

Empirical studies of mortality deceleration often face the challenge that the available
data are limited. Even if the studies are based on large populations, relatively few deaths
will be observed at the advanced ages at which the deceleration is most pronounced. This
is an inherent feature when studying phenomena that occur at the tail of a distribution,
where the data naturally become sparse. Moreover, scientific validation of the ages at
death is often considered necessary in order to avoid biased mortality estimates due to
age misreporting. Because of the time and the costs involved in verifying individuals’ vi-
tal records, mortality data are usually validated for only parts of the population of interest.
When studying old-age mortality, samples are often restricted to include only those indi-
viduals who survived beyond some advanced age, such as survivors beyond age 80. In the
setting of the gamma-Gompertz model, the sample of survivors to ages 80 and above will
be less heterogeneous in their mortality risks than the sample of survivors to, say, ages 70
and above, due to selection effects (see the right panel of Figure 1.1 for an illustration).
Hence, the left truncation of the observations will affect the inference in this model, and,
thus, the ability to detect a slowing down of the death rates.

For the purposes of quantifying the effects of the age of left truncation and the sample
size on the assessment of mortality deceleration, information measures can be derived
from the Fisher information matrix of the gamma-Gompertz model. This approach draws
on the concept of the Fisher information as a means of measuring the amount of informa-
tion the data carry about the model parameters (Lehmann, 1999). Applying ideas from
the theory of optimal design (Atkinson, 1988), study designs can be evaluated based on
different optimality criteria, which are defined in terms of scalar functions of the informa-
tion matrix. As a result, we will be able to gauge, for instance, the amount of information
that can be gained by adding the observations on the deaths at ages 85-89 to an existing
data set of survivors to ages 90 and above.

1.3.3 Statistical techniques for assessing mortality deceleration
The non-standard condition of the boundary parameter and the aspects of the study design
laid out above will have an impact on the statistical methods used in the study of mortality
deceleration.

In the framework of the gamma-Gompertz model, one approach for assessing the phe-
nomenon is a likelihood ratio test for a zero frailty variance. Taking into account the non-



6 Chapter 1 – Introduction

standard condition that the frailty variance lies on the boundary of the parameter space
under the null hypothesis is essential for deriving asymptotic properties of the test. Under
the null hypothesis, the test statistic is not asymptotically chi-squared distributed with one
degree of freedom, but instead asymptotically follows a 50:50-mixture distribution of a
point mass at zero and a chi-squared distribution with one degree of freedom. We also
determine a formula for the local asymptotic power of the likelihood ratio test, which in-
volves one of the information measures derived from the Fisher information. Calculations
for specific scenarios will illustrate that the test’s power to detect mortality deceleration
is low if the data are left-truncated at relatively high ages.

A drawback of the hypothesis testing approach is that it is designed to control for the
probability of committing a type I error, which in this case is the probability of falsely
rejecting the hypothesis of no mortality deceleration. However, the probability of a type
II error – that is, of failing to reject the hypothesis of no mortality deceleration although
mortality deceleration is present – is not directly controlled, and may be relatively large.
This asymmetry of hypothesis testing suggests that alternative methods should be consid-
ered here.

A different approach to assessing mortality deceleration is model selection based on
information criteria (Burnham and Anderson, 2002). The gamma-Gompertz model is
simplified to the Gompertz model if the frailty variance takes the value of zero and there
is no mortality deceleration. Thus, we have to choose between two nested models that
differ by one parameter only. However, as the selection concerns a boundary parameter,
the standard formulas for the information criteria may not be applicable. In Chapter 2, we
show that the standard version of the popular Akaike information criterion (AIC; Akaike,
1974) is biased in the setting of the gamma-Gompertz model due to this non-standard
condition. Moreover, even after adding a correction term to reduce the bias, model se-
lection based on the AIC will not enable us to reliably detect mortality deceleration for
samples that include only survivors to advanced ages.

The AIC was constructed to evaluate overall model performance, whereas in certain
applications, model performance for a specific parameter of interest might be more rele-
vant. Claeskens and Hjort (2003) introduced a focused information criterion (FIC) for
selecting a model that performs best for a given focus parameter. From a set of nested
candidate models, the model with the smallest limiting risk of the estimator of the focus
parameter is chosen. This approach is appealing when studying mortality deceleration,
because attention can be directed to the quantities that determine old-age mortality, such
as the frailty variance or the log-hazard function at some advanced age. As the original
FIC was developed under standard regularity conditions, the non-standard condition of
the boundary parameter in the present application requires us to derive a new version of
the FIC. The performance of this new criterion for detecting mortality deceleration will
be assessed in comparison with the performance of the modified AIC.
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1.4 Joint modeling of recurrent events and a terminal event

The second part of this thesis is devoted to the study of recurrent events in the presence of
a terminal event. In particular, methods for inference in a joint frailty model are developed
under two specific observation schemes.

1.4.1 The joint frailty model
Recurrent events are found in various areas of application, including medical studies on
tumor occurrences, demographic studies on fertility, and actuarial studies on insurance
claims. Hence, recurrent events have received considerable attention in the recent years;
an overview is provided by Cook and Lawless (2007).

In many cases, a terminal event such as death might stop the repeated occurrences of
the event of interest in an individual. This potentially dependent censoring of the recur-
rence process requires that the two event processes are modeled jointly. In an extension
of the shared frailty model, Liu et al. (2004) proposed a joint frailty model for recur-
rent events and a terminal event. As in the shared frailty model for recurrent events, the
individual-specific frailties induce heterogeneity in the recurrence rates, and account for
the dependence between the recurrences within one individual. But in the joint model,
the frailties also affect the hazard of the terminal event, thereby introducing dependence
between the recurrence process and the terminal event. The direction and the strength of
the association can be modified through an additional dependence parameter.

Consequently, the model not only provides a suitable framework for handling the de-
pendent censoring of the recurrent event process; but it also allows us to assess how the
recurrent events and the terminal event are related. The question of whether individuals
with a higher recurrence rate simultaneously have a higher or even a lower risk of experi-
encing the terminal event is of relevance in several applications. This issue is illustrated
with a study on the fertility and mortality of a marine organism in Chapter 5. More-
over, analyses based on the joint frailty model can provide insights into how the risks of
experiencing recurrent events or the terminal event evolve with time.

1.4.2 Different observational settings
The joint frailty model is usually studied in a setting in which each individual is observed
from the start of the event processes and the exact times of event recurrence are available.
In this thesis, we consider two variations of this observation scheme. First, we deal with a
situation in which the recurrence process is observed intermittently, so that only the num-
bers of recurrent events that occurred between successive observation times are known.
This scheme of interval counts of recurrent events can arise in different contexts, such as
in a medical study in which the number of epileptic seizures of a patient is recorded at
scheduled visits to the doctor, or in a laboratory experiment in which rats are examined
for newly developed tumors at fixed inspection times.
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Second, we consider a situation in which the recurrence process is continuously ob-
served, but the observation does not begin until sometime after the start of the event pro-
cesses. Such cases of delayed entry can, for instance, occur in studies of certain diseases
in which time is measured from the diagnosis onwards, but patients are enrolled at vari-
ous points in time after their diagnosis. Another example is that of studies in which age
is the main time scale, but individuals enter the study at different ages. In these settings,
individuals are included in the study only if they are still at risk of experiencing the termi-
nal event; that is, if the event has not yet occurred for them. The resulting left-truncated
study sample may not be representative of the underlying population, as it could consist
of individuals who tend to have a lower hazard of experiencing the terminal event. These
selection effects can also cause the frailty distribution in the study sample to differ from
the initial distribution of frailties in the target population. Hence, inference methods that
take the left truncation properly into account must be developed.

1.4.3 Inference in the joint frailty model
Several estimation procedures for the joint frailty model have been proposed for settings
in which the recurrence process is observed from the start, and the exact recurrence times
are known. The methods are frequently based on the marginal likelihood, which can be
approximated using Gaussian quadrature. As the likelihood can be easily adjusted to dif-
ferent observation schemes, we can also adopt this approach for estimating the joint frailty
model in the above situations with intermittent observations or delayed entry. More pre-
cisely, we build on the work of Liu and Huang (2008), who used Gauss-Hermite quadra-
ture to approximate the likelihood and specified the event rates as piecewise-constant
functions.

Given the complexity of the joint frailty model, it may be of interest to test a priori
whether the recurrence process and the terminal event are associated. For that purpose,
Balan et al. (2016) developed a score test for the association between the two event pro-
cesses in the setting in which recurrence times are exactly observed. We adapt this test to
the situation in which there are interval counts of the recurrent events.

1.5 Outline of the thesis

The two parts of this thesis are structured as follows. The first part encompasses three
chapters that cover the different aspects of assessing mortality deceleration in the frame-
work of the gamma-Gompertz model.

In Chapter 2, we present asymptotic results for likelihood-based inference in the
gamma-Gompertz model in a local misspecification setting. We determine the limit-
ing distribution of the maximum likelihood estimator and an approximation of the local
asymptotic power of the likelihood ratio test for a zero frailty variance under the non-
standard condition of the boundary parameter. In addition, we derive the bias of the
standard AIC in this model with a boundary parameter.
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To address questions relevant to empirical studies of mortality deceleration, we inves-
tigate in Chapter 3 how the sample size and the age range covered by a data set affect
the assessment of mortality deceleration. The corresponding information measures based
on the Fisher information matrix of the gamma-Gompertz model are described. One of
the criteria is used in calculating the approximate local power of the likelihood ratio test
according to the formula derived in Chapter 2. We demonstrate that samples that are rela-
tively small in size or that cover only the most advanced ages can make drawing reliable
inferences difficult.

Chapter 4 discusses the approach of using model selection to assess mortality de-
celeration. The new version of the FIC is introduced and its performance is evaluated,
especially for more demanding study designs. Comparisons between this criterion and a
modified AIC with a bias correction term, which is motivated by the result from Chapter 2,
are also included.

The second part of the thesis is comprised of two chapters about the inference in
the joint frailty model for recurrent events and a terminal event under two different ob-
servational schemes. Chapter 5 focuses on the situation in which only interval counts
of recurrent events are available. We present the method for estimating the joint frailty
model by direct maximization of the approximate marginal likelihood. The question of
whether the recurrence process and the terminal event process are associated is addressed
by means of a score test.

In Chapter 6, the joint frailty model is studied in the situation with delayed entry.
We outline the construction of the likelihood, and propose an estimation procedure based
on an approximated marginal likelihood. We demonstrate the importance of taking into
account the selection effects on the frailty distribution in the left-truncated sample.
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2
Detecting mortality deceleration:

Likelihood inference and model selection
in the gamma-Gompertz model

Abstract

We study the asymptotic properties of the maximum likelihood estimator and the likeli-
hood ratio test in the gamma-Gompertz model for local alternatives. We also show that
the standard AIC is biased in this model due to the boundary parameter.

2.1 Introduction

Benjamin Gompertz (1825) pioneered human mortality research by demonstrating that
death rates for adults increase exponentially with age. Since then, the Gompertz distri-
bution has been widely used to model adult lifespans. It was not until more and better
data at high ages became available that the overall validity of the Gompertz distribution
was called into question. Downward deviations from an exponentially increasing haz-
ard (‘mortality deceleration’) were observed when data for the oldest-old were analyzed

This chapter has been published as: M. Böhnstedt and J. Gampe (2019). Detecting mortality deceleration:
Likelihood inference and model selection in the gamma-Gompertz model. Statistics and Probability Letters
150, 68–73, Copyright Elsevier B.V. 2019.
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(Thatcher et al., 1998). This kind of mortality deceleration results if hazards differ be-
tween individuals, and a proportional hazards (PH) frailty model is the standard approach
used to model such heterogeneity (Vaupel et al., 1979; Wienke, 2010).

If we denote by 𝑌 the continuous random variable that describes adult lifespans (typ-
ically above age 30) and its hazard by

ℎ(𝑦) = lim
Δ𝑦↘0

P(𝑦 ≤ 𝑌 < 𝑦 + Δ𝑦 |𝑌 ≥ 𝑦)/Δ𝑦, (2.1)

a PH frailty model is of the form ℎ(𝑦 |𝑍 = 𝑧) = 𝑧 · ℎ0 (𝑦), where 𝑍 is a positive random
effect (‘frailty’), ℎ0 (𝑦) is a baseline hazard, and ℎ(𝑦 |𝑍 = 𝑧) denotes the conditional hazard
of an individual at age 𝑦, given that his or her frailty is 𝑍 = 𝑧. If the baseline hazard is
an exponential function, ℎ0 (𝑦) = 𝑎𝑒𝑏𝑦 with parameters 𝑎 > 0, 𝑏 > 0, and the random
effect 𝑍 has a gamma distribution with mean one and variance 𝜎2, we obtain the so-called
gamma-Gompertz model. The variance parameter 𝜎2 describes the heterogeneity in the
risks of death: i.e., individuals with higher frailty values tend to die earlier, while more
robust individuals tend to survive. While all individual hazards ℎ(𝑦 |𝑍) are exponentially
increasing, the resulting marginal hazard,

ℎ(𝑦) = 𝑎𝑒𝑏𝑦

1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑦 − 1)

, (2.2)

shows a downward deviation from the exponential trajectory if 𝜎2 > 0. The deviation is
discernible at high ages, when differential mortality has played out sufficiently. If 𝜎2 = 0
– i.e., if there is no heterogeneity – model (2.2) reduces to a plain Gompertz model with
hazard ℎ(𝑦) = 𝑎𝑒𝑏𝑦 . The choice of the gamma distribution for the frailty 𝑍 is both
mathematically convenient and theoretically justified (Abbring and van den Berg, 2007).

The question of whether mortality deceleration is present or an exponential hazard fits
even at advanced ages has been repeatedly discussed (e.g., Gavrilova and Gavrilov, 2015).
For the gamma-Gompertz model, the question is reduced to whether 𝜎2 > 0 or 𝜎2 = 0.
In the latter case, the parameter 𝜎2 is on the boundary of the parameter space, which
violates the standard assumptions that underlie the asymptotic properties of likelihood-
based inference. Thus, asymptotic results need to be derived for this setting.

In this chapter, we consider the asymptotic distribution of the likelihood ratio test
(LRT) statistic for 𝐻0 : 𝜎2 = 0 in the gamma-Gompertz model. As we are interested in
deriving large-sample approximations of the power of the LRT to detect 𝜎2 > 0, we will
work within a framework of local alternatives (Lehmann, 1999). We will also consider
model selection based on the Akaike information criterion (AIC, Akaike, 1974). In the
gamma-Gompertz model, the standard AIC is not an asymptotically unbiased estimator
of the Akaike information. We derive the bias using a local misspecification framework
(Hjort and Claeskens, 2003).

The rest of the chapter is structured as follows. In Section 2.2, we introduce some fur-
ther notations and assumptions. In Section 2.3, we derive the asymptotic distribution of
the maximum likelihood estimator (MLE) in the gamma-Gompertz model. In Section 2.4,
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we establish the asymptotic distribution of the likelihood ratio test statistic, and provide
a large-sample approximation to the power of the LRT to detect a positive 𝜎2. In Sec-
tion 2.5, we show that the standard AIC is a biased estimator of the Akaike information
in the gamma-Gompertz model. We conclude with a discussion in Section 2.6.

2.2 Preliminaries

We consider a sample of 𝑛 iid lifespans 𝑦 from a gamma-Gompertz density 𝑓 (𝑦, [) where
the parameter vector [ = (𝑎, 𝑏, 𝜎2)> consists of the elements \ = (𝑎, 𝑏)>, resulting from
the Gompertz baseline, and the gamma-variance 𝜎2. The density is

𝑓 (𝑦, [) =
{
𝑎𝑒𝑏𝑦

[
1 + 𝜎2 𝑎

𝑏

(
𝑒𝑏𝑦 − 1

) ]−(1+ 1
𝜎2 ) for 𝜎2 > 0

𝑎𝑒𝑏𝑦 exp
{
− 𝑎
𝑏
(𝑒𝑏𝑦 − 1)

}
for 𝜎2 = 0.

(2.3)

The framework of local alternatives assumes that the observations 𝑦 are generated
from a density

𝑓true (𝑦) = 𝑓 (𝑦, \0, 𝛾0 + 𝛿/
√
𝑛), (2.4)

where \0 is a 𝑝-dimensional parameter vector, and 𝛾 = 𝛾0 + 𝛿/
√
𝑛 is a 𝑞-dimensional

parameter vector perturbed around a (known) 𝛾0 in the direction of 𝛿. In the gamma-
Gompertz model (2.2), we have \ = (𝑎, 𝑏)>, so 𝑝 = 2, and 𝛾 is the single (𝑞 = 1)
boundary parameter 𝛾 = 𝜎2, with 𝛾0 = 0 and 𝛿 =

√
𝑛𝜎2 ≥ 0.

The asymptotic distribution of the MLEs in the general framework (2.4) was derived
by Hjort and Claeskens (2003) under the usual regularity conditions, which require that
the true parameter is an inner point of the parameter space. Hjort (1994) considered a
boundary parameter, but exclusively dealt with the 𝑡-distribution as an extension of the
normal model. Self and Liang (1987) presented asymptotic distributions of MLEs and
likelihood ratio test statistics in the presence of boundary parameters, but while assuming
a fixed true model, rather than allowing for a local specification as in (2.4).

To state our main results, we introduce some further notations, closely following
Hjort and Claeskens (2003). We denote by 𝑈 (𝑦) = 𝜕 ln 𝑓 (𝑦, \0, 𝛾0)/𝜕\ and 𝑉 (𝑦) =

𝜕 ln 𝑓 (𝑦, \0, 𝛾0)/𝜕𝛾 the score functions with respect to \ and 𝛾, respectively, of the log-
likelihood of a single observation 𝑦 from 𝑓true, with both evaluated at the point (\, 𝛾) =

(\0, 𝛾0). Let 𝐽full be the corresponding information matrix; i.e., 𝐽full is the variance-
covariance matrix of the score vector (𝑈 (𝑦)>, 𝑉 (𝑦))>, with blocks 𝐽00, 𝐽01, 𝐽10, and 𝐽11.

In the following, 𝑌 = (𝑌1, . . . , 𝑌𝑛) denotes a random sample of size 𝑛 from den-
sity (2.4), and we abbreviate [ = (\>, 𝛾)> and [0 = (\>0 , 𝛾0)>. We can express the
log-likelihood as ℓ𝑛 ([,𝑌 ) =

∑𝑛
𝑖=1 ln 𝑓 (𝑌𝑖 , \, 𝛾). Similarly, the averages of the score func-

tions are denoted by �̄�𝑛 = 𝑛−1 ∑𝑛
𝑖=1𝑈 (𝑌𝑖) and �̄�𝑛 = 𝑛−1 ∑𝑛

𝑖=1𝑉 (𝑌𝑖), with the shorthand
notation �̄�𝑛 = (�̄�>

𝑛 , �̄�𝑛)>.
When 𝛾 could lie on the boundary of the parameter space, the derivatives of the log-

likelihood have to be taken from the appropriate side. It is also important to note that
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these derivatives need to exist, and that they have to be bounded on intersections of neigh-
borhoods of the true parameter value and the parameter space (see Self and Liang, 1987).

The derivation of the asymptotic distribution of the MLEs is based on the follow-
ing result showing the weak convergence of the averaged score vector. It was given as
Lemma 3.1 in Hjort and Claeskens (2003). Their proof carries over to the boundary set-
ting considered here.

Lemma 2.1. Under the sequence of local alternatives (2.4), the score vector is asymptot-
ically normally distributed,(√

𝑛�̄�𝑛√
𝑛�̄�𝑛

)
𝑑−→

(
𝐽01𝛿
𝐽11𝛿

)
+

(
𝑀

𝑁

)
, with

(
𝑀

𝑁

)
∼ N𝑝+1 (0, 𝐽full).

2.3 Asymptotic distribution of maximum likelihood estimator

In the setting with one boundary parameter, the MLE is asymptotically distributed as the
projection of a normal random vector onto the subspace of admissible parameter values.

Theorem 2.2. Under the sequence of models (2.4) and with a normally distributed ran-
dom vector (𝐴>, 𝐵)> ∼ N (0, 𝐽−1

full), it holds that(√
𝑛(\̂ − \0)√
𝑛(�̂� − 𝛾0)

)
𝑑−→

(
𝐴

𝐵 + 𝛿

)
· 𝟙{𝐵+𝛿>0} +

(
𝐴 + 𝐽−1

00 𝐽01 (𝐵 + 𝛿)
0

)
· 𝟙{𝐵+𝛿≤0},

where 𝟙· is the indicator function.

Remark 2.1. Theorem 2.2 applies not only to the gamma-Gompertz model, but more
generally to parametric models with one boundary parameter. In particular, the theorem
holds for other gamma-PH models if the parameters of the baseline hazard are not bound-
ary parameters. This includes the gamma-exponential and the gamma-Weibull model.

Proof. Two cases need to be distinguished: namely, that the log-likelihood ℓ𝑛 is maxi-
mized at �̂� > 𝛾0 or at �̂� = 𝛾0 (cf. Hjort, 1994). In the first case, we have 𝜕ℓ𝑛 ([̂)/𝜕\ = 0
and 𝜕ℓ𝑛 ([̂)/𝜕𝛾 = 0. If we apply, first, the usual Taylor arguments and, second, the result
of Lemma 2.1 on the limiting distribution of the score vector, we find that for a maximum
at �̂� > 𝛾0, (√

𝑛(\̂ − \0)√
𝑛(�̂� − 𝛾0)

)
𝑑
= 𝐽−1

full

(√
𝑛�̄�𝑛√
𝑛�̄�𝑛

)
𝑑−→

(
0
𝛿

)
+ 𝐽−1

full

(
𝑀

𝑁

)
=

(
𝐴

𝐵 + 𝛿

)
. (2.5)

In the second case, when the maximum occurs at �̂� = 𝛾0, we have 𝜕ℓ𝑛 ([̂)/𝜕\ = 0, but
𝜕ℓ𝑛 ([̂)/𝜕𝛾 ≤ 0 and �̂� = 𝛾0, such that(√

𝑛(\̂ − \0)√
𝑛(�̂� − 𝛾0)

)
𝑑
=

(
𝐽−1

00
√
𝑛�̄�𝑛

0

)
𝑑−→

(
𝐽−1

00 𝐽01𝛿 + 𝐽−1
00 𝑀

0

)
. (2.6)
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Direct calculations show that 𝐽−1
00 𝐽01𝛿 + 𝐽−1

00 𝑀 can be expressed as 𝐴 + 𝐽−1
00 𝐽01 (𝐵 + 𝛿). If

the last component of 𝐽−1
full (

√
𝑛�̄�>

𝑛 ,
√
𝑛�̄�𝑛)> in (2.5) is denoted by Δ𝑛, and if Ω𝑛 denotes

the set of samples for which the estimate �̂� > 𝛾0, then Δ𝑛, and Ω𝑛 are (asymptotically)
equivalent in the following sense:

𝟙Ω𝑛
− 𝟙{Δ𝑛>0}

P−→ 0. (2.7)

This convergence is verified in Section 2.7.

The following corollary explicitly gives the asymptotic distribution of the MLEs for
the gamma-Gompertz model.

Corollary 2.3. Under the sequence of true gamma-Gompertz models (2.4) with \0 =

(𝑎, 𝑏)>, 𝛾0 = 0, and 𝛿 =
√
𝑛𝜎2, the MLEs �̂�, �̂�, and �̂�2 asymptotically follow mixture

distributions given by

√
𝑛(�̂� − 𝑎) 𝑑−→ Φ

(
𝛿

^

)
T N 1 (`𝛿 , Σ1, 𝑠, 𝑡) +Φ

(
−𝛿
^

)
N

(
−𝑐13
𝑐33

𝛿, 𝑐11 −
𝑐2

13
𝑐33

)
√
𝑛(�̂� − 𝑏) 𝑑−→ Φ

(
𝛿

^

)
T N 1 (`𝛿 , Σ2, 𝑠, 𝑡) +Φ

(
−𝛿
^

)
N

(
−𝑐23
𝑐33

𝛿, 𝑐22 −
𝑐2

23
𝑐33

)
√
𝑛�̂�2 𝑑−→ Φ

(
𝛿

^

)
T N (𝛿, ^2, 0,∞) +Φ

(
−𝛿
^

)
𝜒2

0 .

Here, the 𝑐𝑘𝑙 are the elements of 𝐽−1
full, with ^2 = 𝑐33, Φ(·) is the cdf of the standard

normal distribution and 𝜒2
0 denotes a point mass at zero. T N 1 (`, Σ, 𝑠, 𝑡) is the marginal

distribution of the first component of a truncated bivariate normal distribution with mean
vector `, covariance matrix Σ, and the lower and upper truncation limits 𝑠 = (−∞, 0)>

and 𝑡 = (∞,∞)>, respectively; where in particular, `𝛿 = (0, 𝛿)>, Σ1 =

(
𝑐11 𝑐13
𝑐13 𝑐33

)
, and

Σ2 =

(
𝑐22 𝑐23
𝑐23 𝑐33

)
.

Remark 2.2. Two special cases of Corollary 2.3 are of particular interest: First, if 𝛿 =√
𝑛𝜎2 is sufficiently large, we obtain the standard result of asymptotic normality of the

MLEs. Second, if 𝛿 = 0 – i.e., if the true model is a pure Gompertz model – we obtain
the typical mixture weights of 0.5.

Proof. Define 𝑍 = (𝑍1, 𝑍2, 𝑍3)> ∼ N ((0, 0, 𝛿)>, 𝐽−1
full), which is distributed as (𝐴>,

𝐵 + 𝛿)>, and the projection matrix

𝑇 =

(
𝐼 𝐽−1

00 𝐽01
0 0

)
=

©«
1 0 −𝑐13/𝑐33
0 1 −𝑐23/𝑐33
0 0 0

ª®¬ ,
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to express the result of Theorem 2.2 as

√
𝑛([̂ − [0)

𝑑−→ [̂∗ = 𝑍 · 𝟙{𝑍3>0} + 𝑇𝑍 · 𝟙{𝑍3≤0} . (2.8)

As the components of 𝑇𝑍 are independent of 𝑍3 ∼ N (𝛿, ^2), it follows that

P[[̂∗ ≤ 𝑧] = P[[̂∗ ≤ 𝑧 |𝑍3 > 0]P[𝑍3 > 0] + P[[̂∗ ≤ 𝑧 |𝑍3 ≤ 0]P[𝑍3 ≤ 0]

= P[𝑍 ≤ 𝑧 |𝑍3 > 0]Φ
(
𝛿

^

)
+ P[𝑇𝑍 ≤ 𝑧]Φ

(
−𝛿
^

)
.

Now for [̂𝑛 = (�̂�, �̂�, �̂�2)> and [0 = (𝑎, 𝑏, 0)>, a large-sample approximation to
P[
√
𝑛([̂𝑛 − [0) ≤ 𝑢] based on (2.8) is given by

P[[̂∗ ≤ 𝑢] = Φ

(
𝛿

^

)
P[𝑍 ≤ 𝑢 |𝑍3 > 0] +Φ

(
−𝛿
^

)
P[𝑇𝑍 ≤ 𝑢],

where 𝑇𝑍 is normally distributed with mean 𝑇 (0, 0, 𝛿)> = (−𝛿𝑐13/𝑐33,−𝛿𝑐23/𝑐33, 0)>
and covariance matrix

𝑇𝐽−1
full𝑇

> =
©«
𝑐11 − 𝑐2

13/𝑐33 𝑐12 − 𝑐13𝑐23/𝑐33 0
𝑐12 − 𝑐13𝑐23/𝑐33 𝑐22 − 𝑐2

23/𝑐33 0
0 0 0

ª®¬ .
The result of Corollary 2.3 follows by determining the marginal distributions.

2.4 Asymptotics for the likelihood ratio test

This section deals with the asymptotics of the LRT for 𝐻0 : 𝜎2 = 0 vs. 𝐻1 : 𝜎2 > 0 in
the gamma-Gompertz model in the framework of local alternatives (2.4). After presenting
the limiting distribution of the likelihood ratio test statistic, we will provide a formula that
approximates the power of the test to detect 𝜎2 > 0 in large samples.

The likelihood ratio test statistic based on a sample 𝑌 = (𝑌1, . . . , 𝑌𝑛) is defined as

−2 ln_𝑛 (𝑌 ) = 2[ℓ𝑛 ([̂, 𝑌 ) − ℓ𝑛 ([̂𝐺 , 𝑌 )],

where [̂𝐺 = (�̂�𝐺 , �̂�𝐺 , 0)> with the MLE (�̂�𝐺 , �̂�𝐺)> for the Gompertz model. Under the
non-standard condition of testing the boundary parameter 𝜎2, the test statistic does not
converge to the standard chi-squared distribution, but rather to a mixture; see

Theorem 2.4. Under the sequence of local alternatives (2.4), the test statistic of a LRT
for 𝐻0 : 𝜎2 = 0 is asymptotically distributed as

−2 ln_𝑛 (𝑌 )
𝑑−→

{
max

(
0,
𝑍3
^

)}2
with 𝑍3 ∼ N (𝛿, ^2).
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Corollary 2.5. In terms of the cumulative distribution function, we find that
P[−2 ln_𝑛 (𝑌 ) ≤ 𝑧] asymptotically equals

Φ
(√
𝑧 − 𝛿

^

)
−Φ

(
− 𝛿
^

)
Φ

(√
𝑧 − 𝛿

^

)
−Φ

(
−√𝑧 − 𝛿

^

) 𝐹𝜒2
1

(
𝑧, ncp =

𝛿2

^2

)
+Φ

(
−𝛿
^

)
𝐹𝜒2

0
(𝑧),

which is a combination of a non-central chi-squared distribution with one degree of free-
dom and non-centrality parameter 𝛿2/^2, and a point mass at zero.

Remark 2.3. Setting 𝛿 = 0 – i.e., 𝜎2 = 0 – we obtain the asymptotic distribution of the
LRT statistic under 𝐻0 as 1

2 𝜒
2
1+

1
2 𝜒

2
0 , which is a 50:50 mixture of a chi-squared distribution

with one degree of freedom and a point mass at zero.

Remark 2.4. Theorem 2.4 is also valid for other gamma-PH models, such as the gamma-
Weibull model. The limiting distribution will depend on the respective model via the
element ^2 of the inverse information matrix.

Proof (of Theorem 2.4). We again distinguish two cases depending on whether the esti-
mate �̂�2 does or does not lie on the boundary of the parameter space. If the likelihood is
maximized at �̂�2 = 0, we have [̂ = [̂𝐺 , and, hence, −2 ln_𝑛 (𝑌 ) = 0. If the likelihood is
maximized at some point with �̂�2 > 0, a second-order Taylor expansion yields (see also
Hjort and Claeskens, 2003, Section 3.3)

2[ℓ𝑛 ([̂, 𝑌 ) − ℓ𝑛 ([0, 𝑌 )]
𝑑
=

(√
𝑛�̄�𝑛√
𝑛�̄�𝑛

)>
𝐽−1

full

(√
𝑛�̄�𝑛√
𝑛�̄�𝑛

)
and

2[ℓ𝑛 ([̂𝐺 , 𝑌 ) − ℓ𝑛 ([0, 𝑌 )]
𝑑
=
√
𝑛�̄�>

𝑛 𝐽
−1
00
√
𝑛�̄�𝑛.

The quadratic form of the full score vector
√
𝑛(�̄�>

𝑛 , �̄�𝑛)> can be calculated as 𝑛[�̄�>
𝑛 𝐽

−1
00 �̄�𝑛+

^2 (�̄�𝑛 − 𝐽10𝐽
−1
00 �̄�𝑛)

> (�̄�𝑛 − 𝐽10𝐽
−1
00 �̄�𝑛)]. Consequently, if �̂�2 > 0, the likelihood ratio test

statistic, −2 ln_𝑛 (𝑌 ), fulfills

− 2 ln_𝑛 (𝑌 )
𝑑
= 𝑛^2 (�̄�𝑛 − 𝐽10𝐽

−1
00 �̄�𝑛)

> (�̄�𝑛 − 𝐽10𝐽
−1
00 �̄�𝑛). (2.9)

From the asymptotic normality of
√
𝑛(�̄�>

𝑛 , �̄�𝑛)> given in Lemma 2.1, we obtain that√
𝑛(�̄�𝑛 − 𝐽10𝐽

−1
00 �̄�𝑛) is asymptotically normally distributed with mean 𝛿/^2 and vari-

ance ^−2. Hence, (2.9) is distributed as the square of a normal random variable with
mean 𝛿/^ and unit variance. The proof is completed by noting that 𝑍3/^ ∼ N (𝛿/^, 1)
and recalling from the proof of Corollary 2.3 that �̂�2 > 0 if 𝑍3 > 0 and �̂�2 = 0 if 𝑍3 ≤ 0.

One reason for working under the framework in (2.4) is that it allows us to derive
large-sample approximations of the power of the LRT to detect 𝜎2 > 0.

Lemma 2.6. Under the sequence of local alternatives (2.4), the power 𝛽𝑛 of the LRT for
𝐻0 : 𝜎2 = 0 at level 𝛼 based on a gamma-Gompertz sample of size 𝑛 is approximately
equal to

𝛽𝑛 (𝛿) ≈ 1 −Φ

(
Φ−1 (1 − 𝛼) − 𝛿

^

)
= 1 −Φ

(
Φ−1 (1 − 𝛼) −

√
𝑛𝜎2

^

)
.

The proof is deferred to Section 2.7.



20 Chapter 2 – Likelihood inference in the gamma-Gompertz model

2.5 AIC for the gamma-Gompertz model

In this section, we study the AIC for the gamma-Gompertz model. The AIC is a popular
tool for model selection. In the standard setting, the AIC is defined as

AIC = −2 ℓ𝑛 ([̂, 𝑌 ) + 2(𝑝 + 1). (2.10)

The AIC aims to give an unbiased estimate of the Akaike information, the expected rela-
tive Kullback-Leibler distance between the true data-generating density and the best para-
metric approximation 𝑓 (𝑦, [̂), which is determined by inserting the MLE [̂ for [. To
obtain such an unbiased estimate, the term −2 ℓ𝑛 ([̂, 𝑌 ) is penalized by twice the num-
ber of parameters in definition (2.10), which here is 2(𝑝 + 1) = 2 · 3. This results from
asymptotic considerations that, again, require regularity conditions that do not hold for
the gamma-Gompertz model. We find that formula (2.10) needs to be modified, as stated
in

Theorem 2.7. Under the sequence of local alternatives (2.4), an asymptotically unbiased
estimator of the Akaike information of the gamma-Gompertz model is given by

AIC∗ = −2 ℓ𝑛 ([̂, 𝑌 ) + 2 · 3 − 2Φ
(
−𝛿
^

)
.

Proof. Here we give only an outline of the proof, and provide further details in Sec-
tion 2.7.

The relative distance between the true underlying distribution 𝑔 of 𝑋 and an approxi-
mating parametric density 𝑓 (., [) is measured by E𝑋 [ln 𝑓 (𝑋, [)]. In practice, the un-
known parameter [ is estimated from a sample 𝑌 generated from 𝑔, and the estimator is
denoted by [̂(𝑌 ). The Akaike information, which is to be estimated by (2.10), takes the
form (Akaike, 1974)

− 2E𝑌 [E𝑋 [ln 𝑓 (𝑋, [̂(𝑌 ))]] . (2.11)

With the previous notation and [̂ = [̂(𝑌 ), an unbiased estimator of (2.11) is given by

− 2 ℓ𝑛 ([̂, 𝑌 ) + 2E𝑌 [ℓ𝑛 ([̂, 𝑌 ) − ℓ𝑛 ([0, 𝑌 )]︸                             ︷︷                             ︸
=:𝑆1

+ 2E𝑌 [E𝑋 [ℓ𝑛 ([0, 𝑋) − ℓ𝑛 ([̂, 𝑋)]]︸                                     ︷︷                                     ︸
=:𝑆2

. (2.12)

Based on a Taylor expansion of the log-likelihood about [0 and with the limiting dis-
tribution of the score given in Lemma 2.1, we can show that 𝑆2 is asymptotically equal
to

−2E𝑌 [
√
𝑛([̂ − [0)]>

(
𝐽01𝛿
𝐽11𝛿

)
︸                              ︷︷                              ︸

=:𝑆21

+E𝑌 [
√
𝑛([̂ − [0)>𝐽full

√
𝑛([̂ − [0)]︸                                      ︷︷                                      ︸

=:𝑆22

. (2.13)

Exploiting the result on the limiting distribution of the MLE (2.8) and the arguments
presented above yields

𝑆21 ≈ −2
{[
𝛿

^

𝜙(−𝛿/^)
[1 −Φ(−𝛿/^)] + 𝐽11𝛿

2
] [

1 −Φ

(
−𝛿
^

)]
+ 𝐽10𝐽

−1
00 𝐽01𝛿

2Φ

(
−𝛿
^

)}
. (2.14)
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With regard to 𝑆22, we have to combine (2.8) with the results on the mean of quadratic
forms of random vectors, to arrive at

𝑆22 ≈
[
1 −Φ

(
−𝛿
^

)]
[3+ 𝛿2𝐽11 +

𝛿

^

𝜙(−𝛿/^)
[1 −Φ(−𝛿/^)] ] + [2+ 𝛿2𝐽10𝐽

−1
00 𝐽01]Φ

(
−𝛿
^

)
. (2.15)

Finally, 𝑆1 in (2.12) is shown to be asymptotically equivalent to 𝑆22 in (2.13); and by
inserting (2.14) and (2.15) into (2.12), we obtain the postulated result. All of these steps
are laid out in more detail in Section 2.7.

2.6 Discussion

In this chapter, we have studied likelihood inference in the gamma-Gompertz model.
Standard likelihood theory does not apply in this case because of the boundary param-
eter 𝜎2. The limiting distributions of the MLEs and of the likelihood ratio test statistic
were found to be mixtures. The results can be extended to other gamma-PH models, in
which the baseline hazard differs from the exponential Gompertz hazard. Our findings
further indicated that under the non-standard conditions of the gamma-Gompertz model,
the common definition of the AIC was biased. We also found, however, that the bias term
depended on the unknown parameter 𝜎2, which complicated immediate bias correction.
Future work will investigate alternative model selection tools.

2.7 Supplementary material: Technical appendix and proofs

ad Theorem 2.2: Proof of equation (2.7)
Using a second-order Taylor expansion about [0, the log-likelihood can be approximated
by a parabola in 𝛾, which has its maximum at �̂�, satisfying

√
𝑛(�̂� − 𝛾0) =

[
−1
𝑛

𝜕2ℓ𝑛

𝜕𝛾2 (\̂, 𝛾0)
]−1 √

𝑛�̄�𝑛 (\̂, 𝛾0), (2.16)

if the right-hand side is positive, and at �̂� = 𝛾0 otherwise. While the first term, −𝑛−1·
𝜕2ℓ𝑛 (\̂, 𝛾0)/𝜕𝛾2, tends to 𝐽11, the second term,

√
𝑛�̄�𝑛, is expanded in a first-order Taylor

series as
√
𝑛�̄�𝑛 (\̂, 𝛾0) ≈

√
𝑛�̄�𝑛 (\0, 𝛾0) +

√
𝑛(\̂ − \0)>

1
𝑛

𝜕2ℓ𝑛
𝜕𝛾𝜕\

(\0, 𝛾0).

Note that −𝑛−1𝜕2ℓ𝑛 (\0, 𝛾0)/𝜕𝛾𝜕\ tends to 𝐽10 and that
√
𝑛(\̂ − \0) is distributed on Ω𝑛

as the first components of 𝐽−1
full (

√
𝑛�̄�>

𝑛 ,
√
𝑛𝑉𝑛)> according to (2.5). From this it follows

directly that on the set Ω𝑛 the right-hand side of (2.16) can be approximated to first-order
by Δ𝑛.
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Proof of Lemma 2.6
The power 𝛽𝑛 is the probability to correctly reject 𝐻0, if 𝐻0 does not hold. For a LRT at
level 𝛼, we reject 𝐻0 if the 𝑝-value is smaller than 𝛼. If 𝑡obs is the value of the test statistic
for the observed sample, the 𝑝-value is computed according to Corollary 2.5 as

𝑝 = P[−2 ln_𝑛 (𝑌 ) ≥ 𝑡obs |𝐻0] ≈ 1 −
(
1
2
𝐹𝜒2

1
(𝑡obs) +

1
2
𝐹𝜒2

0
(𝑡obs)

)
.

Since 𝑡obs ≥ 0 by definition, 𝐹𝜒2
0
(𝑡obs) = 1. Furthermore,

𝐹𝜒2
1
(𝑡obs) =

𝛾

(
1
2 ,
𝑡obs
2

)
Γ

(
1
2

) =

√
𝜋erf

(√︃
𝑡obs
2

)
√
𝜋

= erf

(√︂
𝑡obs
2

)
,

using the gamma function Γ(𝑣) =
∫ ∞
0 𝑢𝑣−1𝑒−𝑢 d𝑢, the lower incomplete gamma function

𝛾(𝑣, 𝑤) =
∫ 𝑤
0 𝑢𝑣−1𝑒−𝑢 d𝑢 and the error function erf (𝑥) = 2/

√
𝜋
∫ 𝑥
0 𝑒−𝑢

2 d𝑢. Moreover,
1/2+ 1/2 erf(𝑥/

√
2) = Φ(𝑥), and from this 𝑝 = 1−Φ(√𝑡obs). Under the true model (2.4),

we know from Theorem 2.4 that 𝑡obs is a realization of a random variable that is asymp-
totically distributed as max{0, 𝑍3/^}2. Thus,

𝛽𝑛 (𝛿) = P [𝑝 < 𝛼 |true 𝛿] ≈ P [1 −Φ(max{0, 𝑍3/^}) < 𝛼] .

Rearranging the terms and exploiting the normality of 𝑍3/^ proves Lemma 2.6.

ad Theorem 2.7:
Proof of (2.13):
A Taylor expansion of the log-likelihood about [0 yields

𝑆2 = 2E𝑌 [E𝑋 [− ([̂ − [0)>𝑛�̄�𝑛 ([0, 𝑋) −
1
2
([̂ − [0)>H([0, 𝑋) ([̂ − [0) + 𝑅1]]

= E𝑌 [2 ([̂ − [0)>E𝑋 [−𝑛�̄�𝑛 ([0, 𝑋)] + ([̂ − [0)>E𝑋 [−H([0, 𝑋)] ([̂ − [0) + 𝑅1]

with H denoting the Hessian matrix of the log-likelihood and a remainder term 𝑅1
𝑛→∞−→ 0.

Inserting E𝑋 [−H([0, 𝑋)] = 𝑛𝐽full and the asymptotic mean of �̄�𝑛 from Lemma 2.1, we
obtain (2.13).

Proof of (2.14):
Based on the limiting distribution of the MLE given in (2.8), the expectation E𝑌 [

√
𝑛([̂ −

[0)] in 𝑆21 can be approximated by

E[𝑍 · 𝟙{𝑍3>0} + 𝑇𝑍 · 𝟙{𝑍3≤0}] = E[𝑍 | 𝑍3 > 0]
[
1 −Φ

(
−𝛿
^

)]
+ E[𝑇𝑍]Φ

(
−𝛿
^

)
.
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Here, E[𝑍 | 𝑍3 > 0] is the mean vector of a truncated trivariate normal distribution.
Using the results of Gupta and Tracy (1978) on the moments of such distributions, it can
be shown that

E[𝑍 | 𝑍3 > 0] = ^
(
−𝐽−1

00 𝐽01
1

)
𝜙(−𝛿/^)

[1 −Φ(−𝛿/^)] +
(
0
𝛿

)
.

Direct calculations then give (2.14).

Proof of (2.15)
According to (2.8) in combination with the continuous mapping theorem, the quadratic
form

√
𝑛([̂ − [0)>𝐽full

√
𝑛([̂ − [0) of the MLE in (2.13) converges in distribution to

𝑍>𝐽full𝑍 𝟙{𝑍3>0} + (𝑇𝑍)>𝐽full𝑇𝑍 𝟙{𝑍3≤0} .

Thus, the mean 𝑆22 of the quadratic form is asymptotically equal to

𝑆22 ≈ E[(𝑍 |𝑍3 > 0)>𝐽full (𝑍 |𝑍3 > 0)]
[
1 −Φ

(
−𝛿
^

)]
+ E[(𝑇𝑍)>𝐽full (𝑇𝑍)]Φ

(
−𝛿
^

)
,

which is a weighted sum of means of quadratic forms in the random vectors (𝑍 |𝑍3 > 0)
and 𝑇𝑍 , respectively. For any 𝑘-dimensional random vector 𝑋 with E[𝑋] = `, Cov[𝑋] =
Σ and a constant, symmetric (𝑘 × 𝑘)-matrix 𝐴, E[𝑋>𝐴𝑋] = tr(𝐴Σ) + `>𝐴`, where
tr(·) denotes the trace of a matrix. To use this result here, the covariance matrix of the
truncated (𝑍 |𝑍3 > 0) is required. It can be obtained from the results of Gupta and Tracy
(1978) as 𝐽−1

full + 𝐺, where 𝐺 equals{
𝛿^

𝜙(−𝛿/^)
1 −Φ(−𝛿/^) − ^

2
[

𝜙(−𝛿/^)
1 −Φ(−𝛿/^)

]2
} (
𝐽−1

00 𝐽01𝐽10𝐽
−1
00 −𝐽−1

00 𝐽01
−𝐽10𝐽

−1
00 1

)
.

We omit the remaining straightforward computations, which result in (2.15).

Proof of the asymptotic equivalence of 𝑆1 and 𝑆22:
Another Taylor expansion of the log-likelihood about [̂ yields

ℓ𝑛 ([0, 𝑌 ) = ℓ𝑛 ([̂, 𝑌 ) + ([0 − [̂)>𝑛�̄�𝑛 ([̂, 𝑌 ) +
1
2
([0 − [̂)>H([̂, 𝑌 ) ([0 − [̂) + 𝑅2,

with a remainder term 𝑅2
𝑛→∞−→ 0. Thus, 𝑆1 can be approximated by

E𝑌 [2 ([̂ − [0)>𝑛�̄�𝑛 ([̂, 𝑌 )] + E𝑌 [([̂ − [0)> [−H([̂, 𝑌 )] ([̂ − [0) + 𝑅2] . (2.17)

To evaluate the first summand, we study �̄�𝑛 ([̂, 𝑌 ) for the two cases �̂�2 > 0 and �̂�2 = 0. In
the first case, the MLE is an inner point of the parameter space, and, given the definition
of the MLE, we have �̄�𝑛 ([̂, 𝑌 ) = 0, such that in this case ([̂ − [0)>𝑛�̄�𝑛 ([̂, 𝑌 ) = 0. In the
second case, we know that �̄�𝑛 ([̂, 𝑌 ) = 0 and �̄�𝑛 ([̂, 𝑌 ) ≤ 0, but as (�̂� − 𝛾0) = 0, we still



24 Chapter 2 – Likelihood inference in the gamma-Gompertz model

have ([̂−[0)>𝑛�̄�𝑛 ([̂, 𝑌 ) = 0. Consequently, the first term in (2.17) vanishes. With regard
to the second summand, we argue that −H([̂, 𝑌 ) approximates reasonably well 𝑛𝐽full (see
also Hjort and Claeskens, 2003). Thus, 𝑆1 is asymptotically equal to

E𝑌 [
√
𝑛([̂ − [0)>𝐽full

√
𝑛([̂ − [0)],

which is equivalent to 𝑆22 in (2.13).
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3
Information measures and design issues in

the study of mortality deceleration:
Findings for the gamma-Gompertz model

Abstract

Mortality deceleration, or the slowing down of death rates at old ages, has been repeat-
edly investigated, but empirical studies of this phenomenon have produced mixed results.
The scarcity of observations at the oldest ages complicates the statistical assessment of
mortality deceleration, even in the parsimonious parametric framework of the gamma-
Gompertz model considered here. The need for thorough verification of the ages at death
can further limit the available data. As logistical constraints may only allow to validate
survivors beyond a certain (high) age, samples may be restricted to a certain age range. If
we can quantify the effects of the sample size and the age range on the assessment of mor-
tality deceleration, we can make recommendations for study design. For that purpose, we
propose applying the concept of the Fisher information and ideas from the theory of op-
timal design. We compute the Fisher information matrix in the gamma-Gompertz model,
and derive information measures for comparing the performance of different study de-
signs. We then discuss interpretations of these measures. The special case in which the

This chapter has been published as: M. Böhnstedt, J. Gampe, and H. Putter (2021). Information measures
and design issues in the study of mortality deceleration: findings for the gamma-Gompertz model. Lifetime
Data Analysis 27, 333-356.
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frailty variance takes the value of zero and lies on the boundary of the parameter space
is given particular attention. The changes in information related to varying sample sizes
or age ranges are investigated for specific scenarios. The Fisher information also allows
us to study the power of a likelihood ratio test to detect mortality deceleration depending
on the study design. We illustrate these methods with a study of mortality among late
19th-century French-Canadian birth cohorts.

3.1 Introduction

Accurately describing, understanding, and, finally, projecting the trajectory of human
mortality over age is crucial for assessing the future of human longevity, but it is also
important in actuarial sciences, population forecasting and health care planning. The sci-
entific modeling of human mortality over age has a long tradition. Around two centuries
ago, Benjamin Gompertz published his finding that the death rates of humans increase
exponentially from mid-life ages onwards (Gompertz, 1825), and this regularity has since
been confirmed time and time again in many populations, epochs, and circumstances.
Recently, however, improved and more accurate vital registration has revealed that the
increase in death rates slows down at higher ages (see, for example, Thatcher et al., 1998;
Thatcher, 1999). This decrease in the increase of death rates at older ages is termed mor-
tality deceleration.

An explanation for this initially perplexing observation was provided early on by
Beard (1959) via the so-called heterogeneity hypothesis. If the individuals in a birth
cohort are subjected to non-identical mortality risks, then those with higher risks tend to
die earlier, resulting in an increasingly selected group of survivors with lower mortality
risks. Hence, even if the individual hazards increase exponentially, the population hazard
will increase more slowly (Vaupel et al., 1979).

Although this explanation is plausible, empirical investigations have repeatedly pro-
duced mixed results (Bebbington et al., 2014). While some studies have found evidence
of a downward deviation from the exponential hazard at the oldest ages (Feehan, 2018),
others have suggested that exponential growth continues even through advanced ages
(Gavrilov and Gavrilova, 2019).

The empirical study of mortality deceleration is complicated by several issues. It is a
phenomenon that manifests in the tail of the lifespan distribution where observations ne-
cessarily become sparse, even for sizable cohorts. Whether we are able to detect mortality
deceleration will depend on the actual strength of the effect and the size of the sample.

The Gompertz model originated as an actuarial device, but its ability to capture the
age-trajectory of adult mortality in a multitude of circumstances prompted numerous at-
tempts to find underlying mechanisms that would produce exponentially increasing haz-
ards. Most attempts come from reliability theory (Gavrilov and Gavrilova, 2001) and the
biology of aging (see Kirkwood, 2015, and references therein). Whether and which of
the mechanisms will eventually apply is still an open question, however, the repeatedly
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confirmed exponential increase of mortality over much of the adult lifespan established
the Gompertz model in demography, biology, and epidemiology.

When examining mortality deceleration, we have to decide over what age range death
rates should be analyzed in order to uncover potential deviations from a Gompertz hazard.
On the one hand, using a rather wide age range – that is, starting from relatively young
ages – may run the risk that the observations at younger ages dominate the analysis, and
thus mask the deceleration that is based on relatively fewer observations at older ages.
This line of thought suggests that observations of higher ages at death might be more
informative about a potential deceleration than observations of younger ages at death.
On the other hand, using a wider age range might enable us to detect deviations from
the exponential increase of the hazard early. Moreover, using a wider age range yields a
larger sample size, and can increase the precision of the parameter estimates, particularly
of the parameters describing the exponential increase. This might enable us to detect more
easily deviations from it at higher ages. How the trade-off between these two opposing
effects would play out is not clear.

Another important aspect in all studies involving old-age mortality is data quality. In
particular, age misreporting is known to induce a downward bias of mortality at advanced
ages (Preston et al., 1999). Therefore, scientific age validation is indispensable in studies
involving individuals of very high ages (Jeune and Vaupel, 1999). In practice, performing
such individual checks is costly and time-consuming, and logistics can limit the number
of cases that can be verified. In the application presented in Section 3.6, the ages at death
could be validated for individual members of French-Canadian birth cohorts (born 1880-
1896) who survived to age 90 or older. Since extending the age range by another, say, five
years, to ages 85 and above, would imply a drastic increase in the number of cases to be
validated, a practically relevant question is how much the extra effort would expand the
information about mortality deceleration in the resulting larger data set.

All of the considerations discussed above are questions related to optimal design.
While the theory of optimal design is applied in various research fields (see Berger and
Wong, 2009, and the references therein), applications are less numerous in the area of
survival analysis. Hwang and Brookmeyer (2003) attempted to find the optimal spacing
between consecutive waves of a panel study. Becker et al. (1989) and Konstantinou et al.
(2015) discussed optimal covariate settings in proportional hazards models, and McGree
and Eccleston (2010) investigated the design aspects of covariates and sample size in
accelerated failure-time models. Here, we will study the effects of the sample size and the
age range covered by a data set on the assessment of mortality deceleration; specifically,
on the downward deviation from a Gompertz hazard.

The most commonly used approaches for describing individually heterogeneous death
risks are proportional hazards frailty models (Vaupel et al., 1979; Duchateau and Janssen,
2008; Balan and Putter, 2020). In this chapter, we focus on one specific model from
this class, the gamma-Gompertz model. The individuals share an exponentially increas-
ing Gompertz baseline hazard, but a multiplicative gamma distributed random effect (the
frailty) introduces heterogeneity of the individual mortality risks. The amount of hetero-
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geneity is determined by the frailty variance. If the frailty variance is zero the population
hazard will follow the exponential Gompertz trajectory, while a positive frailty variance
implies that the population hazard decelerates at older ages. Consequently, the statistical
assessment of mortality deceleration in the gamma-Gompertz model is reduced to infer-
ence about the frailty variance. In particular, the likelihood ratio test for a zero frailty
variance is a commonly used approach to assess this phenomenon. However, zero is
a boundary point of the parameter space for the variance parameter which violates the
usual regularity assumptions. Consequently, standard asymptotic results are not directly
applicable.

In this chapter, we propose using the concepts of the Fisher information and of op-
timal design to address issues that arise in planning and evaluating studies that assess
mortality deceleration in the setting of the gamma-Gompertz model. Within the likeli-
hood framework, the Fisher information measures the amount of information about the
model parameters that is contained in the data (Lehmann, 1999). Therefore, the Fisher
information can serve as a basis for identifying optimal designs that maximize the infor-
mation about the model parameters.

The chapter is organized as follows. Section 3.2 lays out the framework for our study
by formally introducing the gamma-Gompertz model, as well as the general concepts
of the Fisher information and of optimal designs. In Section 3.3, we present the Fisher
information and a specific information measure for the gamma-Gompertz model, and re-
late them to the power of the likelihood ratio test to detect mortality deceleration. In
Section 3.4, we discuss in detail the design issues that arise in studies of mortality decel-
eration. In Section 3.5, we assess the effects of different design choices on the information
measure, and on the power of the test for specific scenarios. In Section 3.6, we apply the
proposed concepts and methods to a French-Canadian mortality data set. In Section 3.7,
we conclude with a discussion of our findings.

3.2 Framework: Gamma-Gompertz model, Fisher information
& study design

3.2.1 Gamma-Gompertz model
We consider a continuous random variable 𝑋 that describes adult lifespans (above some
young adult age, such as 30). Its distribution is determined by the hazard function

ℎ(𝑥) = lim
Δ𝑥↘0

P(𝑥 < 𝑋 ≤ 𝑥 + Δ𝑥 | 𝑋 > 𝑥)
Δ𝑥

.

The heterogeneity hypothesis can be formalized in frailty proportional hazards models of
the form ℎ(𝑥 | 𝑍 = 𝑧) = 𝑧 · ℎ0 (𝑥). The unobserved heterogeneity of the individuals is
modeled via the positive random effect 𝑍 that affects a common baseline hazard ℎ0 (𝑥) in
a multiplicative way. Individuals with higher values 𝑧 have a higher risk at any age 𝑥, as
specified by the conditional hazard ℎ(𝑥 | 𝑍 = 𝑧); thus, 𝑍 is called the frailty.
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A popular choice for the distribution of frailties is the gamma distribution. It leads
to closed-form expressions for marginal survival and hazard functions. Furthermore, for
the gamma distribution the frailty among survivors at any age 𝑥 > 0 again is gamma dis-
tributed, only with different parameters (Vaupel et al., 1979; Hougaard, 1984; Economou
and Caroni, 2008). Moreover, Abbring and van den Berg (2007) showed that even if
the frailty at 𝑥 = 0 is not gamma distributed the frailty among survivors converges with
increasing 𝑥 to a gamma distribution for many proportional hazards frailty models.

As the name suggests, in the gamma-Gompertz model the baseline hazard has an
exponentially increasing Gompertz form, ℎ0 (𝑥) = 𝑎𝑒𝑏𝑥 . Here the parameter 𝑎 > 0
represents the initial level of mortality for 𝑥 = 0 and 𝑏 > 0 is the rate of aging. The
frailty is gamma distributed, with a mean of one and a variance of 𝜎2. The heterogeneity
in frailty, and, hence, in mortality risks, is measured by the variance parameter 𝜎2. In
a heterogeneous population with 𝜎2 > 0, there is a tendency of individuals with higher
frailty values to die at younger ages, such that the population of survivors to higher ages
consists mainly of individuals with lower mortality risks. Therefore, the marginal hazard,

ℎ(𝑥) = 𝑎𝑒𝑏𝑥

1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑥 − 1)

, (3.1)

shows a downward deviation from the exponential increase at higher ages. In a homoge-
neous population with 𝜎2 = 0, there is no such selection effect, and the marginal hazard is
again of the Gompertz form, ℎ(𝑥) = 𝑎𝑒𝑏𝑥 . Thus, the presence or the absence of mortality
deceleration is determined by the parameter 𝜎2 and can, for instance, be assessed by a
likelihood ratio test for 𝐻0 : 𝜎2 = 0 against 𝐻1 : 𝜎2 > 0.

While the parameter 𝜎2 describes the heterogeneity in frailty and mortality risks at
the starting age of the model – that is, at 𝑥 = 0 – the increasingly selected population
of survivors to higher ages will be less heterogeneous in terms of their frailty and mor-
tality risks. For example, the heterogeneity in mortality risks will be lower in the subset
of survivors to ages 90 and above than among the survivors to ages 80 and above. Con-
sequently, the age range covered by a data set will affect the ability to assess the frailty
variance, and, hence, mortality deceleration.

It is important to note that the frailty variance 𝜎2 takes a value on the boundary of its
parameter space if there is no heterogeneity (𝜎2 = 0). As this violates common regularity
assumptions, some standard asymptotic results for likelihood inference might not hold,
which will also affect the interpretation of the information measures in the following.

3.2.2 The Fisher information
We briefly recap the concept of the Fisher information, and refer to Chapter 7 in Lehmann
(1999) for further details. For a random variable 𝑋 with density 𝑓𝑋 (·; 𝜽) and parameter
vector 𝜽 = (\1, \2, ..., \𝐾 )>, the Fisher information matrix 𝑰(𝜽) is defined as

𝑰(𝜽) = E
[(
𝜕

𝜕𝜽
ln 𝑓𝑋 (𝑋; 𝜽)

) (
𝜕

𝜕𝜽
ln 𝑓𝑋 (𝑋; 𝜽)

)>]
, (3.2)
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where the expectation E is with respect to the distribution of 𝑋 . Under mild regularity
conditions, expression (3.2) can be rewritten in terms of the second-order partial deriva-
tives of the log-density of 𝑋 ,

𝑰(𝜽) = −E
[

𝜕2

𝜕𝜽𝜕𝜽>
ln 𝑓𝑋 (𝑋; 𝜽)

]
. (3.3)

The Fisher information 𝑰(𝜽) is often interpreted as the amount of information a single
observation of 𝑋 contains about the model parameters 𝜽 . The information 𝑰𝒏 (𝜽) of an
iid sample 𝑋1, 𝑋2, ..., 𝑋𝑛 of size 𝑛 from the distribution of 𝑋 is then 𝑛-times as large,
𝑰𝒏 (𝜽) = 𝑛𝑰(𝜽). In many cases, the Fisher information (3.3) cannot be computed directly
because it depends on the true unknown parameter value, or because the expectation is not
analytically tractable. Thus, we often use the observed Fisher information matrix, which
for an iid sample of size 𝑛 is given by the negative second-order partial derivatives of the
log-likelihood, evaluated at the maximum likelihood estimate (MLE) 𝜽𝒏,

J (𝜽𝒏) = − 𝜕2

𝜕𝜽𝜕𝜽>

𝑛∑︁
𝑖=1

ln 𝑓𝑋 (𝑋𝑖; 𝜽)
���
𝜽=𝜽𝒏

. (3.4)

The interpretation of 𝑰(𝜽) as a measure of information is based on two different ar-

guments. Analytically, the partial derivatives 𝜕
𝜕𝜽 ln 𝑓𝑋 (𝑥; 𝜽) =

𝜕
𝜕𝜽 𝑓𝑋 (𝑥;𝜽)
𝑓𝑋 (𝑥;𝜽) in (3.2) describe

the relative change of the density 𝑓𝑋 (·; 𝜽) with respect to 𝜽 at the point 𝑥. If this change is
large for one 𝜽0, this parameter value can be better identified from a range of possible val-
ues 𝜽 . Similarly, the second-order partial derivatives 𝜕2

𝜕𝜽𝜕𝜽>
ln 𝑓𝑋 (𝑋; 𝜽) in (3.3) describe

the curvature of the log-density ln 𝑓𝑋 (·; 𝜽) with respect to 𝜽 , and, thus, the curvature of
the contributions to the log-likelihood function. A sample for which the log-likelihood
shows a clearer peak at some 𝜽0, and for which this value is, therefore, more clearly dis-
tinguished from other values 𝜽 , is viewed as more informative about the parameter than
samples with a flatter log-likelihood.

A second justification for the notion of information rests on the following result for

asymptotically normal estimators. If an estimator 𝛿𝑛 of \𝑘 satisfies
√
𝑛(𝛿𝑛 − \𝑘 )

𝑑−→
N (0, 𝑣(𝜽)), then its variance is bounded below by [𝑰(𝜽)]−1

𝑘𝑘
, which denotes the 𝑘 th di-

agonal element of the inverse of the information matrix 𝑰(𝜽) (see Lehmann and Casella,
1998, p. 462). In particular, the MLE 𝜽𝒏 attains this lower bound under suitable regularity
conditions (cf. Lehmann and Casella, 1998, p. 463),

√
𝑛(𝜽𝒏 − 𝜽) 𝑑−→ N (0, [𝑰(𝜽)]−1), (3.5)

such that each \̂𝑛𝑘 is asymptotically efficient,
√
𝑛(\̂𝑛𝑘 − \𝑘 )

𝑑−→ N (0, [𝑰(𝜽)]−1
𝑘𝑘
). In

this sense, a sample is more informative if the parameters can be estimated with higher
precision.

In summary, following the exposition above, the Fisher information serves as a suit-
able measure of the information contained in a sample about the unknown parameter in
likelihood-based inference.
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3.2.3 Optimal design
The Fisher information can be instrumental for determining optimal designs. The aim
is to find a design that maximizes some scalar function of the information matrix, and
that therefore maximizes the information, in a suitably defined way, about all or some
particular model parameters.

Different criteria for defining and assessing the optimality of a design have been sug-
gested (see Silvey, 1980, for an early monograph, and Atkinson, 1988, for an early re-
view). If all elements of the parameter vector 𝜽 are of interest, two popular scalar mea-
sures of information are 𝐷- and 𝐴-optimality. A design is called 𝐷-optimal if the design
maximizes the determinant of the information matrix, det(𝑰(𝜽)). Alternatively, the cri-
terion of 𝐴-optimality refers to the trace of the inverse information matrix [𝑰(𝜽)]−1 and
states that a design is optimal if the design attains the maximum possible value for the
inverse of this trace, that is, for 1/tr( [𝑰(𝜽)]−1).

Both of these information measures are functions of the eigenvalues of the informa-
tion matrix. The determinant equals the product and the trace equals the sum of the
eigenvalues of a matrix, respectively; and the eigenvalues of [𝑰(𝜽)]−1 are the reciprocals
of the eigenvalues of 𝑰(𝜽). These eigenvalues of the information matrix are related to es-
timator precision. For an estimator 𝜽𝒏 that is asymptotically normal with the covariance
matrix given by the inverse Fisher information matrix [𝑰(𝜽)]−1 as in (3.5), a confidence
region for the parameter vector 𝜽 takes the form of an ellipsoid. The axes of the ellipsoid
are characterized by the eigenvalues and the eigenvectors of the matrix [𝑰(𝜽)]−1. More
precisely, the eigenvectors determine the direction of the axes of the ellipsoid, and the
eigenvalues are proportional to the squared lengths of the axes. Therefore, the size of the
confidence ellipsoid and the precision of the estimator largely depend on the eigenvalues
of [𝑰(𝜽)]−1. In particular, the volume of the confidence ellipsoid is proportional to the
product of the eigenvalues of [𝑰(𝜽)]−1. As a consequence, maximizing the information in
terms of 𝐷-optimality corresponds to minimizing the volume of the confidence ellipsoid.

The criteria of 𝐷- and 𝐴-optimality weigh all dimensions of the problem equally. In
contrast, the criterion of 𝐸-optimality seeks to maximize only the smallest eigenvalue
of the information matrix. This is equivalent to minimizing the largest eigenvalue of
[𝑰(𝜽)]−1, which measures the uncertainty about the parameters in the direction of the
largest axis of the confidence ellipsoid. Because the parameters are estimated with least
precision in this direction, an 𝐸-optimal design maximizes the precision in the estimation
of the least well-estimated parameter combinations.

If one particular linear combination of the parameters is of specific interest, the crite-
rion of 𝐷𝐴-optimality is applied. If 𝑨𝜽 denotes the linear combination of the parameters,
where 𝑨 is a 𝑝 × 𝐾 matrix of rank 𝑝 < 𝐾 , then, by analogy with 𝐷-optimality, one max-
imizes the determinant of the inverse of 𝑨[𝑰(𝜽)]−1𝑨>. The criterion of 𝐷𝐴-optimality
also allows us to focus on only one parameter \𝑘 . For that purpose, a matrix 𝑨 of di-
mension 1 × 𝐾 is defined with entry 1 for the 𝑘 th element, and with zeros otherwise. The
information measure then simplifies to (𝑨[𝑰(𝜽)]−1𝑨>)−1 = 1/[𝑰(𝜽)]−1

𝑘𝑘
. In a regular

setting with an asymptotically normal estimator \̂𝑘 that satisfies (3.5), maximizing the in-
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formation measure 1/[𝑰(𝜽)]−1
𝑘𝑘

is equivalent to minimizing the asymptotic variance of \̂𝑘 ,
or, in other words, maximizing its precision.

If the information matrix 𝑰(𝜽) and the derived information measures depend on the
unknown parameter vector 𝜽 , these designs are said to be only locally optimal designs for
the given values of the parameter(s). However, we can still evaluate the information mea-
sures over a range of possible parameter values to assess the robustness of the optimality
of the design against changes in the parameter values.

3.3 Information measures in the gamma-Gompertz model

In this section, we develop the concepts of Sections 3.2.2 and 3.2.3 specifically for the
gamma-Gompertz model. After providing details on the computation of the Fisher in-
formation matrix, we specify an information measure for 𝐷𝐴-optimality, and discuss its
interpretation. In Section 3.3.4, we show that this measure also plays a role in the calcu-
lation of the power of the likelihood ratio test to detect mortality deceleration.

3.3.1 Fisher information in the gamma-Gompertz model
The aim is to derive the Fisher information matrix according to (3.3) specifically for an
observation from the gamma-Gompertz model (3.1). For this model, the parameter vector
consists of three components: the Gompertz baseline parameters 𝑎 and 𝑏 and the frailty
variance 𝜎2, so that 𝜽 = (𝑎, 𝑏, 𝜎2)>. The density of lifespan 𝑋 is given by

𝑓𝑋 (𝑥; 𝑎, 𝑏, 𝜎2) = 𝑎 𝑒𝑏𝑥
[
1 + 𝜎2 𝑎

𝑏
(𝑒𝑏𝑥 − 1)

]−(
1+ 1

𝜎2

)
.

(The value 𝑥 = 0 here marks the age from which the exponentially increasing Gompertz
hazard has been established as a good model for human mortality, commonly a mid-adult
age such as 30 or 40.)

As is common in the analysis of time-to-event data, the observations are often subject
to censoring or truncation. Left truncation occurs in our context if the data are limited to
individuals who have survived beyond a certain age 𝑥, as discussed in Section 3.1. In our
case, this left-truncation age is identical for all individuals (𝑥 = 90). Censoring occurs if
some individuals are still alive at the end of follow-up. In our study, we only analyze birth
cohorts who are already extinct – that is, all members have already died – and we will not
consider right censoring. (For the calculation of the Fisher information with censoring
and truncation for a class of location-scale distributions, see Escobar and Meeker, 1998.)

For left-truncated observations, the Fisher information needs to be calculated for the
truncated (𝑋 | 𝑋 > 𝑥) with density 𝑓𝑋 |𝑋>�̆� (·; 𝜽) = 𝑓𝑋 (·; 𝜽)/𝑆𝑋 (𝑥; 𝜽) on (𝑥,∞), where
𝑆𝑋 (𝑥; 𝜽) = P(𝑋 > 𝑥; 𝜽) denotes the survival function of 𝑋 . Consequently, formula (3.3)
for the information matrix is adapted as

𝑰(𝜽) = −E
[

𝜕2

𝜕𝜽𝜕𝜽>
ln 𝑓𝑋 |𝑋>�̆� (𝑋; 𝜽) | 𝑋 > 𝑥

]
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= −
∫ (

𝜕2

𝜕𝜽𝜕𝜽>
ln 𝑓𝑋 |𝑋>�̆� (𝑢; 𝜽)

)
𝑓𝑋 |𝑋>�̆� (𝑢; 𝜽) d𝑢. (3.3’)

Computing the Fisher information matrix in the gamma-Gompertz model requires the
second-order partial derivatives of the log-density of the gamma-Gompertz model 𝑋 for
complete data, or of (𝑋 | 𝑋 > 𝑥) for left-truncated data with respect to the parameters.
The formulas are given in Section 3.8.1. Based on these, we obtain explicit formulas for
the observed Fisher information matrix J (𝜽𝒏), defined in (3.4), for a given sample with
corresponding MLE 𝜽𝒏.

In contrast, the exact calculation of the Fisher information matrix 𝑰(𝜽) in (3.3’) re-
quires taking the (negative) expectations of the second-order partial derivatives. As closed-
form expressions for these integrals do not exist, we propose approximating the expecta-
tions using numerical integration.

In the absence of an analytical expression for the Fisher information matrix 𝑰(𝜽) in the
gamma-Gompertz model, there is no closed-form function of 𝑰(𝜽) of the parameters 𝜽 ,
the sample size 𝑛, and the age at left truncation 𝑥. However, 𝑰(𝜽) can be evaluated over
a range of relevant values for these quantities in order to get an impression of how they
affect the information matrix. Further computational details are given in Section 3.8.2.

3.3.2 𝑫𝑨-optimality in the gamma-Gompertz model
In the gamma-Gompertz model, the presence or the absence of mortality deceleration is
determined by the frailty variance, which also to a large extent controls how strongly the
hazard decelerates. Thus, for the assessment of mortality deceleration, our main interest
lies in the parameter 𝜎2, while the Gompertz parameters 𝑎 and 𝑏 are treated as nuisance.
Hence, we will evaluate designs primarily according to the criterion of 𝐷𝐴-optimality,
and define the matrix 𝑨 from Section 3.2.3 as 𝑨 = (0, 0, 1). The resulting information
measure is then 1/[𝑰(𝜽)]−1

33 ; in the following, we will denote [𝑰(𝜽)]−1
33 as ^2. It is impor-

tant to note that ^2 still depends on the true parameter value 𝜽 , but also on the observation
scheme (such as left-truncation age 𝑥), although this is suppressed in the notation. A
design will be preferred over another if it has a smaller ^2.

3.3.3 Interpretation of information measures in a non-standard set-
ting

As we noted in Section 3.2.2, the use of the Fisher information for study design can be
motivated by the result that the asymptotic covariance matrix of the MLEs is given by
the inverse Fisher information; see (3.5). This result holds under standard conditions,
which are, however, violated in the present framework of the gamma-Gompertz model,
because the frailty variance takes a value on the boundary of the parameter space if there
is no mortality deceleration (𝜎2 = 0). The asymptotic distribution of the MLE in the
gamma-Gompertz model was derived in Böhnstedt and Gampe (2019). For sufficiently
large 𝜎2 > 0, the MLE 𝜽 = (�̂�, �̂�, �̂�2)> is still asymptotically normal with covariance
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matrix [𝑰𝒏 (𝜽)]−1 as in (3.5); but for 𝜎2 = 0, the MLE has a two-component mixture
distribution. As a result, minimizing the element ^2 of the inverse Fisher information
in order to find an optimal design corresponds to minimizing the asymptotic variance of
the parameter estimate �̂�2 only if the true 𝜎2 > 0 is sufficiently large. If 𝜎2 = 0, the
quantity 𝑛−1^2 does not correspond to the variance of �̂�2.

Nonetheless, the element ^2 can be used for the evaluation of certain design choices –
for example, for comparing different alternatives for the age range covered by a sample.
In a simulation study (for details about the scenarios see Section 3.5), we found that the
relative changes in 𝑛−1^2 were very close to the relative changes in the variance of �̂�2

even if 𝜎2 = 0 (see bottom panels of Figure 3.6). This finding suggests that comparative
statements about the amount of information or the variance of �̂�2 for subsets of a sam-
ple that cover different age ranges can still be based on ratios of the corresponding ^2.
Unfortunately, this does not apply for comparisons across different scenarios defined by
different 𝜽 .

Consequently, the quantity ^−2 should only be related to estimator variance in cases
in which this is known to be appropriate. Otherwise, we should stick to the notion of a
measure of information; e.g., in the sense of local curvature of the log-likelihood.

3.3.4 Power of the likelihood ratio test
A common approach for assessing mortality deceleration in the framework of the gamma-
Gompertz model is a likelihood ratio test for 𝐻0 : 𝜎2 = 0 against 𝐻1 : 𝜎2 > 0. Under the
null hypothesis, the value of the variance parameter lies on the boundary of the parameter
space so that the likelihood ratio test statistic is not asymptotically chi-squared distributed
with one degree of freedom. Instead, one can adopt the results of Self and Liang (1987)
to show that, if 𝐻0 holds, the test statistic asymptotically follows a 50:50 mixture of a
chi-squared distribution with one degree of freedom and a point mass at zero. Incorrectly
assuming a chi-squared distribution with one degree of freedom for the test statistic im-
plies a larger critical value, hence fewer rejections of 𝐻0, and ultimately lower power to
detect a positive 𝜎2 > 0.

An explicit formula for the asymptotic power of the likelihood ratio test based on a
sample from a gamma-Gompertz model with frailty variance𝜎2 was derived by Böhnstedt
and Gampe (2019). According to their Lemma 6, the power 𝛽𝑛 of the likelihood ratio test
at level 𝛼 and sample size 𝑛 can be approximated by

𝛽𝑛 (𝜎2) ≈ 1 −Φ

(
Φ−1 (1 − 𝛼) −

√
𝑛𝜎2

^

)
, (3.6)

where Φ(·) is the standard normal distribution function and ^ is the square root of the
element of the inverse Fisher information, as defined above. (The proof can be found
in the online supplementary material of Böhnstedt and Gampe, 2019.) Thus, through
^, the power of the likelihood ratio test depends on the true parameter 𝜽 , but also on
possible left truncation; that is, on the age range of the data. Based on our computation
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of the Fisher information matrix and the resulting ^2, we can now also determine the
power of the likelihood ratio test theoretically, without performing extensive simulation
studies. Moreover, with regard to study design, we see from formula (3.6) that designs
that minimize ^2 simultaneously maximize the power of the likelihood ratio test to detect
mortality deceleration.

3.4 Design considerations in assessing mortality deceleration

The precision of parameter estimates and the power of statistical tests to detect mortality
deceleration depend on the characteristics of the data set under study. We want to quantify
the effects that the size of the sample as well as the age range that it covers have on the in-
formation contained in the data about the phenomenon. For that purpose, we denote by I
a scalar measure of information that is derived from the Fisher information matrix 𝑰(𝜽),
such as I = det(𝑰(𝜽)) or I = ^−2.

In the first part of this section, we will discuss how we can assess the effect of the age
range that is covered by the data. The age range of a data set is usually restricted because
accurate age validation is required, but it is often not feasible to perform the validation
for an extensive part of a birth cohort. As mortality deceleration occurs at the tail of
the survival distribution, studies that examine this phenomenon focus on the older ages,
and, therefore, usually collect information only on survivors beyond a certain age 𝑥. On
the one hand, the observation of a death at older ages might be expected to carry more
information about mortality deceleration than a death at younger ages. On the other hand,
the continuing selection of more robust individuals with lower frailty values leads to a
decrease in the variance of frailty among survivors to higher ages (Vaupel et al., 1979;
Hougaard, 1984; Economou and Caroni, 2008). Therefore it could become more difficult
to assess mortality deceleration for higher left-truncation ages. Moreover, observations of
deaths at younger ages can provide indirect information about the parameter 𝜎2, because
they lead to increased precision in the estimation of the Gompertz parameters 𝑎 and 𝑏.

To see how these effects trade off, we look at I𝑥+, the information measure for an
observation left-truncated at age 𝑥 for a given 𝜽 . The pattern of the absolute measure I𝑥+
across different 𝑥 tells us which age range is most informative. In addition, ratios like
I80+/I90+ quantify the change in information if observations are left-truncated at an ear-
lier age; here, at 𝑥 = 80, rather than at a later age, like 𝑥 = 90.

The Fisher information matrix 𝑰(𝜽) and derived measures such as I = ^−2 correspond
to a single observation. If we want to compare the amount of information that is available
in a situation in which all survivors to ages 𝑥 = 80 and above (80+) can be studied to a
situation in which only survivors to ages 90+ can be studied, we should also take into ac-
count that the 80+ data set will include more individuals than the 90+ data set, because for
studies on mortality deceleration, all members of a cohort who survive beyond a certain
age will usually be included in the sample. For that purpose, we scale the information
measure I𝑥+ by the probability of obtaining an observation of a death at some age 𝑥+, and
define the scaled measure as I (𝑠)

𝑥+ = I𝑥+ · P(𝑋 > 𝑥).
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For scenarios with sufficiently large 𝜎2, the variance of �̂�2 can be approximated by
𝑛−1^2. Thus, we can also draw conclusions about the precision of the estimate of the
frailty variance based on I = ^−2. In this case, the inverse of the ratio I (𝑠)

80+/I
(𝑠)
90+ de-

scribes the relative change in the variance of �̂�2 when data on all deaths between ages 80
and 89 could be added to a data set that currently contains information only on all sur-
vivors to ages 90+. On the basis of such numbers, practitioners could decide whether it is
worthwhile to extend an existing data set to also include information on deaths at earlier
ages.

Second, let us turn to some sample size considerations. Mortality studies are generally
based on populations or a specific subset thereof, such as all survivors of a birth cohort
beyond a certain age. Thus, the sample size is not actively chosen, but simply results from
the size of the population under study. Nonetheless, sample size calculations are useful
either for judging a priori whether a data set provides enough information to produce
meaningful results, or for adequately interpreting the results in comparative studies across
different countries. Let us assume that some countries or regions are expected to have
similar mortality patterns, and that mortality deceleration has been detected in one of them
from an 80+ sample. The information contained in that sample is known to be 𝑛80+I80+.
Then, if for a second country or region only 90+ data are available, we might ask whether
these data still contain enough information to detect mortality deceleration. To get an idea
of the sample size that is required to draw reliable conclusions under the given mortality
pattern 𝜽 , we could determine the sample size 𝑛90+ of the subset of survivors to ages 90
and above, which satisfies 𝑛80+I80+ = 𝑛90+I90+.

Alternatively, sample size considerations could concern the precision of the esti-
mate �̂�2, which is given by 𝑛−1

𝑥+^
2
𝑥+, if for the (assumed) mortality regime 𝜽 , the frailty

variance 𝜎2 is sufficiently large to make ^2 the correct variance term (see Section 3.3.3).
For a given value of ^2

𝑥+, we can either get an initial idea of the precision of �̂�2 if the
size 𝑛𝑥+ of the 𝑥+ data of the country is known, or we can determine the minimum sample
size 𝑛𝑥+ that is needed for a desired precision, and see whether potential data sets would
fulfill this requirement.

Finally, both the age range of a data set and its sample size affect the power of the
likelihood ratio test to detect mortality deceleration. For a given mortality regime 𝜽 ,
formula (3.6) allows us to assess what level of power the test will achieve if inference is
based on all survivors to ages 90+, or on all survivors to ages 80+.

As all of the above quantities for evaluating the design aspects of the age range and
the sample size depend on the true unknown parameter 𝜽 , we will present some empirical
results for specific scenarios in the next section.

3.5 Empirical results

In this section, we will study the effects of different designs on the information contained
in a data set for some specific scenarios. We assume that 𝑋 follows a gamma-Gompertz
distribution and describes lifespan after age 60; that is, 𝑥 = 0 corresponds to age 60.
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We choose three scenarios for 𝜽 , all with the same Gompertz parameters, 𝑎 = 0.015 and
𝑏 = 0.085, but with different values for the frailty variance. Scenario 𝑆1 with 𝜎2 = 0.043
corresponds to the gamma-Gompertz model estimated from the female sample in Sec-
tion 3.6. For Scenario 𝑆2 with 𝜎2 = 0.021, the frailty variance is roughly halved, rep-
resenting a less heterogeneous population for which mortality deceleration is less pro-
nounced. In Scenario 𝑆3 with 𝜎2 = 0, there is no mortality deceleration. In Section 3.8.3,
we present results for additional Scenarios 𝑆4 to 𝑆6 with the same three values for the
frailty variance as above, but different values for the Gompertz parameters. In particular,
we set 𝑎 = 0.021 and 𝑏 = 0.082 equal to the estimates obtained from a gamma-Gompertz
fit to the male sample in Section 3.6. With regard to the age range, we assess the informa-
tion measures for complete observations of 𝑋 (that is, ages 60 and above, 60+), as well
as for left-truncated observations corresponding to survivors to ages 80 and above (80+),
85+, and 90+. The effect of the sample size will be examined by considering different
sizes of the subset of survivors to ages 90+; namely, 𝑛90+ = 10,000 (small), 𝑛90+ = 20,000
(medium), or 𝑛90+ = 105,000 (large). The small and medium sizes are close to the sizes
of the male and female samples in Section 3.6. All computations are run in R (R Core
Team, 2019), and the numerical integration to calculate the Fisher information 𝑰(𝜽) is
performed using function integrate().

In a preliminary analysis, we assessed the performance of our approach of using nu-
merical integration to calculate 𝑰(𝜽). For that purpose, we generated 1,000 samples for
each of the scenarios 𝑆1 to 𝑆3, in which three initial sample sizes at age 60 were deter-
mined to yield the desired 𝑛90+ given above. For each sample, we estimated the parameters
of the gamma-Gompertz model based on the full sample (60+), and based on the subsets
of survivors to ages 80+, 85+, and 90+, by maximizing the log-likelihoods numerically
using function nlm(). We then calculated the averages of the observed Fisher infor-
mation matrices evaluated at the MLEs across the 1,000 samples of each fixed setting,
J̄ = 1

1000
∑1000
𝑟=1 J (𝜽 (𝒓)

𝒏 ). Finally, these averages were compared to the Fisher information
matrices 𝑰(𝜽), that were scaled by the theoretical size 𝑛·+ of a sample from the respective
setting. The results are reported in Table 3.3 in Section 3.8.3. As expected, mean relative
differences decrease with sample size, width of age range and size of the frailty variance.
For ages 60+ and 80+ differences are negligible throughout, and for 85+ surpass 0.02 only
in the no-frailty scenario (𝑛90+ = 10,000: 0.03389; 𝑛90+ = 20,000: 0.02114). For ages 90+
and smallest sample size 𝑛90+ = 10,000, the values are 𝑆1: 0.05487, 𝑆2: 0.06592, and 𝑆3:
0.12065.

3.5.1 Effect of the age at left truncation
In the following, we quantify how different restrictions of the age range covered by a data
set affect the amount of information that is provided by the data. We mainly focus on the
criterion for 𝐷𝐴-optimality (see Section 3.3.2), that is, I = ^−2.

The left panel of Figure 3.1 shows the values of I and its scaled version I (𝑠) for Sce-
nario 𝑆1 when the observations are complete (60+) or left-truncated at higher ages (80+,
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85+, or 90+). We find that the amount of information contained in an observation de-
creases as the age of left truncation increases. This effect is even more pronounced for the
scaled measure of information I (𝑠) , because the probability of observing deaths decreases
at the higher ages. Hence, in terms of ^−2, a situation in which only survivors to ages 90+
can be studied indeed provides less information than a situation in which survivors to ages
80+ can be studied, indicating that mortality deceleration is more difficult to assess for
higher ages of left truncation. The right panel of Figure 3.1 displays the ratios I𝑥+/I80+
and I (𝑠)

𝑥+ /I
(𝑠)
80+ for 𝑥 = 80, 85, 90 in Scenario 𝑆1. We see that if only data on survivors to

ages 90+ are available, more than half of the information is lost compared to the situation
in which data on survivors to ages 80+ are available. Taking into account the smaller size
of the subset of survivors to ages 90+, the loss even amounts to around 87%. The results
for Scenarios 𝑆2 and 𝑆3 are similar (cf. Figure 3.2).
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Figure 3.1: Information measure I = ^−2 (black-solid line, circles) and scaled measure I (𝑠) (red-
dashed line, crosses) under Scenario 𝑆1 depending on the age range of the data (left to right: 60+,
80+, 85+, or 90+). Left: absolute values of (scaled) I, right: (scaled) ratios I𝑥+/I80+ for 𝑥 =

80, 85, 90 (connection of the values by lines is only for ease of visual inspection).

We have already briefly discussed in Section 3.3.3 the relationship between the in-
formation measure ^−2 and the asymptotic variance of the estimator �̂�2. In settings with
sufficiently large 𝜎2, the variance of �̂�2 is approximately equal to ^2 scaled by the in-
verse of the sample size. The top-left panel of Figure 3.6 in Section 3.8.3 verifies this for
the medium-sized Scenario 𝑆1 with different observation schemes (60+, 80+, 85+, and
90+) by comparing the empirical variance of �̂�2 across the 1,000 replications with the
scaled ^2. In contrast, if 𝜎2 = 0, the asymptotic variance of �̂�2 is not given by the scaled
^2, as shown in the bottom-left panel of Figure 3.6 for the medium-sized Scenario 𝑆3.
However, the relative changes in the scaled ^2

𝑥+ across different age ranges 𝑥+ are in line
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Figure 3.2: Information measure I = ^−2 (black-solid line, circles) and scaled measure I (𝑠) (red-
dashed line, crosses) under Scenarios 𝑆2 (top) and 𝑆3 (bottom) depending on the age range of the
data (left to right: 60+, 80+, 85+, or 90+). Left: absolute values of (scaled) I, right: (scaled) ratios
I𝑥+/I80+ for 𝑥 = 80, 85, 90.

with the relative changes in the empirical variances for both Scenario 𝑆1 (top-right panel
of Figure 3.6) and Scenario 𝑆3 (bottom-right panel of Figure 3.6). Consequently, ratios
I (𝑠)
𝑥+ /I

(𝑠)
𝑦+ can be readily interpreted in terms of information gain or variance reduction

when considering different age ranges 𝑥+ and 𝑦+, even if 𝜎2 = 0. For example, in Sce-
nario 𝑆3, about 82% of the information in the full sample 60+ is lost if only survivors to
ages 80+ can be studied.
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While the importance of the variance parameter 𝜎2 for the assessment of mortality
deceleration suggested that we should use the criterion of 𝐷𝐴-optimality, we also looked
into the performance of the other information measures introduced in Section 3.2.3. The
results for Scenarios 𝑆1 and 𝑆3 are presented in Figures 3.7 and 3.8 in Section 3.8.3. The
absolute values of the information measures and their patterns across the different age
ranges for 𝐴- and 𝐸-optimality are very close to the ones we observed for 𝐷𝐴-optimality
with I = ^−2. This can be explained by the fact that the information measure for 𝐴-
optimality, that is, the inverse of the sum of the eigenvalues of [𝑰(𝜽)]−1, is dominated
by one eigenvalue of relatively large magnitude in the current setting. As this largest
eigenvalue of the inverse information matrix is at the same time the target of the criterion
for 𝐸-optimality and in this case also closely related to the measure ^2 for 𝐷𝐴-optimality,
the three criteria yield very similar results. In contrast, the criterion of 𝐷-optimality
suggests somewhat larger relative losses in information when restricting the age range.
This is a consequence of directly accounting for the increased uncertainty in all directions
of the parameter space, as the eigenvalues of 𝑰(𝜽) are multiplied in the measure det(𝑰(𝜽)).

The quantity ^−2, considered for 𝐷𝐴-optimality, measures the information contained
in an observation about the parameter 𝜎2, and takes into account the correlation between
�̂�2 and the estimates of the Gompertz parameters �̂� and �̂�. Alternatively, we could study
the information measure [𝑰(𝜽)]33 given by

[𝑰(𝜽)]33 = −E
[

𝜕2

𝜕
(
𝜎2)2 ln 𝑓𝑋 (𝑋; 𝜽)

]
.

This element of the Fisher information matrix describes the average curvature of the log-
density of the gamma-Gompertz model with respect to 𝜎2 for fixed Gompertz parameters
𝑎 and 𝑏. Figure 3.3 shows that in terms of this measure, the information increases with
the increasing age of left truncation in Scenarios 𝑆1 and 𝑆3. This supports the idea that
observations of later ages at death carry more information about the potential deceleration,
as measured by 𝜎2. However, looking at the scaled measure reveals that, in practice, this
effect is compensated for by the decreasing number of survivors to higher ages.

The above findings regarding the effect of the age at left truncation on the differ-
ent information measures generally hold also for the Scenarios 𝑆4 and 𝑆6 with modified
Gompertz parameters (see Figures 3.9 to 3.12 in Section 3.8.3). Increases in the age at
left truncation result in considerable information loss according to all the criteria, with the
exception of I = [𝑰(𝜽)]33, for which the information loss is only revealed if the smaller
size of the subset of survivors to higher ages is taken into account. Compared to Scenar-
ios 𝑆1 and 𝑆3, the higher initial level of mortality 𝑎 in Scenarios 𝑆4 and 𝑆6 leads to smaller
absolute values of the information measures and slightly larger information losses when
restricting the age range. This is expected because the higher initial mortality leads to
stronger selection effects and thus, a stronger decrease in the variance of frailty among
survivors to higher ages, as well as to lower probabilities of surviving to these ages.

Finally, the information measures computed in this subsection refer to single obser-
vations, such that the derived conclusions about the effects of the age at left truncation
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Figure 3.3: Information measure I = [𝑰(𝜽)]33 (black-solid line, circles) and scaled measure I (𝑠)

(red-dashed line, crosses) depending on the age range of the data (left to right: 60+, 80+, 85+, or
90+) under Scenarios 𝑆1 (left) and 𝑆3 (right).

should be valid for samples of any reasonable size under the different scenarios. Further
aspects regarding the size of data sets under study are discussed in the following.

3.5.2 Sample size considerations
Let us suppose that old-age mortality is studied in countries that experience the same or
very similar mortality patterns. It is clear that the different population sizes affect the
assessment of mortality deceleration in the different countries. If the data for the differ-
ent countries also cover different age ranges, then we want to know, for example, what
size 𝑛90+ a subset of survivors to ages 90+ would have to be to carry as much information
as a subset of survivors to ages 80+ from a different country; that is, 𝑛80+I80+ = 𝑛90+I90+.
In Scenarios 𝑆1 to 𝑆3, the ratios I80+/I90+ for I = ^−2 are 2.194, 2.156, and 2.120, re-
spectively. Thus, a sample of survivors to ages 90+ needs to be more than twice as large
as a sample of survivors to ages 80+ in order to provide the same amount of information.
Moreover, the ratios are increasing in the level of heterogeneity 𝜎2. For Scenarios 𝑆4
to 𝑆6, we obtain the slightly larger ratios 2.322, 2.278, and 2.237, reflecting the stronger
selection effects in these settings.

If the underlying 𝜎2 is sufficiently large, we can use the measure ^2 to draw conclu-
sions about the precision of �̂�2 for specific sample sizes. In Scenario 𝑆1, if the sample
of survivors to ages 90+ consists of about 𝑛90+ = 20,000 individuals, this would yield a
precision of the estimated frailty variance of about var(�̂�2) ≈ 𝑛−1

90+^
2
90+ = 0.00165.
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3.5.3 Power of the likelihood ratio test
We now evaluate how the age range and the sample size of a data set affect the per-
formance of the likelihood ratio test for assessing mortality deceleration in the gamma-
Gompertz model. The power of the test to detect a positive 𝜎2 in Scenarios 𝑆1 and 𝑆2
based on different subsets and sample sizes is calculated from (3.6) at a level of 𝛼 = 0.05,
and is reported in Table 3.1. As expected, we find that the power of the test increases if
the sample size increases, if the age at left truncation decreases, and if the frailty vari-
ance is larger. In both scenarios, the power to detect mortality deceleration decreases by
more than two-thirds if inference is based only on survivors to ages 90+, rather than on
all survivors to ages 80+ for samples of medium size.

Table 3.1: Power 𝛽 of the likelihood ratio test, performed at the 5% level, according to formula (3.6),
under Scenarios 𝑆1 (𝜎2 = 0.043) and 𝑆2 (𝜎2 = 0.021) for three sample size settings (s – small,
m – medium, l – large) and varying age range.

Survivors to ages
60+ 80+ 85+ 90+

Scen. 𝑛 𝑛60+ 𝛽60+ 𝑛80+ 𝛽80+ 𝑛85+ 𝛽85+ 𝑛90+ 𝛽90+
𝑆1 s 73,558 0.999 33,841 0.653 20,740 0.377 10,000 0.185

m 147,116 1.000 67,681 0.892 41,480 0.593 20,000 0.278
l 772,361 1.000 355,327 1.000 217,771 0.996 105,000 0.782

𝑆2 s 76,853 0.801 35,123 0.278 21,290 0.169 10,000 0.104
m 153,706 0.970 70,245 0.440 42,581 0.251 20,000 0.135
l 806,956 1.000 368,788 0.962 223,548 0.721 105,000 0.344

The performance of the likelihood ratio test under the Scenarios 𝑆4 and 𝑆5, with modi-
fied Gompertz parameters, is documented in Table 3.4 in Section 3.8.3 and leads to the
same conclusions as above. In addition, we see that in Scenario 𝑆4 the test has lower
power to detect the positive 𝜎2 based on the survivors to ages 85+ or 90+ than in the
corresponding Scenario 𝑆1. This is due to the higher initial level of mortality 𝑎 in 𝑆4 which
reduces the heterogeneity in the mortality risks at the higher ages. The power of the test
based on survivors to ages 60+ and 80+ in Scenarios 𝑆4 and 𝑆5 is not directly comparable
to the power in the corresponding Scenarios 𝑆1 and 𝑆2, because of the different sizes of
the subsets 60+ and 80+ under the two settings for the Gompertz parameters.

Apart from calculating power values for given parameter configurations, formula (3.6)
provides a tool for determining what age range a data set should cover to ensure that the
likelihood ratio test will achieve a certain level of power. From Table 3.1, we see that
for the medium-sized Scenario 𝑆1, the likelihood ratio test will detect mortality decel-
eration in about 89.2% of cases based on the sample of survivors to ages 80+. As for
any left-truncation age 𝑥, the size of the sample 𝑥+ can be calculated based on the given
(or estimated) gamma-Gompertz parameters and a known subset size (e.g., here, 𝑛90+ =

20,000), we can determine the left-truncation age 𝑥 such that the power is increased to
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95%. For the medium-sized Scenario 𝑆1, we need to include all survivors to ages 78 and
above for the test to reach a power of 95%.

The above power calculations are based on relatively large sample sizes as motivated
by real cohort data. We have seen that the assessment of mortality deceleration can be
demanding even based on data sets of such size especially in case of restricted age ranges.
Smaller sample sizes will lower the power of the test to detect a positive frailty variance
also for the subsets of survivors to ages 60+ or 80+. A larger underlying frailty variance
leads to stronger deceleration in the hazard rate and will generally be favorable for de-
tecting the phenomenon. However, smaller sample sizes and thus increased uncertainty
about the parameters can counteract this effect, as can be seen from formula (3.6). While
the formula provides only a large-sample approximation to the power of the likelihood
ratio test, the sample sizes in human mortality studies are expected to be generally large
enough for the approximation to yield valid results.

3.6 A study on old-age mortality among French-Canadians

In this section, we apply the proposed methods for evaluating study design and deriv-
ing design recommendations to a study on old-age mortality among Catholic French-
Canadians born at the end of the 19th century.

The data set contains information on 20,917 females and 10,878 males who were born
in the Province of Quebec between 1880 and 1896, and who died in Quebec at ages 90
and above between 1970 and 2009. To validate the individual exact survival times, birth
registration documents and death certificates from Quebec’s parish register archives were
linked. Further details on the data and the validation procedure can be found in Ouellette
and Bourbeau (2014) and Ouellette (2016), who studied earlier versions of this data set
that covered only the centenarians, that is, survivors to ages 100 and above.

The analysis of the French-Canadian mortality data based on the gamma-Gompertz
model is conducted separately for the female and the male sample. The starting age of
the model is assumed to be 60, and the likelihood is adapted for the left truncation at
age 90. We obtain estimates of the frailty variance of �̂�2 = 0.043 for the females and
�̂�2 = 0.037 for the males. The likelihood ratio test for 𝐻0 : 𝜎2 = 0 leads to 𝑝-values of
0.121 for the females and 0.283 for the males, indicating that the data do not provide much
evidence against the null hypothesis of no mortality deceleration. These findings are in
contrast to those for the fitted hazards and the empirical death rates, which are displayed
in Figure 3.4, and suggest a deceleration, at least for the females. Indeed, it turns out that
the likelihood ratio test has relatively low power to detect mortality deceleration in the
given settings. According to formula (3.6) with the estimated values of the parameters,
the power of the likelihood ratio test at the 5% level based on a 90+ sample of the given
size is 28.7% in the female setting and 14.2% in the male setting, respectively. Therefore,
we want to investigate how a further extension of the data set that would include deaths
at earlier ages – say, between ages 85 and 89, or between 80 and 89 – could impact the
assessment of mortality deceleration.
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Figure 3.4: Death rates of French-Canadian females (left) and males (right): empirical death rates
(solid line, circles) with 95%-confidence intervals (gray), gamma-Gompertz fit (dashed) and Gom-
pertz fit (dotted).

First, we examine the behavior of the information measure I = ^−2 for observations
from a gamma-Gompertz model with parameter values equal to the estimates obtained
from the female or the male sample, respectively. Figure 3.5 depicts the ratios I𝑥+/I90+
for left truncation at the ages 𝑥 = 80, 85, 90, as well as the ratios of the scaled mea-
sure I (𝑠) . In both the female and the male setting, an observation left-truncated at age
80 would be more than twice as informative as an observation left-truncated at age 90.
Taking into account the increasing number of observations when younger ages at death
are included by looking at I (𝑠) , observations left-truncated at age 85 are already more
than twice as informative as observations left-truncated at age 90. In other words, the
extended data set that includes all survivors to ages 85 and above would contain more
than twice as much information as the current data set of survivors to ages 90 and above.
Indeed, compared to the 90+ sample, the female 85+ sample would provide about three
times as much information, and the male 85+ sample would provide about four times as
much information.

Second, Table 3.2 summarizes the effects of expanding the age range of the current
data set on the power of the likelihood ratio test which is performed at a level of 5%.
The calculations are again based on formula (3.6), with the estimates obtained from the
female and the male samples, respectively, inserted for the parameter values. The sizes of
the expanded 85+ and 80+ data sets are computed from the known size of the population
of survivors to ages 90+ and the fitted gamma-Gompertz model. For both the female and
the male data, we find that expanding the data set to deaths between ages 85 and 89 would
more than double the power of the likelihood ratio test. For the female setting, the power
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Figure 3.5: Ratios I𝑥+/I90+ (black-solid line, circles) or I (𝑠)
𝑥+ /I (𝑠)

90+ (red-dashed line, crosses) for
the information measure I = ^−2 depending on the age of left truncation 𝑥 = 80, 85, 90, under the
parameter settings estimated from the samples of French-Canadian females (left) and males (right).

of the test based on the 85+ sample is around 60.9%. In line with the considerations
in Section 3.5.3, the age of left truncation that is required in this setting to achieve the
desired power level of 80% is found to be age 82.

Table 3.2: Power 𝛽 of the likelihood ratio test, performed at the 5% level, according to formula (3.6),
under the parameter settings estimated from the French-Canadian data for different age ranges 𝑥+
and resulting sample sizes 𝑛𝑥+.

Survivors to ages
80+ 85+ 90+

Scenario 𝑛80+ 𝛽80+ 𝑛85+ 𝛽85+ 𝑛90+ 𝛽90+
Females 70,085 0.901 43,126 0.609 20,917 0.287
Males 54,577 0.627 28,369 0.316 10,878 0.142

In conclusion, our results show that the failure of the likelihood ratio test to reject the
hypothesis of no mortality deceleration in the female 90+ sample can be explained to some
extent by the low power of the test in the specific setting. Both the proposed information
measure ^−2 and the power calculations for the likelihood ratio test demonstrate that an
expansion of the existing data set on French-Canadian mortality could greatly improve
the assessment of mortality deceleration in this population. In practice, these potential
improvements have to be weighed against the costs of collecting – and validating – the
additional data.
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3.7 Discussion

We have investigated the use of Fisher information-based criteria for planning and evalu-
ating studies that assess mortality deceleration in the framework of the gamma-Gompertz
model. Our aim was to derive recommendations for settings in which the parameters of
interest could be reliably estimated, and a deceleration in the death rates could be detected
with a high probability. As validation of the ages at death is often required in old-age mor-
tality studies, these settings are characterized by the age range covered by the data and
the sample size.

The essential component of the proposed methods is the computation of the Fisher
information matrix for potentially left-truncated observations from a gamma-Gompertz
model. Due to a lack of closed-form expressions, the information matrix is obtained us-
ing numerical integration of analytically determined second-order partial derivatives of
the log-density. Different criteria for evaluating study designs can be derived from the
Fisher information. Given the importance of the frailty variance parameter in assessing
mortality deceleration in the gamma-Gompertz model, we focus primarily on a crite-
rion of 𝐷𝐴-optimality, whereby the Gompertz parameters are treated as nuisance. The
resulting measure of information is the reciprocal of the element of the inverse Fisher
information that corresponds to 𝜎2. It allows us to quantify the effects of the sample size
and the age range covered by a data set on the amount of information that this data set
contains about 𝜎2. Based on the computation of the Fisher information matrix, we are
also able to calculate the power of the likelihood ratio test to detect mortality deceler-
ation in specific scenarios. As a result, recommendations can be given about what age
range a data set needs to cover for the likelihood ratio test to achieve a certain power. In
the illustration with a study on French-Canadian mortality, the information measures and
the power calculations clearly demonstrate that the assessment of mortality deceleration
could be greatly improved if the current data set, which includes only survivors to ages
90 and above, was extended to also include deaths at the earlier ages 85 to 89.

Here, we only consider changes in the age at left truncation (the age range covered
by the data) that apply to all survivors in a cohort, which is the most common setting in
demographic studies. We could, however, extend these considerations to more complex
design questions for which actually random samples could be drawn from the observed
survivors to particular ages. In such situations, the quantification of information in par-
ticular observations would be even more crucial for attaining an optimal design. However,
addressing such questions is beyond the scope of the current research.

The present work has some limitations. As our focus is on the assessment of mortality
deceleration – the deviation from the log-linear hazard trajectory of the Gompertz model
at high ages –, we have stayed within the framework of the gamma-Gompertz model here.
However, as the concepts of the Fisher information and of optimal design are defined for
any parametric model, the proposed methods should be applicable in a wider context.

When the age range can be extended to appreciably lower ages the exponential in-
crease of senescent mortality may no longer hold and questions of model choice for the
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baseline hazard arise. Established model selection techniques can help here (see Burn-
ham and Anderson, 2002). In such cases most problems discussed in this chapter would
be obsolete though. It should be noted, however, that also commonly used model choice
criteria, such as Akaike’s Information Criterion (AIC), are affected by non-standard con-
ditions induced by a boundary parameter (see Böhnstedt and Gampe, 2019).

Although the approach of using numerical integration to compute the Fisher informa-
tion matrix in the gamma-Gompertz model seems to perform well, it prevents us from
deriving general analytical formulas that describe the effects of the sample size and the
age range of a data set. Nonetheless, empirical studies for specific parameter settings and
design choices as presented here can serve as a basis for formulating recommendations.

In this context, we have to bear in mind that the gamma-Gompertz model provides
a non-standard setting, and, hence, that the information measures are not directly related
to estimator variability in the boundary case (𝜎2 = 0). We have, however, shown that
comparative statements on information gain or variance reduction are still meaningful
when designs covering different age ranges are compared.

Finally, as the assessment of the performance of different study designs for the gamma-
Gompertz model based on the Fisher information depends on the true underlying param-
eter values, it is valid only locally. Still, the robustness of the design’s performance can
be checked by evaluating the information measures using a range of possible parameter
values.

3.8 Supplementary material

3.8.1 Derivatives of gamma-Gompertz log-densities
In the following subsections, we give explicit formulas of the second-order partial deriva-
tives of the log-density of complete or left-truncated observations from a gamma-Gompertz
model. These derivatives are the basis for computing the Fisher information matrix 𝑰(𝜽)
according to formula (3.3) or (3.3’),

𝑰(𝜽) = −E
[

𝜕2

𝜕𝜽𝜕𝜽>
ln 𝑓𝑋 (𝑋; 𝜽)

]
. (3.3)

Complete data

For the gamma-Gompertz model (3.1), the log-density ln 𝑓𝑋 (·; 𝑎, 𝑏, 𝜎2) of complete
data 𝑋 takes the form

ln 𝑓𝑋 (𝑥; 𝑎, 𝑏, 𝜎2) = ln 𝑎 + 𝑏𝑥 −
(
1 + 1

𝜎2

)
ln

[
1 + 𝜎2 𝑎

𝑏

(
𝑒𝑏𝑥 − 1

)]
.

Its partial derivatives with respect to the parameters are calculated as

𝜕 ln 𝑓𝑋
𝜕𝑎

=
1
𝑎
− (𝜎2 + 1)

𝑏
· 𝑒𝑏𝑥 − 1

1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑥 − 1)

,
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𝜕 ln 𝑓𝑋
𝜕𝑏

= 𝑥 − 𝑎(𝜎2 + 1)
𝑏2 · 𝑏𝑥𝑒

𝑏𝑥 − (𝑒𝑏𝑥 − 1)
1 + 𝜎2 𝑎

𝑏
(𝑒𝑏𝑥 − 1)

, and

𝜕 ln 𝑓𝑋
𝜕𝜎2 =

1
𝜎4 ln

[
1 + 𝜎2 𝑎

𝑏

(
𝑒𝑏𝑥 − 1

)]
−

(
1 + 1

𝜎2

)
𝑎

𝑏
· 𝑒𝑏𝑥 − 1

1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑥 − 1)

.

The second-order partial derivatives equal

𝜕2 ln 𝑓𝑋
𝜕𝑎2 = − 1

𝑎2 + 𝜎
2 (𝜎2 + 1)
𝑏2 · (𝑒𝑏𝑥 − 1)2

[1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑥 − 1)]2

𝜕2 ln 𝑓𝑋
𝜕𝑎𝜕𝑏

=
(𝜎2 + 1)
𝑏2 · (𝑒𝑏𝑥 − 1) − 𝑏𝑥𝑒𝑏𝑥

[1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑥 − 1)]2

𝜕2 ln 𝑓𝑋
𝜕𝑎𝜕𝜎2 =

1
𝑏2 · 𝑎(𝑒

𝑏𝑥 − 1)2 − 𝑏(𝑒𝑏𝑥 − 1)
[1 + 𝜎2 𝑎

𝑏
(𝑒𝑏𝑥 − 1)]2

𝜕2 ln 𝑓𝑋
𝜕𝑏2 =

𝑎(𝜎2 + 1)
𝑏

·
2
𝑏
𝑥𝑒𝑏𝑥 − 2

𝑏2 (𝑒𝑏𝑥 − 1) − 𝜎2 𝑎
𝑏3 (𝑒𝑏𝑥 − 1)2 + (𝜎2 𝑎

𝑏
− 1)𝑥2𝑒𝑏𝑥

[1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑥 − 1)]2

𝜕2 ln 𝑓𝑋
𝜕𝑏𝜕𝜎2 =

𝑎

𝑏
·
[ 1
𝑏
(𝑒𝑏𝑥 − 1) − 𝑥𝑒𝑏𝑥] [1 − 𝑎

𝑏
(𝑒𝑏𝑥 − 1)]

[1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑥 − 1)]2

𝜕2 ln 𝑓𝑋
𝜕 (𝜎2)2 = − 2

𝜎6 ln
[
1 + 𝜎2 𝑎

𝑏

(
𝑒𝑏𝑥 − 1

)]
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𝜎4

𝑎

𝑏
· 𝑒𝑏𝑥 − 1

1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑥 − 1)

+
(
1 + 1

𝜎2

)
𝑎2

𝑏2 · (𝑒𝑏𝑥 − 1)2

[1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑥 − 1)]2 . (3.7)

In the limit 𝜎2 → 0, we obtain

𝜕2 ln 𝑓𝑋
𝜕𝑎2 = − 1

𝑎2

𝜕2 ln 𝑓𝑋
𝜕𝑎𝜕𝑏

=
1
𝑏2 (𝑒

𝑏𝑥 − 1) − 1
𝑏
𝑥𝑒𝑏𝑥

𝜕2 ln 𝑓𝑋
𝜕𝑎𝜕𝜎2 =

𝑎

𝑏2 (𝑒
𝑏𝑥 − 1)2 − 1

𝑏
(𝑒𝑏𝑥 − 1)

𝜕2 ln 𝑓𝑋
𝜕𝑏2 =

2𝑎
𝑏2 𝑥𝑒

𝑏𝑥 − 2𝑎
𝑏3 (𝑒

𝑏𝑥 − 1) − 𝑎

𝑏
𝑥2𝑒𝑏𝑥

𝜕2 ln 𝑓𝑋
𝜕𝑏𝜕𝜎2 =

𝑎

𝑏

[
1
𝑏
(𝑒𝑏𝑥 − 1) − 𝑥𝑒𝑏𝑥

] [
1 − 𝑎

𝑏
(𝑒𝑏𝑥 − 1)

]
𝜕2 ln 𝑓𝑋
𝜕 (𝜎2)2 = −2𝑎3

3𝑏3 (𝑒
𝑏𝑥 − 1)3 + 𝑎

2

𝑏2 (𝑒
𝑏𝑥 − 1)2,

where we have applied the rule of L’Hôpital for the last equation.
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Left-truncated data

For the gamma-Gompertz model (3.1), the log-density ln 𝑓𝑋 |𝑋>𝑦 (·; 𝑎, 𝑏, 𝜎2) for
data (𝑋 | 𝑋 > 𝑦), left-truncated at age 𝑦, takes the form

ln 𝑓𝑋 |𝑋>𝑦 (𝑥; 𝑎, 𝑏, 𝜎2) = ln 𝑓𝑋 (𝑥; 𝑎, 𝑏, 𝜎2) − ln 𝑆𝑋 (𝑦; 𝑎, 𝑏, 𝜎2)

= ln 𝑓𝑋 (𝑥; 𝑎, 𝑏, 𝜎2) + 1
𝜎2 ln

[
1 + 𝜎2 𝑎

𝑏
(𝑒𝑏𝑦 − 1)

]
,

for 𝑥 > 𝑦. The partial derivatives of the first summand have already been presented in the
preceding subsection. Thus, we focus on the second summand here, which we denote as
𝑔(𝑦; 𝑎, 𝑏, 𝜎2). The partial derivatives of 𝑔 with respect to the parameters are computed as

𝜕𝑔

𝜕𝑎
=

1
𝑏
· 𝑒𝑏𝑦 − 1

1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑦 − 1)

,

𝜕𝑔

𝜕𝑏
=
𝑎

𝑏2 · 𝑏𝑦𝑒
𝑏𝑦 − (𝑒𝑏𝑦 − 1)

1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑦 − 1)

, and

𝜕𝑔

𝜕𝜎2 = − 1
𝜎4 ln

[
1 + 𝜎2 𝑎

𝑏

(
𝑒𝑏𝑦 − 1

)]
+ 𝑎

𝑏𝜎2 · (𝑒𝑏𝑦 − 1)
1 + 𝜎2 𝑎

𝑏
(𝑒𝑏𝑦 − 1)

.

The second-order partial derivatives read

𝜕2𝑔

𝜕𝑎2 = −𝜎
2

𝑏2 · (𝑒𝑏𝑦 − 1)2

[1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑦 − 1)]2

𝜕2𝑔

𝜕𝑎𝜕𝑏
=

1
𝑏2 · 1 − 𝑒𝑏𝑦 + 𝑏𝑦𝑒𝑏𝑦

[1 + 𝜎2 𝑎
𝑏
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𝜕2𝑔
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𝑏
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𝑏
·
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𝑏
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[1 + 𝜎2 𝑎
𝑏
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𝜎6 ln
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𝑏
(𝑒𝑏𝑦 − 1)

]
− 2
𝜎4 ·

𝑎
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− 1
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𝑏
(𝑒𝑏𝑦 − 1)

1 + 𝜎2 𝑎
𝑏
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]2

. (3.8)

In the limit 𝜎2 → 0, we have

𝜕2𝑔

𝜕𝑎2 = 0
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𝜕2𝑔

𝜕𝑎𝜕𝑏
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𝜕2𝑔

𝜕𝑎𝜕𝜎2 = − 𝑎
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𝜕 (𝜎2)2 =
2𝑎3

3𝑏3 (𝑒
𝑏𝑦 − 1)3,

by again applying the rule of L’Hôpital for the last equation.

3.8.2 Computational details on the calculation of the observed Fisher
information matrix

The calculation of the observed Fisher information matrix J (𝜽𝒏) in the gamma-Gompertz
model is based on the negative second-order partial derivatives of the log-likelihood and
the maximum likelihood estimate (MLE) 𝜽𝒏 of the parameter vector 𝜽 = (𝑎, 𝑏, 𝜎2)>.

The MLE can be determined by numerical optimization of the log-likelihood using
function nlm() in R. Optimization over the log-scale of the parameters ensures non-
negativity of the parameter estimates. The numerical stability of the estimation problem
for values of 𝜎2 close to zero can be improved by providing also the analytic gradient of
the log-likelihood to the optimization routine as well as by using Taylor expansions of the
log-likelihood and the gradient if the current value of 𝜎2 is smaller than 10−5. In addition,
a number of different starting values for the parameter 𝜎2 should be considered.

Although we have derived explicit formulas for the partial derivatives of the log-
density of the gamma-Gompertz model, it turns out that the expressions for the second-
order partial derivatives with respect to 𝜎2, given in (3.7) and (3.8), are not numeri-
cally stable if 𝜎2 approaches zero. Therefore, when calculating J (𝜽𝒏), we approximate
the term ln

[
1 + 𝜎2 𝑎

𝑏
(𝑒𝑏𝑥 − 1)

]
in expressions (3.7) and (3.8) by a Taylor expansion if

�̂�2 < 10−5.

3.8.3 Additional figures and tables for empirical studies
In this section, we present additional figures and tables displaying some results of our
empirical studies in Section 3.5.

• Table 3.3 reports on the performance of the numerical integration approach for com-
puting the Fisher information 𝑰(𝜽).

• The relation between the information measure ^−2 and the variance of �̂�2, as discussed
in Section 3.3.3, is illustrated in Figure 3.6.
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• The information measures corresponding to the criteria of 𝐷-, 𝐴-, and 𝐸-optimality
(see Section 3.2.3) are examined in Figures 3.7 and 3.8 for Scenarios 𝑆1 and 𝑆3, re-
spectively.

• On pages 55ff., we study the various information measures and the performance of the
likelihood ratio test for scenarios with different values for the Gompertz parameters.
More precisely, for Scenarios 𝑆4 to 𝑆6, we set 𝑎 = 0.021 and 𝑏 = 0.082, while
the values for the frailty variance are the same as in the previous scenarios, that is,
𝜎2 = 0.043 in Scenario 𝑆4, 𝜎2 = 0.021 in Scenario 𝑆5, and 𝜎2 = 0 in Scenario 𝑆6.
Figure 3.9 depicts the patterns of the criterion of 𝐷𝐴-optimality across different age
ranges for Scenarios 𝑆4 and 𝑆6, while in Figures 3.10 and 3.11 the criteria of 𝐷-,
𝐴-, and 𝐸-optimality are presented. Figure 3.12 displays the criterion [𝑰(𝜽)]33 for
Scenarios 𝑆4 and 𝑆6.
Finally, the power of the likelihood ratio test to detect a positive 𝜎2 in Scenarios 𝑆4
(𝜎2 = 0.043) and 𝑆5 (𝜎2 = 0.021) based on different age ranges and sample sizes at a
level of 𝛼 = 0.05 was calculated based on formula (3.6). The results are presented in
Table 3.4.

Table 3.3: Mean relative difference between the Fisher information 𝑰𝒏 (𝜽) and the average J̄ of
observed Fisher information matrices across 1,000 replications of Scenarios 𝑆1, 𝑆2, and 𝑆3 for
different sample sizes and age ranges.

Survivors to ages
Scenario 𝑛90+ 60+ 80+ 85+ 90+
𝑆1: 𝜎2 = 0.043 10,000 0.00027 0.00344 0.01116 0.05487

20,000 0.00019 0.00114 0.00512 0.02553
105,000 0.00009 0.00025 0.00136 0.00579

𝑆2: 𝜎2 = 0.021 10,000 0.00053 0.00356 0.01382 0.06592
20,000 0.00023 0.00134 0.00614 0.03601

105,000 0.00009 0.00033 0.00119 0.00591
𝑆3: 𝜎2 = 0 10,000 0.00816 0.01540 0.03389 0.12065

20,000 0.00611 0.01073 0.02114 0.07251
105,000 0.00249 0.00504 0.00997 0.02829
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Relation between information measures and estimator precision
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Figure 3.6: Information measure 𝑛^−2 (red-dashed line, crosses) and inverse of the empirical vari-
ance of �̂�2 (black-solid line, circles) based on 1,000 samples from a gamma-Gompertz model under
the medium-sized Scenarios 𝑆1 (top) and 𝑆3 (bottom) depending on the age range of the data (left to
right: 60+, 80+, 85+, or 90+). Left: absolute values, right: relative to the value for the 60+ setting.
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Alternative information measures
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Figure 3.7: Information measures I (black-solid line, circles) and scaled measures I (𝑠) (red-dashed
line, crosses) under Scenario 𝑆1 depending on the age range of the data (left to right: 60+, 80+,
85+, or 90+). Top: I = det(𝑰(𝜽)) for 𝐷-optimality, middle: I = 1/tr( [𝑰(𝜽)]−1) for 𝐴-optimality,
bottom: I as the minimum eigenvalue of 𝑰(𝜽) for 𝐸-optimality. Left: absolute values of (scaled) I,
right: (scaled) ratios I𝑥+/I80+ for 𝑥 = 80, 85, 90.
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Figure 3.8: Information measures I (black-solid line, circles) and scaled measures I (𝑠) (red-dashed
line, crosses) under Scenario 𝑆3 depending on the age range of the data (left to right: 60+, 80+,
85+, or 90+). Top: I = det(𝑰(𝜽)) for 𝐷-optimality, middle: I = 1/tr( [𝑰(𝜽)]−1) for 𝐴-optimality,
bottom: I as the minimum eigenvalue of 𝑰(𝜽) for 𝐸-optimality. Left: absolute values of (scaled) I,
right: (scaled) ratios I𝑥+/I80+ for 𝑥 = 80, 85, 90.
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Information measures and power of the likelihood ratio test for scenarios with dif-
ferent values of the Gompertz parameters
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Figure 3.9: Information measure I = ^−2 (black-solid line, circles) and scaled measure I (𝑠) (red-
dashed line, crosses) under Scenarios 𝑆4 (top) and 𝑆6 (bottom) depending on the age range of the
data (left to right: 60+, 80+, 85+, or 90+). Left: absolute values of (scaled) I, right: (scaled) ratios
I𝑥+/I80+ for 𝑥 = 80, 85, 90.
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Figure 3.10: Information measures I (black-solid line, circles) and scaled measures I (𝑠) (red-
dashed line, crosses) under Scenario 𝑆4 depending on the age range of the data (left to right: 60+,
80+, 85+, or 90+). Top: I = det(𝑰(𝜽)) for 𝐷-optimality, middle: I = 1/tr( [𝑰(𝜽)]−1) for 𝐴-
optimality, bottom: I as the minimum eigenvalue of 𝑰(𝜽) for 𝐸-optimality. Left: absolute values
of (scaled) I, right: (scaled) ratios I𝑥+/I80+ for 𝑥 = 80, 85, 90.
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Figure 3.11: Information measures I (black-solid line, circles) and scaled measures I (𝑠) (red-
dashed line, crosses) under Scenario 𝑆6 depending on the age range of the data (left to right: 60+,
80+, 85+, or 90+). Top: I = det(𝑰(𝜽)) for 𝐷-optimality, middle: I = 1/tr( [𝑰(𝜽)]−1) for 𝐴-
optimality, bottom: I as the minimum eigenvalue of 𝑰(𝜽) for 𝐸-optimality. Left: absolute values
of (scaled) I, right: (scaled) ratios I𝑥+/I80+ for 𝑥 = 80, 85, 90.
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Figure 3.12: Information measure I = [𝑰(𝜽)]33 (black-solid line, circles) and scaled measure I (𝑠)

(red-dashed line, crosses) depending on the age range of the data (left to right: 60+, 80+, 85+, or
90+) under Scenarios 𝑆4 (left) and 𝑆6 (right).

Table 3.4: Power 𝛽 of the likelihood ratio test, performed at the 5% level, according to formula (3.6),
under Scenarios 𝑆4 (𝜎2 = 0.043) and 𝑆5 (𝜎2 = 0.021) for three sample size settings (s – small,
m – medium, l – large) and varying age range.

Survivors to ages
60+ 80+ 85+ 90+

Scen. 𝑛 𝑛60+ 𝛽60+ 𝑛80+ 𝛽80+ 𝑛85+ 𝛽85+ 𝑛90+ 𝛽90+
𝑆4 s 133,506 1.000 47,165 0.678 25,090 0.352 10,000 0.157

m 267,012 1.000 94,329 0.909 50,179 0.557 20,000 0.228
l 1,401,813 1.000 495,229 1.000 263,441 0.993 105,000 0.662

𝑆5 s 143,746 0.935 50,181 0.296 26,196 0.163 10,000 0.094
m 287,493 0.998 100,362 0.470 52,392 0.239 20,000 0.119
l 1,509,337 1.000 526,901 0.975 275,058 0.692 105,000 0.281
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4
Shifting attention to old age:

Detecting mortality deceleration using
focused model selection

Abstract

The decrease in the increase in death rates at old ages is a phenomenon that has repeatedly
been discussed in demographic research. While mortality deceleration can be explained
as an effect of selection in heterogeneous populations, this phenomenon can be difficult
to assess statistically because it relates to the tail of the lifespan distribution. By using
a focused information criterion (FIC) for model selection, we can directly target model
performance at those advanced ages at death. We analyze this question in the framework
of the gamma-Gompertz model that is reduced to the competing Gompertz model without
mortality deceleration if the variance parameter lies on the boundary of the parameter
space. We develop a new version of the FIC for this non-standard condition. In a simu-
lation study, the new FIC is shown to outperform other methods in detecting mortality
deceleration. We apply the approach to mortality data for extinct French-Canadian birth
cohorts, and we extend the method to include additional covariate information.

This chapter has been submitted for publication as: M. Böhnstedt, H. Putter, N. Ouellette, G. Claeskens,
and J. Gampe. Shifting attention to old age: Detecting mortality deceleration using focused model selection.
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4.1 Introduction

Almost two centuries ago, Benjamin Gompertz noted that death rates of humans increase
exponentially with age from mid-life onwards (Gompertz, 1825). Makeham (1860) sup-
plemented Gompertz’s mortality model by a constant, and thus age-independent, com-
ponent to provide a better fit at younger ages. By the 1930s, Perks (1932) had become
aware that the Gompertz-Makeham hazard overestimated actual death rates at advanced
ages, and suggested replacing the exponential part with a logistic function for graduation
of mortality. The logistic hazard follows the Gompertz trajectory for the lower ages, but
gradually deviates – that is, increases less quickly – at advanced ages. This slowdown in
mortality rates late in life is now commonly known as mortality deceleration.

The study of death rates at high ages gained increased attention when, starting in the
1970s, progress against mortality became noticeable also among the elderly. This con-
tinuing improvement of death rates at old ages (Rau et al., 2008) is the primary reason for
longevity increases in high income countries. Thus, accurately describing the trajectory
of mortality at advanced ages is of great interest to actuaries, demographers, and aging
researchers, as it has important implications for pension funds, life insurance, social sup-
port systems, and public health planning. Understanding and projecting the numbers of
the oldest-old are essential for aging populations, and hinge on having proper estimates
of mortality late in life.

As vital statistics improved and more detailed information became available for indi-
viduals who survive to very old ages, the early findings of mortality deceleration were
replicated for more recent data (Horiuchi and Wilmoth, 1998; Thatcher et al., 1998;
Richards, 2008; Feehan, 2018). However, the phenomenon of mortality deceleration has
also been contested, with some scholars arguing that there is a continued exponential in-
crease in mortality with age (Gavrilov and Gavrilova, 2011, 2019), and that the apparent
slowdown in death rates with advancing age is primarily attributable to data errors (New-
man, 2018). It is indeed the case that exaggeration in the reporting of age and the failure
to remove deceased individuals from registers (due to unreported deaths) can result in an
overestimation of the number of long-lived individuals, which will bias death rates down-
wards at the most advanced ages (Preston et al., 1999). Thus, for individuals who die at
very old ages, a thorough scientific validation of the reported age at death is mandatory
(Jeune and Vaupel, 1999).

Such age validation procedures involve linking individual birth (or baptism) records
with death certificates, which is usually a tedious and time-consuming task. Thus, the
amount of available data is often limited. Furthermore, mortality deceleration occurs in
the tail of the survival distribution, where data are unavoidably scarce. For these reasons,
the statistical assessment of this phenomenon is challenging, and standard methods may
fail to identify deviations from the Gompertz hazard for the very old. The questions of
whether and, if so, how statistical inference can be improved to tackle these challenges
are addressed in this chapter.
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To illustrate how rapidly the number of observations declines with age, Figure 4.1
shows for French-Canadians born between 1880 and 1896 the empirical death rates by
age at ages 90 and above, as well as the number of deaths at each age. We can see that
75% of all deaths in this population had already occurred by age 96 for women and by
age 95 for men. While we have sizable samples for this population (about 20,000 women
and about 10,000 men), the information about (potential) mortality deceleration has to be
extracted from relatively scant data in the tail.

Females

D
ea

th
 r

at
e 

(lo
g 

sc
al

e)

0.2

0.5

1.0

2.0

3.0

Males

D
ea

th
 r

at
e 

(lo
g 

sc
al

e)

0.2

0.5

1.0

2.0

3.0

Age

N
o.

 o
f d

ea
th

s

90 95 100 105 110 115

0

1000

2000

3000

Age

N
o.

 o
f d

ea
th

s

90 95 100 105 110 115

0

1000

2000

3000

Figure 4.1: Top: Death rates (on log scale) with 95% confidence intervals for French-Canadian
females (left) and males (right). Bottom: Frequency distribution of ages at death.

Much of present-day survival analysis is nonparametric, and thus avoids parametric
distributional assumptions about the times to event. For the specific questions addressed
here, a parametric framework proves both adequate and instrumental. The exponential
increase of mortality over much of the adult lifespan has been established empirically for
numerous populations, in different periods, and under varied social circumstances. Re-
search results that dismiss mortality deceleration (Gavrilov and Gavrilova, 2011, 2019)
support the use of a Gompertz hazard also at advanced ages. The possibility of treat-
ing this problem in a parsimonious parametric framework is attractive given the limited
amount of data from which information on deceleration can be drawn.

In this chapter, we will discuss the statistical assessment of mortality deceleration in
the framework of the gamma-Gompertz model, which is a particular parametrization of
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the logistic hazard introduced by Perks (1932). This model belongs to the class of pro-
portional hazards frailty models, which represent the standard approach for formalizing
individually heterogeneous hazards of death (Vaupel et al., 1979; Wienke, 2011). As was
already noted by Beard (1959), in such a model, frail individuals with higher mortality
levels tend to die at younger ages, while more robust individuals with lower death risks
tend to survive to higher ages, which leads to a deceleration of the average hazard with
age.

In the gamma-Gompertz model, an exponentially increasing (Gompertz) baseline haz-
ard is multiplied by a gamma distributed random effect (the frailty). If the variance 𝜎2 of
the gamma frailty takes a positive value, then the population hazard shows a downward
deviation from the Gompertz hazard at advanced ages. If the variance parameter takes
the value of zero, the population hazard is exponentially increasing. Thus, answering the
question of whether mortality does or does not decelerate at advanced ages corresponds
to selecting the gamma-Gompertz model or the Gompertz model. However, the single
additional parameter 𝜎2 of the gamma-Gompertz model lies on the boundary of the pa-
rameter space if the true model is the Gompertz model. As this boundary constraint on the
parameter violates the usual regularity assumptions, the inference and the model selection
have to be adapted to this non-standard condition.

Traditional approaches to inference in this context either employ a likelihood ratio
test for 𝜎2 = 0, which has low power to detect actual deceleration, or model selection
via Akaike’s information criterion (AIC, Akaike, 1974). While information criteria, like
the AIC, select a ‘best’ model regardless of the specific estimand that is of interest, we
propose using a focused information criterion (FIC, Claeskens and Hjort, 2003) that se-
lects the model that performs ‘best’ for a specific parameter of interest, called the focus
parameter. Applying the FIC is particularly appealing in our context, as it will allow us
to choose a focus parameter that is directly affected by the presence or the absence of
mortality deceleration; for example, the hazard at some advanced age.

Technically, the FIC is constructed as an unbiased estimator of the limiting risk of an
estimator of the focus parameter, and the candidate model with the smallest FIC value is
selected. While the standard version of the FIC aims to minimize the mean squared error
(MSE) of the estimator of the focus parameter, the criterion has been generalized to other
risk measures, such as 𝐿𝑝-risks (Claeskens et al., 2006). Still, all of these model selection
criteria have been developed based on general likelihood theory under the standard regu-
larity assumptions, which are violated in our setting. Therefore, we will derive versions
of the FIC that allow us to choose between two models in which the additional parameter
may lie on the boundary of the parameter space.

The chapter is structured as follows. In Section 4.2, we summarize models for late-
life mortality, and discuss the specific parametrization of the gamma-Gompertz model.
We also present traditional methods for detecting mortality deceleration in this frame-
work. Then, in Section 4.3, we propose the FIC as a new approach for assessing this
phenomenon. We introduce the method for a single sample, and, in Section 4.4, we study
the performance of the FIC in a simulation study, and compare it with the performance
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of an AIC that is adjusted to the presence of the boundary constraint. In Section 4.5, we
apply the new model selection criteria to the French-Canadian mortality data presented
in Figure 4.1. We describe the data source and the age validation procedure, and apply
the method to the samples of females and males separately. Additionally, we incorporate
effects for different birth cohorts. We conclude with a discussion in Section 4.6.

4.2 Mortality at advanced ages

4.2.1 Hazard models
To model mortality at advanced ages, we consider the continuous random variable 𝑌 ,
which describes adult lifespans from mid-life onwards. Its distribution can be charac-
terized by the hazard function, the instantaneous death rate at age 𝑦 given survival up
to 𝑦,

ℎ(𝑦) = lim
Δ𝑦↘0

𝑃(𝑦 < 𝑌 ≤ 𝑦 + Δ𝑦 |𝑌 > 𝑦)
Δ𝑦

.

The value 𝑦 = 0 corresponds to the age from which we start modeling, typically age 50 or
60. The Gompertz distribution is characterized by an exponentially increasing trajectory
ℎ(𝑦) = 𝑎𝑒𝑏𝑦 , with two positive parameters 𝑎 and 𝑏. Makeham (1860) extended the hazard
by an age-independent constant 𝑐 ≥ 0 to ℎ(𝑦) = 𝑎 𝑒𝑏𝑦 +𝑐 to achieve a better fit at younger
ages.

The replacement of the exponential component by a logistic term was suggested by
Perks (1932) in order to allow for a slower-than-exponential increase in death rates at the
highest ages, while keeping the proven Gompertz shape before that point. In its general
form, the logistic hazard is

ℎ(𝑦) = 𝐴𝑒𝑏𝑦

1 + 𝐵𝑒𝑏𝑦
with 𝐴 > 0, 𝐵 ≥ 0. (4.1)

If 𝐵 = 0, then the hazard (4.1) reduces to the Gompertz model with 𝐴 = 𝑎. The logistic
hazard can be viewed as a simple device to capture potential mortality deceleration by one
additional parameter. However, Beard (1959) already noted that a hazard of the form (4.1)
arises when individuals are submitted to Gompertz hazards with individually varying pa-
rameters 𝑎. If the distribution of 𝑎 follows a gamma distribution, then an average hazard
of logistic shape results.

In contemporary statistical terminology, Beard’s finding would be called a propor-
tional hazards frailty model of the form ℎ(𝑦 |𝑍 = 𝑧) = 𝑧 · ℎ0 (𝑦) (Duchateau and Janssen,
2008; Wienke, 2011). Here, a positive random effect 𝑍 (called frailty) acts multiplica-
tively on a common baseline hazard ℎ0 (𝑦), such that ℎ(𝑦 |𝑍 = 𝑧) denotes the conditional
hazard of an individual at age 𝑦, given that his or her frailty is 𝑍 = 𝑧. The random ef-
fect 𝑍 assigns heterogeneous mortality risks to individuals in a cohort who, apart from
those risks, share a common ‘law’ of mortality (the baseline). As a result of selection,
frail individuals with higher mortality levels tend to die at younger ages, while the more
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robust individuals with lower death risks tend to survive to higher ages. Consequently,
the population hazard, averaged over the survivors at each age, deviates from the baseline
shape; and the larger the initial heterogeneity, the stronger the deviation is.

The frailty 𝑍 is often assumed to follow a gamma distribution with mean one and
variance 𝜎2 (Vaupel et al., 1979). The choice of the gamma distribution, which may be
deemed ad hoc, is not only mathematically convenient, but is also theoretically justified.
Abbring and van den Berg (2007) proved that the distribution of the heterogeneity among
survivors, once selection took effect, converges to a gamma distribution for a large class
of proportional hazards frailty models, even if the frailty is not gamma distributed from
the outset.

The so-called gamma-Gompertz model is obtained if the gamma frailty is multiplied
to an exponentially increasing Gompertz baseline hazard, ℎ0 (𝑦) = 𝑎𝑒𝑏𝑦 . The resulting
marginal hazard is

ℎ(𝑦) = 𝑎𝑒𝑏𝑦

1 + 𝜎2 𝑎
𝑏
(𝑒𝑏𝑦 − 1)

. (4.2)

If 𝜎2 > 0, there is heterogeneity in the risk of death, and the selection of more robust
individuals will take place. If 𝜎2 = 0, there is no heterogeneity, and the marginal hazard
is exponentially increasing, such that ℎ(𝑦) = 𝑎𝑒𝑏𝑦 . Hence, in the framework of the
gamma-Gompertz model, the statistical assessment of mortality deceleration is reduced
to inference on the parameter 𝜎2.

The gamma-Gompertz hazard (4.2) is a straightforward reparametrization of the logis-
tic hazard (4.1), with 𝐴 = 𝑎/(1−𝜎2 𝑎

𝑏
) and 𝐵 = 𝜎2𝑎

𝑏
/(1−𝜎2 𝑎

𝑏
); and in both versions the

Gompertz hazard is retained if the third parameter equals zero, that is, 𝜎2 = 0 or 𝐵 = 0, re-
spectively. The gamma-Gompertz formulation explicitly signalizes the role of individual
heterogeneity and its impact on and the progression of selection among survivors.

It is important to note that the parameter 𝜎2 measures population heterogeneity at the
starting age of the model (corresponding to 𝑦 = 0). Due to the continuing selection of ro-
bust individuals, the variance of frailty among the survivors decreases with age. Thus, the
higher the age at which we start our observation, the lower the heterogeneity in mortality
is among the individuals in the sample. The age at the beginning of the observation will,
therefore, have an impact on the resulting inference.

The inference in the gamma-Gompertz model involves the frailty variance 𝜎2, which
is a parameter that lies on the boundary of its parameter space in the absence of mor-
tality deceleration (𝜎2 = 0). This violates the standard assumptions that underlie the
asymptotic properties of the likelihood-based inference, which, in turn, affects the tradi-
tional approaches for assessing mortality deceleration that are presented in the following
section.

4.2.2 Traditional approaches to inference
Two methods are commonly used for assessing mortality deceleration in the framework
of the gamma-Gompertz model: a likelihood ratio test for a zero frailty variance, and
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model selection between the gamma-Gompertz model and the Gompertz model based on
the AIC.

The likelihood ratio test for homogeneity in the gamma-Gompertz model, where
𝐻0 : 𝜎2 = 0 and 𝐻1 : 𝜎2 > 0, is non-standard in that, under the null hypothesis, the
parameter 𝜎2 lies on the boundary of the parameter space. Consequently, the asymp-
totic distribution of the likelihood ratio test statistic under 𝐻0 is no longer a chi-squared
distribution with one degree of freedom. However, using the results of Self and Liang
(1987), it can be shown that under the null hypothesis, the likelihood ratio test statistic
asymptotically follows a 50:50 mixture of a point mass at zero and a chi-squared distri-
bution with one degree of freedom, 1

2 𝜒
2
0 + 1

2 𝜒
2
1 . Tests based on the wrong assumption of

a 𝜒2
1-distribution of the test statistic occasionally appear in studies of mortality decelera-

tion (Pletcher, 1999). Ignoring the issue of the boundary parameter and using the incor-
rect distribution of the test statistic lowers the power to (correctly) decide in favor of the
gamma-Gompertz model. But even when the test statistic is correctly assumed to follow
a 1

2 𝜒
2
0 +

1
2 𝜒

2
1-distribution, the likelihood ratio test has low power to detect mortality decel-

eration in the gamma-Gompertz model. This is especially likely to be the case when the
inference has to be based on age-restricted samples, such as a sample of individuals who
survived beyond age 90 (see Section 4.7.2 for an illustration).

A popular alternative approach for assessing mortality deceleration is model selection
based on the AIC (Richards, 2008; Gavrilova and Gavrilov, 2015). The AIC targets an
unbiased estimate of the Akaike information; that is, of the expected relative Kullback-
Leibler distance between the true data-generating mechanism and the best parametric
approximation. Under standard conditions, the AIC is therefore defined as −2ℓ + 2𝑘 ,
where the log-likelihood ℓ, evaluated at the maximum likelihood estimate, is penalized
by the number 𝑘 of parameters in the model. This common definition has, however, been
found to be biased under the non-standard conditions of the gamma-Gompertz model
(Böhnstedt and Gampe, 2019). Thus, the standard version of the AIC is not a valid tool
for model selection in the setting of the gamma-Gompertz model. In Section 4.3.4, we
will present a modified version of the AIC that is adjusted to the presence of a boundary
parameter.

4.3 Focused information criterion for mortality deceleration

The preceding considerations indicate that neither a testing strategy, particularly if it is
low-powered, nor an all-purpose model selection criterion will adequately assess the oc-
currence of mortality deceleration. Focused information criteria (FIC) have been intro-
duced to address problems of this kind, and we propose selecting the model based on
a new version of the FIC that takes the boundary constraint on the frailty variance into
account.
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4.3.1 Rationale for FIC
Statistical analyses are performed for particular purposes, and acknowledging the specific
purpose when choosing the statistical model is the key concept of a FIC. In the following
exposition, we use the terminology and notation of Claeskens and Hjort (2003).

Observations 𝑦𝑖 , 𝑖 = 1, . . . , 𝑛 (here: ages at death) are assumed to be generated by a
parametric density 𝑓 (𝑦). The parameters of the model are split into a 𝑑-vector 𝜽 , which
characterizes the narrow model, and an additional 𝑞-vector 𝜸 for the extended model. The
narrow model is obtained for one particular value 𝜸0, which is fixed and known. In the
current application, the density of the gamma-Gompertz model (4.2) is

𝑓 (𝑦) = 𝑎𝑒𝑏𝑦
{
1 + 𝜎2 𝑎

𝑏
(𝑒𝑏𝑦 − 1)

}−(
1+ 1

𝜎2

)
.

The parameter 𝜽 = (𝑎, 𝑏)> is the Gompertz part of the model, so 𝑑 = 2. The single
additional parameter is 𝛾 = 𝜎2 with 𝛾0 = 0, so 𝑞 = 1.

The original FIC is derived in a framework of local misspecification (Hjort and
Claeskens, 2003), where a sample of size 𝑛 is assumed to be generated from a density

𝑓true (𝑦) = 𝑓 (𝑦, 𝜽0, 𝜸0 + 𝜹/
√
𝑛), (4.3)

with the parameter vector 𝜸 = 𝜸0 + 𝜹/
√
𝑛 perturbed in the direction of 𝜹. Selection is

between the null model, where 𝜸 is fixed at the known value 𝜸0; the full model, including
both 𝜽 and 𝜸; and, if 𝑞 > 1, any model including 𝜽 , but only a subset of the components
of 𝜸 and the remaining fixed at the respective values in 𝜸0. For the current setting, selec-
tion is only between the null model with 𝜎2 = 0, that is, the Gompertz model; and the full
model including 𝜎2, that is, the gamma-Gompertz model. Due to the boundary constraint
on the frailty variance, 𝛿 =

√
𝑛𝜎2 is subject to the a priori restriction 𝛿 ≥ 0. Therefore,

we will restrict the framework in the following to the choice of including or not including
a single parameter with a boundary constraint; that is, 𝑞 = 1 and 𝛾 ≥ 𝛾0.

The focus is the parameter of interest, which depends on the underlying density (4.3)
via 𝜽 and 𝜸. The focus is commonly denoted by `, and we define `true = `(𝜽 , 𝛾0+𝛿/

√
𝑛).

Based on the maximum likelihood estimators 𝜽null in the null model and (𝜽 full, �̂�) in the
full model, the focus parameter is estimated as ˆ̀null = `(𝜽null, 𝛾0) or ˆ̀full = `(𝜽 full, �̂�).
For each model 𝑀 , 𝑀 ∈ {null, full}, the estimator ˆ̀𝑀 converges in distribution,

√
𝑛( ˆ̀𝑀−

`true)
𝑑−→ Λ𝑀 .

The FIC selects the model that performs ‘best’ for the focus parameter `. If it is
based on the general 𝐿𝑝-loss, the FIC aims to estimate without bias the limiting 𝐿𝑝-risk
of ˆ̀𝑀 ; that is, 𝑟𝑝 (𝑀) = E[|Λ𝑀 |𝑝]. The model for which this limiting risk is smaller is
selected by the criterion. Of particular interest is a FIC based on the MSE (𝑝 = 2, as for
the original version, Claeskens and Hjort, 2003), constructed as an estimator of E[Λ2

𝑀
];

and a FIC based on the mean absolute error (MAE, 𝑝 = 1), constructed as an estimator
of E[|Λ𝑀 |].
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4.3.2 FIC with a parameter on the boundary of the parameter space
Under standard regularity conditions, when general likelihood theory applies, the asymp-
totic normality of the maximum likelihood estimator implies that the Λ𝑀 are normally
distributed (Claeskens and Hjort, 2003). In the non-standard setting considered here, Λfull
is not normally distributed because the maximum likelihood estimator (𝜽 full, �̂�) converges
in distribution to a mixture with two components (Böhnstedt and Gampe, 2019). The lim-
iting distribution depends on the information matrix 𝐽full of the full model evaluated at
the null model (𝜽0, 𝛾0). We denote by 𝐽00, 𝐽01, 𝐽10, and 𝐽11, the four blocks of 𝐽full corre-
sponding to the components 𝜽 and 𝛾 of the parameter vector; and by ^2 the element of the
inverse information matrix 𝐽−1

full, which corresponds to 𝛾. Then, the following convergence
in distribution holds for the estimator of the frailty variance

√
𝑛(�̂� − 𝛾0)

𝑑−→ max (0, 𝐷) with 𝐷 ∼ N (𝛿, ^2).

For the limiting distribution of the estimator of the focus parameter, it can be shown that

√
𝑛( ˆ̀null − `true)

𝑑−→ Λnull = Λ0 + 𝜔𝛿 and

√
𝑛( ˆ̀full − `true)

𝑑−→ Λfull =

{
Λ0 + 𝜔(𝛿 − 𝐷) if 𝐷 > 0
Λ0 + 𝜔𝛿 if 𝐷 ≤ 0

, (4.4)

where Λ0 ∼ N (0, 𝜏2
0 ) is independent of 𝐷, 𝜏2

0 =

(
𝜕`

𝜕𝜽

)>
𝐽−1

00
𝜕`

𝜕𝜽 and 𝜔 = 𝐽10𝐽
−1
00
𝜕`

𝜕𝜽 − 𝜕`

𝜕𝛾

(cf. Section 10.2 in Claeskens and Hjort, 2008).
To define a FIC, we need to derive E[|Λ|] or E[Λ2] from (4.4), depending on whether

we intend to base the criterion on the limiting 𝐿1- or 𝐿2-risk of the estimator ˆ̀.
As in the original version of the FIC, the limiting MSE of ˆ̀ is considered first. How-

ever, as we will demonstrate in the following, the FIC based on the 𝐿2-risk has some
drawbacks in the current setting, which makes the 𝐿1-risk an attractive alternative.

From equation (4.4) we can determine E[Λ2] for the null and the full model:

E[Λ2
null] = 𝜏

2
0 + 𝜔2𝛿2 and

E[Λ2
full] = 𝜏

2
0 + 𝜔2

{
𝛿2Φ

(
−𝛿
^

)
− ^𝛿𝜙

(
𝛿

^

)
+ ^2Φ

(
𝛿

^

)}
,

(4.5)

where Φ(·) and 𝜙(·) denote the cdf and the pdf of the standard normal distribution, respec-
tively. The FICMSE would be constructed as an unbiased estimator of the MSEs in (4.5),
and the model with the smaller FIC value would be selected.

As has already been pointed out by Claeskens and Hjort (2008, Section 5.3), in the
case of a single additional parameter 𝛾, the so-called tolerance radius does not depend on
the focus `. This radius signifies the deviation 𝛿 for which the MSE of the null model
estimator is smaller than that of the full model estimator; that is, E[Λ2

null] ≤ E[Λ2
full].

From (4.5), we see that the two risks are the same for 𝜔 = 0, and that if 𝜔 ≠ 0 the
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tolerance radius encompasses all 𝛿 with 𝛿 < 0.8399^. We can still define a pre-test
strategy for assessing mortality deceleration, which is based on the quantity 𝛿/ ˆ̂, where
𝛿 =

√
𝑛(�̂� − 𝛾0) =

√
𝑛�̂�2 and ˆ̂ is derived from the observed Fisher information. If

𝛿/ ˆ̂ ≤ 0.8399, the estimator ˆ̀null based on the Gompertz model is used; whereas if
𝛿/ ˆ̂ > 0.8399, the estimator ˆ̀full based on the gamma-Gompertz model is used. We note
here that 𝛿 is not an unbiased estimator of 𝛿, with the bias depending in a complex way on
𝛿 and ^. In appraising this pre-test-based model choice, we can see that for large samples,
the local power of this strategy is approximately the same as the power of a likelihood
ratio test for 𝐻0 : 𝜎2 = 0 at the 20% level (cf. Section 4.7.3).

Although strategies based on the limiting 𝐿2-risks of the estimator ˆ̀ are common, the
derived pre-test strategy has drawbacks. On the one hand, the performance of this strategy
does not depend on the chosen focus parameter; while on the other, the equal penalty
for squared bias and variance of the estimators in the 𝐿2-risk might not be suitable for
choosing whether to include a heterogeneity parameter.

Consequently, using risk measures other than the 𝐿2-risk can be more appropriate, as
was already suggested in Claeskens et al. (2006). Formulas for the general limiting 𝐿𝑝-
risk of ˆ̀𝑀 were derived there under regularity conditions where Λ𝑀 follows a normal
distribution for each of the models. In our non-standard setting, the limiting distribution
of the full model estimator in (4.4) is not normal, but we can still derive the limiting
𝐿1-risk of the estimators ˆ̀null and ˆ̀full as follows (see Section 4.7.4 for details):

E[|Λnull |] = 2𝜏0𝜙
(
𝜔𝛿

𝜏0

)
+ 2𝜔𝛿

{
Φ

(
𝜔𝛿

𝜏0

)
− 1

2

}
and

E[|Λfull |] =

[
2𝜏0𝜙

(
𝜔𝛿

𝜏0

)
+ 2𝜔𝛿

{
Φ

(
𝜔𝛿

𝜏0

)
− 1

2

}] {
1 −Φ

(
𝛿

^

)}
(4.6)

+
√︃
𝜏2

0 + 𝜔2^2 ·
√︂

2
𝜋
Φ

©«
𝛿

^
·

√︃
𝜏2

0 + 𝜔2^2

𝜏0

ª®®¬ − 𝜔^ 𝜙
(
𝛿

^

)
· 2

{
Φ

(
𝜔𝛿

𝜏0

)
− 1

2

}
.

Thus, we define the FICMAE of the null model and the full model as the estimators

FICMAE (null) = 2𝜏0𝜙
(
�̂�𝛿

𝜏0

)
+ 2�̂�𝛿

{
Φ

(
�̂�𝛿

𝜏0

)
− 1

2

}
and

FICMAE (full) =

[
2𝜏0𝜙

(
�̂�𝛿

𝜏0

)
+ 2�̂�𝛿

{
Φ

(
�̂�𝛿

𝜏0

)
− 1

2

}] {
1 −Φ

(
𝛿

ˆ̂

)}
+

√︃
𝜏2

0 + �̂�2 ˆ̂2 ·
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2
𝜋
Φ

©«
𝛿

ˆ̂
·
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𝜏2

0 + �̂�2 ˆ̂2

𝜏0
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(
𝛿
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· 2
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Φ

(
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𝜏0

)
− 1

2

}
,

respectively. Based on this new model selection criterion FICMAE, the full model is chosen
if the estimated MAE of its estimator of the focus parameter ` is smaller than the MAE
for the null model estimator. In contrast to the MSE, the tolerance radius determined by
the MAE of ˆ̀𝑀 does depend on the focus parameter via 𝜔 and 𝜏0.
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4.3.3 Choice of the focus parameter
The central concept and virtue of the FIC approach is that it allows us to consolidate a sci-
entific question in a focus parameter, and to customize the model selection to the specific
focus. In the context of mortality deceleration, two focus parameters suggest themselves.
The first parameter is the frailty variance, since it determines whether mortality decel-
eration is present, so ` = 𝜎2. The second focus parameter targets the deceleration of the
hazard function, measured by the second derivative of the log-hazard at some (high) age 𝑦
so that ` = [ln ℎ(𝑦)] ′′.

For ` = 𝜎2 the expressions in (4.6) take the form

E[|Λnull |] = 𝛿 and E[|Λfull |] = ^
√︂

2
𝜋
− ^𝜙

(
−𝛿
^

)
+ 𝛿Φ

(
−𝛿
^

)
.

Consequently, model choice based on the FICMAE results in the gamma-Gompertz model
if 𝛿/ ˆ̂ > 0.6399. If we view this as a pre-test strategy, then it has asymptotically the same
local power as the likelihood ratio test for 𝐻0 : 𝜎2 = 0 at a level of 26%.

If we choose ` = [ln ℎ(𝑦)] ′′ the choice of the age 𝑦 should be such that it marks an
age in the tail of the distribution where deceleration occurs, but which still lies within the
range of observed lifespans.

While the above choices of the focus parameter are natural and allow for immediate
interpretations, we could also select as the focus any function that characterizes the distri-
bution of lifespans, such as the survival function or the log-hazard. The effects of different
focus parameters on the model selection will be briefly illustrated in the simulation study
in Section 4.4, and recommendations will be given in Section 4.6.

4.3.4 A modified AIC for the gamma-Gompertz model
As we mentioned in Section 4.2.2, the standard AIC is biased as an estimator of the Akaike
information in the presence of a boundary parameter, and should therefore not be used
for assessing mortality deceleration. However, Böhnstedt and Gampe (2019) explicitly
derived the bias of the standard AIC for the gamma-Gompertz model (4.2) under the local
misspecification framework (4.3) as 2Φ (−𝛿/^). This bias depends via 𝛿 =

√
𝑛𝜎2 on the

unknown value of the frailty variance, and it cannot be estimated without bias if the true
variance is small. Thus, the bias cannot be removed completely, but it can be reduced if
we correct the standard AIC using the estimator 2Φ

(
−𝛿/ ˆ̂

)
of the bias term. Hence, we

define a modified version of the AIC for the gamma-Gompertz model as

AIC∗ = −2 ℓ + 2 · 3 − 2Φ
(
−𝛿

ˆ̂

)
. (4.7)

The performance of this modified AIC∗ for detecting mortality deceleration is studied in
the next section.
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4.4 Simulation study

To examine the performance of the proposed FICMAE in assessing mortality deceleration,
we conducted a simulation study. In addition to considering different choices for the
focus, the study compares the behavior of the FICMAE with that of the pre-test based on
𝐿2-risks, and with that of the AIC∗ defined in (4.7).

The following factors will affect the performance of the different strategies: the size
of the true frailty variance 𝜎2; the sample size 𝑛; and the starting age used when observing
lifespans, with a younger starting age being more favorable for detecting actual mortality
deceleration.

For the frailty variance (at 𝑦 = 0), three different scenarios were considered:
𝜎2 = 0.0625 (𝑆1) and 𝜎2 = 0.03 (𝑆2) with Gompertz parameters 𝑎 = 0.013, 𝑏 = 0.092.
Scenario 𝑆3 is a pure Gompertz model with 𝑎 = 0.0198, 𝑏 = 0.0726 (and 𝜎2 = 0). Sce-
nario 𝑆1 was chosen to resemble the mortality pattern in the data on French-Canadian
females that are analyzed in the following section. Scenario 𝑆2 mimics a population with
the same Gompertz baseline hazard, but lower heterogeneity in the risk of death. By com-
paring Scenarios 𝑆1 and 𝑆2, we will therefore be able to single out the effect of the size
of the frailty variance on the performance of the selection strategies. Note that the frailty
variances were set to levels comparable to those estimated from the French-Canadian
data. Lastly, Scenario 𝑆3 was inspired by a fit of the Gompertz model to the female data.

To cover the latter two aspects, survival times were generated from the gamma-
Gompertz model (4.2), with 𝑦 = 0 corresponding to age 60. However, the model selection
was based only on subsets of individuals reaching certain ages. Motivated by the French-
Canadian data, we considered individuals who survived to ages 90 or higher (90+). Ad-
ditional comparisons based on the larger subsets of individuals who survived to ages 85+
and 80+ are presented in Section 4.7.6.

For each scenario 𝑆1 to 𝑆3, three different initial sample sizes (at age 60) were chosen,
such that the size of the 90+ subset approximately equals 𝑛90+ = 10,000 (small), 𝑛90+ =

20,000 (medium) or 𝑛90+ = 105,000 (large). The sample sizes may look unusually large,
but they cover a realistic range of population-based data. Recall that the French-Canadian
data presented in Figure 4.1 contain information on about 20,000 women and 10,000 men.

For each 90+ sample, the log-likelihoods for the Gompertz model and the gamma-
Gompertz model were maximized using function nlm() in R (R Core Team, 2018);
further computational details are given in Section 4.7.1. Then, the best model is selected
based on the FICMAE for different focus parameters, the MSE pre-test of 𝛿 < 0.8399^,
and the AIC∗. We ran 1,000 replications for each setting.

The left panel of Figure 4.2 compares the performance of the three selection ap-
proaches in Scenario 𝑆1 (𝜎2 = 0.0625) across the various sample sizes. The FICMAE
with focus parameter ` = [ln ℎ(100)] ′′ clearly outperforms the other two methods, as it
detects mortality deceleration more often. The proportion of correct decisions in favor of
the gamma-Gompertz model increases with the sample size for all three methods, and is
close to one for the setting with a large sample size. However, for the setting with a small
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Figure 4.2: Proportion of decisions in favor of the gamma-Gompertz model. Left: Scenario 𝑆1 for
sample sizes 𝑛90+ = 10,000, 𝑛90+ = 20,000, and 𝑛90+ = 105,000 (left to right) based on FICMAE
with ` = [ln ℎ(100)] ′′ (black-solid-circle), pre-test (red-dashed-cross), and AIC∗ (blue-dotted-
triangle). Right: Scenarios 𝑆1, 𝑆2, and 𝑆3 (left to right) all with 𝑛90+ = 20,000 based on FICMAE
with ` = [ln ℎ(100)] ′′ (black circle), ` = [ln ℎ(110)] ′′ (red cross), and ` = 𝜎2 (blue triangle).

(medium) sample size, the proportion of correct decisions based on the FICMAE is 82.6%
(37.1%) higher than that based on the AIC∗.

The right panel of Figure 4.2 illustrates the performance of the FICMAE depending
on the magnitude of the frailty variance, and on the choice of the focus parameter in the
medium sample size setting. We display the results for the focus parameters ` = 𝜎2,
` = [ln ℎ(100)] ′′, and ` = [ln ℎ(110)] ′′. The ability of the method to detect deviations
from the Gompertz hazard naturally decreases when the frailty variance decreases. For
Scenario 𝑆2, in which the frailty variance is about half as large as it is in Scenario 𝑆1, the
proportion of correct decisions is about 35% smaller than it is for 𝑆1. If the true model
is the Gompertz model (𝑆3), then the proportion of decisions in favor of the gamma-
Gompertz model is about 25% for the medium sample size. As the FICMAE performs
equally well for all three focus parameters, the age 𝑦 at which ` = [ln ℎ(𝑦)] ′′ is evaluated
does not seem to matter. It also turns out that the focus parameters ` = 𝜎2 and ` =

[ln ℎ(𝑦)] ′′ perform better than, for instance, ` = ln ℎ(𝑦) or ` = 𝑆(𝑦); as is shown in
Section 4.7.5. Although the focus age 𝑦 did not affect the results in the simulation study,
other aspects may render one choice more reasonable than another. In the medium-sized
Scenario 𝑆1, in which around 20,000 individuals reach age 90, more than a thousand will,
on average, also reach age 100, but fewer than 10 will reach age 110. Consequently, a



76 Chapter 4 – Focused model selection for mortality deceleration

focus age of 𝑦 = 100 will probably produce more reliable results than a focus age of
𝑦 = 110.
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Figure 4.3: Left: Box plots of FICMAE values with ` = [ln ℎ(100)] ′′ for the null and the full model
in Scenario 𝑆1 with 𝑛90+ = 20,000 and empirical MAE of focus estimates ˆ̀ (red-dashed). Right:
Empirical MAE of selected ˆ̀ for ` = [ln ℎ(100)] ′′ in Scenario 𝑆1 for sample sizes 𝑛90+ = 10,000,
𝑛90+ = 20,000, and 𝑛90+ = 105,000 (left to right) based on FICMAE (black-solid-circle), pre-test
(red-dashed-cross), and AIC∗ (blue-dotted-triangle).

The concept of the FICMAE as an estimator of the limiting MAE of ˆ̀ is illustrated
in the left panel of Figure 4.3, which shows a box plot of the FICMAE values with ` =

[ln ℎ(100)] ′′ for 1,000 replications of the medium-sized Scenario 𝑆1. We see that for both
the null and the full model, the empirical MAEs of the estimators ˆ̀null and ˆ̀full are close
to the average of the respective FIC scores. As a consequence, the empirical MAE of the
selected estimators in the 1,000 replications – that is, ˆ̀full for those replications, where
FICMAE (full) < FICMAE (null), and ˆ̀null otherwise – should be smaller than it is for other
selection criteria. The right panel of Figure 4.3 verifies for Scenario 𝑆1, that the estimator
ˆ̀ of ` = [ln ℎ(100)] ′′ has the smallest empirical MAE when the model selection is based
on the FICMAE with ` = [ln ℎ(100)] ′′, rather than on the pre-test or the AIC∗.

Overall, the findings of the simulation study support the claim that the proposed
FICMAE is a suitable tool for detecting mortality deceleration in the framework of the
gamma-Gompertz model, which outperforms the competing approaches of the pre-test
and AIC∗.
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4.5 Mortality of French-Canadians at high ages

4.5.1 Data and age validation
To demonstrate the performance of the proposed FIC, we analyze data on French-Canadian
cohorts born between 1880 and 1896. The data were illustrated in Figure 4.1.

When French missionaries settled in Quebec in the 17th century, they followed the
Catholic tradition of registering all baptisms, marriages, and burials in parish registers.
Starting in 1679, two copies of the registrations were made, with one being kept at the
parish, while the other was sent to the government body responsible for civil registration.
This practice was continued until the end of the 20th century. Thus, this data collection
is an invaluable resource for historical demography, among other disciplines (Desjardins,
1998). The data set that we analyze here covers virtually all Catholic French-Canadians
(20,917 females and 10,878 males) who were born in the Province of Quebec during the
1880-1896 period, and who died at age 90 or older in Quebec between 1970 and 2009.
These 1880-1896 birth cohorts were fully extinct by the end of 2009.

To confirm a reported age at death (date of death minus date of birth), the date of
birth reported on the death certificate has to be verified using the baptism record in the
corresponding parish register, and is often additionally verified using historic census re-
turns. Although the historic French-Canadian parish registers contain information on all
baptisms and are available on microfilm, the identification of individual entries in the reg-
isters continues to be time-consuming. The appropriate parish has to be identified using
the information on the province and the names of the parents, and the individual register
entry has to be looked up (for details, see Bourbeau and Desjardins, 2002).

The core of the data set was compiled by Beaudry-Godin (2010), who individually
validated ages at death using the parish registers of all Catholic French-Canadians who
died as centenarians – i.e., at age 100 or older – between 1970 and 2004. The data were
further extended and validated to cover deaths until 2009 (Ouellette and Bourbeau, 2014;
Ouellette, 2016), and the deaths of individuals aged 90-99 were added.

4.5.2 Comparison of information criteria
We fit the gamma-Gompertz model and the Gompertz model to the female and the male
data separately via maximum likelihood. For that purpose, we set age 60 as the starting
age of the models, and take into account left truncation at age 90. Then, we choose
between the gamma-Gompertz model and the Gompertz model based on the AIC∗, pre-
test, and FICMAE for the focus parameters ` = 𝜎2 and ` = [ln ℎ(100)] ′′.

Figure 4.4 shows the fit of the gamma-Gompertz model and the Gompertz model,
respectively, to the empirical death rates (single years of age) for the French-Canadian
cohorts. The estimated frailty variance in the gamma-Gompertz model is �̂�2 = 0.043 for
the female population and �̂�2 = 0.037 for the male population. A likelihood ratio test
for 𝐻0 : 𝜎2 = 0 results in a 𝑝-value of 0.121 for females and 0.283 for males, such that
the hypothesis of no mortality deceleration would not be rejected at the usual levels of
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significance. Table 4.1 also shows that based on the modified AIC∗, the Gompertz model
is selected, if only just, for females and for males. By contrast, based on the pre-test
and the FICMAE, the gamma-Gompertz model is selected for females, and the Gompertz
model is selected for males. Hence, it appears that unlike other methods, the FICMAE
detects mortality deceleration in the female sample. Figure 4.4 also supports this finding
of a deceleration in the female mortality rates.
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Figure 4.4: Death rates (on log scale) of French-Canadian females (left) and males (right): empirical
death rates (solid-circle), gamma-Gompertz fit (dashed), Gompertz fit (dotted), and 95%-confidence
band for the Gompertz log-hazard (gray).

Table 4.1: Values of different model selection criteria for the gamma-Gompertz model (GG) and
the Gompertz model using data on French-Canadians.

Females Males
GG Gompertz GG Gompertz

AIC∗ 101390.3 101390.0 48364.10 48363.01
FICMAE : ` = 𝜎2 4.065 6.200 4.316 3.890
FICMAE : ` = [ln ℎ(100)] ′′ 0.098 0.149 0.120 0.108
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4.5.3 Including effects of year of birth
The analysis so far has split the data by gender, but combined all birth cohorts in one
model. This was done primarily in order to retain sufficiently large samples, which, as
the simulations showed, is an important issue in the assessment of mortality deceleration,
even if the samples can be considered sizable based on common statistical standards. But
it is obvious that such a pooling of birth cohorts can increase the heterogeneity in mortality
risks, and may thus yield a larger frailty variance, which, in turn, affects the assessment
of mortality deceleration. This concern is particularly relevant if mortality patterns have
improved over time at advanced ages (Vaupel et al., 2021). Including information on the
year of birth has been shown to be important in different contexts (Richards et al., 2006).

We have, therefore, chosen to include the effect of year of birth in the analysis by al-
lowing the parameters of the gamma-Gompertz model to vary by cohort, and have adapted
our model selection approach accordingly. While the inclusion of cohort effects implies
a more flexible approach to modeling, it also reduces the parsimony of the model, which
is critical in this application. In the following, we will focus on the female sample in
undertaking this considerably more complex analysis. The male sample is only half of
the size of the female sample, and does not allow for a reliable statistical analysis in the
extended setting introduced below.

The data cover 17 single-year birth cohorts made up of between about 700 and 2000
individuals. These cohort sizes, in conjunction with the restricted age range of 90+, are
insufficient for an analysis by single years of birth. For this reason, we group the data
into multi-year birth cohorts of roughly equal sizes by combining individuals with the
following birth years: 1880-1884, 1885-1888, 1889-1891, 1892-1894, and 1895-1896. In
the remainder of this section, we will refer to these five multi-year birth cohorts, which
are, on average, made up of 4183.4 individuals.

As a gamma-Gompertz model in which all parameters are cohort-specific would still
have five times as many parameters to be estimated as the plain gamma-Gompertz model
considered in Section 4.5.2, we seek to identify a model that is more parsimonious, but is
still appropriately flexible. To do so, we consult data for the respective cohorts between
ages 60 and 109 from the Canadian Human Mortality Database (CHMD, 2020). The
CHMD data are collected at the level of the Canadian provinces and territories, including
the Province of Quebec. These data can be used to identify potential trends across cohorts
in the Gompertz part of the gamma-Gompertz model, which is largely determined at the
mid-adult ages. Although the data for Quebec in the CHMD cover a wider population,
French-Canadians constitute the majority in the age groups considered here, so that these
data can serve for this purpose. (A comparison of the two data sources has already been
provided in Ouellette, 2016.) More precisely, we use the CHMD data (number of deaths
and total exposure times at each age) for Quebec to estimate Gompertz models with a
starting age of 60, separately for each of the five cohorts (maximizing a Poisson likelihood
for death counts; see, for instance, Keiding, 1990). The parameter estimates suggest that
there is a linear trend in the Gompertz parameter 𝑎 across cohorts, while the Gompertz
parameter 𝑏 stays roughly constant for the cohorts under study (see Figure 4.9).
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This gamma-Gompertz model, in which there is a linear trend in the parameter 𝑎 and
a single parameter 𝑏, but with each cohort having its own frailty variance, is estimated
and analyzed in the following. This model is a restricted version of the gamma-Gompertz
model in which all parameters vary by cohort. Nonetheless, it still provides an adequate
description of the mortality patterns in the female French-Canadian cohorts studied here.
More formally, we modify the gamma-Gompertz model with hazard (4.2) in the following
way: The parameters for cohort 𝑐, 𝑐 = 1, ..., 𝐶, are given by

𝑎𝑐 = 𝑎0 + 𝑎1 · 𝑧1𝑐 , 𝑏𝑐 ≡ 𝑏0, and 𝜎2
𝑐 = 𝜎2

0 exp (𝒛>2 𝜻), (4.8)

where 𝑎0 and 𝜎2
0 are the parameters of a reference cohort 𝑐∗ and 𝜻 ∈ R𝐶−1 describes

cohort-specific deviations from the frailty variance. The parameter 𝑏0 > 0 applies to all
cohorts, whereas the linear trend in the initial level of mortality 𝑎𝑐 is governed by the
slope 𝑎1 ∈ R (but such that 𝑎𝑐 > 0) with 𝑧1𝑐 = (𝑐 − 𝑐∗) and 𝒛1 = (𝑧11, ..., 𝑧1𝐶 )>. The
vector 𝒛2 of length (𝐶 − 1) consists of cohort dummies.

We fit model (4.8) to the individual survival times of the female cohorts in the French-
Canadian data via maximum likelihood. The middle cohort is used as reference and, as
before, age 60 is set as the starting age of the model, and left truncation at age 90 is
taken into account. The parameter estimates and the corresponding standard errors are
summarized in Table 4.2. The negative estimate of 𝑎1 indicates a decrease in the initial
level of mortality for the later cohorts, and, hence, that mortality has indeed improved.
The estimated frailty variances are comparatively high for the first three cohorts, but are
decreasing for the last two cohorts, reaching a value close to zero for the most recent
cohort. These results are in line with the impression conveyed by the empirical death
rates of the five cohorts displayed in Figure 4.5.

Table 4.2: Parameter estimates (with standard errors) for gamma-Gompertz model (4.8) with cohort
effects for French-Canadian females.

�̂�0 �̂�1 �̂�0 �̂�2
1 �̂�2

2 �̂�2
3 �̂�2

4 �̂�2
5

0.0122 −0.0006 0.0932 0.1089 0.0989 0.0757 0.0471 0.0089
(0.0035) (0.0002) (0.0113) (0.0379) (0.0399) (0.0401) (0.0406) (0.0413)

Performing focused model selection is considerably more challenging in this extended
setting with cohort effects, even in the still relatively parsimonious gamma-Gompertz
model specified in (4.8). In the framework of local misspecification, as introduced in
Section 4.3.1, the full model is now defined as the gamma-Gompertz model (4.8) with
cohort effects. The null model – that is, the simplest candidate model – should still be
the plain Gompertz model without cohort effects. Thus, the parameter vector of the full
model is split into the Gompertz part 𝜽 = (𝑎0, 𝑏0)>, so still with 𝑑 = 2, and the additional
𝜸 = (𝜎2

0 , 𝑎1, 𝜻
>)> with 𝜸0 = (0, 0, 0>)>, so 𝑞 = (𝐶 + 1).

Thus, selection is no longer only between the full model and the null model (as was
the case in Section 4.5.2), as we can now choose from an extended list of candidate
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Figure 4.5: Death rates (on log scale) of
French-Canadian females grouped into five
cohorts: empirical death rates (solid-circle)
and fit of model (4.8) (dashed).
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models. On this list of candidate models are also the plain gamma-Gompertz model with-
out cohort effects, as well as the Gompertz and gamma-Gompertz models in which only
the parameter 𝑎 varies linearly across cohorts, while the other parameters are constant.
The relevant candidate models are shown in Table 4.3, where a model is denoted by 𝑀 ,
𝑀 ⊆ {1, ..., 𝑞}, if it includes all parameters 𝛾 𝑗 with 𝑗 ∈ 𝑀 . Mortality deceleration is
generally present in those models 𝑀 that include the parameter 𝜎2

0 . But we have to be
careful when drawing conclusions about this phenomenon from the models with cohort-
specific frailty variances 𝜎2

𝑐 . If the frailty variances of some of the cohorts are relatively
large, while those of other cohorts are close to zero, it may be assumed that mortality
deceleration is present for the former, but not for the latter cohorts. The distinct advan-
tage of focused model selection is that we can choose cohort-specific focus parameters,
such as the frailty variance ` = 𝜎2

𝑐 of cohort 𝑐, which then allow us to assess mortality
deceleration separately for each cohort.

Table 4.3: Overview of candidate models in the framework of model (4.8).

Model 𝑀 Parameters No. of
𝑎𝑐 𝑏𝑐 𝜎2

𝑐 param.
Gompertz, plain (null) 𝑀 = ∅ 𝑎0 𝑏0 0 2
Gompertz with linear trend in 𝑎 𝑀 = {2} 𝑎0 + 𝑎1𝑧1𝑐 𝑏0 0 3
gamma-Gompertz (GG), plain 𝑀 = {1} 𝑎0 𝑏0 𝜎2

0 3
GG with linear trend in 𝑎 𝑀 = {1, 2} 𝑎0 + 𝑎1𝑧1𝑐 𝑏0 𝜎2

0 4
GG with cohort-specific 𝜎2 𝑀 = {1, 3, ..., 𝑞} 𝑎0 𝑏0 𝜎2

𝑐 2 + 𝐶
GG as in (4.8) (full) 𝑀 = {1, ..., 𝑞} 𝑎0 + 𝑎1𝑧1𝑐 𝑏0 𝜎2

𝑐 3 + 𝐶

The current selection framework also differs from the previous setting in Section 4.3
from a more technical point of view. Previously, we had to choose whether to include
a single parameter with a boundary constraint (𝑞 = 1 and 𝛾 ≥ 𝛾0). Here, we have to
choose whether to include none, some, or all of the components of the parameter vector 𝜸
where only the first component is subject to a boundary constraint (𝑞 > 1 and 𝛾1 ≥ 𝛾01).
Consequently, the results from Section 4.3.2 do not apply in the current setting, and new
formulas for the FICMAE (𝑀) for each of the candidate models 𝑀 have to be derived. We
refer the interested reader to Section 4.7.8 for these derivations of the limiting 𝐿1-risks of
the focus estimators.

To better evaluate the approach of focused model selection in the setting with cohort
effects, we seek to compare model selection based on the new FICMAE with that based
on the AIC. However, due to the presence of the boundary parameter 𝜎2

0 in some of
the candidate models, the standard AIC is again found to be biased. As in the case of
the modified AIC∗ for the plain gamma-Gompertz model presented in Section 4.3.4, we
derived a modified AIC∗ with a bias correction term for the models listed in Table 4.3 (see
Section 4.7.9 for a sketch of the derivations).
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Finally, we apply the two model selection strategies to the five female cohorts in the
French-Canadian data. We choose between the candidate models of Table 4.3 based on
the AIC∗, and based on the FICMAE with cohort-specific focus parameters ` = 𝜎2

𝑐 and
` = [ln ℎ𝑐 (100)] ′′, where ℎ𝑐 (𝑦) is the gamma-Gompertz hazard (4.2) with parameters 𝑎𝑐 ,
𝑏𝑐 , and 𝜎2

𝑐 according to (4.8). The selected models are presented in Table 4.4.

Table 4.4: Selected models for data on French-Canadian females.

Multi-year FICMAE AIC∗

birth cohort 𝑐 ` = 𝜎2
𝑐 ` = [ln ℎ𝑐 (100)] ′′

1880-1884 gamma-Gompertz full 
1885-1888 gamma-Gompertz full
1889-1891 gamma-Gompertz gamma-Gompertz full
1892-1894 Gompertz Gompertz
1895-1896 Gompertz Gompertz, linear trend in 𝑎

While the AIC∗ selects a single best model irrespective of whether the interest is
in one particular cohort, the cohort-specific focus parameters for the FICMAE make a
clear differentiation, and may select different models for different cohorts of interest.
More specifically, based on the AIC∗ the full gamma-Gompertz model (4.8) with a linear
trend in 𝑎, constant 𝑏, and cohort-specific frailty variances 𝜎2

𝑐 is selected. By contrast,
based on the FICMAE, models with mortality deceleration are selected only for the first
three cohorts, whereas models without mortality deceleration are selected for the two
most recent cohorts. These selection results seem plausible given the parameter estimates
reported in Table 4.2 and the mortality rates displayed in Figure 4.5. (The reader might
notice that for the 1892-1894 cohort, the Gompertz model without mortality deceleration
is selected based on the FICMAE, although the estimated frailty variance �̂�2

4 is larger than
that for the pooled cohorts for which the gamma-Gompertz model was selected. Here, we
have to keep in mind the smaller sample size of the cohort, which affects the performance
of the FICMAE.)

Furthermore, the selection results nicely illustrate that based on the FICMAE, different
models might be favored for the same cohort if different focus parameters are chosen.
If the interest lies in the cohort’s frailty variance, the plain gamma-Gompertz model is
selected for the first two cohorts; but if the interest lies in the second derivative of the
cohort’s log-hazard, the full model is selected for these two cohorts. This is reasonable
because the estimated frailty variances of the first two cohorts are close (�̂�2

1 = 0.1089 and
�̂�2

2 = 0.0989), which suggests that cohort-specific deviations from the frailty variance
would not markedly improve the estimator performance regarding the frailty variances
𝜎2

1 and 𝜎2
2 . In contrast, all gamma-Gompertz parameters are involved in the estimation

of the log-hazard, such that an estimator based on the full model with cohort-specific
frailty variances and a trend in 𝑎, which consequently takes into account the higher initial
mortality 𝑎𝑐 in the first two cohorts, would, on average, perform better.
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4.6 Discussion

Motivated by the issue of how mortality deceleration can be assessed at high ages, we
have extended the FIC, as introduced by Claeskens and Hjort (2003), to a non-standard
setting in which we are choosing between two models that differ by one parameter that
takes a value on the boundary of the parameter space if the smaller model is the true
model. We considered two versions of the FIC that aim to minimize the limiting MAE or
MSE of the estimator of the focus, respectively. When targeting the MAE, we obtained
the new model selection criterion FICMAE. When targeting the MSE, the model selection
does not depend on the chosen focus, but a pre-test strategy was defined. In addition, we
presented the new AIC∗, which reduces the bias of the original AIC that occurs when the
selection concerns a parameter that lies on the boundary of the parameter space in the
narrow model.

The proposed model selection criteria provide new tools for the assessment of mor-
tality deceleration in the framework of the gamma-Gompertz model. While traditional
approaches either have low power to detect mortality deceleration or are not valid in the
presence of boundary-constrained parameters, the methods developed here are adapted to
the non-standard setting. An advantage of the FICMAE is that, by choosing an appropriate
focus parameter, it can be targeted directly at the quantities that reveal mortality decel-
eration. We recommend using as the focus parameter the frailty variance or the second
derivative of the log-hazard at some advanced age. Both potential choices readily translate
into the presence or the absence of mortality deceleration, as the focus parameter takes a
value of zero if there is no deceleration.

The results of our simulation studies indicate that the FICMAE, especially with the
recommended choices of the focus parameter, outperforms the competing approaches of
the pre-test and the AIC∗ in detecting mortality deceleration. This observation was made
for different magnitudes of the frailty variance, and with different sample sizes. We found
that the FICMAE performs substantially better than the AIC∗, particularly for small sam-
ples.

Mortality deceleration addresses properties of the tail of the lifespan distribution,
and inference about the tail behavior requires sufficiently large samples. Moreover, it
is equally important that the models are sufficiently parsimonious so that the question of
interest can be isolated in a few parameters that inference can center on. While the size of
our data set on French-Canadian Catholics born at the end of the 19th century is relatively
large, the male sample contains only half as many observations as the female sample. In
contrast to the other methods, the FICMAE detected mortality deceleration in the sample
of females. However, all of the methods point towards a Gompertz model, and hence
towards no mortality deceleration for the French-Canadian males.

As we demonstrated, focused model selection allows us to include additional infor-
mation, such as differences across birth cohorts. At the same time, however, the number
of candidate models and the demands for data tend to increase. The analysis of the fe-
male sample with cohort effects pinpointed the differences between traditional (AIC∗)
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and focused criteria. The within-cohort heterogeneity was estimated to decline, and the
gamma-Gompertz model was selected only for the three earlier cohorts.

Data on mortality at advanced ages are often limited due to the complexity of age
validation procedures or the availability of the historic documents required for verifying
alleged ages at death. As the ability to detect features that are contained in the distribution
tail depends on having sufficient information in the data, it is worth investigating how our
sampling and validation efforts can be optimized. This includes reconsidering both the
required sample sizes and the age range over which data are collected. Here, we were
limited to ages at death above 90, which is a rather high starting age compared to the
starting ages in other studies. Thus, if further data collection efforts are planned, it may
be more advantageous to extend the age range to lower ages. Böhnstedt et al. (2021) have
offered some tools to address such questions.

While the set-up in this article was restricted to individual-level data, many studies
on aging rely on aggregated data in which death counts and exposure times are available
for given age-intervals. However, an extension of the approach to aggregated data is
straightforward if we keep the assumption of the parametric model. Consequently, the
new tools for the assessment of mortality deceleration presented here will be applicable to
a variety of data sets collected for different human and non-human populations. For data
on humans, the application of the Gompertz hazard is well-studied and well-established,
both across time and across populations. For data on non-human species, we might want
to consider relaxing the assumption of a parametric model for the hazard. More research
is needed to understand how more flexible hazard shapes can be incorporated by, for
example, using splines and penalized likelihood.

Although our development of the FICMAE was motivated by the specific problem of
assessing mortality deceleration, the method could be used in a range of other contexts in
which there is a need to choose between parametric models that differ only by one parame-
ter with a boundary constraint, such as when assessing heterogeneity in other proportional
hazards frailty models, or when choosing between a Poisson model and an over-dispersed
negative binomial model. Linear mixed models are another model class where some pa-
rameters, in that case variance components, are restricted to be non-negative and where a
focused search is useful (Cunen et al., 2020).
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4.7 Supplementary material

4.7.1 Computational issues
The maximum likelihood estimates of the parameters of the gamma-Gompertz model
are determined via numerical optimization in R (R Core Team, 2018). Non-negativity
of the parameter estimates is achieved by maximizing the log-likelihood over the log-
transformed parameters. Nevertheless, values of the frailty variance 𝜎2 that are close
to zero cause numerical difficulties. Here, we briefly describe the steps that we took to
increase the numerical stability of the estimation problem.

We maximize the log-likelihood via the R-function nlm(), where we can also supply
the analytic gradient of the objective function. In addition, Taylor expansions of the log-
likelihood and its gradient are used if the current value of 𝜎2 is smaller than 10−5. The
numerically identified maximum �̂�2 might still depend on the starting value that was
provided to the optimization routine. We therefore recommend running the optimization
with a number of different starting values for the frailty variance and choosing the fit with
the largest value of the log-likelihood as the final estimate.

For calculating the FICMAE values, we need estimates not only of the model param-
eters, but also of the information matrix 𝐽full. For that purpose, we analytically derive
the matrix 𝐻 (𝑎, 𝑏, 𝜎2) of second-order derivatives of the log-likelihood for the gamma-
Gompertz model, and again use a Taylor expansion if 𝜎2 < 10−5. 𝐽full is then estimated
as −𝑛−1𝐻 (�̂�, �̂�, �̂�2); and ˆ̂2 is the bottom right element of its inverse.

4.7.2 Power of the likelihood ratio test
A likelihood ratio test (LRT) for homogeneity in the gamma-Gompertz model, where
𝐻0 : 𝜎2 = 0 and 𝐻1 : 𝜎2 > 0, may have low power to detect mortality deceleration.
To illustrate this property, we summarize the results for two of the scenarios that were
described in Section 4.4. In particular, we show the extent to which a smaller underlying
frailty variance or a smaller sample size can decrease the power of the test, which is
performed at a significance level of 5%. We also compare the power of the LRT in a situa-
tion in which only individuals who survived beyond age 90 can be studied to a situation
in which observations for individuals who survived beyond age 80 or 85 are available.

Figure 4.6 illustrates how strongly the power of the test is affected by the three fea-
tures. The left panel displays the results for Scenario 𝑆1 (frailty variance 𝜎2 = 0.0625),
while the right panel shows the results for Scenario 𝑆2 in which the frailty variance was
roughly halved (𝜎2 = 0.03). Within each panel, we can see the loss in power that occurs
if only individuals who survived beyond age 90 (90+) can be studied, instead of individ-
uals who survived beyond age 80 (80+) or 85 (85+). For example, in the medium-sized
Scenario 𝑆1, the power of the LRT decreases by more than 45% if the test is based on the
90+ subset instead of on the 85+ subset.
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Figure 4.6: Power of the LRT at the 5% level to detect mortality deceleration in the gamma-
Gompertz model depending on the age range of the data (left to right: 80+, 85+, or 90+). The
depicted scenarios are 𝑆1 (left) and 𝑆2 (right) with the sample sizes 𝑛90+ = 10,000 (blue-dotted-
triangle), 𝑛90+ = 20,000 (red-dashed-cross), and 𝑛90+ = 105,000 (black-solid-circle).

4.7.3 Local power of the LRT and the pre-test
The local power of the LRT for homogeneity in the gamma-Gompertz model is derived in
Böhnstedt and Gampe (2019). Under the sequence of local alternatives (4.3), the power
of the LRT for 𝐻0 : 𝜎2 = 0 at level 𝛼 based on a gamma-Gompertz sample of size 𝑛 can
be approximated by

1 −Φ

(
Φ−1 (1 − 𝛼) − 𝛿

^

)
= 1 −Φ

(
Φ−1 (1 − 𝛼) −

√
𝑛𝜎2

^

)
. (4.9)

The pre-test derived in Section 4.3.2 selects the gamma-Gompertz model if 𝛿/ ˆ̂ > 0.8399.

Due to 𝛿/ ˆ̂ 𝑑−→ max (0, 𝐷/^), we have P
[
𝛿/ ˆ̂ ≤ 𝑧

]
≈ Φ (𝑧 − 𝛿/^) 𝟙{𝑧≥0}. As a conse-

quence, the power of the pre-test with critical region 𝛿/ ˆ̂ > 0.8399 is determined as

P
[
𝛿

ˆ̂
> 0.8399

���fixed 𝛿
]
≈ 1 −Φ

(
0.8399 − 𝛿

^

)
. (4.10)

Comparing (4.10) and (4.9), we find that for large samples, the pre-test has approximately
the same power as the LRT for 𝐻0 : 𝜎2 = 0 at level �̃� satisfying Φ−1 (1 − �̃�) = 0.8399,
which is �̃� = 1 −Φ(0.8399) ≈ 0.2005.
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4.7.4 Derivation of FICMAE with a single additional parameter on
the boundary of the parameter space

The FICMAE of a model with focus estimator ˆ̀, where
√
𝑛( ˆ̀ − `true)

𝑑−→ Λ, is derived
as an estimate of E[|Λ|]. For the null model, ˆ̀null converges to a normal distribution,
Λnull = (Λ0 + 𝜔𝛿) ∼ N (𝜔𝛿, 𝜏2

0 ). Therefore, E[|Λnull |] is calculated as the expected value
of the folded normal random variable |Λ0 + 𝜔𝛿 |; that is,

E[|Λnull |] = E[|Λ0 + 𝜔𝛿 |] = 2𝜏0𝜙
(
𝜔𝛿

𝜏0

)
+ 2𝜔𝛿

{
Φ

(
𝜔𝛿

𝜏0

)
− 1

2

}
. (4.11)

For the full model, we have Λfull = Λ0 − 𝜔(𝐷 − 𝛿)𝟙{𝐷>0} + 𝜔𝛿𝟙{𝐷≤0}, with 𝐷 ∼
N (𝛿, ^2) independent of Λ0, such that

E[|Λfull |] = E[|Λfull | | 𝐷 ≤ 0]P[𝐷 ≤ 0] + E[|Λfull | | 𝐷 > 0]P[𝐷 > 0]

= E[|Λ0 + 𝜔𝛿 |]Φ
(
−𝛿
^

)
+ E[|Λ0 − 𝜔(𝐷 − 𝛿) | | 𝐷 > 0]Φ

(
𝛿

^

)
. (4.12)

The first expectation is the same as (4.11). For the computation of the second expec-
tation, we define the normally distributed random vector 𝑿 = (Λ0, 𝐷)> and its affine
transformation 𝒀 = (Λ0 − 𝜔(𝐷 − 𝛿), 𝐷)>, which is also normally distributed, with mean
vectors 𝝁𝑋 = 𝝁𝑌 = (0, 𝛿)> and covariance matrices

Cov[𝑿] =
(
𝜏2

0 0
0 ^2

)
and Cov[𝒀] =

(
𝜏2

0 + 𝜔2^2 −𝜔^2

−𝜔^2 ^2

)
.

Then, E[|Λ0 − 𝜔(𝐷 − 𝛿) | | 𝐷 > 0] can be rewritten as

E[|𝑌1 | | 𝑌2 > 0] = E[𝑌1 | 𝑌1 > 0, 𝑌2 > 0] P[𝑌1 > 0, 𝑌2 > 0]
P[𝑌2 > 0]

+ E[−𝑌1 | −𝑌1 ≥ 0, 𝑌2 > 0] P[𝑌1 ≤ 0, 𝑌2 > 0]
P[𝑌2 > 0] . (4.13)

The expected values of one component of a bivariate truncated normal distribution are
more easily found for bivariate normal distributions with zero mean vectors, unit vari-
ances, and possible correlations. Transforming 𝒀 into such a normally distributed random

vector 𝒁 = ((𝜏2
0 + 𝜔2^2)−1/2𝑌1, (𝑌2 − 𝛿)/^)> with covariances −𝜔^/

√︃
𝜏2

0 + 𝜔2^2, and
noting that

E[𝑌1 | 𝑌1 > 0, 𝑌2 > 0] =
√︃
𝜏2

0 + 𝜔2^2 E
[
𝑍1

���𝑍1 > 0, 𝑍2 > −𝛿
^

]
,

we can apply the results of Tallis (1961) to obtain E[𝑌1 | 𝑌1 > 0, 𝑌2 > 0] in (4.13) as
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Analogously, E[−𝑌1 | −𝑌1 ≥ 0, 𝑌2 > 0] in (4.13) is computed as√︃
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Combining these two results, we find that E[|Λ0−𝜔(𝐷−𝛿) | | 𝐷 > 0] in (4.12) is equal to√︃

𝜏2
0 + 𝜔2^2

Φ
(
𝛿
^

) ·
√︂

2
𝜋
Φ

©«
𝛿

^
·

√︃
𝜏2

0 + 𝜔2^2

𝜏0

ª®®¬ −
𝜔^

Φ
(
𝛿
^

) 𝜙 (
𝛿

^

)
· 2

{
Φ

(
𝜔𝛿

𝜏0

)
− 1

2

}
. (4.14)

Inserting (4.11) and (4.14) into (4.12) yields the postulated result
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4.7.5 Other focus parameters
In our simulation studies, we also assessed the performance of the FICMAE for several
other focus parameters, such as quantiles of the survival distribution or the log-hazard
and the survival function at different advanced ages. Overall, the frailty variance, ` = 𝜎2,
and the second derivative of the log-hazard, ` = [ln ℎ(𝑦)] ′′, yielded the best results.
Figure 4.7 illustrates the proportion of decisions in favor of the gamma-Gompertz model
in several settings, when the focus is placed on the second derivative of the log-hazard at
age 100, the log-hazard at age 100 or 110, or the survival function at age 100. While the
choice of ` = [ln ℎ(100)] ′′ again results in the highest proportion of decisions in favor of
the gamma-Gompertz model, the choice of ` = 𝑆(100) performs almost as well. When
the focus is put on the log-hazard, the age at which the function is evaluated apparently
makes a difference, in that ` = ln ℎ(110) leads to a better performance of the FICMAE
than ` = ln ℎ(100). However, survival beyond age 110 is relatively rare in some of our
simulated settings, and we should be careful when putting the focus on ages for which
there are too few data points.
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Figure 4.7: Proportion of decisions in favor of the gamma-Gompertz model based on FICMAE with
` = [ln ℎ(100)] ′′ (black-solid-circle), ` = ln ℎ(100) (gray-dot-dashed-square), ` = ln ℎ(110) (red-
dashed-cross), and ` = 𝑆(100) (blue-dotted-triangle). Left: Decisions in Scenario 𝑆1 for sample
sizes 𝑛90+ = 10,000, 𝑛90+ = 20,000, and 𝑛90+ = 105,000 (left to right). Right: Decisions in
Scenarios 𝑆1, 𝑆2, and 𝑆3 (left to right) all with 𝑛90+ = 20,000.
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4.7.6 Impact of the age range on the performance of the FICMAE

So far, we have, motivated by the data application, considered only samples of individuals
who survived beyond age 90. However, the amount of heterogeneity in mortality risk
within the population decreases with age due to selection. Therefore, it is of interest to
study the performance of the FICMAE according to the age range of the sample. Figure 4.8
depicts the proportion of correct decisions in favor of the gamma-Gompertz model based
on the FICMAE with ` = [ln ℎ(100)] ′′ in different settings when the sample consisted of
all individuals who had reached at least age 80, 85, or 90. We see that, in general, the
probability of detecting mortality deceleration increases if the sample covers a wider age
range. For Scenario 𝑆1 with the target sample size of 𝑛90+ = 10,000, the proportion of
correct decisions increases by more than a third if we observe all individuals who had
reached at least age 85 instead of only those individuals who had reached at least age 90.
Both the larger sample size of the 85+ subset and the greater amount of heterogeneity in
the mortality risk of this subset played a part in this result.
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Figure 4.8: Proportion of correct decisions in favor of the gamma-Gompertz model based on the
FICMAE with ` = [ln ℎ(100)] ′′ depending on the age range of the data (left to right: 80+, 85+, or
90+). The depicted scenarios are 𝑆1 (left) and 𝑆2 (right) with sample sizes 𝑛90+ = 10,000 (blue-
dotted-triangle), 𝑛90+ = 20,000 (red-dashed-cross), and 𝑛90+ = 105,000 (black-solid-circle).
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4.7.7 Preliminary analysis of CHMD data
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Figure 4.9: Estimates of Gompertz parameters 𝑎 (left) and 𝑏 (right) with 95% confidence intervals
based on data for Quebec females between ages 60 and 109 from the CHMD. Fitted linear and
constant trend, respectively, is marked by red, dashed line.

4.7.8 Derivation of FICMAE for the model with cohort effects
We derive formulas for the FICMAE under the framework of local misspecification (4.3)
for the setting that the parameter vector 𝜸 has dimension 𝑞 > 1, but only its first compo-
nent is subject to a boundary constraint, 𝛾1 ≥ 𝛾01.

A candidate model 𝑀 includes the components 𝛾 𝑗 for 𝑗 ∈ 𝑀 , while the remaining
components, that is, 𝛾 𝑗 for 𝑗 ∈ 𝑀𝑐 = {1, ..., 𝑞}\𝑀 , are fixed at the respective values
in 𝜸0. Thus, the focus estimator for model 𝑀 is ˆ̀𝑀 = `(�̂�𝑀 , �̂�𝑀 , 𝜸0,𝑀𝑐 ) with the
maximum likelihood estimator (�̂�>𝑀 , �̂�>

𝑀 )> for model 𝑀 . The FICMAE (𝑀) of a model 𝑀

is, as before, determined as an estimate of E[|Λ𝑀 |], where
√
𝑛( ˆ̀𝑀 − `true)

𝑑−→ Λ𝑀 . The
limiting results will again involve Λ0 and 𝝎, defined in Section 4.3.2, where 𝝎 is now a
vector of length 𝑞. Similarly, we now consider normal random vectors

𝑫 ∼ N𝑞 (𝜹, 𝑄) and 𝑬 = 𝑄−1𝑫 ∼ N𝑞 (𝑄−1𝜹, 𝑄−1),

independent of Λ0, and the 𝑞 × 𝑞 lower-right submatrix 𝑄 of the inverse information
matrix 𝐽−1

full, which corresponds to 𝜸.
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The limiting distribution of focus estimators ˆ̀𝑀 under the framework (4.3) for the
case that some or all of the components of 𝜸 are subject to a boundary constraint is given
in Theorem 10.2 of Claeskens and Hjort (2008) as

√
𝑛( ˆ̀𝑀 − `true)

𝑑−→ Λ𝑀 = Λ0 + 𝝎> (𝜹 − 𝜋>𝑀 �̂�𝑀 ),

where �̂�𝑀 is the random maximizer of 𝑬>
𝑀 𝒕 − 1

2 𝒕
>𝑄−1

𝑀
𝒕 over all 𝒕 ∈ Ω𝑀 . Here, the

set Ω𝑀 ⊂ R |𝑀 | describes the parameter space of (𝜸𝑀 − 𝜸0,𝑀 ) and 𝜋𝑀 is a projection
matrix of dimension |𝑀 | × 𝑞 mapping a vector 𝒗 = (𝑣1, 𝑣2, ..., 𝑣𝑞)> onto the vector 𝒗𝑀
that contains the |𝑀 | components 𝑣 𝑗 for 𝑗 ∈ 𝑀 . In particular, we have 𝑬𝑀 = 𝜋𝑀𝑬 ∼
N |𝑀 | (𝜋𝑀𝑄−1𝜹, 𝑄−1

𝑀
) and 𝑄𝑀 = (𝜋𝑀𝑄−1𝜋>

𝑀
)−1.

In the following, we will consider different types of candidate models 𝑀 and deter-
mine the limiting risk E[|Λ𝑀 |] based on the specific Ω𝑀 and the resulting �̂�𝑀 . The
FICMAE is obtained by replacing the unknowns 𝜹, 𝝎, 𝜏2

0 , and 𝑄 in the formulas for
E[|Λ𝑀 |] by their estimates.

For some choices of the focus parameter `, the derivations given below need to be
adapted. If, for example, ` = 𝜎2

𝑐 , it follows that 𝜕`

𝜕𝜽 = 0, such that 𝜏2
0 = 0 and the

variable Λ0 is deterministic.

𝑴 = ∅

If 𝑀 = ∅, the focus estimator ˆ̀null converges to a normal distribution, Λ𝑀 = (Λ0+𝝎>𝜹) ∼
N (𝝎>𝜹, 𝜏2

0 ). Hence, E[|Λ𝑀 |] is calculated as the expected value of the folded normal
random variable |Λ0 + 𝝎>𝜹 |, so

E[|Λ∅ |] = 2𝜏0𝜙
(
𝝎>𝜹

𝜏0

)
+ 2𝝎>𝜹

[
Φ

(
𝝎>𝜹

𝜏0

)
− 1

2

]
. (4.15)

𝑴 ∌ 1

If 1 ∉ 𝑀 , the parameter vector 𝜸𝑀 is not subject to boundary constraints, such that
Ω𝑀 = R |𝑀 | and �̂�𝑀 = 𝑄𝑀𝑬𝑀 . The limiting variable Λ𝑀 = Λ0 +𝝎> (𝜹 − 𝜋>

𝑀
𝑄𝑀𝑬𝑀 ) is

a linear transformation of the normal random vector (Λ0, (𝑄𝑀𝑬𝑀 )>)> and is therefore
normally distributed with mean𝑚𝑀 = 𝝎> (𝐼−𝑉𝑀𝑄−1)𝜹 and variance 𝜏2

𝑀
= 𝜏2

0 +𝝎
>𝑉𝑀𝝎,

where 𝑉𝑀 = 𝜋>
𝑀
𝑄𝑀 𝜋𝑀 . Thus, the limiting 𝐿1-risk of Λ𝑀 is again found as the mean of

a folded normal distribution,

E[|Λ𝑀 |] = 2𝜏𝑀𝜙
(
𝑚𝑀

𝜏𝑀

)
+ 2𝑚𝑀

[
Φ

(
𝑚𝑀

𝜏𝑀

)
− 1

2

]
.
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𝑴 = {1}

If 𝑀 = {1}, that is, the model 𝑀 includes only the boundary parameter 𝛾1, the parameter
space is restricted to the non-negative real numbers, Ω{1} = R+

0 . Therefore, we have
𝑡𝑀 = 0 · 𝟙{𝑄𝑀𝐸𝑀 ≤0} +𝑄𝑀𝐸𝑀 · 𝟙{𝑄𝑀𝐸𝑀>0}. The limiting variable is then given by

Λ{1} = Λ0 + 𝝎>𝜹 · 𝟙{𝑄𝑀𝐸𝑀 ≤0} + 𝝎> (𝜹 − 𝜋>𝑀𝑄𝑀𝐸𝑀 ) · 𝟙{𝑄𝑀𝐸𝑀>0},

and the risk E[|Λ{1} |] can be calculated as

E[|Λ{1} | | 𝑄𝑀𝐸𝑀 ≤ 0]P[𝑄𝑀𝐸𝑀 ≤ 0] + E[|Λ{1} | | 𝑄𝑀𝐸𝑀 > 0]P[𝑄𝑀𝐸𝑀 > 0]
= E[|Λ0 + 𝝎>𝜹 |]P[𝑄𝑀𝐸𝑀 ≤ 0]

+ E[|Λ0 + 𝝎> (𝜹 − 𝜋>𝑀𝑄𝑀𝐸𝑀 ) | | 𝑄𝑀𝐸𝑀 > 0]P[𝑄𝑀𝐸𝑀 > 0] .

The first expectation was given in (4.15) and the computation of the second expecta-
tion follows along the lines of the computation of the second expectation in (4.12), see
Section 4.7.4. We consider the normal random vector 𝒀 = (Λ0 + 𝝎> (𝜹 − 𝜋>

𝑀
𝑄𝑀𝐸𝑀 ),

𝑄𝑀𝐸𝑀 )>, which is a linear transformation of 𝑿 = (Λ0, 𝑄𝑀𝐸𝑀 )>, and note that E[|Λ0 +
𝝎> (𝜹 − 𝜋>

𝑀
𝑄𝑀𝐸𝑀 ) | | 𝑄𝑀𝐸𝑀 > 0] equals E[|𝑌1 | | 𝑌2 > 0] and thus,

E[𝑌1 | 𝑌1 > 0, 𝑌2 > 0]P[𝑌1 > 0 | 𝑌2 > 0] + E[−𝑌1 | −𝑌1 > 0, 𝑌2 > 0]P[𝑌1 ≤ 0 | 𝑌2 > 0] .

In order to apply the results of Tallis (1961) on the expected values of the components
of bivariate truncated normal distributions with zero mean vector and unit variances, we
work with the transformed 𝒁 with components 𝑍𝑘 = 𝜏−1

𝑌𝑘
(𝑌𝑘 − 𝑚𝑌𝑘 ), where 𝑚𝑌𝑘 = E[𝑌𝑘 ]

and 𝜏2
𝑌𝑘

= var[𝑌𝑘 ], 𝑘 = 1, 2. This yields

E[𝑌1 | 𝑌1 > 0, 𝑌2 > 0] = 𝜏𝑌1E[𝑍1 | 𝑍1 > 𝑢1, 𝑍2 > 𝑢2] + 𝑚𝑌1

= 𝜏𝑌1

𝜙(𝑢1)Φ
(
−𝑢2−𝜌𝑢1√

1−𝜌2

)
+ 𝜌𝜙(𝑢2)Φ

(
−𝑢1−𝜌𝑢2√

1−𝜌2

)
P[𝑌1 > 0, 𝑌2 > 0] + 𝑚𝑌1 ,

where 𝑢𝑘 = −𝑚𝑌𝑘/𝜏𝑌𝑘 , 𝜌 = 𝜌𝑌 𝜏
−1
𝑌1
𝜏−1
𝑌2

, and 𝜌𝑌 = cov(𝑌1, 𝑌2), and, analogously,

E[−𝑌1 | −𝑌1 > 0, 𝑌2 > 0] = 𝜏𝑌1

𝜙(−𝑢1)Φ
(
−𝑢2−𝜌𝑢1√

1−𝜌2

)
− 𝜌𝜙(𝑢2)Φ

(
𝑢1−𝜌𝑢2√

1−𝜌2

)
P[𝑌1 ≤ 0, 𝑌2 > 0] − 𝑚𝑌1 .

Combining these two results and using the symmetry of the normal distribution as well
as that P[𝑌1 ≤ 0 | 𝑌2 > 0] = 1 − P[𝑌1 > 0 | 𝑌2 > 0], we find that E[|Λ0 + 𝝎> (𝜹 −
𝜋>
𝑀
𝑄𝑀𝐸𝑀 ) | | 𝑄𝑀𝐸𝑀 > 0] is equal to

𝜏𝑌1

P[𝑌2 > 0]

{
2𝜙(𝑢1)Φ

(
−𝑢2 − 𝜌𝑢1√︁

1 − 𝜌2

)
+ 𝜌𝜙(𝑢2)

[
2Φ

(
−𝑢1 − 𝜌𝑢2√︁

1 − 𝜌2

)
− 1

]}
+ 𝑚𝑌1 (2P[𝑌1 > 0 | 𝑌2 > 0] − 1) .



4.7 Supplementary material 95

Consequently, the limiting risk E[|Λ{1} |] is found to be

E[|Λ{1} |] =
{
2𝜏0𝜙

(
𝝎>𝜹

𝜏0

)
+ 2𝝎>𝜹

[
Φ

(
𝝎>𝜹

𝜏0

)
− 1

2

]}
P[𝑌2 ≤ 0]

+ 2𝜏𝑌1

{
𝜙(𝑢1)Φ

(
−𝑢2 − 𝜌𝑢1√︁

1 − 𝜌2

)
+ 𝜌𝜙(𝑢2)

[
Φ

(
−𝑢1 − 𝜌𝑢2√︁

1 − 𝜌2

)
− 1

2

]}
+ 2𝑚𝑌1

(
P[𝑌1 > 0 | 𝑌2 > 0] − 1

2

)
P[𝑌2 > 0] .

𝑴 % {1}

In the last case, the model 𝑀 includes the boundary parameter 𝛾1, but also some or all
of the remaining components of 𝜸. The maximizer �̂�𝑀 of 𝑬>

𝑀 𝒕 − 1
2 𝒕

>𝑄−1
𝑀
𝒕 has to be

determined over the parameter space Ω𝑀 = R+
0 × R |𝑀 |−1. If the first component of

𝑄𝑀𝑬𝑀 is positive, then �̂�𝑀 = 𝑄𝑀𝑬𝑀 ; but if the first component of 𝑄𝑀𝑬𝑀 is negative
or zero, then 𝑡1 is set to zero and the remaining components of �̂�𝑀 maximize 𝑬>

𝑀 𝒕 −
1
2 𝒕

>𝑄−1
𝑀
𝒕 for 𝑡1 = 0. More formally, we have

�̂�𝑀 = 𝐺>
𝑀𝑅𝑀𝐺𝑀𝑬𝑀 · 𝟙{𝐹𝑀𝑄𝑀𝑬𝑀 ≤0} +𝑄𝑀𝑬𝑀 · 𝟙{𝐹𝑀𝑄𝑀𝑬𝑀>0},

where we defined a 1 × |𝑀 | projection matrix 𝐹𝑀 mapping a vector of length |𝑀 | onto
its first component, and a ( |𝑀 | − 1) × |𝑀 | projection matrix 𝐺𝑀 mapping a vector of
length |𝑀 | onto all but its first component, as well as 𝑅𝑀 = (𝐺𝑀𝑄−1

𝑀
𝐺>
𝑀
)−1. The limiting

variable takes the form

Λ𝑀 = Λ0 + 𝝎> (𝜹 − 𝜋>𝑀𝐺>
𝑀𝑅𝑀𝐺𝑀𝑬𝑀 ) · 𝟙{𝐹𝑀𝑄𝑀𝑬𝑀 ≤0}

+ 𝝎> (𝜹 − 𝜋>𝑀𝑄𝑀𝑬𝑀 ) · 𝟙{𝐹𝑀𝑄𝑀𝑬𝑀>0},

such that the limiting risk of the focus estimator ˆ̀𝑀 is given by

E[|Λ𝑀 |] = E[|Λ0 + 𝝎> (𝜹 − 𝜋>𝑀𝐺>
𝑀𝑅𝑀𝐺𝑀𝑬𝑀 ) | | 𝐹𝑀𝑄𝑀𝑬𝑀 ≤ 0]P[𝐹𝑀𝑄𝑀𝑬𝑀 ≤ 0]

+ E[|Λ0 + 𝝎> (𝜹 − 𝜋>𝑀𝑄𝑀𝑬𝑀 ) | | 𝐹𝑀𝑄𝑀𝑬𝑀 > 0]P[𝐹𝑀𝑄𝑀𝑬𝑀 > 0] .

For computing the first expectation, we consider the normal random vector

𝑿 =

(
Λ0
𝑬𝑀

)
∼ N1+|𝑀 |

((
0

𝜋𝑀𝑄
−1𝜹

)
,

(
𝜏2

0 0
0 𝑄−1

𝑀

))
,

and its linear transformation

𝒀 =

(
Λ0 + 𝝎> (𝜹 − 𝜋>

𝑀
𝐺>
𝑀
𝑅𝑀𝐺𝑀𝑬𝑀 )

𝐹𝑀𝑄𝑀𝑬𝑀

)
∼ N2

((
𝑚𝑌1

𝑚𝑌2

)
,

(
𝜏2
𝑌1

𝜌𝑌

𝜌𝑌 𝜏2
𝑌2

))
.

One can show that 𝜌𝑌 = −𝝎>𝜋>
𝑀
𝐺>
𝑀
𝑅𝑀𝐺𝑀𝐹

>
𝑀

= 0. Consequently, the components
of 𝒀 are jointly normally distributed and uncorrelated, and hence, independent. The first
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expectation in the expression for E[|Λ𝑀 |] therefore simplifies to E[|𝑌1 |], which is the
mean of a folded normal random variable, that is,

E[|Λ0 + 𝝎> (𝜹 − 𝜋>𝑀𝐺>
𝑀𝑅𝑀𝐺𝑀𝑬𝑀 ) |] = 2𝜏𝑌1𝜙

(
𝑚𝑌1

𝜏𝑌1

)
+ 2𝑚𝑌1

[
Φ

(
𝑚𝑌1

𝜏𝑌1

)
− 1

2

]
.

For computing the second expectation, we define another linear transformation of 𝑿,
namely,

𝑾 =

(
Λ0 + 𝝎> (𝜹 − 𝜋>

𝑀
𝑄𝑀𝑬𝑀 )

𝐹𝑀𝑄𝑀𝑬𝑀

)
∼ N2

((
𝑚𝑊1

𝑚𝑊2

)
,

(
𝜏2
𝑊1

𝜌𝑊

𝜌𝑊 𝜏2
𝑊2

))
,

such that

E[|Λ0 + 𝝎> (𝜹 − 𝜋>𝑀𝑄𝑀𝑬𝑀 ) | | 𝐹𝑀𝑄𝑀𝑬𝑀 > 0] = E[|𝑊1 | | 𝑊2 > 0] .

Using once again the law of total expectation, the latter can be calculated as

E[𝑊1 | 𝑊1 > 0,𝑊2 > 0]P[𝑊1 > 0 | 𝑊2 > 0]
+ E[−𝑊1 | −𝑊1 > 0,𝑊2 > 0]P[𝑊1 ≤ 0 | 𝑊2 > 0] .

We rewrite these expectations in terms of a centered random vector 𝒁 with unit variances,
where 𝑍𝑘 = 𝜏−1

𝑊𝑘
(𝑊𝑘 − 𝑚𝑊𝑘

), 𝑘 = 1, 2, to apply the results of Tallis (1961),

E[𝑊1 | 𝑊1 > 0,𝑊2 > 0] = 𝜏𝑊1E[𝑍1 | 𝑍1 > 𝑢1, 𝑍2 > 𝑢2] + 𝑚𝑊1

= 𝜏𝑊1

𝜙(𝑢1)Φ
(
−𝑢2−𝜌𝑢1√

1−𝜌2

)
+ 𝜌𝜙(𝑢2)Φ

(
−𝑢1−𝜌𝑢2√

1−𝜌2

)
P[𝑊1 > 0,𝑊2 > 0] + 𝑚𝑊1 ,

with 𝑢𝑘 = −𝑚𝑊𝑘
/𝜏𝑊𝑘

and 𝜌 = 𝜌𝑊 𝜏
−1
𝑊1
𝜏−1
𝑊2

, and

E[−𝑊1 | −𝑊1 > 0,𝑊2 > 0] = 𝜏𝑊1

𝜙(𝑢1)Φ
(
−𝑢2−𝜌𝑢1√

1−𝜌2

)
− 𝜌𝜙(𝑢2)Φ

(
𝑢1−𝜌𝑢2√

1−𝜌2

)
P[𝑊1 ≤ 0,𝑊2 > 0] − 𝑚𝑊1 .

Combining these two expressions, we obtain that E[|𝑊1 | | 𝑊2 > 0] equals

𝜏𝑊1

P[𝑊2 > 0]

{
2𝜙(𝑢1)Φ

(
−𝑢2 − 𝜌𝑢1√︁

1 − 𝜌2

)
+ 𝜌𝜙(𝑢2)

[
2Φ

(
−𝑢1 − 𝜌𝑢2√︁

1 − 𝜌2

)
− 1

]}
+ 𝑚𝑊1 (2P[𝑊1 > 0 | 𝑊2 > 0] − 1) .

Finally, the above results lead to
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E[|Λ𝑀 |] =
{
2𝜏𝑌1𝜙

(
𝑚𝑌1

𝜏𝑌1

)
+ 2𝑚𝑌1

[
Φ

(
𝑚𝑌1

𝜏𝑌1

)
− 1

2

]}
P[𝑊2 ≤ 0]

+ 2𝜏𝑊1

{
𝜙(𝑢1)Φ

(
−𝑢2 − 𝜌𝑢1√︁

1 − 𝜌2

)
+ 𝜌𝜙(𝑢2)

[
Φ

(
−𝑢1 − 𝜌𝑢2√︁

1 − 𝜌2

)
− 1

2

]}
+ 2𝑚𝑊1

(
P[𝑊1 > 0 | 𝑊2 > 0] − 1

2

)
P[𝑊2 > 0] .

4.7.9 A modified AIC for the model with cohort effects
In this section, we study the AIC for the (gamma-)Gompertz models with cohort effects
which are listed in Table 4.3. We show that the standard AIC is biased as an estimator of
the Akaike information for the models that include the boundary parameter 𝜎2

0 and define
a modified AIC∗ with a bias correction term.

The modified AIC

We work within the framework of local misspecification (4.3) for the setting that the
parameter vector 𝜸 has dimension 𝑞 > 1, and only its first component is subject to a
boundary constraint, 𝛾1 ≥ 𝛾01. The candidate models 𝑀 always include the full 𝑑-
dimensional parameter vector 𝜽 , but only those components 𝛾 𝑗 of 𝜸 for which 𝑗 ∈ 𝑀 .
The standard AIC for such a model 𝑀 is defined as

AIC𝑀 = −2ℓ𝑀 (�̂�𝑀 ;𝑌 ) + 2(𝑑 + |𝑀 |),

where the log-likelihood ℓ𝑀 for a sample 𝑌 under model 𝑀 is evaluated at the maximum
likelihood estimate under model 𝑀 , that is, �̂�𝑀 = (�̂�>𝑀 , �̂�>

𝑀 )>. Let us denote by 𝜋𝑀 a
|𝑀 | × 𝑞 projection matrix mapping a vector 𝒗 = (𝑣1, 𝑣2, ..., 𝑣𝑞)> onto the vector 𝒗𝑀 that
contains the |𝑀 | components 𝑣 𝑗 for 𝑗 ∈ 𝑀 , and by 𝑄 the 𝑞 × 𝑞 lower-right submatrix of
the information matrix 𝐽−1

full, which corresponds to 𝜸, and finally 𝑄𝑀 = (𝜋𝑀𝑄−1𝜋>
𝑀
)−1.

We will find that for models 𝑀 that include the boundary parameter 𝛾1 = 𝜎2
0 , the standard

AIC has bias 2Φ
(
−[𝑄𝑀 ]−1/2

11 [𝑄𝑀 𝜋𝑀𝑄−1𝜹]1

)
, where [𝑄𝑀 ]11 is the top-left element of

𝑄𝑀 and [𝑄𝑀 𝜋𝑀𝑄−1𝜹]1 is the first component of 𝑄𝑀 𝜋𝑀𝑄−1𝜹. We therefore define a
modified version of the AIC for the models 𝑀 , listed in Table 4.3, as

AIC∗
𝑀 =

{
−2ℓ𝑀 (�̂�𝑀 ;𝑌 ) + 2(𝑑 + |𝑀 |), if 𝑀 ∌ 1,
−2ℓ𝑀 (�̂�𝑀 ;𝑌 ) + 2(𝑑 + |𝑀 |) − 2Φ

(
−[�̂�𝑀 ]−1/2

11 [�̂�𝑀 𝜋𝑀 �̂�−1�̂�]1

)
, if 𝑀 3 1.

(4.16)

Outline of proof

We give a sketch of the derivations leading to the modified AIC in (4.16) here and provide
further details on pp. 101 ff.
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The AIC of a model 𝑀 is derived as an asymptotically unbiased estimator of the
expected relative Kullback-Leibler distance

− 2E𝑌 [E𝑋 [ln 𝑓 (𝑋; �̂�𝑀 (𝑌 ))]], (4.17)

which measures the distance between the true underlying distribution from which 𝑋 and
𝑌 are generated and the best parametric approximation 𝑓 (·, �̂�𝑀 ) (Akaike, 1974). An
unbiased estimator of the Akaike information (4.17) is given by

−2 ℓ𝑀 (�̂�𝑀 ;𝑌 ) + 2E𝑌 [ℓ𝑀 (�̂�𝑀 ;𝑌 ) − ℓ𝑀 (𝜼0,𝑀 ;𝑌 )]︸                                       ︷︷                                       ︸
=:𝐴1

+ 2E𝑌 [E𝑋 [ℓ𝑀 (𝜼0,𝑀 ; 𝑋) − ℓ𝑀 (�̂�𝑀 ; 𝑋)]]︸                                               ︷︷                                               ︸
=:𝐴2

,
(4.18)

where the MLE �̂�𝑀 = �̂�𝑀 (𝑌 ) is based on the sample 𝑌 of size 𝑛. Using a Taylor
expansion of the log-likelihood of model 𝑀 evaluated at the MLE �̂�𝑀 about the null
point 𝜼0,𝑀 = (𝜽>0 , 𝜸>

0,𝑀 )>, the term 𝐴2 is found to be asymptotically equivalent to

− 2E𝑌 [
√
𝑛(�̂�𝑀 − 𝜼0,𝑀 )>]

(
𝐽01𝜹

𝜋𝑀 𝐽11𝜹

)
︸                                       ︷︷                                       ︸

=:𝐴21

+E𝑌 [
√
𝑛(�̂�𝑀 − 𝜼0,𝑀 )>𝐽𝑀

√
𝑛(�̂�𝑀 − 𝜼0,𝑀 )]︸                                                   ︷︷                                                   ︸

=:𝐴22

.

(4.19)
Here, 𝐽𝑀 is the information matrix for model 𝑀 , with blocks 𝐽00, 𝐽01,𝑀 = 𝐽01𝜋

>
𝑀

,
𝐽10,𝑀 = 𝜋𝑀 𝐽10, and 𝐽11,𝑀 = 𝜋𝑀 𝐽11𝜋

>
𝑀

. The derivation of result (4.19) involves the lim-
iting distribution of the score vector under model 𝑀 . Let us denote by 𝑼(𝑦) and 𝑽 (𝑦) the
score functions with respect to 𝜽 and 𝜸 of the log-likelihood of a single observation 𝑦 from
𝑓true in (4.3), where 𝑼 and 𝑽 are evaluated at the null model (𝜽>0 , 𝜸>

0 )
>. For a sample 𝑌

of size 𝑛, the averaged score vectors are �̄�𝑛 = 𝑛−1 ∑𝑛
𝑖=1 𝑼(𝑌𝑖) and �̄�𝑛 = 𝑛−1 ∑𝑛

𝑖=1 𝑽 (𝑌𝑖).
According to the multivariate central limit theorem, and under the framework (4.3), the
score vector of model 𝑀 converges in distribution to a normal random vector (see Hjort
and Claeskens, 2003, for a proof in the regular setting that can be seen to carry over to the
current setting),( √

𝑛�̄�𝑛√
𝑛�̄�𝑛,𝑀

)
𝑑−→

(
𝐽01𝜹

𝜋𝑀 𝐽11𝜹

)
+

(
𝑲
𝑵𝑀

)
, with

(
𝑲
𝑵𝑀

)
∼ N𝑑+|𝑀 | (0, 𝐽𝑀 ). (4.20)

Further approximations of the expressions 𝐴21 and 𝐴22 in (4.19) rely on the limiting
distribution of the MLE �̂�𝑀 under model 𝑀 . As stated in Theorem 10.2 in Claeskens and
Hjort (2008), under the framework (4.3) in case some or all components of 𝜸 are subject
to boundary constraints, the MLE tends to the following limiting variable,( √

𝑛(�̂�𝑀 − 𝜽0)√
𝑛(�̂�𝑀 − 𝜸0,𝑀 )

)
𝑑−→

(
𝐽−1

00 (𝐽01𝜹 + 𝑲 − 𝐽01,𝑀 �̂�𝑀 )
�̂�𝑀

)
, (4.21)
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where �̂�𝑀 is the random maximizer of 𝑬>
𝑀 𝒕 − 1

2 𝒕
>𝑄−1

𝑀
𝒕 over all 𝒕 ∈ Ω𝑀 , and Ω𝑀 is the

parameter space of (𝜸𝑀 − 𝜸0,𝑀 ). Based on this, we obtain

𝐴21 ≈ 𝜹>𝐽10𝐽
−1
00 𝐽01𝜹 + E[ �̂�𝑀 ]>𝜋𝑀𝑄−1𝜹,

𝐴22 ≈ 𝜹>𝐽10𝐽
−1
00 𝐽01𝜹 + E[𝑲>𝐽−1

00 𝑲] + E[ �̂�>𝑀𝑄−1
𝑀 �̂�𝑀 ] .

(4.22)

As for a 𝑘-dimensional random vector 𝑿 with E[𝑿] = 𝒎, Cov[𝑿] = Σ, and a constant
𝑘 × 𝑘 symmetric matrix 𝐵, it holds that

E[𝑿>𝐵𝑿] = tr(𝐵Σ) + 𝒎>𝐵𝒎, (4.23)

where tr(·) denotes the trace of a matrix, we can rewrite 𝐴22 in (4.22) as

𝐴22 ≈ 𝜹>𝐽10𝐽
−1
00 𝐽01𝜹 + 𝑑 + tr(𝑄−1

𝑀E[ �̂�𝑀 �̂�
>
𝑀 ]). (4.24)

Regarding 𝐴1 in (4.18), it can be shown to be asymptotically equivalent to 𝐴22 in (4.19).
Combining the above results yields

− 2ℓ𝑀 (�̂�𝑀 ;𝑌 ) + 2𝑑 − 2E[ �̂�𝑀 ]>𝜋𝑀𝑄−1𝜹 + 2tr(𝑄−1
𝑀E[ �̂�𝑀 �̂�

>
𝑀 ]) (4.25)

as an asymptotically unbiased estimator of the Akaike information (4.17) for model 𝑀 .
Similar to the derivations of the FICMAE in Section 4.7.8, we need to consider the different
types of candidate models 𝑀 with the specific Ω𝑀 and resulting �̂�𝑀 to determine more
specific forms of (4.25).

𝑴 = ∅

If 𝑀 = ∅, then (4.25) simplifies to the standard AIC,

AIC∗
∅ = −2ℓnull (�̂�null;𝑌 ) + 2𝑑.

𝑴 ∌ 1

If 1 ∉ 𝑀 , the parameter vector 𝜸𝑀 is not subject to boundary constraints, such that Ω𝑀 =

R |𝑀 | and �̂�𝑀 = 𝑄𝑀𝑬𝑀 ∼ N |𝑀 | (𝑄𝑀 𝜋𝑀𝑄−1𝜹, 𝑄𝑀 ). The term tr(𝑄−1
𝑀
E[ �̂�𝑀 �̂�

>
𝑀 ]) is then

calculated as

tr(𝑄−1
𝑀Cov[ �̂�𝑀 ]) + tr(𝑄−1

𝑀E[ �̂�𝑀 ]E[ �̂�𝑀 ]>) = |𝑀 | + 𝜹>𝑄−1𝜋>𝑀𝑄𝑀 𝜋𝑀𝑄
−1𝜹,

because the trace is a linear mapping and invariant under cyclic permutations. Hence, the
asymptotically unbiased estimator (4.25) in this case again takes the form of the standard
AIC,

AIC∗
𝑀 = −2ℓ𝑀 (�̂�𝑀 ;𝑌 ) + 2(𝑑 + |𝑀 |).
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𝑴 = {1}

If the model 𝑀 includes only the boundary parameter 𝛾1, then

�̂�𝑀 = 0 · 𝟙{𝑄𝑀𝐸𝑀 ≤0} +𝑄𝑀𝐸𝑀 · 𝟙{𝑄𝑀𝐸𝑀>0},

with the indicator function 𝟙{· }, a scalar 𝑄𝑀 , and 𝑄𝑀𝐸𝑀 ∼ N1 (𝑄𝑀 𝜋𝑀𝑄−1𝜹, 𝑄𝑀 ).
Consequently, the moments of 𝑡𝑀 can be computed as

E[𝑡𝑀 ] = 0 · P[𝑄𝑀𝐸𝑀 ≤ 0] + E[𝑄𝑀𝐸𝑀 | 𝑄𝑀𝐸𝑀 > 0] · P[𝑄𝑀𝐸𝑀 > 0],
E[𝑡2𝑀 ] = E[(𝑄𝑀𝐸𝑀 )2 | 𝑄𝑀𝐸𝑀 > 0] · P[𝑄𝑀𝐸𝑀 > 0] .

Applying the formulas for the moments of the truncated normal distribution, we find that

E[𝑡𝑀 ] = 𝑄1/2
𝑀
𝑢 [1 −Φ(−𝑢)] +𝑄1/2

𝑀
𝜙(−𝑢),

E[𝑡2𝑀 ] =
{
𝑄𝑀

[
1 − 𝑢𝜙(−𝑢)

1 −Φ(−𝑢) −
(

𝜙(−𝑢)
1 −Φ(−𝑢)

)2
]
+

[
𝑄

1/2
𝑀
𝑢 +𝑄1/2

𝑀

𝜙(−𝑢)
1 −Φ(−𝑢)

]2
}

· [1 −Φ(−𝑢)],

where 𝑢 = E[𝑄𝑀𝐸𝑀 ]/
√︁

var[𝑄𝑀𝐸𝑀 ] = 𝑄1/2
𝑀
𝜋𝑀𝑄

−1𝜹.
After inserting these expressions into formula (4.25), some straightforward calcula-

tions and replacing the unknowns by their estimates lead to

AIC∗
{1} = −2ℓ{1} (�̂� {1};𝑌 ) + 2(𝑑 + 1) − 2Φ(−�̂�1/2

{1}𝜋{1}�̂�
−1�̂�).

𝑴 % {1}

If the model 𝑀 includes the boundary parameter 𝛾1 and some or all of the remaining
components of 𝜸, then

�̂�𝑀 = 𝐺>
𝑀𝑅𝑀𝐺𝑀𝑬𝑀 · 𝟙{𝐹𝑀𝑄𝑀𝑬𝑀 ≤0} +𝑄𝑀𝑬𝑀 · 𝟙{𝐹𝑀𝑄𝑀𝑬𝑀>0},

where 𝐹𝑀 is a 1 × |𝑀 | projection matrix mapping a vector of length |𝑀 | onto its first
component, 𝐺𝑀 is a ( |𝑀 | − 1) × |𝑀 | projection matrix mapping such a vector onto all
but its first component, and 𝑅𝑀 = (𝐺𝑀𝑄−1

𝑀
𝐺>
𝑀
)−1. The moments of �̂�𝑀 can again be

determined based on the law of total expectation, that is,

E[ �̂�𝑀 ] = E[𝐺>
𝑀𝑅𝑀𝐺𝑀𝑬𝑀 | 𝐹𝑀𝑄𝑀𝑬𝑀 ≤ 0] · P[𝐹𝑀𝑄𝑀𝑬𝑀 ≤ 0]

+ E[𝑄𝑀𝑬𝑀 | 𝐹𝑀𝑄𝑀𝑬𝑀 > 0] · P[𝐹𝑀𝑄𝑀𝑬𝑀 > 0] .

We first note that 𝐺>
𝑀
𝑅𝑀𝐺𝑀𝑬𝑀 and 𝐹𝑀𝑄𝑀𝑬𝑀 are independent (cf. p. 95), such that

the condition 𝐹𝑀𝑄𝑀𝑬𝑀 ≤ 0 in the first expectation can be dropped. Moreover, from
𝐹𝑀𝑄𝑀𝑬𝑀 ∼ N1 (𝐹𝑀𝑄𝑀 𝜋𝑀𝑄−1𝜹, 𝐹𝑀𝑄𝑀𝐹

>
𝑀
), we have P[𝐹𝑀𝑄𝑀𝑬𝑀 ≤ 0] = Φ(−𝑢𝑀 )
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with 𝑢𝑀 = (𝐹𝑀𝑄𝑀𝐹>
𝑀
)−1/2𝐹𝑀𝑄𝑀 𝜋𝑀𝑄−1𝜹 = [𝑄𝑀 ]−1/2

11 [𝑄𝑀 𝜋𝑀𝑄−1𝜹]1. Finally, the
moments of 𝑄𝑀𝑬𝑀 conditional on 𝐹𝑀𝑄𝑀𝑬𝑀 > 0 are found by applying the results
of Gupta and Tracy (1978) on truncated trivariate normal distributions. In the end, we
arrive at

E[ �̂�𝑀 ] = 𝐺>
𝑀𝑅𝑀𝐺𝑀 𝜋𝑀𝑄

−1𝜹 · Φ(−𝑢𝑀 )
+𝑄𝑀 𝜋𝑀𝑄−1𝜹 · [1 −Φ(−𝑢𝑀 )] + (𝐹𝑀𝑄𝑀𝐹>

𝑀 )−1/2𝑄𝑀𝐹
>
𝑀𝜙(−𝑢𝑀 ),

E[ �̂�𝑀 �̂�
>
𝑀 ] = 𝐺>

𝑀𝑅𝑀𝐺𝑀Φ(−𝑢𝑀 ) + 𝐺>
𝑀𝑅𝑀𝐺𝑀 𝜋𝑀𝑄

−1𝜹𝜹>𝑄−1𝜋>𝑀𝐺
>
𝑀𝑅𝑀𝐺𝑀Φ(−𝑢𝑀 )

+𝑄𝑀 [1 −Φ(−𝑢𝑀 )] −
𝑄𝑀𝐹

>
𝑀
𝐹𝑀𝑄𝑀

𝐹𝑀𝑄𝑀𝐹
>
𝑀

𝑢𝑀𝜙(−𝑢𝑀 )

+ 2𝑄𝑀 𝜋𝑀𝑄−1𝜹
𝐹𝑀𝑄𝑀

(𝐹𝑀𝑄𝑀𝐹>
𝑀
)1/2 𝜙(−𝑢𝑀 )

+𝑄𝑀 𝜋𝑀𝑄−1𝜹𝜹>𝑄−1𝜋>𝑀𝑄𝑀 [1 −Φ(−𝑢𝑀 )] . (4.26)

Inserting these expressions in (4.25), using some algebra, and replacing the unknowns by
their estimates results in

AIC∗
𝑀 = −2ℓ𝑀 (�̂�𝑀 ;𝑌 ) + 2(𝑑 + |𝑀 |) − 2Φ

(
−(𝐹𝑀 �̂�𝑀𝐹>

𝑀 )−1/2𝐹𝑀 �̂�𝑀 𝜋𝑀 �̂�
−1�̂�

)
.

Additional proofs and derivations

Proof of (4.19)

A Taylor expansion of the log-likelihood of model 𝑀 at the MLE �̂�𝑀 about 𝜼0,𝑀 yields

𝐴2 = 2E𝑌 [E𝑋 [−(�̂�𝑀 − 𝜼0,𝑀 )>𝑛�̄�𝑛,𝑀 (𝜼0,𝑀 ; 𝑋)

− 1
2
(�̂�𝑀 − 𝜼0,𝑀 )>H𝑀 (𝜼0,𝑀 ; 𝑋) (�̂�𝑀 − 𝜼0,𝑀 ) + 𝑅2]]

≈ E𝑌 [2
√
𝑛(�̂�𝑀 − 𝜼0,𝑀 )>E𝑋 [−

√
𝑛�̄�𝑛,𝑀 (𝜼0,𝑀 ; 𝑋)]

+ (�̂�𝑀 − 𝜼0,𝑀 )>E𝑋 [−H𝑀 (𝜼0,𝑀 ; 𝑋)] (�̂�𝑀 − 𝜼0,𝑀 )],

where �̄�𝑛,𝑀 = (�̄�>
𝑛 , �̄�

>
𝑛,𝑀 )>, H𝑀 is the Hessian matrix of the log-likelihood of model 𝑀 ,

and 𝑅2 is a remainder term with 𝑅2
𝑛→∞−→ 0. Using the limiting distribution of the

score (4.20) and that E𝑋 [−H𝑀 (𝜼0,𝑀 ; 𝑋)] = 𝑛𝐽𝑀 , we obtain (4.19).

Proof of (4.22)

Using the limiting distribution of the MLE given in (4.21), 𝐴21 can be rewritten as,

𝐴21 ≈ E
[
(𝐽01𝜹 + 𝑲 − 𝐽01,𝑀 �̂�𝑀 )>𝐽−1

00
]
𝐽01𝜹 + E[ �̂�𝑀 ]>𝜋𝑀 𝐽11𝜹

= 𝜹>𝐽10𝐽
−1
00 𝐽01𝜹 + E[𝑲]>𝐽−1

00 𝐽01𝜹 + E[ �̂�𝑀 ]>𝜋𝑀 (𝐽11 − 𝐽10𝐽
−1
00 𝐽01)𝜹.
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Because E[𝑲] = 0 and noting that 𝑄 = (𝐽11 − 𝐽10𝐽
−1
00 𝐽01)−1, this is the first part of (4.22).

Similarly, we can approximate 𝐴22,

𝐴22 ≈ E
[
(𝐽01𝜹 + 𝑲 − 𝐽01,𝑀 �̂�𝑀 )>𝐽−1

00 𝐽00𝐽
−1
00 (𝐽01𝜹 + 𝑲 − 𝐽01,𝑀 �̂�𝑀 )

+2(𝐽01𝜹 + 𝑲 − 𝐽01,𝑀 �̂�𝑀 )>𝐽−1
00 𝐽01,𝑀 �̂�𝑀 + �̂�

>
𝑀 𝐽11,𝑀 �̂�𝑀

]
= E

[
(𝐽01𝜹 + 𝑲)>𝐽−1

00 (𝐽01𝜹 + 𝑲)
]
− 2E

[
(𝐽01𝜹 + 𝑲)>𝐽−1

00 𝐽01,𝑀 �̂�𝑀
]

+ E[ �̂�>𝑀 𝐽10,𝑀 𝐽
−1
00 𝐽01,𝑀 �̂�𝑀 ] + 2E

[
(𝐽01𝜹 + 𝑲)>𝐽−1

00 𝐽01,𝑀 �̂�𝑀
]

− 2E[ �̂�>𝑀 𝐽10,𝑀 𝐽
−1
00 𝐽01,𝑀 �̂�𝑀 ] + E[ �̂�>𝑀 𝐽11,𝑀 �̂�𝑀 ]

= 𝜹>𝐽10𝐽
−1
00 𝐽01𝜹 + 2𝜹>𝐽10𝐽

−1
00 E[𝑲] + E[𝑲>𝐽−1

00 𝑲]
+ E[ �̂�>𝑀 (𝐽11,𝑀 − 𝐽10,𝑀 𝐽

−1
00 𝐽01,𝑀 ) �̂�𝑀 ],

which with E[𝑲] = 0 and 𝑄𝑀 = (𝐽11,𝑀 − 𝐽10,𝑀 𝐽
−1
00 𝐽01,𝑀 )−1 is the second part of (4.22).

Proof of (4.24)

According to (4.23), we have

E[𝑲>𝐽−1
00 𝑲] = tr(𝐽−1

00 𝐽00) + E[𝑲]>𝐽−1
00 E[𝑲] = 𝑑,

E[ �̂�>𝑀𝑄−1
𝑀 �̂�𝑀 ] = tr(𝑄−1

𝑀Cov[ �̂�𝑀 ]) + E[ �̂�𝑀 ]>𝑄−1
𝑀E[ �̂�𝑀 ]

= tr(𝑄−1
𝑀E[ �̂�𝑀 �̂�

>
𝑀 ]) − tr(𝑄−1

𝑀E[ �̂�𝑀 ]E[ �̂�𝑀 ]>) + E[ �̂�𝑀 ]>𝑄−1
𝑀E[ �̂�𝑀 ],

where the last two expressions cancel because the trace is invariant under cyclic permuta-
tions and the last term is scalar.

Proof of the asymptotic equivalence of 𝑨1 and 𝑨22 in (4.19)

To show that 𝐴1 in (4.18) is asymptotically equivalent to 𝐴22 in (4.19), we consider the
following Taylor expansion of the log-likelihood of model 𝑀 at the null point about the
MLE,

ℓ𝑀 (𝜼0,𝑀 ;𝑌 ) = ℓ𝑀 (�̂�𝑀 ;𝑌 ) + (𝜼0,𝑀 − �̂�𝑀 )>𝑛�̄�𝑛,𝑀 (�̂�𝑀 ;𝑌 )

+ 1
2
(𝜼0,𝑀 − �̂�𝑀 )>H𝑀 (�̂�𝑀 ;𝑌 ) (𝜼0,𝑀 − �̂�𝑀 ) + 𝑅1,

with a remainder term 𝑅1
𝑛→∞−→ 0. Then, we see that

𝐴1 = 2E𝑌 [ℓ𝑀 (�̂�𝑀 ;𝑌 ) − ℓ𝑀 (𝜼0,𝑀 ;𝑌 )]
= 2E𝑌 [(�̂�𝑀 − 𝜼0,𝑀 )>𝑛�̄�𝑛,𝑀 (�̂�𝑀 ;𝑌 )]

+ E𝑌 [(�̂�𝑀 − 𝜼0,𝑀 )> [−H𝑀 (�̂�𝑀 ;𝑌 )] (�̂�𝑀 − 𝜼0,𝑀 ) + 𝑅1] .
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The term involving the score vector is equal to zero. If the MLE �̂�𝑀 is an inner point of the
parameter space, then by definition �̄�𝑛,𝑀 (�̂�𝑀 ;𝑌 ) = 0. If some components of the MLE,
say �̂� 𝑗 for 𝑗 ∈ 𝐵 ⊂ 𝑀 , lie on the boundary of the parameter space, then �̄�𝑛 (�̂�𝑀 ;𝑌 ) = 0
and �̄�𝑛,𝐵𝑐 (�̂�𝑀 ;𝑌 ) = 0, while �̄�𝑛,𝐵 (�̂�𝑀 ;𝑌 ) ≠ 0, but because (�̂�𝐵 − 𝜸0,𝐵) = 0, we still
have (�̂�𝑀 − 𝜼0,𝑀 )>𝑛�̄�𝑛,𝑀 (�̂�𝑀 ;𝑌 ) = 0.

Regarding the term involving the Hessian matrix, one can argue that −H𝑀 (�̂�𝑀 ;𝑌 )
reasonably well approximates 𝑛𝐽𝑀 (see also Claeskens and Hjort, 2008, Section 6.5),
which proves the assertion.

Proof of (4.26)

The first lines in the expressions for E[ �̂�𝑀 ] and E[ �̂�𝑀 �̂�
>
𝑀 ], respectively, in (4.26) follow

from 𝐺>
𝑀
𝑅𝑀𝐺𝑀𝑬𝑀 ∼ N |𝑀 | (𝐺>

𝑀
𝑅𝑀𝐺𝑀 𝜋𝑀𝑄

−1𝜹, 𝐺>
𝑀
𝑅𝑀𝐺𝑀 ).

The remaining lines correspond to the product of P[𝐹𝑀𝑄𝑀𝑬𝑀 > 0] and E[𝑄𝑀𝑬𝑀 |
𝐹𝑀𝑄𝑀𝑬𝑀 > 0] or E[(𝑄𝑀𝑬𝑀 ) (𝑄𝑀𝑬𝑀 )> | 𝐹𝑀𝑄𝑀𝑬𝑀 > 0], respectively. The con-
ditional expectations can be computed componentwise using the results of Gupta and
Tracy (1978). For that purpose, we define random vectors 𝑿 = ( [𝑄𝑀𝑬𝑀 ]1, [𝑄𝑀𝑬𝑀 ]𝑘 ,
[𝑄𝑀𝑬𝑀 ]𝑙)> made up of the first, 𝑘 th, and 𝑙 th component of 𝑄𝑀𝑬𝑀 , for 𝑘, 𝑙 ∈ 𝑀 . Then,
the 𝑿 have a trivariate normal distribution with mean vector given by the corresponding
components of 𝑄𝑀 𝜋𝑀𝑄−1𝜹 and covariance matrix equal to the corresponding submatrix
of 𝑄𝑀 . The transformed vectors 𝒀 = diag( [𝑄𝑀 ]−1/2

11 , [𝑄𝑀 ]−1/2
𝑘𝑘

, [𝑄𝑀 ]−1/2
𝑙𝑙

) (𝑿 − E[𝑿])
have a trivariate normal distribution with zero mean vector, unit variances, and corre-
lations 𝜌𝑠𝑡 = [𝑄𝑀 ]𝑠𝑡 [𝑄𝑀 ]−1/2

𝑠𝑠 [𝑄𝑀 ]−1/2
𝑡𝑡 , for 𝑠, 𝑡 ∈ {1, 𝑘, 𝑙}. The 𝑘 th component of

E[𝑄𝑀𝑬𝑀 | 𝐹𝑀𝑄𝑀𝑬𝑀 > 0] can then be expressed as

E[𝑋2 | 𝑋1 > 0] = [𝑄𝑀 ]1/2
𝑘𝑘

E[𝑌2 | 𝑌1 > −𝑢𝑀 ] + [𝑄𝑀 𝜋𝑀𝑄−1𝜹]𝑘 , 𝑘 ∈ 𝑀,

where still 𝑢𝑀 = [𝑄𝑀 ]−1/2
11 [𝑄𝑀 𝜋𝑀𝑄−1𝜹]1. According to the formulas in Section 4 of

Gupta and Tracy (1978),

E[𝑌2 | 𝑌1 > −𝑢𝑀 ] = 𝜌1𝑘
𝜙(−𝑢𝑀 )

1 −Φ(−𝑢𝑀 ) ,

such that

E[𝑄𝑀𝑬𝑀 | 𝐹𝑀𝑄𝑀𝑬𝑀 > 0] = 𝑄𝑀 𝜋𝑀𝑄−1𝜹 + (𝐹𝑀𝑄𝑀𝐹>
𝑀 )−1/2𝑄𝑀𝐹

>
𝑀

𝜙(−𝑢𝑀 )
1 −Φ(−𝑢𝑀 ) .

Similarly, the components E[[𝑄𝑀𝑬𝑀 ]𝑘 [𝑄𝑀𝑬𝑀 ]𝑙 | [𝑄𝑀𝑬𝑀 ]1 > 0] of the condi-
tional expectation of (𝑄𝑀𝑬𝑀 ) (𝑄𝑀𝑬𝑀 )> correspond to E[𝑋2𝑋3 | 𝑋1 > 0], and hence,
equal

[𝑄𝑀 ]1/2
𝑘𝑘

[𝑄𝑀 ]1/2
𝑙𝑙

E[𝑌2𝑌3 | 𝑌1 > −𝑢𝑀 ] + [𝑄𝑀 ]1/2
𝑘𝑘

E[𝑌2 | 𝑌1 > −𝑢𝑀 ] · [𝑄𝑀 𝜋𝑀𝑄−1𝜹]𝑙
+ [𝑄𝑀 ]1/2

𝑙𝑙
E[𝑌3 | 𝑌1 > −𝑢𝑀 ] · [𝑄𝑀 𝜋𝑀𝑄−1𝜹]𝑘 + [𝑄𝑀 𝜋𝑀𝑄−1𝜹]𝑘 · [𝑄𝑀 𝜋𝑀𝑄−1𝜹]𝑙 .
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Consulting again Section 4 in Gupta and Tracy (1978), to find

E[𝑌2𝑌3 | 𝑌1 > −𝑢𝑀 ] = 𝜌𝑘𝑙 − 𝑢𝑀 𝜌1𝑘 𝜌1𝑙
𝜙(−𝑢𝑀 )

1 −Φ(−𝑢𝑀 ) ,

this leads to E[(𝑄𝑀𝑬𝑀 ) (𝑄𝑀𝑬𝑀 )> | 𝐹𝑀𝑄𝑀𝑬𝑀 > 0] being equal to

𝑄𝑀 −
𝑄𝑀𝐹

>
𝑀
𝐹𝑀𝑄𝑀

𝐹𝑀𝑄𝑀𝐹
>
𝑀

· 𝑢𝑀
𝜙(−𝑢𝑀 )

1 −Φ(−𝑢𝑀 )

+ 2𝑄𝑀 𝜋𝑀𝑄−1𝜹
𝐹𝑀𝑄𝑀

(𝐹𝑀𝑄𝑀𝐹>
𝑀
)1/2 · 𝜙(−𝑢𝑀 )

1 −Φ(−𝑢𝑀 ) +𝑄𝑀 𝜋𝑀𝑄
−1𝜹𝜹>𝑄−1𝜋>𝑀𝑄𝑀 .
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5
Joint modeling of interval counts of

recurrent events and death

Abstract

When a recurrent event process is ended by death, this may imply dependent censoring
if the two processes are associated. Such dependent censoring would have to be modeled
to obtain a valid inference. Moreover, the dependence between the recurrence process
and the terminal event may be the primary topic of interest. Joint frailty models for
recurrent events and death, which include a separate dependence parameter, have been
proposed for exactly observed recurrence times. However, in many situations, only the
number of events experienced during consecutive time intervals are available. We propose
a method for estimating a joint frailty model based on such interval counts and observed
or independently censored terminal events. The baseline rates of the two processes are
modeled by piecewise constant functions, and Gaussian quadrature is used to approxi-
mate the marginal likelihood. Covariates can be included in a proportional rates setting.
The observation intervals for the recurrent event counts can differ between individuals.
Furthermore, we adapt a score test for the association between recurrent events and death
to the setting in which only individual interval counts are observed. We study the per-
formance of both approaches via simulation studies, and exemplify the methodology in

This chapter has been published as: M. Böhnstedt, H. Putter, A. Dańko, M.J. Dańko, and J. Gampe (2021).
Joint modeling of interval counts of recurrent events and death. Biometrical Journal 63, 323–340.
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a biodemographic study of the dependence between budding rates and mortality in the
species Eleutheria dichotoma.

5.1 Introduction

Studies of recurrent events, in which an individual can experience the same type of event
repeatedly over time, are common in various fields of applications (Cook and Lawless,
2007). Examples range from medical studies of the recurrence of adverse symptoms,
such as epileptic seizures, asthma attacks, or tumor relapse; to investigations of repeated
insurance claims; to biodemographic studies of fertility (recurrent reproductive events) in
particular animal species.

In some cases, the exact occurrence times can be observed, but often only the numbers
of events that were experienced in specific time intervals are available. Such interval
counts of recurrent events may result if, for example, patients only report the number of
adverse events that they experience between two hospital visits, or the number of offspring
produced by an animal is collected on a monthly basis only. In the latter example, the
observation intervals would be the same for all individuals, while in the former example,
we would expect the intervals between the two visits to vary from patient to patient.

The recurrent event process is often terminated by another event – most commonly by
death – which usually cannot be assumed to be independent of the recurrent event pro-
cess. Consequently, the terminal event introduces dependent censoring of the recurrence
process, and this has to be taken into account to render a valid inference. Therefore, the
two processes, the recurrent event process and the terminal event, have to be modeled
jointly.

In many medical applications, the dependence of the two processes will be positive;
that is, a higher recurrence rate of the (adverse) symptoms will be accompanied by a
higher hazard of death. In other contexts, however, the direction of the association be-
tween the recurrence process and the terminal event is not clear at the outset, and will be
a matter of interest in itself.

Our motivating example examines fertility and mortality in Eleutheria dichotoma, a
marine hydrozoan for which the association between fertility and mortality has not previ-
ously been studied in detail. Reproduction and survival in E. dichotoma were investigated
in a laboratory experiment for several months (Dańko et al., 2020). Individual survival
times and the number of offspring that were produced by each individual within succes-
sive intervals of several days were recorded. The intervals resulted from the laboratory
procedures and varied across individuals. These data were used to estimate the patterns
of fertility and mortality over age, but the dependence between the two processes is also
of biological interest.

It has been suggested that in some species, there is a trade-off between reproduction
and survival. This idea is based on the assumption that individuals that produce a higher
number of offspring are able to devote fewer resources to maintenance, and will, therefore,
tend to die earlier. The claim that there is a cost of reproduction effect is in contrast to the
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hypothesis that individuals who are stronger will be able to both produce more offspring
and survive longer. Therefore, in addition to modeling the shape of age-specific fertility
and mortality, the aim of the analysis is to find out which of the two explanations the data
on E. dichotoma support. Thus, we will model fertility and mortality jointly to assess how
the two processes are related in this species.

Several approaches to jointly modeling recurrent events and death have been pro-
posed. We focus here on the joint frailty model introduced by Liu et al. (2004), because
it allows for positive and negative associations between the recurrences and death. The
dependence between the two processes is modeled by a shared individual random effect
that acts on both the rate of recurrence and the hazard of death, possibly in different di-
rections. In other frailty models, frailty has the same effect on the recurrence rate and the
hazard of death. Thus, these models are restricted to a positive association (see Huang
and Wang (2004) in the setting with exact recurrence times, or Lancaster and Intrator
(1998) in the setting with interval counts). As marginal models for recurrent events in the
presence of death leave the dependence between the two processes unspecified, they are
not suitable for our purposes (see Cook and Lawless (1997) and Ghosh and Lin (2003) in
the setting with exact recurrence times, or Zhao et al. (2013) in the setting with interval
counts). Sinha and Maiti (2004) proposed a model similar to that of Liu et al. (2004),
which is based on interval counts, but assumes that observation intervals are the same for
all individuals, and that the termination time is discrete.

Estimation of the joint frailty model introduced by Liu et al. (2004) has so far only
been based on observed recurrence times. For this setting, several methods of estimation
have been developed: Liu et al. (2004) used a Monte Carlo EM algorithm, whereas Liu
and Huang (2008) and Rondeau et al. (2007) applied Gaussian quadrature to the marginal
likelihood. Moreover, a test for the association between recurrent events and a terminal
event in the joint frailty model was derived by Balan et al. (2016), which was also based
on observed recurrence times. It builds on concepts that are similar to the test proposed by
Huang et al. (2004) for the association between two event processes in clustered survival
data.

In this chapter, we propose methods for making inferences in the joint frailty model
when only individual interval counts of the recurrent events are observed, and these ob-
servation intervals can vary between individuals. We will adapt the method of Liu and
Huang (2008) for the estimation of the joint frailty model, and we will adjust the score
test developed by Balan et al. (2016) to the setting in which only interval counts are avail-
able.

The chapter is structured as follows. In Section 5.2, we describe the joint frailty
model for recurrent events and death, as well as the setting of individual interval counts.
In Section 5.3, we present our approach of using Gaussian quadrature to estimate the joint
frailty model based on interval counts, and adapt the score test for association in the joint
frailty model. In Section 5.4, we assess the performance of the estimation method and the
test in simulation studies. In Section 5.5, we apply the proposed methods to the data on
E. dichotoma, followed by a discussion in Section 5.6.
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5.2 Joint frailty model and interval counts

Before presenting the estimation and test procedure in the next section, we will introduce
in the following the joint frailty model, which allows us to model the dependence of the
recurrent event process and the terminal event. We then derive the likelihood function for
data that only contain interval counts of the recurrent events.

We consider a sample of 𝑚 independent individuals denoted by 𝑖, 𝑖 = 1, . . . , 𝑚. Each
individual 𝑖 is observed from time 𝑡0 = 0 until the end of its follow-up 𝑋𝑖 . The time 𝑋𝑖
is either a censoring time 𝐶𝑖 , which is independent of the recurrent event process and the
terminal event, such as end of study; or it is the time 𝐷𝑖 of the terminal event, whichever
comes first: 𝑋𝑖 = min (𝐶𝑖 , 𝐷𝑖). For simplicity, we assume that the terminal event is death,
and denote by 𝛿𝑖 = 𝟙{𝐷𝑖 ≤ 𝐶𝑖} the death indicator, where 𝟙{·} is the indicator function.
𝑌𝑖 (𝑡) = 𝟙{𝑡 ≤ 𝑋𝑖}, 𝑡 ≥ 0, is the at-risk indicator at time 𝑡. We define two additional
counting processes 𝑁𝐷∗

𝑖
(𝑡) = 𝟙{𝐷𝑖 ≤ 𝑡} and 𝑁𝐷

𝑖
(𝑡) = 𝟙{𝑋𝑖 ≤ 𝑡, 𝛿𝑖 = 1}, where 𝑁𝐷∗

𝑖
(𝑡)

refers to the actual (but potentially unobserved) terminal event, whereas 𝑁𝐷
𝑖
(𝑡) is the

counting process of an observed terminal event, respectively.
For the recurrent event process, we denote with 𝑁𝑅∗

𝑖
(𝑡) the number of events of in-

dividual 𝑖 in the interval [0, 𝑡]. However, we only observe 𝑁𝑅
𝑖
(𝑡) = 𝑁𝑅∗

𝑖
(min (𝑡, 𝑋𝑖)).

The increments of the recurrence process over small intervals [𝑡, 𝑡 + d𝑡) are d𝑁𝑅∗
𝑖

(𝑡) =

𝑁𝑅∗
𝑖

((𝑡 + d𝑡)−) − 𝑁𝑅∗
𝑖

(𝑡−). Here, 𝑡− denotes the left-hand limit.
Additional observed characteristics of individual 𝑖 are collected in the covariate vec-

tor 𝒛𝑖 , whereas unobserved characteristics are summarized in a frailty value 𝑢𝑖 . The 𝑢𝑖
are realizations of a positive random variable 𝑈, independent across individuals. The ob-
served data on individual 𝑖 up to time 𝑡 are collected in 𝑂𝑖 (𝑡) = {𝑌𝑖 (𝑠), 𝑁𝑅𝑖 (𝑠), 𝑁𝐷𝑖 (𝑠),
0 ≤ 𝑠 ≤ 𝑡; 𝒛𝑖}.

As in Liu et al. (2004), the recurrence process is characterized by the intensity
𝑌𝑖 (𝑡)_𝑖 (𝑡), for which we assume

P(d𝑁𝑅𝑖 (𝑡) = 1 | F𝑡− , 𝐷𝑖 ≥ 𝑡) = 𝑌𝑖 (𝑡)_𝑖 (𝑡)d𝑡 with

_𝑖 (𝑡)d𝑡 = dΛ𝑖 (𝑡) = P(d𝑁𝑅∗𝑖 (𝑡) = 1 | 𝒛𝑖 , 𝑢𝑖 , 𝐷𝑖 ≥ 𝑡),
(5.1)

where F𝑡 = 𝜎{𝑂𝑖 (𝑠), 0 ≤ 𝑠 ≤ 𝑡, 𝑢𝑖; 𝑖 = 1, ..., 𝑚}.
Analogously, for the terminal event

P(d𝑁𝐷𝑖 (𝑡) = 1 | F𝑡− ) = 𝑌𝑖 (𝑡)ℎ𝑖 (𝑡)d𝑡 with

ℎ𝑖 (𝑡)d𝑡 = d𝐻𝑖 (𝑡) = P(d𝑁𝐷∗
𝑖 (𝑡) = 1 | 𝒛𝑖 , 𝑢𝑖 , 𝐷𝑖 ≥ 𝑡).

The joint frailty model for recurrent events and death, as proposed by Liu et al. (2004),
is then specified as

_𝑖 (𝑡) = 𝑢𝑖 𝑒𝜷
>𝒛𝑖_0 (𝑡),

ℎ𝑖 (𝑡) = 𝑢𝛾𝑖 𝑒
𝜶>𝒛𝑖 ℎ0 (𝑡),

(5.2)

with baseline rates _0 (𝑡) and ℎ0 (𝑡) that are common to all individuals.
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The shared frailty 𝑢 enters both the recurrent event rate and the hazard rate of the
terminal event, thereby introducing both dependence between the recurrences within one
individual, as well as the association between the recurrences and the terminal event. The
parameter 𝛾 determines the direction and the strength of the association between the two
processes. If 𝛾 > 0, a higher rate of recurrence implies a higher mortality risk; if 𝛾 < 0,
a higher rate of recurrence implies a lower mortality risk. If 𝛾 = 0, the rate of recurrence
does not affect the mortality risk.

The frailties 𝑢𝑖 are often assumed to follow a gamma distribution with mean one and
variance \. In the following, we will more generally assume that the 𝑢𝑖 stem from a
distribution with density 𝑔\ (𝑢) with parameter \.

The covariates 𝒛𝑖 enter in (5.2) in a proportional rates or a proportional hazards for-
mulation, but can have different effects 𝜶 and 𝜷 on the terminal event and the recurrence
process, respectively.

In the simplest setting, the exact times of event occurrence are observed. In many
cases, however, only the number of events that occurred in a sequence of consecutive
time intervals is available. More precisely, we observe individual interval counts 𝑛𝑖 𝑗
as realizations of 𝑁𝑖 𝑗 = 𝑁𝑅

𝑖
(𝑡𝑖 𝑗 ) − 𝑁𝑅

𝑖
(𝑡𝑖 𝑗−1). The 𝑁𝑖 𝑗 give the number of recurrent

events experienced by individual 𝑖 in the interval 𝐼𝑖 𝑗 = (𝑡𝑖 𝑗−1, 𝑡𝑖 𝑗 ], 𝑗 = 1, ..., 𝐽𝑖 . The 𝑡𝑖 𝑗
correspond to the observation times of individual 𝑖, for instance, times of hospital visits
in medical studies or, as in our example, generated by the lab logistics. Thus, both the
positions of the 𝐼𝑖 𝑗 and the total number of intervals 𝐽𝑖 can vary across individuals. The
follow-up times 𝑋𝑖 are still exactly observed so that 𝑡𝑖𝐽𝑖 = 𝑋𝑖 .

As the frailties 𝑢𝑖 are unobservable, the inference is based on the marginal likelihood
that is obtained by integrating the conditional likelihood given the frailties 𝑢𝑖 over the
frailty distribution 𝑔\ (𝑢). The conditional likelihood of the joint frailty model (5.2) based
on exactly observed recurrence times was developed in Liu et al. (2004). For the current
setting, the likelihood factor for the recurrence times (formula (7) in Liu et al., 2004) has to
be replaced by the contribution of the interval counts of the recurrent events. From (5.1)
and (5.2), it follows that (𝑁𝑖 𝑗 | 𝒛𝑖 , 𝑢𝑖 , 𝐷𝑖 ≥ 𝑡𝑖 𝑗 ) has a Poisson distribution with mean
𝑢𝑖`𝑖 𝑗 where `𝑖 𝑗 =

∫
𝐼𝑖 𝑗
𝑒𝜷

>𝒛𝑖_0 (𝑠)d𝑠. Therefore, the likelihood contribution 𝐿 (𝑐)
𝑖

(𝑢𝑖) of
individual 𝑖 conditional on its frailty value 𝑢𝑖 is given by

𝐿
(𝑐)
𝑖
(𝑢𝑖) =

𝐽𝑖∏
𝑗=1

exp (−𝑢𝑖`𝑖 𝑗 ) (𝑢𝑖`𝑖 𝑗 )𝑛𝑖 𝑗
𝑛𝑖 𝑗 !

[𝑢𝛾
𝑖
𝑒𝜶

>𝒛𝑖 ℎ0 (𝑥𝑖)] 𝛿𝑖 exp
{
−

∫ 𝑥𝑖

0
𝑢
𝛾

𝑖
𝑒𝜶

>𝒛𝑖 ℎ0 (𝑠)d𝑠
}
.

This leads to the marginal likelihood contributions

𝐿𝑖 =

∫ ∞

0
𝐿
(𝑐)
𝑖

(𝑢) 𝑔\ (𝑢) d𝑢 . (5.3)

In general, this integral does not have a closed-form expression.
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5.3 Methods

In the first part of this section, we elaborate the estimation procedure of the joint frailty
model based on interval counts with different individual observation intervals. Then,
in Section 5.3.2, we demonstrate how the score test for dependence between the two
processes can be adapted to the case of interval-count data.

5.3.1 Estimation of the joint frailty model based on interval counts
For observed recurrence times, Liu and Huang (2008) suggested using Gaussian quadra-
ture to approximate the marginal likelihood of the joint frailty model. The approximated
likelihood can then be maximized directly, since the integral is replaced by a weighted
sum of function values. More specifically, Liu and Huang (2008) applied Gauss-Hermite
quadrature, which for a function 𝑓 (𝑥) uses the approximation∫ ∞

−∞
𝑓 (𝑥) 𝑒−𝑥2

d𝑥 ≈
𝑄∑︁
𝑞=1

𝑤𝑞 𝑓 (𝑥𝑞) .

The quadrature points 𝑥𝑞 are the roots of the 𝑄th-order Hermite polynomial, and 𝑤𝑞 are
the corresponding weights. This approach is applicable to marginal likelihoods that are
integrated over normal random effects, for which∫ ∞

−∞
𝐿 (𝑐) (𝑣) 𝜙(𝑣) d𝑣 ≈

𝑄∑︁
𝑞=1

�̃�𝑞 𝐿
(𝑐) (𝑥𝑞) 𝜙(𝑥𝑞), (5.4)

with the standard normal density 𝜙(·), and modified quadrature points 𝑥𝑞 =
√

2𝑥𝑞 to-
gether with weights �̃�𝑞 =

√
2𝑤𝑞𝑒𝑥

2
𝑞 . For non-normal random effects, Liu and Huang

(2008) used the probability integral transformation proposed by Nelson et al. (2006). If
the random effect density is 𝑔\ (𝑢) with corresponding distribution function 𝐺 \ (𝑢), then
the integral over the density 𝑔\ (𝑢) is transformed into an integral over standard normal
random effects. This is achieved by noting that 𝑎 = Φ−1 (𝐺 \ (𝑢)) follows a standard nor-
mal distribution if the 𝐺 \ (𝑢), which follow a standard uniform, are transformed by the
inverse of the standard normal distribution function Φ(·).

We apply this quadrature approach to the marginal likelihood of the joint frailty
model based on interval counts of recurrent events; see equation (5.3). Substituting
𝑢 = 𝐺−1

\
(Φ(𝑎)) in the marginal likelihood contributions, we obtain

𝐿𝑖 =

∫ ∞

0
𝐿
(𝑐)
𝑖

(𝑢) 𝑔\ (𝑢) d𝑢 =

∫ ∞

−∞
𝐿
(𝑐)
𝑖

(𝐺−1
\ (Φ(𝑎))) 𝜙(𝑎) d𝑎 .

These 𝐿𝑖 can directly be approximated using Gauss-Hermite quadrature as

𝐿𝑖 ≈
𝑄∑︁
𝑞=1

𝐿
(𝑐)
𝑖

(𝐺−1
\ (Φ(𝑥𝑞))) 𝜙(𝑥𝑞) �̃�𝑞 ,
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with 𝑥𝑞 and �̃�𝑞 as defined in (5.4). The approximate marginal likelihood of the joint
frailty model is then given by

𝑚∏
𝑖=1

𝑄∑︁
𝑞=1

𝐿
(𝑐)
𝑖

(𝐺−1
\ (Φ(𝑥𝑞))) 𝜙(𝑥𝑞) �̃�𝑞 . (5.5)

To actually maximize the approximate likelihood (5.5), we have to specify the baseline
rates _0 (𝑡) and ℎ0 (𝑡), as well as the frailty distribution 𝑔\ (𝑢). Similar to Liu and Huang
(2008), we model the baseline rates as piecewise constant functions

_0 (𝑡) =
𝐾𝑅∑︁
𝑘=1

_0𝑘𝟙{𝑡 ∈ 𝐼𝑅𝑘 } and ℎ0 (𝑡) =
𝐾𝐷∑︁
𝑘=1

ℎ0𝑘𝟙{𝑡 ∈ 𝐼𝐷𝑘 } . (5.6)

This choice is particularly suitable if no prior knowledge of the shapes of the two rates
_0 (𝑡) and ℎ0 (𝑡) is available. The specifications of the intervals 𝐼𝑅

𝑘
= (𝑡𝑅

𝑘−1, 𝑡
𝑅
𝑘
], 𝑘 =

1, ..., 𝐾𝑅, and 𝐼𝐷
𝑘

= (𝑡𝐷
𝑘−1, 𝑡

𝐷
𝑘
], 𝑘 = 1, ..., 𝐾𝐷 , can differ between the recurrent event

process and the death process in terms of both their lengths Δ𝑅
𝑘
= 𝑡𝑅

𝑘
− 𝑡𝑅

𝑘−1 and Δ𝐷
𝑘

=

𝑡𝐷
𝑘
− 𝑡𝐷

𝑘−1 and their total numbers 𝐾𝑅 and 𝐾𝐷 . (The intervals for the piecewise constant
baseline rates should not, however, be confused with the intervals in which the numbers
of recurrent events 𝑛𝑖 𝑗 are observed; see Section 5.2.)

The baseline rate _0 (𝑡) of the recurrence process enters the likelihood (5.5) through
the conditional means 𝑢𝑖`𝑖 𝑗 of the interval counts 𝑁𝑖 𝑗 given the frailty value 𝑢𝑖 . Under
the piecewise constant rate model, `𝑖 𝑗 is computed as

`𝑖 𝑗 =

∫
𝐼𝑖 𝑗

𝑒𝜷
>𝒛𝑖_0 (𝑠)d𝑠 = 𝑒𝜷

>𝒛𝑖
𝐾𝑅∑︁
𝑘=1

_0𝑘 max{0,min(𝑡𝑅𝑘 , 𝑡𝑖 𝑗 ) − max(𝑡𝑅𝑘−1, 𝑡𝑖 𝑗−1)}.

Piecewise constant baseline rates offer more flexibility than parametric models, such as
the Weibull model, while at the same time remaining more tractable than purely nonpara-
metric models. Previous studies have suggested that a moderate number of intervals – i.e.,
between 8 and 10 intervals – yields satisfactory estimation results (Liu and Huang, 2008;
Lawless and Zhan, 1998).

The performance of the piecewise constant model is usually improved when the inter-
val cut-points 𝑡𝑘 are based on quantiles of the recurrence and the survival times, respec-
tively. In the current setting in which only interval counts of recurrent events are observed,
the exact recurrence times are unknown. If, however, the individual observation intervals
𝐼𝑖 𝑗 are relatively short compared with the total follow-up, we can approximate quantiles
by creating a set from the observation times 𝑡𝑖 𝑗 , with each repeated 𝑛𝑖 𝑗 times, 𝑗 = 1, ..., 𝐽𝑖 ,
𝑖 = 1, ..., 𝑚; and then determining the cut-points 𝑡𝑅

𝑘
as quantiles of this set of times.

Parameter estimation in the joint frailty model is then done by maximizing the ap-
proximate marginal log-likelihood; that is, the logarithm of (5.5). The standard errors
for the parameter estimates can be obtained from the inverse of the negative Hessian of
the approximate marginal log-likelihood. Further computational details can be found in
Section 5.7.1.
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5.3.2 Score test for the association between recurrences and death
The joint frailty model for recurrent events and death is rather complex, with estimation
procedures that are more involved than those needed for the fitting of two separate models,
one for the recurrent event process and one for the survival process. Investigating whether
the two processes are associated – and, consequently, whether joint modeling is required
– is a useful first step. Moreover, the question of whether there is an association – and, if
so, whether it is positive or negative – can be a stand-alone issue, not necessarily followed
by fitting a joint model.

Balan et al. (2016) proposed a correlation score test for the association between recur-
rences and terminal events in the joint frailty model for settings with observed recurrence
times. Their test can be performed by fitting separate models for the recurrence times and
the survival data, and, thus, without fitting the joint frailty model. In addition, the sign
of the test statistic is an indicator of the direction of the association. In the following, we
show that this score test can be adapted to the setting with interval counts of recurrent
events, provided the survival times are exactly observed.

A test for association in the joint frailty model (5.2) corresponds to a test of 𝐻0 : 𝛾 = 0
against 𝐻1 : 𝛾 ≠ 0. All other parameters, including those for the baseline rate models, are
treated as nuisance parameters, and denoted by 𝜼. The score test of Balan et al. (2016) is
based on the score function for 𝛾 under the null hypothesis; that is,

𝑈𝛾 (0, 𝜼) =
𝜕

𝜕𝛾
ℓ(𝛾, 𝜼) |𝛾=0,

where ℓ is the marginal log-likelihood of the joint frailty model. The authors showed
that the score, evaluated at the maximum likelihood estimate under 𝐻0, that is, (0, �̂�0), is
proportional to the covariance of the estimated martingale residuals of the terminal event
and the ‘posterior’ estimates of the log-frailties for the recurrent events given the observed
data. More formally, defining

𝐾𝑖 (𝑢, 𝑡) = 𝑢𝑁
𝑅
𝑖
(𝑡−)+𝛾𝑁𝐷

𝑖
(𝑡−) exp

{
−𝑢𝑒𝜷>𝒛𝑖Λ0 (𝑡) − 𝑢𝛾𝑒𝜶

>𝒛𝑖𝐻0 (𝑡)
}
, (5.7)

with the cumulative baseline rates Λ0 (𝑡) =
∫ 𝑡
0 _0 (𝑠) d𝑠 and 𝐻0 (𝑡) =

∫ 𝑡
0 ℎ0 (𝑠) d𝑠, Balan

et al. (2016) derived that

𝑈𝛾 (0, �̂�0) =
𝑚∑︁
𝑖=1

[
𝑁𝐷𝑖 (𝑥𝑖) − 𝑒�̂�

>𝒛𝑖𝐻0 (𝑥𝑖)
] ∫ ∞

0 ln (𝑢) 𝐾𝑖 (𝑢, 𝑥𝑖) 𝑔\ (𝑢) d𝑢∫ ∞
0 𝐾𝑖 (𝑢, 𝑥𝑖) 𝑔\ (𝑢) d𝑢

=

𝑚∑︁
𝑖=1

𝑀𝐷
𝑖

· �ln (𝑢𝑖) .
(5.8)

The 𝑀𝐷
𝑖

are estimates of the martingale residuals of the terminal event model 𝑀𝐷
𝑖

=

𝑁𝐷
𝑖
(𝑥𝑖)−

∫ 𝑥𝑖
0 𝑒𝜶

>𝒛𝑖 ℎ0 (𝑠)d𝑠. The �ln (𝑢𝑖) are the posterior estimates of the log-frailty values
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given the observed data from the recurrent event process: �ln (𝑢𝑖) = E[ln𝑈𝑖 | 𝑂𝑖 (𝑥𝑖)]. For
gamma distributed frailties 𝑢𝑖 with mean one and variance \, one obtains

�ln(𝑢𝑖) = 𝜓 (
1
\̂
+ 𝑁𝑅𝑖 (𝑥𝑖)

)
− ln

(
1
\̂
+ 𝑒𝜷

>
𝒛𝑖 �Λ0 (𝑥𝑖)

)
, (5.9)

where 𝜓(·) is the digamma function.
Because of the zero-mean constraint of the 𝑀𝐷

𝑖
, the second line of (5.8) is proportional

to the correlation 𝑟 = cor(̂𝑴𝑫, �ln(𝒖)) between the martingale residuals and the estimated
log-frailties. Consequently, Balan et al. (2016) based the correlation score test on the test
statistic

𝑡 = 𝑟

√︂
𝑚 − 2
1 − 𝑟2 , (5.10)

which, under the null hypothesis, asymptotically follows a 𝑡-distribution with 𝑚 − 2 de-
grees of freedom.

It turns out that in the setting in which only interval counts of the recurrent events
are available, but exact survival times (or censoring times) are observed, equation (5.8)
still holds. We show this result in Section 5.7.2. Therefore, the test statistic 𝑡 in (5.10) is
still valid. Furthermore, for gamma distributed frailties, the estimates �ln (𝑢𝑖) can still be
determined using formula (5.9). The latter formula involves estimates \̂ of the frailty vari-
ance, the covariate effect �̂� on the recurrence rate, and the cumulative baseline rate Λ̂0;
all determined under 𝐻0. These can be obtained by fitting a mixed Poisson model to
the interval counts of the recurrent events (see, for instance, Lawless and Zhan, 1998,
who assume a piecewise constant baseline rate function _0). We generally recommend
to estimate the shared frailty model for the interval counts using a flexible specification
such as (5.6) for the baseline rate. A simple parametric model like, for example, the
Weibull model, although appealing due to its parsimony, always bears the risk of mis-
specification and consequently misleading test results. The estimates of the martingale
residuals 𝑀𝐷

𝑖
can be derived from a Cox proportional hazards model fitted to the survival

data {𝑋𝑖 , 𝛿𝑖 , 𝒛𝑖; 𝑖 = 1, ..., 𝑚}.

5.4 Simulation study

5.4.1 Performance of the estimation method
To evaluate the performance of the proposed method for estimating the parameters of the
joint frailty model based on interval counts of recurrent events and survival times, we
conducted a simulation study.

Several different aspects will affect the estimation results, both on the part of the
model specification but also on the part of the observable data. The latter include the
number and lengths of the intervals for the recurrent event counts and whether they are
the same for all individuals in the sample or not. The amount of independent censoring
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will also have an impact. Among the former aspects, the size of the frailty variance and
the sign of the dependence parameter are expected to influence the estimation, but also
the number of intervals used in the piecewise constant specification of the baseline rates
(and consequently the total number of parameters to be estimated) will matter.

We generated data for 𝑚 = 200 individuals from the joint frailty model (5.2). For
the baseline rates _0 (𝑡) and ℎ0 (𝑡), we chose the form of Weibull hazards, (𝑎/𝑏) (𝑡/𝑏)𝑎−1,
with shape parameter 𝑎 equal to 1.5 or 3 and scale parameter 𝑏 equal to 1/3 and 1.35,
respectively. A single binary covariate that takes values 0 or 1 with probability 0.5 was
included, and had the same effect on the hazard of death and the rate of recurrence (𝛼 =

𝛽 = 1). Frailties were simulated from a gamma distribution with mean one and different
variances \ ∈ {0.25, 0.5, 0.75}. We considered both cases of positive (𝛾 = 1) and negative
association (𝛾 = −1) between the recurrence process and the terminal event. Additionally,
we looked at one setting with a relatively small value for the frailty variance, \ = 0.05,
that was inspired by the results of the data set on Eleutheria dichotoma, see Section 5.5.
In this setting, two values for the dependence parameter |𝛾 | = 1 or |𝛾 | = 5 were studied.

Independent censoring was considered in two versions: either an end-of-study cen-
soring at time 𝑡 = 2 for all individuals still alive then or individual censoring times which
occurred uniformly over the total follow-up window [0, 2].

Regarding the observation times 𝑡𝑖 𝑗 , which determine the intervals during which the
recurrent events are counted, we examined two scenarios. In Scenario I the observation
times were the same for all individuals. We set 𝑡𝑖 𝑗 = 0.2 𝑗 , 𝑗 = 0, ..., 10, such that we
observed individual interval counts in up to 10 intervals of equal length 0.2. We also
studied one scenario with 𝑡𝑖 𝑗 = 0.1 𝑗 , 𝑗 = 0, ..., 20, leading to up to 20 individual interval
counts. In Scenario II the observation times 𝑡𝑖 𝑗 varied across individuals. This scenario
mimicked a study in which participants have scheduled visit times, but actually could be
early or late for their visits. This was implemented as follows: the scheduled times were
𝑡0
𝑗
= 0.2 𝑗 , 𝑗 = 0, ..., 10, but the actual observation times for each individual were obtained

by adding a random noise Y𝑖 𝑗 to the scheduled times so that 𝑡𝑖 𝑗 = 𝑡0𝑗 + Y𝑖 𝑗 . The Y𝑖 𝑗 were
drawn from a uniform distribution on [−0.1, 0.1] (except for Y𝑖0 = 0 and Y𝑖10 as uniform
on [−0.1, 0]) and hence the 𝑡𝑖 𝑗 varied across individuals.

For the estimation of the joint frailty model, we assumed that the frailties were gamma
distributed, and that the baseline rates were specified as piecewise constant functions on
10 intervals of equal length, 𝑡𝑅

𝑘
= 𝑡𝐷

𝑘
= 0.2𝑘 . Thus, under Scenario I and 𝑡𝑖 𝑗 = 0.2 𝑗 the

intervals for the rate pieces coincided with the observation intervals for the counts. We
also studied the impact of an increase of the number of intervals to 20. Approximation
of the likelihood was based on 𝑄 = 30 quadrature points. All computations were run in
R (R Core Team, 2019), see Section 5.7.1 for further details. In all settings we ran 200
replications.

The results of the simulation study under Scenario I with frailty variance \ = 0.5 are
shown in Figures 5.1 and 5.2, both for positive and negative dependence |𝛾 | = 1 and for
both independent censoring schemes (A: end-of-study censoring at 𝑡 = 2, and B: uniform
censoring times in [0, 2]).
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Figure 5.1: Box plots of the parameter estimates (top) and estimated standard errors (bottom) in
the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1) under two schemes
of independent censoring (CensA: at end of study 𝐶 = 2, CensB: uniform on [0, 2]). Left to
right: covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and
frailty variance (\), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true parameter
value (top) or empirical standard deviation (bottom); gray, dotted lines mark 10% deviations from
respective value.
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From the box plots of the estimates of the covariate effects 𝛼 and 𝛽, the dependence
parameter 𝛾, and the frailty variance \ in Figure 5.1, we can see that the method performs
satisfactorily. Censoring scheme A is considerably milder than scheme B (for an illustra-
tion see Table 5.4 in Section 5.8.1), and the corresponding loss in information is reflected
in a moderately increased variability in the estimates and, as could be expected, also in
the estimated standard errors (Figure 5.1, bottom). For the frailty variance \, variability
in estimates and estimated standard errors is higher for negative dependence (𝛾 = −1)
than for positive dependence. This is also true for the dependence parameter 𝛾 itself. The
estimated standard errors for the covariate effects 𝛼 and 𝛽, the dependence parameter 𝛾,
and the frailty variance \ are compared with the empirical standard deviations of the re-
spective estimates across the replications in the bottom panels of Figure 5.1. The general
magnitude of the standard errors is well captured.

Figure 5.2 displays the estimates of the cumulative baseline rates for positive depen-
dence for both censoring schemes A and B. The averages of the estimates are very close to
the true underlying rates. The stronger loss of observations in scheme B leads to markedly
increased variability of the estimates toward the end of the follow-up window, which is
an obvious consequence of the decreasing number of individuals under study over time.
This low number of observations results in part from individuals experiencing a terminal
event. Additionally, even fewer individuals (in this setting, less than 5%) are observed
in the interval [1.8, 2), which corresponds to the last piece of the baseline rates, due to
independent censoring under scheme B. In contrast, censoring scheme A is benign.

For the other settings of the simulation study we restricted our attention to the inde-
pendent censoring scheme B. With its uniformly distributed censoring times it produces a
relatively challenging loss of observations. So the results we report here are conservative
in the sense that they hold despite this appreciable amount of censoring. Section 5.8.1
illustrates the results of the other simulation settings analogous to Figures 5.1 and 5.2.
Here we summarize the main results of the various scenarios.

If we change the frailty variance to \ = 0.25 or \ = 0.75, we note that also in these
settings the biases of the parameter estimates, if present at all, are small. In general, vary-
ing the true underlying frailty variance mainly affects the variability of the estimates. The
estimates of the covariate effects and the frailty variance show increased variability for
larger frailty variance. In contrast, the estimates of the dependence parameter show less
variability for larger frailty variance, because the increased heterogeneity among the in-
dividual patterns makes it easier to assess the dependence between the recurrence process
and survival.

If the true frailty variance is close to zero (\ = 0.05) the estimates of the dependence
parameter are still only modestly biased but the variability of the �̂� increases strongly.
This had to be expected, since the identification of the dependence hinges on the variation
in the individual frailty. If the true value of |𝛾 | = 1, then the estimated values may turn
out with the wrong sign of the dependence parameter, particularly if the true dependence
is negative. Thus, weak dependence is difficult to identify in case of low variability in
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Figure 5.2: Estimates (gray, solid) of the cumulative rate of recurrence (left) and of death (right)
based on samples of size 𝑚 = 200 which were generated from a joint frailty model with positive
dependence for two schemes of independent censoring. Top: end-of-study censoring at 𝑡 = 2
(CensA), bottom: uniform censoring on [0, 2] (CensB). Red, solid line gives the true cumulative
baseline rate; black, dashed line is the mean of the 200 estimates.

frailty. However, if the dependence is strong, |𝛾 | = 5, then, despite the variability of the
estimates, the sign of the dependence is correctly estimated.

If we modify the width of the observation intervals from 0.2 to 0.1 we first note the
following: if we keep the specification of the baseline rate of recurrence as piecewise
constant on the 10 intervals with 𝑡𝑅

𝑘
= 0.2𝑘 as before, then the additional information

provided by the finer observation intervals would not be used by the estimation method
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(see Section 5.7.3 for a proof). Therefore, we also specify the baseline rates as piecewise
constant functions on 20 intervals, that is 𝑡𝑅

𝑘
= 𝑡𝐷

𝑘
= 0.1𝑘 . Apart from increased variability

in the rate estimates near the end of the follow-up window, there is little change to the
estimation results with width 0.2.

If we allow the observation intervals to vary across individuals (Scenario II), then we
find that the method performs equally well as for fixed observation intervals, with the
exception of the estimates for the last baseline rate pieces. In this simulation, we used
fixed intervals for the baseline rates though, to unify the presentation of results. In appli-
cations we would recommend to choose the cut-points 𝑡𝑅

𝑘
and 𝑡𝐷

𝑘
based on (approximate)

quantiles of the event times, as described earlier, to increase precision of the baseline rate
estimates.

If we replace the baseline rates by a parametric Weibull specification (which here
is correct), then there is only very modest change in the other parameter estimates of
the model as well as their standard errors, so the main advantage is in the less variable
estimation of the two baseline rates. This is, however, counterbalanced by the risk of
model misspecification so we advise the use of piecewise constant rates unless one has a
good understanding of the underlying processes that justifies a parametric choice.

Overall, the proposed method for estimating the joint frailty model based on interval
counts yielded reliable results in this simulation study and different scenarios behaved in
the way we had anticipated beforehand.

5.4.2 Performance of the score test
In a second set of simulations, we investigated the performance of the score test in the
setting with interval counts of recurrent events.

For this purpose, we again generated data for 𝑚 = 200 individuals from the joint
frailty model (5.2). The covariate effects, values for the variance of the gamma frailties,
and baseline rates were the same as in Section 5.4.1. Here, however, we considered not
only different directions but also different strengths of the association between the re-
currence process and the terminal event; namely, 𝛾 ∈ {−1,−0.5, 0, 0.5, 1}. Counts were
again observed in 10 intervals of equal length 0.2 (Scenario I) or of varying length (Sce-
nario II). We studied two schemes of independent censoring, scheme A with censoring
time 𝐶 = 2, and scheme B with uniformly distributed censoring times on [0, 2]. We ran
1000 replications for each setting to determine the size or power of the test.

The score test involves fitting separate models to the recurrence data and the survival
data. First, we fitted a shared gamma frailty model to the individual interval counts of
the recurrent events, assuming that (𝑁𝑖 𝑗 | 𝑢𝑖) follows a Poisson distribution with mean
𝑢𝑖 ˜̀𝑖 𝑗 , where ˜̀𝑖 𝑗 =

∫
𝐼𝑖 𝑗
𝑒𝛽

>𝑧𝑖 _̃0 (𝑠) d𝑠. The baseline recurrence rate _̃0 (·) was modeled

as piecewise constant, as in (5.6), with pieces defined by the cut-points 𝑡𝑅
𝑘
= 0.2𝑘 , 𝑘 =

0, ..., 10. The estimates �ln (𝑢𝑖) were then determined according to formula (5.9). Second,
we estimated a Cox proportional hazards model from the survival data {𝑋𝑖 , 𝛿𝑖 , 𝑧𝑖; 𝑖 =

1, ..., 𝑚} using function coxph() from package survival (Therneau and Grambsch,
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2000) to obtain the martingale residuals 𝑀𝐷
𝑖

of the terminal event. Finally, we calculated

the test statistic based on the correlation between the 𝑀𝐷
𝑖

and the �ln (𝑢𝑖).
Table 5.1 reports the size and the power of the score test, performed at a level of 5%,

depending on the true underlying dependence parameter 𝛾 and frailty variance \. The
proportion of a type I error, that is, of falsely rejecting the hypothesis of no dependence
(𝛾 = 0), was affected most strongly by the censoring scheme. If 𝐶 = 2, which implies a
modest proportion of independently censored cases (see Table 5.6 in Section 5.8.2), then
the level of the test is met or exceeded only slightly. For strong independent censoring
(scheme B), which implies that roughly half of the observations are censored and quite
some of them early during the follow-up, then this loss of information increases the pro-
portion of a type I error, particularly for the frailty variance \ = 0.75. This is a noteworthy
result, and hence the test should be regarded with caution, if there is strong (and early)
censoring in the data.

Table 5.1: Power and size of the score test, performed at the 5% level, in the joint frailty model with
varying dependence parameter 𝛾 ∈ {−1,−0.5, 0, 0.5, 1}, frailty variance \ ∈ {0.25, 0.5, 0.75}, and
independent censoring 𝐶 ∼ U [0, 2] or 𝐶 = 2, across 1000 replications each.

Dependence 𝛾
censoring \ −1 −0.5 0 0.5 1
𝐶 ∼ U [0, 2] 0.25 0.960 0.586 0.066 0.514 0.932

0.5 1.000 0.905 0.062 0.872 1.000
0.75 1.000 0.984 0.091 0.974 1.000

𝐶 = 2 0.25 0.999 0.788 0.057 0.799 1.000
0.5 1.000 0.990 0.039 0.992 1.000
0.75 1.000 1.000 0.040 1.000 1.000

Regarding the power of the score test, as expected, we found that the power increased
with the strength of the dependence, that is, |𝛾 |, and with the magnitude of the frailty
variance. In the settings with the larger frailty variances \ = 0.5 and \ = 0.75 and stronger
dependence |𝛾 | = 1, the score test detected the association in all cases. We note that for
the samples for which the association was detected by the score test, the direction of
the dependence was always identified correctly. An extension of the simulation settings
suggested that the score test can detect associations even for small values of the frailty
variance as long as the association is sufficiently strong, that is, |𝛾 | is sufficiently large
(see Table 5.7 in Section 5.8.2).

Furthermore, we assessed the performance of the score test for Scenario II in which
the observation intervals vary across individuals. Results for the setting with 10 scheduled
visit times and 10 pieces for the baseline rate are displayed in Table 5.10 of Section 5.8.2.
The proportion of false rejections of the hypothesis of no dependence are again a bit
higher than the nominal level due to the high percentage of censoring. The power of the
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test is comparable to the values obtained in Scenario I, although the power in the settings
with negative dependence is a bit lower here.

Additional results on the performance of the score test for modifications of Scenario I
and II are given in Section 5.8.2.

In conclusion, the results of the simulation study provide further evidence that the
score test is a powerful method for assessing the association between recurrent events and
the terminal event, also in a setting in which only interval counts of the recurrent events
are observed.

5.5 Fertility and mortality in Eleutheria dichotoma

To illustrate the proposed methods, we use data from a biodemographic study on the
fertility and mortality of Eleutheria dichotoma (Dańko et al., 2020), which was briefly
introduced in Section 5.1. E. dichotoma is a marine organism that passes through several
life-cycle stages: i.e., planula larva, polyp, and medusa stages. The colonial polyps (hy-
droids) asexually produce medusae. The medusae can then reproduce both sexually (by
producing larvae) and asexually (by producing medusa buds).

In this study, asexually budded medusae were collected directly from the hydroid
colony and reared for three generations – each of which was, in turn, obtained through
the asexual budding of medusae. In our analysis, we focus on the age trajectory of the
budding rate (asexual reproduction) and the mortality of one of the medusa generations,
as well as on the association between the two processes.

Age 𝑡0 = 0 of a medusa corresponds to the point in time when it detaches from its
hydroid colony or from its ancestor medusa. The medusae were followed individually,
and were observed until death or censoring. This occurred when either the study ended, a
laboratory accident (e.g., water evaporation) led to the loss of the medusa, or the medusa
was absorbed by a large bud of the same individual. The animals were checked for newly
released larvae and buds roughly three times per week. The resulting observation times
differed across individuals, with interval lengths between 1 and 11 days.

Salinity is an important factor that affects the physiological responses of species like
E. dichotoma, both at the level of the hydroid colony that produced the medusae under
study, and at the level of the medusae themselves. Four combinations of salinity lev-
els were studied here (low(hydroid)–low(medusa), medium–medium, low–medium, and
medium–low); for more details, see Dańko et al. (2020).

The data set contains 𝑚 = 141 individuals, with the following group sizes in the
four experimental conditions: 36 low–low, 40 medium–medium, 32 low–medium, and
33 medium–low. The individuals produced between 0 and 27 buds over their life course,
with a mean of 8.99. Follow-up times varied between 9 and 217 days, with a median of
98 days; and 34 individuals (24%) were censored. Figure 5.3 exemplarily shows the data
for 14 individuals.

To assess whether the recurrent budding process and survival are associated in E. di-
chotoma, we first conducted the score test that was presented in Section 5.3.2. For fitting
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Figure 5.3: Interval counts of budding and survival (dead: cross, censored: circle) for 14 medusae
E. dichotoma.

the shared frailty model to the individual bud counts, we assumed that the frailty vari-
able was gamma distributed. Moreover, for the piecewise constant baseline budding rate,
we defined cut-points 𝑡𝑅

𝑘
at 0, 16, 22, 27, 32, 40, 47, 63, 85, 111, and 220 days. These cut-

points were obtained as (approximative) deciles of the recurrent event times, as described
at the end of Section 5.3.1. We included two binary covariates for the salinity levels at the
polyp stage and the medusa stage, respectively.

The martingale residuals of the terminal event were obtained from a Cox proportional
hazards model fitted to the survival data, including the two covariates on the salinity
levels.

The parameter estimates of the two separately fitted models, the Cox model for the
survival data, and the shared frailty model for the budding rate based on interval counts,
are shown in Table 5.2.

The correlation between the martingale residuals from the Cox regression and the
estimated log-frailties from the budding model is 𝑟 = −0.434, yielding a test statistic of
𝑡 = −5.676 with a 𝑝-value of 7.729·10−8. Thus, the result of the score test clearly suggests
that reproduction and mortality are negatively associated – i.e., that a higher budding rate
is associated with lower mortality – which implies that a joint model should be used to
analyze these data on E. dichotoma.

Therefore, we estimated a joint frailty model for reproduction and mortality for these
data, including the two covariates on salinity. Frailties were again assumed to stem from
a gamma distribution. For the baseline budding rate, the same specification was used as
in the separate model (see above). For the baseline hazard of death, we used a piecewise
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Table 5.2: Parameter estimates (with standard errors) for different models fitted to the E. dichotoma
data set.

Joint frailty model Separate models
Shared frailty model Cox PH model

Mortality
Polyp (low salinity) −0.493 (0.299) – −0.376 (0.201)
Medusa (low salinity) 2.201 (0.432) – 1.392 (0.218)

Budding
Polyp (low salinity) 0.052 (0.069) 0.057 (0.066) –
Medusa (low salinity) 0.574 (0.071) 0.600 (0.068) –

Association
Dependence 𝛾 −4.941 (1.557) – –
Frailty variance \ 0.051 (0.018) 0.036 (0.017) –

constant function with cut-points 𝑡𝐷
𝑘

at 0, 60, 67, 72, 85, 98, 103, 114, 132, 153, and 220
days; again, the cut-points were taken from approximate deciles of the survival times.
For the Gaussian quadrature in the marginal likelihood (see equation (5.5)), 𝑄 = 30
quadrature points were used.

The parameter estimates of the joint model are also displayed in Table 5.2. Interest-
ingly, the dependence parameter 𝛾 was estimated as −4.941 along with a frailty variance
of 0.051. The negative value of �̂� indicated that individuals with higher rates of asex-
ual reproduction tended to have a lower mortality risk than individuals with lower rates
of asexual reproduction. This finding that higher rates of reproduction were accompa-
nied by longer survival stands in contrast to the idea of a trade-off between reproduction
and survival. Regarding the salinity levels, we found that the salinity experienced by the
polyps did not have a noticeable effect on the reproduction or survival of the medusae.
In contrast, individuals who were exposed to low salinity at the medusa stage were found
to have both higher fertility and mortality rates than those exposed to medium salinity.
Finally, Figure 5.4 shows the estimates of the age-specific budding and death rates. The
budding rate peaked at about 20 days of age before gradually declining to a non-zero level
at later ages. The death rates increased markedly after about 60 days of age.

To conclude, while the results presented here are in agreement with the findings of
Dańko et al. (2020), they also provide additional insight into the association between the
asexual reproduction and survival of E. dichotoma. In addition to the biological implica-
tions of the dependence itself, due to the association between the two processes, the re-
current event process is censored by the terminal event (death) non-independently, which
warrants the joint modeling of the two processes.
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Figure 5.4: Estimated baseline rates of budding (left) and death (right) for the E. dichotoma data
set.

5.6 Discussion

We have presented a method for estimating the joint frailty model for recurrent events
and death in situations in which only individual interval counts of the recurrence pro-
cess are observed. When modeling the baseline rates as piecewise constant, the marginal
likelihood can be approximated using Gaussian quadrature, and can then be maximized
directly. In addition, we have shown that the score test for the association between recur-
rences and death (Balan et al., 2016) is also applicable in the setting with interval counts.
The test is based on the correlation between the martingale residuals of the terminal event
and the estimates of the log-frailties, which are obtained by separately fitting a Cox pro-
portional hazards model to the survival data and a shared frailty model to the interval
counts of recurrent events. Our simulation studies demonstrated that both the estimation
method and the score test perform well.

We also found that when applying the proposed methods to data on fertility and mor-
tality in E. dichotoma, the rate of asexual reproduction and the mortality risk are nega-
tively associated. While this finding is interesting from a biological point of view, it also
demonstrates the necessity of allowing positive and negative dependence in a model such
as the relatively complex joint frailty model (5.2). Moreover, the E. dichotoma example
illustrates the advantages of using the piecewise constant rate model. On the one hand,
the shape of the budding rate, which is characterized by a sharp peak at younger ages
and a gradual leveling off to a non-zero level at older ages, is hard to capture using a
simple parametric model. On the other hand, the data structure of the interval counts,
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in which the observation times vary across individuals, makes it difficult to construct a
purely nonparametric estimate of the baseline rate.

Implementing the estimation method in the joint frailty model involves making sev-
eral choices, such as decisions regarding the distribution of the frailties, the number of
quadrature points, and the number of pieces included in the baseline rate models. For the
frailty distribution, we assumed that frailties follow a gamma distribution in both the sim-
ulation study and the application. The use of a gamma distribution is a popular choice for
the distribution of frailties, and, with respect to the score test, it has the benefit of yielding
closed-form expressions for the estimated log-frailties. However, the quadrature approach
is equally able to accommodate the log-normal distribution or any frailty distribution that
has a closed-form inverse distribution function. Yet, the performance of the quadrature
approach relies on the quality of the approximation of the marginal likelihood, which, in
turn, depends on the number of quadrature points. Liu and Huang (2008) suggested using
𝑄 = 30 quadrature points for gamma frailty models, and in our experience, this number
yields reliable results. In practice, we recommend fitting the model for several increasing
values of 𝑄 until the estimates stabilize. For the piecewise constant rate models, using a
moderate number of up to 10 intervals for the rates seems to produce good results. Using
a larger number of intervals for the baseline rates generates a larger number of parame-
ters to be estimated, which, in turn, increases computational costs, and might affect the
numeric stability of the method.

One of the limitations of the approach presented here is that, in the joint frailty model,
the association between recurrences and death is modeled via a dependence parameter
acting on a shared frailty. If, however, the individuals are not sufficiently heterogeneous
– that is, if the frailty variance is not sufficiently large – the dependence parameter is not
meaningful, and the association cannot be assessed.

Another restriction is imposed by the piecewise constant rate models. While these
models can capture a variety of different shapes of the baseline rates, using more flexible
rates – and, in particular, smooth rates – might be desirable in some applications. Further
work is needed on how to incorporate smooth rate models with automatic smoothing
parameter selection.

Finally, the observation times in our application are fixed by the experimental set-up,
even though in real-world applications, particularly in medicine, the observation times
may depend on the recurrence process. For instance, patients may visit the doctor more
often when they are in worse condition. This is taken into account in a model developed
by Zhao et al. (2013), which considers interval counts of recurrent events in the presence
of death and a dependent observation process. However, the authors adopted a marginal
approach that left the association between the recurrences and death unspecified.
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5.7 Appendix

5.7.1 Computational details
We implemented our estimation approach in R (R Core Team, 2019), using function
gauss.quad() from package statmod (Smyth, 1998) to determine the quadrature
points and weights, and function nlm() for numerical optimization of the approximate
marginal log-likelihood.

The Hessian of the log-likelihood can be obtained directly from the output of the
function nlm(). However, in some cases, computation of the Hessian using function
hessian() from package numDeriv (Gilbert and Varadhan, 2019) yields more stable
results.

To ensure that the Hessian of the approximate log-likelihood with piecewise constant
baseline rates is invertible, it can be necessary to fit the joint frailty model with small,
fixed ridge penalties on the logarithm of the baseline rates. The standard errors are then
calculated based on the Hessian of the penalized log-likelihood.

5.7.2 Derivation of the score test
In this section, we show that the score 𝑈𝛾 (𝛾, 𝜼) of the joint frailty model (5.2) has the
same form independently of whether exact recurrence times or only interval counts of the
recurrent events are available, as long as the recurrence process is observed up to exactly
known follow-up times.

Let us start by rewriting the individual contributions (5.3) to the marginal likelihood
for interval counts
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∫ ∞
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· [𝑢𝛾𝑒𝜶>𝒛𝑖 ℎ0 (𝑥𝑖)] 𝛿𝑖 exp

{
−

∫ 𝑥𝑖

0
𝑢𝛾𝑒𝜶

>𝒛𝑖 ℎ0 (𝑠)d𝑠
}
𝑔\ (𝑢) d𝑢

=

𝐽𝑖∏
𝑗=1

[
1
𝑛𝑖 𝑗 !

(∫
𝐼𝑖 𝑗

𝑒𝜷
>𝒛𝑖_0 (𝑠) d𝑠

)𝑛𝑖 𝑗 ]
[𝑒𝜶>𝒛𝑖 ℎ0 (𝑥𝑖)] 𝛿𝑖 ·

∫ ∞

0


𝐽𝑖∏
𝑗=1
𝑢𝑛𝑖 𝑗


· 𝑢𝛾𝛿𝑖 exp

−𝑢
𝐽𝑖∑︁
𝑗=1

∫
𝐼𝑖 𝑗

𝑒𝜷
>𝒛𝑖_0 (𝑠) d𝑠

 exp
{
−

∫ 𝑥𝑖

0
𝑢𝛾𝑒𝜶
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𝑢𝑛𝑖+𝛾𝛿𝑖 exp

{
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=

𝐽𝑖∏
𝑗=1
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1
𝑛𝑖 𝑗 !

`
𝑛𝑖 𝑗

𝑖 𝑗
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[𝑒𝜶>𝒛𝑖 ℎ0 (𝑥𝑖)] 𝛿𝑖 ·

∫ ∞

0
𝐾𝑖 (𝑢, 𝑥𝑖) 𝑔\ (𝑢) d𝑢,

with 𝑛𝑖 =
∑𝐽𝑖
𝑗=1 𝑛𝑖 𝑗 and 𝐾𝑖 (𝑢, 𝑡) as defined in (5.7).

The marginal log-likelihood ℓ(𝛾, 𝜼) = ∑𝑚
𝑖=1 ln 𝐿𝑖 takes the form

𝑚∑︁
𝑖=1

𝐽𝑖∑︁
𝑗=1

[
− ln (𝑛𝑖 𝑗 !) + 𝑛𝑖 𝑗 ln (`𝑖 𝑗 )

]
+ 𝛿𝑖 [𝜶>𝒛𝑖 + ln (ℎ0 (𝑥𝑖))] + ln

∫ ∞

0
𝐾𝑖 (𝑢, 𝑥𝑖) 𝑔\ (𝑢) d𝑢,

and the score with respect to 𝛾 reads

𝑈𝛾 (𝛾, 𝜼) =
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𝑖=1

∫ ∞
0
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Since
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𝑅
𝑖
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>𝒛𝑖𝐻0 (𝑡)
}

· 𝑢𝛾 · 𝑒𝜶>𝒛𝑖𝐻0 (𝑡) · ln (𝑢)

= 𝐾𝑖 (𝑢, 𝑡)
[
𝑁𝐷𝑖 (𝑡−) · ln (𝑢) − 𝑢𝛾 · 𝑒𝜶>𝒛𝑖𝐻0 (𝑡) · ln (𝑢)

]
,

we have

𝑈𝛾 (𝛾, 𝜼) =
𝑚∑︁
𝑖=1

∫ ∞
0

[
𝑁𝐷
𝑖
(𝑥𝑖) − 𝑢𝛾 · 𝑒𝜶
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]

ln (𝑢) 𝐾𝑖 (𝑢, 𝑥𝑖) 𝑔\ (𝑢) d𝑢∫ ∞
0 𝐾𝑖 (𝑢, 𝑥𝑖) 𝑔\ (𝑢) d𝑢

.

If we now evaluate the score at (𝛾, 𝜼) = (0, �̂�0), we obtain

𝑈𝛾 (0, �̂�0) =
𝑚∑︁
𝑖=1

∫ ∞
0

[
𝑁𝐷
𝑖
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0 𝐾𝑖 (𝑢, 𝑥𝑖) 𝑔\ (𝑢) d𝑢

,

which is the first line of (5.8).

5.7.3 Likelihood with fixed observation times
In this section, we study the likelihood of the joint frailty model (5.2) based on indi-
vidual interval counts of recurrent events in one particular setting. Specifically, the ob-
servation times are assumed to be the same for all individuals and the baseline rate of
recurrence _0 (𝑡) is modeled as a piecewise constant function. We will show that if the



5.7 Appendix 131

observation intervals are finer than the intervals for the rate pieces, the score depends on
the individual’s interval counts only through the sums of these counts over each baseline
rate piece.

For that purpose, suppose the observation times 𝑡𝑖 𝑗 are given by 𝑡𝑖 𝑗 = 𝑡 𝑗 for 𝑗 =

0, ..., 𝐽𝑖 − 1, and the last observation time 𝑡𝑖𝐽𝑖 = 𝑋𝑖 is equal to the follow-up time 𝑋𝑖 .
The interval counts 𝑛𝑖 𝑗 , observed over the intervals 𝐼𝑖 𝑗 = (𝑡𝑖 𝑗−1, 𝑡𝑖 𝑗 ], enter the likelihood
contribution 𝐿 (𝑐)

𝑖
(𝑢𝑖) of individual 𝑖 given its frailty value 𝑢𝑖 (see (5.3)) only through the

factor

𝐽𝑖∏
𝑗=1

1
𝑛𝑖 𝑗 !

exp (−𝑢𝑖`𝑖 𝑗 ) (𝑢𝑖`𝑖 𝑗 )𝑛𝑖 𝑗 =
©«
𝐽𝑖∏
𝑗=1

1
𝑛𝑖 𝑗 !

ª®¬ · 𝑢𝑛𝑖𝑖 · exp ©«−𝑢𝑖
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`
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(5.11)
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∑𝐽𝑖
𝑗=1 𝑛𝑖 𝑗 and `𝑖 𝑗 =

∫
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For a baseline rate of recurrence specified as a piecewise constant function on intervals
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𝑘
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𝑘
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𝑘
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_0𝑘 |𝐼𝑖 𝑗 ∩ 𝐼𝑅𝑘 |, (5.12)

where |𝐼 | denotes the length of the interval 𝐼. Now let 𝐾𝑖 be the index 𝑘 of the interval 𝐼𝑅
𝑘

for which 𝑋𝑖 ∈ 𝐼𝑅𝐾𝑖
. We can write the sum in the third term in (5.11) as

𝐽𝑖∑︁
𝑗=1

`𝑖 𝑗 = 𝑒
𝜷>𝒛𝑖

𝐽𝑖∑︁
𝑗=1

𝐾𝑅∑︁
𝑘=1

_0𝑘 |𝐼𝑖 𝑗 ∩ 𝐼𝑅𝑘 | = 𝑒
𝜷>𝒛𝑖

𝐾𝑅∑︁
𝑘=1

_0𝑘

𝐽𝑖∑︁
𝑗=1

|𝐼𝑖 𝑗 ∩ 𝐼𝑅𝑘 |

= 𝑒𝜷
>𝒛𝑖

𝐾𝑅∑︁
𝑘=1

_0𝑘 |
𝐽𝑖⋃
𝑗=1
𝐼𝑖 𝑗 ∩ 𝐼𝑅𝑘 | = 𝑒

𝜷>𝒛𝑖

{
𝐾𝑖−1∑︁
𝑘=1

_0𝑘Δ
𝑅
𝑘 + _0𝐾𝑖

(𝑋𝑖 − 𝑡𝑅𝐾𝑖−1)
}
, (5.13)

which depends only on the individual’s follow-up time 𝑋𝑖 , but not on the other observation
times 𝑡𝑖 𝑗 , 𝑗 = 0, ..., 𝐽𝑖 − 1.

Using (5.12), the last term in (5.11) equals
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for the baseline rate of recurrence to be
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𝑘

, thus,
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=
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Note that �̃�𝑖𝑘 =
∑𝐽𝑖
𝑗=1 𝑛𝑖 𝑗 · 𝟙{𝐼𝑖 𝑗 ⊂ 𝐼𝑅

𝑘
} gives the number of recurrent events which indi-

vidual 𝑖 experiences over the time interval [0, 𝑋𝑖] ∩ 𝐼𝑅𝑘 . Hence, the first factor of expres-
sion (5.14) depends on the counts 𝑛𝑖 𝑗 which were observed over the smaller intervals 𝐼𝑖 𝑗
only via the counts �̃�𝑖𝑘 corresponding to the larger intervals 𝐼𝑅

𝑘
.

Inserting (5.13) and (5.14) into (5.11) yields
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Consequently, if the observation intervals are finer than the rate intervals the likeli-

hood is proportional to an expression that depends only on recurrent event interval counts
corresponding to the larger rate intervals.

5.8 Supplementary material: Extended simulation study

In this section, we present additional figures and tables illustrating the results of our sim-
ulation study. Subsection 5.8.1 focuses on the performance of the method for estimating
the joint frailty model based on individual interval counts of recurrent events. Subsec-
tion 5.8.2 deals with the performance of the score test for the association between the
recurrent events and death.

5.8.1 Performance of the estimation method
The basic set-up for the simulation study was described in Section 5.4.1. Table 5.3 gives
an overview of the scenarios covered in this supplementary material. All samples in-
clude 𝑚 = 200 individuals. Data were generated from a joint frailty model with a binary
covariate having effects 𝛼 = 𝛽 = 1 on the hazard of death and the rate of recurrence.
Independent censoring occurs uniformly over the total follow-up window [0, 2].
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In Section 5.4.1, we focused on scenarios in which the values of the frailty variance \
and the dependence parameter 𝛾 are fixed at \ = 0.5 and 𝛾 = ±1. Here, we also study the
effect of varying the frailty variance by including scenarios with \ ∈ {0.25, 0.75}. More-
over, we present settings with \ = 0.05 which are motivated by the estimates obtained in
the application (see Section 5.5).

Regarding the observation times 𝑡𝑖 𝑗 , that define the intervals for which the recurrent
event counts are observed, these times can be fixed and the same for all individuals (Sce-
nario I) or varying across individuals (Scenario II), as explained in Section 5.4.1. In
Scenarios I.G and II.D, the widths of these observation intervals are changed as well.

The baseline rates are generally specified as piecewise constant (pwc) functions on
𝐾𝑅 = 𝐾𝐷 = 𝐾∗ intervals of equal length, where we also assess the impact of increasing
𝐾∗ from 10 to 20 (Scenarios I.F and I.G). In contrast, in Scenario I.E, a simple parametric
model is used for the baseline rates by assuming (in this case correctly) a Weibull model.

Concerning the independent censoring, in Section 5.4.1, we have compared uniform
censoring over the total follow-up window with the alternative of end-of-study censoring
at 𝑡 = 2. Table 5.4 reports on the resulting proportions of censoring under the different
mechanisms across 200 replications.

Table 5.3: Simulation settings.

Scenario |𝛾 | \ obs. times 𝑡𝑖 𝑗 rates 𝐾∗ Figure
Varying the frailty variance in Scenario I

I.A 1 0.25 0.2 𝑗 pwc 10 5.5
I.B 1 0.75 0.2 𝑗 pwc 10 5.6
I.C 1 0.05 0.2 𝑗 pwc 10 5.7
I.D 5 0.05 0.2 𝑗 pwc 10 5.8

Varying the specification of the baseline rates in Scenario I
I.E 1 0.5 0.2 𝑗 Weibull - 5.9
I.F 1 0.5 0.2 𝑗 pwc 20 5.10

Varying the width of the observation intervals in Scenario I
I.G 1 0.5 0.1 𝑗 pwc 20 5.11

Varying the frailty variance in Scenario II
II.A 1 0.25 0.2 𝑗 + Y𝑖 𝑗 pwc 10 5.12
II.B 1 0.5 0.2 𝑗 + Y𝑖 𝑗 pwc 10 5.13
II.C 1 0.75 0.2 𝑗 + Y𝑖 𝑗 pwc 10 5.14

Varying the width of the observation intervals in Scenario II
II.D 1 0.5 0.1 𝑗 + Y𝑖 𝑗 pwc 10 5.15
The Y𝑖 𝑗 are drawn from a uniform distribution (see Section 5.4.1).
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Scenario I.A (𝜽= 0.25)
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Figure 5.5: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (\), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 1.
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Scenario I.B (𝜽= 0.75)
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Figure 5.6: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (\), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 1.
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Scenario I.C (𝜽= 0.05, 𝜸= ±1)
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Figure 5.7: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (\), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 1.



5.8 Supplementary material 137

Scenario I.D (𝜽= 0.05, 𝜸= ±5)
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Figure 5.8: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 5) and negative dependence (𝛾 = −5). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (\), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 5.
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Scenario I.E (𝜽= 0.5, Weibull rates)
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Figure 5.9: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (\), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 1.
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Scenario I.F (𝜽= 0.5, Up to 10 counts, K∗ = 20)
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Figure 5.10: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (\), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 1.
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Scenario I.G (𝜽= 0.5, Up to 20 counts, K∗ = 20)
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Figure 5.11: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (\), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 1.
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Scenario II.A (𝜽= 0.25)
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Figure 5.12: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (\), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 1.
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Scenario II.B (𝜽= 0.5)
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Figure 5.13: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (\), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 1.
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Scenario II.C (𝜽= 0.75)
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Figure 5.14: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (\), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 1.
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Scenario II.D (𝜽= 0.5, Up to 20 visits)
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Figure 5.15: Box plots of the parameter estimates (top row) and estimated standard errors (bottom
row) in the joint frailty model for positive (𝛾 = 1) and negative dependence (𝛾 = −1). Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (\), based on 200 samples of size 𝑚 = 200. Red, dashed line marks true value (top row) or
empirical standard deviation (bottom row); gray, dotted lines mark 10% deviations from respective
value. Middle row: estimates (gray, solid) of the cumulative rate of recurrence (left) and of death
(right) in the joint frailty model with 𝛾 = 1.
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Table 5.4: Proportion of censoring under different censoring mechanisms for the joint frailty model
with frailty variance \ = 0.5 in 200 replications of Scenario I.

censoring proportion
𝛾 censoring min mean max
1 𝐶 ∼ U [0, 2] 0.445 0.564 0.650

𝐶 = 2 0.040 0.091 0.140
−1 𝐶 ∼ U [0, 2] 0.365 0.484 0.580

𝐶 = 2 0.000 0.032 0.065

5.8.2 Performance of the score test
The general design of the simulation study regarding the score test was laid out in Sec-
tion 5.4.2. In this supplementary material, we present the results for additional scenar-
ios as summarized in Table 5.5. The samples of 𝑚 = 200 individuals each are drawn
from a joint frailty model with a binary covariate with effects 𝛼 = 𝛽 = 1 on the hazard
of death and the rate of recurrence. Independent censoring is taken to occur uniformly
over the total follow-up window [0, 2]. We assess the power or size, respectively, of
the score test for the different combinations of the dependence parameter 𝛾 varying in
Γ = {−1,−0.5, 0, 0.5, 1} and the frailty variance \ varying in Θ = {0.25, 0.5, 0.75}.

In Scenario I.A, we extend this to consider stronger dependence, 𝛾 = ±5, and a smaller
frailty variance, \ = 0.05, inspired by the estimates we obtained for the real data (see
Section 5.5).

To study the effect of the width of the observation intervals for the recurrent event
counts, the observation times 𝑡𝑖 𝑗 are fixed and the same for all individuals in Scenario I,
but varying across individuals in Scenario II. Moreover, the test performance based on
finer observation intervals is examined for each of the scenarios (Scenarios I.C and II.B).

The baseline rate of recurrence is specified as a piecewise constant function on 𝐾𝑅 =

10 or 𝐾𝑅 = 20 intervals of equal length.
In Section 5.4.1, two versions of independent censoring were considered: uniform

censoring over the total follow-up window or end-of-study censoring at 𝑡 = 2. The result-
ing proportions of censored individuals under the two mechanisms across 1000 replica-
tions are given in Table 5.6.
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Table 5.5: Simulation settings for the score test with dependence parameter varying in Γ =

{−1,−0.5, 0, 0.5, 1} and frailty variance varying in Θ = {0.25, 0.5, 0.75}.

Scenario 𝛾 \ obs. times 𝑡𝑖 𝑗 𝐾𝑅 Table
Varying the frailty variance in Scenario I

I.A Γ ∪ {±5} Θ ∪ {0.05} 0.2 𝑗 10 5.7
Varying the specification of the baseline rate in Scenario I

I.B Γ Θ 0.2 𝑗 20 5.8
Varying the width of the observation intervals in Scenario I

I.C Γ Θ 0.1 𝑗 20 5.9
Varying the observation times across individuals (Scenario II)

II.A Γ Θ 0.2 𝑗 + Y𝑖 𝑗 10 5.10
Varying the width of the observation intervals in Scenario II

II.B Γ Θ 0.1 𝑗 + Y𝑖 𝑗 10 5.11
The Y𝑖 𝑗 are drawn from a uniform distribution (see Section 5.4.1).

Table 5.6: Proportion of censoring under different censoring mechanisms for the joint frailty model
with dependence parameter 𝛾 = 0 in 1000 replications of Scenario I.

censoring proportion
\ censoring min mean max
0.25 𝐶 ∼ U [0, 2] 0.365 0.516 0.625

𝐶 = 2 0.000 0.019 0.070
0.5 𝐶 ∼ U [0, 2] 0.400 0.516 0.645

𝐶 = 2 0.000 0.020 0.055
0.75 𝐶 ∼ U [0, 2] 0.405 0.515 0.645

𝐶 = 2 0.000 0.019 0.060

Table 5.7: Power and size of the score test, performed at the 5% level, in the joint frailty
model with varying dependence parameter 𝛾 ∈ {−5,−1,−0.5, 0, 0.5, 1, 5} and frailty variance \ ∈
{0.05, 0.25, 0.5, 0.75}, across 1000 replications each.

Dependence 𝛾
\ −5 −1 −0.5 0 0.5 1 5
0.05 0.938 0.290 0.142 0.081 0.116 0.263 0.931
0.25 1.000 0.960 0.586 0.066 0.514 0.932 1.000
0.5 1.000 1.000 0.905 0.062 0.872 1.000 1.000
0.75 1.000 1.000 0.984 0.091 0.974 1.000 1.000
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Table 5.8: Power and size of the score test, performed at the 5% level, in the joint frailty model with
varying dependence parameter 𝛾 ∈ {−1,−0.5, 0, 0.5, 1}, frailty variance \ ∈ {0.25, 0.5, 0.75}, and
𝐾𝑅 = 20, across 1000 replications each.

Dependence 𝛾
\ −1 −0.5 0 0.5 1
0.25 0.948 0.525 0.058 0.530 0.929
0.5 0.998 0.878 0.070 0.870 1.000
0.75 1.000 0.974 0.087 0.975 1.000

Table 5.9: Power and size of the score test, performed at the 5% level, in the joint frailty model with
varying dependence parameter 𝛾 ∈ {−1,−0.5, 0, 0.5, 1}, frailty variance \ ∈ {0.25, 0.5, 0.75}, up
to 20 counts, and 𝐾𝑅 = 20, across 1000 replications each.

Dependence 𝛾
\ −1 −0.5 0 0.5 1
0.25 0.955 0.556 0.062 0.533 0.940
0.5 0.999 0.890 0.063 0.873 1.000
0.75 1.000 0.979 0.090 0.977 1.000

Table 5.10: Power and size of the score test, performed at the 5% level, in the joint frailty model
with varying dependence parameter 𝛾 ∈ {−1,−0.5, 0, 0.5, 1}, frailty variance \ ∈ {0.25, 0.5, 0.75},
and observation times varying across individuals (Scenario II), across 1000 replications each.

Dependence 𝛾
\ −1 −0.5 0 0.5 1
0.25 0.943 0.533 0.071 0.543 0.962
0.5 1.000 0.879 0.075 0.875 0.998
0.75 1.000 0.978 0.065 0.971 1.000

Table 5.11: Power and size of the score test, performed at the 5% level, in the joint frailty model
with varying dependence parameter 𝛾 ∈ {−1,−0.5, 0, 0.5, 1}, frailty variance \ ∈ {0.25, 0.5, 0.75},
up to 20 visits, and 𝐾𝑅 = 10, across 1000 replications each.

Dependence 𝛾
\ −1 −0.5 0 0.5 1
0.25 0.941 0.540 0.079 0.511 0.947
0.5 1.000 0.890 0.074 0.863 1.000
0.75 1.000 0.989 0.069 0.981 1.000
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Supporting information

Source code to reproduce the simulation studies and perform the analysis of Section 5.5 is
available as Supporting Information at https://onlinelibrary.wiley.com/doi/10.1002/bimj.
201900367.
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Dańko, A., R. Schaible, and M. J. Dańko (2020). Salinity effects on survival and repro-
duction of hydrozoan Eleutheria dichotoma. Estuaries and Coasts 43, 360–374.

Ghosh, D. and D. Y. Lin (2003). Semiparametric analysis of recurrent events data in the
presence of dependent censoring. Biometrics 59, 877–885.

Gilbert, P. and R. Varadhan (2019). numDeriv: Accurate Numerical Derivatives. R
package version 2016.8-1.1. https://CRAN.R-project.org/package=numDeriv.

Huang, C.-Y. and M.-C. Wang (2004). Joint modeling and estimation for recurrent event
processes and failure time data. Journal of the American Statistical Association 99,
1153–1165.

Huang, X., R. A. Wolfe, and C. Hu (2004). A test for informative censoring in clustered
survival data. Statistics in Medicine 23, 2089–2107.

Lancaster, T. and O. Intrator (1998). Panel data with survival: Hospitalization of HIV-
positive patients. Journal of the American Statistical Association 93, 46–53.

Lawless, J. F. and M. Zhan (1998). Analysis of interval-grouped recurrent-event data
using piecewise constant rate functions. The Canadian Journal of Statistics / La Revue
Canadienne de Statistique 26, 549–565.

Liu, L. and X. Huang (2008). The use of Gaussian quadrature for estimation in frailty
proportional hazards models. Statistics in Medicine 27, 2665–2683.

Liu, L., R. A. Wolfe, and X. Huang (2004). Shared frailty models for recurrent events and
a terminal event. Biometrics 60, 747–756.

https://onlinelibrary.wiley.com/doi/10.1002/bimj.201900367
https://onlinelibrary.wiley.com/doi/10.1002/bimj.201900367


References 149

Nelson, K. P., S. R. Lipsitz, G. M. Fitzmaurice, J. Ibrahim, M. Parzen, and R. Straw-
derman (2006). Use of the probability integral transformation to fit nonlinear mixed-
effects models with nonnormal random effects. Journal of Computational and Graph-
ical Statistics 15, 39–57.

R Core Team (2019). R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing.

Rondeau, V., S. Mathoulin-Pelissier, H. Jacqmin-Gadda, V. Brouste, and P. Soubeyran
(2007). Joint frailty models for recurring events and death using maximum penalized
likelihood estimation: application on cancer events. Biostatistics 8(4), 708–721.

Sinha, D. and T. Maiti (2004). A Bayesian approach for the analysis of panel-count data
with dependent termination. Biometrics 60, 34–40.

Smyth, G. K. (1998). Numerical integration. In P. Armitage and T. Colton (Eds.), Ency-
clopedia of Biostatistics, pp. 3088–3095. London: Wiley.

Therneau, T. M. and P. M. Grambsch (2000). Modeling Survival Data: Extending the
Cox Model. New York: Springer.

Zhao, H., Y. Li, and J. Sun (2013). Analyzing panel count data with a dependent obser-
vation process and a terminal event. The Canadian Journal of Statistics / La Revue
Canadienne de Statistique 41, 174–191.



150 Chapter 5 – Joint modeling of interval counts of recurrent events and death



6
Incorporating delayed entry into the joint

frailty model for recurrent events and
a terminal event

Abstract

In studies of recurrent events, joint modeling approaches are often needed to allow for
potential dependent censoring by a terminal event such as death. Joint frailty models for
recurrent events and death with an additional dependence parameter have been studied for
cases in which individuals are observed from the start of the event processes. However,
the samples are often selected at a later time, which results in delayed entry. Thus, only
individuals who have not yet experienced the terminal event will be included in the study.
We propose a method for estimating the joint frailty model from such left-truncated data.
The frailty distribution among the selected survivors differs from the frailty distribution in
the underlying population if the recurrence process and the terminal event are associated.
The correctly adjusted marginal likelihood can be expressed as a ratio of two integrals
over the frailty distribution, which may be approximated using Gaussian quadrature. The
baseline rates are specified as piecewise constant functions, and the covariates are as-
sumed to have multiplicative effects on the event rates. We assess the performance of the

This chapter has been submitted for publication as: M. Böhnstedt, J. Gampe, M.A.A. Caljouw, and H. Put-
ter. Incorporating delayed entry into the joint frailty model for recurrent events and a terminal event.
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estimation procedure in a simulation study, and apply the method to estimate age-specific
rates of recurrent urinary tract infections and mortality in an older population.

6.1 Introduction

Repeated occurrences of the same type of event in one individual arise in various applica-
tions. Examples of such recurrent event data include incidents of myocardial infarction,
recurrent infections, fractures, or tumor relapses.

If the individual is additionally at risk of experiencing a terminal event such as death,
which will stop the recurrent event process, this might induce dependent censoring of the
recurrence process. Therefore, approaches for jointly modeling the two processes of the
recurrent events and the terminal event have been developed. Moreover, studies might
explicitly address the question of whether there is an association between the processes
by asking, for instance, whether individuals who experience more recurrences also have
a higher risk of experiencing the terminal event. Specific joint models can provide ad-
ditional insights into the direction and the strength of the association between the event
processes.

The choice of the time scale 𝑡, along which the recurrence process and the terminal
event process are assumed to evolve, depends on the specific application. In clinical stud-
ies, the time since randomization is often used as the time scale; whereas in demographic
studies of fertility, for instance, the most relevant time scale is age.

For a given time scale, the event processes can, in some cases, be observed from the
time origin 𝑡0. Consider, for example, a medical study in which the time since the disease
onset or diagnosis is used as the time scale. If each individual is observed from the disease
onset or diagnosis onwards, then all individuals enter the study at time 𝑡0 = 0.

However, studies are often initiated at a later point in time when the two processes
have already started. If in the above setting patients do not participate in the clinical study
until some period of time after their diagnosis, individual times of study entry will differ
from 0, and might also vary between patients. Similarly, in studies of certain diseases
in old-age populations, such as in register-based studies of cardiovascular disease and
mortality, age can be considered the natural time scale (see, for instance, Modig et al.,
2013). The individuals included in such analyses have already reached a certain advanced
age by the beginning of the study period.

In these cases, the data are left-truncated in the sense that the individuals can enter the
study only if they have not yet experienced the terminal event. If the recurrence process
and the terminal event process are associated, this sample of survivors is not a random
sample of the underlying population. Rather, the sample is comprised of individuals who
tend to have a lower risk of experiencing the terminal event, and – if there is a positive
association between the two processes – to also have a lower risk of experiencing recurrent
events. Thus, to obtain valid inferences, correctly adjusting for the truncation is crucial.

The example we use in this study to illustrate our method focuses on recurrent urinary
tract infections (UTIs) in older residents of long-term care facilities (LTCF). The original
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study by Caljouw et al. (2014) investigated whether cranberry capsules are effective in
preventing UTIs. Given that around 34% of the elderly study population died during the
follow-up period, recurrent UTIs and mortality had to be modeled jointly. The original
study used time since randomization as the time scale. By contrast, we have chosen
to use age as the main time scale of the event processes, as mortality and, presumably,
UTI recurrences naturally depend on age. Because the participants were between 64 and
102 years old when they entered the study, the observations are then left-truncated. In
our analysis, we seek to assess the effects of the cranberry treatment, to estimate the age-
specific rates of UTIs and death, and to determine whether there is an association between
UTIs and death risks.

While different joint models for recurrent events and death have been proposed, we
focus here on the joint frailty model introduced by Liu et al. (2004). This model has
been applied repeatedly in medical studies (e.g., to study recurrent cancer events as in
Rondeau et al., 2007, or recurrent heart failure hospitalizations as in Rogers et al., 2016),
and extended in several directions (e.g., to the setting of nested case-control studies in
Jazić et al., 2019). The joint frailty model allows us to examine the shape of the rates of
recurrence and death, as well as the potential dependence between the two processes. The
dependence is introduced by a shared individual random effect entering both the rate of
recurrence and the hazard of death. An additional parameter determines whether the pro-
cesses are positively or negatively associated, and how strong this association is. In other
models, the frailty affects both event rates in the same way (Huang and Wang, 2004), or
the dependence between the processes is left completely unspecified (Cook and Lawless,
1997; Ghosh and Lin, 2003). A common approach to estimating the joint frailty model
that we consider here is using Gaussian quadrature to approximate the marginal likelihood
(Liu and Huang, 2008; Rondeau et al., 2007). We will see that in this framework, the set-
ting with left-truncated data can be handled in a straightforward manner by adapting the
likelihood.

Incorporating left truncation, which is also called delayed entry, has received varying
levels of attention in studies based on different frailty models and joint models. Several
studies have discussed handling left truncation in shared frailty models for clustered sur-
vival data (e.g., Jensen et al., 2004; van den Berg and Drepper, 2016). In a recurrent event
setting, Balan et al. (2016) considered event dependent selection; i.e., individuals were
included in the study only if they had experienced at least one recurrent event in a given
time period. Recurrent event studies with selection dependent on survival were briefly
discussed in Cook and Lawless (2007), but not specifically in the context of frailty mod-
els. It has been argued that for the joint frailty model for recurrent events and death, as
specified by Liu et al. (2004), delayed entry can be easily incorporated (Rondeau et al.,
2007). However, to our knowledge, no detailed account of this approach has previously
been provided. At the time of writing, the R package frailtypack, which can be used
for fitting a variety of frailty models, does not provide functionality for estimating the
joint frailty model from left-truncated data (according to the manual of version 3.3.2, date
2020-10-07, Rondeau et al., 2020). Extensions to left-truncated data have been considered
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in some other joint models for recurrent events and death. Emura et al. (2017) introduced
a joint frailty-copula model for two event times that can be adapted to accommodate left
truncation and recurrent event data. Outside of the class of shared frailty models, Cai et al.
(2017) proposed a model for longitudinal measurements, recurrent events, and a terminal
event with inferences based on estimation equations that can be generalized to allow for
left-truncated data. Liu et al. (2012) presented an estimating equation procedure for a
partial marginal model of recurrent events in the presence of a terminal event with left
truncation. In the context of joint models for longitudinal data and death, estimation pro-
cedures based on left-truncated data have been derived for different models with shared
random effects (see, for example, van den Hout and Muniz-Terrera, 2016; Crowther et al.,
2016; Piulachs et al., 2021).

In this chapter, we propose a method for estimating the joint frailty model for recur-
rent events and a terminal event, as introduced by Liu et al. (2004), when data are left-
truncated. Our approach adapts the method of Liu and Huang (2008), who use Gaussian
quadrature to approximate the marginal likelihood of the joint frailty model.

The chapter is structured as follows. Section 6.2 first presents the joint frailty model
and the corresponding likelihood in the usual setting without truncation, and then shows
the adjustments for left-truncated data. The method of estimation is detailed in Sec-
tion 6.3, and its performance is assessed via simulation studies in Section 6.4. We illus-
trate the approach using the data set on recurrent UTIs in Section 6.5, and conclude with
a discussion in Section 6.6.

6.2 Joint frailty model and left truncation

The joint frailty model for recurrent events and a terminal event has been applied most
frequently in situations in which the time of the terminal event is subject to independent
right-censoring only. In the following, we will first present the model and the correspond-
ing likelihood for such right-censored data. Then, we will lay out how certain assumptions
and, in particular, the likelihood function are adjusted to the case of left-truncated data.
Throughout, we will often refer to the terminal event as death for the sake of simplicity.

6.2.1 Joint frailty model
We consider independent individuals 𝑖, 𝑖 = 1, ..., 𝑚, who can experience recurrent events
between time 𝑡0 = 0 and the time 𝐷𝑖 of the terminal event. Let𝐶𝑖 denote a censoring time,
which is assumed to be independent of the recurrence and terminal event processes. An
individual can then be observed only up to his or her follow-up time 𝑋𝑖 = min(𝐶𝑖 , 𝐷𝑖),
and 𝛿𝑖 = 𝟙{𝐷𝑖 ≤ 𝐶𝑖} will indicate whether the terminal event occurred before censoring,
with the indicator function 𝟙{·}. The at-risk indicator at time 𝑡 ≥ 0 is given by 𝑌𝑖 (𝑡) =

𝟙{𝑡 ≤ 𝑋𝑖}, if individuals enter the study at 𝑡0 = 0.
The number of recurrent events experienced by individual 𝑖 up to time 𝑡 is recorded by

the actual recurrent event process 𝑁𝑅∗
𝑖

(𝑡). Similarly, we define the actual counting process
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of the terminal event as 𝑁𝐷∗
𝑖

(𝑡) = 𝟙{𝐷𝑖 ≤ 𝑡}. However, due to right-censoring, we can
only observe the processes 𝑁𝐷

𝑖
(𝑡) = 𝟙{𝑋𝑖 ≤ 𝑡, 𝛿𝑖 = 1} and 𝑁𝑅

𝑖
(𝑡) =

∫ 𝑡
0 𝑌𝑖 (𝑠)d𝑁

𝑅∗
𝑖

(𝑠)
= 𝑁𝑅∗

𝑖
(min (𝑡, 𝑋𝑖)). Here, d𝑁𝑅∗

𝑖
(𝑡) = 𝑁𝑅∗

𝑖
((𝑡 + d𝑡)−) − 𝑁𝑅∗

𝑖
(𝑡−) is the increment of the

recurrence process, equal to the number of events in the small interval [𝑡, 𝑡 + d𝑡), with 𝑡−

as the left-hand limit.
The observed data of individual 𝑖 up to time 𝑡 are given by O𝑖 (𝑡) = {𝑌𝑖 (𝑠), 𝑁𝑅𝑖 (𝑠),

𝑁𝐷
𝑖
(𝑠), 0 ≤ 𝑠 ≤ 𝑡; 𝒛𝑖}, including the observed time-fixed covariate vector 𝒛𝑖 . Individual

risks will depend on the covariates as well as on the unobservable frailty value 𝑢𝑖 , where
the frailties 𝑢𝑖 are independent realizations of a positive random variable𝑈.

In the joint frailty model introduced by Liu et al. (2004), the observed recurrence
process is assumed to have the intensity 𝑌𝑖 (𝑡)_𝑖 (𝑡 |𝑢𝑖) with

P(d𝑁𝑅𝑖 (𝑡) = 1 | F𝑡− , 𝐷𝑖 ≥ 𝑡) = 𝑌𝑖 (𝑡)_𝑖 (𝑡 |𝑢𝑖)d𝑡
_𝑖 (𝑡 |𝑢𝑖)d𝑡 = dΛ𝑖 (𝑡 |𝑢𝑖) = P(d𝑁𝑅∗𝑖 (𝑡) = 1 | 𝒛𝑖 , 𝑢𝑖 , 𝐷𝑖 ≥ 𝑡).

(6.1)

Here, F𝑡 = 𝜎{O𝑖 (𝑠), 0 ≤ 𝑠 ≤ 𝑡, 𝑢𝑖; 𝑖 = 1, ..., 𝑚} denotes the 𝜎-algebra generated by
the frailty and the observed data. The terminal event process is characterized by the
intensity 𝑌𝑖 (𝑡)ℎ𝑖 (𝑡 |𝑢𝑖) with

P(d𝑁𝐷𝑖 (𝑡) = 1 | F𝑡− ) = 𝑌𝑖 (𝑡)ℎ𝑖 (𝑡 |𝑢𝑖)d𝑡
ℎ𝑖 (𝑡 |𝑢𝑖)d𝑡 = d𝐻𝑖 (𝑡 |𝑢𝑖) = 𝑃(d𝑁𝐷∗

𝑖 (𝑡) = 1 | 𝒛𝑖 , 𝑢𝑖 , 𝐷𝑖 ≥ 𝑡).
(6.2)

The first lines in (6.1) and (6.2) follow from the assumption that the censoring mechanism
is conditionally independent of the two event processes given the process history.

Following Liu et al. (2004), we specify the intensities as

_𝑖 (𝑡 |𝑢𝑖) = 𝑢𝑖 𝑒𝜷
>𝒛𝑖 _0 (𝑡),

ℎ𝑖 (𝑡 |𝑢𝑖) = 𝑢𝛾𝑖 𝑒
𝜶>𝒛𝑖 ℎ0 (𝑡).

(6.3)

The baseline rates of recurrence and death, _0 (𝑡) and ℎ0 (𝑡), are affected by the covari-
ates 𝒛𝑖 through a multiplicative model with effects 𝜷 and 𝜶, respectively. The inclusion
of the frailty 𝑢 in the recurrence rate accommodates heterogeneity across individuals and
dependence between the recurrences within one individual. The association between the
recurrent events and death results from the fact that the shared frailty 𝑢 also enters the
hazard of death. Due to the additional parameter 𝛾, the model can capture associations
of variable magnitudes and in different directions. For positive 𝛾 > 0, individuals with
a higher rate of recurrence will also be subject to a higher hazard of death. For 𝛾 < 0,
a higher rate of recurrence implies a lower hazard of death. If 𝛾 = 0, the intensities
in (6.3) do not share any parameters, and the censoring of the recurrence process by death
is non-informative.

A common choice for the distribution of the frailty 𝑈 is a gamma distribution with a
mean of one and a variance of \. We will more generally consider that the frailties 𝑢𝑖 fol-
low a distribution with a density of 𝑔\ (𝑢) and a corresponding distribution function𝐺 \ (𝑢)
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with parameter \. This assumption refers to the initial distribution of frailties in the popu-
lation at time 𝑡0 = 0. However, if 𝛾 ≠ 0, the distribution of frailties in the population will
change over time due to selection effects, which will cause the population at time 𝑡 to be
composed of survivors with lower mortality risks.

We now formulate the likelihood of the joint frailty model (6.3) when individuals are
observed from time 𝑡0 = 0. Let 𝑡𝑖 𝑗 , 𝑗 = 1, ..., 𝐽𝑖 , be the observed recurrence times of
individual 𝑖. Based on the arguments stated in Liu et al. (2004), the conditional likelihood
contribution of individual 𝑖 given his or her frailty value 𝑢𝑖 can be written as

𝐿
(𝑐)
𝑖

(𝑢𝑖) =

𝐽𝑖∏
𝑗=1
_𝑖 (𝑡𝑖 𝑗 |𝑢𝑖)

 exp
{
−

∫ ∞

0
𝑌𝑖 (𝑠)_𝑖 (𝑠 |𝑢𝑖) d𝑠

}
· ℎ𝑖 (𝑥𝑖 |𝑢𝑖) 𝛿𝑖 exp

{
−

∫ ∞

0
𝑌𝑖 (𝑠)ℎ𝑖 (𝑠 |𝑢𝑖) d𝑠

}
=


𝐽𝑖∏
𝑗=1
𝑢𝑖𝑒

𝜷>𝒛𝑖_0 (𝑡𝑖 𝑗 )
 exp

{
−

∫ 𝑥𝑖

0
𝑢𝑖𝑒

𝜷>𝒛𝑖_0 (𝑠) d𝑠
}

(6.4)

·
[
𝑢
𝛾

𝑖
𝑒𝜶

>𝒛𝑖 ℎ0 (𝑥𝑖)
] 𝛿𝑖

exp
{
−

∫ 𝑥𝑖

0
𝑢
𝛾

𝑖
𝑒𝜶

>𝒛𝑖 ℎ0 (𝑠) d𝑠
}
.

The marginal likelihood 𝐿𝑖 of the observed data of individual 𝑖 is obtained by integrating
the above expression over the frailty distribution,

𝐿𝑖 =

∫ ∞

0
𝐿
(𝑐)
𝑖

(𝑢) d𝐺 \ (𝑢) =
∫ ∞

0
𝐿
(𝑐)
𝑖

(𝑢) 𝑔\ (𝑢) d𝑢. (6.5)

6.2.2 Adjusting for left truncation
We will now extend the above framework to allow for left truncation, that is, individuals
entering the study at times that may be later than 𝑡0 = 0. Before deriving the likelihood
for the left-truncated data, we introduce some additional notations and assumptions.

A sample of 𝑚𝑉 independent individuals 𝑖, 𝑖 = 1, ..., 𝑚𝑉 , is left-truncated if the in-
dividuals 𝑖 enter the study only at times 𝑉𝑖 ≥ 𝑡0, with strict inequality for at least some
individuals. Then, the observation of individual 𝑖 is conditional on his or her survival
up to the entry time, 𝐷𝑖 > 𝑉𝑖 , and events can only be observed in the interval [𝑉𝑖 , 𝑋𝑖].
Hence, the at-risk indicator 𝑌𝑖 (𝑡) of Section 6.2.1 is replaced by 𝑉𝑌𝑖 (𝑡) = 𝟙{𝑉𝑖 ≤ 𝑡 ≤ 𝑋𝑖}.

As a consequence, the observed recurrent event process 𝑉𝑁𝑅𝑖 (𝑡) =
∫ 𝑡
0 𝑉𝑌𝑖 (𝑠)d𝑁𝑅∗𝑖 (𝑠)

= [𝑁𝑅∗
𝑖

(min (𝑡, 𝑋𝑖))−𝑁𝑅∗𝑖 (𝑉𝑖)]𝟙{𝑡 > 𝑉𝑖} in this setting records only the recurrences after
study entry at 𝑉𝑖 . Analogously, the left-truncated counting process of the terminal event
is given by 𝑉𝑁

𝐷
𝑖
(𝑡) = 𝟙{𝑉𝑖 ≤ 𝑋𝑖 ≤ 𝑡, 𝛿𝑖 = 1}. The observed data for individual 𝑖 are then

𝑉O𝑖 (𝑡) = {𝑉𝑌𝑖 (𝑠), 𝑉𝑁𝑅𝑖 (𝑠), 𝑉𝑁𝐷𝑖 (𝑠), 𝑉𝑖 ≤ 𝑠 ≤ 𝑡; 𝒛𝑖;𝑉𝑖}, and the 𝜎-algebra is modified as
𝑉F𝑡 = 𝜎{𝑉O𝑖 (𝑠), 0 ≤ 𝑠 ≤ 𝑡, 𝑢𝑖; 𝑖 = 1, ..., 𝑚𝑉 }.
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In addition to the assumption of conditionally independent censoring already made in
Section 6.2.1, we further assume that the truncation times𝑉𝑖 are conditionally independent
of the recurrence and terminal event processes given the process history. Hence, the
intensity of the observed recurrence process is given by 𝑉𝑌𝑖 (𝑡)_𝑖 (𝑡 |𝑢𝑖) and (6.1) is adapted
as

P(d 𝑉𝑁𝑅𝑖 (𝑡) = 1 | 𝑉F𝑡−, 𝐷𝑖 ≥ 𝑡) = 𝑉𝑌𝑖 (𝑡)_𝑖 (𝑡 |𝑢𝑖). (6.1’)

The intensity of the observed terminal event process is, correspondingly, 𝑉𝑌𝑖 (𝑡)ℎ𝑖 (𝑡 |𝑢𝑖),
such that (6.2) is modified as

P(d 𝑉𝑁𝐷𝑖 (𝑡) = 1 | 𝑉F𝑡−) = 𝑉𝑌𝑖 (𝑡)ℎ𝑖 (𝑡 |𝑢𝑖). (6.2’)

Based on this, we can develop the likelihood of the joint frailty model (6.3) for left-
truncated data. The conditional likelihood contribution of individual 𝑖 given 𝑢𝑖 is con-
structed in analogy to (6.4), with 𝑌𝑖 (𝑠) replaced by 𝑉𝑌𝑖 (𝑠), and appropriately restricting
to the observed recurrence times 𝑡𝑖 𝑗 ≥ 𝑣𝑖; that is,

𝑉𝐿
(𝑐)
𝑖

(𝑢𝑖) =

∏
𝑡𝑖 𝑗 ≥𝑣𝑖

_𝑖 (𝑡𝑖 𝑗 |𝑢𝑖)
 exp

{
−

∫ ∞

0
𝑉𝑌𝑖 (𝑠)_𝑖 (𝑠 |𝑢𝑖) d𝑠

}
· ℎ𝑖 (𝑥𝑖 |𝑢𝑖) 𝛿𝑖 exp

{
−

∫ ∞

0
𝑉𝑌𝑖 (𝑠)ℎ𝑖 (𝑠 |𝑢𝑖) d𝑠

}
=


∏
𝑡𝑖 𝑗 ≥𝑣𝑖

𝑢𝑖𝑒
𝜷>𝒛𝑖_0 (𝑡𝑖 𝑗 )

 exp
{
−

∫ 𝑥𝑖

𝑣𝑖

𝑢𝑖𝑒
𝜷>𝒛𝑖_0 (𝑠) d𝑠

}
·
[
𝑢
𝛾

𝑖
𝑒𝜶

>𝒛𝑖 ℎ0 (𝑥𝑖)
] 𝛿𝑖

exp
{
−

∫ 𝑥𝑖

𝑣𝑖

𝑢
𝛾

𝑖
𝑒𝜶

>𝒛𝑖 ℎ0 (𝑠) d𝑠
}
.

(6.6)

The marginal likelihood contribution is again obtained by integrating out the frailty. How-
ever, as the frailty distribution in the sample of survivors differs from the frailty distribu-
tion at time 𝑡0, we need to integrate over the conditional frailty distribution given survival
to the time of entry into the study. This point has previously been discussed in the context
of clustered survival data by van den Berg and Drepper (2016) and Eriksson et al. (2015)
and for general state duration models by Lawless and Fong (1999). More formally, the
marginal likelihood contribution of individual 𝑖 is thus

𝑉𝐿𝑖 =

∫ ∞

0
𝑉𝐿

(𝑐)
𝑖

(𝑢) d𝐺 \ (𝑢 | 𝐷𝑖 > 𝑣𝑖 , 𝑉𝑖 = 𝑣𝑖 , 𝒛𝑖) =
∫ ∞

0
𝑉𝐿

(𝑐)
𝑖

(𝑢) d𝐺 \ (𝑢 | 𝐷𝑖 > 𝑣𝑖 , 𝒛𝑖),
(6.7)

under the assumption that the truncation time 𝑉𝑖 is independent of 𝑢.
In particular, if 𝛾 > 0 such that the recurrence process and the mortality process

are positively associated, individuals who survived up to time 𝑣 will tend to have lower
frailty values than individuals who died before time 𝑣, for given 𝒛𝑖 . Hence, the frailty
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distribution among survivors beyond time 𝑣, 𝐺 \ (𝑢 | 𝐷 > 𝑣), will tend to have more
probability mass at lower values 𝑢 than the frailty distribution 𝐺 \ (𝑢) in the underlying
population at time 𝑡0. Consequently, neglecting the effect of the survivor selection on the
frailty distribution in the sample and constructing a marginal likelihood as

𝑉𝐿
naive
𝑖 =

∫ ∞

0
𝑉𝐿

(𝑐)
𝑖

(𝑢) d𝐺 \ (𝑢) =
∫ ∞

0
𝑉𝐿

(𝑐)
𝑖

(𝑢) 𝑔\ (𝑢) d𝑢, (6.8)

would lead to an invalid inference if 𝛾 ≠ 0. We will illustrate the resulting biases in the
parameter estimates in a simulation study in Section 6.4.

For computing the correct marginal likelihood (6.7), we first apply Bayes’ theorem to
find that

𝑔\ (𝑢 |𝐷𝑖 > 𝑣𝑖 , 𝒛𝑖) =
P(𝐷𝑖 > 𝑣𝑖 | 𝑢, 𝒛𝑖) 𝑔\ (𝑢)

P(𝐷𝑖 > 𝑣𝑖 | 𝒛𝑖)
=

exp
{
−

∫ 𝑣𝑖
0 ℎ𝑖 (𝑠 |𝑢) d𝑠

}
𝑔\ (𝑢)∫ ∞

0 P(𝐷𝑖 > 𝑣𝑖 | 𝑢) 𝑔\ (𝑢) d𝑢
, (6.9)

where we suppress the dependence on the covariates 𝒛𝑖 in the last expression for notational
convenience. Combining equations (6.6), (6.7), and (6.9), we can express the marginal
likelihood contribution 𝑉𝐿𝑖 of individual 𝑖 with left-truncated data as∫ ∞

0

[∏
𝑡𝑖 𝑗 ≥𝑣𝑖 _𝑖 (𝑡𝑖 𝑗 |𝑢)

]
exp

{
−

∫ 𝑥𝑖
𝑣𝑖
_𝑖 (𝑠 |𝑢) d𝑠

}
ℎ𝑖 (𝑥𝑖 |𝑢) 𝛿𝑖 exp

{
−

∫ 𝑥𝑖
0 ℎ𝑖 (𝑠 |𝑢) d𝑠

}
𝑔\ (𝑢) d𝑢∫ ∞

0 P(𝐷𝑖 > 𝑣𝑖 | 𝑢) 𝑔\ (𝑢) d𝑢
.

(6.10)
Interestingly, the formula for 𝑉𝐿𝑖 in (6.10) could have been equivalently derived as

the marginal (with respect to the frailty) probability of the recurrence and follow-up data
on individual 𝑖, conditional on individual 𝑖 being included in the study, 𝐷𝑖 > 𝑣𝑖 . To see
this, let us denote by 𝐸𝑖 the event that individual 𝑖 has follow-up time 𝑥𝑖 with indicator 𝛿𝑖
and the observed recurrence times 𝑡𝑖 𝑗 over [𝑣𝑖 , 𝑥𝑖], and consider

P(𝐸𝑖 | 𝐷𝑖 > 𝑣𝑖) =
P(𝐸𝑖 ∩ {𝐷𝑖 > 𝑣𝑖})

P(𝐷𝑖 > 𝑣𝑖)
=

P(𝐸𝑖)
P(𝐷𝑖 > 𝑣𝑖)

=

∫ ∞
0 P(𝐸𝑖 | 𝑢) 𝑔\ (𝑢) d𝑢∫ ∞

0 P(𝐷𝑖 > 𝑣𝑖 | 𝑢) 𝑔\ (𝑢) d𝑢
.

As the integrals over the frailty distribution in (6.10) will not, in general, have closed-
form expressions, we will use numerical integration in the following.

6.3 Estimation of the joint frailty model

Liu and Huang (2008) proposed using Gaussian quadrature to approximate the marginal
likelihood of frailty proportional hazards models, including the joint frailty model (6.3).
In combination with a piecewise constant specification of the baseline rates, this approach
allows for the direct maximization of the approximated likelihood.
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The aim of Gaussian quadrature is to replace the integral of a function with a weighted
sum of function values. The Gauss-Hermite quadrature rule gives an approximation for a
specific integral of a function 𝑓 (𝑥),∫ ∞

−∞
𝑓 (𝑥)𝑒−𝑥2

d𝑥 ≈
𝑄∑︁
𝑞=1

𝑤𝑞 𝑓 (𝑥𝑞).

The quadrature points 𝑥𝑞 need to be determined as the roots of the 𝑄th-order Hermite
polynomial, while 𝑤𝑞 specify corresponding weights. As the marginal likelihood of a
model with normal random effects is easily rewritten in the above form, it follows that
such a likelihood can be approximated as∫ ∞

−∞
𝐿 (𝑐) (𝑏) 𝜙(𝑏) d𝑏 ≈

𝑄∑︁
𝑞=1

�̃�𝑞 𝐿
(𝑐) (𝑥𝑞) 𝜙(𝑥𝑞), (6.11)

where 𝜙(·) denotes the standard normal density, while 𝑥𝑞 =
√

2𝑥𝑞 and �̃�𝑞 =
√

2𝑤𝑞𝑒𝑥
2
𝑞

are modified quadrature points and weights, respectively. Marginal likelihoods integrated
over non-normal random effects can be expressed as an integral of the form in (6.11) by
applying the probability integral transformation (see Nelson et al., 2006; Liu and Huang,
2008). We show in Section 6.7.1 how this quadrature approach can be used to derive an
approximation of the marginal likelihood of the joint frailty model with left truncation.

The evaluation of the approximate marginal likelihood depends on the specific form
of the baseline rates _0 (𝑡) and ℎ0 (𝑡). As suggested by Liu and Huang (2008), we adopt a
piecewise constant model for these functions,

_0 (𝑡) =
𝐾𝑅∑︁
𝑘=1

_0𝑘𝟙{𝑡 ∈ 𝐼𝑅𝑘 } and ℎ0 (𝑡) =
𝐾𝐷∑︁
𝑘=1

ℎ0𝑘𝟙{𝑡 ∈ 𝐼𝐷𝑘 }.

with intervals 𝐼𝑅
𝑘
= (𝑡𝑅

𝑘−1, 𝑡
𝑅
𝑘
], 𝑘 = 1, ..., 𝐾𝑅, and 𝐼𝐷

𝑘
= (𝑡𝐷

𝑘−1, 𝑡
𝐷
𝑘
], 𝑘 = 1, ..., 𝐾𝐷 . Specifi-

cations with a moderate number of up to 10 intervals and the cut-points 𝑡𝑘 , 𝑘 ≥ 1, which
have been determined based on the quantiles of the observed event times, are generally
expected to lead to good results in practice (see Cook and Lawless, 2007; Liu and Huang,
2008). In the setting with left truncation, appropriate choices have to be made for the
starting points of the first intervals, 𝑡𝑅0 and 𝑡𝐷0 . Depending on the study design, they might
be set equal to the lowest study entry time, min𝑖 𝑣𝑖 , or a lower value 𝑡∗ ≥ 𝑡0.

The direct maximization of the marginal likelihood would also be possible if the base-
line rates were assumed to follow a simple parametric model, such as the Weibull model.
Nonetheless, we recommend the use of the more flexible piecewise constant rate models,
unless prior knowledge allows for an informed choice of a specific parametric model.

Finally, the parameter estimates in the joint frailty model with left-truncated data are
obtained by maximizing the approximate marginal log-likelihood. The calculation of the
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standard errors is based on the inverse of the negative Hessian matrix of the approxi-
mate marginal log-likelihood. We give additional details on the implementation in Sec-
tion 6.7.2.

6.4 Simulation study

To evaluate the performance of the proposed method for estimating the parameters of the
joint frailty model in case of left-truncated data, we conducted a simulation study. We
will also demonstrate which biases can arise if the likelihood is not correctly adjusted to
the survivor selection, in particular, to the selection effects on the frailty distribution.

Estimator performance will depend on various aspects of the observation scheme.
One aspect is the distribution of the study entry times 𝑉𝑖 , in which both the range of the
distribution and its shape matter. Furthermore, the censoring mechanism – that is, the
length of the individual follow-up periods and the number of additional drop-outs – will
influence the performance of the method. To study these issues, we will first present a
base scenario, and will then assess how different observational settings affect the results.

6.4.1 Settings
In the base scenario, we generated data from a joint frailty model (6.3). The time scale 𝑡
is the age of the individual. The hazard of death and the rate of recurrence are each
affected by a single binary covariate, which is drawn from a Bernoulli distribution with
parameter 0.5. The regression coefficients are 𝛼 = 0.5 (death) and 𝛽 = 0.5 (recurrence),
respectively. The frailty values are realizations of a gamma distribution with a mean of
one and a variance of \ = 0.5. The values of the dependence parameter 𝛾 were chosen to
cover a positive (𝛾 = 0.5) and a negative (𝛾 = −0.5) association between the recurrence
process and death, as well as the case in which the recurrence rate does not affect the
mortality risk (𝛾 = 0).

The baseline rates ℎ0 (𝑡) and _0 (𝑡) were designed to mimic a study in an older popu-
lation among whom the death rates as well as the recurrent event rates increase exponen-
tially with age. Hence, we chose for both baseline rates the Gompertz-Makeham form,
𝑎𝑒𝑏𝑡 + 𝑐, where 𝑡 = 0 corresponds to age 75. By setting 𝑎 = 0.984, 𝑏 = 0.045, and 𝑐 = 0
for the recurrence process (_0 (𝑡)), and 𝑎 = 0.108, 𝑏 = 0.07, and 𝑐 = 0.12 for the survival
process (ℎ0 (𝑡)), the baseline rates were comparable to the estimated rates for the high risk
group in the data example in Section 6.5.

To arrive at the left-truncated samples, the following steps were combined. For each
individual, a survival time 𝐷 (i.e., age > 75) and an entry time into study 𝑉 were sim-
ulated. Only those individuals who survived beyond his or her entry time – that is, for
whom 𝐷 > 𝑉 – were included in the final sample (i.e., were ‘observed’). Therefore, the
distribution of entry times 𝑉 that are observed in the final sample depends on both the
mortality model in (6.3) and the initial distribution of the truncation times before selec-
tion.
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In the base scenario, our aim was to have entry times in the final sample that were
distributed across the total age range – here, ages 75 to 95 – with higher numbers of study
entries at the younger ages than at the older ages. This scheme will be referred to as
truncation pattern A in the following.

To obtain a final observed sample with such characteristics, the entry times 𝑉 were
drawn from a truncated normal distribution defined on the age range 75 to 95. More
specifically, the truncated normal distribution was specified to have a mode equal to the
maximum age of 95 with parameter values chosen so that the distribution of the observed
study entry times in the truncated sample had the desired shape (the left panel of Figure 6.1
illustrates this procedure). The initial number of generated survival times was chosen such
that the final truncated samples had an average size of about 𝑚𝑉 = 500 individuals.

An independent censoring mechanism was imposed in the following way. For most
individuals, the censoring times were the end of a planned individual follow-up period
of 𝑡𝐶 = 4 years. However, some of the follow-up times were longer than four years,
and some premature random drop-outs occurred. Again, this was done in response to
the situation that we observed in the data application of Section 6.5. Accordingly, we
generated random durations from a mixture distribution with an 85% point mass at 𝑡𝐶 ,
a 10% uniform distribution on [0, 𝑡𝐶 ], and a 5% uniform distribution on [𝑡𝐶 , 𝑡𝐶 + 0.5],
with the latter two covering the drop-outs before 𝑡𝐶 and the longer follow-up periods,
respectively. These random durations were added to the individual 𝑉𝑖 , and the individual
censoring time 𝐶𝑖 was the minimum of this sum and age 95.

The right panel of Figure 6.1 illustrates how the mechanisms of truncation and censor-
ing jointly determine the number of individuals at risk at any time 𝑡 across the age range
[75, 95]. Truncation pattern A causes the number of individuals at risk to increase steeply
at the early ages, and then to decrease only gradually across the age range. However, due
to the relatively short individual follow-up times, the number of individuals at risk across
ages is considerably smaller than the total sample size of about 500.

In the setting with a positive association between the recurrence and mortality pro-
cess (𝛾 = 0.5), additional simulation scenarios were set up by varying the censoring and
truncation patterns.

First, we considered the effect of changing the planned individual follow-up times to
𝑡𝐶 = 1 year or 𝑡𝐶 = 8 years, respectively. Longer individual follow-up times increase
the number of individuals who are under observation at a certain time 𝑡, and are therefore
expected to improve the estimator performance.

Second, we explored a scenario with a more unimodal distribution of the study entry
times in which relatively few individuals entered the study at the youngest and the oldest
ages (see Figure 6.1). This is truncation pattern B. To obtain a final sample with these
characteristics, we simulated the initial truncation times again from a truncated normal
distribution on the age range 75 to 95. However, in this scenario, the distribution had a
mode equal to 90, that is, within the above age range.

Finally, we examined a setting with a wider age range of [64, 105]. If 𝑡 = 0 was
now expected to correspond to age 64, but the Gompertz-Makeham rates were expected
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to agree with the rates of the base scenario over [75, 95], the parameters needed to be
adapted. This was achieved by maintaining the values of 𝑏 and 𝑐, but setting 𝑎 = 0.6 or
𝑎 = 0.05 for the recurrence and death processes, respectively. The initial distributions of
the study entry times were adapted to produce truncation patterns A or B on the wider
age range [64, 105]. In all of the additional scenarios, the truncated samples again had
a target size of 𝑚𝑉 = 500 individuals. The parameter values for the distributions of the
study entry times and the initial sample sizes for the different scenarios can be found in
Section 6.7.3.
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Figure 6.1: Distribution of the ages at study entry (left) and the number of individuals at risk across
the age range [75, 95] (right) for one simulated sample from the base scenario with truncation
pattern A (shaded bars, red line) or truncation pattern B (gray bars, black line), both with planned
individual follow-ups of four years.

6.4.2 Estimation and results
The estimation of the joint frailty model was carried out under the assumptions of gamma
distributed frailties with a mean of one and piecewise constant models for the two baseline
rates _0 (𝑡) and ℎ0 (𝑡). For both rates, 10 intervals were used that were denoted by 𝐼𝑅

𝑘

(recurrence process) and 𝐼𝐷
𝑘

(mortality), 𝑘 = 1, ..., 10. The intervals were determined
by the deciles of the observed recurrence and survival times, respectively. We set 𝑡𝑅0 =

𝑡𝐷0 = 75 (or 𝑡𝑅0 = 𝑡𝐷0 = 64) equal to the starting point of the respective age range and
𝑡𝑅10 = 𝑡𝐷10 equal to the maximum follow-up time in the sample. The marginal likelihood
was approximated using non-adaptive Gauss-Hermite quadrature with 𝑄 = 30 quadrature
points. We ran 200 replications in each setting. All computations were performed in R (R
Core Team, 2020). Further details on the implementation are provided in Section 6.7.2.
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Figures 6.2 and 6.3 illustrate the results of the base scenario with different underlying
associations, 𝛾 ∈ {−0.5, 0, 0.5}. The top panels of Figure 6.2 show that the covariate
effects 𝛼 and 𝛽, the dependence parameter 𝛾, and the frailty variance \ are estimated
without significant bias. The estimated standard errors of these parameters in the bot-
tom panels of Figure 6.2 are largely in line with the empirical standard deviations of the
respective parameter estimates across the replications. Nevertheless, we notice that the
estimator performance varies for different true values of the dependence parameter.

This pattern can be explained to some extent by different survivor selection effects.
The truncated sample consists of survivors, who tend to have lower mortality risks. If
the recurrence process and the mortality process are positively associated, this implies
that the frailty values and the recurrence rates are lower in the sample of survivors. In
the current setting, this lower frailty variance in the sample is favorable for the estima-
tion of \; whereas the low recurrence rate, which is associated with higher probabilities
of having no observed recurrent event, increases the variability in the corresponding es-
timated covariate effect 𝛽. The opposite effects are observed if the event processes are
negatively associated. If the recurrence rate has no effect on survival (𝛾 = 0), the method
still yields reliable results, and the parameters exclusively affecting survival are estimated
with higher levels of precision.

The estimates of the baseline rates, displayed for the base scenario with positive de-
pendence 𝛾 = 0.5 in Figure 6.3, also perform satisfactorily.

It is instructive to look at how the results change if the effects of survivor selection
on the frailty distribution in the sample are not taken into account correctly. As Fig-
ures 6.4 and 6.5 show, if the inference is based on the naively constructed marginal like-
lihood (6.8), biases can be seen in all parameter estimates in case the recurrence process
and the mortality process are associated. Moreover, as the estimated standard errors for
the covariate effects are substantially smaller than those obtained using the correct like-
lihood, they do not adequately reflect the uncertainty in the parameter estimates. The
baseline rates of recurrence and death are increasingly underestimated for advancing age
in the base scenario with positive dependence (𝛾 = 0.5), as depicted in Figure 6.5. This is
because in a setting with a positive association, the distribution of frailty among the sur-
vivors tends to be concentrated at lower values. Accordingly, for negative associations,
the recurrence rate will be overestimated at the older ages, while the hazard of death will
again be underestimated at the older ages. Hence, failing to construct the marginal likeli-
hood based on the correct distribution of the frailty, see (6.7), introduces marked biases in
the estimates and the standard errors. Only if the event rates are not associated (𝛾 = 0) is
the distribution of frailty among survivors equal to the initial frailty distribution 𝐺 \ , such
that the naive marginal likelihood coincides with the correct marginal likelihood (6.7) and
yields valid inferences.

Lastly, we want to examine the results for the additional simulation scenarios with
modified censoring and truncation patterns. The figures illustrating these results can be
found in Section 6.7.3. In the scenario with a planned individual follow-up of only 𝑡𝐶 = 1
year, we find increased variability in all parameter estimates (see Figures 6.8 and 6.9).
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Figure 6.2: Box plots of the parameter estimates (top) and estimated standard errors (bottom) in the
joint frailty model for positive (𝛾 = 0.5), no (𝛾 = 0), or negative (𝛾 = −0.5) dependence under the
base scenario. Left to right: covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence
parameter (𝛾), and frailty variance (\) based on 200 truncated samples with a target size of 500.
The red dashed line marks the true parameter value (top) or empirical standard deviation (bottom);
the gray dotted lines mark 10% deviations from the respective value.
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Figure 6.3: Estimates (gray) of the baseline rate of recurrence (left) and of death (right) based on
200 truncated samples with a target size of 500 generated from a joint frailty model with positive
dependence (𝛾 = 0.5) under the base scenario. The red bold line gives the true baseline rate.

This is expected, because with shorter individual follow-up times, fewer individuals are
observed at a given age 𝑡 than in the base scenario. Further extending the planned indi-
vidual follow-up times of the base scenario from 𝑡𝐶 = 4 to 𝑡𝐶 = 8 years does not lead to
considerable improvements, apart from some reduced variability in the estimates of the
frailty variance and the baseline rates.

A change in the distribution of the study entry times can markedly influence the es-
timation results. In the modified base scenario with truncation pattern B, the estimated
covariate effects �̂� and 𝛽 are more variable than under truncation pattern A, occasionally
with negative estimates (see Figure 6.10). In addition, the first piece of each of the base-
line rates shows an upward bias (cf. top panels of Figure 6.11) because few individuals
entered the study at the younger ages. Although the intervals for the rate pieces were
constructed to contain roughly equal numbers of observed events, the first intervals cover
a relative large age range with few individuals under study at a given age 𝑡 due to the
delayed entry.

The last scenario combines a wider age range [64, 105] and truncation times spread
across the whole age range according to pattern A or B, with individual follow-ups
planned for 𝑡𝐶 = 4 years. This setting is more demanding because the amount of in-
formation available at a given age 𝑡 is considerably smaller than it is in the scenarios with
age range [75, 95]. Therefore, the variability in the estimates tends to increase, and the
estimates of the dependence parameter and the frailty variance exhibit a small downward
bias (see Figure 6.10).
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Figure 6.4: Box plots of the parameter estimates (top) and estimated standard errors (bottom) based
on the naive likelihood of the joint frailty model for positive (𝛾 = 0.5), no (𝛾 = 0), or negative (𝛾 =

−0.5) dependence under the base scenario. Left to right: covariate effect on mortality (𝛼) and on
recurrences (𝛽), dependence parameter (𝛾), and frailty variance (\) based on 200 truncated samples
with a target size of 500. The red dashed line marks the true parameter value (top) or empirical
standard deviation (bottom); the gray dotted lines mark 10% deviations from the respective value.
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Figure 6.5: Estimates (gray) of the baseline rate of recurrence (left) and of death (right) based on
the naive likelihood for 200 truncated samples with a target size of 500 generated from a joint frailty
model with positive dependence (𝛾 = 0.5) under the base scenario. The red bold line gives the true
baseline rate.

Overall, the simulation studies suggest that the proposed method for the estimation of
the joint frailty model based on left-truncated data performs satisfactorily. The parameter
estimates are largely unbiased if the study design ensures that a reasonable number of
individuals are under observation across time 𝑡. Including a relatively large number of
individuals early on and a preferably stable number of study entries across the remaining
time range benefits the estimation. In addition, the individual follow-up times should
be sufficiently long given the total time window and the sample size. As expected, the
patterns of censoring and truncation that cause more information to be lost negatively
affect the estimator performance.

6.5 Recurrent infections and mortality in an older population

We use the proposed method to analyze recurrent urinary tract infections and mortality
in an institutionalized elderly population. The data come from a double-blind, random-
ized, placebo-controlled trial in long-term care facilities that aimed to assess the effect of
cranberry capsules on the occurrence of UTIs in vulnerable older persons (Caljouw et al.,
2014). At baseline, the participants were stratified into two groups of high or low UTI
risk depending on whether they had diabetes mellitus, a urinary catheter, or at least one
treated UTI in the preceding year. Within these two strata, the participants were randomly
assigned to the treatment or the control group. The participants took cranberry or placebo
capsules twice a day over a period of one year. Occurrences of UTIs were recorded by
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the treating physicians according to a clinical definition based on international practice
guidelines for LTCF residents, and a strict definition based on scientific criteria. We focus
here on the occurrence of the more broadly defined clinical UTIs.

The final study population consisted of 928 individuals, most of whom were women
(703; 75.8%). Of these individuals, 516 were considered to be at high baseline UTI risk,
while 412 were considered to be at low baseline UTI risk. Individuals entered the study
between ages 64 and 102, as shown in the left panel of Figure 6.6, and were followed on
average for about a year (mean: 332 days, median: 372 days). A total of 317 participants
(34.2%) died during the study period. The number of observed UTIs per individual ranged
from zero to 10, with 62.2% of the individuals having no UTIs, 20.8% having one UTI,
and 17.0% experiencing two or more UTIs during the follow-up period.

Unlike in the original study, we modeled recurrent UTIs and mortality to evolve with
age, where 𝑡0 = 0 corresponded to age 64. Because of the specific distribution of the
ages at study entry in conjunction with the short individual follow-up times, relatively
few individuals were under observation at a given age, in particular at the youngest and
oldest ages, as the right panel of Figure 6.6 shows.
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Figure 6.6: Distribution of ages at study entry (left) and number of individuals under observation
across the age range (right) in the cranberry data set, separately for the groups with high baseline
UTI risk (gray bars, black solid line) and low baseline UTI risk (shaded bars, red dashed line).

We estimated the joint frailty model for UTIs and overall mortality with age as the
time scale separately for the groups with high and low baseline UTI risk. Two binary
covariates for treatment and gender were included, and frailties were assumed to follow
a gamma distribution with a mean of one. The baseline rate of UTI recurrence and the
hazard of death were specified as piecewise constant functions with 10 intervals over
the age range 64 to 103 in the high risk group and 64 to 104 in the low risk group.
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Separately for the two risk groups, the cut-points for the intervals were determined based
on the deciles of the observed recurrence or death times, respectively. The likelihood was
approximated using non-adaptive Gaussian quadrature with 30 nodes.

The parameter estimates for both risk groups are reported in Table 6.1. In the group
with a high baseline UTI risk, the infection rates varied between participants with an
estimated frailty variance of \̂ = 0.380 (SE: 0.086). In particular, individuals with a
higher rate of recurrent infections tended to also experience higher mortality risks, as
indicated by the positive estimate of the dependence parameter, �̂� = 0.181 (SE: 0.084).
The participants in the low risk group seemed to be more heterogeneous (\̂ = 1.122, SE:
0.316), but the analysis did not detect an association between the occurrence of UTIs and
survival (�̂� = 0.058, SE: 0.044). The results suggest that the cranberry capsules did not
have a noticeable effect on the occurrence of UTIs irrespective of the baseline UTI risk.
When we look at gender differences, we see that males and females experienced similar
infection rates, while males had higher mortality levels than females in both groups.

Table 6.1: Parameter estimates (with standard errors) for the joint frailty model fitted to the cran-
berry data set, separately by risk group.

High baseline UTI risk Low baseline UTI risk
Recurrent UTIs

Treatment (cranberry) 0.000 (0.161) 0.189 (0.217)
Gender (male) 0.061 (0.218) −0.384 (0.381)

Mortality
Treatment (cranberry) 0.107 (0.152) −0.001 (0.197)
Gender (male) 0.396 (0.178) 0.787 (0.210)

Association
Dependence 𝛾 0.181 (0.084) 0.058 (0.044)
Frailty variance \ 0.380 (0.086) 1.122 (0.316)

The estimated baseline rates displayed in Figure 6.7 demonstrate nicely the age de-
pendence of the recurrence rate and the hazard of death. For the individuals with a high
baseline UTI risk, both the rate of recurrent infection and the mortality risk showed a
general tendency to increase with age, although the small number of observations leads
to considerable uncertainty at the highest ages. In addition, the individuals with a high
baseline UTI risk tended to experience higher rates of recurrent infection and death than
the individuals with a low baseline UTI risk.

The original study, which used a different time scale, reported a positive treatment
effect of the intake of cranberry capsules only in the group with a high baseline UTI risk
and only for the outcome of UTI incidence (first infection during follow-up). When all
recurrent UTIs were analyzed in a gamma-frailty model, no treatment effect was detected,
which is in line with the findings presented here.
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Figure 6.7: Estimated baseline rates (solid) of recurrence (left) and mortality (right) with ±2 SE-
confidence bounds (dashed) for the cranberry data, separately for the groups with high baseline UTI
risk (top) and low baseline UTI risk (bottom).

6.6 Discussion

We have proposed a method for estimating the joint frailty model for recurrent events
and a terminal event based on left-truncated data. The marginal likelihood of the model
can be expressed as a ratio of two integrals over the frailty distribution, each of which
is approximated using Gauss-Hermite quadrature. The direct maximization of the ap-
proximate marginal likelihood is possible if the baseline rates are specified as piecewise
constant functions.



6.6 Discussion 171

The simulation studies presented here have shown that the estimation procedure per-
forms satisfactorily in general, and have demonstrated how different observation schemes
affect the estimator performance. While any pattern of truncation or censoring results
in incomplete information, study designs should still aim to provide enough information
to meet the needs of a model as complex as the joint frailty model. Having a sufficient
number of individuals under observation across most of the time range, and especially at
the start of the process, seems to be crucial for the method to yield reliable results.

Allowing for left truncation in frailty models requires us to consider carefully how the
frailty distribution in the sample of survivors may differ from the frailty distribution in
the underlying population due to selection effects. We illustrated through simulations the
biases that can arise in the parameter estimates of the joint frailty model if this difference
in the frailty distributions is ignored.

Extending the framework of the joint frailty model to incorporate delayed entry al-
lowed us to study age-specific rates of recurrent urinary tract infections and death in an
older population. Similarly, the proposed approach enables researchers to use the joint
frailty model in a wider variety of contexts in which subjects are included in a study only
if they have not yet experienced the terminal event. Apart from clinical studies with de-
layed entry, these contexts may include register-based studies of event processes evolving
with age as the main time scale, with individuals entering at different ages.

For a complete specification of the model and the approximate likelihood function,
we need to choose a frailty distribution as well as the number of quadrature points and
the intervals for the baseline rates. Although the simulation study and the application
covered only the common choice of a gamma distribution for the frailties, the quadrature
approach can be employed with other frailty distributions that have a closed-form inverse
distribution function, or a log-normal distribution. The number of quadrature points then
determines the accuracy of the integral approximations in the marginal likelihood, as
well as the computation time. In line with previous recommendations for gamma frailty
models (see Liu and Huang, 2008), we used 𝑄 = 30 quadrature points, which produced
good results in a reasonable period of time in our settings. Regarding the baseline rate
functions, the number of intervals corresponds to the number of parameters for the rates,
and should thus be selected to allow for sufficient flexibility of the shape of the rates, while
retaining numerical stability and the computational feasibility of the method. Adequate
results can often be obtained with moderate numbers of up to 10 intervals.

Nevertheless, in some applications, it may seem appealing to aim for smooth rate
estimates, such as through the use of penalized splines. However, automatic smoothing
parameter selection in joint frailty models is an issue that needs further investigation.

Moreover, the current approach is limited to applications in which there is heterogene-
ity in recurrence rates. Due to the specific dependence structure in the joint frailty model
considered here, the association between the recurrence process and the terminal event
process cannot be assessed if the frailty variance is close to zero.

Finally, in some applications, it might be of interest to extend the proposed method
to use information on recurrences before entry into the study. These additional event
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times can be included in the marginal likelihood, and are expected to lead to increased
precision in the estimation of the model for the recurrence process. However, when using
such an approach, researchers should reflect critically on the quality of the retrospectively
collected data, as recollections by study participants may be less reliable than data drawn
from other sources, such as registries.

6.7 Supplementary material

6.7.1 Approximation of the marginal likelihood using Gaussian quad-
rature

In this section, we will elaborate on the use of Gauss-Hermite quadrature for approximat-
ing the marginal likelihood of the joint frailty model. We will first recap the quadrature
approach as proposed by Liu and Huang (2008) in the setting with right-censoring only,
and then show how to adapt the method to the setting with left truncation.

An approximation to marginal likelihoods integrated over normal random effects based
on Gauss-Hermite quadrature was already presented in Section 6.3. But the marginal like-
lihoods of the joint frailty model given in Section 6.2 involve integrals over non-normal
random effects. Thus, we use the probability integral transformation (Nelson et al., 2006;
Liu and Huang, 2008) to rewrite the integrals over the random effect 𝑢 with distribu-
tion function 𝐺 \ (𝑢) as integrals over standard normal random effects. This relies on the
fact that the 𝐺 \ (𝑢) have a standard uniform distribution, such that their transformations
𝑎 = Φ−1 [𝐺 \ (𝑢)] follow a standard normal distribution, if Φ(·) denotes the standard nor-
mal distribution function.

For the marginal likelihood contribution (6.5) of individual 𝑖 in the joint frailty model
without truncation, the substitution 𝑢 = 𝐺−1

\
[Φ(𝑎)] yields

𝐿𝑖 =

∫ ∞

0
𝐿
(𝑐)
𝑖

(𝑢) 𝑔\ (𝑢) d𝑢 =

∫ ∞

−∞
𝐿
(𝑐)
𝑖

(𝐺−1
\ [Φ(𝑎)]) 𝜙(𝑎) d𝑎.

We can then employ Gauss-Hermite quadrature as in (6.11) to arrive at the approximate
marginal likelihood contribution of the form

𝐿𝑖 ≈
𝑄∑︁
𝑞=1

𝐿
(𝑐)
𝑖

(𝐺−1
\ [Φ(𝑥𝑞)]) 𝜙(𝑥𝑞) �̃�𝑞 .

In the setting with left-truncated data, the marginal likelihood of the joint frailty model
has a slightly more complex structure. In (6.10), the marginal likelihood contribution 𝑉𝐿𝑖
of individual 𝑖 is expressed as a ratio of two integrals over the density 𝑔\ (𝑢). Hence,
we will approximate the likelihood by applying the above approach separately to the two
integrals,

𝑉𝐿𝑖 =

∫ ∞
0 𝑉𝐿

(𝑐)
𝑖

(𝑢) exp {−𝐻𝑖 (𝑣𝑖 |𝑢)} 𝑔\ (𝑢) d𝑢∫ ∞
0 exp {−𝐻𝑖 (𝑣𝑖 |𝑢)} 𝑔\ (𝑢) d𝑢
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≈
∑𝑄

𝑞=1 𝑉𝐿
(𝑐)
𝑖

(𝐺−1
\
[Φ(𝑥𝑞)]) exp {−𝐻𝑖 (𝑣𝑖 |𝐺−1

\
[Φ(𝑥𝑞)])} 𝜙(𝑥𝑞) �̃�𝑞∑𝑄

𝑞=1 exp {−𝐻𝑖 (𝑣𝑖 |𝐺−1
\
[Φ(𝑥𝑞)])} 𝜙(𝑥𝑞) �̃�𝑞

,

with 𝑉𝐿
(𝑐)
𝑖

(𝑢) given in (6.6). The approximate marginal likelihood of the joint frailty
model with left truncation is then given by

𝑚𝑉∏
𝑖=1

∑𝑄

𝑞=1 𝑉𝐿
(𝑐)
𝑖

(𝐺−1
\
[Φ(𝑥𝑞)]) exp {−𝐻𝑖 (𝑣𝑖 |𝐺−1

\
[Φ(𝑥𝑞)])} 𝜙(𝑥𝑞) �̃�𝑞∑𝑄

𝑞=1 exp {−𝐻𝑖 (𝑣𝑖 |𝐺−1
\
[Φ(𝑥𝑞)])} 𝜙(𝑥𝑞) �̃�𝑞

.

In the naive likelihood (6.8), there is only one integral over the frailty distribution, and
hence only one approximation is required,

𝑉𝐿
naive
𝑖 =

∫ ∞

0
𝑉𝐿

(𝑐)
𝑖

(𝑢) 𝑔\ (𝑢) d𝑢 ≈
𝑄∑︁
𝑞=1

𝑉𝐿
(𝑐)
𝑖

(𝐺−1
\ [Φ(𝑥𝑞)]) 𝜙(𝑥𝑞) �̃�𝑞 .

6.7.2 Computational details
We used R (R Core Team, 2020) to implement the estimation procedure. The quadra-
ture points and weights were calculated using function gauss.quad() from pack-
age statmod (Smyth, 1998). For numerical optimization of the approximate marginal
log-likelihood, we applied function nlm(), which performs minimization based on a
Newton-type algorithm, to the negative log-likelihood. The Hessian of the marginal
log-likelihood was approximated numerically using function hessian() from package
numDeriv (Gilbert and Varadhan, 2019).

As the frailty variance and the parameters of the piecewise constant baseline rates
are restricted to be non-negative, the log-likelihood was maximized with respect to the
log-transform of these parameters, which guaranteed non-negative estimates. The delta-
method was then applied to derive the respective standard errors.

However, when specifying the baseline rates as piecewise constant functions, the nu-
merically computed Hessian of the log-likelihood may in some cases not be invertible.
To overcome this issue, one can add to the log-likelihood small, fixed ridge penalties
(e.g., with penalty parameter 10−6) on the logarithm of the rate parameters and derive the
Hessian matrix from this penalized log-likelihood.

6.7.3 Supplement to the simulation studies

Generation of different truncation patterns

A brief description of how the truncation patterns A and B were generated was already
given in Section 6.4. For both patterns, truncation times were simulated from a truncated
normal distribution defined on the corresponding age range [75, 95] or [64, 105]. How-
ever, the parameters ` and 𝜎2 of the underlying normal distribution were chosen such that
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the density of the resulting truncated normal distribution was either increasing over the
whole age range with mode equal to the maximum age or unimodal with a mode within
the age range. These two distinct shapes yielded the desired truncation patterns A (TrA)
or B (TrB) in the final samples. Table 6.2 reports, for the different settings, the parame-
ter values for the distribution of the truncation times as well as the initial sample size 𝑀
needed to obtain truncated samples with an average size of 𝑚𝑉 = 500.

When implementing the simulation study in R, we used function rtruncnorm()
from package truncnorm (Mersmann et al., 2018) for drawing random numbers from
a truncated normal distribution.

Table 6.2: Initial sample size 𝑀 and parameter values for the distribution of the truncation times.

𝛾 age range pattern 𝑀 ` 𝜎2

0.5 [75, 95] TrA 1.07 · 104 109 124
0.5 [75, 95] TrB 1.20 · 104 90 18
0.5 [64, 105] TrA 7.65 · 104 120 225
0.5 [64, 105] TrB 4.75 · 104 93 52
0 [75, 95] TrA 3.50 · 104 115 110

−0.5 [75, 95] TrA 3.44 · 104 115 109

Additional figures for the simulation results

The following figures illustrate the impact of different censoring and truncation patterns
on the performance of the estimation procedure. All settings are modifications of the
base scenario with positive dependence 𝛾 = 0.5, that was presented in Section 6.4. In
particular, samples with a target size of 𝑚𝑉 = 500 were generated from a joint frailty
model with covariate effects 𝛼 = 𝛽 = 0.5, frailty variance \ = 0.5, and Gompertz-
Makeham baseline rates.

• In Figures 6.8 and 6.9, the effect of different censoring mechanisms is studied by
comparing the estimation results for different lengths of the planned individual follow-
up 𝑡𝐶 ∈ {1, 4, 8} years.

• Changes in the distribution of truncation times are examined in Figures 6.10 and 6.11.
The displayed settings assume different distributions of the study entry times in the
final sample, both in terms of the shape (TrA: truncation pattern A, or TrB: truncation
pattern B) and the support of the distribution (75+: ages 75 to 95, or 64+: ages 64 to
105).
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Figure 6.8: Box plots of the parameter estimates (top) and estimated standard errors (bottom) in
the joint frailty model with positive dependence (𝛾 = 0.5) as in the base scenario with truncation
pattern A for ages 75+, but varying the planned individual follow-up 𝑡𝐶 ∈ {1, 4, 8}. Left to right:
covariate effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty
variance (\) based on 200 truncated samples with a target size of 500. The red dashed line marks
the true parameter value (top) or empirical standard deviation (bottom); the gray dotted lines mark
10% deviations from the respective value.
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Figure 6.9: Estimates (gray) of the baseline rate of recurrence (left) and of death (right) based on
200 truncated samples with a target size of 500 generated from a joint frailty model with positive
dependence (𝛾 = 0.5). As in the base scenario truncation follows pattern A for ages 75+, but
planned individual follow-up is 𝑡𝐶 = 1 (top) or 𝑡𝐶 = 8 (bottom) year(s). The red bold line gives the
true baseline rate. (Note the different scales of the vertical axes.)
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Figure 6.10: Box plots of the parameter estimates (top) and estimated standard errors (bottom) in
the joint frailty model with positive dependence (𝛾 = 0.5) as in the base scenario with 𝑡𝐶 = 4,
but truncation times distributed with different shapes (TrA: truncation pattern A, TrB: truncation
pattern B) and across different age ranges (75+: [75, 95], 64+: [64, 105]). Left to right: covariate
effect on mortality (𝛼) and on recurrences (𝛽), dependence parameter (𝛾), and frailty variance (\)
based on 200 truncated samples with a target size of 500. The red dashed line marks the true
parameter value (top) or empirical standard deviation (bottom); the gray dotted lines mark 10%
deviations from the respective value.
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Figure 6.11: Estimates (gray) of the baseline rate of recurrence (left) and of death (right) based on
200 truncated samples with a target size of 500 generated from a joint frailty model with positive
dependence (𝛾 = 0.5) and planned individual follow-up of 𝑡𝐶 = 4 years as in the base scenario.
Truncation times are distributed according to pattern B across ages [75, 95] (top; TrB, 75+) or
according to pattern A across ages [64, 105] (bottom; TrA, 64+). The red bold line gives the true
baseline rate. (Note the different scales of the horizontal and vertical axes.)
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Summary

Frailty models continue to play an important role in the analysis of time-to-event data.
Introducing a positive random effect, the frailty, that affects the risk of experiencing the
event of interest can account for unobserved heterogeneity between individuals. In stud-
ies of multivariate survival data, frailties can also be used to account for the dependence
between observations on the same individual or on different units belonging to a clus-
ter. A variety of frailty models have been proposed in different contexts, ranging from
frailty proportional hazards models for univariate survival data, to shared frailty models
for clustered survival data, to joint frailty models in which two or more event processes
are modeled simultaneously. Although considerable advances have been made in this field
in recent decades, further developments of the methodology are often needed to handle
specific applications.

In this thesis, we extend the available statistical techniques for inference in two distinct
frailty models. In the first part, we focus on a frailty proportional hazards model for
studying human adult mortality. With the aim of identifying methods that allow for a
reliable assessment of the mortality trajectory at advanced ages, we discuss aspects of
parameter estimation, hypothesis testing, and study design in this model, as well as model
selection. The second part is concerned with inference in a joint frailty model for recurrent
events and a terminal event in settings in which there is delayed entry, or in which the
recurrence process is observed only intermittently. In the following, we provide a more
detailed overview of the individual chapters.

Chapter 1 gives a brief introduction to frailty modeling of time-to-event data in gen-
eral, and provides some background information on the models and the methods we study
in the two following parts of the thesis.

In the first part of the thesis, which consists of Chapters 2 to 4, we examine different
aspects of statistical studies on a demographic phenomenon known as mortality decelera-
tion. This slowing down of the death rates at advanced ages is analyzed in the framework
of the gamma-Gompertz model. In this frailty proportional hazards model, the decelera-
tion arises as an effect of selection, because the group of survivors to older ages is made
up of the more robust individuals with lower mortality risks. The competing situation
without mortality deceleration occurs if the frailty variance takes the value of zero. The
model is then simplified to the Gompertz model. However, in this case, the frailty variance
lies on the boundary of its parameter space. This non-standard condition of a ‘boundary
parameter’ requires adjustments of the statistical methods used for detecting the potential
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deceleration of the death rates. Moreover, conducting empirical investigations of old-age
mortality can be challenging due to the scarcity of data at the tail of the survival distri-
bution. In addition, as a scientific validation of the ages at death is often compulsory,
but is naturally subject to time and cost constraints, samples may be restricted to cover
only survivors beyond a certain age. In light of these challenges, we study and compare
different approaches for assessing mortality deceleration in the first part of the thesis.

Chapter 2 examines the asymptotic properties of likelihood inference in the gamma-
Gompertz model, as well as the Akaike information criterion (AIC) for this model. Due
to the boundary parameter, the standard results of likelihood theory for regular problems
do not hold in this setting. Our derivations are based on a framework of local alternatives.
We find that the maximum likelihood estimator in the gamma-Gompertz model asymptot-
ically follows a mixture distribution if the underlying frailty variance is small. Similarly,
the test statistic of a likelihood ratio test for a zero frailty variance asymptotically has
a mixture distribution. An explicit formula for the approximate local power of this test
to detect a positive frailty variance is presented. Moreover, we prove that the standard
formula for the AIC does not apply to the gamma-Gompertz model, but gives a biased
estimate of the corresponding Akaike information.

In Chapter 3, we discuss issues of study design for old-age mortality studies based
on the gamma-Gompertz model, and introduce information measures for evaluating such
designs. The design aspects we consider include the choice of the age range covered by a
sample and the sample size. Drawing on the theory of optimal design, we define different
information measures as scalar functions of the Fisher information matrix of the gamma-
Gompertz model. Interpretations of these measures are provided, including with regard to
the non-standard condition of the boundary parameter. We demonstrate how the proposed
measures can be used to appraise different study designs. The approach is complemented
by calculations of the power of a likelihood ratio test to detect a deceleration in the death
rates in specific design settings. We find that in the scenarios we consider, the information
carried by the data and the power of the test are markedly reduced if only survivors to
increasingly high ages are included in a study. In an application of the proposed methods
to mortality data of French-Canadians born in the late 19th century, we investigate the
potential benefits for the statistical analysis if information on deaths at ages 85-89 could
be added to an existing data set on survivors beyond age 90.

In Chapter 4, we introduce focused model selection as a new method for assessing
mortality deceleration. A focused information criterion (FIC) evaluates the model perfor-
mance for a specific parameter of interest, the focus parameter, and therefore allows us
to address model performance at the advanced ages for which mortality deceleration is
most evident. We derive formulas of a FIC for choosing between two candidate models
that differ only by a boundary parameter. In a simulation study, we investigate how this
new version of the FIC performs when selecting between the gamma-Gompertz model
and the Gompertz model depending on the choice of the focus parameter. We find that
compared to a modified version of the AIC that includes a bias correction term based on
the results of Chapter 2, the FIC is a more reliable tool for detecting a deceleration in the
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death rates. Model selection using the new information criteria is also illustrated with the
French-Canadian mortality data.

The second part of the thesis, which consists of Chapters 5 and 6, deals with the
study of recurrent events in the presence of a terminal event. A joint frailty model is
applied to account for the potential dependent censoring of the recurrence process by the
terminal event. The model incorporates an additional association parameter that governs
whether and, if so, to what extent higher recurrence rates imply that there is a higher
or a lower hazard of experiencing the terminal event. Up to now, inference in this joint
frailty model has been studied mainly in ideal situations in which the recurrence times
are known exactly, and individuals are observed from the moment they become at risk of
experiencing the events of interest. We adapt the statistical methods to two other common
observational settings. In the first setting, only interval counts of the recurrent events,
which give the numbers of recurrences in specific time intervals, are available. In the
second setting, individuals are included in the study only after the processes have started,
resulting in left truncation. In both settings, parameter estimation is based on the marginal
likelihood, which is approximated using Gaussian quadrature. For the baseline rates, we
adopt piecewise constant models.

In Chapter 5, we present the studies with interval counts of recurrent events in a gen-
eral setting in which the observation intervals can vary across individuals. Apart from the
estimation method, we also adjust a score test to the setting with interval counts, which
allows us to assess the association between the recurrent events and the terminal event
before estimating the joint model. Both the estimation and the testing procedure perform
well on simulated data. We apply the methods to determine whether asexual reproduction
and mortality in the marine organism Eleutheria dichotoma are related.

In Chapter 6, we address the issue of delayed entry into recurrent event studies with a
terminal event. In such cases, individuals can be included in the study only if the terminal
event has not yet occurred for them at the start of the study. If the recurrence rates and
the hazard of the terminal event are associated, this selection can lead to differences be-
tween the frailty distributions in the sample and the underlying population. In simulation
studies, we demonstrate that neglecting the selection effects on the frailty distribution in
the construction of the likelihood can bias the estimation results. Furthermore, we show
how different observation schemes, and corresponding patterns of incomplete informa-
tion, affect the performance of the estimation procedure. The proposed method enables
us to study recurrent urinary tract infections in an elderly population while using age as
the main time scale.
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Samenvatting

Frailty modellen blijven een belangrijke rol spelen in de analyse van survival data. Het
introduceren van een positief random effect, de frailty, dat het risico om de betreffende
gebeurtenis te ervaren beïnvloedt, kan ongeobserveerde heterogeniteit tussen individuen
verklaren. In studies met multivariate survival data kunnen frailties ook gebruikt worden
om de afhankelijkheid tussen observaties van hetzelfde individu of van verschillende een-
heden van een cluster te verklaren. Een verscheidenheid van frailty modellen zijn voorge-
steld in verschillende contexten, variërend van frailty proportional hazards modellen voor
univariate survival data, tot shared frailty modellen voor geclusterde survival data, tot
joint frailty modellen waarin twee of meer processen tegelijkertijd worden gemodelleerd.
Hoewel er aanzienlijke vooruitgang is geboekt op dit gebied de afgelopen decennia, is
verdere ontwikkeling van de methodologie vaak nodig om specifieke toepassingen aan te
pakken.

In dit proefschrift breiden we de beschikbare statistische technieken voor schatten en
toetsen in twee verschillende frailty modellen. In het eerste deel richten we ons op een
frailty proportional hazards model om mortaliteit in volwassen mensen te bestuderen. Met
het doel om methoden te identificeren die een goede beoordeling van het mortaliteitspro-
ces op gevorderde leeftijd toestaan, bespreken we aspecten van parameterschatting, hypo-
these toetsen, en onderzoeksopzet in dit model, evenals model selectie. Het tweede deel
betreft schatten en toetsen in een joint frailty model voor recurrente gebeurtenissen en
een terminale gebeurtenis in situaties waarin individuen pas later onder observatie komen
(vertraagde binnenkomst), of waarin het recurrente proces slechts met tussenpozen wordt
geobserveerd. Nu volgt een gedetailleerder overzicht van de afzonderlijke hoofdstukken.

Hoofdstuk 1 geeft een korte introductie tot frailty modellering van overlevingsduur
data in het algemeen, en biedt achtergrondinformatie over de modellen en de methoden
die we bestuderen in de twee volgende delen van het proefschrift.

In het eerste deel van het proefschrift, dat bestaat uit hoofdstuk 2 tot en met 4, on-
derzoeken we verschillende aspecten van statistische studies over een demografisch fe-
nomeen dat bekend staat als mortaliteitsvertraging. Deze vertraging van de sterftecijfers
op gevorderde leeftijd wordt geanalyseerd in het kader van het gamma-Gompertz model.
In dit frailty proportional hazards model ontstaat de vertraging als een effect van selec-
tie, omdat de groep overlevenden tot op hogere leeftijd bestaat uit de sterkere individuen
met een lager sterfterisico. De concurrerende situatie zonder sterftevertraging doet zich
voor als de frailty variantie de waarde nul aanneemt. Het model wordt dan vereenvoudigd
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tot het Gompertz model. In dit geval ligt de frailty variantie echter op de grens van zijn
parameter ruimte. Deze niet-standaard situatie van een ‘parameter op de grens’ vereist
aanpassingen van de statistische methoden die worden gebruikt voor het ontdekken van
de potentiële vertraging van de sterftecijfers. Het uitvoeren van empirische onderzoeken
naar mortaliteit op hoge leeftijd kan bovendien lastig zijn vanwege het gebrek aan data
in de staart van de survival verdeling. Daarnaast kunnen steekproeven, aangezien een
wetenschappelijke bevestiging van de leeftijd bij overlijden vaak verplicht is, maar van
nature onderhevig is aan tijds- en kostenlimieten, worden begrensd om alleen overleven-
den voorbij een zekere leeftijd te dekken. In het licht van deze uitdagingen bestuderen en
vergelijken we verschillende benaderingen om mortaliteitsvertraging vast te stellen in het
eerste deel van het proefschrift.

Hoofdstuk 2 onderzoekt de asymptotische eigenschappen van likelihood-schattingen
in het gamma-Gompertz model, evenals het Akaike informatie criterium (AIC) voor dit
model. Vanwege de grensparameter zijn de standaard resultaten van likelihood theorie
niet geldig in dit geval. Onze afleidingen zijn gebaseerd op een kader van lokale alter-
natieven. Een bevinding van ons onderzoek is dat de maximum likelihood schatter in
het gamma-Gompertz model asymptotisch een mengsel van twee verdelingen volgt als de
onderliggende frailty variantie klein is. Evenzo heeft de toetsingsgrootheid van een like-
lihood ratio toets voor een frailty variantie van nul asymptotisch een mengsel van twee
verdelingen. Een expliciete formule voor de geschatte lokale power van deze toets om een
positieve frailty variantie te ontdekken wordt gepresenteerd. Bovendien bewijzen we dat
de standaard formule voor de AIC niet van toepassing is op het gamma-Gompertz model,
maar een onzuivere schatting geeft van de overeenkomstige Akaike informatie.

In hoofdstuk 3 bespreken we problemen van onderzoeksdesign voor onderzoeken naar
mortaliteit op hoge leeftijd gebaseerd op het gamma-Gompertz model, en introduceren we
informatiematen om dergelijke designs te evalueren. De design aspecten die we in over-
weging nemen omvatten de keuze van de leeftijdscategorie van een steekproef en de steek-
proefomvang. Op basis van de theorie van optimaal design definiëren we verschillende
informatiematen als functies van de Fisher informatie matrix van het gamma-Gompertz
model. Er worden interpretaties van deze maten gegeven, onder andere met betrekking
tot de niet-standaard toestand van de grensparameter. We laten zien hoe de voorgestelde
maten gebruikt kunnen worden om verschillende onderzoeksdesigns te beoordelen. De
aanpak wordt aangevuld met berekeningen van het onderscheidend vermogen van een li-
kelihood ratio toets om een vertraging in de sterftecijfers in specifieke design situaties te
detecteren. Wij vinden dat de informatie die de data bevat en het onderscheidend vermo-
gen van de toets, in de scenario’s die wij bekijken, duidelijk verminderd zijn als alleen
overlevenden tot toenemende hoge leeftijden in een studie worden opgenomen. In een
toepassing van de voorgestelde methoden op sterftedata van Frans-Canadezen geboren
eind 19e eeuw, onderzoeken we de mogelijke voordelen voor de statistische analyse als
informatie over sterftes op de leeftijden 85-89 toegevoegd zou kunnen worden aan een
bestaande dataset over overlevenden voorbij de leeftijd van 90.
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In hoofdstuk 4 introduceren we “focused model selectie” als een nieuwe methode
om sterftevertraging vast te stellen. Een focused informatie criterium (FIC) evalueert de
model prestatie voor een specifieke parameter van belang, de focus parameter, en stelt
ons daarom in staat om model prestatie op hoge leeftijden, waarvoor sterftevertraging het
opvallendst is, op te lossen. We leiden formules van een FIC af om tussen twee kandidaat-
modellen te kiezen die slechts met een grensparameter verschillen. In een simulatiestudie
onderzoeken we hoe deze nieuwe versie van de FIC presteert bij het selecteren tussen het
gamma-Gompertz model en het Gompertz model, afhankelijk van de keuze van de focus
parameter. We zien dat, vergeleken met een aangepaste versie van de AIC die een bias
correctie term bevat gebaseerd op de resultaten van hoofdstuk 2, de FIC een betrouwbaar-
der hulpmiddel is om een vertraging in de sterftecijfers te detecteren. Modelselectie met
behulp van de nieuwe informatiecriteria wordt ook geïllustreerd met de Frans-Canadese
sterftedata.

Het tweede deel van het proefschrift, dat bestaat uit hoofdstukken 5 en 6, gaat over
de studie van recurrente gebeurtenissen in de aanwezigheid van een terminale gebeur-
tenis. Een joint frailty model wordt gebruikt om de potentiële afhankelijke censurering
van het recurrente proces door de terminale gebeurtenis te verklaren. Het model bevat
een aanvullende associatie parameter die bepaald of, en zo ja, in hoeverre hogere recur-
rence rates impliceren dat er een hoger of lager risico is om de terminale gebeurtenis
te ondergaan. Tot nu toe werden schattingsmethoden in dit joint frailty model voorna-
melijk bestudeerd in ideale situaties, waarin de recurrentietijden precies bekend zijn en
individuen geobserveerd worden vanaf het moment dat ze gevaar lopen om de betreffende
gebeurtenissen mee te maken. Wij passen de statistische methoden aan aan twee andere
veelvoorkomende situaties. In de eerste situatie zijn alleen interval tellingen van de re-
currente gebeurtenissen, die de aantallen recurrenties in specifieke tijdsintervallen geven,
beschikbaar. In de tweede situatie worden individuen pas in de studie opgenomen nadat
de processen zijn begonnen, wat resulteert in truncatie van links. In beide situaties is pa-
rameter schatting gebaseerd op de marginale waarschijnlijkheid, die benaderd wordt met
behulp van Gaussian quadrature. Voor de baseline rates nemen we stuksgewijs constante
modellen aan.

In hoofdstuk 5 presenteren we de studies met interval tellingen van recurrente ge-
beurtenissen in een algemene situatie waarin de observatie-intervallen kunnen variëren
tussen individuen. Naast de schattingsmethode passen we ook de scoretoets aan aan de
situatie met interval tellingen, wat ons in staat stelt vóór het schatten van het joint mo-
del de associatie tussen de recurrente gebeurtenissen en de terminale gebeurtenis vast te
stellen. Zowel de schattings- als de toetsingsprocedure presteren goed bij gesimuleerde
data. We passen de methodes toe om te bepalen of asexuele reproductie en sterfte in het
zeeorganisme Eleutheria dichotoma gerelateerd zijn.

In hoofdstuk 6 behandelen we het probleem van vertraagde binnenkomst in studies
met recurrente gebeurtenissen met een terminale gebeurtenis. In zulke gevallen kunnen
individuen alleen worden opgenomen in de studie als de terminale gebeurtenis voor hen
nog niet heeft plaatsgevonden aan het begin van de studie. Als de recurrence rates en de



190 Nederlandse samenvatting

hazard van de terminale gebeurtenis geassocieerd zijn, kan deze selectie leiden tot ver-
schillen tussen de frailty verdelingen in de steekproef en de onderliggende populatie. In
simulatiestudies demonstreren we dat het negeren van de selectie effecten op de frailty
verdeling in de constructie van de likelihood de schattingsresultaten kan vertekenen. Ver-
der laten we zien hoe verschillende observatieschema’s, en overeenkomstige patronen
van incomplete informatie, de prestatie van de schattingsprocedure kunnen beïnvloeden.
De voorgestelde methoden stellen ons in staat recurrente urineweginfecties in een oudere
bevolking te bestuderen met het gebruik van leeftijd als de belangrijkste tijdsschaal.
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