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Abstract
Generating more evenly distributed samples in high dimensional search spaces is
the major purpose of the recently proposed mirrored sampling technique for evolution
strategies. The diversity of the mutation samples is enlarged and the convergence rate
is therefore improved by the mirrored sampling. Motivated by the mirrored sampling
technique, this article introduces a new derandomized sampling technique called mir-
rored orthogonal sampling. The performance of this new technique is both theoretically
analyzed and empirically studied on the sphere function. In particular, the mirrored
orthogonal sampling technique is applied to the well-known Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES). The resulting algorithm is experimentally tested
on the well-known Black-Box Optimization Benchmark (BBOB). By comparing the re-
sults from the benchmark, mirrored orthogonal sampling is found to outperform both
the standard CMA-ES and its variant using mirrored sampling.

Keywords
Convergence of numerical methods, evolution strategies, mirrored orthogonal
sampling.

1 Introduction

In evolution strategies (ESs), derandomized sampling aims at improving random sam-
pling by generating “good” random mutation points from a certain distribution (usu-
ally Gaussian). Loosely speaking, the “goodness” of the mutation refers to its diversity,
which measures how evenly the mutation points are arranged in the search space. In-
tuitively, the mutation sample having a high diversity could explore the search space
more thoroughly. We will introduce the definition of diversity in Section 2.2.

Much effort has been devoted to the derandomized sampling and several methods
are proposed. Niederreiter (1992) proposes to adopt quasi-random variables, which has
already been applied to genetic algorithms (Kimura and Matsumura, 2005) and evo-
lution strategies (Teytaud and Gelly, 2007). Despite their successes, these approaches
are found to be more complicated to implement than the simple random sampling and
may introduce undesired biases as will be shown later. A recent systematic overview of
modern variants of evolution strategies can be found in Bäck et al. (2013).

The recently proposed mirrored sampling technique (Brockhoff et al., 2010) is a sim-
ple and effective derandomized sampling method for ES. Instead of generating i.i.d.
Gaussian samples, the sample points are paired and symmetric to the current parent,
where only one sample point of each pair is generated by the simple random sampling.
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In mirrored sampling, half of the sample points are independent and the other half are
dependent. There is no additional computational cost needed for the mirrored sam-
pling technique. It has been theoretically proven that the performance of (1 +, λ)-ES can
be improved by applying the mirrored sampling technique (Auger et al., 2011a).

The purpose of this article is to elaborate and analyze an improvement of the mir-
rored sampling technique, which is called mirrored orthogonal sampling. Its basic idea has
been briefly introduced in Wang et al. (2014) and it is based on the following intuition.
In mirrored sampling, half of the samples are still obtained using the simple random
sampling, which would suffer from the same problem as before, namely the sampling
errors (see Section 2.2 for an in-depth discussion). Thus, the diversity of random sam-
ples could be further enhanced by improving the mirrored sampling technique. This
is achieved by completely discarding the simple random sampling component in mir-
rored sampling and replacing it by the orthogonal sampling. The resulting technique is
called mirrored orthogonal sampling here. This article extends our previous work (Wang
et al., 2014) in the following aspects:

• The motivation, intuition, and formalization of the mirrored orthogonal sam-
pling are incorporated in detail.

• The procedure for tuning the strategy parameters for mirrored orthogonal
sampling is discussed.

• The progress rate approach is applied to analyze and compare the simple ran-
dom, mirrored, and mirrored orthogonal sampling techniques.

• The benchmark results are presented and explained in detail.

Based on the convergence rate analysis approach in Brockhoff et al. (2010), we ana-
lyze the convergence rate of the isotropic (1, λ)-ES with mirrored orthogonal sampling
on the sphere function. For the (μ, λ)-ES algorithm, a bias would occur during recom-
bination, probably leading to premature convergence behavior. This bias is avoided by
applying the pairwise selection technique, in which only the better point of a mirrored
pair is allowed to participate in the weighted recombination. Mirrored orthogonal sam-
pling is applied within a CMA-ES for the experimental validation.

This article is organized as follows. Section 2 introduces the background of de-
randomized sampling as well as the motivation of our work. In Section 3.1, the new
derandomized sampling approach is proposed and explained in detail. Section 3.2
concentrates on the implementation issues of our approach. Both the theoretical and
empirical study of the convergence rates are presented in Section 4. The progress rate
analysis is used to analyze the algorithm performance. In Section 5, the experimental re-
sults of mirrored orthogonal sampling are shown and compared to the other sampling
methods. Finally, conclusions and possible directions for further research are given in
Section 6. In this article, we shall use n to denote the dimensionality of the search space,
and λ to denote the population size of evolution strategy.

2 Background and Related Work

2.1 Evolution Strategy

In this article, we are dealing with single-objective continuous optimization problems,
namely the objective function of the form: f : Rn → R. Without loss of generality, the
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Mirrored Orthogonal Sampling for CMA-ES

search space is assumed as the whole n-dimensional Euclidean space R
n. Evolution

strategies (ESs) are population-based black-box optimization techniques, proposed to
solve such problems efficiently (Schwefel, 1993; Bäck et al., 2013). The ES algorithm is
built heavily on the so-called mutation operator, where random variables are used to
perturb candidate solutions locally. Mostly commonly, the mutation operator is real-
ized by taking a simple random sample (of size λ > 1) from the multivariate Gaussian
distribution:

xi = m + σN (0, C), i = 1, 2, . . . , λ, (1)

where (1) m is the center of mass of the current population; (2) the covariance ma-
trix C models the correlation among search variables; and (3) the parameter σ ∈ R>0
is the so-called step-size, which scales the magnitude of the mutation. After obtain-
ing the fitness value of {xi}λi=1 on f , the only the μ best mutations (μ < λ) are selected:
x1:λ, x2:λ, . . . , xμ:λ. Note that xi:λ stands for the mutation corresponding to the i-th ranked
fitness value fi:λ. Then, the center of mass m is recalculated based on the so-called
weighted recombination (Hansen and Ostermeier, 2001):

m =
μ∑

i=1

wixi:λ,

where the weight is scaled down logarithmically with increasing ranks of the mutation.
Typically, such an algorithm paradigm is termed (μ/μw, λ)-ES (Bäck et al., 2013), rep-
resenting μ parents, λ mutations/offspring, and μw mutations in the weighted recom-
bination. Note that the covariance matrix is also adapted using the selected mutations.
In the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen, 2006), this is
achieved by the maximum likelihood estimation. In addition, in CMA-ES the step-size
σ is controlled based on the Cumulative Step-size Adaptation (CSA) mechanism (Hansen
and Ostermeier, 2001), where the steps (displacement of m between iterations) are cu-
mulated with exponential decay and the length of the cumulant is used to adjust the
step-size. The changing rate of the step-size is regulated by the so-called damping factor
dσ . Please refer to Hansen (2006) for the detail. Note that the original damping factor is
modified when applying the proposed sampling approach to CMA-ES (Section 3.4).

2.2 Sampling Error and Space Exploration

Given a mutation sample X = {x1, x2, . . . , xλ} ⊂ R
n, the diversity D(X ) is defined as the

minimal distance between sample points in X . Intuitively, it can be measured by the
lower bound of distance between points in X :

D(X ) := inf
{
d(xi , xj ) | xi �= xj ∈ X

}
,

where d is a distance metric in R
n. The diversity should be maximized in order to obtain

“good” mutation samples. Although many other criteria might apply (e.g., discrepancy)
on the sample “goodness,” we will just use the simple measure above. Generating n-
dimensional random vectors from a multivariate Gaussian distribution is the key source
of random variations in evolution strategies. The standard method to achieve this, sim-
ple random sampling (Equation (1)), samples pseudo-random numbers directly from a
certain distribution. However, it also suffers from the so-called sampling error, which
describes the situation that the estimated properties (from a sample) differ largely from
the property of the population. The sampling error is caused by unrepresentative or
biased samples when the sample size is small.
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Figure 1: Example of a set of unsuccessful mutation samples. Four offspring are gener-
ated here while none of them is an improvement. This phenomenon reduces the con-
vergence velocity of the algorithm.

An example of biased samples is illustrated in Figure 1, in which four i.i.d. mutation
vectors are sampled from a multivariate Gaussian distribution N (m, C; the step-size
is ignored in this case). The black solid ellipsoid represents the covariance matrix C.
The diversity of the mutation vectors is not satisfactory because the minimal distance
between samples is relatively small. A strong sampling error incurs in this case because
if the mean and covariance of the distribution are estimated from these four vectors, the
results would deviate largely from m and C.

Consequently, a large portion of the search space is not reached (at least half the
space in this case); moreover, if the objective function is locally convex near the opti-
mum (as illustrated by the dashed ellipsoids). The probability that a new search point
leads to an improvement can be very small, as shown by the area marked by vertical
lines. Therefore, if the population size is small, a biased sample can take place such that
none of the mutations leads to an improvement, hindering the progress of this genera-
tion. The sampling error has an even bigger side effect in modern evolution strategies
(e.g., CMA-ES) because those algorithms tend to exploit small populations to speed up
their convergence rate. To overcome this problem, it is proposed to apply derandomized
sampling methods for a small population.

2.3 Quasi-Random Sampling

There are some techniques proposed to reduce the sampling error as much as possible.
The first method is called quasi-random sampling, which produces low-discrepancy
sequences of samples (Dick and Pillichshammer, 2010). The discrepancy of a sequence
is low if the proportion of points in the sequence falling into an arbitrary set is close to
proportional to the size of this set. Low-discrepancy sequences are commonly used as a
replacement of simple random samples from the uniform distribution. Intuitively, such
sequences span the search space more “evenly” than the pseudo-random numbers. It is
widely used in numerical approaches like the quasi-Monte-Carlo method (Niederreiter,
1992) to achieve a faster rate of convergence. Due to the advantages of quasi-random
sampling, it is also applied in genetic algorithms (Kimura and Matsumura, 2005) and
evolution strategies (Teytaud and Gelly, 2007). Specifically, it has already been applied
to the well-known CMA-ES (Hansen and Ostermeier, 2001; Hansen et al., 2003). Tey-
taud and Gelly (2007) propose to replace the simple random Gaussian samples by a
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Mirrored Orthogonal Sampling for CMA-ES

low-discrepancy sequence in the mutation operator. The method for generating quasi-
random samples according to the Gaussian distribution is also developed because the
quasi-random samples are usually generated for a uniform distribution. It is also argued
that the efficiency of CMA-ES is improved due to a better diversity of quasi-random
samples. However, such an approach would cause a systematic bias on the step size
adaptation (see Section 3.3).

2.4 Mirrored Sampling

The mirrored sampling technique (Brockhoff et al., 2010) is another method for ob-
taining “good” samples and it successfully accelerates the convergence of ESs (Auger
et al., 2010). It is a simple and elegant idea in which a single random mutation is used
to create two sample points: Instead of generating λ i.i.d. search points, only half of
the mutation vectors are generated using simple random sampling, namely {z2i−1}λ/2

i=1,
zi ∼ N (0, σ 2C). Each mutation vector z2i−1 is used to generate a pair of offspring,
x2i−1 = m + z2i−1 and x2i = m − z2i−1, which are symmetric about the center of mass
m (parent point).

To make the following discussion clear, the mutation obtained directly from sim-
ple random sampling is called the original mutation. The mirrored sampling method
is described in Algorithm 1, acting as an alternative to the standard mutation operator
(simple random sampling) in evolution strategies. For an odd λ, it begins with gener-
ating �λ/2� mutations in the first generation, corresponding to �λ/2� mirrored ones. To
keep the population size alway as λ, all �λ/2� original mutations and �λ/2� − 1 mirrored
ones undergo the evaluation and selection procedure while the last mirrored mutation
is held out for the next iteration (Lines 18–21). In the next iteration, the hold-out mir-
rored mutation is used (Lines 3–9) and we only need to draw 	λ/2
 mutations. The

Evolutionary Computation Volume 27, Number 4 703

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/27/4/699/1858732/evco_a_00251.pdf by U
N

IVER
SITEIT LEID

EN
 user on 01 D

ecem
ber 2021



H. Wang, M. T. M. Emmerich, and T. H. W. Bäck

following generations repeat this procedure. The static variable zlast in Algorithm 1
stores the hold-out mutation. Here, the notation proposed in Brockhoff et al. (2010) is
used such that any ES algorithm using mirrored sampling is denoted as (μ +, λm)-ES.
Consequently, in the (1 + 1m)-ES, a mirrored mutation is used if and only if the itera-
tion index is even. By using mirrored sampling, mutations in each mirrored pair are
dependent and explore two anti-parallel directions such that the mirrored counterpart
of an unsuccessful mutation has a certain chance to yield an improvement.

Note that the mirrored sampling method is very similar to the so-called opposition-
based learning method (Rahnamayan et al., 2006), in which the candidate solution is
mirrored with respect to the center of the smallest hyper-box covering the current
population. This approach is implemented in the differential evolution (DE) algorithm
to generate an opposite population occasionally, which improves the performance of
DE (Rahnamayan et al., 2006).

2.5 Deterministic Orthogonal Sampling

Orthogonal sampling, which denotes a sampling approach utilizing orthogonal search
directions, is another solution to enhance the mutation diversity. This sampling scheme
can be found in Coordinate Descent (Schwefel, 1993), Adaptive Coordinate Descent
(ACiD) (Loshchilov et al., 2011), and Rosenbrock’s Local Search (Rosenbrock, 1960). In-
tuitively, by taking samples on the orthogonal directions, the search space is covered
more evenly.

Normally, in this approach, an orthogonal basis � = {ξ 1, ξ 2, . . . , ξn} are maintained
in each optimization iteration, which represents the possible search directions. In each
iteration, a line search is conducted along a basis vector, which is achieved by sampling
two trial points: one point is created by adding the basis vector to the current search
point m while the other one is generated through mirroring. In the next iteration, a
different basis vector in � is picked for the exploration. The general framework of this
method is summarized below:

1. Initialize the search point m, a set of orthonormal basis vectors � = {ξ 1, ξ 2,

. . . , ξn} as the search directions and the step sizes {σ1, σ2, . . . , σn} for each search
direction.

2. If the termination condition is not satisfied, perform the following steps until (e)
for each iteration. Let g be the iteration counter:

(a) Choose base ξ i as the exploration direction where i = g mod n and generate
one trial point: x1 = m + σiξ i .

(b) For Rosenbrock’s local search, go to (c). For the other methods, use base ξ i to
generate the other trial point: x2 = m − σiξ i .

(c) Evaluate the trial points x1, x2 (if x2 exists). Set the search point m to the one
with the best fitness value.

(d) Update the step size σi according to a deterministic or stochastic rule and
increase the iteration counter g by one.

(e) If g mod n = 0, then update the basis � according to the search points of the
most recent n iterations.

When all the basis directions are tried, the orthogonal basis � is either unchanged or
updated based on the successful trials in the history. Note that the rules of the up-
date may vary from algorithm to algorithm: In Coordinate Descent, the basis is fixed
to the canonical basis of Rn during the process. In ACiD, the basis is updated by Adap-
tive Encoding (Hansen, 2008), which is the generalization of the covariance matrix
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Mirrored Orthogonal Sampling for CMA-ES

adaptation in CMA-ES. We deliberately term this sampling method as deterministic or-
thogonal sampling due to the fact that the update of the orthonormal basis is completely
deterministic and it is easier to distinguish this sampling method from the random or-
thogonal sampling proposed here.

3 Mirrored Orthogonal Sampling

In this section, we elaborate the mirrored orthogonal sampling technique.

3.1 The Proposed Method

This new method is motivated by the following observation: In mirrored sampling, half
of the mutation vectors (the mirrored ones) completely depend on the other half (the
original ones). Mirrored sampling ensures a significant difference between these two
halves of mutations. In addition, the mirrored mutation is anti-parallel to the original
one and thus a mirrored pair would never miss one half of the search space, no matter
how the search space is partitioned.1 However, within each half of mutations, the diver-
sity is still not regulated such that many mutations might be “squeezed” in a narrow
direction. Thus, the mirrored sampling technique can still generate unrepresentative
samples as described in Section 2.2.

In order to alleviate this issue, we consider the deterministic orthogonal sampling
method (Section 2.5), where the mutations are selected from a precomputed orthogonal
basis and thus the minimal distance between samples is enlarged. The disadvantage is
that deterministic search directions are used and only one of the orthogonal vectors can
be used in one evolution cycle, which limits it usability for the general (μ, λ)-ES. Instead
of just picking vectors in an orthogonal basis, it is proposed here to create uniformly
random orthogonal vectors, in the sense that each vector is stochastic (instead of being
deterministic) and uniformly random (meaning that each search direction is sampled
with the same probability). The definition of such samples is given as:

DEFINITION 1: The uniform random orthogonal vectors are defined as a set of random vectors
{O1,O2, . . . ,Ok} ⊂ R

n (k ≤ n), satisfying the following three properties:

1. Orthogonality: ∀i �= j ∈ {1, 2, . . . , k}, 〈Oi ,Oj 〉 = 0.

2. χ -distributed norm: ∀i ∈ {1, 2, . . . , k}, ‖Oi‖ = √〈Oi ,Oi〉 ∼ χ (n).

3. Uniformity: for each vector Oi , its normalization Oi/‖Oi‖ distributes uniformly on
the unit sphere.

Remarks: (1) The norm of the sample vector is restricted to χ distribution for mim-
icking the behavior of the standard Gaussian vector. (2) The uniform distribution on
the unit sphere is equivalent to the rotation-invariant property with respect to an arbi-
trary rotation matrix2 R: the random vector x and the rotated one x′ = Rx are identically
distributed. (3) Throughout this article, the dot product is taken for the inner product,
namely 〈x, y〉 = x�y.

The new mutation method is named random orthogonal sampling. For clarity, we shall
refer the default mutation operator (Equation (1)) in CMA-ES as simple random sampling.

1Note that the mirrored pair can stay on the partition boundary. However, this situation has only
zero measure in R

n.
2A n dimensional rotation matrix R satisfies conditions R−1 = R� and det R = 1. All such matrices

form a so-called special orthogonal group SO(n).

Evolutionary Computation Volume 27, Number 4 705

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/27/4/699/1858732/evco_a_00251.pdf by U
N

IVER
SITEIT LEID

EN
 user on 01 D

ecem
ber 2021



H. Wang, M. T. M. Emmerich, and T. H. W. Bäck

In addition, the random orthogonal samples are rescaled and rotated according to the
covariance matrix C before they are added to the parental point m, as with the default
mutation operator:

x2i−1 ← m + σC
1
2 Oi , 1 ≤ i ≤ λ/2. (2)

The x’s are the new search points and σ denotes the step size. The implementation of
the random orthogonal sampling algorithm and the validity of the implementation are
discussed in the following section. Consider two i.i.d. random vectors x and y drawn
from a standard normal distribution. The expected value of the inner product of these
two vectors is given as:

E
{〈x, y〉} =

n∑
i=1

E {xiyi} = 0.

This indicates two independent standard normal vectors are orthogonal to each other in
expectation. Intuitively, by generating random orthogonal samples, the mutations are
derandomized such that the variance of the angle formed by a pair of mutations van-
ishes. Therefore, the search directions are guaranteed to be uncorrelated so that muta-
tions are spread over the search space evenly. In the next step, we combine the mirroring
technique with random orthogonal sampling to generate the remaining half of the mu-
tations:

x2i ← m − σC
1
2 Oi , 1 ≤ i ≤ λ/2. (3)

Note that using only random orthogonal sampling is not sufficient for exploration
due to the fact that random orthogonal vectors are only capable of spanning one or-
thant of the space, no matter how they are realized (just consider the canonical basis in
3-D). Combining Equations (2) and (3), the new sampling approach is completed and
is called mirrored orthogonal sampling. In addition, any ES algorithm equipped with it is
denoted as (μ +, λo

m)-ES here. The detailed algorithm of the mirrored orthogonal sam-
pling method is given in Algorithm 2. Note that an algorithm for generating random
orthogonal Gaussian vectors (which is explained in the following) is invoked in line
10 and replaces the direct sampling of the Gaussian distribution. The remainder of this
algorithm is basically the same as mirrored sampling (Algorithm 1).

Compared to mirrored sampling, which ensures the difference within any mirrored
pair, the orthogonalization method is exploited to guarantee the significant differences
among mutations. Therefore, it is straightforward to compare the performance of mir-
rored orthogonal sampling to that of mirrored sampling/simple random sampling.
Such a comparison is presented in the experimental results (Section 5).

3.2 Implementation of Random Orthogonal Sampling

In order to implement the random orthogonal sampling technique, the well-known
Gram-Schmidt process (Björck, 1994) is exploited to generate the orthogonal sample
points. The Gram-Schmidt process is a method for orthonormalizing a set of vectors
in an inner product space, most commonly the Euclidean space R

n. It takes a finite,
linearly independent set S = {v1, . . . , vk} (k ≤ n) and generates an orthogonal set S ′ =
{u1, . . . , uk} that spans k-dimensional subspace of R

n. The pseudocode of the Gram-
Schmidt process is listed in Algorithm 3.

Let p equal λ/2 again. In the first step, we sample p i.i.d. vectors from the standard
normal distribution and record their norms (lengths); that is,

S = {
s1, . . . , sp

}
, si ∼ N (0, I), Li = ‖si‖, i = 1, . . . , p. (4)
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Mirrored Orthogonal Sampling for CMA-ES

Note that the Gram-Schmidt process is an orthonormalization method, which produces
orthogonal unit vectors. Therefore, the original mutation lengths have to be manually
recorded before applying the Gram-Schmidt process, such that the mutation length can
be restored later. Then, processing S by the Gram-Schmidt process would give us a
collection S ′ of random orthonormal vectors,

S ′ = {
s′

1, . . . , s′
p

} = gram-schmidt(S ). (5)

Note that each vector in s′
1, . . . , s′

p has unit length and they are orthogonal to each other.
It is not very hard to see from Algorithm 3 that among all the resulting vectors, the
direction of s′

1 remains unchanged and the direction of s′
i depends on the set {sk}i−1

k=1.
Therefore, intuitively, the output vectors of the Gram-Schmidt process, {s′

i}pi=1 are uni-
formly distributed on the unit sphere because the input vectors {sk}pk=1 are independent

Evolutionary Computation Volume 27, Number 4 707
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and identically distributed. Finally, we rescale all the s′
i by their corresponding original

length:
zi = Lis′

i , i = 1, . . . , p. (6)
A special situation takes place if p is greater than the dimensionality n: it is simply not
possible to generate more than n distinct orthogonal vectors in R

n. In this case, only n

mutation samples are created using Equations 4, 5, and 6, and the remaining p − n sam-
ples are created using simple random sampling. The detailed procedure of orthogonal
sampling is described in Algorithm 4. Lines 3–6 correspond to Equation (4). Through
lines 7–17, the Gram-Schmidt process is invoked and the number of samples p is han-
dled properly. The advantage of this implementation is that there is no additional pa-
rameter to be considered. As for the time complexity, the extra cost are spent in calling
the Gram-Schmidt process, which is O(nk2), k = min{p, n}.

To justify this implementation, it is possible to check the generated samples accord-
ing to Definition 1. The orthogonality and restriction on the vectors length are immedi-
ately satisfied. The rotation-invariance of the vectors can be shown as follows. Firstly,
the standard normal vectors are rotation-invariant, meaning that for every si ∼ N (0, I),
it has the same distribution as Rsi , where R is rotation matrix taken from SO(n). Sec-
ond, the orthogonalization formula of the Gram-Schmidt process, which is encoded in
Algorithm 3, reads as follows:

s′
i = si −

i−1∑
j=1

〈si , sj 〉∥∥sj

∥∥2 sj , i = 1, . . . , p,

Now if an arbitrary rotation operator R ∈ SO(n) is applied on s′
i , the resulting vector is

s′′
i = Rs′

i = Rsi −
i−1∑
j=1

〈Rsi , Rsj 〉∥∥Rsj

∥∥2 Rsj , i = 1, . . . , p. (7)

Note that it is valid to put R in the norm and the inner product (e.g.,
∥∥Rsj

∥∥) because
such matrices preserve the inner product. Finally, Rsi is identically distributed as si and
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Mirrored Orthogonal Sampling for CMA-ES

it also holds for the rest of terms in the right-hand side of Equation (7). Therefore, s′′
i is

identically distributed as s′
i and therefore it is rotation-invariant. A more rigorous proof

can be found in Eaton (1983, Proposition 7.2).

3.3 Recombination and Pairwise Selection

When weighted recombination and cumulative step size adaptation are also used in an
evolution strategy algorithm (e.g., CMA-ES), mirrored sampling causes an undesired
bias of the step size σ , where the step size is reduced in the much faster rate compared
to the original CMA-ES (Auger et al., 2011b; Brockhoff et al., 2010). This bias could result
in the premature convergence of optimization (Brockhoff et al., 2010). The bias occurs
if any mirrored pair of mutations m + σzi , m − σzi is selected together and then the
two mutations cancel each other during the recombination, which is called pairwise
cancellation here. To see its side effect, please consider a population {zi}1≤i≤λ where
zi ∼ N (0, I) and equal weights are used in recombination. Under the random selection,
the distribution of selected vectors is still normal so that the recombination 〈z〉 is still
normally distributed as follows:

〈z〉 = 1
μ

μ∑
i=1

zi:λ ∼ 1
μ
N (0, μ2I) ∼ N (0, I)

In the mirrored case, if one pair of mirrored mutations is selected, then such a pair would
disappear in the summation above. The recombined mutation of mirrored sampling is
then distributed as follows:

〈zm〉 = 1
μ

μ−2∑
i=1

zi:λ ∼ N
(

0,

(
1 − 2

μ

)2

I

)

It is now obvious to see that the variance of recombined mutation is reduced under
the random selection. The more mirrored pairs are selected, the more undesirable bias
will be generated. In addition, the cumulative step size adaptation mechanism (CSA)
updates the step size according to the exponential change of the length of the accumu-
lated vector 〈z〉, namely the accumulation of realized steps (Hansen and Ostermeier,
2001). This is the reason why the step size is quickly reduced in CMA-ES when mir-
rored sampling is naively plugged in.

To fix this undesirable effect, the pairwise selection heuristic introduced in Auger
et al. (2011b) is adopted here. Pairwise selection prevents the pairwise cancellation by
allowing only the better mutation among the mirrored pair to contribute to the weighted
recombination. The effect of combining pairwise selection and mirroring is presented
by solid curves in Figure 2a, in which no bias in step-size adaptation can be observed. In
the following sections, pairwise selection is used in the ES whenever mirrored sampling
or mirrored orthogonal sampling is used.

3.4 Application to the CMA-ES Algorithm

We apply the mirrored orthogonal sampling technique to the CMA-ES (Hansen and Os-
termeier, 2001). In addition to the recombination problem discussed in the last section,
some tuning is required to find default settings of control parameters for the new sam-
pling technique. The step size control mechanism, cumulative step-size adaptation (CSA),
is exploited in CMA-ES. In the CSA technique, the damping factor dσ controls the adap-
tation speed of the step size σ and is originally developed for i.i.d. Gaussian mutations.
However, the mutations generated by mirrored orthogonal sampling are no longer in-
dependently distributed. Therefore, the damping factor dσ needs to be optimized for
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Figure 2: (a) Plot of the number of function evaluations needed to reach the termination
criterion of function value 10−10 on the 20-D Sphere function, against the candidate dσ

value for (μ/μw, λo
m)-CMA-ES. The values shown are averaged over 64 runs. (b) The

feasible range of dσ (shown by maximum and minimum values), the mean of the feasible
range (dσ mean), and the curve fitting for the mean values over the dimensionality. The
default setting for dσ in (μ/μw, λ)-CMA-ES is also illustrated by the solid curve.

the newly proposed technique. The default setting of the damping factor in Hansen
(2006) is dσ = 1 + 2 max{0,

√
(μeff − 1)/(n + 1) − 1} + cσ . Note that μeff is defined as the

variance effective selection mass (Hansen and Ostermeier, 2001) of the recombination
weights {wi}μi=1 and computed according to μeff = (∑μ

i=1 w2
i

)−1. cσ is the cumulation
constant used for the evolution path and usually cσ � 1. For other default parameters
in CMA-ES and their explanation, please refer to Hansen (2006).

We tune the damping factor under the default λ setting, which is the rounded loga-
rithm of dimensionality. The tuning approach follows the approach proposed in Brock-
hoff et al. (2010) to choose the new dσ setting. First, every strategy parameter except dσ

is initialized by its default value. Second, multiple dσ values are evaluated according
to an experiment performed on the sphere function f (x) = ∑n

i=1 x2
i , where the perfor-

mance can be assumed to be a unimodal function of dσ , such that a unique optimum
value for dσ can be determined. An example of this second step for (μ/μw, λo

m)-CMA-
ES is shown in Figure 2a. Finally, all the tuning curves from step 2 are collected and the
feasible ranges of dσ are chosen according to three criteria (Brockhoff et al., 2010):

1. Decreasing the selected dσ from the feasible value by a factor of two leads to a
better performance than increasing it by a factor of two.

2. Decreasing the selected dσ by a factor of three never leads to an observed failure.

3. The selected dσ should never lead to a performance that is two times slower than
the optimal performance in the tuning graph.

The resulting feasible dσ ranges are labeled as “dσ max” and “dσ min” in Figure 2b. The
mean value of the feasible range for each dimension is then selected as the new dσ setting
for the mirrored orthogonal sampling. The result is shown as “dσ mean.” The modified
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Mirrored Orthogonal Sampling for CMA-ES

damping factor dσ is found by fitting the functional form a + b(
√

(μeff + c)/(n + d ) +
e) + cσ to the mean values, which results in:

dσ = 1.5 − 0.63

(√
μeff + 0.157

n + 1.65
+ 0.87

)
+ cσ . (8)

Using the same method, we also modify the damping factor for the mirrored sampling
technique. The new damping value reads:

dσ = 1 − 0.78
μeff

λ
+ cσ . (9)

4 Performance Analysis

In this section, we analyze the possible performance improvement introduced by mir-
rored orthogonal sampling. We first give the theoretical analysis for the single-parent
evolution strategy and then investigate the multiparent strategies empirically on the
sphere function.

4.1 Theoretical Aspects

The theoretical analysis is twofold. First, the progress rate analysis for (1, λ)-ES, in-
troduced in Beyer (1993), is applied to analyze mirrored sampling. In addition, such
analysis gives a straightforward explanation why mirrored orthogonal sampling im-
proves performance. There are no analytical results for mirrored orthogonal sampling
yet, while its empirical results are compared to random and mirrored sampling. Sec-
ond, the progress rate analysis is applied again to provide an analytical results about
the worst case performance of mirrored orthogonal sampling. This will (partially) ex-
plain the advantages of the new sampling method. For the analysis in the following, we
will only consider the (1, λ)-ES with isotropic mutations on the sphere function, which
is defined as:

f (x) = (x − x∗)�(x − x∗), x ∈ R
n,

which has the global minimum x∗. In addition, for the simplicity of our deviation, it is
also assumed that the population size λ is even in the following analysis. In practice,
when λ is odd, the corresponding progress rate can be bounded from below by using
λ − 1 in the analysis and also be bounded from above by using λ + 1.

Note that although some results (e.g., Figure 4b) can be equivalently obtained, us-
ing the theoretical framework of convergence rate analysis (Brockhoff et al., 2010), we did
not adopt such an analysis approach because the progress rate analysis gives more in-
sight into why the proposed sampling method outperforms its counterparts. The link
between progress rate and convergence rate is elaborated in Auger and Hansen (2011).
For the convergence rate analysis on the mirrored sampling, please see Auger et al.
(2011a,b).

4.1.1 Mirrored Sampling
We will begin with the analysis of the (1, λm)-ES in order to show the reason why it out-
performs random sampling and this analysis serves as a baseline for the comparison to
mirrored orthogonal sampling, which is investigated here by the Monte Carlo simula-
tion. The basics of the analysis are shown in Figure 3a, following the same treatment as
in Bäck (1995). Let P be the current parent which is at a distance R from the optimum O,
namely ‖PO‖ = R. The mutation distribution is depicted as the hypersphere centered
at P (of radius σ

√
n), which represents the mean length of isotropic Gaussian vectors:
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Figure 3: (a) Schematic diagram for the progress rate analysis on the sphere function.
The mutations are centered at P, which is at distance R from the optimum O. (b) In 2D,
the diagram shows the best case (P1) of progress and the worst case (P2) for mirrored
orthogonal sampling on the sphere function.

z = N (0, σ 2I). The mirrored mutation is then indicated as −z. The progress made by a
mutation z vector is R − r , where r is the new distance to the optimum O after muta-
tion. Furthermore, in the (1, λ)-ES, only the best progress among a population of mu-
tations {zi}λi=1 is selected and thus the overall progress of the (1, λ)-ES is R − r1:λ (r1:λ is
the smallest order statistic among {ri}λi=1). The progress rate is defined as the expected
progress (Beyer, 2001):

ϕ1,λ = E {R − r1:λ} .

This expectation can be calculated using the following observations: The progress of
each mutation can be measured by the projection of z onto line PO, which is denoted as
z in Figure 3a. Then the smallest order statistic r1:λ must be associated with the largest
order statistic of the projections: zλ:λ. Note that, for each mutation z, the following rela-
tion is established between R, r and z:

‖z‖2 − z2 = r2 − (R − z)2.

Using this relation, the progress rate can be expressed as:

ϕ1,λ = E

{
R −

√
(R − zλ:λ)2 + ‖zλ:λ‖

}

� E

{
R −

√
(R − zλ:λ)2 + σ 2n

}
(10a)

= RE

{
1 −

√
1 +

(
σ 2n

R2 − 2
zλ:λ

R

)}

� RE

{
1 −

(
1 + σ 2n

2R2 − zλ:λ

R

)}
, (10b)

where zλ:λ represents the mutation vector that has the largest projection onto direction
PO. Note that in the first approximation (Equation (10a)), ‖zλ:λ‖ is replaced by the mean
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Mirrored Orthogonal Sampling for CMA-ES

value of ‖z‖, namely σ
√

n and in the second approximation (Equation (10b)), the first-
order Taylor approximation is taken for the square root. In addition, the distribution of
zλ:λ can be easily obtained due to the invariance properties of isotropic Gaussian vectors:
z is normally distributed as N (0, σ 2), regardless of the actual direction of PO.

For the mirrored sampling, if zi is the projection of mutation zi onto PO, then the
projection of its mirrored mutation −zi is −zi by symmetry. Thus, the set of the pro-
jections of all the mutations of mirrored sampling can be written as {zi,−zi}1≤i≤λ/2. Let
P m

λ:λ(Z ≤ z) denote the cumulative probability distribution (CDF) of the largest order
statistic among {zi,−zi}1≤i≤λ/2. Suppose for every z ≥ 0, in order to facilitate the condi-
tion in P m

λ:λ(Z ≤ z), namely the largest order statistic is less than or equal to z, we must
have zi ≤ z,−zi ≤ z for all the zi , which indicates −z ≤ zi ≤ z for all the zi . The intuition
is that all random mutation points are required to be sampled less than or equal to z.
In addition, because mirrored mutations are generated by reversing the signs of ran-
dom mutations, every random mutation also needs to be bigger than −z; otherwise the
mirrored counterpart of an outlier would be larger than z and fails the condition. The
argument reads,

P m
λ:λ(Z ≤ z) = [Pr (−z < Z ≤ z)]λ/2

=
[
�

( z

σ

)
− �

(
− z

σ

)]λ/2

=
[
2�

( z

σ

)
− 1

]λ/2
, ∀z ≥ 0.

Note that �(·) stands for the CDF of a standard normal random variable. Then, in case
of z < 0, the cumulative probability should be always 0. The reason is that if an original
mutation is negative, then its mirrored counterpart would be positive. Therefore the
largest order statistics could not be negative ever. In total, the CDF of the largest order
statistic is summarized as:

P m
λ:λ(Z ≤ z) =

{[
2�

(
z
σ

) − 1
]λ/2 ∀z ≥ 0,

0 otherwise

and its probability density function is:

pm
λ:λ(z) =

{
λp( z

σ
)
[
2�

(
z
σ

) − 1
]λ/2−1 ∀z ≥ 0,

0 otherwise
(11)

where p(·) denotes the probability density function (PDF) of a standard normal dis-
tribution. This density can be compared to the largest order statistic among the same
projections of random samples (Beyer, 1993):

pλ:λ(z) = λp
( z

σ

)
�

( z

σ

)λ−1
.

In 5-D with λ = 10, we plot the CDF and density function of mirrored sampling and
random sampling in Figure 4a. It is clear from the figure that the distribution of the
largest projection for mirrored sampling is shifted to the right, compared to that for
the Gaussian sampling and therefore the corresponding distributions of projections is
shifted towards larger values. This advantage would affect the progress rate (as shown
in the following) and is the main reason why the mirrored sampling technique has a
better performance than the simple random sampling. Substituting density function
pm

λ:λ into Equation (10b) and using the normalized quantities as in Beyer (1993),

ϕ∗ = ϕ
n

R
, σ ∗ = σ

n

R
,
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Figure 4: (a) The CDFs (solid) and PDFs (dashed) of the largest projection (normalized)
onto PO for random, mirrored, and mirrored orthogonal sampling. The dimension n

is set to 5 and λ = 10 for all curves. 106 trials are used in the estimation for mirrored
orthogonal sampling. For the rest sampling method, the curves plot the corresponding
analytical results. (b) Progress coefficients against population size λ for random sam-
pling, mirrored sampling, and mirrored orthogonal sampling. The dimensionality n is
set to λ/2 for all curves. The curve marked by black dots is the lower bound of the
progress coefficients for mirrored orthogonal sampling.

the normalized progress rate of (1, λm)-ES can be obtained:

ϕ∗
1,λm

= n

R

(
R

∫ ∞

0

(
z

R
− σ 2n

2R2

)
pm

λ:λ(z) dz

)

= n

R

∫ ∞

0
zpm

λ:λ(z) dz − (σ ∗)2

2

= λ
n

R

∫ ∞

0
zp

( z

σ

) [
2�

( z

σ

)
− 1

]λ/2−1
dz − (σ ∗)2

2

= σ
n

R

(
λ

∫ ∞

0
z′p(z′)

[
2�

(
z′) − 1

]λ/2−1 dz′
)

− (σ ∗)2

2

= c1,λmσ ∗ − (σ ∗)2

2
. (12)

In the equation above, the integral about the normalized largest projection z′ = z/σ com-
putes its expectation and it is known as the progress coefficient from Beyer (1993). We de-
note it by c1,λm here. It can be compared to the progress coefficient of random sampling,
which reads:

c1,λ = λ

∫ ∞

−∞
zp(z)�(z)λ−1 dz.

Note that the progress rate of random sampling can be easily obtained by replacing c1,λm

in Equation (12) with c1,λ.
Numerically, we plot the progress coefficients of random sampling and mirrored

sampling against population size in Figure 4b. The mirrored sampling (the curve
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Mirrored Orthogonal Sampling for CMA-ES

marked by triangles) shows a small yet obvious advantage compared to the ran-
dom sampling for small population sizes. In larger populations, these two converg-
ing curves imply that mirrored sampling provides no speed-up to the ES algorithm.
Thus, the application of mirrored sampling should be limited to the small population
setting.

For mirrored orthogonal sampling, we would like to use the same approach as for
the mirrored sampling analysis above. However, it is hard to analytically obtain the CDF
and the density function of the largest projection onto PO of the mirrored orthogonal
sampling. Therefore, we compute its CDF and density function empirically by Monte-
Carlo simulation. For the simulation, the population size λ is set to 2N . The mirrored
orthogonal samples are projected onto PO and the largest projections are stored, from
which the CDF is estimated. The results are also summarized in Figure 4. In Figure 4a,
the CDF of mirrored orthogonal sampling (the solid curve marked by stars) is more
likely to distribute samples towards bigger values compared to the CDF of mirrored
sampling. As a consequence, in Figure 4b, the progress coefficients of mirrored orthog-
onal sampling are significantly bigger than those of mirrored sampling, even in a large
population.

4.1.2 Mirrored Orthogonal Sampling: The Worst Case Analysis
The worst case analysis of mirrored orthogonal sampling is conducted when the pop-
ulation is set to 2n. We will call such population setting as “full mutations.” Under this
condition, the progress rate is maximized (as will be explained later) and it is possi-
ble to provide analytical results. The progress under the condition λ < 2n will be also
discussed later.

In 2D with λ = 4, the worst case (together with best case) of progress for (1, λo
m) is

shown in Figure 3b. Suppose there is no step size σ (σ = 1) involved here for simplifica-
tion. In the mutations centered at P1, there is one mutation pointing to the optimum O
and therefore this mutation performs optimally. We call this mutation scenario the best
case of progress. The progress coefficient in this case is the expectation of the standard
norm mutation length. It serves as the upper bound of the progress coefficient and is
the same for random, mirrored, and mirrored orthogonal sampling.

The worst case of progress is indicated by the mutations centered at P2 in which the
angle formed by the line segment P2O and mutation si is the same as the one (π/4 as
shown in the figure) formed by P2O and sj . In this scenario, the expected projections of
si and sj are the same. It is not possible to make the expected projection of one mutation
smaller without rendering the expected projection of the other one larger. For example,
if we rotate sj a little bit clockwise, then its projection becomes smaller. However, in
the meanwhile si is also rotated and its projection gets larger. Consequently, the largest
projection of all the mutations becomes larger. Therefore, among all the possible mu-
tation scenarios, P2 gives the lower bound of the largest projection of mutations onto
P2O. Recall from Equation (10b) that the progress made by (1, λ)-ES is determined by
the largest projection. Thus, the scenario P2 is the worst case of progress.

Under the “full” mutation condition, we generalize the worst case for arbitrary di-
mensions. Let the mirrored orthogonal samples be denoted as {Oi ,−Oi}1≤i≤λ/2. The
unit vectors along the orthogonal mutations are defined as:

ui = Oi

‖Oi‖ . (13)

Combining the unit vectors for mirrored mutations, all the unit vectors are
{ui ,−ui}1≤i≤λ/2. The worst case of progress is defined by the following conditions: for all
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the unit vectors, the linear combination with equal weights (denoted as d in the follow-
ing) of λ/2 = n unit vectors points to the optimum O and also to the reverse direction
of the gradient of the sphere function, which reads:

d =
λ/2∑
k=1

akuk = −α∇f (x), α > 0, ak = ±1,

where ak is a sign operator to select among uk,−uk . Then the scalar projection of muta-
tion Oi onto d is expressed as:

projd(Oi ) = 〈Oi , d〉∥∥d
∥∥ =

∑λ/2
k=1 ak 〈Oi , uk〉∥∥∥∑λ/2

k=1 akuk

∥∥∥ =
∑λ/2

k=1 ak 〈Oi ,Ok〉 /‖Ok‖∥∥∥∑λ/2
k=1 akuk

∥∥∥ = ak‖Oi‖√
n

.

Note that we substitute the expression of ui (Equation (13)) in the derivation above. The
projections of all the mutations onto d can be summarized as:

projd =
{‖Oi‖√

n
,−‖Oi‖√

n

}λ/2

i=1
.

The largest order statistic of all the projections is the maximum of projd:

max
{
projd

} = max
1≤i≤λ/2

{‖Oi‖√
n

,−‖Oi‖√
n

}

= 1√
n

max
1≤i≤λ/2

{‖Oi‖}

= z√
n
.

We denote the maximal mutation length as z above. Note that the ‖Oi‖ are indepen-
dently distributed according to χ (n) (see Algorithm 4). Therefore, the density function
of the maximal mutation length among λ/2 mutations reads:

pλ
2 : λ

2
(z) = λ

2
pχ (z)

(
Fχ (z)

) λ
2 −1

,

where pχ (·), Fχ (·) denote the density and CDF of the χ (n) distribution, respectively. The
worst case progress coefficient of mirrored orthogonal sampling, which is the expecta-
tion of z/

√
n, is denoted as ĉ1,λo

m
and derived as follows:

ĉ1,λo
m

=
∫ ∞

0

z√
n
pλ

2 : λ
2
(z) dz

= λ

2
√

n

∫ ∞

0
zpχ (z)

(
Fχ (z)

) λ
2 −1 dz

= √
n

∫ ∞

0
zpχ (z)

(
Fχ (z)

)n−1 dz. (14)

The last equation results from the fact that we picked the special population size λ = 2n

from the previous analysis setting. Equation (14) is numerically evaluated and plotted
in Figure 4b. The curve for the worst case is above 1 and roughly stays constant when
λ increases. It provides a non-zero lower bound of the progress coefficient of mirrored
orthogonal sampling with “full mutations,” which indicates no matter in what scenario,
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Mirrored Orthogonal Sampling for CMA-ES

Figure 5: The comparison of empirical convergence rates on the sphere function. All
the results are estimated over 200 runs. The suggested λ setting 4 + 	3 ln N
 (Hansen,
2006) is used for all the CMA-ES variants. (a) Plot of the average distance (over 200
runs) to the global optimum against the number of function evaluations for four ES
algorithms: (μ/μw, λo

m)-CMA-ES with tuned dσ and optimal dσ , (μ/μw, λm)-CMA-ES,
standard (μ/μw, λ)-CMA-ES and (1 + 1)-ES in dimension 20. (b) Plot of convergence
rate × dimensionality against the dimensionality for different algorithms on the sphere
function, using 1500 function evaluation.

the mirrored orthogonal sampling with “full mutations” is going to guarantee positive
progress on the sphere function. To compare, for random sampling, the lower bound of
the progress coefficient is zero because it is possible to have all the mutations generated
as in Figure 1, where no mutation makes progress. For mirrored sampling, the lower
bound of the progress coefficient is also zero because it is possible that all the mutations
are generated in a tangent space of the local gradient, in which all the vectors are orthog-
onal to the gradient. Thus, the non-zero lower bound of mirrored orthogonal sampling
with “full mutations” is its main advantage over the random and mirrored sampling.

In the case that mirrored orthogonal sampling does not use “full mutations,”
namely λ < 2n, the progress rate would be reduced in contrast to the “full mutations”
case. This is because it can now happen that some subspace could not be covered when
λ < 2n. Therefore, it is possible that the subspace in which the progress can be made is
simply unexplored.

4.2 Empirical Aspects

For the multiparental variants of ES, we only consider their empirical convergence rates
here. Similar to the convergence rate estimation in Loshchilov et al. (2011), the effect
of the mirrored orthogonal sampling technique on the sphere function is investigated
empirically by incorporating it into the well-known CMA-ES algorithm.

On the 20-D sphere function, the convergence rates of the (μ/μw, λo
m)-CMA-ES

and other comparable ES variants are illustrated in Figure 5a. The empirical conver-
gence rate is estimated as the average slope of convergence curve over 200 runs. For
all the CMA-ES variants tested here, the default settings of population size are ap-
plied (Hansen, 2006): λ = 4 + 	3 ln n
, μ = 	λ/2
. The legend “(1 + 1)-ES” represents
the (1 + 1)-ES with 1/5 success rule step size control while the “(1 + 1)-ES optimal”
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is for the (1 + 1)-ES with scale-invariant step size setting σ = 1.2
n

‖x(k)‖, which proves
to be the optimal step size setting on the sphere function (Loshchilov et al., 2011). The
pairwise selection is always used if the mirroring operation is present in the sampling
procedure. The mirrored sampling CMA-ES with modified dσ (Equation (9)) is denoted
as “(μ/μw, λm)-CMA-ES”. The curve labeled by “(μ/μw, λo

m)-CMA-ES” stands for the
mirrored orthogonal CMA-ES with modified dσ (Equation (8)). In addition, “optimal
dσ ” represents the mirrored orthogonal CMA-ES using the optimal dσ tuning on the
sphere function, corresponding to the minimal value of the tuning curve in Figure 2a.
Due to the empirical results, the convergence of (μ/μw, λo

m)-CMA-ES (marked by dia-
mond) is slower but close to that of the (1 + 1)-ES (marked by upside-down triangle)
while the (μ/μw, λo

m)-CMA-ES using the optimal parameter settings gradually catches
the convergence rates of the optimal (1 + 1)-ES in high dimensions.

The relation between the empirical convergence rate and the dimensionality is
shown in Figure 5b. The algorithms tested here are the same as Figure 5a. It is obvi-
ous that there is a leap of convergence rates between the CMA-ES and its mirrored
orthogonal competitor. The advantages of the mirrored orthogonal CMA-ES over the
mirrored CMA-ES are significant and preserved even for large dimensions. The upper
limit of the (μ/μw, λo

m)-CMA-ES on the sphere function is shown by the convergence
rates achieved under the optimal dσ tuning, which is even better than (1 + 1)-ES for al-
most all the dimensions. However, the optimal dσ setting on the sphere function turned
out to be not robust when considering other fitness functions and therefore is not used.

5 Experimental Validation

The mirrored orthogonal version of CMA-ES with pairwise selection has been tested on
the noiseless BBOB (Hansen et al., 2010). By using the automatic comparison procedures
provided in this benchmark, the BBOB results of (μ/μw, λo

m)-CMA-ES are compared to
those of (μ/μw, λm)-CMA-ES and (μ/μw, λ)-CMA-ES.

5.1 Experimental Settings

The three algorithms, (μ/μw, λo
m)-CMA-ES, (μ/μw, λm)-CMA-ES, and (μ/μw, λ)-CMA-

ES are benchmarked on BBOB-20123 and their results are compared and processed by
the postprocessing procedure of BBOB.

The BBOB parameter settings of the experiment are the same for all the tested ES
variants. The initial global step size σ is set to 1. The maximum number of function eval-
uations is set to 104 × n. The initial solution (initial parent) is a uniformly sampled in the
hyper-box [−4, 4]n. The dimensions tested in the experiment are n ∈ {2, 3, 5, 10, 20, 40}.

In addition, two independent but similar experiments are conducted. In the first ex-
periment, the default population size setting, rounded logarithm of dimensionality, is
used to configure all three algorithms. The result of this experiment is denoted as small
population in the following. In this experiment, the strategy parameters are the same
except for the dσ setting. The default setting dσ = 1 + 2 max{0,

√
(μw − 1)/(n + 1)} + cσ

is used in the standard CMA-ES while the modified dσ , as stated in Equations (8) and
(9), are used for mirrored and mirrored orthogonal sampling, respectively. Another ex-
periment exploits a relatively large population size, namely 2N , the result of which is
denoted as large population. In this experiment, the strategy parameters used are ex-
actly the same for the three ES variants. The modified dσ is not used because it is tuned
under the default population setting instead of the large population setting.

3The exact version is v11.06.
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Mirrored Orthogonal Sampling for CMA-ES

Figure 6: Left column: n = 5. Right column: n = 20. For the small population, subfigures
(a) and (b) show the ECDFs of run lengths averaged over all the test functions (f 1-24) for
(μ/μw, λo

m)-CMA-ES (solid lines) and (μ/μw, λm)-CMA-ES (dashed lines) while subfig-
ures (c) and (d) compare that for (μ/μw, λo

m)-CMA-ES (solid lines) and (μ/μw, λ)-CMA-
ES (dashed lines). ECDF of run lengths (the number of function evaluations divided by
dimension) for each algorithm needed to reach a target value are counted for four target
precisions: fopt + �f with �f = 10k , where k ∈ {1,−1,−4,−8} is given by the value in
the legend. The vertical black line indicates the maximum normalized run length. Light
beige lines show the ECDF of run lengths for target value �f = 10−8 of all algorithms
benchmarked during BBOB-2009.

5.2 Results and Discussion

The BBOB noiseless testbed (Hansen et al., 2009) contains 24 test functions which are
classified into several groups as separable, ill-conditioned, or multimodal functions.
Due to space limitations, only the comparisons of the aggregated empirical cumulative
distributions (ECDFs) of run length over all the test functions are presented here. The
ECDFs of run length estimates the cumulative distribution of the function evaluations
consumed in ESs, with respect to a given precision target.

Small population. The results under the default small population setting are
shown in Figure 6. The comparison between the mirrored orthogonal sampling and the
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Figure 7: Left: n = 5. Right: n = 20. For the large population, the empirical cumulative
distributions (ECDF) of run lengths (the number of function evaluations divided by di-
mension) for (μ/μw, λo

m)-CMA-ES (solid lines) and (μ/μw, λm)-CMA-ES (dashed lines)
needed to reach a target value. All the figure settings are the same as in Figure 6.

mirrored sampling is shown in Figures 6a and 6b. Four different target precision val-
ues (10k with k ∈ {1,−1,−4,−8}) are presented. On the left side, the comparisons
under 5-D indicate a big performance improvement by the mirrored orthogonal sam-
pling, which holds for all the target precisions. On the right side, the situation in 20-D
still shows small advantages of the mirrored orthogonal sampling technique over the
other algorithms. As for comparison between the mirrored orthogonal sampling and the
standard CMA-ES, Figures 6c and 6d give the results. The comparison here shows ap-
proximately the same results as in Figures 6a and 6b. The improvement introduced by
mirrored orthogonal sampling is decreasing when the dimensionality increases.

Large population. For the cases where the population size is linearly related to the
dimensionality, we are mainly interested in validating the theoretical performance ad-
vantage of the mirrored orthogonal sampling (Sections 4.1.1 and 4.1.2). Thus, the re-
sults of the original (μ/μw, λ)-CMA-ES is not shown here. The results are illustrated
in Figure 7. From the comparisons between the ECDFs of 5-D (left half) to that of 20-D
(right half), it is obvious that the amount of the improvement is still significant when
the dimensionality goes large. The more detailed results in 5-D, which are shown in
Figure 8, indicate that the mirrored orthogonal sampling technique outperforms its
mirrored counterpart on almost all the test functions: highly-conditioned functions f 10-
f 14, multimodal functions with adequate global structure f 15-f 19, separable functions
f 1-f 5 and multimodal functions with weak global structure f 20-f 24. The detailed re-
sults in 10-D, as summarized in Figure 9, shows roughly the same comparisons as that
in 5-D, except that it is hard to judge which algorithm is better from the ECDFs of the
multimodal functions with adequate global structure f 15–f 19 (Figure 9c).

The better experimental results for a large population suggest that the newly pro-
posed mirrored orthogonal sampling technique would be most suitable in the case
where the population size is about two times the dimensionality.

6 Discussion and Conclusion

In this article, we propose a new mutation operator, the mirrored orthogonal sampling
to generate evenly distributed samples for evolution strategies. Several approaches,
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Mirrored Orthogonal Sampling for CMA-ES

Figure 8: The figures show the details of Figure 7, left: in 5-D, the ECDFs of run lengths
for (μ/μw, λo

m)-CMA-ES (solid lines) and (μ/μw, λm)-CMA-ES (dashed lines) are shown
for each function class: (a) functions with high conditioning, (b) functions with low
or moderate conditioning, (c) multimodal functions with adequate global structure,
(d) separable functions, and (e) multimodal functions with weak global structure. The
figure settings are the same as Figure 6.
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Figure 9: The figures show the details of Figure 7, right: in 20-D, the ECDFs of run
lengths for (μ/μw, λo

m)-CMA-ES (solid lines) and (μ/μw, λm)-CMA-ES (dashed lines)
are shown for each function class: (a) functions with high conditioning, (b) functions
with low or moderate conditioning, (c) multimodal functions with adequate global
structure, (d) separable functions, and (e) multimodal functions with weak global struc-
ture. The figure settings are the same as Figure 6.
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including the mirrored sampling, to achieve derandomized sampling are briefly intro-
duced. By the theoretical analysis, we have shown that the performance improvement
given by the mirrored sampling vanishes in a large population setting by theoretical
analysis. As a remedy to this limitation, random orthogonal samples are introduced as
a possible improvement of mirrored sampling. Pairwise selection is also used to avoid
the undesired bias caused by the mirroring operation. The resulting algorithm, called
the mirrored orthogonal sampling, is applied to the CMA-ES after some parameter tun-
ing. The performance of random, mirrored, and mirrored orthogonal sampling are com-
pared both analytically and empirically. On the sphere function, the (1, λ)-ES with the
mirrored orthogonal sampling is just a little bit slower than the (1 + 1)-ES with 1/5 rule,
as shown in the empirical analysis. Finally, we tested the (μ/μw, λo

m)-CMA-ES on the
BBOB benchmark regarding its performance for small population size and for large pop-
ulation size. The results reveal the advantages of the mirrored orthogonal sampling over
mirrored sampling and over the standard (μ/μw, λ)-CMA-ES. In particular on highly
conditioned and multimodal functions the competitiveness of the new mirrored orthog-
onal sampling becomes significant. As discussed in the theoretical analysis (Section 4.1),
the proposed method is well suited for the problem where the dimensionality is larger
than or similar to half of the population size. However, in very high dimensions, the
advantage of the new method gradually diminishes.

Some interesting future directions can be identified, based on the suggested new
method of generating mutations. First, the pairwise selection method is chosen here for
avoiding the undesired bias. A more advanced idea introduced in Auger et al. (2011b),
selective mirroring, is also suitable option for being using in mirrored orthogonal sam-
pling. More work is needed to identify the best possible selection method for mirrored
orthogonal sampling.

Second, some more parameter tuning should be done. The learning rates c1, cμ for
rank-one and rank-μ update of the covariance matrix remain unchanged from their sug-
gested settings. It is important to adapt those parameters to the new sampling technique
to obtain the best possible speed-up of the algorithm.

Third, concerning the progress rate analysis (Section 4.1), deriving the distribu-
tion function of the uniform random orthogonal vectors still remains an open problem.
The exact progress rate formula for mirrored orthogonal sampling is unknown. This is
planned as another part of the further work. Finally, it would be interesting to apply
the mirrored orthogonal sampling to more recent CMA-ES variants such as the active
CMA-ES.
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