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3 KiDS-1000: Constraints on
the intrinsic alignment of
luminous red galaxies

M.C Fortuna, H. Hoekstra, H. Johnston, M. Vakili, A. Kannawadi, C.
Georgiou, B. Joachimi, A. H. Wright, M. Asgari, M. Bilicki, C. Heymans,
H. Hildebrandt, K. Kuijken, M. Von Wietersheim-Kramsta 2021, A&A,
654, A76

We constrain the luminosity and redshift dependence of the intrinsic alignment (IA) of a
nearly volume-limited sample of luminous red galaxies selected from the fourth public data
release of the Kilo-Degree Survey (KiDS-1000). To measure the shapes of the galaxies, we
used two complementary algorithms, finding consistent IA measurements for the overlap-
ping galaxy sample. The global significance of IA detection across our two independent
luminous red galaxy samples, with our favoured method of shape estimation, is ~ 10.7c.
We find no significant dependence with redshift of the IA signal in the range 0.2 < z < 0.8,
nor a dependence with luminosity below L, < 2.9 x 1019472L, . Above this luminosity,
however, we find that the IA signal increases as a power law, although our results are also
compatible with linear growth within the current uncertainties. This behaviour motivates
the use of a broken power law model when accounting for the luminosity dependence of IA
contamination in cosmic shear studies.
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3.1 Introduction

Galaxies that form close to a matter over-density are affected by the tide
induced by the quadrupole of the surrounding gravitational field, and the
distribution of stars will adjust accordingly. This process, which starts dur-
ing the initial stages of galaxy formation (Catelan et al.|2001), can persist
over their entire lifetime, as galaxies have continuous gravitational inter-
actions with the surrounding matter (e.g. Bhowmick et al.|2020), and leads
to the intrinsic alignment (IA) of galaxies.

This tendency of neighbouring galaxy pairs to have a similar orientation
of their intrinsic shapes is an important contaminant for weak gravitational
lensing measurements (e.g. Joachimi et al.[2015). The matter distribution
along the line-of-sight distorts the images of background galaxies, resulting
in apparent correlations in their shapes. Intrinsic alignment contributes to
the observed correlations, complicating the interpretation. To infer unbi-
ased cosmological parameter estimates it is therefore crucial to account for
the IA contribution. This is particularly important in the light of future sur-
veys, such as Euclidl] (Laureijs et al.[2011) and the Large Synoptic Survey
Telescope (LSST at the Vera C. Rubin Observatory (Abell et al.[2009),
which aim to constrain the cosmological parameters with sub-percent ac-
curacy (for a forecast of the IA impact on current and upcoming surveys
see Kirk et al.|2010}; Krause et al.|[2016, among others). Some recent re-
sults on current weak lensing studies are available in, for example, Aihara
et al. (2018);|Asgari et al. (2021)); DES Collaboration et al.|(2021).

To provide informative priors to lensing studies, it is essential to learn
as much as possible from direct observations of IA. It is, however, also im-
portant that such results can be related to the properties of galaxies that
give rise to the alignment signal in cosmic shear surveys (Fortuna et al.
20214a). Intrinsic alignment studies are typically limited to relatively bright
galaxies, which often sit at the centre of their own group or cluster, and it
is thus possible to connect their alignment to the underlying dark matter
halo alignment via analytic models (Hirata & Seljak 2004). The picture
becomes more complicated when considering samples that contain a sig-
nificant fraction of satellite galaxies: The alignment of satellites arises as a
result of the continuous torque exercised by the intra-halo tidal fields while
the satellite orbits inside the halo (Pereira et al. 2008; Pereira & Bryan
2010). This leads to a radial alignment, which also depends on the galaxy

Thttps://www.euclid-ec.org
*https://www.lsst.org
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distance from the centre of the halo (Georgiou et al.[|2019b). At the same
time, satellites fall into halos through the filaments of the large-scale struc-
ture, and this persists as an anisotropic distribution within the halo, which
has been detected both in simulations (Knebe et al.|2004; Zentner et al.
2005) and observations (West & Blakeslee[2000j; Bailin et al.|2008; Huang
et al.|2016; Johnston et al. 2019j |Georgiou et al.2019b). The combina-
tion of these two effects complicates the picture. At small scales, where the
satellite contribution is expected to be important, their signal may be de-
scribed using a halo model formalism (Schneider & Bridle/|2010; |[Fortuna
et al. 2021a)), but their contribution to IA on large scales remains poorly
constrained (Johnston et al|2019); although it is expected that they are
not aligned, they do affect the inferred amplitude because they contribute
to the overall mix of galaxies. This prevents a straightforward interpreta-
tion of any secondary sample dependence of the IA signal sourced by the
central galaxy population, such as the dependence on luminosity or colour,
in mixed samples where the fraction of satellites is relevant.

Observational studies have found discordant results regarding the pres-
ence of a luminosity dependence of the IA signal, with the bright end being
well described by a steep power law with index ~ 1.2 (Hirata et al.|2007;
Joachimi et al.|2011; Singh et al.|2015), while less luminous galaxies do not
show any significant dependence of the IA signal with luminosity (John-
ston et al.2019). A recent investigation using hydrodynamic simulations
by|Samuroft et al. (2020al) supports a flatter slope, in agreement with\John-
ston et al.| (2019) and [Fortuna et al.|(2021al) at low luminosities but in ten-
sion with previous studies that probe more luminous galaxies. The inter-
pretation of these results is also affected by the presence of satellites, whose
fraction varies with luminosity and depends on the specific selection func-
tion of the data. At low redshift, a cosmic shear survey is dominated by
faint galaxies, and improving our understanding of the IA signal at low lu-
minosities is one of the most urgent questions for IA studies.

Another relevant aspect that is often neglected is the dependence of TA
on the shape measurement method (Singh & Mandelbaum|2016)). The ten-
dency to align in the direction of the surrounding tidal field is a function
of galaxy scale (Georgiou et al. 2019b)), with the outermost parts — which
are more weakly gravitationally locked to the galaxy — showing a more se-
vere twist. It increases the IA signal associated with shapes measured via
algorithms that assign more importance to the galaxy outskirts. In con-
trast, lensing studies typically prefer shape methods that give more weight
to the inner part of a galaxy. Accounting for this discrepancy is potentially
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relevant for future cosmic shear studies.

In this work we focus on investigating the luminosity dependence of
the IA signal in the least constrained regime, M, > —22. We employ two
different samples, which differ in mean luminosity and number density.
We limit the analysis to the large-scale alignment, for which a theoreti-
cal framework is already available and where the luminosity dependence
is known to play a crucial role (Fortuna et al.|[2021a). We also provide es-
timates of the satellite fractions present in our samples in order to guide
future work on the modelling of satellite alignment at large scales. We also
explore the dependence of our signal on the shape measurement algorithm
used to create the shape catalogue. We compare the signal as measured
by two complementary algorithms: DEIMOS (DEconvolution In MOment
Space; |[Melchior et al.[[2011), which has been widely used in IA studies
(Georgiou et al.|2019a}; Johnston et al.|[2019; |Georgiou et al./2019b), and
lensfit (Miller et al.| 2007, |2013) which has been used for the cosmologi-
cal analysis of the Canada-France-Hawaii Telescope Lensing Survey (Hey-
mans et al.|2013, CFHTLenS;) and the Kilo-Degree Survey (KiDS; see As-
gari et al.|2021, and references therein).

One of the main limitations for measuring IA is the necessity of simul-
taneously relying on high-quality images and precise redshifts to properly
identify physically close pairs of galaxies that share the same gravitational
tidal shear. Wide field image surveys provide high-quality images, but the
uncertainty in the photometric redshifts is too large for useful IA measure-
ments. Fortunately, using a specific selection in colours, it is possible to
obtain a sub-sample of galaxies with more precise photometric redshifts:
the luminous red galaxies (LRGs). At any given redshift, LRGs populate a
well-defined region in the colour-magnitude diagram, known as the red-
sequence ridgeline. Using this unique property, it is possible to design a
specific algorithm to select LRGs in photometric surveys, which results in
both precise and accurate redshifts (Rozo et al.|2016; [Vakili et al./|2019,
2020)). Luminous red galaxies have also been shown to be strongly affected
by the surrounding tidal fields, making them an extremely suitable sample
for exploring the behaviour of IA at different redshifts and as a function of
secondary galaxy properties, such as luminosity and type (central or satel-
lites).

Joachimi et al.| (2011)) first studied the IA signal of an LRG sample with
photometric redshifts. In this paper we follow their main approach but use
a catalogue of LRGs selected by Vakili et al. (2020) using the KiDS fourth
public data release (KiDS-1000 |[Kuijjken et al.|2019).
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The paper is structured as follows. In Sect. we describe our data
and the characteristics of our two main samples. In Sect.[3.3|we introduce
the two shape measurement methods employed in the analysis and present
the strategy adopted to calibrate the bias in the measured shapes. Section
[3.4|presents the estimators we use to extract the signal from the data, while
Sect. illustrates the theoretical framework we rely on when modelling
the signal: the way the model accounts for the use of photometric redshifts
as well as the way we account for astrophysical contaminants. Finally, we
present our main results in Sect. |5.6/and conclude in Sect.

Throughout the paper, we assume a flat A cold dark matter cosmology
with 2 = 0.7, Q,, = 0.25,Qy, = 0.044, 05 = 0.8, and ng = 0.96.

3.2 KiDS

The Kilo-Degree Survey is a multi-band imaging survey designed for weak
lensing studies, currently at its fourth data release (KiDS-1000; |[Kuijken
et al.|2019). The data are obtained with the OmegaCAM instrument (Kui-
jken|2011) on the VLT Survey Telescope (VST;|Capaccioli et al.|2012). This
combination of telescope and camera was designed specifically to produce
high-quality images in the ugri filters, with best seeing-conditions in the
r—band, and a mean magnitude limit of ~ 25 (50 in a 2" aperture). These
measurements are combined with results from the VISTA Kilo-degree IN-
frared Galaxy survey (VIKING; Edge et al.[2013)), which surveyed the same
area in five infrared bands (ZYJHK). This resulted in high-quality pho-
tometry in nine bands across approximately 1000 deg? imaged by the fourth
datarelease?] The VIKING data are important for the LRG selection at high
redshift (Vakili et al.2020): the Z band is included in the red-sequence
template and improves the constraints on the redshift of the high-redshift
galaxies, while the K; band allows for a clean separation between galaxies
and stars in the (r — K5) — (r — z) colour-colour space.

3.2.1 The LRG sample

Red-sequence galaxies are characterised by a tight colour-redshift relation,
so that at any given redshift they follow a narrow ridgeline in the colour-
magnitude space. This relation can be exploited to select red galaxies from
photometric data and obtain precise photometric redshifts. Here we use
the catalogue of LRGs presented inVakili et al. (2020). It uses a variation of

3The survey was recently completed, imaging a final total of 1350 deg?.
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Figure 3.1: Photometric redshift distributions for our density (all) and shape catalogues
(lensfit and DEIMOS; see text for details). The orange histograms show the distribution for
the dense samples, which is limited to zppot < 0.6, whereas the luminous sample (green) is
restricted to zppot < 0.8.

the redMagiC algorithm (Rykoff et al.|2014) to select LRGs from the KiDS-
1000 data. As detailed in Vakili et al.| (2019) and [Vakili et al. (2020)), the
red-sequence template is calibrated using the regions of KiDS that overlap
with a number of spectroscopic surveys: SDSS DR13 (Albareti et al.[2017),
2dFLenS (Blake et al.[2016), GAMA (Driver et al.2011), together with the
GAMA G10 region, which overlaps with COSMOS (Davies et al.[|2015).

The algorithm is designed to return a sample of LRGs with a constant
comoving number density. It achieves this by imposing a redshift-dependent
magnitude cut that depends on m?V**(z), the characteristic r-band magni-
tude of the [Schechter (1976) function, assuming a faint-end slope @ = 1
(for more details, see[Vakili et al.[2019], sect. 3.1). We use this to define two
samples that differ from each other in terms of their minimum luminosity
relative to the luminosity Lpivot(z). We refer to them as our luminous sam-
ple (high luminosity, low number density, Lmin/Lpivot(z) = 1) and dense
sample (lower luminosity, higher number density, Luyin/Lpivot(z) = 0.5).
To ensure that the two samples are separate, we removed the galaxies in
the dense sample that also belong to the luminous one. However, this does

not mean they do not overlap in their physical properties. In particular,
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Figure 3.2: The magnitude distributions of the samples used in the analysis. Left panel:
Histograms of the apparent magnitude, MAG_AUTO in the r-band for the galaxies in the dense
(orange lines) and luminous (green lines) samples with shapes measured by lensfit (darker
colours) and DEIMOS (lighter colours). Right panel: Histograms of the absolute magni-
tudes in the r-band (K + e corrected) for the same samples.

they overlap partially in luminosity, a feature that we will exploit later in
the paper.

As shown in Fig.[3.1} the two samples also span different redshift ranges.
The luminous sample extends from z = 0.2 to z = 0.8. After applying a
conservative mask to select only objects with a high probability to be red-
sequence galaxies (corresponding to objects with a clear separation from
the star sequence in the colour-colour diagram), we are left with 117001
galaxies, which comprise our density sample. By density sample—not to be
confused with the dense sample described above—we refer to the sample
used to trace galaxy positions, as opposed to the shape sample, which is the
sample used for the measurement of galaxy orientations and is composed
by the galaxies of the corresponding density sample for which a given shape
measurement algorithm is able to measure the galaxy shape. The density
and shape samples used in this analysis are visible in Fig. where the
density samples of the luminous and dense samples are referred to as ‘all’
galaxies. The dense sample is obtained with the same strategy, but we fur-
ther impose z < 0.6 to ensure the completeness and purity of the sample
(see Fig. 4 in|Vakili et al.| (2020))). This leads to a final sample of 173 445
galaxies. As shown in Vakili et al.|(2020), the redshift errors are well de-
scribed by a Student’s r—distribution. The width of the distribution in-
creases slightly with redshift, with typical values around o, ~ 0.014-0.019.
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For further details on the sample selection and redshift estimation, we refer
the interested reader toVakili et al.| (2020)).

We infer galaxy absolute magnitudes using Lephareff| (Arnouts & Ilbert
2011), assuming the dust extinction law from (Calzetti et al.|1994)) and the
stellar population synthesis model from Bruzual & Charlot (2003). We cor-
rect our magnitudes to z = 0; the K-correction is provided by Lephare and
the correction for the evolution of the stellar populations (e—correction) is
computed with the python package EzGal| (Mancone & Gonzalez [2012),
assuming Salpeter initial mass function (Chabrier|2003) and a single star
formation burst at z = 3. These corrections are based on the magnitudes
used to define the colours (MAG_GAAP), which are measured using Gaussian
apertures (Kuijken et al.|2019). Although ideal for colour estimates, these
underestimate the flux and should not be used to compute the luminosity.
For that purpose we correclﬂthem using the Kron-like MAG_AUTO measured
from the r-band images by SExtractor (Bertin & Arnouts|1996).

The left panel of Fig.[3.2[shows the distribution in apparent magnitude
MAG_ AUTO for galaxies in the dense and 1uminous samples for which shapes
were determined by lensfit or DEIMOS. In Sect. [3.3 we describe the two
shape measurement methods and explain the difference in their number
counts. We note that the LRGs are much brighter than the limiting mag-
nitude of KiDS in the r-band. The corresponding distributions in absolute
magnitude in the rest-frame r filter, K+e corrected to z = 0, are presented
in the right panel of Fig. This shows that the dense sample overlaps
somewhat with the luminous sample in terms of luminosity, as a conse-
quence of the photometric redshift uncertainty’]

4https://www.cfht.hawaii.edu/~arnouts/LEPHARE/lephare.html

Shttp://www.baryons.org/ezgal

6The total flux in the x filter can be computed using m, = MAG_AUTO, + (MAG_GAAP, —
MAG_GAAP,.), which implicitly assumes that colour gradients are negligible.

7The selection through the redshift-dependent apparent magnitude cut results in an
overlap in apparent magnitudes of the dense and luminous samples. Because the cut is
redshift-dependent, this implies a threshold in luminosity: In the case of perfect redshifts,
this would result in a disjoint sample, because we removed the galaxies from the dense sam-
ple that overlap with the luminous one. The photometric redshift uncertainty, however,
assigns to galaxies with the same apparent magnitude different luminosities, and thus a
portion of the dense sample extends above the luminosity threshold of the 1uminous sam-
ple.
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3.2.2 Satellite galaxy fraction estimation

Observations suggest that satellite galaxies are only weakly aligned (see e.g.
Georgiou et al.[2019b|, for recent constraints) and thus suppress the IA sig-
nal at large scales. We do not take this into account in our analysis but
provide here an estimate of the fraction of satellites we expect in our sam-
ples. Such information will be useful for future modelling studies.

We used the publicly available G3GGal and G3GFoFGroup catalogues
(Robotham et al.|2011) from the GAMA survey (Driver et al.2009, [2011;
Liske et al.2015). Since KiDS overlaps with GAMA, these catalogues pro-
vide group information for a subset of our galaxies, obtained with a Friends-
of-Friends algorithm. We cross-matched our LRG samples with the G3GGal
catalogue and selected galaxies with z < 0.21 (z < 0.32), which provide a
roughly volume-complete match to the dense (luminous) sample. With
the information in both group catalogues, we identify both the brightest
group galaxies and ungrouped galaxies as centrals, and the rest as satel-
lites. With this strategy, we obtain f,; = 0.34 for our densexGAMA sample
and f,,; = 0.23 for the luminousxGAMAﬂ Since our samples are selected
to resemble the same galaxy populations at different redshifts, these esti-
mates should be fairly representative beyond the redshift range probed by
our direct comparison.

3.3 Shape measurements

In addition to precise redshifts, a successful IA measurement requires ac-
curate shape measurements. In this work, we compare two different al-
gorithms, DEIMOS and lensfit both in terms of their ability to recover re-
liable ellipticity measurements and the resulting IA signal. Exploring the
dependence of the IA signal on the shape measurement algorithm is im-
portant if one aims to provide informative priors to lensing studies (Singh
& Mandelbaum|2016). Both algorithms have been used to analyse KiDS
data: DEIMOS to provide the shape catalogue (Georgiou et al.|2019a) for a
number of IA studies, while lensfit was used for cosmic shear analyses (see
Giblin et al.|2021, for the most recent shape measurements).

8These estimates refer to the full samples, but should be representative for the shape
samples as well.
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3.3.1 DEIMOS

DEIMOS (Melchior et al.[2011) is a moment-based shape measurement al-
gorithm designed to measure the moments of the surface brightness dis-
tribution from an image, which are subsequently used to estimate the el-
lipticity. The main features of DEIMOS are its rigorous treatment of the
PSF moments to arbitrary order, the lack of model assumptions and the
flexibility in changing the size of the weight function so that it is possible
to assign more importance to different parts of a galaxy while performing
the shape measurement (bulge or outskirts).

The unweighted moments of the surface brightness G (¥) are defined as

0, = (G = / G®)xyl dxdy, (3.1)

where (x, y) are the Cartesian coordinates with origin at the galaxy’s cen-
troid. The complex ellipticity is then defined in terms of the second-order
moments as

Q20 — Qo2 +2i Q11

€E=€ +iep = . (3-2)
Q20 + Qo2 + 2 /Q20 Qo2 — Q7

In practice, unweighted moments cannot be used because of noise in
the images, and weighted moments have to be employed instead. We will
return to this issue later. Moreover, the galaxy images are smeared and
distorted by the atmospheric blurring and the telescope optics, so that the
observed image, G*, is convolved with the PSF kernel P(%),

G*(3) = / GG PG -7 i . (3.3)

The DEIMOS algorithm estimates the unweighted moments by correct-
ing the observed weighted moments of the galaxy surface brightness for
the convolution by the PSF. The underlying mathematical framework is
a deconvolution in moment space. In order to measure the moments in
Eq. we then need to deconvolve them. This can easily be achieved in
Fourier space, where the convolution becomes a product. Using the Cauchy
product, we can write (Melchior et al.|2011):

i . .
{G*}ij = Z Z (;{) (é) {GYilP}iok,j-1 » (3.4)
T
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which shows that the (i + j)-order convolved moments are determined by
the same- or lower-order moments of the galaxy and the PSF kernel. The
deconvolution procedure to estimate the galaxy moments is to invert the
above hierarchical system of equations, starting from the zeroth order.

As mentioned above, it is necessary to introduce a weight function to
avoid noise dominating the second-order moments outside the galaxy light
profile. In this work, we adopt an elliptical Gaussian weight function with
size ryt = riso, Where rig, is the isophotal radius, defined as ris, = \/Aiso/7,
following Georgiou et al. (2019a). The area A;, of the galaxy’s isophote is
computed using the ISOAREA_IMAGE by SExtractor (Bertin & Arnouts|1996)).
The shape measurement procedure is the same as described in |Georgiou
et al.| (2019a) and we point the interested reader to their Section 2 for a
detailed description of the algorithm. In Appendix [A1we report our anal-
ysis of the measured shape bias for different setups, which led to our final
choice reported above.

Using DEIMOS, we successfully measured the shapes of 96 863 galaxies
from the luminous sample, ~ 83% of the corresponding density sample,
and 152 832 shapes from the dense sample, roughly ~ 88% of its density
sample. The shape measurements mainly fail’| for the faintest galaxies in
the sample.

3.3.2 lensfit

The second shape catalogue is obtained using the self-calibrating version
of lensfit (Miller et al.||2013)), described in more detail in [Fenech Conti
et al.|(2017). It is a likelihood-based model-fitting method that fits a PSF-
convolved two-component bulge and disk galaxy model. This is applied si-
multaneously to the multiple exposures in the KiDS-1000 r-band imaging,
to get an ellipticity estimate for each galaxy.

lensfit provides shapes for 84 785 galaxies from the 1uminous sample
(72% of the density sample), and for 121 500 galaxies from the dense sam-
ple (70% of the density sample). The lower completeness with respect to
DEIMOS is largely explained by the fact that lensfit has been optimised for
cosmic shear studies, where the signal is maximised for high-redshift galax-
ies, which are typically small and faint. Whilst lensfit could determine ellip-
ticity measurements for the large bright galaxies with MAG_AUTO < 20, this
model-fitting algorithm becomes prohibitively slow given the large number

9We only considered shapes with £1ag_DEIMOS==0000, corresponding to measurements
that do not raise any flag (see |Georgiou et al.[2019a).
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of pixels that these bright galaxies span. Therefore, the lensfit catalogue
only contains galaxies fainter than MAG_AUTO > 20 (hence the sharp cut-off
in apparent magnitude in Fig. [3.2). It performs better than DEIMOS for
relatively faint and low signal-to-noise (S/N) galaxies. As these are prefer-
entially found at higher redshifts, this also explains the different redshift
distributions, as illustrated in Fig.

3.3.3 Image simulations

We want to measure the shapes of galaxies from images that are corrupted
by noise and blurred by the atmosphere and telescope optics. These bias
the inferred shapes and thus need to be carefully corrected for. Although
both DEIMOS and lensfit are designed to do so, residual biases remain.
These can be expressed as (Heymans et al.|2006)

obs
€

= (L+m)e™ +c;, (3.5)
with i € {1, 2} the ellipticity components introduced in Here €™ is
the true ellipticity, while °" is the output of the shape measurement algo-
rithm; m; is the multiplicative bias and c; is the additive bias. Differently
from what is done in lensing studies (e.g. Kannawadi et al.|2019)), here we
calibrated the ellipticity rather than the shear. Our aim is to determine the
biases in our shape measurements using realistic image simulations, with

a precision that is better than the statistical error on our IA signal.

We stress that although it is important to start with an algorithm that
does not lead to a large bias in the first place, what matters the most is to
calibrate the residual bias on realistic image simulations in order to prop-
erly account for galaxy blending and the different observing conditions (Hoek-
stra et al.|[2017; [Kannawadi et al.|[2019; |Samuroff et al.[2018; MacCrann
et al.|2020]). We use dedicated image simulations generated with the COIl-
lege pipeline (COSMOS-like lensing emulation of ground experiments; Kan-
nawadi et al.2019). These simulations reproduce the observations from
the Cosmic Evolution Survey (COSMOS, [Scoville et al. 2007), for which
we have both KiDS imaging (KiDS-COSMOS) and deeper images from the
Hubble Space Telescope (HST). We use the HST observations to generate
our input catalogue and simulate the KiDS observations by varying the ob-
servation conditions. Under the assumption that COSMOS is representa-
tive of our galaxy sample (in practice we only require that it covers the S/N
and size parameter space, while we do not need the galaxy distributions to
match) we study the m—bias properties of the LRGs in our KiDS-COSMOS
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Figure 3.3: Average multiplicative bias, m = (m¢, +me,)/2, as a function of (a) the galaxy
resolution, R, and (b) the signal-to-noise ratio, S/N. Each point is measured on the same
number of simulated galaxies and the error bars are estimated using bootstraps. For a com-
parison we also display in the background the weighted distribution of the two definitions of
R and the S/N in the real data for the dense shape samples (pink: lensfit; blue: DEIMOS).
The solid lines show the polynomial fit to m(R) and m(S/N), which guided the construction
of the two-dimensional bias surface.
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field and use the bias model obtained from this set of galaxies to calibrate
our full sample.

The image simulations used in this work differ slightly from those pre-
sented in Kannawadi et al. (2019) because we required a larger number of
simulated LRGs for our calibration. To achieve this, we adopted the ZEST
catalogue (Zurich Estimator of Structural Type; Scarlata et al.[2007; Sar-
gent et al.|2007) for the input galaxy parameters. We generated 52 KiDS-
like images by varying the observing conditions and rotating the galaxies.
We used 13 different PSF sets and four rotations per each image. Since our
underlying galaxy selection is identical for both the lensfit and DEIMOS
shape catalogues, we employed the same suite of simulations for both cal-
ibrations.

The shape measurement bias depends on the size, S/N, radial surface
brightness profile and ellipticity of the galaxy, as well as the observing con-
ditions. Of these, the size and S/N are the most relevant, and we use these
to capture the dependence of the bias for our set of simulated galaxies.
Rather than the intrinsic size of the galaxy, we use a proxy for how well
itis resolved: R quantifies the relative size of the PSF compared to the size
of the galaxy. Here, we adopt two slightly different definitions, depending
on the shape algorithm employed. For DEIMOS we use

TPSF

DEIMOS _
R - 1 Tgal > (3'6)

PSF _ PSF PSF gal _ y*gal #gal +gal
where T = Q50 +Qpy and T8 = Q% + Q5" where Q;;" are the

unweighted moments of the PSF-convolved surface brightness profile (see
Egs. [3.4]and[3.1). In the case of lensfit we use

2
Rlensﬁt =1- &

FUEIE (3.7)
ab PSF

where r2

PSF — 1[PHPQQ - P%2 and Vab = re\/ﬁ. Here, Pi]‘ are the /ensfit PSF

weighted quadrupole moments (see Eq. (2) in Giblin et al.|2021)), mea-
sured with a circular Gaussian function of size 2.5 pixels; r,, is the half-light
radius measured along the major axis of the best-fit elliptical profile by
lensfit, which is an estimate of the true galaxy size before PSF-convolution,
while ¢ is the axis ratio, such that r,y, is the azimuthally averaged size of the
galaxy. As we can see, R can in practice only assume values between 0 and
1, where 1 corresponds to galaxies with sizes that are much larger than the
PSF.
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We evaluate the multiplicative bias m in bins of S/N and R that con-
tain an equal number of galaxies and the error bars are computed using
500 bootstrap realisations. The resulting biases are presented in Fig.
for both lensfit and DEIMOS. We find that the two components ¢, » show
similar dependencies, and, therefore, we calibrate the bias for the two com-
ponents jointly. The additive bias for both components is consistent with
zero, and thus we do not consider it further in our calibration.

For both m(S/N) and m(R), we find that lensfit has a small bias and thus
also our correction is small; in general, it performs better than DEIMOS
for poorly resolved galaxies and low S/N. It is, however, prohibitively slow
when measuring shapes for large galaxies, limiting the lensfit sample to
galaxies with m, > 20. In contrast, DEIMOS shows a large bias for low
values of R: the galaxy size correlates with its ellipticity, and we find that
removing the highly elliptical galaxies significantly reduces the bias. How-
ever, once we calibrate the shapes of those galaxies, we recover a very sim-
ilar signal for the full shape sample and the one cut in ellipticity. Simi-
larly, we have also tested that adding inverse-variance weights to account
for these noisy galaxies does not significantly improve our signal. This mo-
tivates our choice to keep all galaxies in our sample and not to introduce
additional weighting; we assume that the measurements are dominated by
shape noise only.

We can see that m (R) for both DEIMOS and lensfit is well described by a
polynomial curve, which we truncate at degree 3 and 4, respectively, while
m(S/N) is well described by the expansion: d(S/N) = d; /+/S/N +d2/(S/N).
We combine the two individual bias dependencies into a single bias surface
as detailed in Appendix[A1] The specific functional forms for the two shape
methods differ to better adapt the surface to our observed bias. We use
these empirical relations to infer the m-bias associated with each galaxy,
given its S/N and R.

To ensure that our empirical correction performs well on our sample,
we selected sets of galaxies from the image simulations that resemble our
LRG samples by reproducing the observed distributions in S/N and R. We
measured the residual biases for these samples, defined as the difference
in the estimated m-bias (inferred using our model for the bias) and the bias
measured directly from the simulations for the given set of galaxies. For the
DEIMOS shape method, we find an average residual of —0.002+0.007 for the
dense-like sample, while this is —0.002 + 0.008 for the luminous-like sam-
ple. Similarly, in the case of lensfit the residuals for the luminous-like and
dense-like galaxies are, respectively, —0.0014 +0.0013 and —0.0019 +0.0020.
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Figure 3.4: Histogram of the difference of the €1 component of the ellipticity measured by
the two shape measurement algorithms, lensfit and DEIMOS, on a common sub-sample of
galaxies, after applying the m—bias correction as described in the text. The €3 component
shows the same behaviour. The distribution is more peaked than a Gaussian (red dashed line)
and is best described by a Student’s r—distribution with v = 4.3, and a width o = 0.08 with
zero mean (black solid line).

As we will see later, this is much smaller than the uncertainty in the IA mea-
surements: the average bias introduced by the shape measurement process
is subdominant and does not affect our best estimate of the IA amplitude.
The LRGs are relatively bright and we thus expect the shape measure-
ments to be shape noise-dominated. This also implies that the DEIMOS
and lensfit measurements are correlated. To quantify this, we show the dis-
tribution of the difference between the m—corrected ellipticities measured
by the two algorithms in Fig. The distribution is more peaked than a
Gaussian, and well described by a Student’s r—distribution centred on zero,
with v = 4.30 (degrees of freedom) and with scale parameter o = 0.08.
This is to be compared to the intrinsic ellipticity of galaxies, which is about
€ms = 0.12 based on DEIMOS measurements for galaxies with apparent
magnitude m, < 20. It is interesting to note that our sample is consider-
ably rounder than a typical cosmic shear sample, as expected for an LRG
sample (see for example van Uitert et al. 2012); this implies that it might
be affected differently by a weighting scheme in a lensing analysis. The
differences between the DEIMOS and lensfit measurements are caused by
differences in how each method deals with noise in the images.
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3.4 Correlation function measurements

We measured the IA signal using the two-points statistic w,, defined as the
projection along the line-of-sight of the cross-correlation between galaxy
positions and galaxy shapes. It measures the tendency of galaxies to point
in the direction of another galaxy as a function of their comoving trans-
verse separation, r,, and comoving line-of-sight separation, I1. To quantify
the alignment signal in our data, we employed the estimator presented in
Mandelbaum et al.| (2006)%}

S+D - S+RD

Rekn (3.8)

ég+(rp’ H) =
where Rp and Rg are catalogues of random points designed to reproduce
the galaxy distribution of the density and shape samples, respectively. We
indicate with D the density sample that provides the galaxy positions, while
S, is the shape sample, such that the quantity

$:D = ) y4(il)). (3.9)

i#j

gives us the tangential shear component of the galaxy pair (i, j), v+ (ilj),
where i is extracted from the shape sample and ; from the density sample.
Y4, in turn, is defined as

yolil)) = R [erexp(-2igi)] (3.10)

where R denotes the real part; ¢; is the complex ellipticity associated with
the galaxy i, ¢, = €1; + ie2;, whose components 1,2 are measured by the
shape measurement algorithms presented in Sect. ¢;; isthe polar angle
of the vector that connects the galaxy pair; R = de/dvy is the shear respon-
sivity and it quantifies by how much the ellipticity changes when a shear is
applied: for an ensemble of sources, R =1 — €2 ..

The galaxy clustering signal is computed with the standard estimator
(Landy & Szalay|1993),

DD -2DRp - RpRp
RpRp ’

é?gg(rpyn) = (3.11)

10Tnstead of normalising by RgRp, we actually normalise by the density - randoms vs.
shapes pair count, Rp Dg. This significantly speeds up the computation and has been tested
to have negligible impact (Johnston et al.[2019).
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To measure our clustering and IA signals, we used uniform random
samples that reproduce the KiDS footprint, accounting for the masked re-
gions; to these we assigned redshifts randomly extracted from the galaxy
unconditional photometric redshift distributions. For each sample, we con-
structed the random sample to match their redshift distribution.

To account for the spatial variation in the survey systematics, we ap-
plied weights to the galaxies when computing the signal, as discussed in
Vakili et al.|(2020]). These weights are designed to remove the systematic-
induced variation in the galaxy number density across the survey footprint.
For a detailed discussion of how the weights are generated and tested, we
refer to Sect. 4 inVakili et al.|(2020)). To capture the variation in the survey
systematics along the line-of-sight, we split each sample into three redshift
bins and assigned the weights to those sub-samples. We tested that this
procedure does not induce a correlation between the galaxy weights and
the redshifts themselves. We also verified that the impact of the weights is
very small and can be neglected when considering the split in luminosity of
the samples (see Sect.[3.6.1). We applied such weights to both the density
and shape samples.

In this work, we measured the clustering and IA signals using an up-
dated version of the pipeline presented in Johnston et al.| (2019), which
makes use of the publicly available software Treecorr (Jarvis et al.[2004)["]
for clustering correlations. &, and &, are then projected by integrating
over the line-of-sight component of the comoving separation, II,

Hmax ~
Wi () = / Al éyi(rp ) i = (.5} . (3.12)

_Hmax

The largest scales probed in this analysis are limited by the effective
survey area (~ 777 deg?). We set a maximum transverse separation of
60 h~'Mpc and measure the signal in 10 logarithmically spaced bins, from
Tp,min = 0.2 h~'Mpc.

We performed the measurements for three different setups: we adopt
[,y = 120 A~ Mpc as the fiducial case, but repeated the analysis for I, =
90 h~'Mpc and IMyax = 180 A~ Mpc (see Appendix[As5)). We always bin our
galaxies in equally spaced bins with AIT = 10 2~'Mpc. We observe an ex-
tended signal to IT > 180 ~~!Mpc, but the signal is comparable to the noise
at those distances.

Uhttps://github.com/rmjarvis/TreeCorr
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Our choice of 1, is conservative since the uncertainties in the photo-
metric redshifts are o, < 0.02(1 + z) for both the denseand luminous sam-
ples (Vakili et al..2020)), and if we choose I, based on the 10 uncertainty
in the photometric redshifts (Joachimi et al.[2011)), we could potentially re-
duce Iy, to 70 - 'Mpc. However, this might be too optimistic given that
the error on o, increases with redshift. The choice of I1,,. is motivated by
two opposite necessities: to maximise the S/N, we want to minimise the
amount of signal that we discard, whilst we also want to avoid adding un-
correlated pairs that would increase the noise. To find the best balance,
we calculate the S/N of our signal as a function of (rp, IT) by dividing the
measured w,, (rp,, IT) by the root-diagonal of the jackknife covariance. We
truncate at I, based on the 10 o~ detection, which roughly corresponds
to IMyax = 120 A~ *Mpc. In addition to these considerations, there is a fur-
ther motivation to limit the integral to modest line-of-sight separations: as
discussed in Appendix [Ag] the contamination from galaxy-galaxy lensing
has a shallower dependence on the line-of-sight separation; as we move
along the IT direction, we see an increase in the contamination with a mild
increase in the IA signal, until lensing dominates.

The error bars are computed via a delete-one jackknife re-sampling of
the observed volume. The covariance matrix is constructed as

N-1

COVjack. = T

N
DT =W (w7, (3.13)
a=1

where w? is the signal measured from jackknife sample @, while w is the
average over N samples; T denotes the transpose of the vector.

The number of regions N is ultimately set by the size of the survey and
the scales we aim to probe. A maximum value of r, = 60 2~'Mpc corre-
sponds to an angular separation of ~ 8 degrees (dense sample) and ~ 6
degrees (luminous sample) at the lowest redshifts probed in the analysis.
However, to increase the number of jackknife regions, we decided to set the
minimum angular scale to 5 degrees, which strictly satisfies our require-
ment only for z > 0.2. This is motivated by the fact that the majority of
our galaxies are at high redshift and hence only < 5% of our galaxies have
unreliable error estimates in the last r,—bin. The total number of jackknife
regions that we are able to obtain for our samples is N = 37. We corrected
our inverse covariance matrices, which enter into our likelihood estima-
tions, as recommended in Hartlap et al.|(2007): because of the presence of
noise, the inverse of a covariance matrix obtained from a finite number of
jackknife (or bootstrap) realisations is a biased estimator of the true inverse
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covariance matrix.

3.5 Modelling

The linear alignment model (Catelan et al. 2001; Hirata & Seljak 2004))
predicts a linear relation between the contribution to the shear induced
by IA and the quadrupole of the gravitational field responsible of the tidal
effect. This can be expressed as

c
Y=y = —ﬁ(ﬁf +02,0,0,) @y , (3.14)

where the partial derivatives are with respect to comoving coordinates and
provide the tangential and cross components of the shear with respect to
the x-axis; @, is the gravitational potential at the moment of galaxy forma-
tion, assumed to take place during the matter-dominated era (Catelan et al.
2001); C; is a normalisation constant and G is the gravitational constant.

Using Eq. (3.14), by correlating the intrinsic shear with itself or with the
matter density field 6, we can construct the relevant equations for the IA
correlation functions (Hirata & Seljak|2004)). In Fourier space, the matter
density-shear power spectrum (1) becomes

P (k,z) = AIAclpc Pl (k,z) . (3.15)

D(z)
Here, D(z) is the linear growth factor, normalised to unity at z = 0, p. is the
critical density of the Universe today, and P'I% is the linear matter power
spectrum. We set C; = 5 x 1074172M ;' Mpc® based on the IA amplitude
measured at low redshifts using SuperCOSMOS (Hartlap, Simon & Schnei-
der|Bro)), which is the standard normalisation for IA power spectra.

Galaxies are biased tracers of the matter density field, and at large scales
this relation is linear, 6, ~ by,6. We can thus relate the galaxy position—
intrinsic shear power spectrum to the matter density—intrinsic shear power
spectrum via the galaxy bias b,:

Pk, 2) = by Py (K, 2) (3.16)

which is the power spectrum of interest for our analysis.

A successful modification of the LA model replaces the linear matter
power spectrum in Eq. with the non-linear one, to account for the
non-linearities arising at intermediate scales (Bridle & King[2007). This
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so-called NLA model was succesfully employed in a number of studies (e.g.
Blazek et al.|2011; Joachimi et al.[2011) and here we follow the same ap-
proach to model our signal. More sophisticated treatments of the IA signal,
which include the modelling of the mildly or fully non-linear scales, have
been developed in the last decade (Schneider & Bridle 2010; [Blazek et al.
2019; |Fortuna et al.[2021a), but given the scales probed in our analysis (see
Sect. and the homogeneous characteristics of the galaxy population
studied, the NLA model provides a sufficient description for this work. Un-
less stated otherwise, in the following we always assume the NLA model as
our reference choice. To generate the linear matter power spectrum we
use CAMB?|(Lewis et al.[2000; [Lewis & Bridle2002)), while the non-linear
modifications are computed using Halofit (Smith et al.[2002]) with the im-
plementation presented in Takahashi et al. (2012). In the rest of the paper,
we simply refer to the non-linear matter power spectrum as Pss(k, z).

3.5.1 Incorporating the photometric redshift uncertainty
into the model

The use of photometric redshifts results in an uncertainty in the estimated
distance of the galaxies, which has to be included in the model. In par-
ticular, if we express the correlation function &, in terms of the two com-
ponents of the galaxy separation vector r, (rp, IT), we can map the redshift
probability distribution into the probability that the true values of r, and IT
correspond to their photometric estimates. Here, we follow the approach
derived in Joachimi et al.|(2011) and use their approximated expression,

— det _ _
‘fglh(Fp, I1, Zm) = / E-@ (f@(fp, Zm)) CgI (5; Z1 (Zma H)a ZQ(Zm, H)) . (317)

The observables are: z; and z», the photometric redshift estimates of
the pair of galaxies for which we are measuring the correlation, and their
angular separation 4. These can be related to (7, I1, Z1,), through the ap-
proximate relations

Zm = %(zl +22), (3.18)
rp ~ Ox(zm) (3.19)
~ H(Z )(Z2 -21), (3.20)

12https://camb.info
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where y(z;,) and H(zy,) are, respectively, the comoving distance and the
Hubble parameter at redshift z,,, and c is the speed of light.

The conditional redshift probability distributions are incorporated into
the angular power spectrum C,j, which can be expressed in terms of the
three-dimensional power spectrum Py (, z),

Xhor ’ > / =,
CgI(€921522) :/ dX/pn(X |X(Z1)/\226(X |X(Z2))

X Pgr (@—1,/2&()(’)) (3.21)

where we have implicitly assumed the flat-sky and Limber approximations,
and n and e indicate the density and shape sample respectively. p(x’|x)
are the conditional comoving distance probability distributions, which are
related to the redshift distributions via p(y’|x)dx = p(z|z)dz. When com-
puting our predictions, we bin our photometric data and compute the cor-
responding p(z|z) = p(zspeclZphot) Per each bin; z; and z5 in Eq. cor-
responds to the mean values of the probability distribution with z; being
the mean of the i-th bin and z; of the j-th bin. In Appendix[A2|we show the
redshift distributions entering our analysis. We refer the interested reader
to appendices A.2 and A.3 in Joachimi et al.|(2011) for the full derivation of
equation The exact same formalism can then be applied to the clus-
tering signal, where Cy1 — Cqq, Jo — Jo and the redshift distributions are
those corresponding to the density sample.

The projected correlation functions wg, and w,, can then be obtained
as:

wg+(rp)=/dH /dzm(W(Zm)gglh(rp,H,zm) (3.22)

and
ng(rp) = / dIl /dzmw(zm)fgg(fp,ﬁa Zm) > (3.23)

where the redshift window function ‘W (z) is defined as (Mandelbaum et al.
2011):
-1

W) = pi(2)p;(2) [/d pi(2)p;(2) ’ (3.24)

~ x2(2)dy/dz “P(@dy/dz

where p; ;(z) with i, j € S, D are now the unconditional redshift distribu-
tions for the shape and density samples, and y(z) is the comoving distance
to redshift z.
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3.5.2 Contamination to the signal

All possible two-point correlations between galaxy shapes and positions
contribute to the estimator in Eq. (3.12). Following the notation inJoachimi
& Bridle (2010), here we consider: the correlation between the intrinsic
shear and the galaxy position (g+), which is the quantity we aim to con-
strain; but also the correlation between gravitational shear and galaxy posi-
tion, sourced by the galaxy lensing of a background galaxy by a foreground
galaxy (gG); and the apparent modification of the galaxy number counts
due to the effect of lensing magnification, which affects both the correla-
tions with the intrinsic shear and the gravitational shear (mI and mG).

Among these effects, galaxy-galaxy lensing is the main contaminant to
our signal. While IA requires physically close galaxies, galaxy-galaxy lens-
ing occurs between galaxies at different redshifts. This implies that the
level of contamination depends on our ability to select close pairs of galax-
ies, which ultimately depends on the photometric redshift precision. For
this reason, the width and the tails of the redshift distributions play an im-
portant role in the amount of contamination. Since our p(z*P*¢|zPPt) are
quite narrow (see Appendix[A2)) we do not expect this to be a major effect
in our data. Nevertheless, we fully model both lensing and magnification
effects, and account for them when interpreting the signal. We note that
the sign of the gl and gG terms are opposite, such that adding the lensing
to the model allows us to remove its suppressing contribution and capture
the true IA signal.

It is convenient to write the various correlations in terms of the pro-
jected angular power spectra: indicating with » the density sample (that
provides the galaxy positions) and with e the shape sample, we have

GO = O+ O+ O+CE O, (3.25)

ml

where, in a flat cosmology, these read

.. Xhor (l) (]) f + 1 2
Cég)(f) _ bg/ dy P (X)q; (X)PM ( / ’X) ’ (3.26)
0 X X
CiP(6) =2(a" - 1)C1(3) (), (3.27)

and
Cx(ﬁje)(f) =2(a" - 1)Cé’g ). (3.28)
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Here o) is the slope of the faint-end logarithmic luminosity function's]
The lensing weight function, gx, X € {n, €} is defined as

BHEQy y  [Xoor X =X
ax () = L / Ay px ()X (3.29)
2¢? a(x) Jo X

Cl(g ) is the intrinsic-shear power spectrum. It models the correlation be-
tween the shearing of source galaxies by a foreground matter overdensity
and the simultaneous IA of galaxies located near that overdensity:

i Xhor (@) ) £+1/2
0= [ a9 e (2] g0

) 1as . .
Coi 18 instead defined as:

- Xhor () )

cih= [, (C22 ) (e
0 X X

We note that with respect to the usual shear power spectrum, we require

here that one of the samples refers to the density sample, n.

To account for these sources of contamination in the fit, we replace &,
with &,, which can be obtained from Eq. (3.25). The prediction for £°
is then used to constrain the measured signal wg,. In Appendix[A3|we ex-
pand further on the impact of lensing on our measurements, while in Ap-
pendixwe describe our strategy to measure the values of «”) in our data.

3.5.3 Likelihoods

We perform the fits to the data using a Markov Chain Monte Carlo (MCMC)
that samples the multi-dimensional parameter posterior distributions and
finds the set of parameters that maximise the likelihood. We assume a
Gaussian likelihood of the form £ « exp(—x?/2), where

X = X, + X (3.32)

and we simultaneously fit for the galaxy bias, b, and the IA amplitude, A;x.

13Formally, the magnification of the lensfit sample is also affected by the slope of the
luminosity function at the bright end of m, = 20. We ignore such complexity: we find
magnification to be a subdominant effect for the faint distant galaxies, thus the contribution
of low-redshift galaxies is expected to be negligible for our analysis.
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To correct for the effects of a partial-sky survey window, we also intro-
duce an integral constraint, IC, when modelling the clustering, signal,

Weg = Weg +1C . (3.33)

This term, which becomes important only on large scales, has the function
of capturing the bias that arises from a mis-estimation of the global mean
density (Roche & Eales|1999|). We treat this term as a nuisance parameter,
such that our parameter vector reads

A= {bg, A1p;IC} . (3-34)

We limit our fits to the quasi-linear regime, r, > 6 h~'Mpc, to ensure
that the linear bias approximation is satisfied and the IA signal is well de-
scribed by the NLA model. To perform our fits, we make use of the Emcee
(Foreman-Mackey et al.|2013) package as implemented in the cosmology
software CosmoSIS™| (Zuntz et al/[2015). When analysing the chains, we
exclude the first 30% of samples for a burn-in phase.

3.6 Results

The left panels in Fig.[3.5]show the measurements of the projected position-
shape correlation function w, for the luminous (top panel) and dense (bot-
tom panel) samples. We present results for both the lensfit (dark green tri-
angles) and DEIMOS (light green squares) shape catalogues. As described
in Sect. we simultaneously fit the IA and the clustering signals. We
show the resulting best-fit models to measurements with r, > 6 A~'Mpc
of wgs and wy, as solid lines in the figures. The estimates from the two
shape measurement algorithms are fit independently, but given that the
corresponding clustering signal is the same, here we only show the best-fit
curve for the DEIMOS fit. The clustering measurements use the full density
samples, and thus do not rely on a successful shape measurement.

We observe similar signals for the DEIMOS and lensfit samples, with
the lensfit measurements having a lower S/N, because of the lack of shape
measurements for galaxies with m, < 20. We note that we do not neces-
sarily expect to observe the same signal, because DEIMOS contains more
bright, low-redshift galaxies, whereas the lensfit sample includes fainter,
distant gala