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3| KiDS-1000: Constraints on
the intrinsic alignment of
luminous red galaxies

M.C Fortuna, H. Hoekstra, H. Johnston, M. Vakili, A. Kannawadi, C.

Georgiou, B. Joachimi, A. H. Wright, M. Asgari, M. Bilicki, C. Heymans,

H. Hildebrandt, K. Kuijken, M. Von Wietersheim-Kramsta 2021, A&A,
654, A76

We constrain the luminosity and redshift dependence of the intrinsic alignment (IA) of a

nearly volume-limited sample of luminous red galaxies selected from the fourth public data

release of the Kilo-Degree Survey (KiDS-1000). To measure the shapes of the galaxies, we

used two complementary algorithms, finding consistent IA measurements for the overlap-

ping galaxy sample. The global significance of IA detection across our two independent

luminous red galaxy samples, with our favoured method of shape estimation, is ∼ 10.7f.
We find no significant dependence with redshift of the IA signal in the range 0.2 < I < 0.8,
nor a dependence with luminosity below !A . 2.9 × 1010ℎ−2!A ,�. Above this luminosity,

however, we find that the IA signal increases as a power law, although our results are also

compatible with linear growth within the current uncertainties. This behaviour motivates

the use of a broken power lawmodel when accounting for the luminosity dependence of IA

contamination in cosmic shear studies.
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3.1 Introduction

Galaxies that form close to a matter over-density are affected by the tide

induced by the quadrupole of the surrounding gravitational field, and the

distribution of stars will adjust accordingly. This process, which starts dur-

ing the initial stages of galaxy formation (Catelan et al. 2001), can persist

over their entire lifetime, as galaxies have continuous gravitational inter-

actions with the surroundingmatter (e.g. Bhowmick et al. 2020), and leads

to the intrinsic alignment (IA) of galaxies.

This tendency of neighbouring galaxy pairs to have a similar orientation

of their intrinsic shapes is an important contaminant forweak gravitational

lensing measurements (e.g. Joachimi et al. 2015). The matter distribution

along the line-of-sight distorts the images of background galaxies, resulting

in apparent correlations in their shapes. Intrinsic alignment contributes to

the observed correlations, complicating the interpretation. To infer unbi-

ased cosmological parameter estimates it is therefore crucial to account for

the IA contribution. This is particularly important in the light of future sur-

veys, such as Euclid1 (Laureijs et al. 2011) and the Large Synoptic Survey

Telescope (LSST)2 at the Vera C. Rubin Observatory (Abell et al. 2009),

which aim to constrain the cosmological parameters with sub-percent ac-

curacy (for a forecast of the IA impact on current and upcoming surveys

see Kirk et al. 2010; Krause et al. 2016, among others). Some recent re-

sults on current weak lensing studies are available in, for example, Aihara

et al. (2018); Asgari et al. (2021); DES Collaboration et al. (2021).

To provide informative priors to lensing studies, it is essential to learn

as much as possible from direct observations of IA. It is, however, also im-

portant that such results can be related to the properties of galaxies that

give rise to the alignment signal in cosmic shear surveys (Fortuna et al.

2021a). Intrinsic alignment studies are typically limited to relatively bright

galaxies, which often sit at the centre of their own group or cluster, and it

is thus possible to connect their alignment to the underlying dark matter

halo alignment via analytic models (Hirata & Seljak 2004). The picture

becomes more complicated when considering samples that contain a sig-

nificant fraction of satellite galaxies: The alignment of satellites arises as a

result of the continuous torque exercised by the intra-halo tidal fields while

the satellite orbits inside the halo (Pereira et al. 2008; Pereira & Bryan

2010). This leads to a radial alignment, which also depends on the galaxy

1https://www.euclid-ec.org
2https://www.lsst.org

https://www.euclid-ec.org
https://www.lsst.org
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distance from the centre of the halo (Georgiou et al. 2019b). At the same

time, satellites fall into halos through the filaments of the large-scale struc-

ture, and this persists as an anisotropic distribution within the halo, which

has been detected both in simulations (Knebe et al. 2004; Zentner et al.

2005) and observations (West & Blakeslee 2000; Bailin et al. 2008; Huang

et al. 2016; Johnston et al. 2019; Georgiou et al. 2019b). The combina-

tion of these two effects complicates the picture. At small scales, where the

satellite contribution is expected to be important, their signal may be de-

scribed using a halo model formalism (Schneider & Bridle 2010; Fortuna

et al. 2021a), but their contribution to IA on large scales remains poorly

constrained (Johnston et al. 2019); although it is expected that they are

not aligned, they do affect the inferred amplitude because they contribute

to the overall mix of galaxies. This prevents a straightforward interpreta-

tion of any secondary sample dependence of the IA signal sourced by the

central galaxy population, such as the dependence on luminosity or colour,

in mixed samples where the fraction of satellites is relevant.

Observational studies have founddiscordant results regarding the pres-

ence of a luminosity dependence of the IA signal, with the bright end being

well described by a steep power law with index ∼ 1.2 (Hirata et al. 2007;
Joachimi et al. 2011; Singh et al. 2015), while less luminous galaxies do not

show any significant dependence of the IA signal with luminosity (John-

ston et al. 2019). A recent investigation using hydrodynamic simulations

by Samuroff et al. (2020a) supports a flatter slope, in agreementwith John-

ston et al. (2019) and Fortuna et al. (2021a) at low luminosities but in ten-

sion with previous studies that probe more luminous galaxies. The inter-

pretation of these results is also affected by the presence of satellites, whose

fraction varies with luminosity and depends on the specific selection func-

tion of the data. At low redshift, a cosmic shear survey is dominated by

faint galaxies, and improving our understanding of the IA signal at low lu-

minosities is one of the most urgent questions for IA studies.

Another relevant aspect that is often neglected is the dependence of IA

on the shapemeasurement method (Singh &Mandelbaum 2016). The ten-

dency to align in the direction of the surrounding tidal field is a function

of galaxy scale (Georgiou et al. 2019b), with the outermost parts – which

are more weakly gravitationally locked to the galaxy – showing a more se-

vere twist. It increases the IA signal associated with shapes measured via

algorithms that assign more importance to the galaxy outskirts. In con-

trast, lensing studies typically prefer shape methods that give more weight

to the inner part of a galaxy. Accounting for this discrepancy is potentially
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relevant for future cosmic shear studies.

In this work we focus on investigating the luminosity dependence of

the IA signal in the least constrained regime, "A & −22. We employ two

different samples, which differ in mean luminosity and number density.

We limit the analysis to the large-scale alignment, for which a theoreti-

cal framework is already available and where the luminosity dependence

is known to play a crucial role (Fortuna et al. 2021a). We also provide es-

timates of the satellite fractions present in our samples in order to guide

future work on the modelling of satellite alignment at large scales. We also

explore the dependence of our signal on the shapemeasurement algorithm

used to create the shape catalogue. We compare the signal as measured

by two complementary algorithms: DEIMOS (DEconvolution In MOment

Space; Melchior et al. 2011), which has been widely used in IA studies

(Georgiou et al. 2019a; Johnston et al. 2019; Georgiou et al. 2019b), and

lensfit (Miller et al. 2007, 2013) which has been used for the cosmologi-

cal analysis of the Canada-France-Hawaii Telescope Lensing Survey (Hey-

mans et al. 2013, CFHTLenS;) and the Kilo-Degree Survey (KiDS; see As-

gari et al. 2021, and references therein).

One of the main limitations for measuring IA is the necessity of simul-

taneously relying on high-quality images and precise redshifts to properly

identify physically close pairs of galaxies that share the same gravitational

tidal shear. Wide field image surveys provide high-quality images, but the

uncertainty in the photometric redshifts is too large for useful IA measure-

ments. Fortunately, using a specific selection in colours, it is possible to

obtain a sub-sample of galaxies with more precise photometric redshifts:

the luminous red galaxies (LRGs). At any given redshift, LRGs populate a

well-defined region in the colour-magnitude diagram, known as the red-

sequence ridgeline. Using this unique property, it is possible to design a

specific algorithm to select LRGs in photometric surveys, which results in

both precise and accurate redshifts (Rozo et al. 2016; Vakili et al. 2019,

2020). Luminous red galaxies have also been shown to be strongly affected

by the surrounding tidal fields, making them an extremely suitable sample

for exploring the behaviour of IA at different redshifts and as a function of

secondary galaxy properties, such as luminosity and type (central or satel-

lites).

Joachimi et al. (2011) first studied the IA signal of an LRG sample with

photometric redshifts. In this paper we follow their main approach but use

a catalogue of LRGs selected by Vakili et al. (2020) using the KiDS fourth

public data release (KiDS-1000 Kuijken et al. 2019).
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The paper is structured as follows. In Sect. 3.2 we describe our data

and the characteristics of our two main samples. In Sect. 3.3 we introduce

the two shapemeasurementmethods employed in the analysis and present

the strategy adopted to calibrate the bias in the measured shapes. Section

3.4 presents the estimators we use to extract the signal from the data, while

Sect. 3.5 illustrates the theoretical framework we rely on when modelling

the signal: the way the model accounts for the use of photometric redshifts

as well as the way we account for astrophysical contaminants. Finally, we

present our main results in Sect. 5.6 and conclude in Sect. 4.8.

Throughout the paper, we assume a flat Λ cold dark matter cosmology

with ℎ = 0.7,Ωm = 0.25,Ωb = 0.044, f8 = 0.8, and =s = 0.96.

3.2 KiDS

The Kilo-Degree Survey is a multi-band imaging survey designed for weak

lensing studies, currently at its fourth data release (KiDS-1000; Kuijken

et al. 2019). The data are obtained with the OmegaCAM instrument (Kui-

jken 2011) on the VLT Survey Telescope (VST; Capaccioli et al. 2012). This

combination of telescope and camera was designed specifically to produce

high-quality images in the D6A8 filters, with best seeing-conditions in the

A−band, and a mean magnitude limit of ∼ 25 (5f in a 2′′ aperture). These
measurements are combined with results from the VISTA Kilo-degree IN-

frared Galaxy survey (VIKING; Edge et al. 2013), which surveyed the same

area in five infrared bands (/.�� s). This resulted in high-quality pho-
tometry in nine bands across approximately 1000 deg2 imaged by the fourth
data release3. The VIKINGdata are important for the LRG selection at high

redshift (Vakili et al. 2020): the / band is included in the red-sequence

template and improves the constraints on the redshift of the high-redshift

galaxies, while the  s band allows for a clean separation between galaxies
and stars in the (A −  s) − (A − I) colour-colour space.

3.2.1 The LRG sample

Red-sequence galaxies are characterised by a tight colour-redshift relation,

so that at any given redshift they follow a narrow ridgeline in the colour-

magnitude space. This relation can be exploited to select red galaxies from

photometric data and obtain precise photometric redshifts. Here we use

the catalogue of LRGs presented inVakili et al. (2020). It uses a variation of

3The survey was recently completed, imaging a final total of 1350 deg2.
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Figure 3.1: Photometric redshift distributions for our density (all) and shape catalogues
(lensfit and DEIMOS; see text for details). The orange histograms show the distribution for
the dense samples, which is limited to Iphot < 0.6, whereas the luminous sample (green) is
restricted to Iphot < 0.8.

the redMagiC algorithm (Rykoff et al. 2014) to select LRGs from the KiDS-

1000 data. As detailed in Vakili et al. (2019) and Vakili et al. (2020), the

red-sequence template is calibrated using the regions of KiDS that overlap

with a number of spectroscopic surveys: SDSS DR13 (Albareti et al. 2017),

2dFLenS (Blake et al. 2016), GAMA (Driver et al. 2011), together with the

GAMA G10 region, which overlaps with COSMOS (Davies et al. 2015).

The algorithm is designed to return a sample of LRGs with a constant

comovingnumber density. It achieves this by imposing a redshift-dependent

magnitude cut that depends on <
pivot
A (I), the characteristic A-band magni-

tude of the Schechter (1976) function, assuming a faint-end slope U = 1
(for more details, see Vakili et al. 2019, sect. 3.1). We use this to define two

samples that differ from each other in terms of their minimum luminosity

relative to the luminosity !pivot(I). We refer to them as our luminous sam-
ple (high luminosity, low number density, !min/!pivot(I) = 1) and dense
sample (lower luminosity, higher number density, !min/!pivot(I) = 0.5).
To ensure that the two samples are separate, we removed the galaxies in

the dense sample that also belong to the luminous one. However, this does
not mean they do not overlap in their physical properties. In particular,
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Figure 3.2: The magnitude distributions of the samples used in the analysis. Left panel:

Histograms of the apparent magnitude, MAG_AUTO in the A-band for the galaxies in the dense
(orange lines) and luminous (green lines) samples with shapes measured by lensfit (darker
colours) and DEIMOS (lighter colours). Right panel: Histograms of the absolute magni-
tudes in the A-band ( + 4 corrected) for the same samples.

they overlap partially in luminosity, a feature that we will exploit later in

the paper.

As shown inFig. 3.1, the two samples also spandifferent redshift ranges.

The luminous sample extends from I = 0.2 to I = 0.8. After applying a
conservative mask to select only objects with a high probability to be red-

sequence galaxies (corresponding to objects with a clear separation from

the star sequence in the colour-colour diagram), we are left with 117 001
galaxies, which comprise our density sample. By density sample—not to be

confused with the dense sample described above—we refer to the sample
used to trace galaxy positions, as opposed to the shape sample, which is the

sample used for the measurement of galaxy orientations and is composed

by the galaxies of the corresponding density sample for which a given shape

measurement algorithm is able to measure the galaxy shape. The density

and shape samples used in this analysis are visible in Fig. 3.1, where the

density samples of the luminous and dense samples are referred to as ‘all’
galaxies. The dense sample is obtained with the same strategy, but we fur-
ther impose I < 0.6 to ensure the completeness and purity of the sample
(see Fig. 4 in Vakili et al. (2020)). This leads to a final sample of 173 445
galaxies. As shown in Vakili et al. (2020), the redshift errors are well de-

scribed by a Student’s C−distribution. The width of the distribution in-

creases slightly with redshift, with typical values around fI ∼ 0.014−0.019.
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For further details on the sample selection and redshift estimation, we refer

the interested reader to Vakili et al. (2020).

We infer galaxy absolute magnitudes using Lephare4 (Arnouts & Ilbert

2011), assuming the dust extinction law from (Calzetti et al. 1994) and the

stellar population synthesismodel fromBruzual &Charlot (2003). We cor-

rect our magnitudes to I = 0; the K-correction is provided by Lephare and
the correction for the evolution of the stellar populations (4−correction) is
computed with the python package EzGal5 (Mancone & Gonzalez 2012),

assuming Salpeter initial mass function (Chabrier 2003) and a single star

formation burst at I = 3. These corrections are based on the magnitudes
used to define the colours (MAG_GAAP), which are measured using Gaussian
apertures (Kuijken et al. 2019). Although ideal for colour estimates, these

underestimate the flux and should not be used to compute the luminosity.

For that purpose we correct6 them using the Kron-like MAG_AUTOmeasured
from the A-band images by SExtractor (Bertin & Arnouts 1996).

The left panel of Fig. 3.2 shows the distribution in apparent magnitude

MAG_AUTO for galaxies in the dense and luminous samples for which shapes
were determined by lensfit or DEIMOS. In Sect. 3.3 we describe the two

shape measurement methods and explain the difference in their number

counts. We note that the LRGs are much brighter than the limiting mag-

nitude of KiDS in the A-band. The corresponding distributions in absolute

magnitude in the rest-frame A filter, K+4 corrected to I = 0, are presented
in the right panel of Fig. 3.2. This shows that the dense sample overlaps
somewhat with the luminous sample in terms of luminosity, as a conse-
quence of the photometric redshift uncertainty7.

4https://www.cfht.hawaii.edu/~arnouts/LEPHARE/lephare.html
5http://www.baryons.org/ezgal
6The total flux in the G filter can be computed using <G = MAG_AUTOA + (MAG_GAAPG −

MAG_GAAPA ), which implicitly assumes that colour gradients are negligible.
7The selection through the redshift-dependent apparent magnitude cut results in an

overlap in apparent magnitudes of the dense and luminous samples. Because the cut is
redshift-dependent, this implies a threshold in luminosity: In the case of perfect redshifts,

this would result in a disjoint sample, becausewe removed the galaxies from the dense sam-
ple that overlap with the luminous one. The photometric redshift uncertainty, however,
assigns to galaxies with the same apparent magnitude different luminosities, and thus a

portion of the dense sample extends above the luminosity threshold of the luminous sam-
ple.

https://www.cfht.hawaii.edu/~arnouts/LEPHARE/lephare.html
http://www.baryons.org/ezgal
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3.2.2 Satellite galaxy fraction estimation

Observations suggest that satellite galaxies are onlyweakly aligned (see e.g.

Georgiou et al. 2019b, for recent constraints) and thus suppress the IA sig-

nal at large scales. We do not take this into account in our analysis but

provide here an estimate of the fraction of satellites we expect in our sam-

ples. Such information will be useful for future modelling studies.

We used the publicly available G3GGal and G3GFoFGroup catalogues
(Robotham et al. 2011) from the GAMA survey (Driver et al. 2009, 2011;

Liske et al. 2015). Since KiDS overlaps with GAMA, these catalogues pro-

vide group information for a subset of our galaxies, obtainedwith aFriends-

of-Friends algorithm. We cross-matched our LRG sampleswith the G3GGal
catalogue and selected galaxies with I < 0.21 (I < 0.32), which provide a
roughly volume-complete match to the dense (luminous) sample. With

the information in both group catalogues, we identify both the brightest

group galaxies and ungrouped galaxies as centrals, and the rest as satel-

lites. With this strategy, we obtain 5sat = 0.34 for our dense×GAMA sample
and 5sat = 0.23 for the luminous×GAMA8. Since our samples are selected
to resemble the same galaxy populations at different redshifts, these esti-

mates should be fairly representative beyond the redshift range probed by

our direct comparison.

3.3 Shape measurements

In addition to precise redshifts, a successful IA measurement requires ac-

curate shape measurements. In this work, we compare two different al-

gorithms, DEIMOS and lensfit both in terms of their ability to recover re-

liable ellipticity measurements and the resulting IA signal. Exploring the

dependence of the IA signal on the shape measurement algorithm is im-

portant if one aims to provide informative priors to lensing studies (Singh

& Mandelbaum 2016). Both algorithms have been used to analyse KiDS

data: DEIMOS to provide the shape catalogue (Georgiou et al. 2019a) for a

number of IA studies, while lensfit was used for cosmic shear analyses (see

Giblin et al. 2021, for the most recent shape measurements).

8These estimates refer to the full samples, but should be representative for the shape

samples as well.
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3.3.1 DEIMOS

DEIMOS (Melchior et al. 2011) is a moment-based shape measurement al-

gorithm designed to measure the moments of the surface brightness dis-

tribution from an image, which are subsequently used to estimate the el-

lipticity. The main features of DEIMOS are its rigorous treatment of the

PSF moments to arbitrary order, the lack of model assumptions and the

flexibility in changing the size of the weight function so that it is possible

to assign more importance to different parts of a galaxy while performing

the shape measurement (bulge or outskirts).

The unweighted moments of the surface brightness� (®G) are defined as

&8 9 ≡ {�}8 9 =
∫

� (®G) G8H 9 dG dH , (3.1)

where (G, H) are the Cartesian coordinates with origin at the galaxy’s cen-
troid. The complex ellipticity is then defined in terms of the second-order

moments as

n ≡ n1 + in2 =
Q20 − Q02 + 2i Q11

Q20 + Q02 + 2
√

Q20 Q02 − Q2
11

. (3.2)

In practice, unweighted moments cannot be used because of noise in

the images, and weighted moments have to be employed instead. We will

return to this issue later. Moreover, the galaxy images are smeared and

distorted by the atmospheric blurring and the telescope optics, so that the

observed image, �∗, is convolved with the PSF kernel %(®G),

�∗(®G) =
∫

� (®G ′) %(®G − ®G ′) d®G ′ . (3.3)

TheDEIMOS algorithm estimates the unweightedmoments by correct-

ing the observed weighted moments of the galaxy surface brightness for

the convolution by the PSF. The underlying mathematical framework is

a deconvolution in moment space. In order to measure the moments in

Eq. (3.1) we then need to deconvolve them. This can easily be achieved in

Fourier space, where the convolution becomes a product. Using theCauchy

product, we can write (Melchior et al. 2011):

{�∗}8 9 =
8∑
:

9∑
;

(
8

:

) (
9

;

)
{�}:;{%}8−:, 9−; , (3.4)
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which shows that the (8 + 9)-order convolved moments are determined by
the same- or lower-order moments of the galaxy and the PSF kernel. The

deconvolution procedure to estimate the galaxy moments is to invert the

above hierarchical system of equations, starting from the zeroth order.

As mentioned above, it is necessary to introduce a weight function to

avoid noise dominating the second-ordermoments outside the galaxy light

profile. In this work, we adopt an elliptical Gaussian weight function with

size Awf = Aiso, where Aiso is the isophotal radius, defined as Aiso =
√
�iso/c,

following Georgiou et al. (2019a). The area �iso of the galaxy’s isophote is
computed using the ISOAREA_IMAGEby SExtractor (Bertin&Arnouts 1996).
The shape measurement procedure is the same as described in Georgiou

et al. (2019a) and we point the interested reader to their Section 2 for a

detailed description of the algorithm. In Appendix A1 we report our anal-

ysis of the measured shape bias for different setups, which led to our final

choice reported above.

UsingDEIMOS,we successfullymeasured the shapes of 96863 galaxies

from the luminous sample, ∼ 83% of the corresponding density sample,

and 152832 shapes from the dense sample, roughly ∼ 88% of its density

sample. The shape measurements mainly fail9 for the faintest galaxies in

the sample.

3.3.2 lensfit

The second shape catalogue is obtained using the self-calibrating version

of lensfit (Miller et al. 2013), described in more detail in Fenech Conti

et al. (2017). It is a likelihood-based model-fitting method that fits a PSF-

convolved two-component bulge and disk galaxy model. This is applied si-

multaneously to the multiple exposures in the KiDS-1000 A-band imaging,

to get an ellipticity estimate for each galaxy.

lensfit provides shapes for 84 785 galaxies from the luminous sample
(72% of the density sample), and for 121 500 galaxies from the dense sam-
ple (70% of the density sample). The lower completeness with respect to

DEIMOS is largely explained by the fact that lensfit has been optimised for

cosmic shear studies, where the signal ismaximised for high-redshift galax-

ies, which are typically small and faint. Whilst lensfit could determine ellip-

ticity measurements for the large bright galaxies with MAG_AUTO < 20, this
model-fitting algorithmbecomes prohibitively slow given the large number

9We only considered shapes with flag_DEIMOS==0000, corresponding tomeasurements
that do not raise any flag (see Georgiou et al. 2019a).
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of pixels that these bright galaxies span. Therefore, the lensfit catalogue

only contains galaxies fainter than MAG_AUTO > 20 (hence the sharp cut-off
in apparent magnitude in Fig. 3.2). It performs better than DEIMOS for

relatively faint and low signal-to-noise (S/N) galaxies. As these are prefer-

entially found at higher redshifts, this also explains the different redshift

distributions, as illustrated in Fig. 3.1.

3.3.3 Image simulations

We want to measure the shapes of galaxies from images that are corrupted

by noise and blurred by the atmosphere and telescope optics. These bias

the inferred shapes and thus need to be carefully corrected for. Although

both DEIMOS and lensfit are designed to do so, residual biases remain.

These can be expressed as (Heymans et al. 2006)

nobs
8 = (1 + <8)n true

8 + 28 , (3.5)

with 8 ∈ {1, 2} the ellipticity components introduced in 3.2. Here n true
8

is

the true ellipticity, while nobs
8

is the output of the shape measurement algo-

rithm; <8 is the multiplicative bias and 28 is the additive bias. Differently

from what is done in lensing studies (e.g. Kannawadi et al. 2019), here we

calibrated the ellipticity rather than the shear. Our aim is to determine the

biases in our shape measurements using realistic image simulations, with

a precision that is better than the statistical error on our IA signal.

We stress that although it is important to start with an algorithm that

does not lead to a large bias in the first place, what matters the most is to

calibrate the residual bias on realistic image simulations in order to prop-

erly account for galaxy blending and thedifferent observing conditions (Hoek-

stra et al. 2017; Kannawadi et al. 2019; Samuroff et al. 2018; MacCrann

et al. 2020). We use dedicated image simulations generated with the COl-

lege pipeline (COSMOS-like lensing emulation of ground experiments; Kan-

nawadi et al. 2019). These simulations reproduce the observations from

the Cosmic Evolution Survey (COSMOS, Scoville et al. 2007), for which

we have both KiDS imaging (KiDS-COSMOS) and deeper images from the

Hubble Space Telescope (HST). We use the HST observations to generate

our input catalogue and simulate the KiDS observations by varying the ob-

servation conditions. Under the assumption that COSMOS is representa-

tive of our galaxy sample (in practice we only require that it covers the S/N

and size parameter space, while we do not need the galaxy distributions to

match) we study the <−bias properties of the LRGs in our KiDS-COSMOS
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Figure 3.3: Average multiplicative bias, < = (<n1 + <n2 )/2, as a function of (a) the galaxy
resolution, ', and (b) the signal-to-noise ratio, S/N. Each point is measured on the same
number of simulated galaxies and the error bars are estimated using bootstraps. For a com-
parison we also display in the background the weighted distribution of the two definitions of
' and the S/N in the real data for the dense shape samples (pink: ;4=Bfit; blue: DEIMOS).
The solid lines show the polynomial fit to <(') and <(S/N), which guided the construction
of the two-dimensional bias surface.
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field and use the bias model obtained from this set of galaxies to calibrate

our full sample.

The image simulations used in this work differ slightly from those pre-

sented in Kannawadi et al. (2019) because we required a larger number of

simulated LRGs for our calibration. To achieve this, we adopted the ZEST

catalogue (Zurich Estimator of Structural Type; Scarlata et al. 2007; Sar-

gent et al. 2007) for the input galaxy parameters. We generated 52 KiDS-

like images by varying the observing conditions and rotating the galaxies.

We used 13 different PSF sets and four rotations per each image. Since our

underlying galaxy selection is identical for both the lensfit and DEIMOS

shape catalogues, we employed the same suite of simulations for both cal-

ibrations.

The shape measurement bias depends on the size, S/N, radial surface

brightness profile and ellipticity of the galaxy, as well as the observing con-

ditions. Of these, the size and S/N are the most relevant, and we use these

to capture the dependence of the bias for our set of simulated galaxies.

Rather than the intrinsic size of the galaxy, we use a proxy for how well

it is resolved: ' quantifies the relative size of the PSF compared to the size

of the galaxy. Here, we adopt two slightly different definitions, depending

on the shape algorithm employed. For DEIMOS we use

'DEIMOS = 1 − )
PSF

)gal , (3.6)

where )PSF = &PSF
20 + &PSF

02 and )gal = &
∗gal
20 + &∗gal

02 , where &
∗gal
8 9

are the

unweighted moments of the PSF-convolved surface brightness profile (see

Eqs. 3.4 and 3.1). In the case of ;4=Bfit we use

';4=Bfit = 1 −
A2

PSF(
A2

ab + A2
PSF

) , (3.7)

where A2
PSF =

√
%11%22 − %2

12 and Aab = Ae
√
@. Here, %8 9 are the ;4=Bfit PSF

weighted quadrupole moments (see Eq. (2) in Giblin et al. 2021), mea-

sured with a circular Gaussian function of size 2.5 pixels; Ae is the half-light
radius measured along the major axis of the best-fit elliptical profile by

;4=Bfit, which is an estimate of the true galaxy size before PSF-convolution,

while @ is the axis ratio, such that Aab is the azimuthally averaged size of the
galaxy. As we can see, ' can in practice only assume values between 0 and

1, where 1 corresponds to galaxies with sizes that are much larger than the

PSF.
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We evaluate the multiplicative bias < in bins of S/N and ' that con-

tain an equal number of galaxies and the error bars are computed using

500 bootstrap realisations. The resulting biases are presented in Fig. 3.3

for both lensfit and DEIMOS. We find that the two components n1,2 show
similar dependencies, and, therefore, we calibrate the bias for the two com-

ponents jointly. The additive bias for both components is consistent with

zero, and thus we do not consider it further in our calibration.

For both<(S/N) and<('), we find that lensfit has a small bias and thus
also our correction is small; in general, it performs better than DEIMOS

for poorly resolved galaxies and low S/N. It is, however, prohibitively slow

when measuring shapes for large galaxies, limiting the lensfit sample to

galaxies with <A > 20. In contrast, DEIMOS shows a large bias for low
values of ': the galaxy size correlates with its ellipticity, and we find that

removing the highly elliptical galaxies significantly reduces the bias. How-

ever, once we calibrate the shapes of those galaxies, we recover a very sim-

ilar signal for the full shape sample and the one cut in ellipticity. Simi-

larly, we have also tested that adding inverse-variance weights to account

for these noisy galaxies does not significantly improve our signal. This mo-

tivates our choice to keep all galaxies in our sample and not to introduce

additional weighting; we assume that the measurements are dominated by

shape noise only.

We can see that<(') for bothDEIMOS and lensfit is well described by a
polynomial curve, which we truncate at degree 3 and 4, respectively, while

<(S/N) is well described by the expansion: 3 (S/N) = 31/
√

S/N + 32/(S/N).
We combine the two individual bias dependencies into a single bias surface

as detailed in Appendix A1. The specific functional forms for the two shape

methods differ to better adapt the surface to our observed bias. We use

these empirical relations to infer the <-bias associated with each galaxy,

given its S/N and '.

To ensure that our empirical correction performs well on our sample,

we selected sets of galaxies from the image simulations that resemble our

LRG samples by reproducing the observed distributions in S/N and '. We

measured the residual biases for these samples, defined as the difference

in the estimated<-bias (inferred using ourmodel for the bias) and the bias

measured directly from the simulations for the given set of galaxies. For the

DEIMOS shapemethod, we find an average residual of−0.002±0.007 for the
dense-like sample, while this is −0.002 ± 0.008 for the luminous-like sam-
ple. Similarly, in the case of lensfit the residuals for the luminous-like and
dense-like galaxies are, respectively, −0.0014±0.0013 and −0.0019±0.0020.
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Figure 3.4: Histogram of the difference of the n1 component of the ellipticity measured by
the two shape measurement algorithms, lensfit and DEIMOS, on a common sub-sample of
galaxies, after applying the <−bias correction as described in the text. The n2 component
shows the same behaviour. The distribution is more peaked than a Gaussian (red dashed line)
and is best described by a Student’s C−distribution with a = 4.3, and a width f = 0.08 with
zero mean (black solid line).

Aswewill see later, this ismuch smaller than the uncertainty in the IAmea-

surements: the average bias introduced by the shapemeasurement process

is subdominant and does not affect our best estimate of the IA amplitude.

The LRGs are relatively bright and we thus expect the shape measure-

ments to be shape noise-dominated. This also implies that the DEIMOS

and lensfitmeasurements are correlated. To quantify this, we show the dis-

tribution of the difference between the <−corrected ellipticities measured
by the two algorithms in Fig. 3.4. The distribution is more peaked than a

Gaussian, and well described by a Student’s C−distribution centred on zero,
with a = 4.30 (degrees of freedom) and with scale parameter f = 0.08.
This is to be compared to the intrinsic ellipticity of galaxies, which is about

nrms = 0.12 based on DEIMOS measurements for galaxies with apparent
magnitude <A < 20. It is interesting to note that our sample is consider-
ably rounder than a typical cosmic shear sample, as expected for an LRG

sample (see for example van Uitert et al. 2012); this implies that it might

be affected differently by a weighting scheme in a lensing analysis. The

differences between the DEIMOS and lensfit measurements are caused by

differences in how each method deals with noise in the images.
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3.4 Correlation function measurements

Wemeasured the IA signal using the two-points statisticFg+, defined as the
projection along the line-of-sight of the cross-correlation between galaxy

positions and galaxy shapes. It measures the tendency of galaxies to point

in the direction of another galaxy as a function of their comoving trans-

verse separation, Ap, and comoving line-of-sight separation,Π. To quantify
the alignment signal in our data, we employed the estimator presented in

Mandelbaum et al. (2006)10,

b̂6+(Ap,Π) =
(+� − (+'D

'S'D
, (3.8)

where 'D and 'S are catalogues of random points designed to reproduce

the galaxy distribution of the density and shape samples, respectively. We

indicatewith� the density sample that provides the galaxy positions, while

(+ is the shape sample, such that the quantity

(+� =
∑
8≠ 9

W+(8 | 9), (3.9)

gives us the tangential shear component of the galaxy pair (8, 9), W+(8 | 9),
where 8 is extracted from the shape sample and 9 from the density sample.

W+, in turn, is defined as

W+(8 | 9) =
1
R<

[
n8 exp(−28q8 9)

]
, (3.10)

where< denotes the real part; n8 is the complex ellipticity associated with

the galaxy 8, n8 = n1,8 + 8n2,8, whose components 1,2 are measured by the
shapemeasurement algorithmspresented in Sect. 3.3; q8 9 is the polar angle

of the vector that connects the galaxy pair; R = mn/mW is the shear respon-
sivity and it quantifies by howmuch the ellipticity changes when a shear is

applied: for an ensemble of sources, R = 1 − n2
rms.

The galaxy clustering signal is computed with the standard estimator

(Landy & Szalay 1993),

b̂gg (Ap,Π) =
�� − 2�'� − '�'�

'�'�
. (3.11)

10Instead of normalising by 'S'D, we actually normalise by the density - randoms vs.
shapes pair count, 'D�S. This significantly speeds up the computation and has been tested
to have negligible impact (Johnston et al. 2019).
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To measure our clustering and IA signals, we used uniform random

samples that reproduce the KiDS footprint, accounting for the masked re-

gions; to these we assigned redshifts randomly extracted from the galaxy

unconditional photometric redshift distributions. For each sample, we con-

structed the random sample to match their redshift distribution.

To account for the spatial variation in the survey systematics, we ap-

plied weights to the galaxies when computing the signal, as discussed in

Vakili et al. (2020). These weights are designed to remove the systematic-

induced variation in the galaxy number density across the survey footprint.

For a detailed discussion of how the weights are generated and tested, we

refer to Sect. 4 in Vakili et al. (2020). To capture the variation in the survey

systematics along the line-of-sight, we split each sample into three redshift

bins and assigned the weights to those sub-samples. We tested that this

procedure does not induce a correlation between the galaxy weights and

the redshifts themselves. We also verified that the impact of the weights is

very small and can be neglected when considering the split in luminosity of

the samples (see Sect. 3.6.1). We applied such weights to both the density

and shape samples.

In this work, we measured the clustering and IA signals using an up-

dated version of the pipeline presented in Johnston et al. (2019), which

makes use of the publicly available software Treecorr (Jarvis et al. 2004)11

for clustering correlations. bg+ and bgg are then projected by integrating
over the line-of-sight component of the comoving separation, Π,

F̂g8 (Ap) =
∫ Πmax

−Πmax

dΠ b̂g8 (Ap,Π) 8 = {+, 6} . (3.12)

The largest scales probed in this analysis are limited by the effective

survey area (∼ 777 deg2). We set a maximum transverse separation of

60 ℎ−1Mpc and measure the signal in 10 logarithmically spaced bins, from
Ap,min = 0.2 ℎ−1Mpc.

We performed the measurements for three different setups: we adopt

Πmax = 120 ℎ−1Mpc as the fiducial case, but repeated the analysis forΠmax =

90 ℎ−1Mpc and Πmax = 180 ℎ−1Mpc (see Appendix A5). We always bin our

galaxies in equally spaced bins with ΔΠ = 10 ℎ−1Mpc. We observe an ex-

tended signal to Π > 180 ℎ−1Mpc, but the signal is comparable to the noise
at those distances.

11https://github.com/rmjarvis/TreeCorr

https://github.com/rmjarvis/TreeCorr
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Our choice of Πmax is conservative since the uncertainties in the photo-
metric redshifts are fI < 0.02(1 + I) for both the denseand luminous sam-
ples (Vakili et al. 2020), and if we chooseΠmax based on the 1f uncertainty
in the photometric redshifts (Joachimi et al. 2011), we could potentially re-

duce Πmax to 70 ℎ−1Mpc. However, this might be too optimistic given that
the error on fI increases with redshift. The choice of Πmax is motivated by
two opposite necessities: to maximise the S/N, we want to minimise the

amount of signal that we discard, whilst we also want to avoid adding un-

correlated pairs that would increase the noise. To find the best balance,

we calculate the S/N of our signal as a function of (Ap,Π) by dividing the
measured Fgg (Ap,Π) by the root-diagonal of the jackknife covariance. We

truncate at Πmax based on the 10 f detection, which roughly corresponds

to Πmax = 120 ℎ−1Mpc. In addition to these considerations, there is a fur-
ther motivation to limit the integral to modest line-of-sight separations: as

discussed in Appendix A3, the contamination from galaxy-galaxy lensing

has a shallower dependence on the line-of-sight separation; as we move

along the Π direction, we see an increase in the contamination with a mild

increase in the IA signal, until lensing dominates.

The error bars are computed via a delete-one jackknife re-sampling of

the observed volume. The covariance matrix is constructed as

Covjack. =
# − 1
#

#∑
U=1

(FU − F̄) (FU − F̄)>, (3.13)

where FU is the signal measured from jackknife sample U, while F̄ is the

average over # samples; > denotes the transpose of the vector.

The number of regions # is ultimately set by the size of the survey and

the scales we aim to probe. A maximum value of Ap = 60 ℎ−1Mpc corre-
sponds to an angular separation of ∼ 8 degrees (dense sample) and ∼ 6
degrees (luminous sample) at the lowest redshifts probed in the analysis.
However, to increase the number of jackknife regions, we decided to set the

minimum angular scale to 5 degrees, which strictly satisfies our require-

ment only for I & 0.2. This is motivated by the fact that the majority of
our galaxies are at high redshift and hence only . 5% of our galaxies have

unreliable error estimates in the last Ap−bin. The total number of jackknife
regions that we are able to obtain for our samples is # = 37. We corrected

our inverse covariance matrices, which enter into our likelihood estima-

tions, as recommended in Hartlap et al. (2007): because of the presence of

noise, the inverse of a covariance matrix obtained from a finite number of

jackknife (or bootstrap) realisations is a biased estimator of the true inverse
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covariance matrix.

3.5 Modelling

The linear alignment model (Catelan et al. 2001; Hirata & Seljak 2004)

predicts a linear relation between the contribution to the shear induced

by IA and the quadrupole of the gravitational field responsible of the tidal

effect. This can be expressed as

WI = (WI
+, W

I
×) = − �1

4c� (m2
G + m2

H , mGmH)Φp , (3.14)

where the partial derivatives are with respect to comoving coordinates and

provide the tangential and cross components of the shear with respect to

the G-axis;Φp is the gravitational potential at the moment of galaxy forma-
tion, assumed to take place during thematter-dominated era (Catelan et al.

2001); �1 is a normalisation constant and � is the gravitational constant.

Using Eq. (3.14), by correlating the intrinsic shearwith itself or with the

matter density field X, we can construct the relevant equations for the IA

correlation functions (Hirata & Seljak 2004). In Fourier space, the matter

density-shear power spectrum (XI) becomes

%LA
XI (:, I) = �IA�1dc

Ω<

� (I) %
lin
XX (:, I) . (3.15)

Here, � (I) is the linear growth factor, normalised to unity at I = 0, dc is the
critical density of the Universe today, and %lin

XX
is the linear matter power

spectrum. We set �1 = 5 × 10−14ℎ−2"−1
� Mpc3 based on the IA amplitude

measured at low redshifts using SuperCOSMOS (Hartlap, Simon& Schnei-

der Bro), which is the standard normalisation for IA power spectra.

Galaxies are biased tracers of thematter density field, and at large scales

this relation is linear, Xg ∼ 1gX. We can thus relate the galaxy position–

intrinsic shear power spectrum to thematter density–intrinsic shear power

spectrum via the galaxy bias 1g:

%LA
gI (:, I) = 1g%

LA
XI (:, I) , (3.16)

which is the power spectrum of interest for our analysis.

A successful modification of the LA model replaces the linear matter

power spectrum in Eq. (3.15) with the non-linear one, to account for the

non-linearities arising at intermediate scales (Bridle & King 2007). This
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so-called NLAmodel was succesfully employed in a number of studies (e.g.

Blazek et al. 2011; Joachimi et al. 2011) and here we follow the same ap-

proach tomodel our signal. More sophisticated treatments of the IA signal,

which include the modelling of the mildly or fully non-linear scales, have

been developed in the last decade (Schneider & Bridle 2010; Blazek et al.

2019; Fortuna et al. 2021a), but given the scales probed in our analysis (see

Sect. 3.5.3) and the homogeneous characteristics of the galaxy population

studied, the NLAmodel provides a sufficient description for this work. Un-

less stated otherwise, in the following we always assume the NLAmodel as

our reference choice. To generate the linear matter power spectrum we

use CAMB12 (Lewis et al. 2000; Lewis & Bridle 2002), while the non-linear

modifications are computed using Halofit (Smith et al. 2002) with the im-

plementation presented in Takahashi et al. (2012). In the rest of the paper,

we simply refer to the non-linear matter power spectrum as %XX (:, I).

3.5.1 Incorporating the photometric redshift uncertainty
into the model

The use of photometric redshifts results in an uncertainty in the estimated

distance of the galaxies, which has to be included in the model. In par-

ticular, if we express the correlation function bgI in terms of the two com-
ponents of the galaxy separation vector r, (Ap,Π), we can map the redshift
probability distribution into the probability that the true values of Ap andΠ
correspond to their photometric estimates. Here, we follow the approach

derived in Joachimi et al. (2011) and use their approximated expression,

b
ph
gI (Āp, Π̄, Īm) =

∫ dℓℓ
2c �2

(
ℓ\ (Āp, Īm)

)
�gI

(
ℓ; Ī1( Īm, Π̄), Ī2( Īm, Π̄)

)
. (3.17)

The observables are: Ī1 and Ī2, the photometric redshift estimates of
the pair of galaxies for which we are measuring the correlation, and their

angular separation \. These can be related to (Āp, Π̄, Īm), through the ap-
proximate relations

Im =
1
2 (I1 + I2) , (3.18)

Ap ≈ \j(Im) , (3.19)

Π ≈ 2

� (Im) (I2 − I1) , (3.20)

12https://camb.info
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where j(Im) and � (Im) are, respectively, the comoving distance and the
Hubble parameter at redshift I<, and 2 is the speed of light.

The conditional redshift probability distributions are incorporated into

the angular power spectrum �gI, which can be expressed in terms of the
three-dimensional power spectrum %gI(:, I),

�gI(ℓ, Ī1, Ī2) =
∫ jhor

0
dj′ ?= (j

′ |j( Ī1))? n (j′ |j( Ī2))
j′2

× %gI

(
ℓ + 1/2
j′

, I(j′)
)

(3.21)

wherewe have implicitly assumed the flat-sky and Limber approximations,

and = and n indicate the density and shape sample respectively. ?(j′ |j)
are the conditional comoving distance probability distributions, which are

related to the redshift distributions via ?(j′ |j)dj = ?(I | Ī)dI. When com-

puting our predictions, we bin our photometric data and compute the cor-

responding ?(I | Ī) ≡ ?(Ispec |Iphot) per each bin; I1 and I2 in Eq. (3.18) cor-
responds to the mean values of the probability distribution with I1 being
the mean of the i-th bin and I2 of the j-th bin. In Appendix A2 we show the
redshift distributions entering our analysis. We refer the interested reader

to appendices A.2 and A.3 in Joachimi et al. (2011) for the full derivation of

equation 3.21. The exact same formalism can then be applied to the clus-

tering signal, where �gI → �gg, �2 → �0 and the redshift distributions are
those corresponding to the density sample.

The projected correlation functions Fg+ and F66 can then be obtained
as:

Fg+(Ap) =
∫

dΠ̄
∫

dImW( Īm)bph
gI (Āp, Π̄, Īm) (3.22)

and

Fgg (Ap) =
∫

dΠ̄
∫

dImW( Īm)bph
gg (Āp, Π̄, Īm) , (3.23)

where the redshift window functionW(I) is defined as (Mandelbaum et al.

2011):

W(I) =
?8 (I)? 9 (I)
j2(I)dj/dI

[∫
dI

?8 (I)? 9 (I)
j2(I)dj/dI

] −1
, (3.24)

where ?8, 9 (I) with 8, 9 ∈ (, � are now the unconditional redshift distribu-

tions for the shape and density samples, and j(I) is the comoving distance
to redshift I.
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3.5.2 Contamination to the signal

All possible two-point correlations between galaxy shapes and positions

contribute to the estimator inEq. (3.12). Following thenotation in Joachimi

& Bridle (2010), here we consider: the correlation between the intrinsic

shear and the galaxy position (g+), which is the quantity we aim to con-

strain; but also the correlation between gravitational shear and galaxy posi-

tion, sourced by the galaxy lensing of a background galaxy by a foreground

galaxy (gG); and the apparent modification of the galaxy number counts

due to the effect of lensing magnification, which affects both the correla-

tions with the intrinsic shear and the gravitational shear (mI and mG).

Among these effects, galaxy-galaxy lensing is the main contaminant to

our signal. While IA requires physically close galaxies, galaxy-galaxy lens-

ing occurs between galaxies at different redshifts. This implies that the

level of contamination depends on our ability to select close pairs of galax-

ies, which ultimately depends on the photometric redshift precision. For

this reason, the width and the tails of the redshift distributions play an im-

portant role in the amount of contamination. Since our ?(Ispec |Iphot) are
quite narrow (see Appendix A2) we do not expect this to be a major effect

in our data. Nevertheless, we fully model both lensing and magnification

effects, and account for them when interpreting the signal. We note that

the sign of the gI and gG terms are opposite, such that adding the lensing

to the model allows us to remove its suppressing contribution and capture

the true IA signal.

It is convenient to write the various correlations in terms of the pro-

jected angular power spectra: indicating with = the density sample (that

provides the galaxy positions) and with n the shape sample, we have

�
(8 9)
=n (ℓ) = � (8 9)

gI (ℓ) + � (8 9)
gG (ℓ) + � (8 9)

mI (ℓ) + � (8 9)
mG (ℓ) , (3.25)

where, in a flat cosmology, these read

�
(8 9)
gG (ℓ) = 16

∫ jhor

0
dj ?

(8)
= (j)@ ( 9)n (j)

j2 %XX

(
ℓ + 1/2
j

, j

)
, (3.26)

�
(8 9)
mI (ℓ) = 2(U (8) − 1)� (8 9)

IG (ℓ), (3.27)

and

�
(8 9)
mG (ℓ) = 2(U (8) − 1)� (8 9)

GG (ℓ) . (3.28)
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Here U (8) is the slope of the faint-end logarithmic luminosity function13.
The lensing weight function, @- , - ∈ {=, n} is defined as

@- (j) =
3�2

0Ω<

222
j

0(j)

∫ jhor

0
dj′?- (j′)

j′ − j
j′

. (3.29)

�
(8 9)
IG is the intrinsic-shear power spectrum. It models the correlation be-

tween the shearing of source galaxies by a foreground matter overdensity

and the simultaneous IA of galaxies located near that overdensity:

�
(8 9)
IG (ℓ) =

∫ jhor

0
dj ?

(8)
= (j)@ ( 9)n (j)

j2 %XI

(
ℓ + 1/2
j

, j

)
; (3.30)

�
(8 9)
GG is instead defined as:

�
(8 9)
GG (ℓ) =

∫ jhor

0
dj@

(8)
= (j)@ ( 9)n (j)

j2 %XX

(
ℓ + 1/2
j

, j

)
. (3.31)

We note that with respect to the usual shear power spectrum, we require

here that one of the samples refers to the density sample, =.

To account for these sources of contamination in the fit, we replace bgI
with bnn , which can be obtained from Eq. (3.25). The prediction for bobs

is then used to constrain the measured signal F̂g+. In Appendix A3 we ex-
pand further on the impact of lensing on our measurements, while in Ap-

pendix A4we describe our strategy tomeasure the values of U (8) in our data.

3.5.3 Likelihoods

Weperform the fits to the data using aMarkov ChainMonte Carlo (MCMC)

that samples the multi-dimensional parameter posterior distributions and

finds the set of parameters that maximise the likelihood. We assume a

Gaussian likelihood of the form L ∝ exp(−j2/2), where

j2 = j2
Fgg + j

2
Fg+ (3.32)

and we simultaneously fit for the galaxy bias, 1g and the IA amplitude, �IA.

13Formally, the magnification of the lensfit sample is also affected by the slope of the

luminosity function at the bright end of <A = 20. We ignore such complexity: we find

magnification to be a subdominant effect for the faint distant galaxies, thus the contribution

of low-redshift galaxies is expected to be negligible for our analysis.
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To correct for the effects of a partial-sky survey window, we also intro-

duce an integral constraint, IC, when modelling the clustering, signal,

Fgg → Fgg + IC . (3.33)

This term, which becomes important only on large scales, has the function

of capturing the bias that arises from a mis-estimation of the global mean

density (Roche & Eales 1999). We treat this term as a nuisance parameter,

such that our parameter vector reads

_ = {16, �IA; IC} . (3.34)

We limit our fits to the quasi-linear regime, Ap > 6 ℎ−1Mpc, to ensure
that the linear bias approximation is satisfied and the IA signal is well de-

scribed by the NLA model. To perform our fits, we make use of the Emcee

(Foreman-Mackey et al. 2013) package as implemented in the cosmology

software CosmoSIS14 (Zuntz et al. 2015). When analysing the chains, we

exclude the first 30% of samples for a burn-in phase.

3.6 Results

The left panels in Fig. 3.5 show themeasurements of the projected position-

shape correlation functionFg+ for the luminous (top panel) and dense (bot-
tom panel) samples. We present results for both the lensfit (dark green tri-

angles) and DEIMOS (light green squares) shape catalogues. As described

in Sect. 3.5.3, we simultaneously fit the IA and the clustering signals. We

show the resulting best-fit models to measurements with Ap > 6 ℎ−1Mpc
of Fg+ and Fgg as solid lines in the figures. The estimates from the two

shape measurement algorithms are fit independently, but given that the

corresponding clustering signal is the same, here we only show the best-fit

curve for theDEIMOS fit. The clusteringmeasurements use the full density

samples, and thus do not rely on a successful shape measurement.

We observe similar signals for the DEIMOS and lensfit samples, with

the lensfit measurements having a lower S/N, because of the lack of shape

measurements for galaxies with <A < 20. We note that we do not neces-

sarily expect to observe the same signal, because DEIMOS contains more

bright, low-redshift galaxies, whereas the lensfit sample includes fainter,

distant galaxies (see Figs. 3.1 and 3.2). If the alignment signal depends

14http://bitbucket.org/joezuntz/cosmosis/wiki/Home

http://bitbucket.org/joezuntz/cosmosis/wiki/Home
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Figure 3.6: Projected correlation function, Fg+, measured for the different cuts in luminosity
of the DEIMOS dense sample. The best-fit curves are plotted on top of the data points,
and the fits are performed for Ap > 6 ℎ−1Mpc. All but the yellow points have been slightly
offset horizontally; to better visualise the goodness of fit, the corresponding best-fit curves
have been displaced accordingly.

on luminosity or redshift, the two shape samples would give different sig-

nals. In Appendix A6 we restrict the comparison to the sample of galaxies

with shape measurements from both methods, and find that the average

difference 〈ApΔFg+〉 = 0.003 ± 0.13 is negligible, especially compared to the
amplitude of the IA signal quantified as 〈ApFg+〉 = 0.90 ± 0.17 (DEIMOS
shapes; see Appendix A6 for details).

We also show the models that provide the best-fit to the combined Fgg
and Fg+ measurements in Fig. 3.5, and report the values for the bias 1g
and IA amplitude �IA in Table 3.1. The results for DEIMOS and lensfit are

consistent.

Our constraints on the galaxy bias of the dense and luminous samples
are in broad agreement with the values presented in Vakili et al. (2020):

We find a larger bias for the luminous sample than for the dense one, as
expected by its higher luminosity and the higher redshift baseline.

3.6.1 Luminosity dependence

Previous studies of LRGs (Joachimi et al. 2011; Singh et al. 2015) have

found a significant dependence of their IA signal with luminosity, with
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more luminous galaxies showing stronger alignments. On average our LRG

sample probes somewhat lower luminosities than those earlier studies, but

the overlapwith these earlierworks also enables a direct comparison. Thanks

to the large range in luminosity it covers, the dense sample is particularly
suited to explore the dependence with luminosity. To do so, we use the

DEIMOS shape catalogue15 and split the dense LRG galaxies in five sub-

samples: D1, D2, and D3, correspond to the lowest three quartiles in lumi-
nosity; the remaining two, D4 and D5, are obtained by splitting the highest
luminosity quartile into two equally sized samples. The motivation to split

the quartile with the highest luminosities is that it encompasses a very large

range in luminosity, which complicates the interpretation if the signal de-

pends on luminosity (see below). Relevant details for the sub-samples are

listed in Table 3.1. We keep the dense and luminous samples separate, in
order to better isolate the effect of the luminosity dependence from any

redshift evolution of the sample itself. For instance, as listed in Table 3.1,

the mean redshift of the sub-samples increases somewhat from D1 to D5.
We cross-correlate theDEIMOSshape catalogues for the individual sub-

samples with the positions of galaxies in the full dense sample. In this

way, we can disentangle the luminosity dependence of the IA signal from

the luminosity dependence of the density tracer (brighter galaxies are typ-

ically found in denser environments). The measurements and the best-

fit models are presented in Fig. 3.6. In Table 3.1 we list the best-fit val-

ues for the galaxy bias 1g and IA amplitude �IA, as well as the reduced
j2, as before, using the measurements for Ap > 6 ℎ−1Mpc. We also show

the measurements in Fig. 3.7 as orange stars as a function of !/!0, where
!0 = 4.6 × 1010ℎ−2!�.

We repeat the same analysis for the luminous sample, which we divide
in three bins, with a similar bin refining approach as for the dense sam-
ple (in this case L1 contains half of the luminous galaxies, while L2 and
L3 the remaining quarters). The best-fit amplitudes for these samples are
reported in Table 3.1, and presented as green stars in Fig. 3.7. In the lumi-

nosity range where the luminous and dense samples overlap, we find the
results between the two samples to be compatible. The luminous sample
seems to show amore pronounced luminosity dependence compared to the

dense sample, which can either be an effect of being brighter overall (from
L1 to L3, !/!0 = 0.46, 0.64, 1.01) or due to the satellite fraction being lower
(see Sect. 3.2.2), or a combination of the two. We note that the measure-

15The internal cut at <A < 20 in lensfit makes it less suitable for this analysis, as we have
fewer galaxies at high luminosities.
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Figure 3.7: Luminosity dependence of the IA amplitude as measured by different observa-
tional studies (Joachimi et al. 2011; Singh et al. 2015; Johnston et al. 2019; Fortuna et al.
2021a); our new measurements on the LRG samples are shown as star markers. We provide
horizontal error bars to indicate that the measurement is performed on a bin in luminosity,
here plotted as the weighted standard deviation of the luminosity distribution of each sample,
with the marker placed at the weighted mean. The solid (dashed) black line shows the median
of the distribution of the MCMC sample associated with the double (single) power law; the
shaded area corresponds to the 68% confidence region.
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Figure 3.8: Constraints on the double power law parameters described in equation 3.35 by
jointly fitting all the measurements in Fig. 3.7. The red crosses indicate the value of the
parameters that maximise the likelihood, while the blue squares correspond to the medians.
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ments of the L3 sample appear to scattermore than the covariance predicts,
which results in higher j2. A similar issue is present in the D4 sample and
it is visible in Fig. 3.6.

The horizontal error bars in Fig. 3.7 indicate the weighted standard de-

viation of the luminosity distribution within the bin for each sample, with

the measurement placed at the luminosity-weighted mean of the bin. If

the range is too large, and the IA signal varies within the bin, the resulting

amplitude is difficult to interpret, andmay even appear discrepant. For in-

stance, when we combine the D4 and D5 samples we obtain �IA = 6.70+1.15
−1.14.

We note, however, that the luminosity range probed by this combined bin

is particularly extended, and the high signal measured is mainly driven by

the galaxies in the high luminosity tail of the bin (D5, �IA = 8.39+1.04
−1.30). The

other half of the bin has a relatively low signal with very large uncertainties

(D4, �IA = 3.02+2.37
−2.33). This is relevant because it suggests that the alignment

of galaxies with luminosities below !/!0 ∼ 0.60 − 0.70 hardly depends on
luminosity, and thus with a similar amplitude to D1 and D3, the smaller
sample is less constraining. As soon as we exceed this approximate thresh-

old, the signal increases significantly, suggesting a luminosity dependence.

This overall picture is enhanced when we also consider previous results for

LRGs (Joachimi et al. 2011; Singh et al. 2015; Johnston et al. 2019; For-

tuna et al. 2021a)16. These are also shown in Fig. 3.7. We investigate how

well the current measurements support the picture of a single or double

power law by fitting the data points in Fig. 3.7, assuming them to be uncor-

related. For each data point, we only use the quoted !/!0 as we do not have
the underlying luminosity distribution for most of the measurements. We

propose a double power law with knee at !break, amplitude �V and slopes
V1,2:

�(!) = �V
(

!

!break

) V
with

{
V = V1 for ! < !break

V = V2 for ! > !break
(3.35)

and fit for

_ =
{
�V , V1, V2, !scale

}
, (3.36)

where !scale = !break/!0. We explore the parameter space using a MCMC

and assuming a Gaussian likelihood. Figure 3.8 shows our parameter con-

straints, while themodel prediction is shown in Fig 3.7 as a solid black line.

16The GAMA points (Johnston et al. 2019) have been adjusted to homogenise the units

convention, as discussed in Fortuna et al. (2021a).
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Our best-fit parameters are reported in Table 3.217. We repeat the same

analysis assuming a single power law, as parametrised in Joachimi et al.

(2011). The best-fit parameters are also reported in Table 3.2. The larger

j2/dof of the single power law compared to the double power law suggests
that the latter is a better description of our current data, although the scat-

ter between the points at low ! is still too large to draw definitive conclu-

sions and the data are alsomildly inconsistent in that regime. The degener-

acy between the parameters, and in particular between �V and !scale, shows
that the data can weakly constrain the model. Nevertheless, the emerging

picture seems to support more the broken power law scenario presented in

Fortuna et al. (2021a), but with a transition luminosity around 0.4− 0.6!0,
also in line with the results from simulations by Samuroff et al. (2020a).

The double power law is also supported by the fact that the alignment of

redMaPPer clusters (van Uitert & Joachimi 2017; Piras et al. 2018), not in-

cluded in this analysis, forms a smooth extension towards higher mass of

the alignment observed for the high luminosity LRGs. This result is hard

to reconcile with a single shallow power law, but finds a natural framework

in the double power law scenario, where the slope of the relation at high lu-

minosities recovers the trend in Joachimi et al. (2011); Singh et al. (2015).

We caution that this analysis does not aim to be fully comprehensive,

but rather to provide a sense of the current trends. A proper analysis should

jointly fit all of the measurements incorporating the full luminosity distri-

butions of each sample, as well as accounting for the presence of satellites,

which might suppress the signal at low luminosities.

3.6.2 Redshift dependence

Having assessed that the two shape measurements produce compatible IA

signals and that their calibrations are robust, we merge the two shape cat-

alogues to span the largest possible range in redshift. This allows us to

extend the sample from the low-I, high S/N galaxies, where only DEIMOS

provides shapes, to the high-I, low S/N galaxies, where we preferentially

measure the shapes via lensfit. In the case of overlap between DEIMOS

and lensfit, we select the DEIMOS shapes. We only focus on the luminous
sample as we are interested in a long redshift baseline with the same lumi-

nosity cut. In this way, we can probe the redshift evolution of the sample,

without confusing the results with any luminosity dependence.

17We note that the parameters that maximise the likelihood differ from the medians of

the posterior distributions as a consequence of the degeneracies between the parameters.

This is particularly evident for V1, which has negative slope, V1 = −0.75.
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Figure 3.9: Projected correlation function, Fg+, measured on our different cuts in redshift
of the luminous sample. The best-fit curves are plotted on top of the data points, and the
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Our final catalogue contains 115 322 galaxies that we split at I = 0.585,
which roughly provides two equally populated bins. We call these two sam-

ples Z1 and Z2. The measurements for Fg+ are presented in Fig. 3.9. The
best-fit values for the two redshift bins are listed in Table 3.1 and agree

within their error bars, despite their mean redshift being 〈I〉 = 0.44 and
〈I〉 = 0.70, respectively.

We note that the j2 of our Z2 sample is quite high: This is driven by the
poor fit of the clustering signal. We attribute this to our photo−I, which
at high redshift are less reliable. We note, however, that the uncertainty in

the IA amplitude is large enough to absorb the inaccuracies in ?(Ispec |Iphot),
such that modifying the redshift distributions has little impact on the re-

covered IA amplitude.

Figure 3.10 compares our results with the best-fit amplitudes at vari-

ous redshifts found by previous studies (Joachimi et al. 2011; Singh et al.

2015; Johnston et al. 2019). The colour of the data points reflects the lu-
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minosity of the sample used to measure the signal18. As previously dis-

cussed, galaxies with different luminosities may manifest different levels

of IA, and hence even with a lack of redshift dependence, we should still

expect points at different amplitudes: the bottom part of the plot should be

mainly populated by darker points and the upper part by brighter points.

Figure 3.10 confirms this scenario: overall, the points exhibit a similar

alignment and the scatter between the different points is consistent with

the extra luminosity dependence. We can conclude that there is little evi-

dence for a strong redshift dependence of the IA signal.

3.7 Conclusions

We have constrained the IA signal of a sample of LRGs selected by Vak-

ili et al. (2020) from KiDS-1000, which images ∼ 1000 deg2. These data
allowed us to investigate the luminosity dependence and the redshift evo-

lution of the signal. To do so, wemeasured the shapes of the LRGswith two

different algorithms, DEIMOS and lensfit. We used custom image simula-

tions to calibrate and correct the residual biases that arise from measure-

ments of noisy images.

We used the calibrated ellipticities to compute the projected position-

shape correlation function Fg+ and analyse the signals obtained by the two
different algorithms independently, thus exploring the dependence of IA

on the specific shape method employed. We found lensfit measurements

to be overall noisier than the DEIMOS ones and we attributed this to the

prevalence of faint galaxies in the sample, due to the internalmagnitude cut

in the lensfit algorithm. Because bright galaxies typically carry more align-

ment signal, this cut, which removes galaxies with <A < 20, can potentially
reduce the IA contamination in KiDS cosmic shear analyses, which em-

ploy lensfit as the shape method. For a sub-sample of galaxies, where both

shape methods return successful measurements of the shapes, we find a

remarkable agreement in the measured Fg+, with a difference in the signal
of 0.003 ± 0.13 (amplitude of a fitted power law).

We explored the luminosity dependence and the redshift evolution in-

dependently, selecting our galaxies in such a way that ensures the two do

not mix. Within the luminosity range probed by the measurements our re-

18The colour of the marker corresponds to the bin centre, which may not be sufficient if

the range in luminosity is large, as it is typically the case for these samples. The information

provided by the colour has therefore only qualitative meaning and should be considered as

such.
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sults agree with previous studies (Joachimi et al. 2011; Singh et al. 2015;

Johnston et al. 2019). However, a single power law fit, as was used in

Joachimi et al. (2011) and Singh et al. (2015) does not describe the mea-

surements well. Instead, our results suggest a more complex dependence

with luminosity: for !A . 2.9 × 1010ℎ−2!A ,� the IA amplitude does not

vary significantly, whereas the signal rises rapidly at higher luminosity.

This also has implications for the width of the luminosity binning, as the

use of broad bins may complicate the interpretation of the measurements.

Analyses that aim to combine these measurements to model the luminos-

ity dependence should incorporate the underlying luminosity distributions

to properly link the signal to the galaxy luminosity. Nevertheless, we pro-

vide a preliminary fit on the current measurements available in the liter-

ature and found that the data are best described by a broken power law.

This result can already be used by cosmic shear analyses to improved their

modelling of the IA carried by the red galaxy population. We remind the

reader that this sample is not representative of the galaxy population. Dif-

ferent galaxy samples carry different alignment signals and should thus be

individually modelled as described in Fortuna et al. (2021a).

To probe the redshift dependence of the IA signal with the largest base-

line to date, we merged the DEIMOS and lensfit catalogues. We find no

evidence for redshift evolution of the IA signal. This result is in line with

previous studies of LRG samples (Joachimi et al. 2011; Singh et al. 2015),

and it is consistent with the current paradigm that IA is set at the moment

of galaxy formation. However, it is also possible that galaxy mergers coun-

teract the evolution of the tidal alignment, such that the net signal does not

change. Further improvements in the measurements are needed to distin-

guish between scenarios.
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A1 m-bias calibration

In this Appendix, we detail our procedure to calibrate the <-bias in our

shape measurements. We follow the same procedure for both DEIMOS

and lensfit, but we present the results separately.

A1.1 DEIMOS

One of the key features of DEIMOS that was exploited by Georgiou et al.

(2019b) is that the weight function that is used to measure the moments

of the surface brightness distribution can be adjusted. As explained in

Sect. 3.3, we follow Georgiou et al. (2019a) and adopt a Gaussian weight

function with a width Aiso. However, not only the radial profile can be

changed, but one can also choose between a circular or an elliptical weight

function. Hence, before proceeding with the shape calibration, we investi-

gate which choice of weight function would suit our data best.

In both cases, the weight function is centred on the centroid of the

galaxy, with the size and ellipticity iteratively matched to those measured

for the galaxy (see Georgiou et al. 2019a, for details). While an elliptical

weight function matches the shape of an elliptical galaxy better, a circular

one generally performs better on small and faint objects.

The circular weight function performs similar to the elliptical weight

function for low-to-intermediate S/N (S/N< 60), but with an overall con-
stant bias of ∼ 0.2 as the S/N increases. Hence, the elliptical weight func-

tion performs significantly better for more than half of the (real) galaxy

sample, which motivates our choice to adopt an elliptical weight function

in our analysis.

DEIMOS measured the shapes of 13 301 simulated LRGs from our im-

age simulations, and we use these to calibrate our ellipticity estimates. To

do so, we first explore the dependence of the<-bias on the individual galaxy

parameters S/N and ', as discussed in Sect. 3.3. Figure 3.3 indicates

that <(') is well described by a polynomial curve, which we truncate at
degree 3, ?(') = ?1' + ?2'

2 + ?3'
3, while 2(S/N) is well described by:

3 (S/N) = 31/
√

S/N + 32/(S/N).
We have tested different combinations of the two functions<(S/N) and

<('), and explored if higher-order polynomials are needed: while the fit
to <(') is indeed better described by a polynomial of degree 5, we stress
that we are not interested to reproduce all of the noisy features in the data,

but rather to capture the trend in the two components. We therefore keep
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Table 3: Best-fit parameters for the empirical correction of the two-dimensional multiplicative
bias surface (Sect. 3.3.3).

Parameter DEIMOS lensfit

10 −0.895 0.1794
31 5.238 −5.081
32 −0.006 1.292
?1 −1.900 −0.972
?2 5.147 0.669
?3 −3.148 0.783
?4 – −0.698

the number of the parameters as low as possible. This is also motivated by

the fact that the image simulations suffer from galaxy repetitions.

The final expression for our empirical correction for the DEIMOSmea-

surements is then:

<(S/N, ') = 10 +
1 + 3 (S/N)
1 + ?(') . (37)

To find the best-fit parameters in 37, we re-computed the value of the

<−bias by binning the data in 64 regions using the :−means algorithm19.

We then measured the bias for the two components n1,2 in each region,
identifying the bin coordinate in S/N and ' as their mean value within the

bin. We then fit the average of the two components (<1 +<2)/2 with equa-
tion 37. Some of the galaxies have very small shape measurement errors,

and to avoid them dominating the fit, we also added an intrinsic scatter

fint to our error-bars. This accounts for the fact that the number of unique
galaxies in our simulations is limited and mitigates the importance of the

highly resolved ones. The intrinsic scatter fint is chosen such that the re-
duced j2 is ∼ 1. The best-fit parameters are reported in Table 3. We stress

here that since we are only correlating shapes with positions, we are not

interested in a perfect calibration of the bias per galaxy but rather want to

ensure that the mean ellipticity of an ensemble is unbiased.

19https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
KMeans.html

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html


118 KiDS-1000: LRG intrinsic alignment

A1.2 lensfit

In the case of lensfit we follow a very similar procedure to calibrate the

residual <-bias. lensfit successfully measured the shapes of 17 573 simu-

lated galaxies, which are used for the calibration. The dependence of the

<-biaswith S/N can be described by the sameparametrisation thatwe used

for the DEIMOS sample, 3 (S/N), while <(') is better described by a poly-
nomial of degree four, ?(') = ?1' + ?2'

2 + ?3'
3 + ?4'

4.
The combination that best reproduces our measurements of the <-bias

in k-means cells of the two-dimensional space (S/N,') is

<(S/N, ') = 10 + 3 (S/N) + ?(') , (38)

with the specific values of the parameters reported in Table 3. We note

that compared to DEIMOS, the lensfit-bias is small, and hence so is our

correction.

A2 Redshift distributions

We describe here the redshift distributions, ?(Ispec |Iphot), employed in our
analysis as reported in Sect. 3.5 and which are used in the computation of

the angular power spectra in Eq. (3.25). We bin the galaxies for which we

have spectroscopic redshifts in bins ofΔIdense
phot = 0.0146(1+I) andΔIluminous

phot =

0.0139(1 + I) with an iterative procedure; this constructs unequal binning
whose size increases with I. The last bin is adjusted to avoid spurious re-

sults: If the maximum redshift found with the iterative procedure exceed

themaximum redshift of the sample, we remove the last bin and extend the

second-to-last up to Imax. In the case of the luminous sample we further
increase the scatter at high redshift to account for the increasing uncer-

tainty of our photometric redshifts: for I > 0.7we increase the bin width to
ΔIluminous

phot = 0.027. We adopt the same approach for the Z1 and Z2 samples,

for which we use, respectively, fI = 0.0133 and 0.0190. We use the result-

ing spec-I histograms in our analysis. We employ the same conditional

redshift distributions for both our density and shape samples; while this is

a very good approximation for DEIMOS, lensfit lacks bright galaxies that

would populate our spec-I, and thus this approximation might partially be

responsible for the worse fit of the model.

We tested that our IA constraints are only marginally dependent on the

width of the bins adopted, and the changes in the best-fit amplitude are

subdominant to the statistical uncertainty.
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Figure 11: The ?(Ispec |Iphot) of our dense and luminous samples.
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Figure 12: Ratio of the cumulative galaxy-galaxy lensing signal over the cumulative IA signal
as a function of Πmax at the mean redshift of the dense sample, I = 0.44.

A3 Contamination from galaxy-galaxy lensing

As discussed in Sect. 3.5.2, galaxy-galaxy lensing is the main astrophysical

contaminant to our signal. Here, we focus on its dependence on the line-

of-sight integration range. The lensing and the IA signals scale differently

with distance: this can be used to maximise the signal and avoid an excess

of contamination. In this Appendix we therefore explore in more detail the

modelling of the galaxy-galaxy lensing and how this has guided our choice

for the value of Πmax.

Figure 12 shows the amount of lensing contamination as a function of

the maximum Π used in the integral along the line-of-sight. We illustrate

it by plotting the cumulative contribution of the galaxy-galaxy lensing over

the one of IA for different values of the truncation, Πmax. To generate the
signal, we used the ?(Ispec |Iphot) associated with the dense sample and

evaluated the correlation functions at the mean redshift of the sample, as-

suming the fiducial bias and IA amplitude reported in Table 3.2. The ratio

is almost constant in Ap, thus we plot it for fixed Ap = 10 ℎ−1Mpc. We also

note that the lensing signal has negligible impact for negative Π because

the source is in front of the lens in that case.



A4 Contamination from magnification 121

In principle, if one had perfect knowledge of the galaxy-galaxy lens-

ing contribution, extending the integration up to very large line-of-sight

separations would allow us recover the full IA signal from the measure-

ments, without discarding any information. In practice, even though we

fully model the galaxy-galaxy lensing contribution, we are limited by the

accuracy of the lensing modelling we rely on, and thus it is safer to trun-

cate the integral to values of Π that are not severely affected by it.

We use Fig. 12 to choose the fiducial Πmax that enters in Eq. (3.12): al-
though the specific values of the ratio depend on the input parameters (1g,
�IA), it provides a realistic estimate of the amount of contamination for
our LRG samples. We chose as our fiducial setup a conservative value of

Πmax = 120 ℎ−1Mpc, which ensures that the mean contamination is below
∼ 20% of the signal.

A4 Contamination frommagnification

The changes in the galaxy number counts determined by lensing magni-

fication arise as a result of two competing effects: on one hand, the lens-

ing locally stretches the sky, diluting the observed number density; on the

other hand, it enlarges the apparent sizes of the galaxies withoutmodifying

the surface brightness: at the faint end, this allows the detection of galax-

ies that are intrinsically fainter than the magnitude limit, enhancing the

observed number density.

The theory of magnification for flux-limited surveys is well established

and allows us to relate the changes in the number density to the differential

galaxy count =(<) over a given band magnitude range from < to < + d<
(Bartelmann & Schneider 2001; Joachimi & Bridle 2010):

U(<) = 2.5d log[=(<)]
d< . (39)

The case of a non-flux-limited sample, such as our LRG sample, is more

complicated and we lack a proper theoretical framework for the interpre-

tation of U. Here, we follow von Wietersheim-Kramsta et al. (2021) and

calibrate U using dedicated mocks, which we present in Appendix A7. We

remind the reader that our samples are selected by imposing a luminosity

threshold, which implies a redshift-dependent magnitude selection.

The calibration works as follows: the mocks provide the reference re-

lation between the convergence ^ and the slope U, which we can measure
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as the difference in the number density of a ’magnified’ sample and a ’non-

magnified’ one,

=(< <) − =0(< <)
=0(< <)

≈ 2(U − 1)^ . (40)

Here, =(< <) is the local number density of magnified sources with
magnitudes below <, while =0(< <) is the underlying true number density
without the enhancement due to the flux magnification and the simultane-

ous lensing dilution.

We used our mocks to measure U in Eq. (40), obtained as the mean

value of ^ on sufficiently small patches of the sky. To partition the sky

we used the public available python module Healpy20 (Zonca et al. 2019),

based on the HEALPix pixellization of the sphere21 (Górski et al. 2005).

We used this value of U to calibrate the magnitude range over which the

observable U in equation 39 best agrees with the true one obtained from

equation 40. If the mocks reproduce the data selection function to good

accuracy, this provides the optimal magnitude range to use to measure U

via observable quantities (Eq. (39)) in the data.

To evaluate Eq. (39) we used the A−band magnitude and we ensured
that the magnitude distribution of the mocks and the data agree to high

accuracy. We find that, when applied to the data, the method results in

values of U that depend somewhat on the binning scheme employed along

the redshift baseline. While the values of U are robust against changing

the bins at intermediate and high redshifts, the very low-I bins are poorly

constrained by the method. However, at such low redshifts magnification

is negligible, and our samples contain only a few galaxies, so it is reasonable

to expect the same value of U to hold for the entire sample. Moreover, the

LRG selection ensures a constant comoving number density, which reduces

the sensitivity to magnification even further.

We find U ∼ 1.5 for both our dense and luminous sample. In Ap-

pendix A5 we show that the effect of including magnification is subdom-

inant in our analysis.
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Table 4: Reduced j2 statistics to assess the significance of our signals Fg+ and Fg× against
the null hypothesis.

Sample Shapes Signal j2
a,null ?−value

dense DEIMOS Fg+ 8.01 (7.56) 4.88 × 10−13 (4.35 × 10−6)
Fg× 0.59 (0.36) 0.83 (0.83)

lensfit Fg+ 3.52 (4.99) 0.0001 (0.0005)

Fg× 0.66 (0.64) 0.76 (0.63)

luminous DEIMOS Fg+ 9.46 (5.85) 6.66 × 10−16 (0.0001)
Fg× 0.37 (0.33) 0.96 (0.85)

lensfit Fg+ 2.48 (1.49) 0.006 (0.20)

Fg× 0.40 (0.40) 0.95 (0.81)

A detection of Fg× would hint at the presence of unaccounted systematics in the
measurements. The numbers in brackets refer to the signal for Ap > 6 ℎ−1Mpc.

A5 Systematic tests and significance of the de-

tection

To ensure the robustness of our analysis, we performed a number of tests

for residual systematics. We present the results of these in this Appendix.

Many of these are commonly used to testweak gravitational lensing signals.

In one of the most basic tests, the galaxy shapes are rotated by 45 deg
and the correlation between n× and galaxy position, Fg× is measured. This
correlation is expected to vanish, and any detection of a non-vanishing sig-

nal is therefore an indication of residual systematics. Table 4 reports the re-

duced j2
a,null, which we used to assess the significance of the signal against

the null hypothesis for both Fg+ and Fg×. We choose a significance level of

5%: for ?−values below 0.05 we discard the null hypothesis. We can see

that all of our Fg× measurements have a ?−value above 0.05 and thus sup-
port the null hypothesis. In contrast, we observe a significant detection for

all of our Fg+ measurements, for both DEIMOS and lensfit shapes.
As a further look into possible systematics in the data, we measured

the signal for a very large value of the line-of-sight truncation, Πmax =

1000 ℎ−1Mpc, using our dense sample. Extending the value of Πmax to very
large separations introduces uncorrelatedpairs into the estimator, and thus

20https://healpy.readthedocs.io/en/latest/
21http://healpix.sourceforge.net

https://healpy.readthedocs.io/en/latest/
http://healpix.sourceforge.net
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we expect the IA signal to vanish, while the galaxy-galaxy lensing can po-

tentially arise. We find a signal consistentwith anull detection, with j2
a,null =

0.35 and ?−value of 0.96.
We also investigated the impact of specific choices for the setup of our

modelling, with a particular focus on how our results depend on the value

of the Πmax adopted in the analysis. To do so, we repeat our analysis of
the dense sample using two different values of Πmax: 90 and 180 ℎ−1Mpc.
Table 5 reports our results. We find compatible results that also agree with

our fiducial value of Πmax = 120 ℎ−1Mpc.
In Table 5 we also report the results when we include magnification in

the modelling for the dense sample, or ignore it for the luminous sample.
The resulting parameter estimates agree with the baseline results (also see

Sect. 5.6), suggesting magnification is small in our data, as expected from

theory (Unruh et al. 2020).

A6 IA dependence on the shape measurement

method

Singh & Mandelbaum (2016) compared the IA signal measured with dif-

ferent shape methods and found that the signal depends on the specific al-

gorithm employed. Georgiou et al. (2019a) explored this further, and used

DEIMOS to show that the IA signal depends on the width of the weight

function. Since different methods use different weight functions, the dif-

ference in the IA detection can be linked to the parts of the galaxies they

probe.

In this Appendix, we therefore explore how the IA signal depends on the

shape measurement methods used in our analysis. To ensure this is done

consistently, we only selected galaxies that belong to both our DEIMOS

and lensfit catalogues, irrespective whether they are part of the luminous
or dense sample. We identify 173 499 galaxies in common between the two

shape catalogues.

We measure Fg+ for this sub-sample for both shape catalogues, and
show the difference in the signal, ΔFg+ = Fg+,DEIMOS − Fg+,;4=Bfit (indigo
squared markers) in Fig. 13. The error bars are computed via bootstrap;

we are only interested in the shape noise contribution: We are measuring

the difference of signals obtained using the same sample of galaxies and

thus the sample variance should vanish. We generated 215 re-samplings

with replacement of our input galaxies and provided the same input cat-

alogue to both our DEIMOS and lensfit measurement of Fg+. The error
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Figure 13: Difference in the Fg+ measurements as measured by DEIMOS and lensfit. The
indigo dashed line shows the best-fit amplitude of the difference, here parametrised as �/A?.
Similarly, the light blue dashed line illustrates the best-fit amplitude for the DEIMOS sample,
both performed for A? > 6 ℎ−1Mpc. The shaded areas delimit the 1f contour of the fit.

Table 6: Parameters of the Student’s C-distributions that best-fit the residuals (Iphot −
Ispec)/fI of our samples.

Sample a ` B

dense 3.79 0.06 0.90

luminous 3.99 −5.43 × 10−6 0.86

bars are then computed as the standard deviation of the difference in the

measured signal for this ensemble.

To quantify the amplitude of the signal to the potential differences in

measurement method, we fit both Fg+,DEIMOS and ΔFg+ with a curve of
the form 5 (A?) = �/A?, for A? > 6 ℎ−1Mpc. The best-fit amplitudes are,
respectively, 0.90 ± 0.17 and 0.003 ± 0.13, which means that we detect a
signal that is more than six sigma above the uncertainty due to the choice

in the shape measurement algorithm adopted.

A7 Mock catalogues

To investigate the impact of magnification bias on the interpretation of our

measurements, we generated two mock catalogues that resemble our LRG

samples. Our simulated catalogues are obtained from the KiDS photomet-
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Figure 14: Comparison between the redshift distributions of the data and those reproduced
by the mocks. Left: The photometric redshift distribution of our data is shown as an orange
hatched histogram, while the solid red line shows the distribution of the photometric redshifts
of the mock, obtained from the true (’spectroscopic’) redshifts (blue solid line) as detailed in
the text. Right: Comparison of the mock spectroscopic redshift distribution (solid blue line)
and the estimated spectroscopic distribution of our data (light blue line).

ricmock catalogue presented in van den Busch et al. (2020), which is based

on the MICEv2 simulation22 (Fosalba et al. 2015b; Crocce et al. 2015; Fos-

alba et al. 2015a; Carretero et al. 2017; Hoffmann et al. 2015) and is specifi-

cally designed to reproduce the KiDS photometry. We did not run the LRG

selection algorithm on themock, but rather used their observed location in

the redshift-colour space (D− 6, 6− A, A − 8, 8− I) to select them in the mock.

We first apply a broad colour selection using theMICE z_cgal ’spectro-
scopic’ redshift. After assigning the photo-I to ourmocks, we repeat the se-

lection replacing the spectroscopic redshift with the photometric one. The

photometric redshifts are designed to reproduce the distributions reported

in Sect. 3.3 of Vakili et al. (2020). To do so, we draw a random value from

a Student’s C−distribution centred on Ispec − `fI and with the scale param-
eter equal to BfI , with `, a and B the Student’s C−parameters fitted to the
full distribution (of the real data). We remind the reader that a defines the

peakiness of the distribution, ` its mean and B sets the width. In the limit

of the Student’s C−distribution approaching a Gaussian (a → ∞), B can be
interpreted as the standard deviation of the distribution.

We note that our samples differ from Vakili et al. (2020), since we ex-

cluded the galaxies that overlap with the luminous sample from the dense

22http://maia.ice.cat/mice/

http://maia.ice.cat/mice/
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sample. We therefore recomputed the parameters of the Student’s C−dis-
tributions specifically for our samples and report these in Table 6. Some

care has to be taken when assigning fI to the mocks. The per-galaxy fI of

the LRG samples correlates with the magnitude of the galaxy. We, there-

fore, identify the closest real galaxy in the (I, <A ) space to each galaxy in
the mock, and assign it the corresponding fI . We repeat the process for

one iteration, replacing the ’spectroscopic’ redshift with the preliminary

estimate of the photometric one. We note that this procedure results in

multiple assignments of the same fI to the mock galaxies, but this is not a

concern as we do not require it to be unique.

Since we require a high fidelity reproduction of the line-of-sight distri-

bution of our galaxies, we divide our samples and their correspondingmock

catalogues in thin redshift slices and match the galaxy number density per

slice. At this step, we do not require a perfect match. In this way, we still

have enough galaxies to apply the same <
pivot
A (I) cut as for our real data.

We repeat these steps iteratively until the number densities are matched

between the samples. We tested that the final ?(Ispec |Iphot) of our mocks
are in good agreement with the data ?(Ispec |Iphot) (see Fig. 14) and that the
resulting clustering signal at large scales reproduces the one in our data.

We generate two sets of mock catalogues: a magnified one and one

without magnification. We use these for the calibration of U as discussed

in Appendix A4.


