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5 Forecasting the potential

of weak lensing magnifica-

tion to enhance LSST large-
scale structure analyses

C. Mahony, M.C Fortuna, B. Joachimi, A. Korn, H. Hoekstra

Recent works have shown that weak lensing magnification must be included in upcoming
large-scale structure analyses, such as for the Vera C. Rubin Observatory Legacy Survey of
Space and Time (LSST), to avoid biasing the cosmological results. In this work we investi-
gate whether including magnification has a positive impact on the precision of the cosmo-
logical constraints, as well as being necessary to avoid bias. We forecast this using an LSST
mock catalog, a halo model to calculate the galaxy power spectra and a multiplicative factor
to account for systematic effects in the magnification measurement. We find that includ-
ing magnification has little effect on the cosmological parameter constraints for an LSST
galaxy clustering analysis. In particular, we find that for the LSST gold sample (i < 25.3)
including weak lensing magnification only improves the galaxy clustering constraint on
Qp, by a factor of 1.03, and when using a deeper LSST mock sample (i < 26.5) by a fac-
tor of 1.3. Since magnification predominantly contributes to the clustering measurement
and provides similar information to that of cosmic shear, this mild improvement would
be further reduced for a combined galaxy clustering and shear analysis. We also confirm
that not modelling weak lensing magnification will catastrophically bias the cosmological
results from LSST. Magnification must therefore be included in LSST large-scale structure
analyses even though it does not significantly enhance the cosmological constraints.
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5.1 Introduction

Aslight from distant galaxies travels towards telescopes it is deflected grav-
itationally by intervening matter. This means that galaxy images appear
distorted. On average, the distortions to individual galaxy images are very
small, but when combined, they can be used to statistically map the mat-
ter distribution in the universe. This technique is called weak gravitational
lensing.

Weak gravitational lensing distorts both the shape and size of galaxy
images. Statistical measurements of the shape distortions are referred to
as cosmic shear, and statistical measurements of the size distortions are
referred to as magnification. Making a magnification measurement of the
matter distribution in the Universe, which directly uses size information
is challenging because there is a large intrinsic variation in the sizes of
galaxies, and it is more prone to serious systematics (Hoekstra et al.|2017).
However, Schmidt et al.|(2011) achieved a simplified magnification mea-
surement using the joint distribution of galaxy sizes and magnitudes, and
there are developing techniques which anchor the size distribution using
the fundamental plane of galaxies (Huff & Graves|2013; Freudenburg et al.
2019). Most magnification analyses therefore focus on making a magnifi-
cation measurement using galaxy number density information (Scranton
et al. 2005; Myers et al.2005; [Hildebrandt et al. 2009)). In a flux limited
survey, distortions to the sizes of galaxy images affect the observed number
density of galaxies for two reasons:

1. Since surface brightness is conserved by lensing if the observed size of
a galaxy is increased, so is its observed flux. This means that galaxies
previously too faint to be observed by a galaxy survey become observ-
able. The number density of galaxies is increased.

2. Itis not only the observed size of individual galaxies that is increased
by magnification, but the observed size of the whole patch of sky be-
hind the lens. This means that the observable separation between
galaxies behind the lens increases and there is a dilution in the num-
ber density of galaxies.

These two effects compete and contribute to an overall fluctuation in the
number density of galaxies, as a result of weak lensing magnification (for
the associated equations see section [5.3.1). Here we are concerned with
how magnification can probe the total matter distribution, but it can also
be used to constrain the mass of galaxy clusters (e.g. Tudorica et al.[2017).
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Weak lensing using cosmic shear has been a highly successful tech-
nique. In recent years there have been increasingly precise results using
cosmic shear from galaxy surveys such as the Kilo Degree Survey (KiDS)
(van Uitert et al.|2018} Joudaki et al.|2018; |[Hildebrandt et al.|[2020]), the
Dark Energy Survey (DES) (Abbott et al. [2018; Troxel et al.[[2018]) and
the Hyper Suprime-Cam Survey (HSC) (Hikage et al.|2019). Weak lens-
ing magnification has not been included in standard weak lensing analyses
to date. All that has been included is the sensitivity of results to includ-
ing a simplified magnification model (Abbott et al.|2019). The reasoning
is that magnification provides similar information to that of cosmic shear
and has a poorer signal-to-noise ratio (Bartelmann/2010). However, due to
improvements in statistical precision, recent works have shown that cos-
mological results from upcoming surveys such as the Vera C. Rubin Obser-
vatory Legacy Survey of Space and Time (LSST) and Euclid will be biased
if the effects of weak lensing magnification are not included (Duncan et al.
2014; |Cardona et al.[2016}; [Lorenz et al.|2018}; Thiele et al.|[2019).

These works have shown that magnification must be included in future
surveys to avoid bias, but the aim of this work is to determine whether in-
cluding magnification as a complementary probe can also improve the final
precision of the LSST weak lensing results. Duncan et al.|(2014) and|Lorenz
et al.|(2018) found no increase in precision from including magnification
in a weak lensing analysis, however LSST is a special case, because it is a
very deep ground based galaxy survey. This means that there will be a lot
of very faint, small and distant galaxies, which will be poorly resolved. It
will therefore not be possible to measure the shape of these galaxies, but it
may be possible to count them for a weak lensing magnification analysis.
This means that the potentially usable sample size for weak lensing mag-
nification is significantly larger than that for cosmic shear, and as such it
is worth investigating magnification’s potential as a complementary probe
in the case of LSST[]] Particularly, asNicola et al.|(2020)) showed that even
with only approximately 100 square degrees, deep samples are already sen-
sitive to magnification.

In summary, we wish to determine the effect of including weak lens-
ing magnification on the precision of the final constraints from LSST weak
lensing. We determine this using the Fisher matrix formalism introduced
in section We then describe the modelling of the observables (weak
lensing power spectra and the galaxy luminosity function) in sections

ILorenz et al. (2018)) also considered LSST specifically, but did not include systematics
or explore departures from the gold sample used for cosmic shear.
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and We describe the details of our LSST specific survey modelling in
section[5.5} and present our results and conclusions in sections[5.6|and|5.7]
We verify the stability of our Fisher matrices in appendix

5.2 Fisher Analysis

The Fisher Information matrix summarises the expected curvature of the
log-Likelihood function around its maximum,

-0%InL
Fiy= (2200 1
j <aeiaej > (5.1)

where L is the likelihood and 6; is a model parameter. If the likelihood
function is sharply peaked for a given parameter, the parameter is tightly
constrained by the data (Dodelson|2003)). The marginal uncertainty on the
model parameter 6; can be calculated from the Fisher matrix as:

AG; > (F 1) . (5.2)

The greater than or equal relation is in reference to the Cramér-Rao in-
equality, which specifies that the Fisher matrix gives the minimum possible
uncertainty on an unbiased model parameter (Tegmark et al.[1997).

The Fisher information matrix can be calculated without data and is
therefore a useful tool for forecasting best case parameter constraints. In
the case of a Gaussian likelihood function and a parameter independent
covariance matrix the Fisher matrix is given by:

0 0
= Ce Cov! ﬂ

F;j = ,
UL 96, 90,

(5.3)

where C is the theory datavector and Cov is the associated covariance (Tegmark
et al. 1997). In this work we consider two component Fisher matrices,
which we then add together since they concern separate observables: the
Fisher matrix where the theory datavector consists of the weak lensing ob-
servables (detailed in section and the Fisher matrix where the theory
datavector consists of the galaxy luminosity function (detailed in section
[5.4). There may be a small correlation between the observables due to cos-
mic variance, but we do not consider this in this forecast. The associated

covariances are detailed in sections and respectively.
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5.3 Weak Lensing Observables

The two observable quantities used in this weak lensing analysis are the
shape, often referred to as ellipticity, and the number density of galaxy im-
ages. Since weak lensing is a local effect, the mean ellipticity € and fluc-
tuation in the number density of galaxies n, resulting from weak lensing,
is equal to zero when averaged over large scales. Therefore, the key sta-
tistical quantity used in weak lensing analyses is the two-point correlation
function. There are three two-point correlation functions commonly con-
sidered in large-scale structure and weak lensing analyses: cosmic shear
(ellipticity-ellipticity), angular galaxy clustering (number density-number
density) and galaxy-galaxy lensing (number density-ellipticity). These two-
point correlation functions can be considered as individual probes or com-
bined together into a joint analysis, commonly referred to as ‘3x2pt’. Per-
forming a joint analysis is desirable as it helps to control uncertainties in
the measurement, since the two-point functions are subject to different sys-
tematic effects and have different sensitivity to the cosmological parame-
ters.

The Fourier transform of the two-point correlation function for cosmic
shear is given by:

(E(OE () = 2m)26P (L +)CL(0), (5.4)

where € is the Fourier transform of the ellipticity, ¢ is the angular frequency,
5 is the two-dimensional Dirac delta function and CY. is the projected el-
lipticity power spectrum between redshift bins / and ;j (Joachimi & Bridle
2010). It is useful to work in Fourier space because it simplifies linking to
the theory predictions. The galaxy samples used for weak lensing are often
split into redshift bins; a technique called redshift tomography. This bin-
ning enables weak lensing to probe the evolution of the power spectrum
with time, through auto- and cross-correlations between the different red-
shift bins, and hence study the expansion of the universe and dark energy.
The Fourier space two-point correlation function for angular galaxy clus-
tering is given by:

(O’ (£)) = 2m)26 2 (€ + )Tl (0) (5.5)

where 7 is the Fourier transform of the number density contrast and c
is the projected number density power spectrum between redshift bins i
and j. The Fourier space two-point correlation function for galaxy-galaxy
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lensing and is given by:
(A (O)E () = (2m) %62 (£ + ) CLL (0) (5.6)

where C.. is the projected number density-ellipticity power spectrum be-
tween redshift bins i and j. In this work we focus on angular galaxy clus-
tering as an individual probe, and also consider a combined clustering and
shear analysis, where the analyses occur on separate patches of sky (see

section[5.6.2)).

5.3.1 2D power spectra

The key quantities in equations and [5.6] are the two-dimensional
(2D) power spectra C ¢, C,, and C, . These are the observables we model
and include in our Fisher matrix theory datavector, see section

In this work we model the 2D observable power spectra C., C,, and
Cne by breaking them down into their constituent parts. The observed el-
lipticity of a galaxy comes from a combination of the intrinsic ellipticity of
the galaxy before it is lensed ¢; (the intrinsic alignment, see Joachimi et al.
2015/for a review), the distortion of the shape by weak lensing shear y, and
arandom uncorrelated component ¢, which accounts for the randomness
in the intrinsic ellipicity of galaxies,

€'(0) =y5(0) + €1 (0) +€,4(0) , (5.7)

where i denotes the redshift bin. The observed number density of galaxies
comes from a combination of the number density fluctuation of galaxies as
a result of galaxy clustering n,, the distortion to the number density from
weak lensing magnification n,,, and a random component n,,q which ac-
counts for the shot noise contribution,

n'(0) = ni,(e) +nl () + nfmd(O) . (5.8)

In terms of the Fourier space 2D power spectra the uncorrelated ran-
dom components lead to noise power spectra, and separating out the re-
maining contributions gives:

C_;]e (6) = ng(f) +_C1’é(f) + ?{é(f) + C{f (0)
Citn(€) = Cg(0) + Cygi () + Cagrn () + Cram (0) (5.9)
Crie (£) = Co, (0 + CH(O) + C1 (0 + C1(0)
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where G represents ellipticity from weak lensing shear, I ellipticity from the
intrinsic alignment of galaxies, g number density fluctuations as a results
of intrinsic galaxy clustering and m number density fluctuations as a result
of weak lensing magnification.

We compute all these two-dimensional power spectra C,}, from their
associated three-dimensional power spectra P,;, using the Limber approx-
imation in Fourier space (Kaiser|1992):

CgG(£)=/Xh0rd Q(X)q]()()mé(k t+1/2 )

fK(X) Jek(x)’
= [ -Gl
- [ty 15 ).
i [ )
Ce () = 2(a7 = 1)1, (0) (5.10)

Cram (0) = 4(a’ = 1) (a’ = 1)CI(0)
C;é(f):/)(hord p(X)qJ(X)Pg(;(k £+1/2 )

f2 (o) fk()’
Xhor J
ij dy P')p () (k:f+1/2 )
o= | 2o T Ko )

Coa(0) = 2( = 1)Cg (0)
CL(0) =2(a' =1)CE(0)
where y is the comoving distance, fx (y) is the comoving angular diameter

distance and p‘(y) is the probability distribution of galaxies in redshift bin
i. ¢'(x) is a weight function given by:

i BH{Qu fi (x) Hoer s k' = x)
q'(x) = 52 Wx ()f(’) ) (5.11)

for further details see [Bartelmann & Schneider (2001). The calculation of
the three-dimensional power spectra P,}, is detailed in the following sec-
tion.

Equation (5.10) shows that the 2D power spectra associated with mag-
nification Cym, Crim, Cmg and Cpy can be computed from the 2D power
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spectra associated with weak lensing shear C,, Cci and Cii using o' the
faint end slope of the galaxy luminosity function in redshift bin ;. We dis-
cuss the galaxy luminosity function in section[5.4|but detail the relationship
between the magnification and shear power spectra here.

As mentioned previously, weak lensing magnification contributes to
fluctuations in the number density of galaxies n. If the number density of
galaxies above the flux limit f is Nyo(> f), magnification alters the number
density of sources as:

N(> f) = %N0(> £l (5.12)

where N(> f) is the observed cumulative number density of sources and
u is the local magnification factor (Bartelmann & Schneider|2001). If the
cumulative number density of galaxies is assumed to follow a power law
No(> f) = kf~“ near the flux limit of the survey then,

N(> f) = %k(f—:) = No(> fHue, (5.13)

where « is equivalent to o' mentioned in the previous paragraph. This
means the fluctuation in the observed number density of galaxies as a result
of magnification n,, is given by,

_NGCH=NoC>f) _ a1y a-1_
SN e et (5.14)
~ 2(a - 1)k,

where the weak lensing limit x4 ~ 1 + 2« has been employed.

5.3.2 3D power spectra

The fundamental ingredient for the construction of all of the 3D power
spectra Py, in eq. is the matter power spectrum Pgss. It summarises
the clustering of matter in the universe and can be derived numerically us-
ing the Boltzmann equations and the primordial power spectrum predicted
by inflation. For the other power spectra, we can only rely on an effective
description, which we detail in this section.

In this work, we compute P, using the Boltzmann code CAMB (Lewis
et al.[2000). To include non-linear corrections we use HALOFIT (Taka-
hashi et al./|2012). The remaining power spectra used in this analysis are
Ps1, P11, Pgg and Pgs. Pst and Py are the intrinsic alignment (IA) power
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spectra, which encode the tendency of galaxy shapes to point in the direc-
tion of a matter overdensity (P s1) or to have an intrinsic coherent alignment
with other galaxy shapes (P11). Pz summarises the clustering of galaxies,
and P,s the cross-correlations between galaxy position and gravitational
shear. P, is linearly related to the galaxy-magnification power spectrum,
which is the quantity of interest in this work.

We employ a halo model formalism to calculate Py, and P, s, while for
the TA power spectra we use the empirical Non-linear Linear Alignment
(NLA) model (Bridle & King|2007).

The halo model (e.g. Cooray & Sheth|2002) assumes that dark matter
clusters into dark matter halos and that all dark matter exists within dark
matter halos. We define dark matter haloes as spheres of average density
Apm, with A = 200 and p,, as the present day mean matter density of the
Universe. Galaxies are then assumed to form within these dark matter ha-
los, and hence the galaxy distribution traces the distribution of dark matter.
The model relies on two ingredients, the underlying distribution of dark
matter and how galaxies populate dark matter halos.

The dark matter distribution is summarised by: the halo mass function,
which gives the number density of dark matter halos with mass M at red-
shift z; the halo bias function, which accounts for dark matter halos being
biased tracers of the underlying dark matter distribution; and the halo den-
sity profile, which summarises how mass is distributed within dark matter
halos. In this work we use the Tinker et al.|(2010)) functional forms for the
halo mass function and halo bias function, and assume that the density of
dark matter halos follows the Navarro-Frenk-White distribution (Navarro
et al.|1996). To parametrise the concentration-mass relation that enters in
the NFW profile, we follow Duffy et al./(2008]). We compute the halo mass
function using the publicly available python package hmfP| (Murray et al.
2013)).

We summarise the second ingredient, how galaxies populate dark mat-
ter halos, using the conditional luminosity function (CLF) (Yang et al..2003;
Cacciato et al.|2013; [van den Bosch et al.|2013). The CLF gives the average
number of galaxies with a luminosity L between L + dL/2 in a halo of mass
M. Tt is divided into two parts:

O(LIM) = O (L|M) + Ds(LIM) , (5.15)

where ®.(L|M) is the CLF for central galaxies and ®4(L|M) is the CLF for
satellite galaxies. Central galaxies reside at the centre of dark matter halos

2https://github.com/steven-murray/hmf
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and satellite galaxies orbit around them. Following the approach detailed
in|Cacciato et al./(2013) we take the CLF of central galaxies to be modelled
by a lognormal distribution,

log e (log L —log L)% | dL
——exp| - 3 -,
V2no, 20¢ L

where o represents the scatter in the log luminosity of central galaxies and
L. is parametrised as:

@ (L|M)dL = (5.16)

(M/M)"
[1+(M/M)]-72

Lo(M)=Lg (5.17)

Lo =2"1772L.(M) is a normalisation and M, is a characteristic mass scale.
The CLF of satellite galaxies is modelled by a modified Schechter function,

(5]

where «; is the faint end slope of the satellite luminosity function. ¢ is
parametrised as:

log[¢:(M)] = by + by (log M12) + ba(log Mi2)?, (5.19)

where M1 = M/(10'2h7* M) and L? is parametrised as:

dL

T (5.18)

as+1
@ (LIM)dL = ¢:(E) exp

S

LE(M) = 0.562Lo(M) . (5.20)

Both of the functional forms in eq. (5.16]) and (5.18)) are derived from the
SDSS galaxy group catalog in Yang et al.|(2008])). In total we have 9 free
parameters in our CLF model: log M1, log Lo, y1, y2, 0¢, as, bg, b1 and bs.
We include all of these parameters in our Fisher matrix.

The Halo Occupation Distribution (HOD) can then be obtained as the
integral of the CLF over the luminosity interval [Lq, Ls]:

Ly
(NxIM) = /L O (LIM)AL | (5.21)

where x can be ¢, s or g=c+s; (N.|M) and (Ns|M) are the average number
of central and satellite galaxies in a halo of mass M within the luminosity
interval [L;, Lo]. Similarly, we can write 7, as the average number density
of galaxies across all halo masses in a given luminosity interval:

fig(2) = / (N[ Myn(M, 2)dM , (5.22)
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where n(M, z) is the halo mass function mentioned above. To keep the no-
tation compact, we have omitted the redshift dependence of the HOD: it
arises as a consequence of the survey flux-limit: in this case, the luminos-
ity limits L; and L, in eq. depend on the specific redshift bin under
consideration.

Once we have defined the HOD, we can calculate the 3D power spectra
Py and P, ;. First, the power spectra can be split into contributions from
the one-halo (1h) and two-halo (2h) terms. The 1h term describes the clus-
tering of galaxies on small scales within the same dark matter halo and the
2h term describes the clustering of galaxies on large scales between differ-
ent halos. These contributions can then be split into the contributions from
central c and satellite s galaxies, as with the CLF. This gives:

Pge = 2P0 4 Pl P20 op2h 4 p2h

1h , plh_ p2h (5-23)
Pys = P+ Pl 4 p2hy p2h

As shown in van den Bosch et al. (2013)) these contributions can be calcu-
lated using,

P (k) = /w (k, M, 2)Hy(k, M, 2)n(M, z)dM ,
P2 (k,z) =P (k,2) / dMyHy (k, My, 2)n(My, 2)b(My, 2) (5-24)
x / AMaH (K, Mo, 2)n(Ma, 2)b (M, 2)

where x and y can be c, s or §, and b(M, z) is the halo bias. The function H
encodes the matter or galaxy contribution:

M
W&(k,M,Z) = ?ﬂh(klM’Z) ’
(Nc|M)

Helk.M.2) = He(. ) = ST (5.25)
Ho(k M, 2) = MG a2y
ng(z

where iy, is the Fourier transform of the normalised density distribution
of dark matter in a halo of mass M (mentioned above), and i is the nor-
malised number density distribution of satellite galaxies in a halo of mass
M. In his work, we assume satellites to follow the spatial distribution of the
underlying dark matter, i.e. iy = uy,.
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To calculate the 3D power spectra P;; and P;s we employ the widely
used NLA model. This model links the strength of the tidal field when a
galaxy forms to the intrinsic ellipticity of the galaxy. This gives,

Q.
Psi(k,z) = —A1AC1pc——

D() Pss,

Q. \2 (5.26)
Pri(k,z) = (AIACIPCD( )) Pss ,

where C; is a normalisation constant, p. the critical density of the Universe
today and D(z) the linear growth factor. We set C; = 5x 10714 M 1 h~2Mpc?
based on the IA amplitude measured at low redshifts using SuperCOSMOS
(Hartlap, Simon & Schneider Bro), and A4 captures the amplitude of the
deviation from this reference case. We take A, as a free parameter in our
Fisher matrix. The NLA model is sufficiently flexible for current studies
but can be extended by including a redshift dependent parameter, or using
a halo model formalism to calculate P;; and P;s on small scales. Recently,
Fortuna et al.| (2021a) explored these options and found that the IA signal
in the one halo regime can be ignored at first order, and that including an
extra redshift dependent parameter is possibly sufficient for LSST. Here we
consider the simplest NLA model, but implementing these models could be
a future extension of this work.

5.4 Galaxy Luminosity Function

The second part of our Fisher matrix theory datavector, see section is
the galaxy luminosity function. The galaxy luminosity function describes
the distribution of luminosities in a galaxy sample, the number density of
galaxies with a certain luminosity, and is often directly measured from a
galaxy sample. As specified in Cacciato et al.|(2013) the galaxy luminosity
function at a given redshift z can be calculated from the CLF detailed in

section

O(L.2) = [ ant (LMo, (5.27)
where ®(L|M) is the CLF and n(M, z) is the halo mass function (see section
5.3.2)). In this analysis we work with a galaxy sample divided into redshift

bins (labelled i and j previously) so we wish to compute the galaxy lumi-
nosity function for each redshift bin,

o (L) = / dz n ()D(L.2) . (5.28)
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where @(L) denotes the luminosity function of galaxies in redshift bin i,
and ' (z) the redshift distribution in bin i. We include a prediction for the
galaxy luminosity function in each redshift bin in our theory datavector as
it helps to constrain the 9 CLF parameters detailed in section and
hence is critical for obtaining information from the small scale clustering.
The faint end slope of the galaxy luminosity function is also required to
calculate the magnification 2D power spectra, see eq. (5.29).

5.5 Survey Modelling

We perform our Fisher forecast using the cosmological parameter estima-
tion framework CosmoSIS (Zuntz et al.|2015). To calculate the 3D power
spectra detailed in section we use our own halo model code, which
has been tested against other halo model codes used in the literature.

In this analysis we define two mock LSST galaxy samples; an elliptic-
ity sample e-sample and a number density sample n-sample. We use a 440
square degree mock catalog from the LSST Dark Energy Science Collabora-
tion (DESC) Data Challenge 2 (DC2) simulations (cosmoDC2 1.1.4; Korytov
et al.2019). These simulations were designed to enable preliminary LSST
DESC analyses, and the statistical distributions of galaxies have undergone
a wide range of validation tests, for details see Korytov et al. (2019); Kovacs
et al. (prep)). The catalog includes photometric redshifts for all galaxies with
an i-band magnitude less than 26.5, up to redshift 3. The photometric red-
shifts were calculated using the template fitting code BPZ (Benitez[2000)).
The n-sample is defined as all galaxies in this mock catalog with an i-band
magnitude less than 26.5 and photometric redshift greater than 0.1 and
less than 2.0. We set an upper limit as the photometric redshifts begin to
degrade significantly beyond 1.5, see Fig. The e-sample is defined as a
subset of galaxies in n-sample with i < 25.3. This corresponds to the LSST
gold sample, which will be used for weak lensing (LSST Science Collabora-
tion|2009). We do not apply a separate signal-to-noise cut but, galaxies in
the n-sample have a signal-to-noise ratio > 5 and galaxies in the e-sample
have a signal-to-noise ratio > 20.

5.5.1 Redshift distributions

To compute the 2D power spectra in eq. (5.10]) and the luminosity functions
in eq. (5.28) we require the redshift distribution of galaxies in each photo-
metric redshift bin. In this work we split both the galaxy samples, n-sample
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Figure 5.1: Photometric redshift point estimate mode against true redshift

photo-z mode
Number Density
photo-z mode

“0.0 0.5 1.0 15 2.0 2.5 3.0

((a)) number density sample n-sample ((b)) ellipticity sample e-sample

and e-sample, into 10 tomographic redshift bins containing equal numbers
of galaxies using their photometric redshifts. Figure|5.2/shows the result-
ing distribution of galaxies with redshift for each tomographic bin, as well
as the tomographic bin boundaries. Figure shows that the photomet-
ric redshifts are close to random for bin 10 of n-sample, so our maximum
photometric redshift cut of 2.0 is well justified.

We compute the number density of galaxies in each tomographic bin
to be 12.7 arcmin~2 for n-sample and 4.9 arcmin~2 for e-sample. However,
weak lensing shape measurements typically weight galaxies by the uncer-
tainty or ability to calibrate the shape measurements, this would reduce the
number density for e-sample, especially at high redshifts. The LSST science
book estimates that the number density of galaxies in the gold sample will
be 55 arcmin~2, with the number density of galaxies useful for weak lens-
ing approximately 40 arcmin=2 (LSST Science Collaboration2009; |Chang|
et al|[2013). This means that our e-sample is slightly optimistic, with a

galaxy number density of 49 arcmin~2.

5.5.2 Faint end luminosity slopes

The key quantity in determining the amplitude of the fluctuation in the
number density of galaxies as a result of weak lensing magnification is the
faint end slope of the galaxy luminosity function «. If @ is equal to 1 there is
no overall fluctuation but if @ does not equal 1 there is either an increase or

,_.
<
Number Density
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Figure 5.2: Number density of galaxies as a function of true redshift for each photometric
bin in the galaxy sample. The dashed lines indicate the photometric bin boundaries.
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decrease in the number density of galaxies. a can be represented in terms
of magnitudes as,

d loglo N(> imag)

@(imag) = 2.5 , (5.29)

dimag

where i\, Tepresents the i band magnitude, and N(> i) the unlensed
cumulative number density of galaxies with an i band magnitude greater
than iy, (e.g. |Duncan et al.[2014).

We measure the faint end slopes « from our LSST DC2 mock catalog.
We compute a value o/ for each redshift bin j, in each mock sample. To
compute ¢/ we vary the i band magnitude in eq. and compute the
cumulative number counts N(> im.s). We then fit the logarithm of N(>
imag) With a straight line, and use the slope to compute o/. Since we are
only interested in the slope at the faint end (high magnitudes) we only fit
log1g N(> imag) over the last magnitude before the sample magnitude limit;
25.5-26.5 for n-sample, and 24.3-25.3 for e-sample. Figure[5.3|shows that
in general this lower fit limit (marked by a dotted line) captures the value
of o/ at the faint end of the sample. Increasing the lower fit limit has little
effect on the value of o/ obtained, whereas decreasing the fit limit in general
gives a higher value of a/.

Table|5.1{shows the o/ values obtained for each sample and their asso-
ciated uncertainties. The uncertainties come from the uncertainty on the
slope coefficient of the least-squares straight line fit detailed above, since
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Figure 5.3: The faint end slope of the galaxy luminosity function o' as a function of the
limiting magnitude for each tomographic bin in n-sample (red) and e-sample (blue). The
@' values used in this analysis were found by fitting the slope of the logarithmic cumulative
number counts (see eq. (5.29)) between the vertical line and the right hand side of the figure.



5.5 Survey Modelling 173

Table 5.1: Faint end magnitude slopes o/ for each redshift bin j in n-sample and e-sample,
with their associated 1o uncertainties.

n-sample e-sample

o' 0.445 +0.005 o' 0.412+0.005
@®>  0.663 +0.006 @®>  0.624 +0.004
@3 0.848 +0.006 @3 0.677 +0.004
o' 0.781 +0.005 o' 0.825+0.006
@®  0.573 +0.004 @®  0.97+0.01
%  0.694 +0.006 % 0.74+0.01
@ 0.74+0.01 @’ 0.895 + 0.006
o®  0.95+0.02 o®  0.99+0.01
@  1.39+0.01 @  1.08+0.01
al% 224 +0.02 o'% 1.42+0.01

they were found to be much larger than the uncertainties on the values of
the cumulative number counts N(> i,g) due to the large number of galax-
ies in each sample. The uncertainties are very small, and would become
even smaller when using the full 18000 square degree LSST area instead
of a 440 square degree mock catalog. We therefore consider the o/ param-
eters as fixed in our forecast, but note that they can be difficult to measure
accurately from real data due to the presence of systematics and selection
effects (see conclusions for further discussion) .

We can compare the o values in Table |5.1] to those found in Duncan
et al. (2014) for the Canada—France—Hawaii Lensing Survey (CFHTLenS).
In both cases o/ generally increases with redshift. CFHTLenS reaches an
a’ value of approximately 1 at its i band magnitude limit of 24.7, for its
highest redshift bin between 1.02 and 1.3. This roughly corresponds to o
and o® in e-sample, where the magnitude limit of 24.7 is included in the o/
fit. Table 5.1 shows that our o and «® values for e-sample are consistent
with CFHTLenS.

5.5.3 Systematics

We include a number of systematics in our analysis using nuisance parame-
ters. For the fiducial values of these parameters and their associated priors
please see Table To apply a Gaussian prior to a particular parameter

. . . . 2 .
in a Fisher matrix, one simply adds 1/, . to the diagonal element asso-
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ciated with the parameter (Coe 2009). In conceptual terms, the priors on
the Fisher matrix parameters can be summarized by a diagonal covariance
matrix with elements o2 This covariance matrix can then be inverted

prior*
into a prior Fisher matrix, giving 1/ 0'5 diagonal elements, and added to

the experimental Fisher matrix.

rior

Shear multiplicative bias

Systematic uncertainties in the measuring and averaging of galaxy shapes
can result in a multiplicative scaling of the observed shear. These system-
atic effects include: noisy galaxy images, the applicability of the model used
to describe the light profile of galaxies, the details of the galaxy morphol-
ogy and selection biases (e.g. Heymans et al.[2006). We parametrise this
multiplicative scaling using one parameter m' per redshift bin (10 parame-
ters in total), which scale the cosmic shear and galaxy-galaxy lensing power
spectra as:

Co.(l) = (L+m)(1+m))CL (1),

CL(D) = (L+m)CL (). (5.30)

We impose Gaussian priors on these multiplicative parameters, which are
guided by the LSST DESC science requirements (Alonso et al.2018). These
science requirements forecast the uncertainties LSST will need to achieve
in order to meet their main objectives of significantly improving the con-
straints on the dark energy parameters wy and w,, compared to previous
dark energy experiments, and obtaining dark energy constraints where the
total calibratable systematic uncertainty is less than the marginalised sta-
tistical uncertainty. For the case of shear multiplicative bias the require-
ment is that the ‘systematic uncertainty in the redshift-dependent shear
calibration’ should not exceed 0.003 by year 10. We therefore apply a Gaus-
sian prior centred on zero with a standard deviation of 0.003 to each of our
shear multiplicative bias parameters.

Clustering Multiplicative Bias

We parametrise uncertainties in the number count measurement using a
similar approach to that for shear. Systematics which affect the number
density of galaxies include: galactic dust obscuring background galaxies,
variable survey depth impacting the number of sources promoted across
the flux limit by magnification, and stars contaminating the galaxy sam-
ple (Hildebrandt|2015; Thiele et al. 2019). Usually these effects would be



5.5 Survey Modelling 175

partially absorbed by the galaxy bias (CLF) parameters, however since we
include the galaxy luminosity function in our analysis the CLF parameters
will be tightly constrained. We therefore felt it was important to include
this multiplicative bias parameterisation for clustering as well as shear.

Analogous to shear multiplicative bias, the observed clustering power
spectra are scaled by a multiplicative factor as,

Cin() = (L+mlg)(L+m! HCHh(D)

i P i (5.31)

Coe(l) » (L +meg)Cie (1) .
However, since most systematics decrease with signal to noise ratio, we as-
sume m! . has a power law dependence on the signal to noise of galaxies
in redshift bin i. This enables us to reduce the number of clustering mul-
tiplicative bias parameters from ten parameters (one m’ ;. per redshift bin)
to two parameters a,, and by,. mgff is given in terms of a,, and b, by,

i
m g = Mstep — Mfid
Ni

N;
S bm L S bfiq
w3 (5), - 2 (5),
n=

(5.32)

where N; is the number of galaxies in tomographic bin i, the sum is over
the signal-to-noise ratio S/N of all galaxies in tomographic bin i, agq is the
fiducial value of a,,, and bgq is the fiducial value of b,,,. We introduce the mgq
term because if meg = mgtep, bm becomes unconstrained when a,, is equal
to zero, which breaks the Gaussian Likelihood assumption in the Fisher
matrix prediction.

We compute the signal to noise ratio for each galaxy in our samples
from the error on the i band apparent magnitude (Hainaut 2005)). Using
the signal to noise of every galaxy in this bias calculation is computationally
expensive, since the total number of galaxies in n-sample and e-sample is
of order 107 and 108. We therefore use a randomly selected 1% subsample
of galaxies in this calculation. This subsample is representative of the full
galaxy sample, but prevents our bias calculation from being prohibitively
slow.

Photometric redshift uncertainties

We model uncertainties in the redshift distributions shown in figure [5.2
by introducing shift factors A’ (Bonnett et al.|2016). A’ simply shifts the
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redshift distribution in bin i so,
n'(z) = n'(z - AY). (5.33)

Since we have two redshift distributions, one for e-sample and one for n-
sample, each divided into 10 bins this results in 20 shift parameters A'.
These parameters are likely to be correlated, so we are making a conser-
vative choice by allowing 20 separate shift parameters, which may some-
what weaken our final constraints. We impose Gaussian priors on each of
these shift parameters, once again guided by the LSST DESC science re-
quirements (Alonso et al.|2018)). The prior is centred on zero, with a stan-
dard deviation of 0.003 for the n-sample parameters and of 0.001 for the
e-sample parameters.

A future extension of this work could be to include other modes of red-
shift uncertainty, such as a change in the width or to the high redshifts tails,
as inNicola et al.| (2020). These may be particularly interesting for magni-
fication, as they change the level of overlap between different redshift bins.

5.5.4 Covariances

In this forecast we consider two component Fisher matrices. The Fisher
matrix for the weak lensing observables and the Fisher matrix for the galaxy
luminosity function (see section [5.2). We therefore require two covari-
ances: the weak lensing observables covariance and the galaxy luminosity
function covariance.

Weak lensing observables covariance

We compute a Gaussian covariance for the observable weak lensing power
spectra (Ce ¢, Cpn, Cre) using CosmoSIS. The covariance between two power
spectra is given by,

2r
ACAC

where ij k[ denote redshift bins, 6., is the Kronecker delta, A is the survey
area and A¢ the size of the angular frequency ¢ bin (Joachimi et al. 2008;
Joachimi & Bridle |2010). We do not include the non-gaussian contribu-
tions to the covariance since their effect is small, and unlikely to impact
our final results (Barreira et al.[2018)). To account for the random terms in

equations|5.7/and 5.8/ we define,
CY(6)=C(O) + N, (5.35)

Cov[CU(0), CH(€)] = 800 [CHOCI(0) + CHOCT(0)] . (5.34)



5.5 Survey Modelling 177

where N/ is the shot or shape noise contribution. In the case of C,,

2

.. o
NU = 51' —E N . 6
in the case of C,,,
o1
NY = 51‘_;‘; , (5.37)

and in the case of C,., NV = 0. Where o is the total intrinsic ellipticity
dispersion, and 7' is the average number density of galaxies in redshift bin
i (Bartelmann & Schneider|2001). We compute the power spectra covari-
ance for 20 log-spaced angular frequency / bins from /,,,;, = 30, to avoid
inaccuracies in the Limber approximation, to /,,,, = 3000, to avoid the very
non-linear regime.

Galaxy luminosity function covariance

We compute the galaxy luminosity function covariance by measuring the
galaxy luminosity functions of our mock LSST galaxy samples and then
computing a bootstrap covariance. Since Fisher forecasts do not require
a datavector, only a covariance, we only use the measured luminosity func-
tions to compute the covariance and model the galaxy luminosity function
in the forecast using the CLF formalism (see section|[5.4)).

To measure the luminosity functions for the n-sample and e-sample we
begin by computing the luminosity of each galaxy from its rest-frame ab-
solute magnitude in the i band. We then divide our sample into the 10 to-
mographic bins described above and scale the luminosity function for each
bin j by the volume of bin j, to convert the histogram to a number density.
When calculating the bin volume we assume that the galaxies do not scatter
beyond the tomographic bin boundaries. This is an approximation, which
figure|5.2|shows, is becoming problematic for bin 10.

Ideally, we would use the full range of galaxy luminosities to compute
our bootstrap covariance. However in order to use the low luminosity re-
gion we would need to correct our galaxy samples to be volume complete,
for example through the 1/V,,., method (Schmidt|1968; |Felten|1976; Cole
2011). High luminosity objects can be observed across the full volume of
the survey, but low luminosity objects can only be observed at smaller dis-
tances. This introduces a bias referred to as Malmquist bias, and we there-
fore only want to include galaxies that can be observed across the whole
volume of the survey. For the purposes of this work we deemed it sufficient
to simply cut out the low luminosity galaxies to make the sample volume
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limited, since this is still a significant step forward compared to previous
analyses. For details of how we determine the volume complete cut see
appendix

We then compute a bootstrap covariance for our measured galaxy lumi-
nosity functions. First, we sample our dataset with replacement 100 times
and compute the associated datavectors. We then assume that each lumi-
nosity bin in each tomographic bin is independent (each of our datapoints
is independent) and calculate the variance of these 100 samples. This gives
us a diagonal covariance. The variance of the 100 samples is in general
small, due to the very large numbers of galaxies in each sample.

5.5.5 Fiducial values

The Fisher matrix gives the curvature of the log-Likelihood function around
its peak. It does not find the location of the peak, this is defined with a set
of fiducial values (shown in Table[5.2). The set of parameters required to
calculate the 3D power spectra in section are the cosmological param-
eters and the CLF parameters. In this work we consider the constraints on
a flat ACDM cosmology, and vary the cosmological parameters Q,,, g, Q,
ns, As/107%, w and w,. We take their fiducial values from the input values
used to generate the simulation for the LSST DESC mock catalog, or from
the values obtained by the Planck satellite (Aghanim et al.|2018]).

We also vary the full set of CLF parameters log M1, log Lo, y1, ¥2, Oc,
as, bo, b1 and by, detailed in section|5.3.2] Here we use the fiducial values
found for SDSS by Cacciato et al. (2013), which have been shown to also be
applicable to higher redshift surveys (Cacciato et al.[2014; [van Uitert et al.
2016Db)).

5.6 Results

5.6.1 Clustering

Figure shows the forecast constraints on the cosmological parameters
from C,), with and without including magnification terms for n-sample. In
the case of including magnification the observable is Cy,, = Cg + Cogm + Crum
instead of C,,, = Cg,. Including magnification has only a small impact on
the cosmological parameter constraints. The greatest change is the 10 con-
straint on Q,,, which is improved by a factor of 1.3 from 0.003 to 0.0023.
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Table 5.2: Fiducial values and priors for the model parameters used to compute the fisher
matrices in this work.

Parameter Fiducial Value Prior
Survey

Area 18000 deg? fixed

Oe 0.35 fixed
Cosmology

Qn 0.265 flat

hg 0.71 flat

Qp, 0.0448 flat

ng 0.963 flat

Ag/107? 2.1 flat

w -1.0 flat

Wa 0.0 flat

Qk 0.0 fixed
CLF

log(My) 11.24 flat

log(Lg) 9.95 flat

Y1 3.18 flat

V2 0.245 flat

o 0.157 flat

sy -1.18 flat

b() -1.17 flat

b1 1.53 flat

bo -0.217 flat
Intrinsic Alignments

Al 1.0 flat
n-sample Photo-z

AL 0.0 Gauss(0.0, 0.003)
e-sample Photo-z

AL 0.0 Gauss(0.0, 0.001)
Shear Bias

m! 0.0 Gauss(0.0, 0.003)
Clustering Bias

am 0.001 flat

bm 0.0 flat
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Figure 5.4: Constraints on the cosmological parameters used in this analysis from Cpy, and
Cpn including magnification terms for n-sample. Including magnification has only a small
impact on the constraints.
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The forecast constraints on the cosmological parameters from C,,, and
Cyn including magnification terms for e-sample show that the impact of
magnification is further reduced compared to the deeper n-sample. The
10 constraint on Q,, is only improved by a factor of 1.03 from 0.0032 to
0.0031, instead of a factor of 1.3 with the deeper n-sample. This shows
that including magnification has a greater, albeit modest, impact for deeper
samples.

Figure |5.5| shows the forecast constraints on the CLF parameters from
Cpnn With and without including magnification terms for the n-sample. In-
cluding magnification has little effect on the constraints on the CLF pa-
rameters. This is expected because the CLF constraints are predominantly
determined by the galaxy luminosity function. We focus on the cosmologi-
cal and CLF parameters, instead of presenting the full 28 parameter space,
for clarity. The steps taken to ensure the stability of our Fisher matrix are
detailed in appendix

A useful measure of the constraining power of an analysis is the Figure
of Merit (FoM) defined as,

FoM = det([F~],) ™ , (5.38)

where [F~!] , is the inverse Fisher matrix for the set of parameters ¢ and
N, is the number of parameters ¢ in the set. In this work we define ¢ as the
full set of cosmological parameters, so the FoM represents the power of the
constraints on the cosmological parameters. It is also common to define a
Dark Energy FoM where g = {w, w,} (Albrecht et al.|2006)).

When magnification is included in the clustering analysis for the deeper
n-sample the FoM is increased by a factor of 1.45. However, when magni-
fication is included in the clustering analysis for e-sample (the LSST gold
sample) the FoM is increased by a factor of 1.08. This mirrors the con-
clusions from looking at the parameter constraints on Q,, — magnification
is more beneficial for deeper samples with greater numbers of low signal-
to-noise ratio galaxies. Interestingly, there is no increase in the FoM for
clustering without magnification when using the deeper n-sample instead
of e-sample. This implies that it is more beneficial to have a smaller sample
of high signal-to-noise objects than a larger sample including lower signal-
to-noise objects. This is likely due to the additional fainter objects having
poorer photometric redshifts and therefore largely contributing to the tails
of the redshift distribution. Looking back at figure[5.2| we can see that the
redshift distribution for the shallower e-sample is much cleaner.
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Figure 5.5: Constraints on the Conditional Luminosity Function (CLF) parameters used
in this analysis from Cpp and Cpp including magnification terms for n-sample. Including
magnification has little effect on the constraints, since they are driven by the galaxy luminosity
function not the weak lensing or clustering observables.
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5.6.2 Shear calibration

The previous section showed that including weak lensing magnification
only has a small effect on the cosmological parameter constraints from an
LSST-like angular galaxy clustering analysis. In a combined clustering and
cosmic shear analysis the impact of magnification on the cosmological pa-
rameter constraints can only be reduced. This is because magnification
predominantly contributes to the clustering signal and provides very simi-
lar information to shear. We therefore focus on the effect of magnification
on the shear multiplicative bias parameters.

We examine the impact of including magnification on the shear mul-
tiplicative bias parameters for a combined LSST clustering C,,, and shear
Cc analysis, where the analyses occur on separate patches of sky. This is
because the full ‘3x2pt’ (Cpy, Cre, Cee) analysis requires careful treatment
of the cross terms, which is beyond the scope of this work. We are therefore
investigating whether the improved cosmological constraints from magni-
fication translate into an improved calibration.

Figure [5.6] shows the forecast constraints on the shear multiplicative
bias parameters from our C,,, and C,. analysis, with and without magnifi-
cation terms, where C.. is calculated for e-sample and Cy,,, for the deeper
n-sample. Including magnification only slightly improves the constraints
on the shear calibration parameters, with a greater effect at higher redshitt.
The 10 constraint on m' is improved by a factor of 1.06, m% by 1.3 and m'° by
1.34 when including magnification. When C,,,, is calculated using the shal-
lower e-sample the impact is similar, but less pronounced. These results
show that including magnification is not particularly helpful for calibrat-
ing the shear measurement. However, the impact of magnification may be
slightly improved when performing a full ‘3x2pt’ analysis, where the clus-
tering and shear are measured on the same patch of sky.

5.6.3 Bias

Recent works have shown that cosmological results from upcoming surveys
such as LSST will be biased if the effects of weak lensing magnification are
not included, due to improvements in statistical precision (Duncan et al.
2014;|Cardona et al.[2016; Lorenz et al.[2018; Thiele et al.|2019)). To exam-
ine this for our forecast, figure|5.7 shows the absolute difference between
the clustering power spectra C,,,, with and without magnification in terms
of the 10 uncertainty on the clustering power spectra without magnifica-
tion. In this case the clustering power spectra have been calculated using
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Figure 5.6: Constraints on the shear multiplicative bias parameters from a joint analysis of
Cee and Cpy (not including Cyp¢) with and without magnification terms, where we have not
applied the Gaussian prior detailed in Table[5.2] Cc is calculated for e-sample and Cpy is
calculated for n-sample. Including magnification only slightly improves the constraints, with
a greater impact at higher redshift.
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n-sample. The grey shaded region indicates where C,,,, including magnifi-
cation is more than 20- away from C,,,, without magnification. Particularly
at high ¢ (small scales) C,,, including magnification significantly diverges
from C,,,, without magnification.

For comparison, we have also shown the impact of changing Q,,, and A
by 50 in Fig. In all of the redshift bin combinations shown, the dif-
ference from including magnification is larger than or comparable to the
difference from changing Q,, and A by 50. This clearly indicates that not
including magnification terms will catastrophically bias cosmological con-
straints from LSST. Additionally, the difference from not including mag-
nification seems to mimic the behaviour of biasing A by 50. This implies
that not including magnification could particularly bias the constraints for
As, one of the parameters weak lensing is most sensitive to.

Figure[5.8|shows the absolute difference between the clustering power
spectra C,,,, with and without magnification in terms of the 1o~ uncertainty
on the clustering power spectra without magnification, where the cluster-
ing power spectra have been calculated using the shallower e-sample. In
this case the difference from including magnification is not as large as for
n-sample, however in most redshift bin combinations is still comparable
or larger than the differences from changing Q,, and A by 50

5.7 Conclusions

Previous works have shown that upcoming results from surveys such as
LSST and Euclid will be biased if the effects of weak lensing magnification
are not included (Duncan et al.||2014; |[Cardona et al.|[2016; [Lorenz et al.
2018; Thiele et al.|2019)). In this work we forecast whether including weak
lensing magnification as a complementary probe can additionally improve
the precision of the LSST weak lensing constraints. We determined this
using the Fisher matrix formalism, where our theory datavector included
the weak lensing observables and the galaxy luminosity function. To cal-
culate the weak lensing observables and the galaxy luminosity function, we
employed a halo model, detailed in Cacciato et al. (2013). We defined two
mock LSST galaxy samples from the LSST DC2 simulations (Korytov et al.
2019)) for use in our forecast; a sample which corresponds to the LSST gold
sample where the i band magnitude is less than 25.3 (intended to be used
for the weak lensing shear measurement), and a deeper sample where the
i band magnitude is less than 26.5.

We found that weak lensing magnification provides little additional in-
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formation as a complementary probe for LSST. For a galaxy clustering anal-
ysis using the LSST gold sample we found that including magnification in-
creased the Figure of Merit (FoM) for the set of cosmological parameters
Q. ho, Qu, s, As /1077, w and w, by a factor of 1.08. When using the deeper
galaxy sample we found that magnification increased the FoM by a factor of
1.45. In terms of the precision of the Q,, constraints, we found for a galaxy
clustering analysis using the LSST gold sample that including magnifica-
tion increased the 10 precision by a factor of 1.03, using the deeper sample
we found a factor increase of 1.3. These results show that including mag-
nification is more beneficial for deeper samples, but still has a fairly small
impact.

The effect of including magnification would be even smaller in a com-
bined galaxy clustering and cosmic shear analysis because magnification
provides similar information to that of cosmic shear. However, we investi-
gated the impact of including magnification on the calibration of the shear
measurement. We found that including magnification only slightly im-
proves the constraints on the shear calibration parameters.

While this forecast is more realistic than many to date, as it includes
LSST mock catalog data and a flexible galaxy bias model, it still relies on a
number of simplified assumptions about magnification. Firstly, the mag-
nification modelling assumes that the galaxy sample is purely flux limited.
Often galaxies are also selected based on their signal-to-noise ratio, colours
and morphology which complicates the magnification modelling (Hilde-
brandt |2015)). Secondly, there are a large number of systematics associ-
ated with the magnification measurement such as dust attenuation, vari-
able survey depth, star-galaxy separation and the blending of galaxy im-
ages (Hildebrandt et al.2013; Morrison & Hildebrandt|2015; Thiele et al.
2019). We included a multiplicative factor in our modelling of the cluster-
ing power spectra in order to incorporate these effects, but more detailed
modelling is likely required. For example, we could have marginalised over
the faint end luminosity slopes o', which are required to compute the mag-
nification power spectra. We chose to fix them, since at least for the gold
sample it should be comparatively easy to explore the luminosity function
beyond the magnitude limit, so measurement errors on o' can be expected
to be very small. This forecast could therefore be considered a best case
scenario for magnification, and even in this scenario we found that includ-
ing magnification has little impact. However, we also confirmed that not
including magnification will strongly bias cosmological results from LSST,
so must be modelled.
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A1 Volume Complete Cut for Galaxy Luminosity
Function Covariance

A deeper galaxy sample will be volume complete to lower luminosities, so
when the luminosity function of a shallower sample diverges from the lu-
minosity function of a deeper sample, we know the shallower sample has
ceased to be volume complete. We can therefore determine the volume
complete luminosity cut for the e-sample by finding where it diverges from
the n-sample. Our divergence condition is

(L)

> 0.2, (39)

where @ is the luminosity function for the e-sample and @ (6) is the lu-
minosity function for the n-sample, where the n-sample has been binned
using the e-sample tomographic bins. We cut ®. when there is a differ-
ence of 20% from the deeper sample ‘qu (o This value was found to cut ®.
before it significantly diverged from the deeper sample whilst allowing for
small deviations, see the right panel of Fig. [o]

Since we did not have a sample deeper than the n-sample available to
us, we made a more stringent volume complete cut on the n-sample lumi-
nosity function based on where the luminosity function of our shallower
sample e-sample diverged. If the shallower sample is volume complete we
can be sure that the deeper sample is also volume complete. In this case
our divergence condition is

@),

>0.2, (40)
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Figure 9: Measured luminosity functions ®!(L) for each photometric redshift bin in n-
sample (left) and e-sample (right), with associated bootstap errors. The dotted lines show
the location of the luminosity cuts to n-sample (left) and e-sample (right) to make sure they
are volume complete, and do not introduce a bias. e-sample n tomo bins refers to the e-
sample being binned into the n-sample redshift bins, and n-sample € tomo bins refers to the
n-sample being binned into e-sample redshift bins. L&'(L) has units of /3 /Mpc3.
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where @ is the luminosity function for n-sample and CDif(n) is the lumi-
nosity function for e-sample, where e-sample has been binned using the n-
sample tomographic bins. While this luminosity cut enforces that n-sample
is volume complete, using a shallower sample means that the cut is much

more conservative than necessary.

A2 Fisher Matrix Stability

High-dimensional Fisher matrices can be unstable. Here we detail the steps
taken to ensure the stability of our Fisher matrices and hence the robust-
ness of our results.

The derivatives in eq. are calculated numerically using a method
of numerical differentiation called a 5-pt stencil. This method requires the
pipeline to be evaluated at 4 points around the model parameter’s fiducial
value (5 points including the fiducial value). The separation between these
points is referred to as the step size. If the step size is too large the Fisher
matrix fails to capture the curvature of the likelihood function about the
peak and if it is too small numerical difficulties can arise. Therefore when
using Fisher matrices it is vital to verify whether the step size is appropriate,
otherwise any results are meaningless.

We verify our step sizes in 1 dimension by fixing all but one model pa-
rameter. We then calculate the 1D likelihood using a Fisher matrix with a
specified step size and by sampling the likelihood function directly. If the
1D likelihoods match we know we are using a reasonable step size when
calculating our Fisher matrix. We sample the likelihood function directly
using a simulated datavector generated at the Fisher matrix fiducial values
and a grid sampler. Grid samplers evaluate the likelihood at a specified set
of grid points. Since we are assuming a Gaussian Likelihood when calcu-
lating our Fisher matrix (eq. (5.3)) we are only interested in whether the
standard deviation o of the likelihood calculated using the Fisher matrix
matches the o of the likelihood from sampling directly using a grid sam-
pler.

Figure [10|shows the o of the 1D likelihood calculated using the Fisher
matrix for different choices of step size. These plots show that as the step
size decreases the o of the 1D likelihood reaches a plateau, where the step
size is actually capturing the shape of the likelihood, before becoming un-
stable (see subplot for the photometric redshift bias parameter for redshift
bin 10). We therefore select a step size in the range where the o of the
Fisher likelihood is stable. Figure [11/shows the Fisher likelihoods gener-
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ated using the selected step sizes overlaid with the likelihood from the grid
sampler to verify that they match. For the case of the magnification bias pa-
rameter b, the Fisher and grid likelihoods do not match. This is because
when calculating the Fisher matrix we assume that the likelihood is Gaus-
sian, and the likelihood of 4, from direct sampling is clearly not Gaussian.
This is a limitation of the Fisher matrix approach.

We additionally check the Fisher step sizes for the cosmological param-
eters, by varying all the cosmological parameters at once and exploring
the multivariate posterior with Markov Chain Monte Carlo (MCMC) sam-
pling3] Figure [12] shows a comparison between the constraints obtained
from the MCMC and the Fisher matrix. They match well and show that our
Fisher matrix is adequately capturing the shape of the likelihood.

Figures[to]and[11)show only an example case for the parameters used to
generate the C,,,, Fisher matrix for e-sample. However, the step sizes have
been verified using this method for every Fisher matrix referred to in the
results section.

3the MCMC we use is emcee (Foreman-Mackey et al.|2013))
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Figure 11: Comparison of the 1D likelihoods from the Fisher matrix calculated using the selected step size against the 1D likelihoods from
sampling the likelihood directly using a grid sampler.
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Figure 12: Comparison of the constraints on the cosmological parameters used in this analysis
when found using and MCMC or a Fisher matrix. All other parameters have been fixed.






