
Adaptive warm-start MCTS in AlphaZero-like deep
reinforcement learning
Wang, H.; Preuss, M.; Plaat, A.; Pham, D.N.; Theeramunkong, T.;
Governatori, G.; Liu, F.

Citation
Wang, H., Preuss, M., & Plaat, A. (2021). Adaptive warm-start MCTS
in AlphaZero-like deep reinforcement learning. Pricai 2021: Trends
In Artificial Intelligence, 60-71. doi:10.1007/978-3-030-89370-5_5
 
Version: Publisher's Version

License: Licensed under Article 25fa Copyright
Act/Law (Amendment Taverne)

Downloaded from: https://hdl.handle.net/1887/3243960
 
Note: To cite this publication please use the final published version
(if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3243960


Adaptive Warm-Start MCTS
in AlphaZero-Like Deep
Reinforcement Learning

Hui Wang(B), Mike Preuss, and Aske Plaat

Leiden Institute of Advanced Computer Science, Leiden University,
Leiden, The Netherlands

h.wang.13@liacs.leidenuniv.nl

http://www.cs.leiden.edu

Abstract. AlphaZero has achieved impressive performance in deep rein-
forcement learning by utilizing an architecture that combines search and
training of a neural network in self-play. Many researchers are looking for
ways to reproduce and improve results for other games/tasks. However,
the architecture is designed to learn from scratch, tabula rasa, accept-
ing a cold-start problem in self-play. Recently, a warm-start enhance-
ment method for Monte Carlo Tree Search was proposed to improve the
self-play starting phase. It employs a fixed parameter I ′ to control the
warm-start length. Improved performance was reported in small board
games. In this paper we present results with an adaptive switch method.
Experiments show that our approach works better than the fixed I ′,
especially for “deep”, tactical, games (Othello and Connect Four). We
conjecture that the adaptive value for I ′ is also influenced by the size
of the game, and that on average I ′ will increase with game size. We
conclude that AlphaZero-like deep reinforcement learning benefits from
adaptive rollout based warm-start, as Rapid Action Value Estimate did
for rollout-based reinforcement learning 15 years ago.

Keywords: MCTS · AlphaZero · Deep reinforcement learning

1 Introduction

The combination of online Monte Carlo Tree Search (MCTS) [1] in self-play and
offline neural network training has been widely applied as a deep reinforcement
learning technique, in particular for solving game-related problems by AlphaGo
series programs [9–11]. The approach of this paradigm is to use game playing
records from self-play by MCTS as training examples to train the neural network,
whereas this trained neural network is used to inform the MCTS value and policy.
Note that in contrast to AlphaGo Zero or AlphaZero, the original AlphaGo also
uses large amounts of expert data to train the neural network and a fast rollout
policy together with the policy provided by neural network to guide the MCTS.

c© Springer Nature Switzerland AG 2021
D. N. Pham et al. (Eds.): PRICAI 2021, LNAI 13033, pp. 60–71, 2021.
https://doi.org/10.1007/978-3-030-89370-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89370-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-89370-5_5


Adaptive Warm-Start MCTS 61

However, although the transition from a combination of using expert data
and self-play (AlphaGo) to only using self-play (AlphaGo Zero and AlphaZero)
appears to have only positive results, it does raise some questions.

The first question is: ‘should all human expert data be abandoned?’ In other
games we have seen that human knowledge is essential for mastering complex
games, such as StarCraft [14]. Then when should expert data be used?

The second question is: ‘should the fast rollout policy be abandoned?’
Recently, Wang et al. [19] have proposed to use warm-start search enhance-
ments at the start phase in AlphaZero-like self-play, which improves perfor-
mance in 3 small board games. Instead of only using the neural network for value
and policy, in the first few iterations, classic rollout (or RAVE etc.) can be used.

In fact, the essence of the warm-start search enhancement is to re-generate
expert knowledge in the start phase of self-play training, to reduce the cold-start
problem of playing against untrained agents. The method uses rollout (which can
be seen as experts) instead of a randomly initialized neural network, up until a
number of I ′ iterations, when it switches to the regular value network. In their
experiments, the I ′ was fixed at 5. Obviously, a fixed I ′ may not be optimal.
Therefore, in this work, we propose an adaptive switch method. The method uses
an arena in the self-play stage (see Algorithm 2), where the search enhancement
and the default MCTS are matched, to judge whether to switch or not. With
this mechanism, we can dynamically switch off the enhancement if it is no longer
better than the default MCTS player, as the neural network is being trained.

Our main contributions can be summarized as follows:

1. Warm-start method improves the Elo [2] of AlphaZero-like self-play in small
games, but it introduces a new hyper-parameter. Adaptive warm-start further
improves performance and removes the hyper-parameter.

2. For deep games (with a small branching factor) warm-start works better than
for shallow games. This indicates that the effectiveness of warm-start method
may increase for larger games.

The rest of paper is designed as follows. An overview of the most relevant
literature is given in Sect. 2. Before proposing our adaptive switch method in
Sect. 4, we describe the warm-start AlphaZero-like self-play algorithm in Sect. 3.
Thereafter, we set up the experiments in Sect. 5 and present their results in
Sect. 6. Finally, we conclude our paper and discuss future work.

2 Related Work

There are a lot of early successful works in reinforcement learning [12], e.g.
using temporal difference learning with a neural network to play backgam-
mon [13]. MCTS has also been well studied, and many variants/enhancements
were designed to solve problems in the domain of sequential decisions, espe-
cially on games. For example, enhancements such as Rapid Action Value Esti-
mate (RAVE) and All Moves as First (AMAF) have been conceived to improve
MCTS [3,4]. The AlphaGo series algorithms replace the table based model with



62 H. Wang et al.

a deep neural network based model, where the neural network has a policy
head (for evaluating of a state) and a value head (for learning a best action) [16],
enabled by the GPU hardware development. Thereafter, the structure that com-
bines MCTS with neural network training has become a typical approach for
reinforcement learning tasks [8,18] of this kind model-based deep reinforcement
learning [6,7]. Comparing AlphaGo with AlphaGo Zero and AlphaZero, the lat-
ter did not use any expert data to train neural network, and abandoned the fast
rollout policy for improving MCTS on the trained neural network.

Within a general game playing framework, in order to improve training
examples efficiency, [15] assessed the potential of classic Q-learning by intro-
ducing Monte Carlo Search enhancements. In an AlphaZero-like self-play frame-
work, [20] used domain-specific features and optimizations, starting from random
initialization and no preexisting data, to accelerate the training. We also base
our work on an open reimplementation of AlphaZero, AlphaZero General [5].

However, AlphaStar, which defeated human professionals at StarCraft [14],
went back to utilize human expert data, thereby suggesting that this is still an
option at the start phase of training. Apart from this, [19] proposed a warm-start
search enhancement method, pointed out the promising potential of utilizing
MCTS enhancements to re-generate expert data at the start phase of training.
Our approach differs from AlphaStar, as we generate expert data using MCTS
enhancements other than collecting it from humans; further, compared to the
static warm-start of [19], we propose an adaptive method to control the iteration
length of using such enhancements instead of a fixed I ′.

3 Warm-Start AlphaZero Self-play

3.1 The Algorithm Framework

Based on [10,16,19], the core of AlphaZero-like self-play (see Algorithm 1) is an
iterative loop which consists of three stages (self-play, neural network training
and arena comparison) within the single iteration. The detail description of these
3 stages can be found in [19]. Note that in the Algorithm 1, line 5, a fixed I ′

is employed to control whether to use MCTS or MCTS enhancements, the I ′

should be set as relatively smaller than I, which is known as warm-start search.

3.2 MCTS

Classic MCTS has shown successful performance to solve complex games, by
taking random samples in the search space to evaluate the state value. Basically,
the classic MCTS can be divided into 4 stages, which are known as selection,
expansion, rollout and backpropagate [1]. However, for the default MCTS in
AlphaZero-like self-play (e.g. our Baseline), the neural network directly informs
the MCTS state policy and value to guide the search instead of running a rollout.



Adaptive Warm-Start MCTS 63

Algorithm 1. Warm-start AlphaZero-like Self-play Algorithm
1: Randomly initialize fθ, assign retrain buffer D
2: for iteration=1, . . . ,I ′, . . . , I do
3: for episode=1,. . . , E do � self-play
4: for t=1, . . . , T ′, . . . , T do
5: if I ≤ I ′ then πt ← MCTS Enhancement
6: else πt ← default MCTS

7: if t ≤ T ′ then at = randomly select on πt

8: else at = arg maxa(πt)

9: executeAction(st, at)

10: D ← (st, πt, zt) with outcome zt∈[1,T ]

11: Sample minibatch (sj , πj , zj) from D � training
12: Train fθ′ ← fθ

13: fθ = fθ′ if fθ′ is better, using default MCTS � arena

14: return fθ;

3.3 MCTS Enhancements

In this paper, we adopt the same two individual enhancements and three com-
binations to improve neural network training as were used by [19].

Rollout runs a classic MCTS random rollout to get a value that provides
more meaningful information than a value from random initialized neural net-
work.

RAVE is a well-studied enhancement to cope with the cold-start of MCTS in
games like Go [3], where the playout-sequence can be transposed. The core idea of
RAVE is using AMAF to update the state visit count Nrave and Q-value Qrave,
which are written as: Nrave(st1 , at2) ← Nrave(st1 , at2) + 1, Qrave(st1 , at2) ←
Nrave(st1 ,at2 )∗Qrave(st1 ,at2 )+v

Nrave(st1 ,at2 )+1 , where st1 ∈ V isitedPath, and at2 ∈ A(st1), and
for ∀t < t2, at �= at2 .

RoRa is the combination which adds the random rollout to enhance RAVE.
WRo introduces a weighted sum of rollout value and the neural network

value as the return value to guide MCTS [9].
WRoRa also employs a weighted sum to combine the values from the neural

network and the RoRa.
Different from [19], since there is no pre-determined I ′, in our work, weight

is simply calculated as 1/i, i ∈ [1, I], where i is the current iteration number.

4 Adaptive Warm-Start Switch Method

The fixed I ′ to control the length of using warm-start search enhancements as
suggested by [19] works, but seems to require different parameter values for
different games. In consequence, a costly tuning process would be necessary for
each game. Thus, an adaptive method would have multiple advantages.

We notice that the core of the warm-start method is re-generating expert data
to train the neural network at the start phase of self-training to avoid learning



64 H. Wang et al.

Algorithm 2. Adaptive Warm-Start Switch Algorithm
1: Randomly initialize fθ; Initialize retrain buffer D, Switch←False, rmcts ← 0
2: for iteration=1, . . . , I do � no I ′

3: if not Switch then � not switch
4: for episode=1,. . . , E do � arena with enhancements
5: for t=1, . . . , T ′, . . . , T do
6: if episode ≤ E/2 then
7: if t is odd then πt ← MCTS Enhancement
8: else πt ← default MCTS

9: else
10: if t is odd then πt ← default MCTS
11: else πt ← MCTS Enhancement

12: if t ≤ T ′ then at = randomly select on πt

13: else at = arg maxa(πt)

14: executeAction(st, at)

15: D ← (st, πt, zt) with outcome zt∈[1,T ]

16: rmcts+= reward of default MCTS in this episode

17: else � switch
18: for episode=1,. . . , E do � purely self-play
19: for t=1, . . . , T ′, . . . , T do
20: πt ← default MCTS
21: if t ≤ T ′ then at = randomly select on πt

22: else at = arg maxa(πt)

23: executeAction(st, at)

24: D ← (st, πt, zt) with outcome zt∈[1,T ]

25: Set Switch←True if rmcts >0, and set rmcts ← 0
26: Sample minibatch (sj , πj , zj) from D � training
27: Train fθ′ ← fθ

28: fθ = fθ′ if fθ′ is better, using default MCTS � arena

29: return fθ;

from weak (random or near random) self-play. We suggest to stop the warm-
start when the neural network is on average playing stronger than the enhance-
ments. Therefore, in the self-play, we employ a tournament to compare the stan-
dard AlphaZero-like self-play model (Baseline) and the enhancements (see Algo-
rithm 2). The switch occurs once the Baseline MCTS wins more than 50%. In
order to avoid spending too much time on this, these arena game records will
directly be used as training examples, indicating that the training data is played
by the enhancements and the Baseline. This scheme enables to switch at individ-
ual points in time for different games and even different training runs.

5 Experimental Setup

Since [19] only studied the winrate of single rollout and RAVE against a random
player, this can be used as a test to check whether rollout and RAVE work.



Adaptive Warm-Start MCTS 65

Table 1. Default parameter setting

Para Description Value Para Description Value

I Number of iterations 100 lr Learning rate 0.005

rs Number of retrain iterations 20 m MCTS simulation times 100

ep Number of epochs 10 d Dropout probability 0.3

E Number of episodes 50 c Weight in UCT 1.0

bs Batch size 64 n Number of comparison games 40

T’ Step threshold 15 u Update threshold 0.6

However, it does not reveal any information about relative playing strength,
which is necessary to explain how good training examples provided by MCTS
enhancements actually are. Therefore, at first we let all 5 enhancements and the
baseline MCTS play 100 repetitions with each other on the same 3 games (6× 6
Connect Four, Othello and Gobang, game description can be found in [19]) in
order to investigate the relative playing strength of each pair.

In the second experiment, we tune the fixed I ′, where I ′ ∈ {1, 3, 5, 7, 9}, for
different search enhancements, based on Algorithm 1 to play 6× 6 Connect Four.

In our last experiment, we use new adaptive switch method Algorithm 2 to
play 6× 6 Othello, Connect Four and Gobang. We set parameters values accord-
ing to Table 1. The parameter choices are based on [17]. The detail introduction
of these parameters can be found in [17].

Our experiments are run on a high-performance computing (HPC) server,
which is a cluster consisting of 20 CPU nodes (40 TFlops) and 10 GPU nodes
(40 GPU, 20 TFlops CPU + 536 TFlops GPU). We use small versions of games
(6 × 6) in order to perform a medium number of repetitions. Each single run is
deployed in a single GPU which takes several days for different games.

6 Results

6.1 MCTS Vs MCTS Enhancements

Here, we compare the Baseline player (the neural network is initialized randomly
which can be regarded as an arena in the first iteration self-play) to the other 5
MCTS enhancements players on 3 different games. Each pair performs 100 repe-
titions. In Table 2, for Connect Four, the highest winrate is achieved by WRoRa,
the lowest by Rave. Except Rave, others are all higher than 50%, showing that
the enhancements (except Rave) are better than the untrained Baseline. In Gob-
ang, it is similar, Rave is the lowest, RoRa is the highest. But the winrates are
relatively lower than that in other 2 games. It is interesting that in Othello, all
winrates are relatively the highest compared to the 2 other games (nearly 100%),
although Rave still achieves the lowest winrate which is higher than 50%.

One reason that enhancements work best in Othello is that the Othello game
tree is the longest and narrowest (low branching factor). Enhancements like
Rollout can provide relatively accurate estimations for these trees. In contrast,



66 H. Wang et al.

Table 2. Results of comparing default MCTS with Rollout, Rave, RoRa, WRo and
WRoRa, respectively on the three games with random neural network, weight as 1/2,
T ′ = 0, win rates in percent (row vs column), 100 repetitions each.

Default MCTS

ConnectFour Othello Gobang

Rollout 64 93 65

Rave 27.5 53 43

RoRa 76 98 70

WRo 82 96 57

WRoRa 82.5 99 62

Gobang has the shortest game length and the most legal action options. Enhance-
ments like Rollout do not contribute much to the search in short but wide search
tree with limited MCTS simulation. As in shorter games it is more likely to reach
a terminal state, both Baseline and enhancements get the true result. Therefore,
in comparison to MCTS, enhancements like Rollout work better while it does not
terminate too fast. Rave is filling more state action pairs based on information
from the neural network, its weaknesses at the beginning are more emphasized.
After some iterations of training, the neural network becomes smarter, and Rave
can therefore enhance the performance as shown in [19].

6.2 Fixed I′ Tuning

Taking Connect Four as an example, in this experiment we search for an optimal
fixed I ′ value, utilizing the warm-start search method proposed in [19]. We set
I ′ as 1, 3, 5, 7, 9 respectively (the value should be relatively small since the
enhancement is only expected to be used at the start phase of training). The
Elo ratings of each enhancements using different I ′ are presented in Fig. 1.

The Elo ratings are calculated based on the tournament results using a
Bayesian Elo computation system [2], same for Fig. 2. We can see that for Rave
and WRoRa, it turns out that I ′ = 7 is the optimal value for fixed I ′ warm-start
framework, for others, it is still unclear which value is the best, indicating that
the tuning is inefficient and costly.

6.3 Adaptive Warm-Start Switch

In this final experiment, we train models with the parameters in Table 1 and then
let them compete against each other in different games. In addition, we record
the specific iteration number where the switch occurs for every training run
and the corresponding self-play arena rewards of MCTS before this iteration.
A statistic of the iteration number for the 3 games is shown in Table 3. The
table shows that, generally, the iteration number is relatively small compared to
the total length of the training (100 iterations). Besides, not only for different



Adaptive Warm-Start MCTS 67

Fig. 1. Elo ratings for different warm-start phase iterations with different search
enhancement on 6 × 6 Connect Four

games, but also for different training runs on the same game, the switch iteration
varies. This is because for different training runs, the neural network training
progresses differently. Therefore, a fixed I ′ can not be used for each specific
training. Note that for Gobang, a game with a large branching factor, with the
default setting, it always switches at the first iteration. Therefore, we also test
with larger m = 200, thereby providing more time to the MCTS. With this
change, there are several runs keeping the enhancements see Table 3, but it still
shows a small influence on this game.



68 H. Wang et al.

Table 3. Switching iterations for training on different games with different enhance-
ments over 8 repetitions (average iteration number ± standard deviation)

Connect Four Othello Gobang

Rollout 6.625 ± 3.039 5.5 ± 1.732 1.375 ± 0.484

Rave 2.375 ± 1.218 3.125 ± 2.667 1.125 ± 0.331

RoRa 7.75 ± 4.74 5.125 ± 1.364 1.125 ± 0.331

WRo 4.25 ± 1.561 4.375 ± 1.654 1.125 ± 0.331

WRoRa 4.375 ± 1.576 4.0 ± 1.0 1.25 ± 0.433

More importantly, we collect all trained models based on our adaptive
method, and let them compete with the models trained using fixed I ′ = 5 in a
full round-robin tournament where each 2 players play 20 games.

From Fig. 2, we see that, generally, on both Connect Four and Othello, all
fixed I ′ achieve higher Elo ratings than the Baseline, which was also reported
in [19]). And all adaptive switch models also perform better than the Baseline.
Besides, for each enhancement, the Elo ratings of the adaptive switch models
are higher than for the fixed I ′ method, which suggests that our adaptive switch
method leads to better performance than the fixed I ′ method when controlling
the warm-start iteration length. Specifically, we find that for Connect Four, WRo
and RoRa achieve the higher Elo Ratings (see Fig. 2(a)) and for Othello, WRoRa
performs best (see Fig. 2(b)), which reproduces the consistent conclusion (at least
one combination enhancement performs better in different games) as [19]).

In addition, for Connect Four, comparing the tuning results in Fig. 1 and the
switch iterations in Table 3, we find that our method generally needs a shorter
warm-start phase than employing a fixed I ′. The reason could be that in our
method, there are always 2 different players playing the game, and they provide
more diverse training data than a pure self-play player. In consequence, the
neural network also improves more quickly, which is highly desired.

Note that while we use the default parameter setting for training in the
Gobang game, the switch occurs at the first iteration. And even though we
enlarge the simulation times for MCTS, only a few training runs shortly keep
using the enhancements. We therefore presume that it is meaningless to further
perform the tournament comparison for Gobang.



Adaptive Warm-Start MCTS 69

Fig. 2. Comparison of adaptive switch method versus fixed I ′ based on a full tourna-
ment for 6 × 6 Connect Four and Othello

7 Discussion and Conclusion

Since AlphaGo Zero’ results, self-play has become a default approach for gen-
erating training data tabula rasa, disregarding other information for training.
However, if there is a way to obtain better training examples from the start,
why not use them, as has been done recently in StarCraft (see DeepMind’s
AlphaStar [14]). In addition [19] investigate the possibility of utilizing MCTS
enhancements to improve AlphaZero-like self-play. They embed Rollout, RAVE
and combinations as enhancements at the start period of iterative self-play train-
ing and tested this on small board games.

Confirming [19], we find that finding an optimal value of fixed I ′ is difficult,
therefore, we propose an adaptive method for deciding when to switch. We also
use Rollout, RAVE, and combinations with network values to quickly improve
MCTS tree statistics (using RAVE) with meaningful information (using Rollout)
before we switch to Baseline-like self-play training. We employed the same games,
namely the 6 × 6 versions of Gobang, Connect Four, and Othello. In these
experiments, we find that, for different games, and even different training runs
for the same game, the new adaptive method generally switches at different
iterations. This indicates the noise in the neural network training progress for
different runs. After 100 self-play iterations, we still see the effects of the warm-
start enhancements as playing strength has improved in many cases, and for all
enhancements, our method performs better than the method proposed in [19]
with I ′ set to 5. In addition, some conclusions are consistent to [19], for example,
there is also at least one combination that performs better.

The new adaptive method works especially well on Othello and Connect
Four, “deep” games with a moderate branching factor, and less well on Gobang,
which has a larger branching factor. In the self-play arena, the default MCTS is
already quite strong, and for games with a short and wide episode, the MCTS
enhancements do not benefit much. Short game lengths reach terminal states
early, and MCTS can use the true reward information more often, resulting in a



70 H. Wang et al.

higher chance of winning. Since, Rollout still needs to simulate, with a limited
simulation count it is likely to not choose a winning terminal state but a state
that has the same average value as the terminal state. In this situation, in a
short game episodes, MCTS works better than the enhancement with T ′ = 15.
With ongoing training of the neural network, both players become stronger, and
as the game length becomes longer, I ′ = 5 works better than the the Baseline.

Our experiments are with small games. Adaptive warm-start works best in
deeper games, suggesting a larger benefit for bigger games with deeper lines.
Future work includes larger games with deeper lines, and using different but
stronger enhancements to generate training examples.

Acknowledgments. Hui Wang acknowledges financial support from the China Schol-
arship Council (CSC), CSC No.201706990015.

References

1. Browne, C.B., et al.: A survey of Monte Carlo tree search methods. IEEE Trans.
Comput. Intell. AI Games 4(1), 1–43 (2012)

2. Coulom, R.: Whole-history rating: a Bayesian rating system for players of time-
varying strength. In: van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.)
CG 2008. LNCS, vol. 5131, pp. 113–124. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-87608-3 11

3. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Pro-
ceedings of the 24th International Conference on Machine Learning, pp. 273–280
(2007)

4. Gelly, S., Silver, D.: Monte-Carlo tree search and rapid action value estimation in
computer go. Artif. Intell. 175(11), 1856–1875 (2011)

5. Nair, S.: Alphazero general (2018). https://github.com/suragnair/alpha-zero-
general. Accessed May 2018

6. Plaat, A.: Learning to Play: Reinforcement Learning and Games. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-59238-7

7. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61,
85–117 (2015)

8. Segler, M.H., Preuss, M., Waller, M.P.: Planning chemical syntheses with deep
neural networks and symbolic AI. Nature 555(7698), 604–610 (2018)

9. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

10. Silver, D.: A general reinforcement learning algorithm that masters chess, shogi,
and go through self-play. Science 362(6419), 1140–1144 (2018)

11. Silver, D., et al.: Mastering the game of go without human knowledge. Nature
550(7676), 354–359 (2017)

12. Sutton, R.S., Barto, A.G.: Reinforcement learning: An Introduction. MIT Press,
Cambridge (2018)

13. Tesauro, G.: Temporal difference learning and TD-Gammon. Commun. ACM
38(3), 58–68 (1995)

14. Vinyals, O.: Grandmaster level in starcraft II using multi-agent reinforcement
learning. Nature 575(7782), 350–354 (2019)

https://doi.org/10.1007/978-3-540-87608-3_11
https://doi.org/10.1007/978-3-540-87608-3_11
https://github.com/suragnair/alpha-zero-general
https://github.com/suragnair/alpha-zero-general
https://doi.org/10.1007/978-3-030-59238-7


Adaptive Warm-Start MCTS 71

15. Wang, H., Emmerich, M., Plaat, A.: Assessing the potential of classical Q-learning
in general game playing. In: Atzmueller, M., Duivesteijn, W. (eds.) BNAIC 2018.
CCIS, vol. 1021, pp. 138–150. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-31978-6 11

16. Wang, H., Emmerich, M., Preuss, M., Plaat, A.: Alternative loss functions in
alphazero-like self-play. In: 2019 IEEE Symposium Series on Computational Intel-
ligence (SSCI), pp. 155–162. IEEE (2019)

17. Wang, H., Emmerich, M., Preuss, M., Plaat, A.: Analysis of hyper-parameters for
small games: Iterations or epochs in self-play? arXiv preprint arXiv:2003.05988
(2020)

18. Wang, H., Preuss, M., Emmerich, M., Plaat, A.: Tackling morpion soli-
taire with alphazero-like ranked reward reinforcement learning. arXiv preprint
arXiv:2006.07970 (2020)

19. Wang, H., Preuss, M., Plaat, A.: Warm-start alphazero self-play search enhance-
ments. In: Proceedings of the Parallel Problem Solving from Nature - PPSN XVI,
pp. 528–542 (2020)

20. Wu, D.J.: Accelerating self-play learning in go. arXiv preprint arXiv:1902.10565
(2019)

https://doi.org/10.1007/978-3-030-31978-6_11
https://doi.org/10.1007/978-3-030-31978-6_11
http://arxiv.org/abs/2003.05988
http://arxiv.org/abs/2006.07970
http://arxiv.org/abs/1902.10565

	Adaptive Warm-Start MCTS in AlphaZero-Like Deep Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Warm-Start AlphaZero Self-play
	3.1 The Algorithm Framework
	3.2 MCTS
	3.3 MCTS Enhancements

	4 Adaptive Warm-Start Switch Method
	5 Experimental Setup
	6 Results
	6.1 MCTS Vs MCTS Enhancements
	6.2 Fixed I Tuning
	6.3 Adaptive Warm-Start Switch

	7 Discussion and Conclusion
	References




