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2
Introduction to Josephson

and noise scanning
tunneling microscopy

Throughout the research work presented in this thesis, Josephson and noise
scanning tunneling microscopy are employed as means to probe the super-
fluid and the charge of conventional, iron-based and disordered supercon-
ductors. This chapter is dedicated to analysing those techniques in more de-
tail. We start by quickly reviewing the basic principles of scanning tunneling
microscopy. Afterwards we describe the working principles and challenges
of Josephson and noise spectroscopy while focusing on some theory aspects
as well.

Parts of this chapter have been published in Nature 571, 541-545 (2019), Physical Review B 100,
104506 (2019) and Rev. Sci. Instrum. 89, 093709 (2018).
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2.1. Scanning tunneling microscopy

S canning tunneling microscopy (STM) was invented in 1982 by Binnig and Rohrer
[1] (Nobel prize in 1986). STM is a unique technique not only for imaging and

manipulating individual atoms but also for performing spectroscopy with atomic
resolution. It uses a sharp metallic tip on an electrically conducting sample surface
under voltage bias (𝑉bias), in order to record the tunneling current 𝐼T of electrons
between the two (see Fig. 2.1a). By raster scanning the tip on the surface with
sub-Å resolution (using piezoelectric scanners) one is able to record the tunneling
current as a function of space (𝑥, 𝑦) and voltage bias. It can be shown that the
tunneling current 𝐼T depends exponentially on the distance between tip and sample
Δ𝑧

𝐼T ∝ exp(−𝜅Δ𝑧), (2.1)

where 𝜅 is a constant related to the tunneling barrier between tip and sample. This
makes the STM extremely sensitive to surface modulations on the atomic scale.
In more detail, atomically resolved topographic information of the surface can be
obtained using a feedback loop that maintains 𝐼T constant by adjusting the tip height
(using again a piezoelectric scanner), while the tip is rastered over the sample
surface (voltage bias is fixed during scanning).
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Figure 2.1: STM schematics. a Schematic of an STM jucntion. Gray circles denote atoms. An atomi-
cally sharp metallic tip is in tunneling distance to the flat surface of a voltage-biased sample. Electrons
(yellow circles) tunnel through the vacuum barrier separating the tip and sample. The tunneling current
𝐼T is first amplified (blue triangle) and subsequently measured (not shown). b Simplified density of
states (DOS) diagram for an STM junction. The filled (empty) states in the DOS of the tip (t) and the
sample (s) are denoted with blue (gray) areas. The difference in the Fermi energies equals the bias volt-
age 𝑒𝑉bias. An electron tunnels from filled states on the tip through the vacuum barrier (brown-shaded
area) to occupy empty states on the sample at lower energy.

It is worthwhile mentioning that in order to get a stable STM junction and
achieve atomic resolution imaging, an atomically sharp tip and flat sample surface
are needed. Therefore, scanning tunneling microscopists usually employ special
tip treatment and sample cleaning recipes at (ultra) high vacuum that allow them
to perform high quality STM. In addition, since 𝐼T typically ranges from tens of pi-
coamperes (pA) to a few nanoamperes (nA), it is equally important to perform STM
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measurements in ultra low mechanical and acoustic vibration conditions such that
unwanted noise is minimized.

Apart from gaining insight to the surface information of a material, via STM one
is also able to perform tunneling spectroscopy. This is achieved by recording the
tunneling current as a function of voltage bias. Typically, the tip is parked at the
location of interest and the tunneling current is measured while the voltage bias is
sweeped with the feedback loop turned off. To avoid unwanted signal noise in the
measurement it is very typical that lock-in amplifier techniques are employed for
recording the tunneling conductance of the junction as a function of voltage bias.
The latter turns out to provide information about the density of states (DOS) of the
sample. A schematic of the tunneling process taking place in an STM involving the
DOS of the tip and the sample is shown in Fig. 2.1b. The tunneling conductance
𝑑𝐼/𝑑𝑉, using Fermi’s Golden rule under some reasonable approximations and at
sufficiently low temperatures, reads [2]

𝑑𝐼
𝑑𝑉 = −

4𝜋𝑒2
ℏ exp (−𝜅Δ𝑧) 𝜌t(0)𝜌s(𝑒𝑉). (2.2)

Here, 𝜌t(s)(𝑒𝑉) is the DOS of the tip (sample) calculated at energy equal to 𝑒𝑉
(𝑉 = 𝑉bias). From the expression above we see that STM conductance spectroscopy
directly probes the DOS of the sample. Thus, combining 𝑑𝐼/𝑑𝑉 spectroscopy with
the scanning capabilities of STM, one retrieves spatially resolved information about
the sample DOS variations with atomic resolution.

Thus, STM is a very powerful tool to investigate nanoscale electronic inhomo-
geneities in contrast to bulk probe techniques.

Apart from real space information on the electronic properties of a material,
the quasiparticle interference technique (QPI) using an STM provides insight to
the momentum space. QPI is based on the interference of quasiparticle waves in
a material. In metals, electrons are described as Bloch waves (characterised by
wavevectors k) yielding a local DOS (LDOS) that reads

LDOS(𝜖, r) ∝∑
k

|𝜓k(r)|2𝛿(𝜖 − 𝐸k), (2.3)

where 𝜓k(r) are the eigenstates in k-space and 𝐸k the dispersion relation in the
metal (𝛿(𝜖) is the delta function). In contrast to angle-resolved photoemission
spectrocopy (ARPES), STM cannot retrieve direct information about the dispersion
𝐸k. However, Bloch-waves can scatter off crystal imperfections, impurity atoms,
vortices etc. Such scattering processes are elastic and cause mixing of eigenstates
with different k having the same dispersion. The mixing of two Bloch waves (say
k1 and k2), results into standing waves described by a wavefunction 𝜓q, with q =
(k1 − k2)/2. Such standing waves are detectable in an STM experiment, since
the LDOS is proportional to the 𝑑𝐼/𝑑𝑉 signal as we showed before. Thus the
𝑑𝐼/𝑑𝑉 signal in real space at fixed energy exhibits spatial oscillations, usually around
scattering centres, with a wavelength equal to 𝜋/q. Typically one takes the Fourier
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transform of the real space images and identify the dominant scattering wavevectors
q. In general, a challenge in the QPI method is to identify the wavevectors that
contributed to the standing wave q without any prior information about the actual
band structure of the material at hand. For this reason, a combination of ARPES
and STM experiments is required in order to capture the complete picture.

Concerning STM on superconducting surfaces that are the main focus of this
thesis, it was not until the end of the 80s that the first cryogenic STM was employed
for the first time on a superconductor. In one of the first experiments at 4.2 K,
the superconducting gaps of Pb, PbBi and NbN were measured by employing a
metallic gold tip [3], to find good agreement with the predictions of BCS theory.
In addition several other works investigated the variations of the superconducting
state (energy gap) in space using low temperature STM [4, 5]. Later on, the vortices
in a superconductor (NbSe2) were imaged by Hess et al [6, 7] for the first time, and
their electronic structure was investigated in terms of spectroscopy. Over the years,
there have been several important experiments employing STM tips on conventional
superconductors. Experimental works on, magnetic adsorbates on superconductors
[8, 9], the superconducting proximity effect [10, 11], the double-gap structure of
Pb [12] and the confinement of quasiparticles in Pb (111) quantum wells [13], are
only a handful of examples.

Experimental works using STMs on unconventional superconductors have proven
to be equally valuable in understanding these correlated electron materials that can-
not be described by BCS theory. In fact, STM is probably the most suitable tool for
revealing the nanoscale electronic inhomogeneities in unconventional superconduc-
tors given its unique combination of imaging and spectroscopic capabilities. A vast
amount of experimental work has been focussing on cuprate materials and in par-
ticular in identifying their pairing symmetry, addressing their gap inhomogeneities
etc [14]. In addition the QPI method has been used with great success as a sign-
sensitive probe of the order parameter [15]. As one might expect, the STM probing
techniques have also made significant contribution on providing insight on other
classes of unconventional superconductors such as the iron-based family [2] and
the heavy fermion compounds [16].

2.2. Josephson scanning tunneling microscopy
Josephson scanning tunneling microscopy (JSTM) [17] is a technique that involves
tunneling microscopy using a superconducting tip with the ultimate goal to probe
the superfluid density of the material at hand. In conventional STM methods a met-
alic tip is used in order to probe the electronic and topographic properties of the
material via tunneling of single-particle carriers between the tip and the sample. In
strike contrast, in the JSTM method the use of a superconducting tip and sample
opens a new tunneling window for Cooper pairs in addition to the conventional one
for quasi-particles. Importantly, STM imaging with unprecedented resolution com-
bined with the Josephson tunneling method allows one to map the superconducting
order parameter in the atomic scale.

As the name of the technique suggests, JSTM is based on the phenomenon
of Cooper pair tunneling described by Brian Josephson in his celebrated work in
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1962 [18]. In JSTM, a junction is formed between an STM tip and a sample (both
superconducting) that are separated by a vacuum barrier (Fig. 2.2).

Ψt = √nSF,t exp(iφt)

Ψs = √nSF,s exp(iφs)

V

I

Figure 2.2: Schematic representation of a Josephson junction in STM. A STM tip (gray circles)
is in tunneling distance with the sample (yellow shaded region). Both are superconducting and their
macroscopic wavefunction can be written as Ψs(t) = √𝑛SF,s(t)exp(𝑖𝜙s(t)). In such a Josephson junction
a Cooper pair (blue circles) tunnels through the vacuum barrier between tip and sample.

It is instructive to show that the tunneling current of Cooper pairs predicted
by Josephson contains information about the order parameter of the superfluid in
both the sample and the tip. We start by writing an expression for the macro-
scopic wavefunction (Ψs(t)) of the superconducting condensate in the tip (t) and
the sample (s). These read

Ψs(t) = √𝑛SF,s(t)exp(𝑖𝜙s(t)). (2.4)

Here |Ψs(t)|
2 = 𝑛SF,s(t) is the superfluid density which corresponds to the order

parameter and 𝜙s(t) is the phase of the condensate in the sample or tip. Assuming
a junction that is one dimensional, the probability current is given by

𝑗 = ℏ
4𝑖𝑚 (Ψ∗J

𝑑ΨJ
𝑑𝑥 − ΨJ

𝑑Ψ∗J
𝑑𝑥 ) , (2.5)

and represents the supercurrent resulting from Cooper pair tunneling. In the for-
mula above ℏ is Planck’s constant, 𝑖 is the imaginary unit and 𝑚 the electron mass
(note the factor 4 in the denominator that accounts for the fact that Cooper pairs
have a mass of 2𝑚). Moreover, we denote complex conjucation by using the ∗
symbol. Our next step is to approximate the total wavefunction ΨJ of the junction
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and its derivative 𝑑ΨJ/𝑑𝑥. Substituting

ΨJ =
Ψs +Ψt
2

𝑑ΨJ
𝑑𝑥 = Ψs −Ψt,

(2.6)

in 2.5 we find that the supercurrent follows the Josephson relation

𝐼S = 𝐼Csin(𝜙s − 𝜙t), (2.7)

with

𝐼C =
ℏ
2𝑚√𝑛SF,s√𝑛SF,t, (2.8)

being the maximum (critical) supercurrent that the junction can sustain. Hence,
assuming the superfluid density in the tip to be constant, one can treat the critical
supercurrent as a measure for probing the superfluid density (order parameter) in
the sample.

At this point it important to note that the procedure we followed above is rather
simple. The Josephson relation in 2.7 can be shown using microscopic descrip-
tions that are far more complete. In addition, Josephson junctions based on the
Josephson effect have been studied extensively in mesoscopic systems and have
been exploited in numerous applications including superconducting quantum inter-
ference devices [19] and quantum bits [20].

Now that we have shown that the supercurrent carries information about the
superfluid density, our next task is to identify its current and conductance signatures
in a STM experiment. In a JSTM experiment we sweep the applied bias 𝑉 between
tip and sample and we record the current 𝐼 and conductance 𝑑𝐼/𝑑𝑉 of the junction.
In order to identify the supercurrent signatures we will take a closer look in the
available models that predict the 𝐼−𝑉 characteristics of a Josephson junction. Since
each model has specific assumptions and limitations we will first analyse the relevant
energy scales involved in JSTM. These will help us to identify the applicability of each
model.

2.2.1. Energy scales in Josephson STM
We start with a description of the measurement circuit in a typical JSTM experiment
as shown in Fig. 2.3. The corresponding circuit diagram of this Josephson junction
involves the following key components:

• the critical supercurrent 𝐼C;

• the junction resistance 𝑅J;

• the junction capacitance 𝐶J, biased by a voltage source at 𝑉;

• the complex impedance 𝑍(𝜔), which corresponds to the electromagnetic en-
vironment of the junction and accounts for any form of dissipation that may
be present.
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Figure 2.3: Circuit diagramof a Josephson junction in STM. The Josephson junction with maximum
critical supercurrent 𝐼C is biased with a voltage 𝑉. The junction has a resistance 𝑅J and capacitance 𝐶J.
To account for dissipation effects a complex impedance 𝑍(𝜔) is connected in series with the junction.

The relevant energy scales in such ultra-small junctions are:

• The charging energy 𝐸C = (2𝑒)2/(2𝐶J) which is related to the Coulomb
energy change that occurs when a Cooper pair tunnels across an ultra-small
junction. Note that Cooper pairs carry charge of 2𝑒 in the formula above.

• The Josephson energy 𝐸J = ℏ𝐼C/(2𝑒) being a measure of how strongly the
two superconducting condensates forming the junction are coupled to each
other (for this reason, it is also called coupling energy [21]) and is proportional
to the critical supercurrent.

• The thermal energy (also known as thermal noise) 𝐸T = 𝑘B𝑇 corresponds
to the kinetic energy due to non-zero temperature (𝑘B is the Boltzmann con-
stant).

In contrast to planar mesoscopic junctions, ultra-small JSTM junctions have
larger Coulomb energy 𝐸C. We estimate 𝐶J ≈ 1 fF for an STM junction and thus
𝐸C = 276 𝜇eV (about 3.2 K). In addition, a typical tunnelling junction has a rel-
atively large junction resistance 𝑅J (>0.1 MΩ). Using the formula suggested by
Ambegaokar and Baratoff [22]

𝐸J =
𝜋ℏ
4𝑒2

Δ
𝑅J

tanh( Δ
2𝑘B𝑇

) (2.9)

the Josephson energy 𝐸J corresponds to 3.5 𝜇eV (about 40 mK) for a symmetric
Josephson junction with junction resistance 𝑅J = 1 MΩ and pair-breaking gap Δ = 1
meV. It is important to compare these relevant energy scales to be able to choose
the applicable model to describe the current–voltage (𝐼–𝑉) characteristics of the
junction, and to eventually extract the superconducting order parameter, as we
emphasized previously. In the experiments that we conducted in Chapter 3, 𝐸J is
smaller than both the measurement temperature (2.2 K) and 𝐸C (𝐸C ≥ 𝐸J).

At this point we are ready to discuss the different frameworks that have been
developed in order to describe the 𝐼–𝑉 characteristics of a Josephson junction.
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The three most commonly used ones are the resistively and capacitive shunted
Josephson junction (RCSJ) model, the IZ model and 𝑃(𝐸) theory.

2.2.2. The RCSJ model
The standard RCSJ model [23, 24] is applicable when the junction is isolated from its
electromagnetic environment (𝑍(𝜔) = 0), and temperature fluctuations are usually
neglected (𝐸T < 𝐸J). In this model one solves the equation describing the temporal
evolution of the phase difference Δ𝜙 = 𝜙s−𝜙t for each current–bias (𝐼B) condition.
This reads

𝐶J𝑉̇ +
1
𝑅J
𝑉 + 𝐼C sin(Δ𝜙) = 𝐼B. (2.10)

The voltage drop across the junction is then calculated from the time derivative of
the phase difference according to the Josephson relation [21]

𝑉 = ℏ
2𝑒
𝑑Δ𝜙
𝑑𝑡 . (2.11)

The evolution of the phase is similar to that of a classical particle moving in a tilted-
washboard potential landscape,

𝑈 = 𝐸J [1 − cos(Δ𝜙) − 𝐼B𝐼C
Δ𝜙] . (2.12)

This is illustrated in Fig. 2.4a. When the bias current is 𝐼B ≤ 𝐼C, the particle
is trapped inside a potential minimum, resulting in zero voltage drop across the
junction because 𝑑(Δ𝜙)/𝑑𝑡 = 0. For 𝐼B ≥ 𝐼C, the potential minima are not deep
enough to trap the particle. In this case, the phase evolves in time, and a voltage
drop proportional to 𝐼B is observed.

The 𝐼−𝑉 characteristics are affected significantly by the so called Stuart-McCumber
parameter [23, 24]

𝛽𝐶 =
2𝜋
Φ0
𝐼C𝑅2J𝐶J, (2.13)

where Φ0 is the magnetic flux quantum. As shown in Fig. 2.4b, a typical 𝐼–𝑉 curve
calculated using the RCSJ model for 𝛽𝑐 = 0 (i.e. 𝐶J = 0) clearly exhibits a current
equal to 𝐼C at zero bias. In this regime (𝛽𝑐 ≪ 1) the junction is strongly over-
damped and is the most common approximation used in practice. In the strongly
underdamped limit (𝛽𝑐 ≫ 1) the 𝐼 − 𝑉 characteristics are highly hysteretic when a
full current bias sweep is performed (for a more detailed description see [21]).

2.2.3. The IZ model
When temperature fluctuations become important (𝐸T > 𝐸J: see Fig. 2.5a) and
for the simplest case of an Ohmic environment 𝑍(𝜔) = 𝑍 = 𝑅, the RCSJ model
can be solved analytically. In this phase-diffusive limit, Ivanchenko and Zil’berman
calculated the 𝐼–𝑉 characteristics [25] to find that the effect of the environment is
introduced by a finite slope at zero bias

𝐼IZ(𝑉) =
𝐼2C𝑍
2

𝑉
𝑉2 + 𝑉2C

, (2.14)
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Figure 2.4: The RCSJ model. a The tilted washboard potential for different bias conditions (𝐼𝐵/𝐼𝐶 =
0.1, 1.2) as calculated from equation 2.12. b 𝐼 − 𝑉 characteristics calculated using the RCSJ model for
𝛽𝑐 = 0 .

where 𝑉C = 2𝑒𝑍𝑘B𝑇/ℏ. In this case the critical supercurrent 𝐼C can be extracted
from the maximum in the 𝐼–𝑉 characteristics or from the zero-bias peak height in
the 𝑑𝐼/𝑑𝑉 spectrum, as shown in Fig. 2.5.
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Figure 2.5: The IZ model. a Thermal phase fluctuations (illustrated by yellow dashed arrows) in the
tilted-washboard potential. b 𝐼–𝑉 and corresponding differential conductance 𝑑𝐼/𝑑𝑉, calculated using
the IZ model for 𝑍(𝜔) = 𝑅 and the phase-diffusive regime (𝐸T > 𝐸J). For the simulation we used 𝑅 = 1
kΩ and 𝑇 = 2 K.
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In more detail, according to the IZ model, the maximum (𝐼max) in the 𝐼–𝑉 char-
acteristic curves is related to the critical supercurrent according to the formula

𝐼C = √
8𝐼max𝑒𝑘B𝑇

ℏ . (2.15)

Hence, we can extract the maximum from a measured 𝐼–𝑉 curve around zero bias
and use the above formula for quantifying 𝐼C. Alternatively, one may fit the mea-
sured spectra with equation 2.14 and extract the critical supercurrent. As we will
see in Chapter 3, the latter method was employed.

2.2.4. 𝑃(𝐸) theory
When an arbitrary dissipative environment 𝑍(𝜔) is present and 𝐸C > 𝐸J, a quantum
mechanical treatment of the phase fluctuations is necessary. In this regime, 𝑃(𝐸)
theory is the most suitable [26, 27]. The formalism is based on the 𝑃(𝐸) function,
which is central in this framework in order to calculate the 𝐼 − 𝑉 characteristics of
the junction. In 𝑃(𝐸) theory one starts with a simple Hamiltonian

𝐻 = 𝐻env + 𝐸Jcos(2Δ𝜙) (2.16)

where the first term takes into account the effects of the interaction of the Joseph-
son junction with the electromagnetic environment. The second term is a tunneling
Hamiltonian term for Cooper pairs. The environment is typically modelled as a col-
lection of infinite Bosonic modes, firstly introduced by Caldera and Leggett [28].
Importantly in 𝑃(𝐸) theory the second Hamiltonian term (Josephson tunneling) is
treated as a perturbation, to compute forward ⃗⃗Γ(𝑉) and backward ⃖⃗Γ(𝑉) tunneling
rates using Fermi’s golden rule. The tunneling rates obey the rule ⃖⃗Γ(𝑉) = ⃗⃗Γ(−𝑉)
and are related to the 𝑃(𝐸) function according to the relation

⃗⃗Γ(𝑉) = 𝜋𝐸2J
2ℏ 𝑃(2𝑒𝑉) (2.17)

Once the tunneling rates are known the 𝐼 − 𝑉 characteristics of the junction read

𝐼(𝑉) = 2𝑒 [⃗⃗Γ(𝑉) − ⃖⃗Γ(𝑉)]

= 𝜋𝑒𝐸2J
ℏ [𝑃(2𝑒𝑉) − 𝑃(−2𝑒𝑉)]

(2.18)

From the relation above we see that the 𝐼 − 𝑉 characteristics are directly related to
the 𝑃(𝐸) function hence it is essential to understand its physical meaning.

The 𝑃(𝐸) function gives the probability for Cooper pairs to exchange energy 𝐸
with the environment and tunnel inelastically across the junction by emitting
a photon of energy ℎ𝜈 = 2𝑒𝑉



2.2. Josephson scanning tunneling microscopy

2

23

a b

hν = 2eV

 V (mV)

I
dI

/d
V

-1 -0.5 0.5 10

 Z(ω)

 Z(ω)

-500 0 500
-500

0

500

1000

1500

Im
pe

da
nc

e 
(Ω

)

 ω (GHz)

c

Figure 2.6: The 𝑃(𝐸) theory. a Density of states (as a function of energy and space) diagram of
sequential inelastic Cooper pair tunnelling. Empty (occupied) states in the two superconducting banks
are denoted by orange (blue). A Cooper pair tunnels between the two electrodes and emits a photon
of energy 2𝑒𝑉. b Real and imaginary part of the environmental impedance as calculated from equation
2.30 for 𝑤0 = 96.7 GHz and 𝛼 = 0.5. c 𝐼–𝑉 and 𝑑𝐼/𝑑𝑉 curves, calculated using 𝑃(𝐸) theory for a 𝑍(𝜔)
corresponding to the tip-induced antenna mode in b of energy ℎ𝜈 = 200 𝜇eV and 𝐸T > 𝐸C. The 𝐼–𝑉
and 𝑑𝐼/𝑑𝑉 curves correspond to a voltage of 𝑉 inside the gap.

This is illustrated in Fig. 2.6a. The 𝑃(𝐸) function is calculated using the following
integral [26, 27, 29]

𝑃(𝐸) = (2𝜋ℏ)−1∫
+∞

−∞
𝑑𝑡 exp (𝐽(𝑡) + 𝑖𝐸𝑡/ℏ) , (2.19)

which is the Fourier transform of the phase–phase correlation function 𝐽(𝑡)
𝐽(𝑡) = ⟨Δ𝜙(𝑡)Δ𝜙(0)⟩ . (2.20)

Here, the brackets ⟨...⟩ denote the quantummechanical average. For a given electro-
magnetic environment impedance 𝑍(𝜔) at a junction temperature of 𝛽 = (𝑘B𝑇)

−1

the phase-phase correlator reads

𝐽(𝑡) = ∫
+∞

−∞

𝑑𝜔
𝜔
ℜ𝑍t(𝜔)
𝑅Q

exp (−𝑖𝜔𝑡) − 1
1 − exp (−𝛽ℏ𝜔) . (2.21)

We note that 𝑅Q is the conductance quantum and 𝑍t the total impedance of the
circuit (see Fig. 2.3) given by

𝑍t(𝜔) =
1

𝑖𝜔𝐶J + 𝑍−1(𝜔)
(2.22)

Calcuating the 𝑃(𝐸) function from the previous equations is a difficult task. For this
reason Inglold et al [30] developed a self-consistent method for the calculation of
the 𝑃(𝐸) function. It involves the following convolution integral:

𝑃(𝐸) = ℐ(𝐸) + ∫
+∞

−∞
𝑑𝜔𝒦(𝐸,𝜔)𝑃(𝐸 − ℏ𝜔) (2.23)
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together with the normalization condition since 𝑃(𝐸) is a probability function

∫
∞

−∞
𝑃(𝐸)𝑑𝐸 = 1 (2.24)

The inhomogeneity function ℐ(𝐸) reads:

ℐ(𝐸) = 1
𝜋ℏ

𝒟
𝒟2 + 𝐸2/ℏ2

𝒟 = 𝜋𝑘B𝑇
ℎ

ℜ𝑍t(0)
𝑅Q

(2.25)

whereas the 𝒦(𝐸,𝜔) function (also called the integral kernel):

𝒦(𝐸,𝜔) = 𝐸/ℏ
𝒟2 + 𝐸2/ℏ2 𝑘(𝜔) +

𝐷
𝐷2 + 𝐸2/ℏ2 𝑘

′(𝜔) (2.26)

with

𝑘(𝜔) = 1
1 − exp (−𝛽ℏ𝜔)

ℜ𝑍t(𝜔)
𝑅Q

− 1
𝛽ℏ𝜔

ℜ𝑍t(0)
𝑅Q

(2.27)

and

𝑘′(𝜔) = 1
1 − exp (−𝛽ℏ𝜔)

ℑ𝑍t(𝜔)
𝑅Q

− 2
𝛽ℏ

+∞

∑
𝑛=1

𝜈𝑛
𝜈2𝑛 + 𝜔2

𝑍t(−𝑖𝜈𝑛)
𝑅Q

(2.28)

In the last relation of 𝜅(𝜔) above, the Matsubara frequencies are denoted as 𝜈𝑛 =
2𝜋𝑛𝑘B𝑇.

The methodology described above provides a simple and powerful method for
calculating the 𝐼 − 𝑉 characteristics of a Josephson junction subject to quantum
phase fluctuations embedded in an arbitrary electromagnetic environment. As an
example, in the following we will calculate the tunneling characteristics for a Joseph-
son STM junction using the 𝑃(𝐸) formalism.

Antenna mode
In a JSTM junction the tip-probe acts as an antenna with well-defined equidistant
resonant frequencies 𝜔𝑛 that are given by the formula [31]

𝜔𝑝 = (2𝑝 + 1)
𝑐
4𝑙𝑡
, 𝑝 = 0, 1, 2... (2.29)

where 𝑐 is the speed of light and 𝑙𝑡 is the tip length. A tip that is 3 mm long has reso-
nant frequencies that are multiples of 25 GHz. This translates into voltage multiples
of 50 𝜇V. Given the lowest eigen frequency 𝜔0, the electromagnetic environment
due to the antenna modes of the tip becomes [32]

𝑍(𝜔) = 𝑍(0)
1 + 𝑖

𝛼 tan (
𝜋
2
𝜔
𝜔0
)

1 + 𝑖𝛼 tan (𝜋2
𝜔
𝜔0
)
. (2.30)
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𝑍(0) is the vacuum impedance, equal to 376.73 Ω and 𝛼 a damping factor. Figure
2.6b shows the real and the imaginary part of the impedance for the antenna mode
environment with 𝛼 = 0.5 and 𝜔0 = 96.7 GHz. The corresponding 𝐼 − 𝑉 and 𝑑𝐼/𝑑𝑉
characteristics are shown in Fig. 2.6c, as calculated using 𝑃(𝐸) theory. We see that
both curves resemble the IZ model predictions. However, here one also observes
small oscillations associated to the antenna mode resonances.

As a final note we want to emphasize that similar to the RCSJ and IZ model,
the superconducting order parameter can be extracted by inspection or fitting of
the tunneling characteristics using 𝑃(𝐸) theory. In more detail, the relation in 2.18
contains the Josephson energy as scaling factor. In turn the Josephson energy is
proportional to the critical supercurrent which is a measure of the order parameter
as we saw earlier.

2.2.5. Experimental procedures
In the previous sections we focused on the basic theoretical principles of JSTM
that allow us to probe the superfluid density. Here we want to describe the main
features of the JSTM experiments that we perform in subsequent chapters. Apart
from performing the STM experiments at sufficiently low temperatures, we find
that the main challenges in JSTM is preparing a superconducting tip and reducing
unwanted signal noise.

There are two common approaches in preparing a superconducting STM tip. In
the first one a tip wire made of a superconducting material is used whereas in the
second the apex of a metallic tip is decorated with a superconducting cluster. In the
case of using a superconducting wire as an STM tip, Nb, Pb and Al are usually the
materials of choice. All of them need special treatment in order to make the tip apex
sharp and remove any oxide layers. Such treatments are often time consuming and
require multiple preparation steps outside the STM apparatus, that limit the yield
of achieving a high quality superconducting tip. Nevertheless, examples of STM
experiments using a superconducting wire as tip material can be found in Refs.
[32–39]

In our case, we employ the method of attaching a superconducting cluster to
the apex of a metallic tip. In this method all the preparation takes place in the
ultra-high vacuum of the STM chamber and has been proven very successful in
several experiments as described in Refs. [9, 40]. As a superconducting material,
Pb is typically the target material for inducing superconducting correlations in the
tip, but a cuprate superconductor [41] or MgB2 [42] have also been reported in
literature. Pb is a soft material with low melting point and good wetting properties
on most surfaces. This favours to first indent a metallic tip on Pb and locally melt
the surface. Subsequently, the tip is pulled away from the surface to obtain a Pb
coated tip apex. Last but not least, Pb has a relatively high critical temperature (7.2
K) that does not limit the range of operation at milli-Kelvin temperatures.

In our experiments, we make superconducting STM tips by indenting a sharp
metallic Pt–Ir tip into a clean Pb(111) surface. The indentations are repeated until
the tip shows a pair-breaking gap equal to that of bulk Pb (ref. [43]). The bulk-like
superconductivity of the tip is verified using tunnelling spectroscopy. The differ-
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ential conductance spectrum exhibits a finite superconducting gap determined by
two sharp coherent peaks. Because of the superconducting tip, these are much
sharper than what one would expect from conventional thermal broadening. In
the measured spectrum shown in Fig. 2.7a, all quasiparticle states of the sample
are shifted by the superconducting gap of the tip, and thus the tunnelling spec-
trum clearly shows sharp coherent peaks at an energy equal to the sum of the
two superconducting gaps, ΔCP,t + ΔCP,s = 2.6 meV. We fit the spectrum with the
formula

( 𝑑𝐼𝑑𝑉) =
𝐺N
𝑒 ∫{𝜕𝐷t(𝜖 + 𝑒𝑉)𝜕𝑉 [𝑓(𝜖) − 𝑓(𝜖 + 𝑒𝑉)] − 𝐷t(𝜖 + 𝑒𝑉)

𝜕𝑓(𝜖 + 𝑒𝑉)
𝜕𝑉 }𝐷t(𝜖)𝑑𝜖,

(2.31)
where 𝐺N is the normal-state conductance, 𝜖 is the integration variable for energy
and 𝑓(𝜖) is the Fermi–Dirac distribution at temperature 𝑇. For the density of states
of the tip and sample, 𝐷t(s), we use a modified Dynes formula [44]

𝐷t(s) = Re
⎡
⎢
⎢
⎣
sgn(𝜖) 𝜖

√𝜖2 + 2𝑖𝛾𝜖 − Δ2CP,t(s)

⎤
⎥
⎥
⎦
. (2.32)

where 𝛾 represents a phenomenological broadening term. We find good agreement
between the measured data and the model for ΔCP,s = ΔCP,t = 1.3 meV, 𝛾 = 45
𝜇eV and 𝑇 = 2.2 K. Here, the effective temperature of 2.2 K is estimated by fitting
the spectra acquired with a normal Pt–Ir tip on a Pb(111) superconducting surface
(Fig. 2.7b). The parameters ΔCP and 𝛾 are also free fitting parameters.
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Figure 2.7: Tunnelling spectra of Pt–Ir/Pb and Pb/Pb junctions. a Normalized conductance
spectrum (blue curve) of a Pb/Pb junction, acquired with a junction resistance of 5 MΩ (𝑉set = +5 mV,
𝐼set = 1.0 nA). The fit (red dashed curve) is consistent with the quasiparticle spectrum of a symmetric
Josephson junction with a pair-breaking gap of 1.3 meV at 2.2 K. b Differential tunnelling spectra of a
Pt–Ir/Pb junction with (blue dots) and without (red dots) electronic filtering using home-built lumped-
element low-pass filters in series with commercial 1.9-MHz low-pass filters and grounding for all non-
essential lines (𝑉set = +5 mV, 𝐼set = 0.10 nA). We use a modified Dynes formula to fit our spectra,
and the results give effective temperatures of 2.38 K (green line) and 2.20 K (yellow line). The other
parameters are the same in both cases (ΔCP = 1.30 meV and 𝛾 = 50 𝜇eV).

Last but not least, we want to stress out the importance of filtering the signal
lines in order to reduce unwanted noise and enhance the tunneling signal. The
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benefit of electronic filtering was already suggested in early JSTM experiments by
Rodrigo et al. [45]. We followed a similar approach by using ∼ 2 MHz commercial
low-pass filters in series with home-built low pass filters. In addition, all lines that
are not used for the STM or conductance measurement were grounded. In practice,
by employing the filters that we describe before results, in conductance spectra
where the extracted electron temperature is lower. An example is shown in Fig.
2.7b.

2.3. Noise scanning tunneling microscopy
Noise scanning tunneling microscopy is a technique that aims at measuring the
shot noise in an STM junction. Shot noise measurements using conventional STM
circuitry are prohibited due to the fact that the GΩ tunneling resistance combined
with the cabling capacitance form a low-pass kHz filter. As a result, detection of
the tunneling current in conventional STM is only possible in a bandwidth range
between DC and a few kHz. Importantly, in this frequency range unwanted noise
sources (mechanical and 1/𝑓 flicker noise) are present which influence the tunneling
signal. This suggests that shot noise measurements should be performed in a
higher frequency regime. In the high-frequency range, thermal and shot noise are
the dominant current fluctuations of the tunneling signal.

Thermal and shot noise are frequency independent (white noise behaviour) and
provide information about the system under consideration. Thermal or Johnson-
Nyquist noise is a result of thermal agitation events in a system. Such events
cause dynamic fluctuations of the number state occupancy. The power spectral
density of the thermal noise in a conductor with a finite resistance 𝑅′ is given by
𝑆th = 4𝑘B𝑇/𝑅′, where 𝑘B is Boltzmann’s constant and 𝑇 is the temperature. Since
thermal noise in a conductor is proportional to the temperature, it can be lowered
by reducing the temperature. Thermal noise effects can be discerned from shot
noise at zero tunneling current, where the latter vanishes.

Shot noise is a consequence of electronic charge quantization. Importantly, the
latter has no effect on the mean (time-averaged) value of a current or conductance
measurement. On the other hand, by performing shot noise measurements we
can determine the charge and the statistics of the carriers that contribute to trans-
port. Shot noise is frequency independent and in the case of uncorrelated electron
(charge 𝑒) transport exhibiting average current 𝐼 it reads

𝑆P = 2𝑒𝐼. (2.33)

The above formula represents uncorrelated transport governed by Poissonian pro-
cesses [46].
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Figure 2.8: Noise sources in STM. Schematic plot of the noise sources that are present in an STM
experiment as a function of frequency. Mechanical and 1/𝑓 unwanted noise dominate in the low-
frequency regime where conventional STM circuitry operates. In the high-frequency regime thermal
and shot noise are the most dominant, exhibiting no frequency dependence. Thus, in a tunneling shot
noise experiment it is important to shift the STM bandwidth to higher frequencies.

Fig. 2.8 depicts a schematic of the various noise sources in STM as a function of
frequency. It becomes apparent that measuring the shot noise is an STM junction
requires operation at high frequencies. Next, we review how the bandwidth in STM
can be extended to MHz frequencies making it possible to measure the shot noise
[47].

2.3.1. STM noise circuitry
NSTM in our experiments is achieved by employing a resonance circuit based am-
plifier in a commercial STM setup. It includes a bias-tee based on a resonator. Fig.
2.9 shows a simplified circuit diagram. The STM junction under bias 𝑉 is described
by a resistance 𝑅J and capacitance 𝐶J. The tunneling current signal 𝐼J signal is
separated into high- and low-frequency components with the use of the resonator
based bias-tee that follows (blue dashed rectangle). The low-frequency compo-
nent is essential for performing conventional STM imaging and spectroscopy and is
subsequently converted to a voltage via a room temperature amplifier.

The high-frequency component subsequently passes through a parallel RLC
tank. The tank circuit converts the current to voltage at the resonance frequency
𝑓0 = (2𝜋√𝐿𝐶)

−1
over the tank (orange dashed rectangle) which is detected by the

gate of a high electron mobility transistor (HEMT) [48]. The HEMT operates at
cryogenic temperatures and exhibits very low input referred voltage and current
noise. Voltage fluctuations at the gate of HEMT are converted into current fluctua-
tions which are measured over a 50 Ω resistor. Next a 50 Ω coaxial line connects
the amplifier circuit to a 40 dB current amplifier at room temperature. Finally, the
signal line is terminated by the 50 Ω input impedance of a spectrum analyser.
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Figure 2.9: Circuit schematic for NSTM. Circuit for NSTM consisting of a bias-tee (blue dashed rect-
angle) and a tank circuit (orange dashed rectangle). The junction is under bias voltage 𝑉 characterised
by a resistance 𝑅J and capacitance 𝐶J. The tunneling signal 𝐼J is decomposed to its low- and high-
frequency parts using a resonator-based bias-tee and a double-tank circuit. A high electron mobility
transistor at cryogenic temperatures and ultra-high vacuum (4K-UHV) is employed for amplifying the
high-frequency signal. The high frequency signal is subsequently amplified (40 dB amplifier) and mea-
sured with a spectrum analyser.

Circuit elements
The circuit that we analysed previously was implemented on a special circuit board
(suitable for ultra-high vacuum applications) in combination with homemade and
commercial elements [47]. Here we highlight some important features:

• The two inductors in the tank circuit are home-made using superconducting
Nb wire. This way the quality factor of the resonator is enhanced, increasing
current-to-voltage amplification at resonance.

• The tank circuit is covered with a Nb shield to minimize Eddy current damping.
This way the quality factor of the resonator is as high as possible.

• To ensure linear gate voltage to current conversion, the HEMT operates in
saturation.

To summarize up to now, we have seen the basic principles of NSTM and the im-
portance of measuring the shot noise at high-frequencies. In addition, we analysed
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the noise circuit design that allows to measure shot noise in an STM junction. Next,
we proceed by considering how the shot noise can be quantitatively extracted from
NSTM measurements.

2.3.2. Extracting the shot noise
The measurement of the shot noise via the scheme that we described previously
boils down to recording the high-frequency oscillations of the tunneling signal 𝐼J in
the spectrum analyser (see Fig. 2.9). The central idea behind the extraction of the
shot noise from such a measurement is to fit the measured power spectral density
with an appropriate model. Therefore, this model should include, among others,
the shot noise as a fitting parameter allowing this way its quantitative determina-
tion. We will follow two different approaches here. The first model is based on
phenomenology and takes into account the effect of the electromagnetic environ-
ment of the tunnel junction in order to describe the total current fluctuations. The
second approach is simpler and is what we will use in practice in Chapters 5 and 6.
In this approach we employ a circuit diagram fit for the measured power spectral
density and extract the shot noise of the junction.

Phenomenological treatment
In this model, circuit theory is employed in order to derive the current noise spec-
trum of a tunneling junction embedded in an environment characterised by its
impedance. The model is based on the work of Frey and Grabert [49] which com-
bines phenomenological arguments with circuit theory. Importantly, it is shown
that is accurately reproduces earlier results based on a Hamiltonian model approach
[50].

In a nutshell, using this model we will calculate the power spectral density mea-
sured at the spectrum analyser of our setup. In order to proceed with the calcu-
lations it is useful to first define the frequency dependent (𝜔) admittances 𝑌L,R at
the left (L) and right (R) of the coax line shown in Fig. 2.9

𝑌L =
1
𝑍L
= −𝑖𝜔𝐶J

𝑌R =
1
𝑍R

= 1
𝑍1 + 𝑖/(𝜔𝐶w)

+ 1
𝑍2 + 𝑖/(𝜔𝐶c)

.
(2.34)

Here, 𝑌1,2 are the admittances of the two resonators in the tank circuit. They read

𝑌𝑗 =
1
𝑍𝑗
= 1
𝑅𝑗 − 𝑖𝜔𝐿𝑗

− 𝑖𝜔𝐶𝑗 =
1 − 𝜔2𝐶𝑗𝐿𝑗 − 𝑖𝜔𝐶𝑗𝑅𝑗

𝑅𝑗 − 𝐼𝜔𝐿𝑗
. (2.35)

After some work which we do not intend to show here, the measured voltage 𝑉m(𝜔)
is found to be

− 𝑉m𝑁0
= 𝒲𝑍L𝑍R
𝑍L + 𝑍R

𝑖T +
𝑖
𝜔𝐶2

𝑖2 +
𝒲𝑍R [𝑍L cos(𝜔𝑙/𝑣) − 𝑖𝑍0 sin(𝜔𝑙/𝑣)]

𝑍L + 𝑍R
∑
𝑝=1,2

𝐴𝑝𝑖𝑝.

(2.36)
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Here

𝐴𝑝 =
𝑍𝑝

𝑍𝑝 + 𝑖/(𝜔𝐶′𝑝)
, (2.37)

where we have defined 𝐶′1 = 𝐶w, 𝐶′2 = 𝐶c and 𝑁0 is given by

𝑁0 =
𝑍2

𝑍2 + 𝑖/(𝜔𝐶c)
. (2.38)

We see in 2.36 that the measured voltage is a linear combination of the shot noise
𝑖T(𝜔) of the tunnel junction and the noise currents 𝑖1(𝜔) and 𝑖2(𝜔) of the resistors
in the tank resonators. Moreover, 𝒲 is the characteristic transmission through the
coax line and is given by

𝒲 = 𝑍0(𝑍L + 𝑍R)
𝑍0(𝑍L + 𝑍R) cos(𝜔𝑙/𝑣) − 𝑖(𝑍20 + 𝑍L𝑍R) sin(𝜔𝑙/𝑣)

. (2.39)

In the formula above, the coaxial cable is of length 𝑙 with a characteristic impedance
𝑍0. In addition, 𝑣 represents the phase velocity.

The noise spectrum of the measured voltage 𝑉m is the average (denoted as ⟨...⟩)
of the fluctuation correlator. It reads

𝑆𝑉(𝜔) = ⟨𝛿𝑉m(𝜔)𝛿𝑉m(−𝜔)⟩ , (2.40)

where the fluctuations 𝛿𝑉m(𝜔) are defined as the following Fourier transform

𝛿𝑉m(𝜔) = 𝔉 [𝑉m(𝑡) − ⟨𝑉m(𝑡)⟩] (2.41)

Therefore, inserting 2.36 in 2.40 allows us to calculate the noise spectrum that we
measure experimentally in NSTM. By close examination we observe that the noise
spectrum 𝑆𝑉(𝜔) will be a linear combination of various correlations [49, 50]. The
first one is the noise form the junction

⟨𝑖T(𝜔)𝑖T(𝜔′)⟩ = 𝑆(𝜔)2𝜋𝛿(𝜔 + 𝜔′), (2.42)

with the shot noise spectrum given by

𝑆(𝜔) = 𝑒𝐼(𝑉 − ℏ𝜔/𝑒)
exp [𝛽(𝑒𝑉 − ℏ𝜔)] − 1 +

𝑒𝐼(𝑉 + ℏ𝜔/𝑒)
1 − exp [𝛽(𝑒𝑉 + ℏ𝜔)] . (2.43)

Here, 𝐼(𝑉) is the current-voltage characteristic of the junction and 𝛽 = 1/(𝑘B𝑇).
The second correlation concerns the thermal noise; the Johnson-Nyquist noise of
resistors

⟨𝑖𝑝(𝜔)𝑖𝑝′(𝜔′)⟩ =
2ℏ𝜔

1 − exp(−𝛽ℏ𝜔)
𝛿𝑝𝑝′
𝑅𝑝

2𝜋𝛿(𝜔 + 𝜔′). (2.44)

Last but not least, the cross-correlation noise between the shot noise contribution
and the thermal noise term. It is expressed by the following relation

⟨𝑖T(𝜔)𝑖𝑝(𝜔′)⟩ = 𝑌J(𝜔, 𝑉)𝑍𝑝J(𝜔)
1
𝑅𝑝
2𝜋𝛿(𝜔 + 𝜔′). (2.45)
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The admittance 𝑌J of the junction reads

𝑌J(𝜔, 𝑉) =
𝑒
2ℏ𝜔[𝐼(𝑉 + ℏ𝜔/𝑒) − 𝐼(𝑉 − ℏ𝜔/𝑒) − 𝑖𝐼KK(𝑉 + ℏ𝜔/𝑒)

−𝑖𝐼KK(𝑉 − ℏ𝜔/𝑒) + 2𝑖𝐼KK(𝑉)],
(2.46)

where 𝐼KK(𝑉) is the Kramers-Kronig transform of the 𝐼(𝑉) characteristics. It reads

𝐼KK = 𝑃∫
+∞

−∞

𝑑𝑈
𝜋
𝐼(𝑈) − 𝐺T𝑈
𝑈 − 𝑉 . (2.47)

Here 𝑃 denotes the principal value and 𝐺T the conductance of the junction. In
addtion, the impedance 𝑍𝑝J in 2.45 characterizes the coupling strength of the noise
𝑖𝑝 to the junction

𝑍𝑝J = −
𝒲𝑍L𝑍R
𝑍L + 𝑍R

𝑍𝑝
𝑍𝑝 + 𝑖/(𝜔𝐶′𝑝)

. (2.48)

In Figure 2.10a we plot the frequency-dependent total impedance of the noise
circuit and voltage noise by using the circuit theory model that we described before.
The total impedance in this framework reads

𝑍t(𝜔) =
𝑍L𝑍0
𝑍L + 𝑍0

[1 + 𝒲𝑍L(𝑍R − 𝑍0) exp(𝑖𝜔𝑙/𝑣)𝑍0(𝑍L + 𝑍R)
] , (2.49)

and as we can see from the plot, it exhibits a pronounced resonance peak at MHz
frequencies. In more detail, the resonance of the circuit is formed by the self-
resonance of the superconducting Nb inductors in combination with the coaxial
cable. Choosing 𝐿1 = 𝐿2 = 66 𝜇H and 𝐶w = 30 pF yields a resonance frequency
at ∼ 3 MHz. The circuit element values that we used above were chose specifically
for extending the STM bandwidth as we explained in the previous section. The
same values were chosen for the experimental realization of the NSTM circuit that
is employed in Chapters 5 and 6. As far as the noise spectrum is concerned (2.10b)
it also exhibits a resonant behaviour at MHz frequencies. At this point, we do
not intend to elaborate on the extraction of the shot noise associated in such a
calculation. Even though it is possible to do it using the formulas that we presented
previously, it becomes cumbersome thus impractical for an experimental analysis.
We therefore proceed to the description of the second model that is simpler and is
used in practice.
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Figure 2.10: Circuit theory model simulations. a Absolute value of the total impedance of the noise
circuit calculated using the circuit theory model. Two resonance peaks at MHz frequencies are observed.
b Calculated voltage noise as a function of frequency using the circuit theory model described in the
text. For the calculation we assumed an Ohmic junction with 𝑅J = 1 GΩ, at 𝑇 = 3.2 K. The junction
is biased with 𝑉 = 5 mV. For both panels we used the same parameters: 𝐶J = 1 fF, 𝐶1 = 𝐶2 = 15 pF,
𝐿1 = 𝐿2 = 66 𝜇H, 𝑅1 = 𝑅2 = 1.7 Ω, 𝐶c = 100 pF and 𝐶w = 30 pF. For the coax line: 𝑙 = 30 cm and
𝑍0 = 50 Ω.
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Circuit diagram fit
In this section we shall see how we extract the shot noise in a NSTM experiment
using a circuit diagram fit. As already stated, the procedure that we will describe
here is employed for all the shot noise measurements presented in this thesis.

First let us recall that in a NSTM experiment the measured quantity is the voltage
noise over the 50 Ω input resistance of our spectrum analyser (see Fig. 2.9). It de-
pends on the bias voltage 𝑉 and in the frequency domain is given by the expression
[46]

𝑆𝑚𝑉 (𝜔, 𝑉) = 𝐺2|𝑍2res|𝑆𝐼 . (2.50)

Here 𝐺 is the total gain of the amplification chain. 𝑍res is the impedance of the res-
onating circuit and 𝑆𝐼 is the total current noise in the circuit. From this expression
we clearly see that 𝑍res influences the measured spectrum, thus our first step is to
fit the measured spectrum in order to mitigate the effect of a possibly non-linear
differential conductance 𝑑𝐼(𝑉)/𝑑𝑉 on the effective resonator impedance. This is
particularly important when measuring the voltage noise spectrum in a supercon-
ducting material; the 𝑑𝐼/𝑑𝑉 in a superconductor is not constant for voltages inside
the superconducting gap Δ. To illustrate this in Fig. 2.11 we present voltage noise
measurements in Pb/Pb JSTM junction (similar to the one shown in Fig. 2.7a) for
different bias voltages exhibiting strong 𝑑𝐼/𝑑𝑉 variations. The clear change of the
measured power spectral density for varying bias voltage is due to the simultane-
ously changing impedance of the resonator and the amplitude of the current noise
as a function of bias.
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Figure 2.11: Voltage noise measurement in a Pb/Pb STM junction. Power spectral density of
the resonator circuit, in a small bandwidth around the resonance frequency for a Pb/Pb STM junction at
2.2 K. The different spectra represent various applied bias to the Josephson junction. Measured data
is plotted by the colored lines, the black curves correspond to a circuit diagram fit. The inset shows a
schematic of the STM junction.

From the fitted voltage noise spectrum we extract the current noise 𝑆𝐼 which
consists of three terms:

𝑆𝐼(𝐼) = 2𝑞∗𝐼 coth(
𝑞∗𝑉
2𝑘B𝑇

) + 4𝑘B𝑇|𝑍res|
+ 𝑆amp, (2.51)
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where 𝑞∗ is the effective carrier charge and 𝑆amp the input noise of the amplifier.
Importantly, the first term represents the shot noise spectrum that we want to
extract. One can show that it is obtained from 2.43 for 𝑒𝑉 ≫ ℎ𝜔 and 𝑘B𝑇 ≫ ℎ𝜔
which holds in the MHz regime. The second term is the thermal noise of the LC
tank resonator.

To numerically extract the shot noise and the effective charge 𝑞∗ from the mea-
sured noise the following method is followed. For retrieving the desired shot noise
contribution we subtract the out-of-tunneling, zero-current noise 𝑆𝐼(0) from the
current noise measured in tunneling 𝑆𝐼(𝐼). The zero-current noise corresponds to
the contributions from the thermal noise of the tank and amplifier noise. Hence
after subtraction we are left with

𝑆𝐼(𝐼) − 𝑆𝐼(0) = 2𝑞∗𝐼 coth(
𝑞∗𝑉
2𝑘B𝑇

) . (2.52)

Finally, we extract the effective charge 𝑞∗(𝑉, 𝑇) for each 𝑉 and 𝑇 numerically by
finding the least square solution of

(𝑆𝑚𝐼 − 𝑆𝐼)
2 = 0, (2.53)

with respect to 𝑞∗. Note, that we have introduced the superscript 𝑚 in order to
denote the measured current spectrum.
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