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5| Forecasting the potential
of weak lensing magnifica-
tion to enhance LSST large-
scale structure analyses

C. Mahony,M.C Fortuna, B. Joachimi, A. Korn, H. Hoekstra

Recent works have shown that weak lensing magnification must be included in upcoming

large-scale structure analyses, such as for the Vera C. Rubin Observatory Legacy Survey of

Space and Time (LSST), to avoid biasing the cosmological results. In this work we investi-

gate whether including magnification has a positive impact on the precision of the cosmo-

logical constraints, as well as being necessary to avoid bias. We forecast this using an LSST

mock catalog, a halomodel to calculate the galaxy power spectra and amultiplicative factor

to account for systematic effects in the magnification measurement. We find that includ-

ing magnification has little effect on the cosmological parameter constraints for an LSST

galaxy clustering analysis. In particular, we find that for the LSST gold sample (8 < 25.3)
including weak lensing magnification only improves the galaxy clustering constraint on

Ωm by a factor of 1.03, and when using a deeper LSST mock sample (8 < 26.5) by a fac-
tor of 1.3. Since magnification predominantly contributes to the clustering measurement

and provides similar information to that of cosmic shear, this mild improvement would

be further reduced for a combined galaxy clustering and shear analysis. We also confirm

that not modelling weak lensing magnification will catastrophically bias the cosmological

results from LSST. Magnification must therefore be included in LSST large-scale structure

analyses even though it does not significantly enhance the cosmological constraints.
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5.1 Introduction

As light fromdistant galaxies travels towards telescopes it is deflected grav-

itationally by intervening matter. This means that galaxy images appear

distorted. On average, the distortions to individual galaxy images are very

small, but when combined, they can be used to statistically map the mat-

ter distribution in the universe. This technique is called weak gravitational

lensing.

Weak gravitational lensing distorts both the shape and size of galaxy

images. Statistical measurements of the shape distortions are referred to

as cosmic shear, and statistical measurements of the size distortions are

referred to as magnification. Making a magnification measurement of the

matter distribution in the Universe, which directly uses size information

is challenging because there is a large intrinsic variation in the sizes of

galaxies, and it is more prone to serious systematics (Hoekstra et al. 2017).

However, Schmidt et al. (2011) achieved a simplified magnification mea-

surement using the joint distribution of galaxy sizes and magnitudes, and

there are developing techniques which anchor the size distribution using

the fundamental plane of galaxies (Huff & Graves 2013; Freudenburg et al.

2019). Most magnification analyses therefore focus on making a magnifi-

cation measurement using galaxy number density information (Scranton

et al. 2005; Myers et al. 2005; Hildebrandt et al. 2009). In a flux limited

survey, distortions to the sizes of galaxy images affect the observed number

density of galaxies for two reasons:

1. Since surface brightness is conserved by lensing if the observed size of

a galaxy is increased, so is its observed flux. This means that galaxies

previously too faint to be observed by a galaxy survey become observ-

able. The number density of galaxies is increased.

2. It is not only the observed size of individual galaxies that is increased

by magnification, but the observed size of the whole patch of sky be-

hind the lens. This means that the observable separation between

galaxies behind the lens increases and there is a dilution in the num-

ber density of galaxies.

These two effects compete and contribute to an overall fluctuation in the

number density of galaxies, as a result of weak lensing magnification (for

the associated equations see section 5.3.1). Here we are concerned with

how magnification can probe the total matter distribution, but it can also

be used to constrain the mass of galaxy clusters (e.g. Tudorica et al. 2017).
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Weak lensing using cosmic shear has been a highly successful tech-

nique. In recent years there have been increasingly precise results using

cosmic shear from galaxy surveys such as the Kilo Degree Survey (KiDS)

(van Uitert et al. 2018; Joudaki et al. 2018; Hildebrandt et al. 2020), the

Dark Energy Survey (DES) (Abbott et al. 2018; Troxel et al. 2018) and

the Hyper Suprime-Cam Survey (HSC) (Hikage et al. 2019). Weak lens-

ing magnification has not been included in standard weak lensing analyses

to date. All that has been included is the sensitivity of results to includ-

ing a simplified magnification model (Abbott et al. 2019). The reasoning

is that magnification provides similar information to that of cosmic shear

and has a poorer signal-to-noise ratio (Bartelmann 2010). However, due to

improvements in statistical precision, recent works have shown that cos-

mological results from upcoming surveys such as the Vera C. Rubin Obser-

vatory Legacy Survey of Space and Time (LSST) and Euclid will be biased

if the effects of weak lensing magnification are not included (Duncan et al.

2014; Cardona et al. 2016; Lorenz et al. 2018; Thiele et al. 2019).

These works have shown that magnification must be included in future

surveys to avoid bias, but the aim of this work is to determine whether in-

cludingmagnification as a complementary probe can also improve the final

precision of the LSSTweak lensing results. Duncan et al. (2014) andLorenz

et al. (2018) found no increase in precision from including magnification

in a weak lensing analysis, however LSST is a special case, because it is a

very deep ground based galaxy survey. This means that there will be a lot

of very faint, small and distant galaxies, which will be poorly resolved. It

will therefore not be possible to measure the shape of these galaxies, but it

may be possible to count them for a weak lensing magnification analysis.

This means that the potentially usable sample size for weak lensing mag-

nification is significantly larger than that for cosmic shear, and as such it

is worth investigating magnification’s potential as a complementary probe

in the case of LSST 1. Particularly, as Nicola et al. (2020) showed that even

with only approximately 100 square degrees, deep samples are already sen-

sitive to magnification.

In summary, we wish to determine the effect of including weak lens-

ing magnification on the precision of the final constraints from LSST weak

lensing. We determine this using the Fisher matrix formalism introduced

in section 5.2. We then describe the modelling of the observables (weak

lensing power spectra and the galaxy luminosity function) in sections 5.3

1Lorenz et al. (2018) also considered LSST specifically, but did not include systematics

or explore departures from the gold sample used for cosmic shear.
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and 5.4. We describe the details of our LSST specific survey modelling in

section 5.5; and present our results and conclusions in sections 5.6 and 5.7.

We verify the stability of our Fisher matrices in appendix A2.

5.2 Fisher Analysis

The Fisher Information matrix summarises the expected curvature of the

log-Likelihood function around its maximum,

�8 9 =

〈
−m2 ln !
m\8m\ 9

〉
, (5.1)

where ! is the likelihood and \8 is a model parameter. If the likelihood

function is sharply peaked for a given parameter, the parameter is tightly

constrained by the data (Dodelson 2003). Themarginal uncertainty on the

model parameter \8 can be calculated from the Fisher matrix as:

Δ\8 >
√
(�−1)88 . (5.2)

The greater than or equal relation is in reference to the Cramér-Rao in-

equality, which specifies that the Fishermatrix gives theminimumpossible

uncertainty on an unbiased model parameter (Tegmark et al. 1997).

The Fisher information matrix can be calculated without data and is

therefore a useful tool for forecasting best case parameter constraints. In

the case of a Gaussian likelihood function and a parameter independent

covariance matrix the Fisher matrix is given by:

�8 9 =
∑
ℓ

m�ℓ

m\8
Cov−1 m�ℓ

m\ 9
, (5.3)

where� is the theory datavector andCov is the associated covariance (Tegmark
et al. 1997). In this work we consider two component Fisher matrices,

which we then add together since they concern separate observables: the

Fisher matrix where the theory datavector consists of the weak lensing ob-

servables (detailed in section 5.3) and the Fisher matrix where the theory

datavector consists of the galaxy luminosity function (detailed in section

5.4). There may be a small correlation between the observables due to cos-

mic variance, but we do not consider this in this forecast. The associated

covariances are detailed in sections 5.5.4 and 5.5.5 respectively.
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5.3 Weak Lensing Observables

The two observable quantities used in this weak lensing analysis are the

shape, often referred to as ellipticity, and the number density of galaxy im-

ages. Since weak lensing is a local effect, the mean ellipticity n and fluc-

tuation in the number density of galaxies =, resulting from weak lensing,

is equal to zero when averaged over large scales. Therefore, the key sta-

tistical quantity used in weak lensing analyses is the two-point correlation

function. There are three two-point correlation functions commonly con-

sidered in large-scale structure and weak lensing analyses: cosmic shear

(ellipticity-ellipticity), angular galaxy clustering (number density-number

density) and galaxy-galaxy lensing (number density-ellipticity). These two-

point correlation functions can be considered as individual probes or com-

bined together into a joint analysis, commonly referred to as ‘3x2pt’. Per-

forming a joint analysis is desirable as it helps to control uncertainties in

themeasurement, since the two-point functions are subject to different sys-

tematic effects and have different sensitivity to the cosmological parame-

ters.

The Fourier transform of the two-point correlation function for cosmic

shear is given by:

〈ñ 8 (ℓ)ñ 9 (ℓ′)〉 = (2c)2X (2) (ℓ + ℓ′)�8 9n n (ℓ) , (5.4)

where ñ is the Fourier transformof the ellipticity, ℓ is the angular frequency,
X (2) is the two-dimensional Dirac delta function and�8 9n n is the projected el-
lipticity power spectrum between redshift bins 8 and 9 (Joachimi & Bridle

2010). It is useful to work in Fourier space because it simplifies linking to

the theory predictions. The galaxy samples used for weak lensing are often

split into redshift bins; a technique called redshift tomography. This bin-

ning enables weak lensing to probe the evolution of the power spectrum

with time, through auto- and cross-correlations between the different red-

shift bins, and hence study the expansion of the universe and dark energy.

TheFourier space two-point correlation function for angular galaxy clus-

tering is given by:

〈=̃8 (ℓ)=̃ 9 (ℓ′)〉 = (2c)2X (2) (ℓ + ℓ′)�8 9nn(ℓ) , (5.5)

where =̃ is the Fourier transform of the number density contrast and �
8 9
nn

is the projected number density power spectrum between redshift bins 8

and 9 . The Fourier space two-point correlation function for galaxy-galaxy
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lensing and is given by:

〈=̃8 (ℓ)ñ 9 (ℓ′)〉 = (2c)2X (2) (ℓ + ℓ′)�8 9nn (ℓ) , (5.6)

where �
8 9
nn is the projected number density-ellipticity power spectrum be-

tween redshift bins 8 and 9 . In this work we focus on angular galaxy clus-

tering as an individual probe, and also consider a combined clustering and

shear analysis, where the analyses occur on separate patches of sky (see

section 5.6.2).

5.3.1 2D power spectra

The key quantities in equations 5.4, 5.5 and 5.6 are the two-dimensional

(2D) power spectra �n n , �nn and �nn . These are the observables we model
and include in our Fisher matrix theory datavector, see section 5.2.

In this work we model the 2D observable power spectra �n n , �nn and
�nn by breaking them down into their constituent parts. The observed el-

lipticity of a galaxy comes from a combination of the intrinsic ellipticity of

the galaxy before it is lensed n� (the intrinsic alignment, see Joachimi et al.

2015 for a review), the distortion of the shape byweak lensing shear W�, and

a randomuncorrelated component nrnd which accounts for the randomness
in the intrinsic ellipicity of galaxies,

n 8 ()) = W8� ()) + n
8
� ()) + n 8rnd()) , (5.7)

where 8 denotes the redshift bin. The observed number density of galaxies

comes from a combination of the number density fluctuation of galaxies as

a result of galaxy clustering =6, the distortion to the number density from

weak lensing magnification =<, and a random component =rnd which ac-
counts for the shot noise contribution,

=8 ()) = =86 ()) + =8<()) + =8rnd()) . (5.8)

In terms of the Fourier space 2D power spectra the uncorrelated ran-

dom components lead to noise power spectra, and separating out the re-

maining contributions gives:

�
8 9
n n (ℓ) = �8 9GG(ℓ) + �8 9IG(ℓ) + � 98IG(ℓ) + �8 9II (ℓ) ,

�
8 9
nn(ℓ) = �8 9gg (ℓ) + �8 9gm(ℓ) + � 98gm(ℓ) + �8 9mm(ℓ) ,
�
8 9
nn (ℓ) = �8 9gG(ℓ) + �8 9gI (ℓ) + �

8 9

mG(ℓ) + �8 9mI(ℓ) ,
(5.9)
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whereG represents ellipticity fromweak lensing shear, I ellipticity from the

intrinsic alignment of galaxies, g number density fluctuations as a results

of intrinsic galaxy clustering andm number density fluctuations as a result

of weak lensing magnification.

We compute all these two-dimensional power spectra �ab from their

associated three-dimensional power spectra %ab using the Limber approx-
imation in Fourier space (Kaiser 1992):

�
8 9

GG(ℓ) =
∫ jhor

0
dj@

8 (j)@ 9 (j)
5 2
 
(j)

%XX

(
: =

ℓ + 1/2
5 (j)

, j

)
,

�
8 9

IG(ℓ) =
∫ jhor

0
dj ?

8 (j)@ 9 (j)
5 2
 
(j)

%IX

(
: =

ℓ + 1/2
5 (j)

, j

)
,

�
8 9

II (ℓ) =
∫ jhor

0
dj ?

8 (j)? 9 (j)
5 2
 
(j)

%II

(
: =

ℓ + 1/2
5 (j)

, j

)
,

�
8 9
gg (ℓ) =

∫ jhor

0
dj ?

8 (j)? 9 (j)
5 2
 
(j)

%gg

(
: =

ℓ + 1/2
5 (j)

, j

)
,

�
8 9
gm(ℓ) = 2(U 9 − 1)�8 9gG(ℓ) ,

�
8 9
mm(ℓ) = 4(U8 − 1) (U 9 − 1)�8 9GG(ℓ) ,

�
8 9

gG(ℓ) =
∫ jhor

0
dj ?

8 (j)@ 9 (j)
5 2
 
(j)

%gX

(
: =

ℓ + 1/2
5 (j)

, j

)
,

�
8 9

gI (ℓ) =
∫ jhor

0
dj ?

8 (j)? 9 (j)
5 2
 
(j)

%gI

(
: =

ℓ + 1/2
5 (j)

, j

)
,

�
8 9

mG(ℓ) = 2(U8 − 1)�8 9GG(ℓ) ,
�
8 9

mI(ℓ) = 2(U8 − 1)�8 9GI(ℓ) ,

(5.10)

where j is the comoving distance, 5 (j) is the comoving angular diameter
distance and ?8 (j) is the probability distribution of galaxies in redshift bin
8. @8 (j) is a weight function given by:

@8 (j) =
3�2

0Ωm

222
5 (j)
0(j)

∫ jhor

j

dj′?8 (j′) 5 (j
′ − j)

5 (j′)
, (5.11)

for further details see Bartelmann & Schneider (2001). The calculation of

the three-dimensional power spectra %ab is detailed in the following sec-
tion.

Equation (5.10) shows that the 2D power spectra associated with mag-

nification �gm, �mm, �mG and �mI can be computed from the 2D power
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spectra associated with weak lensing shear �gG, �GG and �IG using U8 the

faint end slope of the galaxy luminosity function in redshift bin 8. We dis-

cuss the galaxy luminosity function in section 5.4 but detail the relationship

between the magnification and shear power spectra here.

As mentioned previously, weak lensing magnification contributes to

fluctuations in the number density of galaxies =. If the number density of

galaxies above the flux limit 5 is #0(> 5 ), magnification alters the number
density of sources as:

# (> 5 ) = 1
`
#0(> 5 /`) , (5.12)

where # (> 5 ) is the observed cumulative number density of sources and
` is the local magnification factor (Bartelmann & Schneider 2001). If the

cumulative number density of galaxies is assumed to follow a power law

#0(> 5 ) = : 5 −U near the flux limit of the survey then,

# (> 5 ) = 1
`
:

(
5

`

) −U
= #0(> 5 )`U−1, (5.13)

where U is equivalent to U8 mentioned in the previous paragraph. This

means the fluctuation in the observed number density of galaxies as a result

of magnification =< is given by,

=< =
# (> 5 ) − #0(> 5 )

#0(> 5 ) = `U−1 − 1 ≈ (1 + 2^)U−1 − 1

≈ 2(U − 1)^,
(5.14)

where the weak lensing limit ` ≈ 1 + 2^ has been employed.

5.3.2 3D power spectra

The fundamental ingredient for the construction of all of the 3D power

spectra %ab in eq. (5.10) is the matter power spectrum %XX . It summarises

the clustering of matter in the universe and can be derived numerically us-

ing the Boltzmann equations and the primordial power spectrumpredicted

by inflation. For the other power spectra, we can only rely on an effective

description, which we detail in this section.

In this work, we compute %lin
XX
using the Boltzmann code CAMB (Lewis

et al. 2000). To include non-linear corrections we use HALOFIT (Taka-

hashi et al. 2012). The remaining power spectra used in this analysis are

%XI, %II, %gg and %gX . %XI and %II are the intrinsic alignment (IA) power
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spectra, which encode the tendency of galaxy shapes to point in the direc-

tion of amatter overdensity (%XI) or to have an intrinsic coherent alignment
with other galaxy shapes (%II). %gg summarises the clustering of galaxies,
and %gX the cross-correlations between galaxy position and gravitational
shear. %gX is linearly related to the galaxy-magnification power spectrum,
which is the quantity of interest in this work.

We employ a halo model formalism to calculate %gg and %gX , while for
the IA power spectra we use the empirical Non-linear Linear Alignment

(NLA) model (Bridle & King 2007).

The halo model (e.g. Cooray & Sheth 2002) assumes that dark matter

clusters into dark matter halos and that all dark matter exists within dark

matter halos. We define dark matter haloes as spheres of average density

Δd̄<, with Δ = 200 and d̄< as the present day mean matter density of the

Universe. Galaxies are then assumed to form within these dark matter ha-

los, andhence the galaxy distribution traces the distribution of darkmatter.

The model relies on two ingredients, the underlying distribution of dark

matter and how galaxies populate dark matter halos.

The darkmatter distribution is summarised by: the halomass function,

which gives the number density of dark matter halos with mass " at red-

shift I; the halo bias function, which accounts for dark matter halos being

biased tracers of the underlying darkmatter distribution; and the halo den-

sity profile, which summarises how mass is distributed within dark matter

halos. In this work we use the Tinker et al. (2010) functional forms for the

halo mass function and halo bias function, and assume that the density of

dark matter halos follows the Navarro-Frenk-White distribution (Navarro

et al. 1996). To parametrise the concentration-mass relation that enters in

the NFW profile, we follow Duffy et al. (2008). We compute the halo mass

function using the publicly available python package hmf 2 (Murray et al.

2013).

We summarise the second ingredient, how galaxies populate dark mat-

ter halos, using the conditional luminosity function (CLF) (Yang et al. 2003;

Cacciato et al. 2013; van den Bosch et al. 2013). The CLF gives the average

number of galaxies with a luminosity ! between ! ± d!/2 in a halo of mass
". It is divided into two parts:

Φ(! |") = Φc(! |") +Φs(! |") , (5.15)

where Φc(! |") is the CLF for central galaxies and Φs(! |") is the CLF for
satellite galaxies. Central galaxies reside at the centre of dark matter halos

2https://github.com/steven-murray/hmf
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and satellite galaxies orbit around them. Following the approach detailed

in Cacciato et al. (2013) we take the CLF of central galaxies to be modelled

by a lognormal distribution,

Φc(! |")d! =
log 4
√

2cfc
exp

[
− (log ! − log !c)2

2f2
c

]
d!
!
, (5.16)

where fc represents the scatter in the log luminosity of central galaxies and
!c is parametrised as:

!c(") = !0
("/"1)W1

[1 + ("/"1)]W1−W2
. (5.17)

!0 = 2W1−W2!c("1) is a normalisation and "1 is a characteristic mass scale.
The CLF of satellite galaxies is modelled by a modified Schechter function,

Φs(! |")d! = q∗s

(
!

!∗s

) Us+1
exp

[
−
(
!

!∗s

) 2] d!
!
. (5.18)

where Us is the faint end slope of the satellite luminosity function. q
∗
s is

parametrised as:

log[q∗s (")] = 10 + 11(log"12) + 12(log"12)2, (5.19)

where "12 = "/(1012ℎ−1"�) and !∗s is parametrised as:

!∗s (") = 0.562!c(") . (5.20)

Both of the functional forms in eq. (5.16) and (5.18) are derived from the

SDSS galaxy group catalog in Yang et al. (2008). In total we have 9 free

parameters in our CLF model: log"1, log !0, W1, W2, fc, Us, 10, 11 and 12.
We include all of these parameters in our Fisher matrix.

The Halo Occupation Distribution (HOD) can then be obtained as the

integral of the CLF over the luminosity interval [!1, !2]:

〈#x |"〉 =
∫ !2

!1

Φx (! |")d! , (5.21)

where x can be c, s or g=c+s; 〈#c |"〉 and 〈#s |"〉 are the average number
of central and satellite galaxies in a halo of mass " within the luminosity

interval [!1, !2]. Similarly, we can write =̄g as the average number density
of galaxies across all halo masses in a given luminosity interval:

=̄g (I) =
∫

〈#g |"〉=(", I)d" , (5.22)
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where =(", I) is the halo mass function mentioned above. To keep the no-
tation compact, we have omitted the redshift dependence of the HOD: it

arises as a consequence of the survey flux-limit: in this case, the luminos-

ity limits !1 and !2 in eq. (5.21) depend on the specific redshift bin under
consideration.

Once we have defined the HOD, we can calculate the 3D power spectra

%gg and %gX . First, the power spectra can be split into contributions from
the one-halo (1h) and two-halo (2h) terms. The 1h term describes the clus-

tering of galaxies on small scales within the same dark matter halo and the

2h term describes the clustering of galaxies on large scales between differ-

ent halos. These contributions can then be split into the contributions from

central c and satellite s galaxies, as with the CLF. This gives:

%gg = 2%1h
cs + %1h

ss + %2h
cc + 2%2h

cs + %2h
ss ,

%gX = %
1h
cX + %1h

sX + %2h
cX + %2h

sX .
(5.23)

As shown in van den Bosch et al. (2013) these contributions can be calcu-

lated using,

%1h
xy (:, I) =

∫
Hx (:, ", I)Hy(:, ", I)=(", I)d" ,

%2h
xy (:, I) =%lin

XX (:, I)
∫

d"1Hx (:, "1, I)=("1, I)1("1, I)

×
∫

d"2Hy(:, "2, I)=("2, I)1("2, I) ,

(5.24)

where x and y can be c, s or X, and 1(", I) is the halo bias. The functionH
encodes the matter or galaxy contribution:

HX (:, ", I) =
"

d̄m
D̃h(: |", I) ,

Hc(:, ", I) = Hc(", I) =
〈#c |"〉
=̄g (I)

,

Hs(:, ", I) =
〈#s |"〉
=̄g (I)

D̃s(: |", I) .

(5.25)

where D̃h is the Fourier transform of the normalised density distribution

of dark matter in a halo of mass " (mentioned above), and D̃s is the nor-
malised number density distribution of satellite galaxies in a halo of mass

". In his work, we assume satellites to follow the spatial distribution of the

underlying dark matter, i.e. D̃s ≡ D̃h.



168 Weak lensing magnification forecast

To calculate the 3D power spectra %II and %IX we employ the widely
used NLA model. This model links the strength of the tidal field when a

galaxy forms to the intrinsic ellipticity of the galaxy. This gives,

%XI(:, I) = −�IA�1dc
Ωm
� (I) %XX ,

%II(:, I) =
(
�IA�1dc

Ωm
� (I)

) 2
%XX ,

(5.26)

where�1 is a normalisation constant, dc the critical density of the Universe
today and � (I) the linear growth factor. We set�1 = 5×10−14"−1

� ℎ−2Mpc3

based on the IA amplitudemeasured at low redshifts using SuperCOSMOS

(Hartlap, Simon & Schneider Bro), and �IA captures the amplitude of the

deviation from this reference case. We take �IA as a free parameter in our

Fisher matrix. The NLA model is sufficiently flexible for current studies

but can be extended by including a redshift dependent parameter, or using

a halo model formalism to calculate %II and %IX on small scales. Recently,
Fortuna et al. (2021a) explored these options and found that the IA signal

in the one halo regime can be ignored at first order, and that including an

extra redshift dependent parameter is possibly sufficient for LSST.Herewe

consider the simplest NLAmodel, but implementing thesemodels could be

a future extension of this work.

5.4 Galaxy Luminosity Function

The second part of our Fisher matrix theory datavector, see section 5.2, is

the galaxy luminosity function. The galaxy luminosity function describes

the distribution of luminosities in a galaxy sample, the number density of

galaxies with a certain luminosity, and is often directly measured from a

galaxy sample. As specified in Cacciato et al. (2013) the galaxy luminosity

function at a given redshift I can be calculated from the CLF detailed in

section 5.3.2:

Φ(!, I) =
∫

3" Φ(! |")=(", I) , (5.27)

whereΦ(! |") is the CLF and =(", I) is the halo mass function (see section
5.3.2). In this analysis we work with a galaxy sample divided into redshift

bins (labelled 8 and 9 previously) so we wish to compute the galaxy lumi-

nosity function for each redshift bin,

Φ8 (!) =
∫

3I =8 (I)Φ(!, I) , (5.28)
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where Φ8 (!) denotes the luminosity function of galaxies in redshift bin 8,
and =8 (I) the redshift distribution in bin 8. We include a prediction for the

galaxy luminosity function in each redshift bin in our theory datavector as

it helps to constrain the 9 CLF parameters detailed in section 5.3.2, and

hence is critical for obtaining information from the small scale clustering.

The faint end slope of the galaxy luminosity function is also required to

calculate the magnification 2D power spectra, see eq. (5.29).

5.5 Survey Modelling

We perform our Fisher forecast using the cosmological parameter estima-

tion framework CosmoSIS (Zuntz et al. 2015). To calculate the 3D power

spectra detailed in section 5.3.2 we use our own halo model code, which

has been tested against other halo model codes used in the literature.

In this analysis we define two mock LSST galaxy samples; an elliptic-

ity sample n-sample and a number density sample n-sample. We use a 440

square degreemock catalog from the LSSTDark Energy Science Collabora-

tion (DESC)Data Challenge 2 (DC2) simulations (cosmoDC2 1.1.4; Korytov

et al. 2019). These simulations were designed to enable preliminary LSST

DESC analyses, and the statistical distributions of galaxies have undergone

a wide range of validation tests, for details see Korytov et al. (2019); Kovacs

et al. (prep). The catalog includes photometric redshifts for all galaxieswith

an i-bandmagnitude less than 26.5, up to redshift 3. The photometric red-

shifts were calculated using the template fitting code BPZ (Benítez 2000).

The n-sample is defined as all galaxies in this mock catalog with an i-band

magnitude less than 26.5 and photometric redshift greater than 0.1 and

less than 2.0. We set an upper limit as the photometric redshifts begin to

degrade significantly beyond 1.5, see Fig. 5.1. The n-sample is defined as a

subset of galaxies in n-sample with 8 < 25.3. This corresponds to the LSST
gold sample, which will be used for weak lensing (LSST Science Collabora-

tion 2009). We do not apply a separate signal-to-noise cut but, galaxies in

the n-sample have a signal-to-noise ratio > 5 and galaxies in the n-sample
have a signal-to-noise ratio > 20.

5.5.1 Redshift distributions

To compute the 2Dpower spectra in eq. (5.10) and the luminosity functions

in eq. (5.28) we require the redshift distribution of galaxies in each photo-

metric redshift bin. In this workwe split both the galaxy samples, n-sample
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Figure 5.1: Photometric redshift point estimate mode against true redshift
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((b)) ellipticity sample n-sample

and n-sample, into 10 tomographic redshift bins containing equal numbers

of galaxies using their photometric redshifts. Figure 5.2 shows the result-

ing distribution of galaxies with redshift for each tomographic bin, as well

as the tomographic bin boundaries. Figure 5.2 shows that the photomet-

ric redshifts are close to random for bin 10 of n-sample, so our maximum

photometric redshift cut of 2.0 is well justified.

We compute the number density of galaxies in each tomographic bin

to be 12.7 arcmin−2 for n-sample and 4.9 arcmin−2 for n-sample. However,
weak lensing shape measurements typically weight galaxies by the uncer-

tainty or ability to calibrate the shapemeasurements, this would reduce the

number density for n-sample, especially at high redshifts. TheLSST science

book estimates that the number density of galaxies in the gold sample will

be 55 arcmin−2, with the number density of galaxies useful for weak lens-
ing approximately 40 arcmin−2 (LSST Science Collaboration 2009; Chang
et al. 2013). This means that our n-sample is slightly optimistic, with a

galaxy number density of 49 arcmin−2.

5.5.2 Faint end luminosity slopes

The key quantity in determining the amplitude of the fluctuation in the

number density of galaxies as a result of weak lensing magnification is the

faint end slope of the galaxy luminosity function U. If U is equal to 1 there is

no overall fluctuation but if U does not equal 1 there is either an increase or
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Figure 5.2: Number density of galaxies as a function of true redshift for each photometric
bin in the galaxy sample. The dashed lines indicate the photometric bin boundaries.
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decrease in the number density of galaxies. U can be represented in terms

of magnitudes as,

U(8mag) = 2.5
d log10 # (> 8mag)

d8mag
, (5.29)

where 8mag represents the 8 band magnitude, and # (> 8mag) the unlensed
cumulative number density of galaxies with an 8 band magnitude greater

than 8mag (e.g. Duncan et al. 2014).

We measure the faint end slopes U from our LSST DC2 mock catalog.

We compute a value U 9 for each redshift bin 9 , in each mock sample. To

compute U 9 we vary the 8 band magnitude in eq. (5.29) and compute the

cumulative number counts # (> 8mag). We then fit the logarithm of # (>
8mag) with a straight line, and use the slope to compute U 9 . Since we are
only interested in the slope at the faint end (high magnitudes) we only fit

log10 # (> 8mag) over the last magnitude before the samplemagnitude limit;
25.5-26.5 for n-sample, and 24.3-25.3 for n-sample. Figure 5.3 shows that

in general this lower fit limit (marked by a dotted line) captures the value

of U 9 at the faint end of the sample. Increasing the lower fit limit has little

effect on the value ofU 9 obtained, whereas decreasing the fit limit in general

gives a higher value of U 9 .

Table 5.1 shows the U 9 values obtained for each sample and their asso-

ciated uncertainties. The uncertainties come from the uncertainty on the

slope coefficient of the least-squares straight line fit detailed above, since
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Figure 5.3: The faint end slope of the galaxy luminosity function U8 as a function of the
limiting magnitude for each tomographic bin in n-sample (red) and n-sample (blue). The
U8 values used in this analysis were found by fitting the slope of the logarithmic cumulative
number counts (see eq. (5.29)) between the vertical line and the right hand side of the figure.
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Table 5.1: Faint end magnitude slopes U 9 for each redshift bin 9 in n-sample and n-sample,
with their associated 1f uncertainties.

n-sample &-sample

U1 0.445 ± 0.005 U1 0.412 ± 0.005
U2 0.663 ± 0.006 U2 0.624 ± 0.004
U3 0.848 ± 0.006 U3 0.677 ± 0.004
U4 0.781 ± 0.005 U4 0.825 ± 0.006
U5 0.573 ± 0.004 U5 0.97 ± 0.01
U6 0.694 ± 0.006 U6 0.74 ± 0.01
U7 0.74 ± 0.01 U7 0.895 ± 0.006
U8 0.95 ± 0.02 U8 0.99 ± 0.01
U9 1.39 ± 0.01 U9 1.08 ± 0.01
U10 2.24 ± 0.02 U10 1.42 ± 0.01

they were found to be much larger than the uncertainties on the values of

the cumulative number counts # (> 8mag) due to the large number of galax-
ies in each sample. The uncertainties are very small, and would become

even smaller when using the full 18000 square degree LSST area instead

of a 440 square degree mock catalog. We therefore consider the U 9 param-

eters as fixed in our forecast, but note that they can be difficult to measure

accurately from real data due to the presence of systematics and selection

effects (see conclusions for further discussion) .

We can compare the U values in Table 5.1 to those found in Duncan

et al. (2014) for the Canada–France–Hawaii Lensing Survey (CFHTLenS).

In both cases U 9 generally increases with redshift. CFHTLenS reaches an

U 9 value of approximately 1 at its 8 band magnitude limit of 24.7, for its

highest redshift bin between 1.02 and 1.3. This roughly corresponds to U7

and U8 in n-sample, where the magnitude limit of 24.7 is included in the U 9

fit. Table 5.1 shows that our U7 and U8 values for n-sample are consistent
with CFHTLenS.

5.5.3 Systematics

We include a number of systematics in our analysis using nuisance parame-

ters. For the fiducial values of these parameters and their associated priors

please see Table 5.2. To apply a Gaussian prior to a particular parameter

in a Fisher matrix, one simply adds 1/f2
prior to the diagonal element asso-
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ciated with the parameter (Coe 2009). In conceptual terms, the priors on

the Fisher matrix parameters can be summarized by a diagonal covariance

matrix with elements f2
prior. This covariance matrix can then be inverted

into a prior Fisher matrix, giving 1/f2
prior diagonal elements, and added to

the experimental Fisher matrix.

Shear multiplicative bias

Systematic uncertainties in the measuring and averaging of galaxy shapes

can result in a multiplicative scaling of the observed shear. These system-

atic effects include: noisy galaxy images, the applicability of themodel used

to describe the light profile of galaxies, the details of the galaxy morphol-

ogy and selection biases (e.g. Heymans et al. 2006). We parametrise this

multiplicative scaling using one parameter <8 per redshift bin (10 parame-

ters in total), which scale the cosmic shear and galaxy-galaxy lensing power

spectra as:

�
8 9
n n (;) → (1 + <8) (1 + < 9)�8 9n n (;) ,

�
8 9
nn (;) → (1 + < 9)�8 9nn (;) .

(5.30)

We impose Gaussian priors on these multiplicative parameters, which are

guided by the LSSTDESC science requirements (Alonso et al. 2018). These

science requirements forecast the uncertainties LSST will need to achieve

in order to meet their main objectives of significantly improving the con-

straints on the dark energy parameters F0 and F0, compared to previous
dark energy experiments, and obtaining dark energy constraints where the

total calibratable systematic uncertainty is less than the marginalised sta-

tistical uncertainty. For the case of shear multiplicative bias the require-

ment is that the ‘systematic uncertainty in the redshift-dependent shear

calibration’ should not exceed0.003by year 10. We therefore apply aGaus-

sian prior centred on zero with a standard deviation of 0.003 to each of our

shear multiplicative bias parameters.

Clustering Multiplicative Bias

We parametrise uncertainties in the number count measurement using a

similar approach to that for shear. Systematics which affect the number

density of galaxies include: galactic dust obscuring background galaxies,

variable survey depth impacting the number of sources promoted across

the flux limit by magnification, and stars contaminating the galaxy sam-

ple (Hildebrandt 2015; Thiele et al. 2019). Usually these effects would be
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partially absorbed by the galaxy bias (CLF) parameters, however since we

include the galaxy luminosity function in our analysis the CLF parameters

will be tightly constrained. We therefore felt it was important to include

this multiplicative bias parameterisation for clustering as well as shear.

Analogous to shear multiplicative bias, the observed clustering power

spectra are scaled by a multiplicative factor as,

�
8 9
nn(;) → (1 + <8eff) (1 + < 9

eff)�
8 9
nn(;) ,

�
8 9
nn (;) → (1 + <8eff)�

8 9
nn (;) .

(5.31)

However, sincemost systematics decrease with signal to noise ratio, we as-

sume <8eff has a power law dependence on the signal to noise of galaxies

in redshift bin 8. This enables us to reduce the number of clustering mul-

tiplicative bias parameters from ten parameters (one <8eff per redshift bin)
to two parameters 0m and 1m. <

8
eff is given in terms of 0m and 1m by,

<8eff = <step − <fid

=
1
#8

[
0m

#8∑
==1

( (
#

) 1m

=
− 0fid

#8∑
==1

( (
#

) 1fid

=

]
,

(5.32)

where #8 is the number of galaxies in tomographic bin 8, the sum is over

the signal-to-noise ratio (/# of all galaxies in tomographic bin 8, 0fid is the
fiducial value of 0m and 1fid is the fiducial value of 1m. We introduce the<fid
term because if <eff = <step, 1m becomes unconstrained when 0m is equal

to zero, which breaks the Gaussian Likelihood assumption in the Fisher

matrix prediction.

We compute the signal to noise ratio for each galaxy in our samples

from the error on the i band apparent magnitude (Hainaut 2005). Using

the signal to noise of every galaxy in this bias calculation is computationally

expensive, since the total number of galaxies in n-sample and n-sample is

of order 107 and 108. We therefore use a randomly selected 1% subsample

of galaxies in this calculation. This subsample is representative of the full

galaxy sample, but prevents our bias calculation from being prohibitively

slow.

Photometric redshift uncertainties

We model uncertainties in the redshift distributions shown in figure 5.2

by introducing shift factors Δ8 (Bonnett et al. 2016). Δ8 simply shifts the
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redshift distribution in bin 8 so,

=8 (I) → =8 (I − Δ8). (5.33)

Since we have two redshift distributions, one for n-sample and one for n-

sample, each divided into 10 bins this results in 20 shift parameters Δ8.

These parameters are likely to be correlated, so we are making a conser-

vative choice by allowing 20 separate shift parameters, which may some-

what weaken our final constraints. We impose Gaussian priors on each of

these shift parameters, once again guided by the LSST DESC science re-

quirements (Alonso et al. 2018). The prior is centred on zero, with a stan-

dard deviation of 0.003 for the n-sample parameters and of 0.001 for the

n-sample parameters.

A future extension of this work could be to include other modes of red-

shift uncertainty, such as a change in thewidth or to the high redshifts tails,

as in Nicola et al. (2020). These may be particularly interesting for magni-

fication, as they change the level of overlap between different redshift bins.

5.5.4 Covariances

In this forecast we consider two component Fisher matrices. The Fisher

matrix for theweak lensing observables and theFishermatrix for the galaxy

luminosity function (see section 5.2). We therefore require two covari-

ances: the weak lensing observables covariance and the galaxy luminosity

function covariance.

Weak lensing observables covariance

We compute a Gaussian covariance for the observable weak lensing power

spectra (�n n ,�nn,�nn ) usingCosmoSIS. The covariance between twopower
spectra is given by,

Cov
[
�8 9 (ℓ), �:; (ℓ′)

]
= Xℓℓ′

2c
�ℓΔℓ

[
�̄8: (ℓ)�̄ 9; (ℓ) + �̄8; (ℓ)�̄ 9: (ℓ)

]
, (5.34)

where 8 9 :; denote redshift bins, Xℓℓ′ is the Kronecker delta, � is the survey

area and Δℓ the size of the angular frequency ℓ bin (Joachimi et al. 2008;

Joachimi & Bridle 2010). We do not include the non-gaussian contribu-

tions to the covariance since their effect is small, and unlikely to impact

our final results (Barreira et al. 2018). To account for the random terms in

equations 5.7 and 5.8 we define,

�̄8 9 (ℓ) = �8 9 (ℓ) + # 8 9 , (5.35)
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where # 8 9 is the shot or shape noise contribution. In the case of �n n ,

# 8 9 = X8 9
f2
n

2=̄8
, (5.36)

in the case of �nn,

# 8 9 = X8 9
1
=̄8
, (5.37)

and in the case of �nn , #
8 9 = 0. Where fn is the total intrinsic ellipticity

dispersion, and =̄8 is the average number density of galaxies in redshift bin

8 (Bartelmann & Schneider 2001). We compute the power spectra covari-

ance for 20 log-spaced angular frequency ; bins from ;min = 30, to avoid
inaccuracies in the Limber approximation, to ;max = 3000, to avoid the very
non-linear regime.

Galaxy luminosity function covariance

We compute the galaxy luminosity function covariance by measuring the

galaxy luminosity functions of our mock LSST galaxy samples and then

computing a bootstrap covariance. Since Fisher forecasts do not require

a datavector, only a covariance, we only use themeasured luminosity func-

tions to compute the covariance and model the galaxy luminosity function

in the forecast using the CLF formalism (see section 5.4).

Tomeasure the luminosity functions for the n-sample and n-sample we

begin by computing the luminosity of each galaxy from its rest-frame ab-

solute magnitude in the 8 band. We then divide our sample into the 10 to-

mographic bins described above and scale the luminosity function for each

bin 9 by the volume of bin 9 , to convert the histogram to a number density.

When calculating the bin volumewe assume that the galaxies do not scatter

beyond the tomographic bin boundaries. This is an approximation, which

figure 5.2 shows, is becoming problematic for bin 10.

Ideally, we would use the full range of galaxy luminosities to compute

our bootstrap covariance. However in order to use the low luminosity re-

gion we would need to correct our galaxy samples to be volume complete,

for example through the 1/+max method (Schmidt 1968; Felten 1976; Cole
2011). High luminosity objects can be observed across the full volume of

the survey, but low luminosity objects can only be observed at smaller dis-

tances. This introduces a bias referred to as Malmquist bias, and we there-

fore only want to include galaxies that can be observed across the whole

volume of the survey. For the purposes of this work we deemed it sufficient

to simply cut out the low luminosity galaxies to make the sample volume
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limited, since this is still a significant step forward compared to previous

analyses. For details of how we determine the volume complete cut see

appendix A1.

We then compute a bootstrap covariance for ourmeasured galaxy lumi-

nosity functions. First, we sample our dataset with replacement 100 times

and compute the associated datavectors. We then assume that each lumi-

nosity bin in each tomographic bin is independent (each of our datapoints

is independent) and calculate the variance of these 100 samples. This gives

us a diagonal covariance. The variance of the 100 samples is in general

small, due to the very large numbers of galaxies in each sample.

5.5.5 Fiducial values

TheFishermatrix gives the curvature of the log-Likelihood function around

its peak. It does not find the location of the peak, this is defined with a set

of fiducial values (shown in Table 5.2). The set of parameters required to

calculate the 3D power spectra in section 5.3.2 are the cosmological param-

eters and the CLF parameters. In this work we consider the constraints on

a flat ΛCDM cosmology, and vary the cosmological parametersΩm, ℎ0, Ωb,
=s, �s/10−9, F and Fa. We take their fiducial values from the input values

used to generate the simulation for the LSST DESC mock catalog, or from

the values obtained by the Planck satellite (Aghanim et al. 2018).

We also vary the full set of CLF parameters log"1, log !0, W1, W2, fc,
Us, 10, 11 and 12, detailed in section 5.3.2. Here we use the fiducial values
found for SDSS by Cacciato et al. (2013), which have been shown to also be

applicable to higher redshift surveys (Cacciato et al. 2014; van Uitert et al.

2016b).

5.6 Results

5.6.1 Clustering

Figure 5.4 shows the forecast constraints on the cosmological parameters

from �nn with and without including magnification terms for n-sample. In
the case of includingmagnification the observable is�nn = �gg +�gm +�mm
instead of �nn = �gg. Including magnification has only a small impact on
the cosmological parameter constraints. The greatest change is the 1f con-

straint on Ω<, which is improved by a factor of 1.3 from 0.003 to 0.0023.
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Table 5.2: Fiducial values and priors for the model parameters used to compute the fisher
matrices in this work.

Parameter Fiducial Value Prior

Survey

Area 18000 deg2 fixed

f4 0.35 fixed

Cosmology

Ωm 0.265 flat

ℎ0 0.71 flat

Ωb 0.0448 flat

=s 0.963 flat

�s/10−9 2.1 flat

F −1.0 flat

Fa 0.0 flat

Ωk 0.0 fixed

CLF

log("1) 11.24 flat

log(!0) 9.95 flat

W1 3.18 flat

W2 0.245 flat

f2 0.157 flat

Us −1.18 flat

10 −1.17 flat

11 1.53 flat

12 −0.217 flat

Intrinsic Alignments

�IA 1.0 flat

n-sample Photo-z

Δ8n 0.0 Gauss(0.0, 0.003)

n-sample Photo-z

Δ8n 0.0 Gauss(0.0, 0.001)

Shear Bias

<8 0.0 Gauss(0.0, 0.003)

Clustering Bias

0m 0.001 flat

1m 0.0 flat
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Figure 5.4: Constraints on the cosmological parameters used in this analysis from �nn and
�nn including magnification terms for n-sample. Including magnification has only a small
impact on the constraints.
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The forecast constraints on the cosmological parameters from �nn and
�nn including magnification terms for n-sample show that the impact of

magnification is further reduced compared to the deeper n-sample. The

1f constraint on Ω< is only improved by a factor of 1.03 from 0.0032 to

0.0031, instead of a factor of 1.3 with the deeper n-sample. This shows

that includingmagnification has a greater, albeitmodest, impact for deeper

samples.

Figure 5.5 shows the forecast constraints on the CLF parameters from

�nn with and without including magnification terms for the n-sample. In-
cluding magnification has little effect on the constraints on the CLF pa-

rameters. This is expected because the CLF constraints are predominantly

determined by the galaxy luminosity function. We focus on the cosmologi-

cal and CLF parameters, instead of presenting the full 28 parameter space,

for clarity. The steps taken to ensure the stability of our Fisher matrix are

detailed in appendix A2.

A useful measure of the constraining power of an analysis is the Figure

of Merit (FoM) defined as,

FoM = det( [F−1]@)
1
#@ , (5.38)

where [F−1]@ is the inverse Fisher matrix for the set of parameters @ and
#@ is the number of parameters @ in the set. In this work we define @ as the

full set of cosmological parameters, so the FoM represents the power of the

constraints on the cosmological parameters. It is also common to define a

Dark Energy FoM where @ = {F, F0} (Albrecht et al. 2006).
Whenmagnification is included in the clustering analysis for the deeper

n-sample the FoM is increased by a factor of 1.45. However, when magni-

fication is included in the clustering analysis for n-sample (the LSST gold

sample) the FoM is increased by a factor of 1.08. This mirrors the con-

clusions from looking at the parameter constraints on Ω< – magnification

is more beneficial for deeper samples with greater numbers of low signal-

to-noise ratio galaxies. Interestingly, there is no increase in the FoM for

clustering without magnification when using the deeper n-sample instead

of n-sample. This implies that it is more beneficial to have a smaller sample

of high signal-to-noise objects than a larger sample including lower signal-

to-noise objects. This is likely due to the additional fainter objects having

poorer photometric redshifts and therefore largely contributing to the tails

of the redshift distribution. Looking back at figure 5.2 we can see that the

redshift distribution for the shallower n-sample is much cleaner.
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5.6.2 Shear calibration

The previous section showed that including weak lensing magnification

only has a small effect on the cosmological parameter constraints from an

LSST-like angular galaxy clustering analysis. In a combined clustering and

cosmic shear analysis the impact of magnification on the cosmological pa-

rameter constraints can only be reduced. This is because magnification

predominantly contributes to the clustering signal and provides very simi-

lar information to shear. We therefore focus on the effect of magnification

on the shear multiplicative bias parameters.

We examine the impact of including magnification on the shear mul-

tiplicative bias parameters for a combined LSST clustering �nn and shear
�n n analysis, where the analyses occur on separate patches of sky. This is

because the full ‘3x2pt’ (�nn, �nn , �n n ) analysis requires careful treatment
of the cross terms, which is beyond the scope of this work. We are therefore

investigating whether the improved cosmological constraints frommagni-

fication translate into an improved calibration.

Figure 5.6 shows the forecast constraints on the shear multiplicative

bias parameters from our �nn and �n n analysis, with and without magnifi-
cation terms, where �n n is calculated for n-sample and �nn for the deeper
n-sample. Including magnification only slightly improves the constraints

on the shear calibration parameters, with a greater effect at higher redshift.

The 1f constraint on<1 is improved by a factor of 1.06,<6 by 1.3 and<10 by
1.34 when including magnification. When �nn is calculated using the shal-
lower n-sample the impact is similar, but less pronounced. These results

show that including magnification is not particularly helpful for calibrat-

ing the shear measurement. However, the impact of magnification may be

slightly improved when performing a full ‘3x2pt’ analysis, where the clus-

tering and shear are measured on the same patch of sky.

5.6.3 Bias

Recentworks have shown that cosmological results fromupcoming surveys

such as LSST will be biased if the effects of weak lensing magnification are

not included, due to improvements in statistical precision (Duncan et al.

2014; Cardona et al. 2016; Lorenz et al. 2018; Thiele et al. 2019). To exam-

ine this for our forecast, figure 5.7 shows the absolute difference between

the clustering power spectra �nn with and without magnification in terms
of the 1f uncertainty on the clustering power spectra without magnifica-

tion. In this case the clustering power spectra have been calculated using
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n-sample. The grey shaded region indicates where �nn including magnifi-
cation is more than 2f away from �nn without magnification. Particularly
at high ℓ (small scales) �nn including magnification significantly diverges
from �nn without magnification.

For comparison, we have also shown the impact of changingΩm and �s
by 5f in Fig. 5.7. In all of the redshift bin combinations shown, the dif-

ference from including magnification is larger than or comparable to the

difference from changing Ωm and �s by 5f. This clearly indicates that not
including magnification terms will catastrophically bias cosmological con-

straints from LSST. Additionally, the difference from not including mag-

nification seems to mimic the behaviour of biasing �s by 5f. This implies
that not including magnification could particularly bias the constraints for

�s, one of the parameters weak lensing is most sensitive to.

Figure 5.8 shows the absolute difference between the clustering power

spectra �nn with and without magnification in terms of the 1f uncertainty
on the clustering power spectra without magnification, where the cluster-

ing power spectra have been calculated using the shallower n-sample. In

this case the difference from including magnification is not as large as for

n-sample, however in most redshift bin combinations is still comparable

or larger than the differences from changing Ωm and �s by 5f.

5.7 Conclusions

Previous works have shown that upcoming results from surveys such as

LSST and Euclid will be biased if the effects of weak lensing magnification

are not included (Duncan et al. 2014; Cardona et al. 2016; Lorenz et al.

2018; Thiele et al. 2019). In this work we forecast whether including weak

lensing magnification as a complementary probe can additionally improve

the precision of the LSST weak lensing constraints. We determined this

using the Fisher matrix formalism, where our theory datavector included

the weak lensing observables and the galaxy luminosity function. To cal-

culate the weak lensing observables and the galaxy luminosity function, we

employed a halo model, detailed in Cacciato et al. (2013). We defined two

mock LSST galaxy samples from the LSST DC2 simulations (Korytov et al.

2019) for use in our forecast; a sample which corresponds to the LSST gold

sample where the 8 band magnitude is less than 25.3 (intended to be used

for the weak lensing shear measurement), and a deeper sample where the

8 band magnitude is less than 26.5.

We found that weak lensing magnification provides little additional in-
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formation as a complementary probe for LSST. For a galaxy clustering anal-

ysis using the LSST gold sample we found that including magnification in-

creased the Figure of Merit (FoM) for the set of cosmological parameters

Ωm, ℎ0,Ωb, =s, �s/10−9, F andFa by a factor of 1.08. When using the deeper

galaxy samplewe found thatmagnification increased the FoMby a factor of

1.45. In terms of the precision of the Ω< constraints, we found for a galaxy

clustering analysis using the LSST gold sample that including magnifica-

tion increased the 1f precision by a factor of 1.03, using the deeper sample

we found a factor increase of 1.3. These results show that including mag-

nification is more beneficial for deeper samples, but still has a fairly small

impact.

The effect of including magnification would be even smaller in a com-

bined galaxy clustering and cosmic shear analysis because magnification

provides similar information to that of cosmic shear. However, we investi-

gated the impact of including magnification on the calibration of the shear

measurement. We found that including magnification only slightly im-

proves the constraints on the shear calibration parameters.

While this forecast is more realistic than many to date, as it includes

LSST mock catalog data and a flexible galaxy bias model, it still relies on a

number of simplified assumptions about magnification. Firstly, the mag-

nification modelling assumes that the galaxy sample is purely flux limited.

Often galaxies are also selected based on their signal-to-noise ratio, colours

and morphology which complicates the magnification modelling (Hilde-

brandt 2015). Secondly, there are a large number of systematics associ-

ated with the magnification measurement such as dust attenuation, vari-

able survey depth, star-galaxy separation and the blending of galaxy im-

ages (Hildebrandt et al. 2013; Morrison & Hildebrandt 2015; Thiele et al.

2019). We included a multiplicative factor in our modelling of the cluster-

ing power spectra in order to incorporate these effects, but more detailed

modelling is likely required. For example, we could havemarginalised over

the faint end luminosity slopes U8, which are required to compute the mag-

nification power spectra. We chose to fix them, since at least for the gold

sample it should be comparatively easy to explore the luminosity function

beyond the magnitude limit, so measurement errors on U8 can be expected

to be very small. This forecast could therefore be considered a best case

scenario for magnification, and even in this scenario we found that includ-

ing magnification has little impact. However, we also confirmed that not

including magnification will strongly bias cosmological results from LSST,

so must be modelled.
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A1 VolumeCompleteCut forGalaxyLuminosity

Function Covariance

A deeper galaxy sample will be volume complete to lower luminosities, so

when the luminosity function of a shallower sample diverges from the lu-

minosity function of a deeper sample, we know the shallower sample has

ceased to be volume complete. We can therefore determine the volume

complete luminosity cut for the n-sample by finding where it diverges from

the n-sample. Our divergence condition is

|Φ8n (!) −Φ8
=(n ) (!) |

Φ8n (!)
> 0.2 , (39)

where Φ8n is the luminosity function for the n-sample and Φ8
=(n ) is the lu-

minosity function for the n-sample, where the n-sample has been binned

using the n-sample tomographic bins. We cut Φ8n when there is a differ-

ence of 20% from the deeper sampleΦ8
=(n ) . This value was found to cutΦ

8
n

before it significantly diverged from the deeper sample whilst allowing for

small deviations, see the right panel of Fig. 9.

Since we did not have a sample deeper than the n-sample available to

us, we made a more stringent volume complete cut on the n-sample lumi-

nosity function based on where the luminosity function of our shallower

sample n-sample diverged. If the shallower sample is volume complete we

can be sure that the deeper sample is also volume complete. In this case

our divergence condition is

|Φ8= (!) −Φ8
n (=) (!) |

Φ8=
> 0.2 , (40)
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n-sample being binned into n-sample redshift bins. !Φ8 (!) has units of ℎ3/Mpc3.
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where Φ8= is the luminosity function for n-sample and Φ8
n (=) is the lumi-

nosity function for n-sample, where n-sample has been binned using the n-

sample tomographic bins. While this luminosity cut enforces thatn-sample

is volume complete, using a shallower sample means that the cut is much

more conservative than necessary.

A2 Fisher Matrix Stability

High-dimensional Fishermatrices canbeunstable. Herewedetail the steps

taken to ensure the stability of our Fisher matrices and hence the robust-

ness of our results.

The derivatives in eq. (5.3) are calculated numerically using a method

of numerical differentiation called a 5-pt stencil. This method requires the

pipeline to be evaluated at 4 points around the model parameter’s fiducial

value (5 points including the fiducial value). The separation between these

points is referred to as the step size. If the step size is too large the Fisher

matrix fails to capture the curvature of the likelihood function about the

peak and if it is too small numerical difficulties can arise. Therefore when

usingFishermatrices it is vital to verifywhether the step size is appropriate,

otherwise any results are meaningless.

We verify our step sizes in 1 dimension by fixing all but one model pa-

rameter. We then calculate the 1D likelihood using a Fisher matrix with a

specified step size and by sampling the likelihood function directly. If the

1D likelihoods match we know we are using a reasonable step size when

calculating our Fisher matrix. We sample the likelihood function directly

using a simulated datavector generated at the Fisher matrix fiducial values

and a grid sampler. Grid samplers evaluate the likelihood at a specified set

of grid points. Since we are assuming a Gaussian Likelihood when calcu-

lating our Fisher matrix (eq. (5.3)) we are only interested in whether the

standard deviation f of the likelihood calculated using the Fisher matrix

matches the f of the likelihood from sampling directly using a grid sam-

pler.

Figure 10 shows the f of the 1D likelihood calculated using the Fisher

matrix for different choices of step size. These plots show that as the step

size decreases the f of the 1D likelihood reaches a plateau, where the step

size is actually capturing the shape of the likelihood, before becoming un-

stable (see subplot for the photometric redshift bias parameter for redshift

bin 10). We therefore select a step size in the range where the f of the

Fisher likelihood is stable. Figure 11 shows the Fisher likelihoods gener-
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ated using the selected step sizes overlaid with the likelihood from the grid

sampler to verify that theymatch. For the case of themagnification bias pa-

rameter 1m the Fisher and grid likelihoods do not match. This is because

when calculating the Fisher matrix we assume that the likelihood is Gaus-

sian, and the likelihood of 1m from direct sampling is clearly not Gaussian.

This is a limitation of the Fisher matrix approach.

We additionally check the Fisher step sizes for the cosmological param-

eters, by varying all the cosmological parameters at once and exploring

the multivariate posterior with Markov Chain Monte Carlo (MCMC) sam-

pling3. Figure 12 shows a comparison between the constraints obtained

from theMCMC and the Fisher matrix. Theymatch well and show that our

Fisher matrix is adequately capturing the shape of the likelihood.

Figures 10 and 11 show only an example case for the parameters used to

generate the �nn Fisher matrix for n-sample. However, the step sizes have
been verified using this method for every Fisher matrix referred to in the

results section.

3the MCMC we use is emcee (Foreman-Mackey et al. 2013)
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Figure 12: Comparison of the constraints on the cosmological parameters used in this analysis
when found using and MCMC or a Fisher matrix. All other parameters have been fixed.




