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Hierarchical Prediction of Registration

Misalignment using a Convolutional LSTM:

Application to Chest CT Scans

This chapter was adapted from:

H Sokooti, S Yousefi, M Elmahdy, BP Lelieveldt, and M Staring. Hierarchical Predic-
tion of Registration Misalignment using a Convolutional LSTM: Application to
Chest CT Scans, IEEE Access, 2021.
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Abstract

In this paper we propose a supervised method to predict registration misalignment
using convolutional neural networks (CNNs). This task is casted to a classification
problem with multiple classes of misalignment: “correct” 0-3 mm, “poor” 3-6 mm
and “wrong” over 6 mm. Rather than a direct prediction, we propose a hierarchical
approach, where the prediction is gradually refined from coarse to fine. Our solution
is based on a convolutional Long Short-Term Memory (LSTM), using hierarchical
misalignment predictions on three resolutions of the image pair, leveraging the intrinsic
strengths of an LSTM for this problem. The convolutional LSTM is trained on a set
of artificially generated image pairs obtained from artificial displacement vector
fields (DVFs). Results on chest CT scans show that incorporating multi-resolution
information, and the hierarchical use via an LSTM for this, leads to overall better
F1 scores, with fewer misclassifications in a well-tuned registration setup. The final
system yields an accuracy of 87.1%, and an average F1 score of 66.4% aggregated in
two independent chest CT scan studies.
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5.1 Introduction

Most image registration techniques do not provide insight in the local misalignment
after registration. It is common to manually inspect the registration quality afterwards,
which is time-consuming and prone to inter-observer errors as well as human fatigue.
A fast automatic dense map indicating the misalignment locally has quite a few
applications in medical imaging. This dense misalignment map can be utilized
in radiation dosimetry [108], image-guided interventions [31], for improving the
registration quality automatically [32] or semi-automatically [84]. Moreover, a fast
automatic prediction of registration misalignment could substantially reduce the
manual assessment time.

Several intensity-based and registration-based features were proposed as a surro-
gate for registration misalignment. Park et al. [37] proposed normalized local mutual
information (NMI) and Rohde et al. [38] utilized the local gradient of the NMI as
a surrogate for misregistration. Schlachter et al. [85] reported that the histogram
intersection, which is a distance measure between the histogram of intensities of
a pair of images [109], performs well as a visual assistant to a human expert in
detecting local registration quality. Although the mentioned metrics can represent
the registration error, it has been shown by Rohlfing [110] that image similarities
cannot necessarily distinguish accurate from inaccurate registrations. Hub et al. [35]
proposed performing multiple registrations with perturbations in the B-spline grid
[6] as a measure of registration uncertainty. Kybic [94] proposed bootstrapping
over pixels in the cost functions. Other approaches like block matching [111] and
polynomial chaos expansions [112] are utilized in the context of detecting registration
misalignment. However, these algorithms are very time-consuming.

In probabilistic image registration, an uncertainty map can be provided after the
registration [34, 96, 106]. This uncertainty map commonly is counted as a surrogate
for image registration error. However, Luo et al. [113] reported that the uncertainty
derived from probabilistic image registrations might not necessarily correlate with the
registration error.

Several machine learning approaches have been used in assessing the registration
quality. Muenzing et al. [39] cast the problem to a classification task. They extracted
several intensity-based features around a number of distinctive landmarks in chest CT
images. Sokooti et al. [55, 33] extracted both intensity and registration-based features
around a dilated region of landmarks and trained a regression forest to predict the
registration error. Drawbacks of these methods are that training is based on a limited
number of manual landmarks, and/or can only be applied to nonrigid registration.

Deep learning-based methods have been presented recently and achieved promising
results for medical image registration [17, 23, 114]. Predicting the registration error
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with a CNN-based approach was recently proposed by Eppenhof et al. [40]. They
used a single scale method and predicted registration misalignment smaller than
4 mm. Senneville et al. [115] proposed a deep learning method to classify brain MR
registrations as usable or non-usable. This method cannot predict misalignment locally,
for nonrigid image registration.

Hierarchical approaches have been used in many tasks in the field of image
classification. Salakhutdinov et al. [116] proposed a hierarchical classification model,
in which objects with fewer occurrences can borrow statistical strength from related
objects that have many training examples. Ristin et al. [117] reported that taking into
account the hierarchical relations between categories and subcategories can improve
the performance of classification. Such an approach has also been used in recent deep
learning methods. Redmon et al. [118] in their proposed method for object detection,
YOLO9000, predict labels in a hierarchical approach using conditional probability.
Chen et al. [119] predict abnormality labels in chest X-ray images using a similar
hierarchical approach with conditional probability. They added another stage with
unconditional probabilities and reported better performance in comparison with only a
single stage with conditional probability. Taherkhani et al. [120] reported that utilizing
coarse images can improve weakly supervised fine image classification performance.
Guo et al. [121] reported that utilizing a convolutional LSTM [122] and predicting the
labels from coarse to fine, can improve the accuracy of the classification of both coarse
and fine labels. In their method, the CNN and LSTM extract discriminative features and
jointly optimize the fine and coarse labels classification. A similar hierarchical LSTM
approach has been utilized in music genre classification [123]. In the aforementioned
methods, the hierarchical approach is only applied on the network outputs (coarse
and fine labels), while the inputs are kept similar in all steps of the hierarchy.

In this work, inspired by the hierarchical classification idea of [121], we propose
a hierarchical convolutional LSTM approach to densely predict the registration mis-
alignment. Moreover, we incorporate multi-resolution information for the inputs
as well as the outputs. This way, the LSTM takes input images from coarse to fine
resolution and progressively predicts output labels from coarse to fine. We propose
to use a pre-trained registration network to encode the input image pair in a latent
space, and utilize an LSTM decoder to predict the final labels from this latent space.
We trained our deep learning model on image pairs artificially generated from real
data, as a data augmentation step. In this way, in contrast to [39] and [33], we have
access to many training samples instead of a small number of manually annotated
landmarks. Different from earlier deep learning methods, the proposed method can
be used to predict the registration error for any registration paradigm, including
rigid and nonrigid registration. Different from [40], the proposed method is capable
of detecting relatively large registration misalignments. The inference time of the
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Figure 5.1: Block diagram of the proposed system. In the encoder, a pair of images
is given as the input. Three RegNet architectures [18] process the input images over
three resolutions (↓4, ↓2, 1) and generate a latent representation (the encoded feature
maps L i ) for each resolution. All RegNet blocks are architecturally identical, but are
initialized with weights from pre-trained networks on different resolutions. In the
LSTM decoder, the latent representations L i are decoded to labels corresponding to
the local misalignment class d .

proposed method is approximately 2.8 seconds on a 3D patch of size 205×205×205,
which is substantially faster than methods involving multiple registrations like [94, 35,
33].

In Section 5.2, we introduce the network architectures (5.2.1) and explain the
training data generation process (5.2.2). In Section 5.3, we describe the data sets used
in this study (5.3.1), the detailed setup of the experiments (5.3.2), and the evaluation
measures (5.3.3). The tuning of hyper-parameters (5.3.4) and the results 5.3.5, 5.3.6)
are reported afterwards. Finally, the Discussion (Section 5.4) and Conclusion (Section
5.5) are presented.

5.2 Methods

A general block diagram of the proposed method is shown in Fig. 5.1. The input of
the network is a pair of images consisting of a fixed image IF and a deformed moving

67



image ID, resulting from an arbitrary registration method. The input image pair is then
downsampled and encoded by a deep learning registration network at three resolutions.
The latent representations L i are subsequently fed to a decoder (an LSTM), where
the decoder predicts misregistration labels d for each voxel, corresponding to the local
misalignment. The LSTM not only considers the encodings at the three resolutions,
but also considers these in a coarse-to-fine, hierarchical manner.

5.2.1 Network architectures

5.2.1.1 Encoder

In the encoder, an image pair (IF, ID) is encoded to create a latent representation of the
input pair and their spatial relation. Such an encoder may be trained from scratch, or a
pre-trained architecture can be chosen. Popular examples of the latter is to use a VGG
or a ResNet network trained on large-scale natural images [124, 125], sometimes also
used to compute a perceptual loss in a downstream task [126]. A downside of such an
approach is that each of the input images is encoded separately, and subsequently the
spatial relation between the input images is not represented. In addition, as reported
by Raghu et al. [127], for medical imaging tasks a network trained on similar data
is favored over a network trained on natural images. Instead, we therefore propose
to encode the input pair by a pre-trained medical image registration network, thus
allowing the direct encoding of a pair of images, while also representing the spatial
relation between them.

Any registration network from the literature can be used here, and we opt for the
RegNet architecture [18, 17], which we previously proposed for the registration of
chest CT scans. Since this network achieved promising results, it is potentially a good
candidate for the task of predicting registration misalignment as well. The RegNet
architecture is given in Fig. 5.2. This design is identical to the U-Net-advanced (Uadv)
design proposed in [18]. The last three layers from the original design are excluded
here, and the high dimensional feature maps from the now last layer are used as a
latent representation of the input pair, and thus as input for the decoder. As illustrated
in Fig. 5.1, we utilize three separate encoders, each receives an input image pair at a
different resolution, using a down-sampling factor of four (↓4), two (↓2) and 1 (i.e.
the original resolution). This way latent representations are built at three different
scales.

The RegNet architecture is a patch-based design where the size of the inputs and
output are 101×101×101 and 25×25×25, respectively. All convolutional layers use
batch normalization [70] and ReLu activation [71], except for the trilinear upsampling
layer, in which a constant trilinear kernel is used. The total number of parameters in
this design is 737,430.

The weights of the three encoders are initialized with the pre-trained RegNeti
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Figure 5.2: The RegNet architecture used for encoding the input image pair. This
architecture is identical to the U-Net-advanced (Uadv) design proposed in [18], with
the last three layers excluded. The number of feature maps and the spatial size are
shown on top and bottom of each layer, respectively.

networks (see Fig. 5.1), that were previously trained for image registration [18].
Below, we report experiments both with freezing these weights and with keeping them
trainable. When keeping them trainable, all layers are kept trainable, as recommended
by Tajbakhsh et al. [128].

5.2.1.2 Decoder

In the decoder, the latent representations at each of the three resolutions L i are
considered to predict three output labels corresponding to registration misalignment:
correct [0,3) mm, poor [3,6) mm and wrong [6, ∞) mm [33]. A straightforward
choice for the decoder is to concatenate the latent feature maps and feed them to a
convolutional neural network to predict the final labels. This approach is illustrated in
Fig. 5.3a and is named multi-scale CNN. Instead, we propose a hierarchical approach
using convolutional LSTM (Long Short-Term Memory) layers similar to [121] as they
reported that predicting the labels from coarse to fine can improve the overall accuracy
of the classification of fine labels in natural images. The coarse labels usually share
a set of global features and for the fine labels more distinctive local properties are
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(a) Multi-scale CNN decoder

d ≥ 6 d < 6 d ≥ 6 d < 33 ≤ d < 6 d ≥ 6 d < 13 ≤ d < 6 1 ≤ d < 3

step 1 step 2 step 3

ℒ4 ℒ2 ℒ1

33 conv concatenationConv LSTM

64×253

32×253

N×253

(b) Hierarchical LSTM decoder

Figure 5.3: The decoder. The latent representations L i of the three resolutions ↓4,
↓2 and 1 are merged and the final output predicts three misalignment labels: correct
[0,3) mm, poor [3,6) mm and wrong [6, ∞) mm. In the CNN decoder (a), merging is
done using concatenation. In the LSTM decoder (b), the latent representations L i are
given in sequence and the misalignment labels are gradually refined in a hierarchical
manner. The labels inside the shaded boxes in the top-right of the figure represent the
auxiliary labels.

extracted.

The LSTM unit was first proposed for machine translation where the input, output,
and hidden states are all modeled as temporal sequences using fully connected units
[129]. As this approach does not capture the spatial relations in the data, Shi et al.
[122] proposed a convolutional LSTM unit, where the fully connected (FC) layers
are replaced by convolutional layers. This way the unit is capable of capturing and
encoding spatio-temporal information for visual series. We can imagine inputs and
state as vectors standing on a spatial grid. The future state of a cell in the grid is
calculated by the inputs and past states of its neighbors.

In the proposed LSTM decoder (Fig. 5.3b), rather than supplying the three latent
representations L i all at once, they are provided in sequence. Starting with L 4, a
coarse prediction of the registration error is first made, predicting only two labels:
‘good‘ registration with an error in the range [0, θ1) mm, and ‘bad‘ registration with
an error higher than that i.e. [θ1, ∞) mm. In the experiments for example we have
used θ1 = 6 mm. In the next time step of the convolutional LSTM, the L 2 features
are additionally considered, combining them with the hidden state of the previous
time step. Now the output predictions are refined into three classes [0, θ2) mm,
[θ2, θ1) mm and [θ1, ∞) mm. We keep all the output probabilities unconditional
similar to [121]. In the last time step, the latent representation L 1 is used and

70



C
H

A
P

T
E

R
5

R
E

G
IS

T
R

AT
IO

N
E

R
R

O
R

LS
T

M

combined with the hidden state, further refining the output prediction with splitting
the previous smallest class to [0, θ3) mm and [θ3, θ2) mm. This way the predictions
are built up in a hierarchical manner, step-by-step incorporating the multi-resolution
embeddings of the input pair and step-by-step refining the registration error prediction.

In the final convolutional layers of both decoder designs, the softmax activation is
used. For other convolutional layers in the CNN-based decoder, batch normalization
and ReLu activation are utilized. In the LSTM design, cell outputs, hidden states, and
gates (input, forget, output) have similar settings as in [122]. An additional output is
allocated for each coarse label. For instance, in Fig. 5.3b, six outputs are available,
four of them for fine labels and two for coarse labels. We perform experiments for
various values of θi , where i ∈ {1,2,3} and θ1 ≥ θ2 ≥ θ3.

5.2.2 Training data generation

In order to train the networks, we propose to artificially generate image pairs from
the available real data. The main advantage of artificial generation is that numerous
number of training samples can be obtained in an inexpensive way. Moreover, a dense
ground truth is made, which is not achievable with other forms of ground truth such
as manual landmarks or segmentation maps.

We use a similar approach as in [18] to artificially generate the DVFs and deformed
image. Four types of artificial deformation are applied:

single frequency: This type of DVF is generated by perturbing B-spline grids. Since
the grid knots are uniformly spaced, the generated DVF has only one random
spatial frequency.

mixed frequency: A combination of the single frequency DVF filtered by a Gaussian
kernel with a smaller sigma.

respiratory motion: Simulating the respiratory motion by expansion of the chest in
the transversal plane, transition of the diaphragm in craniocaudal direction [35].
Finally, a random “single frequency” deformation is added.

identity transform: This type represents no misalignment between the images.

After creating the deformed images with the generated DVFs, to make the deformed
images more realistic, several intensity augmentations are performed:

Gaussian noise: Gaussian noise with a standard deviation of σN = 5 is added to the
deformed image.

Sponge model: Multiplying the intensity of the deformed moving image by the
inverse of the determinant of the Jacobian of the transformation. This is an
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approximation based on the theory of mass preservation in the lung during
breathing [73].

By applying the proposed artificial DVF generations, many image pairs can be
generated for each image, by varying the hyper-parameters corresponding to each
category.

5.3 Experiments and Results

5.3.1 Data

Experiments are performed using three chest CT studies: The DIR-Lab-COPDgene
[75], the DIR-Lab-4DCT [74] and the SPREAD [47] studies.

In the DIR-Lab-COPDgene study, ten cases are available in inhale and exhale
phases. The average image size and the average voxel size are 512×512×120 and
0.64×0.64×2.50 mm, respectively. 300 corresponding landmarks are manually annotated
in each case.

In the DIR-Lab-4DCT study, ten cases with varying respiratory phases are available.
We selected the maximum inhalation and maximum exhalation phases, as more manual
landmarks are available in these phases (300 landmarks). The size of the images is
approximately 256×256×103 with an average voxel size of 1.10×1.10×2.50 mm.

In the SPREAD study, 21 cases are available. Each case consists of a baseline and a
follow-up image, in which the follow-up is taken after about 30 months. Both baseline
and follow-up are acquired in the maximum inhale phase. The size of the images is
about 446×315×129 with a mean voxel size of 0.78×0.78×2.50 mm. About 100 well-
distributed corresponding landmarks were previously selected [73] semi-automatically
on distinctive locations [48]. Two cases (12 and 19) are excluded because of the high
uncertainty in the landmark annotations [73].

5.3.2 Experimental setup

5.3.2.1 Training data

In the SPREAD study, 10 , 1, and 8 cases are used for the training, validation, and test
sets, respectively. The DIR-Lab-COPD study is used for training and validation only,
where 9 cases are used for training and the remaining case for validation. The entire
DIR-Lab-4DCT database (10 cases) is used as an independent test set. The validation
set is mainly used for tuning the hyper-parameters and selecting the best approach.
Since we initialized the weights of RegNet from the study of [18], we kept the training,
validation, and test sets identical to that study, to avoid data leakage.

To generate training pairs, we use the artificial generations introduced in 5.2.2.
The maximum magnitude of the DVF in each axis is set to 10 mm, so the maximum
vector magnitude is about 17 mm. For each single image, 28 artificial DVFs and
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deformed images are generated by assigning random values to the variables of the
single frequency, the mixed frequency and the respiratory motion deformations. Thus,
in the training phase, a total number of 1064 artificially generated image pairs are
used. All images are resampled to an isotropic voxel size of 1.0×1.0×1.0 mm.

In the training phase, the patches are balanced based on the magnitude of the
artificial DVFs. The probabilities of selecting patches in the range [0, 3), [3, 6)
and 6, ∞) mm are 60%, 20% and 20%, respectively. This balancing is performed to
make the training set more similar to the real world scenarios as the distribution of
landmarks in the first range is usually higher.

5.3.2.2 Real image pairs

In this experiment, we estimate the registration error after registration in cases
from the test set and compare it with the ground truth landmarks. Both fixed and
moving images are taken from the same patient at different time points. In order to
create a generic evaluation study, we collect samples by performing affine and four
various conventional nonrigid registrations using 20, 100, 500, and 2000 iterations
corresponding to overall poor registration quality to overall high quality registration.
The common registration settings are: metric: mutual information, optimizer: adaptive
stochastic gradient descent, transform: B-spline ([6]), number of resolutions: 3. After
performing registration on the original fixed and moving images, the fixed and the
deformed moving image after the registration are given as inputs to the proposed
misalignment estimation method.

We define the target registration error (TRE) as the Euclidean distance after
registration between the corresponding i th landmarks:

TREi = ‖x i
F −x i

D‖2, (5.1)

where xF and xD are the corresponding landmark locations on the fixed and deformed
moving images, respectively. A misalignment label is then assigned to each landmark,
based on the magnitude of the TRE. The misalignment labels are defined based on the
TRE value.

5.3.2.3 Network optimization

Optimizing the neural networks is done by the Adam optimizer [130] with a constant
learning rate of 0.001. A stochastic mini-batch method is used with a batch size of
10. The cross-entropy loss is used for all experiments. In the LSTM design, the cross-
entropy loss is applied to unconditional probabilities for all steps similar to [121]. The
loss function is defined as follows:

loss =− 1

N

N∑
i=1

( S∑
s=1

∑
c∈C s

1{xs
i = c} log pc

)
, (5.2)
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where N is the total number of voxels in a mini-batch, S denotes the number of steps,
C s represents the classes at step s, and pc is the probability of class c in the output.
The training is performed for 30 epochs by an NVidia RTX6000 with 24GB memory.

5.3.2.4 Software

The convolutional neural networks are implemented in Tensorflow [76], and image
handling and artificial training data generation is implemented with SimpleITK [51].
elastix [52] is used to perform the conventional image registrations.

5.3.2.5 Additional methods

For further comparisons, two additional CNN methods are added: single-scale CNN
and RegNet-t. In the single-scale CNN, only the encoded feature maps of the original
resolution L 1 is used. The weights of the encoder are kept trainable similar to the
multi-scale CNN. In the RegNet-t experiment, first a three-resolution registration is
performed by RegNet over the input pair [18]. The registration is performed over
scales four, two and one in sequence, in which the input of each resolution is the
fixed and deformed moving image of the previous resolution. Then, the magnitude
of the predicted displacement vector field (DVF) is calculated and thresholded in the
following ranges: [0,3), [3,6) and [6, ∞) mm. Finally, the labels “correct”, “poor” and
“wrong” are assigned to them, respectively.

In addition, the proposed multi-stage hierarchical LSTM design is compared to
a conventional learning-based method using random forests (RF), published earlier
[33]. The random forests were trained on several hand-crafted intensity-based and
registration-based features extracted from landmark neighborhoods. The output of the
random forests predicted the registration error in mm. Three classes were generated
by quantizing the regression results within the ranges [0,3), [3,6), and [6, ∞) mm,
similar to the current study.

5.3.3 Evaluation measures

All evaluations are computed only from the landmark locations to maximize the quality
of the ground truth. The misalignment labels are defined as correct, poor and wrong,
when the TRE is in range [0,3), [3,6) and [6, ∞) mm, respectively, similar to [33].
We report the following statistics: overall accuracy, F1 score for each label separately,
the average F1 of the separate F1 scores, the number of misclassifications between the
wrong and the correct label (two categories apart called cw misclassification), and
finally Cohen’s kappa coefficient (κ) of the confusion matrix. The accuracy may be
biased to the labels with a higher number of samples, whereas the F1 and κ coefficient
are more robust for imbalanced distributions.
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Table 5.1: Landmark-based results on the training and validation set for tuning hyper-
parameters. We report the mean values over all five registration settings: affine and
B-spline registration after affine with 20, 100, 500, and 2000 iterations. The sub-
indices c, p, and w correspond to the correct [0,3), poor [3,6), and wrong [6, ∞) mm
classes. The best method is shown in bold and the second best method is shown in
green. Total number of landmarks for all five registrations in SPREAD (cases 1 to 11)
and DIR-Lab COPDgene studies are 5455 and 15000, respectively

SPREAD (case 1 to 11) DIR-Lab COPDgene (case 1 to 10)

encoder decoder F1c F1p F1w F1 Acc κ cw misclass F1c F1p F1w F1 Acc κ cw misclass

frozen multi-scale CNN 85.8 52.5 83.5 73.9 78.1 0.58 39 77.6 52.5 85.8 72.0 77.0 0.60 387
trainable multi-scale CNN 90.0 62.5 82.3 78.3 83.1 0.66 32 72.2 61.4 85.1 72.9 75.8 0.60 209
frozen LSTM 6-3-1 92.4 54.9 83.3 76.9 85.5 0.68 52 76.9 38.5 86.9 67.4 76.2 0.59 391
trainable LSTM 6-3-1 93.0 63.6 82.3 79.6 86.3 0.71 25 74.6 59.4 85.6 73.2 76.1 0.61 148

trainable LSTM 12-6-3 83.0 54.2 84.5 73.9 75.6 0.56 15 56.7 56.3 84.6 65.8 71.9 0.53 368
trainable LSTM 6-3-3 88.7 58.9 83.6 77.1 81.5 0.64 28 60.6 56.4 84.2 67.1 71.9 0.53 253

5.3.4 Results on the validation set

This experiment is mainly designed for tuning the hyper-parameters, i.e. the splitting
values for the LSTM and to choose between the trainable and the frozen weights
approach. We experiment with the two decoder architectures introduced in Section
5.2.1.2: the multi-scale CNN decoder and the hierarchical LSTM decoder. The encoding
architecture is kept identical in all experiments and all weights are initialized from
the pre-trained RegNet [18]. The results are reported for both frozen and trainable
encoder weights. In the trainable experiment, the weights of all layers are kept
trainable. Additionally, three different splitting values for the LSTM designs are tested
as well.

Table 5.1 gives the results on the training and validation sets for the decoders
with similar encoder design with frozen and trainable approaches. Please note that
the training was performed on the artificial image pairs. However, these results are
reported over real images pairs on the landmark locations. Total number of landmarks
for all five registrations in SPREAD (cases 1 to 11) and DIR-Lab COPDgene studies are
5455 and 15000, respectively.

First, we compare the encoding parts between frozen and trainable approaches.
In this evaluation, the splitting values of the LSTM design are set to 6, 3, 1 for θ1,
θ2 and θ3, respectively. As is shown in the top four rows of Table 5.1, based on F1, κ
coefficient and the number of misclassifications between the wrong and the correct
label (cw misclass), a consistent improvement can be achieved by utilizing a trainable
encoder. The improvement of F1 in the SPREAD study is from 73.9% to 78.3% and
76.9% to 79.6%, and in the DIR-Lab COPDgene study from 72.0% to 72.9% and 67.4%

to 73.2% for the multi-scale CNN and the hierarchical LSTM architecture, respectively.
Accuracy (Acc) is more biased towards category c, as the number of samples for this
label is much higher than for the other labels. In the SPREAD dataset, F1c and the
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accuracy of the trainable encoders are better. However, in the DIR-Lab COPDgene set,
F1c and the accuracy of the frozen encoders are slightly better. On the other hand, the
number of outliers significantly decreases in the DIR-Lab COPDgene study. All in all,
we select the trainable approach for the encoder in the remainder of the paper.

Comparing the two decoders (with trainable encoder), the LSTM design obtained
better performance in terms of F1, κ coefficient, the number of outliers, and accuracy,
compared to the CNN, on both datasets. We keep both designs for further experiments
on the independent test data.

We additionally experiment with the hierarchical splitting approach of the LSTM
design, using various splitting values θi : 6-3-1, 12-6-3 and 6-3-3. We keep the
misalignment labels of the last step equal to [0, 3), [3, 6) and [6, ∞) mm by merging
the auxiliary labels. Therefore, in the LSTM design with the 6-3-1 splitting approach,
labels [0, 1), [1, 3) are merged into a single label [0, 3), and in the LSTM design
with the 12-6-3 splitting approach, labels [6, 12), [12, ∞) are merged into a single
label [6, ∞). The results are given in the bottom two rows in Table 5.1. Based on the
F1, κ coefficient and the number of cw misclassifications, the hierarchical splitting
with values 6-3-1 achieved better performance. The F1w score of LSTM 12-6-3 in
the SPREAD study are relatively high. On the other hand, the F1c of LSTM 6-3-1 is
higher than the other LSTM designs. This indicates that utilizing an auxiliary label in
a specific range can improve the performance in that range. All in all, we select the
LSTM with 6-3-1 splitting values for the remainder of the paper.

5.3.5 Results on the independent test set

In this section, we investigate the performance of the proposed decoders in unseen
test sets, i.e. the SPREAD study cases 13 to 21 and the DIR-Lab 4DCT cases 1
to 10. The total number of landmarks for each registration in SPREAD (case 13
to 21) and DIR-Lab 4DCT studies are 783 and 3000, respectively. For further
comparisons, two additional methods are added in this experiment: single-scale CNN
and RegNet-t (see Section 5.3.2.5). The landmark-based results are reported in Table
5.2 within five various registration settings (similar to the validation experiment):
affine transformation, B-spline transformation with 20, 100, 500, and 2000 iterations.
The B-spline registrations are performed after the initial affine transformation. The
aggregation of all five registrations are presented in the “total” row.

As seen in Table 5.2, among the classification networks, in the “total” row, the
multi-scale CNN and LSTM 6-3-1 achieved better results in terms of F1 score and the
number of cw misclassifications. This demonstrates that utilizing information from
different scales can improve the performance. The LSTM design performed better in
the SPREAD study based on all of the measures in this table F1c, F1p, F1w, F1, accuracy
(Acc), κ coefficient and the number of cw misclassifications. In the same evaluation
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in the DIR-Lab 4DCT study, there is no consistent superiority among the multi-scale
classification networks. In terms of F1, the multi-scale CNN gained slightly better
results i.e. 75.9% in comparison with single-scale CNN (73.9%) and LSTM (73.1%).
All in all, based on the number of cw misclassifications, the multi-scale CNN and the
LSTM design performs better than the single-scale CNN.

Strikingly, direct quantization of the RegNet encoder (method RegNet-t) performs
quite well for affine registration and for coarse B-spline registration with a small
number of iterations (20 and 100), leading to improved kappa values compared to
the other three classification networks. For instance, for affine registration, RegNet-t
achieved the highest F1 score of 78.2% and 83.4% for SPREAD and DIR-Lab 4DCT,
respectively. However, for more realistic B-spline registration with a larger number of
iterations, the LSTM and the multi-scale CNN methods perform better. For example for
B-spline registration with 2000 iterations, a F1 score of 68.9% and 63.9% were obtained
for the LSTM on the SPREAD and DIR-Lab 4DCT datasets, respectively. Notably, the
LSTM decoder performs much better in terms of the number of cw misclassifications
compared to RegNet-t, especially for the DIR-Lab 4DCT dataset where this number
decreases from 197 to 77 in the “total” row. The inference time on a 3D patch of
size 205×205×205 was approximately 2.4, 0.7, 1.3, and 2.8 seconds for RegNet-t,
single-scale CNN, multi-scale CNN, and LSTM, respectively.

Detailed results for the LSTM 6-3-1 decoder are reported in Tables 5.3 and 5.4.
Table 5.3 shows the confusion matrix for the three classes correct, poor, and wrong,
for the results aggregated over all registration settings (the “total” row in Table 5.2).
The vast majority of misclassifications is one category off, with only 0.23% (9/3915)
and 0.51% (77/15000) of the misclassifications two categories off, for the SPREAD
(case 13 to 21) and DIR-Lab 4DCT studies, respectively. The intermediate hierarchical
prediction results for each of the LSTM time steps are given in Table 5.4. Such results
are not available for the CNN-based decoder, as that architecture lacks the possibility
for gradual refinement. In step 1, only low resolution latent representations are
available (L 4), with a prediction in two classes only: [0, 6) mm and above 6 mm.
This results in F1 scores of 92.4% and 60.1% for these two classes, for the SPREAD
data. The results are gradually refined, by adding higher resolution representations
and by predicting more fine-grained registration error classes, see Table 5.4. It can
be seen that as the LSTM refines its results, the F1p and F1w scores are gradually
improved in both studies. From step2 to step3-merged all F1 measures improve, in
particular for the DIR-Lab 4DCT study.

Visual examples of the predictions for LSTM 6-3-1, single CNN, multi CNN, and
RegNet-t are illustrated in Fig. 5.4. The ground truth misalignment on the landmark
locations are dilated for better visualization. The color bar in the top center image
indicates the target registration error. For all predictions, a three-label output is
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Table 5.2: Landmark-based results on the test set. We report metrics over all five
registration settings: affine and B-spline registration after affine with 20, 100, 500,
and 2000 iterations. The sub-indices c, p and w correspond to the correct [0,3), poor
[3,6) and wrong [6, ∞) mm classes. The best method is shown in bold and the second
best method is shown in green. Total number of landmarks for each registration in
SPREAD (cases 13 to 21) and DIR-Lab 4DCT studies are 783 and 3000, respectively.

SPREAD (case 13 to 21) DIR-Lab 4DCT (case 1 to 10)

registration decoder F1c F1p F1w F1 Acc κ cw misclass F1c F1p F1w F1 Acc κ cw misclass

Affine RegNet-t 70.5 72.1 92.1 78.2 83.9 0.70 0 88.4 70.2 91.6 83.4 85.7 0.77 12
single CNN 41.3 51.5 87.8 60.2 75.1 0.49 7 86.1 59.8 90.7 78.9 83.1 0.72 9
multi CNN 47.8 71.2 92.1 70.3 81.6 0.66 0 88.5 66.6 85.6 80.2 81.0 0.71 2
LSTM 6-3-1 65.5 67.1 91.0 74.5 81.5 0.66 0 88.6 58.4 79.3 75.4 76.1 0.64 9

B-spline 20 RegNet-t 89.6 67.7 82.8 80.0 83.0 0.69 2 92.0 67.3 88.7 82.7 85.5 0.77 15
single CNN 77.1 47.1 65.5 63.2 66.3 0.47 37 89.7 56.7 87.4 77.9 82.4 0.73 29
multi CNN 83.7 64.4 82.1 76.7 77.4 0.62 2 90.2 64.0 82.2 78.8 80.5 0.71 6
LSTM 6-3-1 88.4 65.6 82.1 78.7 81.2 0.67 2 91.2 57.3 77.8 75.4 78.5 0.67 6

B-spline 100 RegNet-t 95.0 51.4 75.3 73.9 90.0 0.60 8 92.7 61.7 84.8 79.8 85.0 0.74 25
single CNN 84.6 30.6 53.0 56.0 73.2 0.36 42 88.6 47.4 83.9 73.3 80.1 0.67 55
multi CNN 91.8 48.8 76.4 72.3 85.1 0.55 8 91.0 57.3 73.7 74.0 78.9 0.66 9
LSTM 6-3-1 95.6 56.1 75.6 75.8 90.4 0.65 3 92.3 54.0 71.1 72.5 79.2 0.65 17

B-spline 500 RegNet-t 96.7 48.5 68.2 71.1 92.7 0.58 4 93.3 55.5 65.7 71.5 82.8 0.64 56
single CNN 86.5 25.1 43.0 51.5 76.0 0.30 51 88.7 36.4 75.4 66.8 77.6 0.59 81
multi CNN 93.7 43.8 73.8 70.5 88.3 0.52 10 91.4 53.3 62.8 69.2 79.0 0.61 17
LSTM 6-3-1 95.7 44.4 83.0 74.4 91.4 0.57 2 93.3 50.8 60.8 68.3 81.1 0.61 23

B-spline 2000 RegNet-t 96.7 27.3 56.2 60.1 93.0 0.41 7 93.2 46.3 43.6 61.0 81.7 0.54 89
single CNN 86.9 16.4 41.1 48.1 76.6 0.25 50 89.3 35.6 71.7 65.5 79.0 0.57 127
multi CNN 93.6 24.1 72.7 63.5 87.7 0.39 8 92.8 50.1 57.6 66.8 81.2 0.59 41
LSTM 6-3-1 96.2 30.6 80.0 68.9 92.2 0.50 2 93.6 42.9 55.3 63.9 81.9 0.56 22

total RegNet-t 94.2 63.4 87.9 81.8 88.5 0.76 21 92.4 61.6 83.2 79.1 84.1 0.73 197
single CNN 83.3 39.1 74.6 65.7 73.4 0.54 187 88.7 48.7 84.4 73.9 80.4 0.68 301
multi CNN 90.3 59.2 87.7 79.1 84.0 0.70 28 91.2 59.2 77.3 75.9 80.1 0.68 75
LSTM 6-3-1 93.6 60.4 87.8 80.6 87.4 0.75 9 92.3 53.8 73.2 73.1 79.4 0.66 77

Table 5.3: Confusion matrix of the landmark-based results on the test set, for the
trainable LSTM 6-3-1 decoder. We report the aggregated values over all five registration
settings: affine and B-spline registration after affine with 20, 100, 500, and 2000
iterations. The sub-indices c, p and w correspond to correct [0,3), poor [3,6) and
wrong [6, ∞) mm classes. P and A refer to the predicted and actual labels for each
class. Total number of landmarks for all five registrations in SPREAD (case 13 to 21)
and DIR-Lab 4DCT studies are 3915 and 15000, respectively.

SPREAD (case 13 to 21)
Ac Ap Aw

Pc 2441 117 3
Pp 209 371 72
Pw 6 88 608

DIR-Lab 4DCT (case 1 to 10)
Ac Ap Aw

Pc 7526 680 70
Pp 492 1757 1656
Pw 7 188 2624

illustrated i.e. correct [0,3) (green), poor [3,6) (yellow) and wrong [6, ∞) mm (red).
An example of registration with affine and B-spline with 2000 iterations is given in
Fig. 5.4a. LSTM 6-3-1 achieved the best performance among the others with only
one misclassification out of 5 landmarks in this slice, where it incorrectly predicted
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Table 5.4: Detailed hierarchical results of the landmark-based results on the test set,
for the trainable LSTM 6-3-1 decoder. We report the aggregated values over all five
registration settings: affine and B-spline registration after affine with 20, 100, 500,
and 2000 iterations. The sub-indices c, p and w correspond to correct [0,3), poor [3,6)
and wrong [6, ∞) mm classes. The shaded cells represent a combination of several
fine-grained labels, as in earlier steps more coarse classes are predicted.

time F1c 0-1 F1c 1-3 F1p F1w F1 Acc κ

SPREAD (case 13 to 21)

step 1 92.4 60.1 77.1 89.9 0.55
step 2 94.3 53.0 68.9 72.1 83.9 0.66
step 3 23.2 64.6 60.4 87.8 59.0 60.6 0.44
step 3-merged 93.6 60.4 87.8 80.6 87.4 0.75

DIR-Lab 4DCT (case 1 to 10)

step 1 84.2 14.9 49.6 73.3 0.11
step 2 83.6 28.0 22.9 44.8 61.6 0.32
step 3 53.8 67.2 53.8 73.2 62.0 63.3 0.50
step 3-merged 92.3 53.8 73.2 73.1 79.4 0.66

poor (yellow) label for the correct (green) landmark in the right lung (left side of this
image). RegNet-t underpredicted in this slice and misclassified in the wrong (red)
regions. Another example with only affine registration is given in Fig. 5.4b. In this
slice LSTM 6-3-1 and RegNet-t predicted all four landmarks correctly.

5.3.6 Comparison with Random Forest method

The proposed multi-stage hierarchical LSTM design is compared to a conventional
learning-based method using random forests (see Section 5.3.2.5 for details). We
compare this method on the SPREAD (cases 13 - 21 ) and DIR-Lab 4DCT (cases 1 to
5) studies, i.e. we excluded cases 6 to 10 from DIR-Lab 4DCT as these cases were
not present in the test set of [33]. Since the random forest method was designed
to only predict nonrigid registration error, in this experiment we only included B-
spline registrations with 20, 100, 500, and 2000 iterations, thus excluding the affine
registration.

The results are reported in Table 5.5. In terms of F1, the proposed LSTM design
achieved significantly better results in both studies. On all F1 measures on both
datasets, the LSTM method outperforms the random forest method, except for the F1c

score on the SPREAD study, which were 93.6% vs 96.9% for LSTM vs RF. A compelling
advantage of the LSTM method is that it can be applied to affine registrations as well
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Fixed image Deformed moving image RegNet-t

single CNN multi CNN LSTM 6-3-1

(a) DIR-Lab 4DCT study, case 6 after affine and B-spline registration with 2000 iterations

Fixed image Deformed moving image RegNet-t

single CNN multi CNN LSTM 6-3-1

(b) DIR-Lab 4DCT study, case 7 after affine registration

Figure 5.4: Examples of the prediction output on entire image pairs registered using
conventional registration techniques. The ground truth misalignment on the landmark
locations are overlaid in the deformed moving images. These landmarks are dilated
in this figure for a better visualization. The color bar indicates the target registration
error, which is added on the top center image. For all predictions, a three-label output
is illustrated i.e. correct [0,3) (green), poor [3,6) (yellow) and wrong [6, ∞) mm
(red). (a) Results on the case 6 from the DIR-Lab 4DCT study. The deformed moving
image is obtained after an affine and a B-spline registration with 2000 iterations. (b)
Results on the case 7 from the DIR-Lab 4DCT study. The deformed moving image is
obtained after an affine transformation.
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Table 5.5: Landmark-based results on the overlapping part of the test set, comparing
LSTM to the random forests method (RF) [33]. The results include B-spline
registration with 20, 100, 500, and 2000 iterations. The sub-indices c, p and w
correspond to correct [0,3), poor [3,6) and wrong [6, ∞) mm classes.

method F1c F1p F1w F1 Acc
SPREAD (case 13 to 21)

RF 96.9 40.0 62.4 66.4 92.7
LSTM 93.6 60.4 87.8 80.6 87.4

DIR-Lab 4DCT (case 1 to 5)
RF 88.2 42.3 34.7 55.1 77.3
LSTM 94.0 56.4 66.7 72.4 84.2

as nonrigid registrations. Another major advantage of the LSTM method is that the
inference time is about 22 seconds (for an image size of 410×410×410 mm) compared
to 3 hours for the random forests, where a lot of the time is spent in the feature
calculation (registration and local normalized mutual information).

5.4 Discussion

We proposed a deep learning-based method to predict registration misalignment, using
a hierarchical LSTM approach with gradual refinements. We performed a wide range
of quantitative evaluations on multiple chest CT databases.

The performance of the compared decoders in Table 5.2 are not consistent in
all registration settings. The B-spline registration with 2000 iterations represents
the most common setting, as this represents an accurate registration. In this case
the proposed hierarchical LSTM method achieved the best result in terms of F1, κ
coefficient and the number of cw misclassifications. In the “total” row, the number
cw misclassifications of the LSTM method is much smaller than that of the RegNet-t.
In the validation set in Table 5.1, the LSTM design achieved slightly better results
in comparison to the multi-scale CNN design based on the F1, κ coefficient and the
number of cw misclassifications, showing that utilizing both the multi-resolution
approach and hierarchical refinements can improve the misalignment predictions.

The proposed encoding mechanism using RegNet showed to be effective, as it
achieved promising results even with a simple thresholding ‘decoder’ as used in RegNet-
t. In predicting the misalignment of the affine registration, RegNet-t outperformed
all other decoders. Since RegNet-t resamples images after each stage, potentially it
can capture larger registration misalignment. We experimented with a similar setup
using the LSTM approach, resampling after each step. However, the results of this
experiment were not promising on the validation set. Another difference is that the
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Table 5.6: A summary of some of the earlier approaches for estimating registration
misalignment. For simplification, results are averaged over all reported test data. RF
refers to a random forest and NA refers to “not available”.

article output method data training testing result

Hub et al. [35],
2009

continu-
ous,
local

perturbing input
chest CT,
in-house

NA artificial DVF NA

Muenzing et al.
[39], 2012

classifica-
tion,
local

cascade classifiers
with intensity based
features

chest CT,
in-house

landmarks in
real data

landmarks in
real data F1 85.2%

Sokooti et al. [33],
2019

regres-
sion,
local

RF using intensity
and registration
based features

chest CT,
in-house +
public

landmarks in
real data

landmarks in
real data

MAE 1.42
mm, F1
60.75%

Saygili [111], 2020
regres-
sion,
local

block matching +
RF

chest CT,
public

landmarks in
real data

landmarks in
real data

MAE 2.0
mm, Acc
81.8%

Eppenhof et al.
[40], 2018

regres-
sion,
local

CNN
chest CT,
public

artificial DVF
under 4 mm

landmarks in
real data

RMSD 0.66
mm

Senneville et al.
[115], 2020

classifica-
tion,
global

CNN + linear
regression
(classifier)

brain MR,
public

artificial
affine DVF

real data
Binary Acc
96.0%

Proposed method
classifica-
tion,
local

ConvLSTM
chest CT,
in-house +
public

artificial DVF
under 17
mm

landmarks in
real data F1 76.5%

RegNet was trained on artificial data with a maximum deformation of 20 mm in each
direction for the course resolution (RegNet4), whereas the the maximum deformation
in this study is set to 10 mm in each direction (about 17 mm in vector magnitude). It
should be noted that in terms of the total number of cw misclassifications, the LSTM
and CNN designs are still more in favor, which are reported as 9, 2, and 12 for the
LSTM, multi-scale CNN and RegNet-t, in order (see the first four rows in Table 5.2).

The distribution of the labels “correct”, “poor” and “wrong” are highly imbalanced
in image registration. For instance, in the test set within five registration settings,
the distribution of samples are 67.8%, 14.7%, 17.5% in the SPREAD study and 53.5%,
17.5%, 29.0% in the DIR-Lab 4DCT for the labels correct, poor and wrong, respectively.
In order to mimic the same distribution during training, the probability of selecting
patches in the range [0,3), [3,6) and [6, ∞) mm are set to 60%, 20% and 20%,
respectively (see Section 5.3.2.1). However, this can influence the first step of the
LSTM training as the sampling becomes imbalanced again in this step.

A comparison to previous methods for predicting registration misalignment is not
trivial due to differences in approach (classification, regression) as well as the use
of different test datasets. Table 5.6 gives an overview of several methods from the
literature. A classification-based approach to estimate registration misalignment was
also presented in [39]. They proposed a classical learning-based approach using
several hand-crafted features. Muenzing et al. [39] reported F1 scores of 95.3%, 73.8%

and 86.6% in the labels [0,2), [2,5) and [5, ∞) mm. It is not trivial to compare our
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results to this method because the evaluation is done on different data and using
different thresholds for labels. When it comes to the dense prediction for an entire
image, calculating those hand-crafted features become quite time-consuming. In the
CNN-based approaches, Eppenhof et al. [40] proposed a regression network to predict
registration misalignment. They trained on the odd-numbered images from the DIR-
Lab-4DCT and the COPDgene data sets and tested on the even-numbered scans, and on
two additional chest CT studies. They reported a root-mean-square deviation (RMSD)
of 0.66 mm between the ground truth TRE and the predicted one for landmarks with
ground truth TRE below 4 mm. The main limitation is that the method predicts
registration misalignment smaller than 4 mm only. Since our proposed method has
one label corresponding to misalignment in the range [6, ∞) mm, a quantitative
comparison is not feasible. In Section 5.3.5, we drew a comparison between the
proposed LSTM method and a random forests regression method [33]. We kept the
experiment settings as similar as possible. However, some minor differences still exist.
For instance, the voxel size in the LSTM method is resampled to an isotropic size of
[1, 1, 1] mm, whereas in the random forests method, resampling is not applied. Since
one of the proposed features in [33] was the variation of the transformations with
respect to the initial states of the B-spline grid, it is not possible to use this approach
for affine registration.

In this study, we proposed to use RegNet [18] to encode a pair of images using a
multi-resolution approach to high-dimensional feature maps. Although the experiment
with a simple decoder as RegNet-t reveals that encoding with RegNet is quite powerful,
potentially, any registration network can be used instead of RegNet. It could therefore
be interesting to perform a comparison between different network architectures. The
proposed method is designed with three resolutions of the input given in three steps
to the LSTM block. At the third resolution, the receptive field of the network is usually
larger than an entire chest CT image (with a spacing of 1 mm). Thus, potentially
no further contextual information can be achieved by increasing the number of
resolutions. However, varying the number of steps in the LSTM block can be an
interesting experiment. We experimented with three steps, but with various splitting
values in Section 5.3.4. The number of steps of the LSTM can be increased even with
identical inputs, similar to [121].

The proposed method is expected to be sensitive to anatomical changes like tumor
growth. Thus, it may detect those regions as a suboptimal local registration. This
limitation may potentially be addressed by adding a new type of deformation to the
artificial training data strategy, which mimics such anatomical changes. For example,
in this study we modelled respiratory motion specifically designed for lungs (see
Section 5.2.2), as we performed all experiments on chest CT scans. This may be
extended with additional realistic artificial data generation types, for other use cases.
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However, the proposed training and prediction methods are generic and independent
of the image type. In future work, the proposed method could be evaluated on other
modalities and anatomical sites as well. Although all nonrigid experiments in this
study are performed using B-spline registration, potentially, the proposed method
is independent of the registration paradigm and can be applied to other nonrigid
registration methods.

5.5 Conclusion

We proposed a framework for classifying registration misalignment using deep learning,
consisting of encoding relevant features in a latent space and a hierarchical and
gradually refining LSTM decoder for the prediction. Multi-resolution contextual
information is incorporated in the design. The network is fully trained over artificially
generated images, while the evaluation is performed over realistic chest CT scans. The
proposed decoder is compared with two other CNN-based decoders and a method
based on the output of a deep learning based registration RegNet-t. A comprehensive
study is performed on two independent test sets (SPREAD case 13 to 21, and DIR-
Lab 4DCT) with various registration settings. In the B-spline registration with 2000
iterations, the proposed method achieved an F1 and number of cw misclassifications
of 68.9%, 2 and 63.9%, 22 in the SPREAD and the DIR-LAB 4DCT studies, respectively.
In the aggregation of all registration settings, the proposed LSTM design obtained the
least number of cw misclassifications. At the inference time, the proposed method can
predict a dense map in about 22 seconds.
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