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Abstract

We propose a supervised nonrigid image registration method, trained using artificial
displacement vector fields (DVF), for which we propose and compare three network
architectures. The artificial DVFs allow training in a fully supervised and voxel-wise
dense manner, but without the cost usually associated with the creation of densely
labeled data. We propose a scheme to artificially generate DVFs, and for chest
CT registration augment these with simulated respiratory motion. The proposed
architectures are embedded in a multi-stage approach, to increase the capture range
of the proposed networks in order to more accurately predict larger displacements.
The proposed method, RegNet, is evaluated on multiple chest CT scans studies and
achieved a target registration error of 2.32±5.33 mm and 1.86±2.12 mm on SPREAD
and DIR-Lab-4DCT studies, respectively. The average inference time of RegNet with
two stages is about 2.2 s.
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3.1 Introduction

Image registration is the process of aligning images and has many applications in
medical image analysis. Generally, image registration casts to an optimization problem
of minimizing a predefined handcrafted intensity-based dissimilarity metric over a
transformation model. Both the dissimilarity metric and the transformation model
need to be selected and tuned in order to achieve high quality registration performance.
This task is time-consuming and there is no guarantee that the selected dissimilarity
model fits with new images.

General learning-based techniques have been used in several registration papers.
Guetter et al. [53] incorporated a prior learned joint intensity distribution to perform
a nonrigid registration. Jiang et al. [54] selected and fused a large number of features
instead of using only one similarity metric. Hu et al. [41] leveraged regression forests
to predict an initial DVF. In terms of predicting registration accuracy Muenzing et al.
[39] casted this task to a classification problem and extracted several local intensity-
based features, which are fed to a two-stage classifier. Sokooti et al. [55, 33] extracted
some intensity-based and registration-based features, then by using regression forests
estimated the local registration error.

In recent years, CNNs have also been utilized in the context of image registration.
Miao et al. [42] used CNNs for rigid-body transformations. Yang et al. [43] trained a
CNN to predict the initial momentum of a 3D LDDMM registration. Cao et al. [56]
generated a multi-scale similarity map and utilized it to predict the DVF. Simonovsky
et al. [57] proposed a CNN-based similarity metric for multi-modal registration. Their
training samples were a set of aligned images as the positive cases and a set of
manually deformed images as the negative cases.

In the unsupervised deep learning approaches, de Vos et al [22, 23] for the first
time used normalized cross correlation (NCC) of the fixed and moving image as a loss
function. Later Balakrishnan et al. [24] and Ferrante et al. [58] used the same loss to
train their network. Mahapatra et al. [25] combined NCC with other similarity metrics
such as the Dice overlap metric over the labeled images. Elmahdy et al. [8] utilized
an adversarial training based on the segmentation maps in addition to the NCC loss.
Sheikhjafari et al. [59] and Dalca et al. [60] employed the mean squared intensity
difference, which was applied to mono-modal image registration. Hu et al. [61]
proposed a loss function that calculates cross entropy over the smoothed segmentation
maps, which was applied to multi-modal images. A drawback to use conventional
similarity metrics is that these similarity metrics are not perfect and might not fit in all
images.

In the supervised approaches, for the first time Sokooti et al. [17] generated
artificial DVFs with different frequencies to train a CNN architecture. Rohé et al. [62]
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proposed to build reference DVFs which were obtained by performing registration
over segmented regions of interest. Fan et al. [63] proposed a ground truth based
on the GAN network. The implicit ground truth is assigned using the negative cases
derived from the generator network while the positive cases are synthetically made by
perturbing the original images. Eppenhof et al. [19] constructed a small set of images
by applying a random DVF. In the model-based methods Uzunova et al. [64] proposed
statistical appearance models to be used for data augmentation. Hu et al. [65] utilized
biomechanical simulations to regularize their network.

In several articles, reinforcement learning is used [66, 67, 68]. An artificial agent
is trained by making a statistical deformation model from training data. However, this
approach is still iterative and might be slow at inference time.

Conventionally, in quality assessment of registration, manually selected landmarks
or manually segmented regions are used. However, utilizing them as a gold standard
in training has some drawbacks. With manually segmented regions, several measure-
ments like Dice and mean surface distance can be calculated, but there is no direct
correlation between Dice and the true DVF in all voxels of the image. The drawback of
using landmarks as a gold standard [55, 33] is that the numbers of landmarks usually
is not enough to estimate a continuous gold standard DVF for the whole image.

In this paper, instead of using a transformation model, we directly predict the
displacement vector field (DVF). The convolutional neural network (CNN) implicitly
learns the dissimilarity metric. The current paper is a large extension of the work
first presented in Sokooti et al. [17]. We present more ways to construct sufficiently
realistic synthetic DVFs. The network design is greatly enhanced by increasing the
capture range in order to more accurately predict larger DVFs. A multi-stage approach
is also proposed to overcome this issue. The evaluation is performed on the SPREAD
study as well as on the public DIR-Lab study. The proposed method is capable to be
trained on any datasets without needing any manual ground truth.

3.2 Methods

3.2.1 System overview

A block diagram of the proposed system is given in Fig. 3.1. The inputs of the system
are a fixed image IF and a moving image IM . Similar to the conventional registration
methods, a multi-stage approach is employed. The registration blocks RegNet4 and
RegNet2 perform on the down-scaled images with a factor of 4 and 2, respectively.
The inputs of the final registration block RegNet1 are original resolution images. The
output of the system is a predicted DVF of transforming the moving image to the fixed
image which is defined as T (x) = Ts1

(
Ts2

(
Ts4(x)

))
.
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Figure 3.1: Block diagram of the proposed system. The initial inputs of the system
are fixed and moving images down-scaled by a factor of four (↓4). Three RegNets
process the input images over three stages (4, 2, 1) and generate the final output
T (x) = Ts1

(
Ts2

(
Ts4(x)

))
.

3.2.2 Network architecture

We propose three network architectures for the RegNet design. The first two archi-
tectures are patch-based, and predict the DVF for a local neighborhood. These two
networks are more complex and occupy a relatively large amount of GPU memory. The
third architecture is based on a more simple U-Net design [69] with fewer network
weights, and is capable of registering entire images (not patches), but down-scaled,
within the memory limits of current GPUs. This last architecture is considered a
candidate for the first resolution (RegNet4), while the others are considered for the
second and third resolution (RegNet2 and RegNet1). In Section 3.3 we compare these
architectures and combinations thereof.

The networks have some settings in common. All convolutional layers use batch
normalization [70] and ReLu activation [71], ,except for the last two layers of the
U-Net design and the last three layers of the patch-based designs, where ELu activation
is used to improve the regression accuracy. The last layer of all architectures does not
use batch normalization nor an activation function. The Glorot uniform initializer
[72] is used for all convolutional layers except for the trilinear upsampling, in which a
fixed trilinear kernel is utilized. The three architectural designs are given in Fig. 2.
The details are:
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3.2.2.1 U-Net (U)

U-Net is one of the most common designs used in medial image segmentation The
proposed modified design has an input size and output size of 125×125×125 voxels.
This architecture is only used for the sub-block RegNet4, i.e. CNN-based registration is
applied to down-scaled images with a factor of four. The proposed design is given in
Fig. 3.2a. This relative simple design has 232,749 trainable parameters.

3.2.2.2 Multi-View (MV)

In this design, different scales are created by using conventional decimation by
convolving the inputs with fixed B-spline kernels, which is similar to [17] and [46].
This design is relatively more memory efficient because of this multi-view approach.
The proposed CNN architecture is visualized in Fig. 3.2b. The input of the network
is a pair of 3D patches of size 105×105×105 for the fixed and moving image. The
network is then split into 3 pipelines: down-scaled with a factor of 4, a factor of 2, and
the original resolution. In order to save memory, the original resolution and the down-
scaled version with a factor 2 are cropped to 37×37×37 and 67×67×67, respectively.
Decimation is done with the help of convolutions with a fixed B-spline kernel. In the
down-scaled factor 2 pipeline, a stretched B-spline kernel with size 7×7×7 is used.
For down-scaling with a factor of 4, the B-spline kernel is stretched by a factor of 4,
and has a size of 15×15×15. Each pipeline continues with several convolutional layers
with dilation of 1 or higher. The upsampling layers ensure spatial correspondence
of all three pipelines. Finally, all pipelines are merged together followed by three
more convolutional layers. The network gives three 3D outputs of size 21×21×21

corresponding to the displacement in x, y and z direction. The total number of
parameters in this design is 1,201,353.

3.2.2.3 U-Net-Advanced (Uadv)

This proposed architecture is again a patch-based one but using a max-pooling
technique instead of a decimation method. The global design is similar to the U-
net architecture, but instead of simple shortcut connections, several convolutions
are used for these connections. The proposed design is illustrated in Fig. 3.2c. The
network starts with a convolutional layer to extract several low-level features from the
images before any max-pooling. The size of the inputs and output are 101×101×101

and 21×21×21. The total number of parameters in this design is 1,420,701.

3.2.3 Artificial generation of DVFs and images

In order to train a CNN, a considerable number of ground truth DVFs are needed. We
take a moving image IM from the training set. The fixed image IF is created artificially
by generating a DVF, applying the DVF to the moving image resulting in I clean

F , and
adding artificial intensity models to finally obtain IF .
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Figure 3.2: RegNet designs: The inputs of the U-Net design are entire down-scaled
images. However, in the Multi-view and U-Net-advanced architectures the output size
is smaller than the input size and can be trained in a patch-based manner.
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3.2.3.1 Artificial DVF

We propose to generate three categories of DVFs, to represent the range of displace-
ments that can be seen in real images:

single frequency: The first category consists of DVFs having one or more local
displacements of only one spatial frequency. They are generated as follows: Create an
empty B-spline grid of control points with a spacing of s mm; Assign random values to
the grid of control points and smooth it with a Gaussian kernel; Resample the B-spline
grid to obtain the DVF; Normalize the DVF linearly to be in the range [−θ,+θ] along
each axis.

mixed frequency: In this category, two different spatial frequencies are mixed
together as follows: Create a single frequency DVF similar to the previous category;
Create a random binary mask and multiply it with the single frequency DVF. Finally,
smooth the DVF with a Gaussian kernel with a standard deviation of σB . σB is
chosen relatively small to generate a higher spatial frequency in comparison with the
smooth filled region; By varying the σB value and s in the filled DVF, different spatial
frequencies will be mixed together.

respiratory motion: We simulate respiratory motion with three components
similar to [35] as follows: Expansion of the chest in the transversal plane with
a maximum scaling factor of 1.12; Transition of the diaphragm in cranio-caudal
direction with a maximum deformation of θ; Random deformation using the single
frequency method. In order to locate the diaphragm, an automatically detected lung
mask is used.

identity: This category comprises only identity DVFs. Later, when creating the
artificially deformed image, intensity augmentations will be added to the deformed
image. Thus, the network will be capable of detecting no motion, while the intensity
values might have changed slightly.

3.2.3.2 Artificial intensity models

We propose two intensity models to be applied on the fixed images:

Sponge intensity model: By assuming mass preservation over the lung deforma-
tion, a dry sponge model [73] is added to deformed image:

IF (x) = I clean
F (x)[JT (x)−1], (3.1)

where J denotes the determinant of the Jacobian of the transformation.

Gaussian noise: A Gaussian noise with a standard deviation of σN = 5 is added to
the deformed image in order to achieve more accurate simulation of real images.
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Figure 3.3: The generation of training pairs from a single input image IM0. The
input image is deformed slightly using the single frequency category, with the “lowest”
settings (see Table 3.1), to generate moving images IMi . These are then each deformed
and post-processed multiple times using all categories to generate fixed images IF i .

3.2.3.3 Extensive pair generation

For each single image in the training set, potentially a large number of artificial DVFs
can be randomly generated. However, if this image is to be re-used for multiple
DVFs, then for many training pairs we have the moving image unaltered. To tackle
this problem, we also generate deformed versions of the original image (gray single
frequency blocks in Fig. 3.3). A schematic design of utilizing artificial image pairs
is depicted in Fig. 3.3. In this approach, the original image is only used once to
generate the artificial image IF0. Deformed versions of the original image IMi are used
afterwards. Training pairs are thus (IM0, IF 0), (IM1, IF 1), (IM2, IF 2), .... The gray single
frequency blocks in Fig. 3.3 have the same setting as single frequency “lowest” except
that σN is set to 3 instead of 5. That is to avoid the accumulation of noise in the
artificial images.

In total we generate 14 basis types of artificial DVFs: 5 single frequency, 4 mixed
frequency, 4 respiratory motion and 1 identity. The precise settings of the parameters
are available in Table 3.1 and examples are given in Fig. 3.4. The histograms of the
Jacobians are also available in this figure. When the spatial frequency is increased, the
Jacobian histograms will spread more, which shows that local relative volume changes
are increased. The value of θ, the maximum artificial displacement along each axis, is
chosen as 20, 15 and 7 for RegNet4, RegNet2 and RegNet1, respectively.
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Figure 3.4: Examples of heat maps of generated artificial DVFs overlayed on the
deformed images. We show three of the five spatial frequencies defined in Table 3.1.
The histogram of the Jacobian determinant of each DVF is shown next to the sample
image. As the spatial frequency increases, the histogram is more spread.

Table 3.1: DVFs with different spatial frequencies are obtained by varying the B-spline
grid spacing s and the standard deviation of the Gaussian kernel σB . The maximum
deformation along each axis θ only varies for each stage. When the spatial frequency
is increased, the Jacobian histograms will spread more, which shows that local relative
volume changes are increased (Fig. 3.4). S, M and R indicates single frequency, mixed
frequency and respiratory motion.

Parameter artificial DVF lowest low intermediate high highest

θ (mm)
stage 1 3 7 7 7 7
stage 2 5 15 15 15 15
stage 4 7 20 20 20 20

s (mm)

S1 [50, 50, 50] [45, 45, 45] [35, 35, 35] [25, 25, 25] [20, 20, 20]
S2 [60, 60, 60] [50, 50, 50] [45, 45, 45] [40, 40, 40] [35, 35, 35]
S4 [80, 80, 80] [70, 70, 70] [60, 60, 60] [50, 50, 50] [45, 45, 45]
M1 [50, 50, 50] [40, 40, 40] [25, 25, 35] [20, 20, 30]
M2 [60, 60, 60] [50, 50, 40] [40, 40, 80] [35, 35, 80]
M4 [80, 80, 80] [60, 60, 60] [50, 50, 50] [45, 45, 60]
R1 [50, 50, 50] [45, 45, 45] [35, 35, 35] [25, 25, 25]
R2 [60, 60, 60] [50, 50, 50] [45, 45, 45] [40, 40, 40]
R4 [80, 80, 80] [70, 70, 70] [60, 60, 60] [50, 50, 50]

σB

M1 (5-10) (5-10) (5-10) (5-10)
M2 (7-12) (7-12) (7-12) (7-12)
M4 (10-15) (10-15) (10-15) (10-15)
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3.2.4 Optimization

Optimization is done using the Adam optimizer with a learning rate of 0.001. The loss
function consists of two parts. The first part is the Huber loss, which minimizes the
difference between the ground truth T and the predicted DVF T ′′′ of the RegNet. The
second part is a bending energy (BE) regularizer [6], which ensures smoothness of
the displacement field:

C = Huber
(
T (x),T ′′′(x)

)+γ ·BE
(
T ′′′(x)

)
, (3.2)

where the Huber loss is defined as:

Huber(T ,T ′′′) =
(T −T ′′′)2, |T −T ′′′| ≤ 1,

|T −T ′′′|, |T −T ′′′| > 1
(3.3)

3.3 Experiments and results

3.3.1 Materials and ground truth

Three chest CT scan datasets are used in this study: The SPREAD [47], the DIR-Lab-
4DCT [74] and the DIR-Lab-COPDgene dataset [75].

In the SPREAD database, 21 pairs of 3D chest CT images are available with a
baseline and a follow-up image in each pair. The follow-up images are taken after
30 months. Both images are acquired in the inhale phase. Patients in this study
are aged between 49 and 78 years old. The size of the images is approximately
446 × 315 × 129 with a mean voxel size of 0.78×0.78×2.50 mm. About 100 well-
distributed corresponding landmarks were previously selected [73] semi-automatically
on distinctive locations [48]. Two cases (12 and 19) are excluded because of the high
uncertainty in the landmarks annotation [73].

In the DIR-Lab-COPDgene database, ten cases with severe breathing disorders
are available in inhale and exhale phases. The average image size and the average
voxel size are 512×512×120 and 0.64×0.64×2.50 mm, respectively. In each pair, 300
landmarks are annotated.

In the DIR-Lab-4DCT database ten cases are available. We use two phases of the
available data: maximum inhalation and maximum exhalation. The size of the images
is about 256×256×103 with an average voxel size of 1.10×1.10×2.50 mm.

Since the convolutional neural networks process the images in a voxel-based
manner, all images are resampled to an isotropic voxel size of 1.0×1.0×1.0 mm.

3.3.2 Evaluation measures

We use two measures to evaluate the performance of the proposed CNNs:
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• TRE: The target registration error (TRE) defined as the mean Euclidean distance
after registration between corresponding landmarks:

TRE = 1

n

n∑
i=1

‖T ′′′(xF i )+xF i −xMi‖2, (3.4)

where xF and xM are the landmark locations on the fixed and moving images,
respectively.

• Jac: The Determinant of the Jacobian of the predicted DVF is calculated in order
to measure relative changes in local volume. A very large (Jac À 1) or very small
(Jac ¿ 1) or negative Jac (Jac < 0) can indicate poor registration quality. We
report the percentage of negative Jacobian as well as the standard deviation of
the Jacobian inside the lung masks.

All of the assessments are performed on the real images.

3.3.3 Experimental setup

3.3.3.1 Training data

In the SPREAD database, 10 patients (20 images) are used for training, 1 patient
(2 images) is in the validation set and 8 patients remain for the test set. From the
DIR-Lab-COPD database, the first 9 cases (18 images) are used for training, and the
remaining case (2 images) is used in the validation set. The entire DIR-Lab-4DCT
database is used as an independent test set. The validation set is mainly used for
tuning the hyper-parameters and selecting the best network design. In all evaluations,
images are multiplied with the lung masks.

To generate training pairs, we use the 14 basis types of artificial generations (see
Section 3.2.3.3). For each of the three networks, from each original image we generate
70 (5×basis), 42 (3×basis) and 28 (2×basis) artificial pairs in the first stage (RegNet4),
the second stage (RegNet2) and the third stage (RegNet1), respectively. Here we
generate more images for more coarse stages, as these images are smaller.

In the training phase of the patch-based networks (MV, Uadv), the batch size is
15. The number of patches per pair is 5, 20, and 50 for stage 4, 2, and 1, respectively.
The patch size is 1013 and 1053 for the U-Net-advanced and Multi-view design. When
choosing samples, several balancing criteria are considered based on the magnitude
of DVFs of the patches. An equal number of samples are selected from the range
[0, 1.5), [1.5, 8) and [8, 20) mm for stage 4. For stage 2 and 1 these bins are selected
as [0, 1.5), [1.5, 4), [4, 15) mm and [0, 2), [2, 7) mm, respectively. Training is run
for 30 semi-epochs. All methods are trained with an additional data augmentation
step, by adding Gaussian noise to all patches on the fly.
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3.3.3.2 Software

In order to efficiently implement the artificial deformation and training phase, we
utilize two processes. The task of the first process is to create artificial DVFs and
deformed images and write them to disk. The second process has a multithreading
paradigm which loads the data from disk and also handles the network training on
the GPU.

The CNNs are implemented in Tensorflow [76]. Artificial DVFs are generated with
the help of SimpleITK [51]. The code is publicly available via github.com/hsokooti/RegNet.

3.3.3.3 elastix

We compare the proposed CNN-based registration methods with conventional image
registration, using elastix [52]. We used the following settings: metric: mutual
information, optimizer: adaptive stochastic gradient descent, transform: B-spline,
number of resolutions: 3, number of iterations per resolution: 500. For the public
DIR-Lab-4DCT data, more conventional and CNN-based methods are compared with
RegNet in Section 3.3.4.2.

3.3.4 Experiments

3.3.4.1 Architecture selection

In order to inspect the performance of the different architectures, an evaluation is
performed on all pairs in the training and validation sets, i.e. half of the SPREAD data
and the entire DIR-Lab-COPDgene data. We utilize the single and mixed category plus
identity transform for artificial generations. Please note that the networks are trained
with artificial image pairs i.e. during training both the fixed and moving images are
deformed versions of the original images. For this evaluation however, we used the
original non-deformed pairs, which the network has not seen.

As a first experiment, we train and validate the networks on the original image
resolution only, i.e. without any multi-stage pipeline: see MV1 and Uadv1 in Section
3.2. It can be seen that the TREs of these networks are on the high end for both
studies. Please note that due to high intensity variation in the baseline and follow-up
images in the DIR-Lab-COPDgene database, the overall results are relatively poor. We
discuss this issue later in Section 3.4.

In a second experiment, we train and test the networks on the lowest image
resolution only, again without any multi-stage pipeline: see U4, MV4 and Uadv4 in
Table 3.2. Note that on the SPREAD data, the performance improved with respect to
registration on the original resolution. The main reason is that the lowest resolution
training set has the maximum deformation θ of 20 mm, whereas the maximum
deformation was set to 7 mm in the original resolution training set (see Table 3.1).
On the DIR-Lab-COPDgene data, similar results were obtained except for U4.
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Table 3.2: Quantitative results on the training and validation sets. The target
registration error (TRE) is reported, together with the percenage of folding and
the standard deviation of the Jacobian inside the lung masks. The networks are
trained using artificial deformations from the single and mixed category plus identity
(see Section 3.2.3.1). U, Uadv and MV represent the U-Net, U-Net-advanced and Multi-
view design (see Section 3.2.2). A Wilcoxon signed-rank test is performed between
U4-Uadv2-Uadv1 and others, where † indicates a statistically significant difference with
p < 0.05.

Network SPREAD (case 1-11) DIR-Lab-COPDgene

TRE (mm) %folding std(Jac) TRE (mm) %folding std(Jac)
MV1 3.86±4.32† 0.23±0.18 0.23±0.05 9.28±5.83† 0.24±0.07 0.29±0.03
Uadv1 3.80±4.15† 0.24±0.20 0.28±0.06 9.65±6.19† 0.32±0.13 0.35±0.05

U4 2.71±1.59† 0.00±0.00 0.09±0.02 10.2±6.00† 0.00±0.00 0.10±0.01
MV4 2.30±1.80† 0.00±0.00 0.11±0.02 8.27±5.44† 0.00±0.00 0.14±0.02
Uadv4 2.29±1.89† 0.00±0.00 0.08±0.01 8.60±5.50† 0.00±0.00 0.12±0.01

MV4-MV2 1.70±1.31† 0.00±0.01 0.18±0.03 6.67±5.53† 0.01±0.01 0.28±0.05
U4-MV2 1.71±1.23† 0.00±0.00 0.15±0.03 8.94±6.95† 0.03±0.02 0.27±0.06
Uadv4-Uadv2 1.69±1.34† 0.00±0.00 0.12±0.02 6.96±5.89† 0.00±0.00 0.21±0.04
U4-Uadv2 1.68±1.15† 0.00±0.00 0.11±0.02 8.54±6.91† 0.00±0.00 0.20±0.04

MV4-MV2-MV1 1.63±1.30† 0.05±0.07 0.22±0.04 6.35±5.74† 0.44±0.24 0.38±0.08
U4-MV2-MV1 1.60±1.20 0.02±0.03 0.19±0.04 8.65±7.27† 0.49±0.27 0.38±0.09
Uadv4-Uadv2-
Uadv1 1.60±1.23 0.03±0.04 0.22±0.03 6.45±6.39† 0.29±0.20 0.37±0.10

U4-Uadv2-Uadv1 1.57±1.15 0.02±0.02 0.20±0.03 8.07±7.65 0.39±0.24 0.38±0.10

In the next experiment, we utilized two stages at image resolutions downsampled
with a factor of 4 and then 2. In all four tested architectural combinations, the TRE
results are better than the single stage networks in both studies, which shows that
adding a second stage can improve the performance of RegNet.

Finally, when the original resolution is added to form a three-stage network a
small improvement is observed in both studies. By comparing the final TRE results, it
can be seen that the performance of all four network combinations are similar. For
the remainder of the experiments, we choose the combination (U4-Uadv2-Uadv1) as
it obtained slightly better results on the SPREAD database. A Wilcoxon signed-rank
test is performed between U4-Uadv2-Uadv1 and other combination in Table 3.2. A
statistically significant difference (with p < 0.05) between U4-Uadv2-Uadv1 and all
single stage and two stages combination can be observed.

3.3.4.2 Independent test set experiments

Now that we have selected the best network combination, we applied the U4-Uadv2-
Uadv1 pipeline on the independent test set (without retraining): 8 cases of the SPREAD
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Table 3.3: Quantitative results of the SPREAD study in the training set (case 1 to case
11) and in the test set (case 13 to case 21). This experiment is performed with the
network combination U4-Uadv2-Uadv1. The target registration error (TRE) is reported,
together with the percentage of folding and the standard deviation of the Jacobian
inside the lung masks. S, M and R indicate single frequency, mixed frequency and
respiratory motion, respectively (see Section 3.2.3.1). A Wilcoxon signed-rank test
is performed between the B-spline registration and others. The symbol † indicates a
significant difference between the average of TRE of B-spline registration and others,
where † indicates a statistically significant difference with p < 0.05. The best method is
shown in bold and the second best method is shown in green.

elastix elastix B-spline RegNet

Affine S S+M S+M+R S S
pair TRE (mm) TRE (mm) %folding std(Jac) TRE (mm) TRE (mm) TRE (mm) %folding std(Jac)
case 1 8.77±2.76† 2.13±2.12 0.00 0.19 1.87±1.68 1.78±1.66 1.92±1.71 0.20 0.26
case 2 7.41±2.99† 1.48±1.18 0.00 0.11 1.44±0.92 1.37±0.88 1.54±1.03 0.03 0.20
case 3 4.34±1.89† 1.66±1.13 0.00 0.09 1.78±1.18 1.79±1.21 1.81±1.19† 0.00 0.15
case 4 11.4±3.44† 1.79±1.43 0.00 0.15 1.70±1.41 1.70±1.29 1.99±1.74 0.07 0.21
case 5 6.47±2.07† 1.08±0.62 0.00 0.09 1.15±0.76 1.17±0.70 1.24±0.78† 0.00 0.15
case 6 8.22±2.37† 2.06±1.37 0.00 0.14 1.98±1.44 1.90±1.27 1.92±1.22 0.02 0.21
case 7 5.51±1.38† 1.50±1.11 0.00 0.10 1.70±1.07† 1.63±1.22 1.51±1.10 0.00 0.17
case 8 3.67±2.31† 1.70±1.23 0.00 0.14 1.74±1.02 1.63±0.94 1.53±0.84 0.01 0.20
case 9 4.93±1.61† 1.28±0.72 0.00 0.09 1.35±0.72 1.41±0.87 1.51±0.77† 0.02 0.16
case 10 6.22±2.27† 1.33±1.11 0.00 0.10 1.40±0.90 1.40±0.87 1.43±0.85† 0.02 0.18
case 11 5.93±2.20† 1.40±1.10 0.00 0.13 1.49±1.15 1.44±1.19 1.51±1.08 0.03 0.21

Total 6.62±3.17† 1.58±1.29 0.00±0.00 0.12±0.03 1.60±1.17† 1.57±1.15 1.63±1.19† 0.04±0.05 0.19±0.03

case 13 12.5±15.8† 7.94±16.0 0.00 0.13 7.37±14.0 7.76±15.2 8.28±15.4 0.71 0.36
case 14 8.99±2.40† 1.86±1.19 0.00 0.11 1.71±1.18 2.08±1.81 2.25±1.76† 0.06 0.25
case 15 3.17±1.32† 1.20±0.82 0.00 0.11 1.39±0.86 1.29±0.82 1.33±0.84 0.00 0.18
case 16 8.94±1.84† 1.30±0.80 0.00 0.09 1.54±0.96 1.78±0.98† 1.96±1.01† 0.00 0.19
case 17 13.4±4.73† 1.76±0.73 0.00 0.09 2.89±3.66† 2.30±1.70† 3.37±3.43† 0.38 0.27
case 18 7.85±2.89† 1.65±1.41 0.00 0.15 1.40±0.86 1.60±1.16 1.71±1.04 0.02 0.21
case 20 4.43±2.14† 1.31±0.90 0.00 0.11 1.41±1.00 1.50±1.05† 1.52±0.97† 0.14 0.22
case 21 6.48±2.03† 1.26±1.35 0.00 0.09 1.36±1.19 1.33±1.36 1.36±1.47† 0.01 0.17

Total 8.16±6.76† 2.21±5.86 0.00±0.00 0.11±0.02 2.32±5.33† 2.39±5.64† 2.65±5.82† 0.19±0.24 0.24±0.06

database and the complete DIR-Lab-4DCT database. The results are given in Tables
3.3 and 3.4.

For the SPREAD database, the TRE results with affine and B-spline registration
are compared with three versions of RegNet trained using the category “S” (single
frequency plus identity), “S+M” (single frequency and mixed frequency plus identity)
and “S+M+R” (single frequency plus mixed frequency and respiratory motion plus
identity). Since there is no respiratory motion in the SPREAD data, adding respiratory
motion did not improve the performance of the registration. Adding mixed frequencies
did not change the results considerably: there was a small improvement for the cases
1-11, and slightly larger TREs for the cases 13 to 21. The percentage of folding inside
the lung masks for the RegNet trained using “S” is also available in Table 3.3, which
reports that the percentage of negative Jacobian are small in most cases, especially,
when the TRE after affine registration is not very large. A Wilcoxon signed-rank test
is performed between the elastix B-spline and other results. It can be seen that in
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most cases there is no significant difference between B-spline registration and RegNet
trained using “S” or trained using “S+M”.

For the DIR-Lab-4DCT database, a comparison between RegNet and affine, B-
spline (three resolutions), an advanced conventional registration method using sliding
motion [78] and three other CNN-based methods [79, 23, 77] is available in Table 3.4.
It can be seen that training with “S+M” improved performance slightly with respect to
just “S”. Adding the respiratory motion category improved performance substantially,
as these are inhale-exhale pairs; this is predominantly caused by the patients where
the TRE after affine registration was still quite large. An example visualization is
also available in Fig. 3.5, showing that adding the respiratory motion category can
align images better in the diaphragm region. The advanced conventional registration
method that leverages sliding motion [78] is still better than RegNet. Note that RegNet
was not trained on the DIR-Lab-4DCT data, similar to [79, 77]. However, Vos et al.
[23] and Eppenhof et al. [79] DIR methods were trained on the same database but
using cross-validation to report the results. Also note that the results reported in [77]
are averaged over all phases of DIR-Lab-4DCT (T00 to T10), while the results of other
CNN methods (including RegNet) are reported between the maximum inhale and
maximum exhale phase (T00 and T50). These reported results are therefore likely
somewhat better than the results for T00 and T50 only.

3.3.4.3 Inference

At inference time, the patch size can be enlarged depending on the available GPU
memory. For the U-Net-advanced design, the inference time of an image of size 1013

and 2693 voxels, is 0.02 s and 2.4 s, respectively, on our TITAN Xp (12 GB). An image
of size 2733 voxels took about 2.1 s to process for the Multi-view design. For the U-Net
design we used the downsized image (by a factor of 4) of size 1253 which took 0.02 s
to be processed.

3.4 Discussion

In this paper we have shown that training a CNN with sufficiently realistic artificially
generated displacement fields, can yield accurate registration results even in real cases.
We utilized some randomly generated deformations (single and mixed frequencies)
and a more realistic one (respiratory motion). We observed that even training with
randomly generated deformations in the SPREAD study, the obtained TRE was on par
with the B-spline registration (see Table 3.3). Adding more realistic DVFs (respiratory
motion) in the DIR-Lab 4DCT study, improved the TRE results from 2.70±4.39 mm
(“S+M”) to 1.86±2.12 mm (“S+M+R”) as can be seen in Table 3.4. In the case that
sufficient realism was not added to the training, for instance in the DIR-Lab-COPDgene
study in Table 3.2, the results were sub-optimal. Note that this dataset is challenging
for conventional methods also. Anatomical structures in the baseline and follow-up
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images of this database are quite different and the proposed intensity simulations in
Section 3.2.3.2 did not cover this issue. A solution may be the addition of random
intensity occlusions to the deformed images. Another interesting research direction is
to learn realistic appearance and deformations from a database.

One of the major challenges of CNN-based image registration is capturing large
DVFs, especially for patch-based methods. Using the whole image as an input might be
very time consuming in the training phase. Based on our experiments, the maximum
deformation that can be detected in patch with size 101×101×101 by the U-Net-
advanced is approximately 7 mm (the value of θ in Table 3.1). By enlarging the DVFs
the Huber loss increased substantially. Please note that the maximum deformation θ

is along each axis so the magnitude of a maximum deformation is 2×p
3×θ. Adding

the original resolution makes the pipeline slower. However, based on the results
in Table 3.2 it can be concluded that using two stages (U4-Uadv2, TRE: 1.68±1.15)
can achieve similar results in comparison with three stages (U4-Uadv2-Uadv1, TRE:
1.57±1.15). Similar to conventional registration, the best method on the first stage is
not always the best in combination with others. In Table 3.2, the single U4 is worse
than Uadv4 and MV4. Conversely, the combination of U4-Uadv2-Uadv1 obtains the best
results. All in all, the differences between the architectures are relatively small and
the performance of RegNet is more influenced by the artificial images used in training
phase.

The performance of RegNet is very close to the conventional registration. However,
B-spline registration is the best in the SPREAD test set (case 13 to 21; 2.21±5.86 vs
2.32±5.33) and the method of Berendsen et al. [78] performed better in the DIR-Lab-
4DCT database (1.36±1.01 vs 1.86±2.12). On the contrary, the inference time of CNN
approaches are much faster than the conventional methods. Potentially, by increasing
the training data and generalizing the artificial generation like sliding motion, the
performance of the RegNet can be improved.

In the current implementation of RegNet, all images are resampled to an isotropic
voxel size 1.0×1.0×1.0 mm. If resampling is not intended, it might be possible to
simply multiply the output of RegNet by the voxel size. However, this approach is
not very accurate because the spatial frequency of different voxel size might not be
covered by the training data. A more accurate solution could be to include additional
input of the voxel size to the network.

In principle, the proposed network design potentially can be utilized to predict the
registration quality. Several methods are suggested by conventional learning using
handcrafted features [55, 39] and a preliminary result by [44].

The proposed method can be trained and evaluated on other image modalities
like brain MRI images. Potentially, the same network design and artificial generation
excluding respiratory motion can be utilized.
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The artificial generation can be enhanced if rib segmentation is available. Then, it is
possible to incorporate rigid deformation outside of the rib and nonrigid deformations
inside the rib. The network potentially can learn the relation between organs and
rigidity of the deformations. More realistic and complex simulation like sliding motion
of lungs [78] can also be added to the training images as it had a positive effect for
non-learning based methods.

3.5 Conclusion

We proposed a 3D multi-stage CNN framework for chest CT registration. For training
the network, we proposed models to generate artificial DVFs, and intensity models,
to easily generate large quantities of paired images with a known spatial relation.
We showed via multiple chest CT databases that this way of artificial training is very
effective, with good results on real data. On the public DIR-Lab-4DCT database, we
achieved the best results among the CNN approaches.
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