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2
Nonrigid Image Registration using Multi-Scale

3D Convolutional Neural Networks

This chapter was adapted from:

H Sokooti, B de Vos, F Berendsen, BP Lelieveldt, I Išgum, and M Staring. Nonrigid
image registration using multi-scale 3D convolutional neural networks, Interna-
tional Conference on Medical Image Computing and Computer-Assisted Intervention,
2017 September.
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Abstract

In this chapter, we propose a method to solve nonrigid image registration through a
learning approach, instead of via iterative optimization of a predefined dissimilarity
metric. We design a Convolutional Neural Network (CNN) architecture that, in contrast
to all other work, directly estimates the displacement vector field (DVF) from a pair of
input images. The proposed RegNet is trained using a large set of artificially generated
DVFs, does not explicitly define a dissimilarity metric, and integrates image content
at multiple scales to equip the network with contextual information. At testing time
nonrigid registration is performed in a single shot, in contrast to current iterative
methods. We tested RegNet on 3D chest CT follow-up data. The results show that the
accuracy of RegNet is on par with a conventional B-spline registration, for anatomy
within the capture range. Training RegNet with artificially generated DVFs is therefore
a promising approach for obtaining good results on real clinical data, thereby greatly
simplifying the training problem. Deformable image registration can therefore be
successfully casted as a learning problem.
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2.1 Introduction

Deformable image registration (DIR) is the task of finding the spatial relationship
between two or more images, and is abundantly used in medical image analysis.
Typically, image registration is solved by iteratively optimizing a predefined hand-
crafted intensity-based dissimilarity metric over the transformation parameters. The
metric represents a model of the intensities encountered in the image data. Problems
may occur when part of the data does not fit the model, which are typically dealt
with by making modifications to the dissimilarity metric. Instead, in this paper we
take another approach, where we do not handcraft such a model, but use a machine
learning approach to automatically determine what constitutes an accurate registration,
i.e. without explicitly defining a dissimilarity metric. The proposed method is based
on regression using Convolutional Neural Networks (CNNs), that directly learns a
displacement vector field (DVF) from a pair of input images.

The idea of learning registration has shown to be promising [41]. Several CNN
regression techniques have been proposed in the context of image registration. Miao
et al. [42] applied CNN regression for rigid 2D-3D registration. Liao et al. [16] used
CNN regression to model a sequence of motion actions for 3D registration. Their
method is iterative (not one shot), and limited to rigid-body transformations. For
nonrigid approaches, Yang et al. [43] predicted the initial momentum of a 3D LDDMM
registration. Eppenhof et al. [44] trained a CNN to predict the local registration error,
without performing a full registration. Related work has been done in the field of
optical flow [45].

In contrast, we propose an end-to-end method that directly predicts the 3D nonrigid
DVF given a fixed and a moving image, without requiring a dissimilarity metric like
conventional methods. The proposed architecture, called RegNet, analyzes 3D input
patches at multiple scales to equip the CNN with contextual information. Training is
based on a wide variety of artificial displacements acting as the target value in the
loss function, while testing is performed on registration of baseline and follow-up CT
images of a patient. At testing time the registration is performed in a single shot, in
contrast to current iterative methods. To the best of our knowledge this is the first
method that solves nonrigid 3D image registration with CNNs end-to-end, i.e. directly
predicting DVFs.

2.2 Methods

2.2.1 Network architecture

The proposed CNN architecture RegNet takes patches from a pair of 3D images (the
fixed image IF and the moving image IM ) as input. The output of RegNet is a vector of
three elements, which is the displacement of the central voxel of the patch. A full DVF
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Figure 2.1: RegNet design.

is generated by sliding over the input images. The DVF is defined as the displacement
u(x), mapping points from the fixed image domain to that of the moving image. The
transformation is defined as T (x) = x +u(x).

For each image we extract patches at original resolution of size 29x29x29 voxels. To
improve the receptive field of the network, we additionally extract patches of 54x54x54
voxels, which are downsampled to 27x27x27 voxels. In this way local as well as more
global information is incorporated, allowing better discrimination between anatomical
locations and to add contextual information. The downsampling makes sure there is
limited effect on memory consumption and computational overhead. Similar multi-
scale approaches have been shown effective for segmentation [46]. We thus have four
3D patches as inputs.

We start with three convolutional layers for each input patch separately (late-
fusion) instead of stacking them as channels (early-fusion). The fixed and moving
patches of each resolution are then merged by concatenation. This is followed by 2
and 6 convolutional layers for the original resolution and the downsampled patch,
respectively. Max pooling is used on the pipeline of the original resolution, ensuring
spatial correspondence of the activation of the two pipelines before merging; for every
2 shift of the receptive field of the original resolution only 1 shift should be performed
in the low resolution [46]. The two resolution pipelines are then also concatenated,
followed by 4 convolutional layers and two fully connected layers. All convolutional
layers use 3×3×3 kernels, batch normalization and ReLu activation. The network
architecture is visualized in Fig. 2.1.

Optimization is done using Adam, with a decaying learning rate starting at 0.001

and a decay factor of 1.25 in each epoch, which improved the convergence rate in our
experiments. The loss function is defined as the mean residual distance between target
and estimated DVF: MAE = 1

n

∑n
i=1 |DVF′

i −DVFi |, with DVF′ the prediction of RegNet
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(a) Low frequency (b) Medium frequency (c) High frequency

Figure 2.2: Heat maps of the magnitude of DVFs used for training RegNet.

and DVF the target defined in Section 2.2.2.

2.2.2 Training

To train our network, synthetic DVFs are generated with varying spatial frequency
and amplitude, aiming to represent the range of displacements that can be seen in
real images: 1) Creating a vector field with the size of the input image (which will
act as the moving image) and initializing it with zero vectors; 2) Randomly selecting
P points in the DVF and randomly assigning three values to the displacement vector
in the range [−θ,+θ]; 3) Smoothing the DVF with a Gaussian kernel with a standard
deviation of σ. Low, medium and high frequency deformations are generated using the
settings σ= 35,P = 80,θ = 8; σ= 25,P = 100,θ = 8; and σ= 20,P = 100,θ = 8, respectively.
Transformed images are generated by applying the DVF to the input image, using cubic
B-spline interpolation, resulting in the fixed image. To allow more accurate simulation
of real images, Gaussian noise with a standard deviation of 5 is finally added to the
images. Examples are available in Fig. 2.2.

It is possible to generate plenty of deformations for a single moving image, but a
drawback of this approach is that the moving image is identical in each pair of input
images, as only the fixed image is generated randomly. We therefore also generate
deformed versions of the moving image, based on which new deformed images are
created. The new moving images are generated using low frequency deformations
only, to avoid over-stretching (leading to a blurred appearance). We use the settings
σ= 35,P = 100,θ = 8 and Gaussian noise with a standard deviation of 3 in this step.

2.3 Experiments and results

2.3.1 Materials

We use data from the SPREAD study [47], which contains 19 pairs of 3D chest CT
images. The dimension of the images is about 446×315×129 with an average voxel
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size of 0.781×0.781×2.5 mm. Patients are between 49 and 78 years old and for each
patient a baseline image and a 30 months follow-up image are available. For each
pair, 100 well-distributed corresponding landmarks were previously selected semi-
automatically at distinctive locations [48]. All images were resampled to a voxel size
of 1×1×1 mm.

RegNet is written in Theano [49] and Lasagne [50], artificial DVFs are created
using SimpleITK [51]. Conventional registrations are performed using elastix [52].

2.3.2 Experimental setup and evaluation

The set of 19 image pairs is divided in a training set of 10 pairs, a validation set of
2 pairs, and a test set of 7 pairs. 2100 patches per image are randomly extracted
from the lung regions of the training images, using both the baseline and follow-up
images as input for training. For each image in the database we create 6 different
DVFs (3 for a single moving image and 3 other after deforming that moving image, see
Section 2.2.2), resulting in 252,000 training examples. In addition, we applied data
augmentation, flipping all patches in the x, y and z direction and adding Gaussian
noise with a standard deviation of 5. In total we have approximately 1 million patches
available for training. The network is trained for 15 epochs. The validation set was
used to monitor overfitting during training, and to compare with the single-scale and
the early-fusion design.

The test set was used in two ways. We first evaluate the ability of the trained
network to register artificially deformed image pairs, which is how RegNet was trained.
This was evaluated using the MAE measure. Second, we apply RegNet for registration
of the real baseline and follow-up CT images, without artificial deformations. This
experiment is evaluated using the set of corresponding landmarks, where we report
their mean Euclidean distance after registration: TRE = 1

n

∑n
i=1 ‖DVF′

i (xF )+xF −xM‖2,
with xF and xM the landmark locations. An initial affine registration is performed
before applying RegNet, similar to conventional approaches. We use an intensity-based
method (normalized correlation), using 5 resolutions of 1000 iterations each. RegNet
is compared with two conventional B-spline registrations with a final grid spacing
of 10mm: a version using a single resolution of 2000 iterations, and one using 3
resolutions of 500 iterations each. As the capture range of our network is certainly
less than half the patch width, we additionally present the TRE of only those points
that are within 8mm distance after the affine registration (TRE′).

2.3.3 Results

All quantitative results are given in Table 2.1. The results on the validation set show
that multi-scale late-fusion RegNet performs better than either single-scale or early-
fusion RegNet. It can be seen that the regression accuracy on the validation set (MAE)
is about 1 mm, showing that RegNet was successfully trained. The results in the x and
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Table 2.1: Quantitative results

Evaluation Method Data measure measurex measurey measurez

MAE RegNet 1Scale validation 1.70±1.81 0.56±0.78 0.53±0.71 0.61±0.88
RegNet Early validation 1.26±1.22 0.41±0.51 0.39±0.48 0.45±0.60
RegNet validation 1.17±1.10 0.36±0.56 0.38±0.44 0.43±0.49
RegNet test 1.19±1.17 0.36±0.59 0.40±0.50 0.43±0.51

TRE Affine test 8.08±7.18 4.21±4.40 3.92±5.64 3.80±4.25
B-spline 1R test 5.48±7.56 2.47±4.01 2.64±5.71 2.92±4.12
B-spline 3R test 2.19±6.22 0.67±1.97 1.04±5.07 1.45±3.21
RegNet test 4.39±7.54 2.19±4.53 1.79±4.83 2.35±4.33

TRE′ Affine test 5.39±2.25 2.80±2.04 2.70±1.92 2.73±1.93
B-spline 1R test 2.59±2.28 1.02±1.44 1.09±1.47 1.72±1.56
B-spline 3R test 1.28±0.94 0.41±0.51 0.42±0.43 1.00±0.86
RegNet test 1.66±1.26 0.58±0.62 0.64±0.77 1.19±1.10

y direction are slightly better than that in the z direction, which can be attributed to
the relatively large slice thickness of our data. The MAE results on the test set confirm
that RegNet can successfully register artificially deformed images with a sub-voxel
accuracy.

For the test set we have 685 corresponding landmarks available to compute the
TRE. For TRE′, 503 landmarks are within 8 mm after affine registration. The results
for affine, the two B-spline settings and RegNet are listed in Table 2.1 and illustrated
in Figs. 2.3 and 2.4. It can be seen that the multi-resolution B-spline method overall
gives the best performance (TRE results), but RegNet is better than a single resolution
B-spline. When we focus on the points within the capture range of RegNet (TRE′

results) it can be seen that RegNet performs better than the single resolution B-spline
method, and performs similar to multi-resolution B-spline. For those landmarks a
residual error of 1.7 mm is obtained, which is sub-voxel with respect to the original
resolution. Again, the accuracy in the x and y direction is slightly better than that in
the z direction. Fig. 2.3b shows a scatter plot of all landmarks after registration with
RegNet. RegNet gives accurate registrations until ∼8 mm, which is to be expected due
to the patch size and the fact that RegNet was trained up to θ = 8 mm deformations
only. Figs. 2.4b-d show scatter plots of the landmarks within 8 mm, for the three
directions separately. Example registration results are given in Fig. 2.5. Inference time
for an image of size 3003 is about 14 seconds on a Tesla K40.

2.4 Discussion and conclusion

We presented a convolutional neural network (RegNet) for 3D nonrigid image reg-
istration. RegNet can be successfully applied to real world data, after training on
artificially generated displacement vector fields. Tests on artificially deformed images
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Figure 2.3: Residual landmark distances, for all landmarks.
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Figure 2.4: Residual landmark distances, for the landmarks in the capture range.
Figures b-d show scatter plots of RegNet against the ground truth.

as well as with intra-patient chest CT data, showed that RegNet achieved sub-voxel
registration performance, for landmarks within the capture range. This was better than
the performance of a conventional single resolution B-spline registration method, and
close to that of a multi-resolution B-spline. When considering all landmarks, the multi-
resolution B-spline method still outperformed RegNet. In the training phase of RegNet
no use was made of (manually annotated) corresponding points, or segmentations for
guidance, which are hard to obtain in large quantities. Synthetic DVFs on the other
hand can easily be generated in bulk, which greatly simplifies the training process.

In our current design the registration capture range is related to the size of the
patches that are shown to the network, and the results show good performance until 8
mm, but deteriorate after that. The capture range may be enlarged by the use of larger
patches or the addition of more scales to the network. It is also possible to extend
RegNet to a multi-resolution approach, working from even further downsampled (and
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(a) Fixed (b) Affine (c) B-spline 3R (d) RegNet

(f) Affine (g) B-spline 3R (h) RegNet

Figure 2.5: Example results (top row) and difference images (bottom row).

smoothed) images than in the current multi-scale approach, successively upsampling
until the original resolution.

For future work, we will perform a sensitivity analysis of a number of important
parameters of RegNet, like the patch size and its relation to the several parameters that
define the training DVFs (e.g. the maximum magnitude θ). We will also train RegNet
in other applications besides chest CT, to test the generalizability of the architecture.

In conclusion, the proposed neural network achieves promising results for the
nonrigid registration of image pairs, using an end-to-end approach. Information at
multiple scales is integrated in the CNN. After training, deformable registration is
performed in one shot.
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