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1| Introduction

A century ago, in 1920, the astronomy community was engaged in the

so-called ’the great debate’: did the entireUniverse consist of just ourGalaxy,

theMilkyWay, orwere the observednebulae non-local objects, being them-

selves galaxies similarly to our own?1

Three years later, at the Mount Wilson Observatory, where the most

powerful telescope of the time, the 100-inch Hooker Telescope, was op-

erating, Edwin Hubble put an end to the controversy. Studying the pho-

tographic plates, Hubble was able to measure the distance of M31 (An-

dromeda), finding that it was about a million light-years away. A few years

before, Harlow Shapley had measured the size of the Milky Way, assessing

a width of about 300 000 light-years (Shapley 1918). This meant that M31

was outside the Milky Way, establishing a new view of the Universe, and

opening the door to extragalactic astrophysics and modern cosmology2.

In 1990, theHubble Space Telescopewas launched. In 1995 it produced

one of the highest impact images of astronomy: the Hubble deep field (Fig.

1.1). This high-quality image contains more than 3000 galaxies in just ∼
0.19 deg2, and the light of some of these has travelled for 10 billion years to
reach us.

In just one century, our perception of the dimensions of Universe had

completely changed.

1A transcript of the debate can be found at https://apod.nasa.gov/diamond_jubilee/
1920/cs_nrc.html. For further material, see for example Shapley (1919); Shapley & Curtis
(1921)

2Our current best estimates of the size of theMilkyWay stellar disk and of M31 distance

are, respectively, ∼ 100000 light years and ∼ 2.54 million light years.

https://apod.nasa.gov/diamond_jubilee/1920/cs_nrc.html
https://apod.nasa.gov/diamond_jubilee/1920/cs_nrc.html
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Figure 1.1: The Hubble Ultra Deep Field 2012, an improved version of the Hubble Ultra Deep
Field image featuring additional observation time. Credit: NASA, ESA, R. Ellis (Caltech),
and the HUDF 2012 Team
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1.1 A new view of the Universe

In the following years, themeasurements of the distances and the velocities

of several distant galaxies allowed Hubble to show that they were moving

away from our own, and that their recessional velocities were linearly re-

lated to their distances: a relation now known as the Hubble-Lemaître law

(Hubble 1929; Hubble & Humason 1931; Smith 1979, for a historical re-

view). This was the experimental proof that the Universe was expanding,

as already independently predicted a few years before by Friedmann and

Lemaître (Friedmann 1922; Lemaître 1931). Due to the expansion of the

Universe, the light of distant galaxies is red-shifted (i.e. it is observed at a

longer wavelength) and thus we use the redshift, I, as ameasure of distance

and time; I = 0 corresponds to the present Universe, and it increases as we
look back in the past.

Our modern view of the Universe is rooted in those years of great dis-

coveries and on the fundamental theoretical works of Einstein, Lemaître,

Robertson, Walker and other theorists who contributed to defining the ge-

ometrical description of the Universe we rely on. Our current model of the

Universe is based on three fundamental assumptions: that we are not lo-

cated at any special location in the Universe and that on large scales the

Universe is isotropic and homogeneous. Starting from these hypotheses

and using the theory of General Relativity, it is possible to build a specific

class of metrics (Robertson-Walker metrics) and to derive a set of equa-

tions that describes the dynamical evolution of our Universe (Friedmann

1924).

Nowadays, theΛCDMmodel is the standard cosmological model of ref-

erence, which gets its name from the dominant ingredients the Universe is

composed of today: an unknown form of energy, called dark energy, that

enters into the dynamical equations of the Universe in the form of a cosmo-

logical constant called Λ (∼ 70%)3, and (invisible) cold dark matter (CDM,
∼ 25%), originally inferred by its effect on the dynamics of visible matter
(Zwicky 1933; Rubin et al. 1980, among others). The remaining compo-

nents are the ordinary (baryonic) matter (∼ 5%), followed by photons and
neutrinos, which together account for less than ∼ 0.01%.

The question of what is the nature of dark matter and what is driving

the acceleration parametrised by the dark energy are the most fundamen-

tal questions in modern cosmology. These involve theoretical as well as

3This is required to justify the observation of the late-time acceleration of the expansion

of the Universe (Riess et al. 1998; Perlmutter et al. 1999)
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experimental investigations (see for example Arun et al. 2017; Kafedžić-

Briga&Džaferović-Mašić 2021, for some recent reviews). At the same time,

while remaining agnostic on the intrinsic nature of such components, mea-

suring the parameters of the cosmological model with as much precision

and accuracy as possible is the main effort of observational cosmology (see

Sect. 1.2.2).

In this Thesis, we focus on some specific techniques to infer the cosmo-

logical parameters with the main focus on how to control the systematic

effects that would lead to incorrect estimates of these. Our subject of study

is the alignments of galaxies. These can be intrinsic to the galaxy (what we

call intrinsic alignment, IA, see Sect. 1.4) and provide information on the

galaxy-darkmatter connection, or apparent: in this casewe refer to themas

gravitational lensing, whichwe introduce in Sect. 1.3. Gravitational lensing

is a powerful probe to explore the dark content of the Universe, as it uses

the apparent distortion of galaxy shapes to infer the amount and the spatial

distribution of dark matter, dark energy and the geometry of the Universe

itself. We focus on modelling possible contaminants to lensing (Chapter 2

and 4) and to exploit lensing to learn more on IA (Chapter 3).

1.2 The Standard Cosmological Model

One of the main consequences of the expansion of the Universe is that it

must have beenmuch smaller in the past: in the hypothesis ofmass conser-

vation, also the density of the Universe was significantly higher. Thus, the

Universe has experienced different phases across its life-time, and, wind-

ing back its history, we can reach a moment where the entire space-time

was confined in a singularity: the so called Big Bang4. From the Big Bang

until now, the Universe has continued to expand and cool down: from an

initial stage where it was extremely hot and radiation-dominated, and all

the particles were in the form of an opaque plasma, to the formation of the

first nuclei in what is called the Big Bang Nucleosynthesis. This was fol-

lowed by the decoupling of matter and radiation and the formation of the

first neutral atoms5 (Gamow 1946, 1948; Alpher & Herman 1948; Alpher

et al. 1948). Fromhere, baryonicmatter started to assembly due to its grav-

4Strictly speaking, there are possible solutions to the Lemaître-Friedmann equations

that would admit an ever expanding Universe, but these are excluded by specific observa-

tions and constraints on the cosmological parameters at certain redshifts (Boerner &Ehlers

1988).
5It is slightly before this point that the Universe entered the matter-dominated era.
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itational attraction, forming the first stars and the first galaxies.

A fundamental evidence of the early stage of the Universe consists of

the Cosmic Microwave Background (CMB), a relic radiation at the current

temperature of∼ 2.725Kwhich originated at themoment of photon decou-
pling. The CMB was first predicted by Alpher & Herman (1948) and later

detected by Penzias and Wilson (Penzias & Wilson 1965).

It is important to stress that the early Universe was not homogeneous

at small scales: the origin of such anisotropies is still unknown, although

the theory of inflation (Guth 1981) is generally accepted as the standard

paradigm. Early after the equivalence between matter and radiation, mat-

ter started to condensate, as an effect of gravitational attraction. However,

only dark matter was able to grow: this, not being affected by the electro-

magnetic radiation, was free to start its collapse, while the baryonic mat-

ter (all the visible matter) continued to interact with the surrounding pho-

tons. Once matter and radiation decoupled, these dark matter overdensi-

ties acted as seeds for structure formation: having higher density than the

surrounding matter distribution, they attracted the surrounding baryonic

matter (White & Rees 1978). In the standardmodel of structure formation,

the assembly of matter is still driven by the most abundant and simplest

form of matter, the collisionless dark matter. This shows the deep connec-

tion between dark and visible matter: dark matter forms the cosmic web,

providing the gravitational wells where galaxies form and live. Baryonic

matter, however, is able to cool via electromagnetic interactions, and can

thus contract further, forming denser object such as stars and galaxies. The

process of structure formation starts from small objects, which thenmerge

to form larger and more massive ones, in a bottom-up scenario.

1.2.1 The galaxy-halo connection

The dark matter regions that are dense enough to decouple from the cos-

mic expansion form bounded objects that we refer to as haloes. The most

massive haloes sit at the knots of the cosmic web (clusters) and host many

galaxies, while less massive ones populate the filaments, and the galaxies

they host are referred to as field galaxies (see Fig. 1.2 for a representation

of the cosmic web from a N-body simulation). In general, the more mas-

sive is a halo, the more galaxies it hosts. In a simplified picture, the first

galaxy to be born in a halo sits at its centre; depending on the characteris-

tics of the proto-galaxy and on the surrounding tidal field, the galaxy can

orient its major axis (or its spin axis) accordingly to the quadrupole of the

gravitational field (see Joachimi et al. 2015; Kiessling et al. 2015, for a re-
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Figure 1.2: A zoom-in on a slice from the Millennium Simulation. A cluster is visible in the
centre, surrounded by filaments. Image credit: Springel et al. (2005).

view). Interactingwith the surrounding environment, amassive halo keeps

attracting smaller structures from the neighbourhood, which become sub-

structures and start orbiting around the halo centre; these sub-haloes can

host galaxies themselves: we refer to these galaxies as satellites. Part of

these satellites will be tidally stripped, either forming intra-cluster light or

accreting onto the central galaxy, which is typically themostmassive one in

the halo. All of these processes affect the properties of satellites, from their

star formation activity to their morphology and their angular momentum,

either increasing or destroying the tendency of their major axes to point

in the direction of the central galaxy. As the mergers continue, the cen-

tral galaxy grows, the halo keeps attracting matter from the surrounding

filaments, and becomes bigger and bigger: while at large scales the Uni-

verse expands, at small scales structures aggregate, contrasting locally the

Hubble flow.

The complexity of the relation between galaxies and darkmatter makes

it impossible to have an exact analytical formalism to describe it. However,

their ensemble properties canbe capturedusing a statistical approach. There

are several ways to parametrise the galaxy-halo connection: in this Thesis

we focus on the halo model and the Halo Occupation Distribution (HOD)
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(see Cooray & Sheth 2002, for a review). The halo model provides a way to

describe the statistical properties of the dark matter haloes, such as their

clustering. Dark matter haloes can have different masses: if a halo is mas-

sive enough, it can reach virial equilibrium, forming a bounded object,

which can then host galaxies. Using N-body simulations, Navarro et al.

(1996) showed that the dark matter distribution has a universal profile,

with a decreasing density from the core to the outskirts of the halo (NFW

profile). An alternative parametrisation which has also shown to fit well

the simulations and lensing data is the Einasto profile (e.g. Gao et al. 2008;

Mandelbaum et al. 2008). Combining the linear matter density distribu-

tion, the distribution of matter within the halo as predicted by the NFW

profile and the number density of haloes of a given mass, as predicted by

the halo mass function (HMF, Press & Schechter 1974) – now based on N-

body simulations (e.g. Jenkins et al. 2001; Lukić et al. 2007; Despali et al.

2016) – it is possible to model the matter density field and predict its 2-

point function, the matter power spectrum. The HOD then provides a link

between the galaxies and the dark matter haloes, in the form of a proba-

bilistic description of how the galaxies populate the halo. This is based on

some observable quantities such as their luminosity and colour, and distin-

guishes between their type (central/satellites). These models have shown

to provide a good fit to a number of observables (e.g. Zheng et al. 2007; Ze-

havi et al. 2011;More et al. 2011) and can be used to fit cosmologicalmodels

via combined probes (Cacciato et al. 2013). The halo model is largely used

in this Thesis, to link the observed correlation between galaxies and dark

matter, for different observables (Chapter 2, 4, 5).

Based on theirmorphology, galaxies can be broadly divided in twomain

classes: elliptical and spiral galaxies. Elliptical galaxies are believed to be

the result of one or more galaxy mergers, they are characterised by an el-

liptical shape, old stellar population (emitting more in the red part of the

electromagnetic spectrum) and are gravitationally supported by the ran-

dom motion of their stellar content. Spiral galaxies have a disc-like shape,

a young population (emittingmore in bluer wavelengths) and are rotation-

ally supported. Due to their typical rest-frame optical wavelength emis-

sions, we will often refer to these two class of objects, respectively, as red

and blue galaxies. Cluster galaxies are typically red, as well as the central

massive galaxy of big groups. A large fraction of satellite galaxies is also

typically red and this correlates with the morphology of the central galaxy

(Weinmann et al. 2006). Among the mechanisms responsible for quench-

ing, there are mergers, Active Galactic Nuclei (AGN) and Supernova (SN)
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Figure 1.3: Left: The posterior distribution of the �0 parameter as constrained by different
analyses. The family of measurements can be broadly divided in three categories: those which
rely on measurements of the early physics, such as the CMB (Planck Collaboration et al. 2020)
and the Baryonic Acoustic Oscillations (Schöneberg et al. 2019, BAO); those which infer the
Hubble constant from the late Universe, using relative galaxy ages (Jimenez & Loeb 2002;
Haridasu et al. 2018, Cosmic Chronometers, CC) and the strong lensing of distant quasars
(Chen et al. 2019, TDCOSMO); and finally those which measured the value of �0 in the local
universe, via the SNIa, either calibrated using the tip of Red Giant Branch (Freedman et al.
2020, CCHP) or the Cepheids (Riess et al. 2019, SH0EES).Image credit: José Luis Bernal et
al. 2020. Right: Marginalised constraints for the joint distributions of (8 ≡ f8 (Ωm/0.3)0.5

and Ωm obtained by different lensing studies (HSC-Y1, DES-Y1, KiDS-1000) and Planck.
The contours show the 68% and 95% credible regions. Image credit: Asgari et al. 2021

feedback and ram pressure stripping (Gabor et al. 2010; Zinger et al. 2018,

among others).

In this Thesis, we will focus on the dark matter-halo interaction in the

late-time Universe, from I ∼ 1.5 to I ∼ 0.1, spanning a range of time where
the Universe has grown to double its size and has gone from the matter-

dominated era to the Λ-dominated one. Our main scientific goal is to use

observational data and models of how visible and invisible matter are spa-

tially distributed and oriented to help infer the amount of matter present

in the Universe, how it has expanded and clumped over this range of time.

This contributes to the main question outlined at the beginning of this in-

troduction, i.e. what are the exact values of the cosmological parameters,

to confirm or challenge our current view of the Universe.

1.2.2 The era of precision cosmology and arising tensions

With the advent of space telescopes and the improvement of ground-based

facilities, cosmology is facing a new challenge: to constrain the cosmolog-
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ical model to high-precision and accuracy. With the decrease of the statis-

tical error, any systematic effect becomes important and the limits of any

model adopted to interpret the data are pushed to their boundaries6.

In recent years, independent experiments have measured the cosmo-

logical parameters with increasing precision. Each experiment is typically

able to constrain some parameters better than others, and it is subjected

to different systematic effects. The outcomes of these experiments have

shown some emerging tension between the different results. The most rel-

evant one involves the expansion rate of the Universe, �0, as summarised
in Fig. 1.3 (left panel). Most notably, the largest tension – 4.2f – occurs

between the value inferred from the analysis of the CMB, and thus of the

very early Universe (Planck Collaboration et al. 2020) and a local measure

which employs the SNIa as standard candles, calibrated using Cepheids

(Riess et al. 2019, SH0ES). Thesemight both point to unknown systematics

in the data or new physics, and both directions are current area of research

(see Di Valentino et al. 2021, for a recent review on possible solutions to

the �0 tension).
This is, however, not the only tension in the ΛCDM model: Planck re-

sults are also inmild tensionwithmeasurements of the amplitude ofmatter

fluctuations at low redshifts, as constrained by the measurement of the ap-

parent distortion of distant galaxy shapes (e.g. Heymans et al. 2013; Hilde-

brandt et al. 2017; Troxel et al. 2018; Hikage et al. 2019; Asgari et al. 2021).

The light of these galaxies travels across the Universe and gets lensed by

the distortion in the space-time due to the presence of matter distribution

along the line-of-sight, a phenomenon called weak gravitational lensing

(see Sect. 1.3). This can be used to infer the amount of matter in the Uni-

verse and by performing a tomographic slicing along the redshift direction

to study the evolution of the amplitude of the large scale structures. These

two quantities are summarised, respectively, by the cosmological param-

eters Ωm and f8
7. It is important to note that, as for the �0 tension, the

results from different groups provide different levels of tension, some of

6There is an important distinction between precision and accuracy: precision regards

the size of the error bars and it is improved by the increase in the amount of data; accuracy

reflects our ability to recover the true value of a parameter, i.e. our ability tomodel possible

sources of biases that would shift the best fit value. Often researchers model our ignorance

on systematic effects by adding free parameters that can potentially absorb the bias at the

expense of the precision of the constrains: these are called nuisance parameters and the

process is called marginalisation.
7The parameter f8 is defined as the amplitude of the (linear) matter power spectrum,

parametrised by the root mean square fluctuations in spheres with a radius of 8ℎ−1Mpc
and it has important implications on the growth of fluctuations in the early Universe.
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which are compatible with the Planck result, as summarised in the right

panel of Fig. 1.3.

1.3 Weak Gravitational Lensing

Weak lensing is an extremely powerful probe to investigate the dark con-

tent and the geometry of the Universe. Most importantly, it is an orthogo-

nal probe to galaxy clustering. The combined analysis of galaxy clustering

and galaxy lensing is the primary goal of current and future cosmological

surveys (see also Sect. 1.5).

In light of upcoming surveys which will measure the cosmological pa-

rameters with a precision below a per-cent, it is fundamental to understand

the possible source of systematics and identify the best approaches to mit-

igate them. This is also crucial in light of the current tension with Planck,

as seen in the previous section, in order to ensure a robust estimation of

the cosmological parameters and to advocate for the need of an extension

to the current cosmological model.

1.3.1 Fundamentals of Gravitational Lensing

Let us first briefly revisit the fundamentals of weak gravitational lensing.

General Relativity predicts that a mass distribution distorts the local ge-

ometry of the space-time. We know from Fermat’s principle that a light ray

finds the fastest route in space-time to connect two points: in the absence

of any deformation, in a Euclidean geometry, the path followed by the light

ray will be a straight line. However, if light is travelling in the proximity of

a mass distribution, it will follow a curved trajectory due the distortion of

the space-time itself caused by the presence of the mass. In analogy with

the distortion in the light-ray trajectory due to the refractive index of a glass

lens, we call this process gravitational lensing: themass distribution is the

lens, while the object from which the light ray is emitted is called source.

For a review on gravitational lensing, we refer to Bartelmann & Schneider

(2001). Typically, the sources are distant galaxies, located behind the lens

along the line-of-sight, i.e. Is > Il, with Is and Il the redshift of the source
and the lens, respectively. Since in the majority of cases the distortion is

very small8, we study the induced distortions on an ensemble of source-

8This is not the case for strong gravitational lensing, a specific configuration in space

that generates a very strong lensing effect. This is a rare phenomenon compared to weak

lensing. It is also a promising way to infer cosmological parameters (e.g. Bartelmann &
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lens pairs, in a statistical way. Although there is a family of applications to

weak lensing (CMB lensing, lensing by clusters, ...), in here we will focus

only on two main cases: the lensing effect generated by massive galaxies,

which we refer to as galaxy-galaxy lensing (GGL) and the one of the matter

distribution along the line-of-sight, which is called cosmic shear. Typically,

GGL is used to infer the properties of the class of galaxies used as lenses,

such as their total mass and their mass profile (i.e. including the dark mat-

ter component), while cosmic shear provides information on the overall

matter distribution, growth of structures and the varying of the dark en-

ergy parameter, and it can thus be used to infer cosmological parameters,

as discussed in the Sect. 1.2.2.

Gravitational lensing acts on the entire image of the background source:

it distorts the ensemble of light rays coming from the distant galaxy, which

in turn are perceived by the observer as the final (distorted) image of the

galaxy. The effect of gravitational lensing is twofold: because the sources

are extended objects, the differential deflection of light distorts the images

tangentially around the centre of the lens (shearing), and at the same time

it magnifies their observed flux due to the local stretch of the space-time,

which dilates the image without changing its surface brightness (this is a

consequence of the fact that during the process photons are neither ab-

sorbed nor emitted). We remind the reader that here we are focusing on

weak lensing and thus all of these distortion are small (∼ 1% of the original

light profile).

In the limit of weak gravitational field, the field equations of General

Relativity can be linearised: this means that we can treat the deflection in-

duced by an ensemble of point masses as the linear sum of the individual

deflections. This provides the framework to treat the deflection caused by

an extended mass distribution, which we can treat as the sum of infinites-

imal mass elements d< of volume d+ and volume density d(r). Without

entering in the details of the derivation, we report here the final expression

of the deflection angle Û(b) generated by a mass distribution as sketched
in Fig. 1.4, with b = (b1, b2) the impact parameter (see e.g. Bartelmann &
Schneider 2001, for the full derivation):

Û =
4�
22

∫
d2b ′

∫
dA ′3d(b ′1, b ′2, A ′3)

b − b ′
|b − b ′ | (1.1)

=
4�
22

∫
d2b ′Σ(b ′) b − b

′

|b − b ′ | , (1.2)

Schneider Che), as discussed in Sect. 1.2.2
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Figure 1.4: Sketch of a typical lensing system. Image credit: Bartelmann & Schneider (2001)
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Figure 1.5: A circular source is transformed by the inverse of the Jacobian matrix A: the
convergence dilates the image, while the shear changes the axes ratio. Image credit: M.
Bradac, from Schneider (2005)

wherewehave introduced the surfacemass densityΣ(b) ≡
∫

dA3d(b1, b2, A3),
defined as the mass density projected on the plane perpendicular to the

line-of-sight.

Let us indicate as V the true angular position of a source galaxy at angu-

lar distance �s from the observer, lensed by a mass distribution located at

angular distance �ds from the source (�d from the observer). The source

will be observed at a new angular position \ given by the vectorial sum of

the original position V and the scaled deflection angle U(\), as described by
the lens equation:

V = \ − �ds
�s

Û(�d\) ≡ \ − U(\) . (1.3)

To get the final distorted image of an extended object such a galaxy, one

should solve the lens equation for each light ray of the image. At first order,

a convenient way to visualise the mapping between the original and the

observed image is in terms of the JacobianmatrixA, which is the derivative
of the original position V with respect to the lensed position \:

A =
mV

m\
= I − mU

m\
=

(
1 − ^ − W1 −W2

−W2 1 − ^ + W1

)
= (1 − ^)

(
1 0
0 1

)
− |W |

(
cos 2q sin 2q
sin 2q − cos 2q

)
.

(1.4)

Here ^ is the convengence, which encodes the isotropic focusing and thus

quantifies the changes in size of the image; W = W1 + 8W2 = |W | exp(82q) is
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the complex shear: it quantifies the anisotropic focusing, which yields the

distortion in the image. The shear is a spin-2 quantity, i.e. it is invariant

under a rotation of 180 deg, as evident from the factor 2 in the phase. From

eq. 1.4 follows that a circle would transform into an ellipse, with minor and

major axes given by the inverse of the eigenvalues of �. The eigenvectors

of A provide instead the orientation of the ellipse. An illustration of the

effect of convergence and shear in a galaxy image is shown in Fig. 1.5. The

magnification is the inverse of the determinant ofA, ` = 1
det A .

1.3.2 Cosmic shear

Cosmic shear is the study of the weak cosmological lensing, i.e. of the con-

tinuous deflection of a light ray due to the matter inohomegeneities along

the line-of-sight. It allows to probe the large scale structures (LSS) by

studying the projected correlation of galaxy shapes. As we have seen in

the previous section, the presence of matter along the line-of-sight tidally

distorts the apparent shapes of the background galaxies and the final image

that we receive is the result of the multiple deflections occurred along the

way from the emitter to the observer. The formalism to describe cosmic

shear has many analogies with the one presented in the previous section

and, for the scope of this introduction, we consider it sufficient: the inter-

ested reader can refer to e.g. Kilbinger (2015) for a review.

Galaxies are typically non-round objects: we can indicate their intrinsic

ellipticity as ns. This is modified by cosmic shear via the introduction of
what is called reduced shear, 6, which is a function of the shear and the

convergence acting on the image, 6 ≡ W/(1 − ^). In the weak lensing limit,
however, since both |W | and ^ are � 1, this simplifies and we can simply
consider the distortion as purely due to the shear. The observed ellipticity,

n , is thus

n =
ns + 6

1 + ns6∗
≈ ns + W . (1.5)

The observed ellipticity can be measured from galaxy images with dedi-

cated algorithms and needs to be corrected for the effect of atmospheric

blurring and noise. There are several techniques to do this (e.g. by using

high fidelity image simulations to calibrate the bias in the recover shape or

by using ameta-calibration approach, see for exampleMandelbaum (2018)

for a review). The observed ellipticity is measured with respect to a ref-

erence axis and, as the shear, it can be expressed as a complex quantity:

n = n1 + 8n2 = |n |e82q (see Fig. 1.6 for an illustration of the total ellipticity as
a function of its two components). In this notation, the absolute value of
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Figure 1.6: The effect of the shear distortions on a circular galaxy, as parametrised by the
41 and 42 components. Image credit: Bridle et al. (2009).

the ellipticity is defined as |n | = (0−1)/(0+1), with 0, 1 themajor andminor
axes of the ellipse, respectively. In the lack of preferential directions, the

ensemble average of the intrinsic shapeswould be 〈ns〉 = 0 and the observed
ellipticity would be an unbiased estimator of the shear. This assumption is,

however, violated by any intrinsic alignment (IA), i.e. by the tendency of

galaxies to exhibit preferential directions in the sky, as a consequence of

their interactions with the LSS. Galaxies form and live embedded in dark

matter haloes whose tidal field imprints a preferred alignment to their ma-

jor axis, as discussed in Sect. 1.2.1. These alignments, being sourced by the

LSS, are correlated and are an important contaminant to cosmic shear. IA

is the main focus of this work and it is the topic of the next Section.

The efficiency of the lensing depends on the distance between the galaxy

and the lens, via a quantity called lensing efficiency:

@(j) =
∫ jhor

j

dj′=(j′) 5 (j
′ − j)

5 (j′)
, (1.6)

where j is the comoving distance, jhor is the horizon distance, i.e. j eval-
uated at infinite redshift; =(j) is the source galaxy probability distribution
and 5 is the comoving angular distance, which for a flat universe is sim-

ply 5 (j) = j. This shows that the lensing efficiency is a function of the



16 Introduction

ratio �ls/�s and the source galaxy distribution =(j)dj = =(I)dI. The lens-
ing efficiency is broad and most sensitive to the mass distributions located

half-way between the observer and the source.

Because the lensing kernel is a function of comoving distance, it is con-

venient to split the galaxy sample into tomographic redshift bins, which

provide lensing measurements with different weights. By measuring the

correlation of galaxy shapes in different I-bins, it is possible to probe the

evolution of the Universe at different times. However, to be competitive

and to increase the signal-to-noise ratio (S/N), cosmic shear needs to mea-

sure galaxy shapes for very wide areas (Amara &Réfrégier 2007), making it

impossible to get spectra for all galaxies. Moreover, because the luminos-

ity function increases towards the faint end, the most abundant source ob-

jects are typically faint blue galaxies: measuring the spectra of these galax-

ies is extremely time consuming, and thus different techniques have been

developed over time to estimate their redshifts via multi-band photome-

try. These exploit the redshift-colour relations and are calibrated over sub-

samples of galaxies for which spectroscopic redshifts are available (see e.g.

Wright et al. 2020; Myles et al. 2020, for some recent applications). Weak

lensing is mainly sensitive to the mean and the width of the bin redshift

distribution (Amara & Réfrégier 2007), however other systematics can de-

pend on other properties (see for example Appendix E in Chapter 2, where

we show the impact of the catastrophic outliers on the IA signal), although

this is a second order effect, which is not a concern for current surveys but

might become important for future ones.

The photo-I provide the 3D spatial distribution of the galaxies, which,

at the same time, indicate the time when the light has been emitted. By

simultaneously fitting the signal for the different tomographic bins, cos-

mic shear can probe the growth of structures. However, even if the weights

are different for different redshift tomographic bins, these are highly corre-

lated due to the broad kernel of the lensing efficiency and the fact that part

of the LSS is in common to all of the bins. Moreover, the uncertainty in the

photometric redshifts introduces an overlap between different bins, due to

the galaxies that are incorrectly assigned. These factors in practise limit the

number of bins one can efficiently obtain, which is typically around five or

six in a redshift baseline of I < 1.2.
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Figure 1.7: A schematic picture of the different terms that arise when correlating galaxy
shapes (GG, II, GI), and when correlating galaxy positions and galaxy shapes (gI, gG). Starting
from the panel on the left: the light of distant galaxies travels along the line-of-sight and is
lensed by a matter overdensity at intermediate redshift (middle panel, indigo ellipses) which
align the apparent shapes tangentially to the matter distribution. The galaxies that forms
close to the same overdensity are instead intrinsic aligned to the major axis of the halo (red
ellipses in the middle panel). The light of all of these galaxies is collected at I = 0 where we
observe the projected shapes and correlate them to measure either shape-shape correlations,
〈nn〉, or shapes-number density correlations, 〈n=〉. For the purpose of illustrating the position-
shape correlations, the central galaxy is shown as a circular point in the rightmost panel.
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1.4 Intrinsic Alignment

Asmentioned in the previous section, IA is the tendency of galaxies to have

an intrinsic orientation imprinted at the moment of galaxy formation and

evolved over time due to the continuous interaction with the surrounding

tidal fields (Catelan et al. 2001). We have seen in Sec. 1.2.1 that galaxies

form inside dark matter haloes and inherit from them their angular mo-

menta and orientations via complex mechanisms that happen at the level

of the proto-galaxy (see Joachimi et al. 2015; Kiessling et al. 2015; Kirk

et al. 2015, for dedicated reviews). Our knowledge of these mechanisms

is still limited and we mainly rely on hydrodinamical simulations to get

insights. We can broadly distinguish two main regimes: the alignment

of central galaxies, which dominates at large scales, and the one of satel-

lite galaxies, which becomes important at small scales (Schneider & Bridle

2010). These two have an intrinsically different nature due to their differ-

ent formation history and their location within the halo. Moreover, a clear

distinction between the alignment of blue, disc-like galaxies and red, el-

liptical galaxies has also emerged both in observations (Hirata et al. 2007;

Joachimi et al. 2011; Mandelbaum et al. 2011; Singh et al. 2015; Johnston

et al. 2019) and simulations (Chisari et al. 2015b; Velliscig et al. 2015b;

Tenneti et al. 2016), with the former showing no alignment within current

precision, while the latter have a clear alignment signature, which further

depends on secondary galaxy parameters, such as their luminosity, as we

will discuss later.

In terms of its role as contaminant to weak lensing, we identify two IA

correlations that contribute to the final observedmeasured in cosmic shear

(see Fig. 1.7): the alignment between intrinsic galaxy shapes (intrinsic-

intrinsic term, II), 〈nsns〉, which is sourced by the tendency of galaxies that
form close to a same overdensity to share the same alignment, and the cor-

relation between the intrinsic shape of a galaxy an the shear of another

galaxy, 〈Wns〉. The latter is called the gravitational-intrinsic term (GI), and it

is caused by amatter overdensity that simultaneously shears a background

galaxy and aligns a foreground one, close to the mass distribution itself. It

is the predominant contamination since it acts between galaxies that are

separated in redshift (cross-terms in the projected correlation), while the

II is only relevant when galaxies have similar redshifts, as they need to be

physically connected to generate such term. The observed correlation is

the sum of all of the terms:

〈nn〉 = 〈WW〉 + 〈nsns〉 + 〈Wns〉 . (1.7)
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Here, 〈WW〉 is the term sourced by cosmic shear: it is clear that in order to

recover the correct cosmic shear signal from the observed correlation we

need tomodel the other two terms and account for them in the cosmological

parameter inference.

Similarly, when measuring the galaxy position - shape correlation, as

in the galaxy-galaxy lensing, we have

〈n=〉 = 〈W=〉 + 〈ns=〉 , (1.8)

i.e. we need to account for the correlation between the position of a galaxy

and the intrinsic orientation of another, nearby one. In this case, for the

IA to be significant, the galaxies need to be physically connected and thus

a cut in the lens-source pair separation is typically sufficient to remove the

contamination.

Measuring IA poses the same challenges asmeasuring lensing: we have

to deal with noisy, point-spread function (PSF)-convolved data, and we

need to remove from the signal the contribution from lensing. To measure

galaxy shapes there are different algorithms available, employing different

methods (Kaiser et al. 1995; Kaiser, Squires & Broadhurst Mil; Melchior

et al. 2011, e.g.). In this Thesis we focus on two methods and in Chapter 3

we compare their effect on the associated IA signal.

To measure the IA signal, it is convenient to look at the projected cor-

relation function between galaxy positions and galaxy orientations, since it

has a better S/N compared to the II signal and can be considered a proxy

to the GI signal. It is fundamental to have good estimates of the galaxy

positions to ensure that the galaxy pair is truly physically connected and

minimise the lensing contribution: this is one of the main limitations to

IA studies. For this reason, it is in general preferred to work with spectro-

scopic redshifts. In this thesis we investigate the signal in a photometric

sample (KiDS-1000 LRGs, Chapter 3), which requires a full modelling of

the possible contaminants (lensing and magnification).

Because the selection function of a survey implicitly selects galaxies

with different properties (typically because of cuts in apparent magnitude,

but it can also be in colours, or due to the presence of fibre/slits) the average

properties of the galaxy sample will differ from survey to survey, and even

more importantly will possibly change along the redshift baseline. It is thus

of crucial importance to study how IA depends on observable galaxy prop-

erties such colour and luminosity, and to try to trace back the underlying

physical relation, such as the formation history, the mass of the halo and

the orbital time. Most of this Thesis tries to deal with such complexity, by
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Figure 1.8: The effective IA signal input in the data vector (solid black line) and recovered
by the NLA model (gray band). The dashed gray line shows the cumulative mean of the input
IA signal, while the red dash-dotted line the ratio of IA over lensing at different redshifts (see
the text for more details). Image credit: Robertson et al. (2020)

both informing themodels with direct observation of intrinsic alignment of

specific galaxy sub-samples (Chapter 3), and trying to connect them to the

properties of the halo they reside on (Chapter 4). We dedicate a full anal-

ysis of how these differences propagate in the contamination of a lensing

survey in Chapter 2.

It is interesting to note that even though a typical lensing survey–which

is flux-limited – selects galaxies with a stronger IA signal at high redshifts

(IA is typically stronger for luminous red central galaxies), the IA impact on

cosmic shear is strongest in the low-redshift bins, where lensing is less ef-

ficient (see Sec. 1.3.2). We investigate this effect in Robertson et al. (2020)

and present it in Fig. 1.8. Here we compare the best-fit amplitude for a

KiDS-like analysis (grey band) from the model presented in (Fortuna et al.

2021a) and the input IA signal in the data vector (see Chapter 2 for more

details). The best-fit value is lower than the mean IA signal and broadly

corresponds to the signal present only in the low-redshift bins. This can be

understood by considering the lensing efficiency over redshift: at high−I
the relative importance of IA over lensing decreases significantly, as we can

see from the red dot-dashed line, which shows the ratio of the projected an-
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gular power spectra �
(ij)
IA (ℓ)/� (ij)

GG(ℓ) evaluated at the multipole ℓ = 1000 as
a function of the redshift of the foreground bin j. Hence, although the ac-

tual IA signal is larger in the high-I tomographic bins, it impacts the best

fit parameters less, because an error in the estimated IA signal there has a

negligible effect on the inferred � (ℓ).
This is an important finding for CMB lensing studies, as it shows that

although their results are sensitive to the IA amplitude, they can expect

a minor contribution at the redshift probed by their analysis. Similarly,

this might suggest that removing the first tomographic binmight be a safer

choice for cosmic shear surveys.

1.5 Data

In the context of cosmology, it is common to divide the surveys into cate-

gories based on their constraining power. We refer to the ongoing surveys

as Stage-III and the next generation surveys as Stage-IV. Currently there

are three ongoing weak lensing surveys: the Kilo Degree Survey (KiDS,

Kuijken et al. 2019), the Dark Energy Survey (DES, Abbott et al. 2021) and

the Hyper Supreme-Cam Survey (HSC, Aihara et al. 2018). In this Thesis

we focus on KiDS, which we use both as a reference to simulate a generic

Stage-III survey on Chapter 2, and to investigate in depth the properties

of one sub-sample of galaxies, the LRGs, in Chapter 3 and 4. We measure

the shapes of these galaxies to study its IA signal using a moment-based

algorithm, from which we measure the shapes as second-moments of the

surface brightness. A full characterisation of this sample is then performed

in Chapter 3, via the use of a halo model fit.

Stage-IV surveys include both space-based and ground-based surveys,

which are designed to be synergic in their observing strategies. These are

Euclid (Laureijs et al. 2011), the Vera C. Rubin Observatory, previously

known as the Large Synoptic Survey Telescope (LSST, Abell et al. 2009)

and the Nancy Roman Space Telescope, previously known as Wide Field

InfraRed Survey Telescope (WFISRT, Spergel et al. 2015). A substantial

part of the cosmology community is currently involved in forecasting the

abilities of Stage-IV surveys to constrain the cosmological parameters and

on identifying strategies tomitigate the systematic errors. We dedicate two

chapters to these analyses, for both a generic Stage-IV survey (Chapter 2)

and an LSST-like survey (Chapter 5). An extended version of the pipeline

developed for these two projects is currently used by the Euclid-IAworking

group to forecast the impact of IA inEuclid and to provide a self-calibration
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strategy tomitigate it. The pipeline is specifically designed to interfacewith

CosmoSIS (Zuntz et al. 2015) a software for cosmological parameter fitting.

The pipeline is fully modular, such that any ingredient of the model (the

concentration-mass relation, the halo mass function etc...) can be replaced

by the user with minimal editing. The pipeline allows to compute all the

2-point functions in Fourier space which enter into the clustering, IA and

their cross-correlation statistics.

1.6 This Thesis

The main goal of this Thesis is to investigate the IA of galaxies to mitigate

its impact on cosmic shear. Based on previous observations that IA de-

pends on galaxy properties such as galaxy colour, type (central/satellite)

and luminosity, in Chapter 2 we study the impact of not accounting for

the variety of IA signatures in the data when analysing cosmic shear sig-

nal and assessing the level of bias that would arise for Stage-III and Stage-

IV surveys. We also provide an analytical prescription of how it should be

modelled to fully account for such complexity and identify aminimalmodel

that would at least capture the variation of the IA contamination across the

tomographic redshift bins, as a consequence of the evolution on the compo-

sition of the galaxy population in a flux-limited survey. We find that the IA

contamination is largest at low redshift, where lensing is less efficient and

that the behaviour of the luminosity dependence at faint luminosities is

crucial to assess the level of contamination. That was, however, the regime

where less data were available and thus we provide a double scenario fore-

cast, extrapolating over the most extreme regimes allowed by the data.

In Chapter 3 we use the high quality data from KiDS and we focus on

exploring the IA dependence luminosity and redshift for a highly S/N sam-

ple with precise photometric redshifts, the luminous red galaxies (LRGs).

This sample is ideal to cover part of the unconstrained range of the lumi-

nosity dependence, and the high S/N allows us to completely disentangle

the luminosity and the redshift dependence of the IA signal with specific

cuts. We found the data to favour a broken power-law scenario for the lu-

minosity dependence with a knee at ! . 3.2×1010ℎ−2!� in the A-band; they
also do not exhibit any redshift dependence from I = 0.2 to I = 0.8.

In Chapter 4 we extend the investigation of the galaxy sample used

in Chapter 3 to constraint IA and we explore the dark matter properties of

these galaxies to provide a more direct link between the halo mass and the

IA signal. We use GGL to infer the mass profile of the LRGs and to assess
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the fraction of satellites in the sample. This is also crucial information to

properlymodel the IA signal, since it is observed that centrals and satellites

exhibit different IA signals (Johnston et al. 2019). To link the visible and

invisible component of the galaxy and infer the galaxy properties we make

use of the halo model, with the halo occupation distribution based on the

conditional luminosity function (Yang et al. 2003). We alsomeasure the IA

signal sourced by the background galaxies which are physically connected

to the LRGs, selecting only the sources for which |Il − Is | < 0.2.
In Chapter 5 we focus on the other main effect of lensing which is of-

ten neglected: magnification. We consider the hypothesis of improving the

cosmological constraints by including the effect of magnification and pro-

vide a forecast for the LSST. We include the large scale IA in the model

and make use of the same halo model formalism as in Chapter 4. For this

project, I developed a pipeline for the theoretical prediction of the cluster-

ing and the luminosity function. This includes themodelling of how the lu-

minosity function is affected by the photometric redshift uncertainty. We

find that the improvement in the recovered cosmological parameters by

adding the magnification is negligible, while the effect of ignoring magni-

fication can severely bias the cosmological parameters.
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2| The halo model as a versa-
tile tool to predict intrinsic
alignments

M.C Fortuna, H. Hoekstra, B. Joachimi, H. Johnston, N.E. Chisari, C.

Georgiou, C. Mahony 2021, MNRAS, 501

Intrinsic alignments (IAs) of galaxies are an important contaminant for cosmic shear stud-

ies, but the modelling is complicated by the dependence of the signal on the source galaxy

sample. In this paper, we use the halo model formalism to capture this diversity and ex-

amine its implications for Stage-III and Stage-IV cosmic shear surveys. We account for

the different IA signatures at large and small scales, as well for the different contributions

from central/satellite and red/blue galaxies, and we use realistic mocks to account for the

characteristics of the galaxy populations as a function of redshift. We inform our model

using the most recent observational findings: we include a luminosity dependence at both

large and small scales and a radial dependence of the signal within the halo. We predict the

impact of the total IA signal on the lensing angular power spectra, including the current

uncertainties from the IA best-fits to illustrate the range of possible impact on the lensing

signal: the lack of constraints for fainter galaxies is the main source of uncertainty for our

predictions of the IA signal. We investigate how well effective models with limited degrees

of freedom can account for the complexity of the IA signal. Although these lead to negligi-

ble biases for Stage-III surveys, we find that, for Stage-IV surveys, it is essential to at least

include an additional parameter to capture the redshift dependence.
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2.1 Introduction

As the light of distant galaxies travels towards us, it is deflected by matter

inhomogeneities. The cumulative effect of these small distortions leads to

a preferential apparent alignment of galaxy shapes, a phenomenon called

weak lensing. The resulting correlation of galaxy shapes (cosmic shear)

provides direct information on the matter distribution in the Universe as

well as the effect of dark energy on the geometry and the growth of struc-

tures (e.g Bartelmann & Schneider 2001; Kilbinger 2015). However, ex-

tracting cosmological parameter estimates from weak lensing surveys is

challenging due to a number of systematic errors it is prone to. On the

measurements side, the main sources of bias come from the uncertainty in

the source redshift distributions and the actual shape measurements, for

which great improvements have been achieved in the last decades, due to

advances in both image simulations and shape measurement algorithms

(Kannawadi et al. 2019; Mandelbaum 2018, for a dedicated review).

On the modelling side, a naive interpretation of cosmic shear would

relate the observed correlations between galaxy orientations as solely aris-

ing from the lensing effect of matter. In reality, galaxies form and live in-

side dark matter haloes and they are continuously exposed to the gravita-

tional interaction with the surrounding matter distribution. This leads to

the coherent alignment induced by the underlying tidal field on physically

near galaxies, the so-named intrinsic alignment (IA) (Joachimi et al. 2015;

Kiessling et al. 2015; Kirk et al. 2015; Troxel & Ishak 2015, for extensive

reviews). If not properly accounted, IA can affect the inferred properties

of the matter distribution from lensing. In the perspective of high preci-

sion surveys such as Euclid1 (Laureijs et al. 2011) and LSST2 (Abell et al.

2009), which aim to measure cosmological parameters with an accuracy

better than a percent, it is crucial to properly model the impact of IA and

to quantify the level of precision required in our models and IA constraints

(Joachimi & Bridle 2010; Kirk et al. 2010; Krause et al. 2016).

One of the challenges in mitigating the effect of IA comes from the dif-

ferences between the samples employed in studies of IA and in cosmic

shear. Pressure supported (red/elliptical) galaxies are more subjected to

the effect of tidal fields and tend to stretch their shapes in the direction

of the matter overdensities (Catelan et al. 2001). This turns into a non-

negligible IA signal, observationally constrained by a number of works (e.g.

1https://www.euclid-ec.org
2https://www.lsst.org

https://www.euclid-ec.org
https://www.lsst.org
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Mandelbaumet al. 2006;Hirata et al. 2007;Okumura&Jing 2009; Joachimi

et al. 2011; Singh et al. 2015; Johnston et al. 2019, hereafter J19). On the

other hand, disc, rotationally supported (blue) galaxies preferentially align

their spins through a torque mechanism. Although this has been observed

in simulations, there is no consensus on the final predictions due to the

different implementations of hydrodynamics and baryonic feedback (e.g.

Chisari et al. 2015b; Tenneti et al. 2016; Codis et al. 2018; Kraljic et al.

2020). From an observational point of view, the alignment of blue galaxies

has not been detected yet, neither at low and intermediate redshifts (Man-

delbaum et al. 2011; Blazek et al. 2012; Samuroff et al. 2019, J19), nor at

high redshifts (Tonegawa et al. 2018).

For this reason, to maximise the signal-to-noise ratio, the majority of

IA analyses focus on low redshift red galaxies, while cosmic shear surveys

typically span amuch broader range in redshift and do notmake any colour

selection. A proper re-scaling of IA predictions, weighted by the fraction of

red galaxies in the sample, is then required in order to correctly account for

the alignment contribution to the signal.

While the aforementioned alignmentmechanismsdescribe the behaviour

of the central galaxies well, the picture at small scales is complicated by the

intra-halo tidal fields, galaxy mergers and halo assembly history, as well

as AGN feedback and winds (Soussana et al. 2020; Tenneti et al. 2017).

Pereira et al. (2008) and Pereira & Bryan (2010) investigated the satel-

lite halo alignment in simulations, finding an overall tendency of satel-

lites to point radially towards the centre of the host halo, due to a con-

tinuous torquing mechanism that aligns their major axes in the direction

of the gravitational potential gradient during their orbits. Motivated by

their findings, a halo model description of this alignment term was devel-

oped by Schneider & Bridle (2010, hereafter SB10). However, Sifón et al.

(2015) did not find observational evidence for satellite alignment in clus-

ters. Similarly, Chisari et al. (2014) explored the alignment signal around

stacked clusters and found it to be consistent with zero. Huang et al. (2018)

pointed out that the signal depends on the shape algorithm used, a feature

further confirmed by Georgiou et al. (2019b, hereafter G19).

Recently, J19 and G19 investigated the alignment signal in the overlap-

ping region between the Kilo Degree Survey3 (KiDS, de Jong et al. 2013;

Kuijken et al. 2019) and the Galaxy and Mass Assembly survey (GAMA,

Driver et al. 2011). The detected IA signal provides evidence that a sim-

ple dichotomy between red and blue galaxies is not sufficient to capture

3http://kids.strw.leidenuniv.nl

http://kids.strw.leidenuniv.nl
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the entire physics of the IA signal. In particular, G19 observed a scale de-

pendence of the satellite alignment, with satellite shapes radially aligned

at small radii and a vanishing signal towards larger scales. As a conse-

quence, the tendency of satellites to be randomly orientated at large scales

suppresses the the overall IA signal, as observed by J19. Therefore, even in

the linear regime, where the IA signal can be modelled through the linear

alignment model (LA, Hirata & Seljak 2004), the evolution of the satellite

fraction in the sample can imprint a varying amplitude to the signal, a fea-

ture never explored by any forecasting analysis so far.

Cosmic shear analyses employ tomographic binning to investigate the

growth of structures and better constrain cosmological parameters. Since

these surveys are flux-limited, the tomography imprints an indirect galaxy

selection, including only the most luminous galaxies in the high-redshift

bins. As satellites are intrinsically fainter, this turns into a satellite cut

at high redshifts. Satellites contribute predominantly a random signal at

large scales and therefore can induce a modulation of the IA signal over

the bins, suppressing it at large scales and boosting it at small scales, at low

redshifts. Similarly, the fraction of red galaxies varies with redshift. The

extrapolation of the results from IA studies then requires some care, since

the majority of them limit their analyses to low-to-intermediate redshifts.

In addition, a luminosity dependence of the IA signal is currently under

debate. While it has been observed for large luminous galaxies (Mandel-

baumet al. 2006;Hirata et al. 2007; Joachimi et al. 2011; Singh et al. 2015),

J19 has found no evidence for any luminosity scaling, hinting towards a

more complex sample dependence. Similarly, two studies suggest a differ-

ent behaviour for the satellite alignment signal, with Huang et al. (2018)

detecting a more prominent alignment for the brightest satellites located

close to the central galaxy, while G19 do not observe any luminosity trend

in galaxy groups, but confirm a radial dependent signal. As for the large

scales, a luminosity dependence of the satellite alignment can significantly

change the contamination for a lensing survey, where the low redshift to-

mographic bins are dominated by faint satellites.

Understanding the sample dependence in the IA mechanism is a key

feature to properly model it in the broader case of a cosmic shear galaxy

sample. In this paper we investigate the impact of satellite galaxy align-

ment both at large and small scales. We provide a unified framework to in-

corporate all of the sample dependencies that emerged from observations,

through the halo model formalism. We also explore the areas of tension

between different measurements in the literature, trying to incorporate all
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of the available information as well as the current uncertainties in our pre-

dictions. We base ourmodel on SB10, including the scale dependent signal

measured in G19 and the luminosity dependence suggested by Huang et al.

(2018).

The paper is organised as following. In Sect. 2.2 we describe the mock

data we use to simulate a cosmic shear survey, for which we employ the

Marenostrum Institut de Ciències de l’Espai Simulations (MICE).We build

our mock to resemble a Stage III survey, mainly inspired by the final data

release of KiDS. Sect. 2.3 introduces our model at large scales. We explore

the possibility that part of the tension around the luminosity scaling of the

IA signal is caused by neglecting the satellite fraction in the samples while

modelling the signal. We provide a model that accounts for both the role

of satellites and the differences between different data sets: we investigate

the compatibility of the measurements in the literature within this frame-

work. In Sect. 2.4 we address the behaviour of satellites at small scales. We

re-analyse the G19 measurement in the context of a red/blue distinction of

the galaxy population, and model the satellite alignment including both a

radial and luminosity dependence. In Sect. 5.6 we show the predicted IA

signal and illustrate the impact on cosmic shear studies. We investigate

the impact of adopting simplistic IA models when performing cosmologi-

cal analysis and address the level of bias expected for a Stage-III (current

generation) and a Stage-IV (next generation) surveys. In Sect. 4.8 we draw

our conclusions.

Throughout this paper we assume the MICE cosmology as our cosmo-

logical model of reference: a spatially flat ΛCDMmodel with ℎ = 0.7, Ω< =

0.25, Ω1 = 0.044, ΩΛ = 0.75, =B = 0.95, f8 = 0.8. We use d̄< as the present

day mean matter density of the Universe. We provide our predictions and

measurements in units of ℎ. Absolute magnitudes are always given assum-

ing ℎ = 1.

2.2 MICE simulation

To investigate the impact of red and satellite fractions on the IA signal, we

need a realistic representation of the galaxy sample that populates a cos-

mic shear survey. Krause et al. (2016) has shown that one of the major

sources of uncertainties in forecasting IA for future cosmic shear surveys

comes from the uncertainty in the luminosity function modelling, which

determines the red/blue fraction of galaxies in the analysis. In this work,
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we make use of the MICECATv2.0 4 simulation (Fosalba et al. 2015b) as a

realisation of our Universe and select galaxies based on the typical values

of redshift, magnitude and area for a Stage III survey. We use the simula-

tions as our reference cosmic shear survey, for which we can extract all the

necessary information.

MICECAT is a public catalogue, now at its second data release, created

to reproduce a number of local observational constraints and it is for this

reason particularly suitable for our purposes. Themock galaxy catalogue is

obtained from an N-body simulation containing 7×1010 dark matter parti-
cles in a (3072ℎ−1Mpc)3 comoving volume (Fosalba et al. 2015b) and then
populated using a hybrid implementation of Halo Occupation Distribution

(HOD) and Sub-Halo Abundance Matching (SHAM) (Crocce et al. 2015;

Carretero et al. 2015).

Given the importance of having robust satellite fractions per luminos-

ity and redshift bin and a representative colour distribution for our anal-

ysis, we report here the most relevant features adopted in Carretero et al.

(2015) to build the galaxy catalogue. The HOD parametrisation employed

to populate the haloes is inspired by Zheng et al. (2005), with some mod-

ifications that we briefly describe here. The HOD provides the probability

%(#g |"h) that a halo of a given mass "h contains #g galaxies of a certain
type (central, satellite). To assign galaxies to a halo, a sharpmass-threshold

is adopted, such that every halo more massive than "min contains at least
one (central) galaxy. The number of satellite galaxies follows a Poisson dis-

tribution with mean 〈#sat〉 = ["h/"1]U. The slope of the power law is cho-
sen to be U = 1, as constrained by observations (e.g Kravtsov et al. 2004;
Zehavi et al. 2011), while the mass threshold for satellite galaxies, "1, is
modelled to be a function of "min and the halo mass "ℎ. The parameters
of the functions that relate "1 to "min are those that best reproduce the
observed galaxy clustering as a function of luminosity in the SDSS (Zehavi

et al. 2011). Galaxy luminosities are assigned using abundance matching,

based on the observed luminosity function from Blanton et al. (2003) and

Blanton et al. (2005) for the faint end. Note that by construction, satellite

galaxies are forced to be fainter than 1.05 times the luminosity of their cen-

tral galaxy. Colours are assigned following an approach similar to Skibba &

Sheth (2009): the colour-magnitude diagram is parametrised using three

Gaussians, corresponding to the red, green and blue population; the mean

and standard deviations vary as a function of luminosity. The colour of a

galaxy is then drawn from these distributions, taking into account its type

4MICECAT v2 is publicly available at https://cosmohub.pic.es/home

https://cosmohub.pic.es/home
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(satellite or central). The colour-assignment process is calibrated to re-

produce the clustering as a function of colour and luminosity in the SDSS

(Zehavi et al. 2011). In our analysis we combine the green and blue popu-

lation, isolating the red sequence with a different cut than what is reported

in Carretero et al. (2015), as discussed in Section 2.2.1.

The second release of MICE increases the luminosity range by populat-

ing halos/groups with a fewer number of particles with respect to the v1,

up to haloes composed by only two particles. Although the abundance of

these small groups is not representative of the abundance of haloes at the

equivalent halo mass, this is then corrected by the abundance matching.

2.2.1 Galaxy mocks

We generate two galaxy mocks: the first one reproduces a generic Stage III

survey and is employed as our fiducial cosmic shear-like galaxy distribu-

tion. A second mock is constructed for a comparison to the results of J19

and G19 in KiDSxGAMA, and therefore is designed to reproduce the KiD-

SxGAMA galaxies used in their analysis. We use that mock to understand

and interpret our results at small scales, where we use the measurements

as input for our cosmic shear analysis. If not specified otherwise, we always

refer to the Stage III mock in this work.

We select 58 485 848 galaxies from MICECAT v2, covering an area of

1049 deg2 in a redshift range 0.1 < I < 1.3. We impose a magnitude cut in

the SDSS A−band A < 24. We split the sample into six redshift bins with

ΔI = 0.2, as shown in Fig. 2.1a. We correct the magnitudes to take into

account the passive evolution of galaxies, as recommended in the MICE

readme.

As discussed in the previous section, MICE is complete down to "A −
5 log(ℎ) ∼ −14. With our selection, we are close to this limit (the faintest

galaxy in our catalogue has amagnitude of"A−5 log(ℎ) = −13.4). However,
since IA ismainly affected by red galaxies, which are typically brighter than

this value, even a small incompleteness should not significantly impact our

results.

MICE provides colours in the filters 0.1A and 0.16. To be consistent with
the data-set we aim to compare the mocks to, namely GAMA and the SDSS

Main sample used by J19 and G19, which select their galaxies using the

6 − A colour at I = 0, we correct the MICE 6 − A colour to be at I = 0 (F.J.
Castander, private communication). We verify that by selecting GAMA-

like and SDSS-like mock galaxies from the MICE simulation, imposing the

same area coverage, redshift ranges and flux-limit cut, we can reproduce
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Figure 2.1: (a): The distribution in redshift and magnitudes of the sample we select from
MICE, with the imposed cut in apparent magnitude at A < 24. The figure illustrates the
samples used in our analysis for the six redshift bins listed in Table 2.1. The plot shows a
random selection of 1% of the galaxies in the catalogue. (b): The luminosity distribution of
the red central galaxy samples for the six redshift bins, colour coded as in (a).
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Table 2.1: Properties of the five tomographic bins used in our analysis: the redshift range of
each bin (Imin, Imax), the number of galaxies (#gal), the mean luminosity of the red central
galaxies in terms of a fiducial luminosity !0 (〈!red

cen〉/!0), the fraction of satellites in the given
bin ( 5sat) and the fraction of red galaxies ( 5red), selected as shown in figure 2.2. The fiducial
luminosity !0 is chosen to be the luminosity corresponding to "A = −22.

Bin Imin Imax #gal 〈!red
cen〉/!0 5sat 5 red 5 red

sat 5 blue
sat

1 0.10 0.30 7 633 382 0.17 0.41 0.15 0.10 0.31

2 0.30 0.50 12 445 504 0.24 0.37 0.22 0.14 0.23

3 0.50 0.70 12 453 204 0.33 0.33 0.27 0.16 0.17

4 0.70 0.90 9 863 462 0.48 0.28 0.28 0.15 0.13

5 0.90 1.10 8 003 975 0.58 0.23 0.25 0.12 0.11

6 1.10 1.30 8 086 321 0.55 0.22 0.26 0.13 0.09

the redshift andmagnitudedistribution of the samples, the colour-magnitude

diagram and the relative galaxy fractions (Appendix A1). We therefore con-

clude that MICE galaxies provide a realistic mock for our analysis.

To select red galaxies we apply a cut at 6− A > 0.61−0.0125("A +19), as
shown in Fig. 2.2. The cut qualitatively reproduces the choice in J19. Table

2.1 summarises the characteristics of our cosmic shear-like galaxy sample

in each redshift bin. Due to the flux limit imposed on our sample, the frac-

tion of satellite galaxies drops from low to high redshifts. The red fraction

increases for the first three bins, since the faint population is dominated

by blue satellites, while it decreases for the last two bins, due to the overall

increase of blue galaxies at higher redshifts.

2.3 The impact of satellites at large scales

Intrinsic galaxy alignment generates two types of 2-point statistic observ-

ables that are relevant in the context of cosmic shear contamination: the

correlation between the shapes of two galaxies (II, where ‘I’ stands for In-

trinsic) and the correlation between the gravitational shear induced by the

lensing effect of a matter inhomogeneity and the intrinsic shape distorted

by the same gravitational source (GI, where ‘G’ stands for Gravitation). The

final observable is then given by the sum of the cosmic shear power spec-

trum (GG), which is the one of interest for cosmological studies, and the IA

contributions, II and GI.
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Figure 2.2: The colour-magnitude distribution of the sample. The red line shows the cut at
6 − A > 0.61 − 0.0125("A + 19) we employ to isolate the red sequence.

2.3.1 The linear alignment model

It is well established that at large scales elliptical galaxies can be modelled

through the linear alignment model (Catelan et al. 2001; Hirata & Seljak

2004), which predicts the shape distortion of a galaxy to be proportional

to the strength of the tidal field at the moment of its formation. In Fourier

space, the matter-intrinsic and the intrinsic-intrinsic power spectra can

thus be written as

%LA
XI (:, I) = −�IA�1d2

Ω<

� (I) %
lin
X , (2.1)

%LA
II (:, I) =

(
�IA�1d2

Ω<

� (I)

) 2
%lin
X , (2.2)

where �1 is a normalisation constant, d2 the critical density of the Uni-
verse today, � (I) the linear growth factor, normalised to unity at I = 0, and
%lin
X
the linear matter power spectrum. We set �1 = 5 × 10−14"−1

� ℎ−2Mpc3

based on the IA amplitudemeasured at low redshifts using SuperCOSMOS

(Brown et al. 2002). The free amplitude �IA captures any variation with

respect to this reference power spectrum. The SuperCOSMOS norm is a

common choice in the literature, making the interpretation of our results

and any comparison easier.
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Asuccessfulmodification of this theory replaces the linearmatter power

spectrum with the non-linear one (Bridle & King 2007), so named non-

linear linear alignment (NLA). The reason behind the use of the non-linear

power spectrum is to partially capture the nonlinear tidal field and it has

been shown to fit themeasurements better (for example, Blazek et al. 2011;

Joachimi et al. 2011; Singh et al. 2015; Johnston et al. 2019). Although

more sophisticated treatments of the non-linear scales have been devel-

oped in recent years (Tonegawa et al. 2018; Blazek et al. 2019; Vlah et al.

2020), and Samuroff et al. (2019) have found hints for quadratic align-

ments inmeasurements from theDarkEnergy Survey (DES), a proper com-

bination of perturbative approacheswith thehalomodel is beyond the scope

of this paper. To capture the IA signal at intermediate scales, we therefore

use the NLA model (see also Appendix A2 for a discussion on the halo ex-

clusion problem in this context).

2.3.2 From observations to models: how satellite galax-
ies complicate the picture

As direct measurements of the correlation between the density field and

the shear field (XI) are not possible, IA studies typically focus on the corre-
lation between the position of a galaxy and the shape of another one, the so

called gI term (where ‘g’ stands for galaxy). At large scales, the galaxy po-

sition - shear and the matter - shear power spectra are related by the large

scale bias, galaxies being tracers of the underlying matter distribution. For

central galaxies, the relation between gI and XI is simply given by the linear

galaxy bias, such that %gI(:) = 16 %XI
A complication arises when interpreting the gI term in the presence of

satellite galaxies. Satellites tend to preferentially lie along the major axis

of the central galaxy (Huang et al. 2016, J19, G19), which in turn is a proxy

for the halo major axis. This anisotropic distribution of satellite positions

boosts the satellite position - central shape (B2) correlation not only at small

scales, but also in the two-halo regime, i.e. when correlating the shape of

a central galaxy with the position of a satellite that belongs to a different

halo.

In the context of contamination to lensing, however, such a boost is not

expected to have the same importance. Since cosmic shear analyses only

correlate shapes, the spatial segregation of satellites is not sufficient to in-

duce a GI signal (where GI is the projected matter - shear power spectrum,

i.e. the one that directly contaminate lensing), as satellites need to be co-

herently oriented to produce a shape correlation (for a discussion on this
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in simulations, see for example Chisari et al. 2015b).

The impact of the anisotropic distribution of satellites has been explored

in simulations by Samuroff et al. (2020b), who found a significant enhance-

ment of the signal at small scales and a constant, redshift independent shift

at large scales. They found that for an LSST-like (Stage-IV) survey, in the

‘pessimistic’ case (see their section 5.2), this can lead to a shift in the best

constrained parameters Δ(8 = 1.4f, ΔF = 1.5f. The recent results from
G19, however, show that at large scales satellite galaxies are randomly ori-

ented with respect to the brightest galaxy in the group, which can be con-

sidered as a proxy for the central galaxy, while within the halo their radial

alignment is limited to the innermost galaxies. J19 also found a similar

trend when looking at the projected satellite position - shape correlation

and central position - shape correlation (their Fig. 7, right panels), sug-

gesting satellites to only coherently orient their shapes in the intra halo

regime. Using the same estimator as G19, 〈n+〉, Sifón et al. (2015) found
a radial alignment consistent with zero in clusters. Although every detec-

tion depends on the choice of the shapemeasurement algorithm employed,

those results suggest that at large scales satellite alignment is a minor con-

tributor compared to the central galaxy alignment. At small scales the pic-

ture might be significantly different: we refer the reader to Section 2.4 for

a discussion on the contribution of satellites at small scales.

While the relative positions of satellites within the halo have a strong

impact on the gI correlation, from the argument above, they are not ex-

pected to be important in the correlation between the lensed background

galaxies and the intrinsically aligned galaxies in the foreground. In this re-

gard, the anisotropic distribution of satellites within the halo complicates

the translation of gI measurements to GI, so care has to be taken when

adopting informative priors for IA that come from gI measurements. An

analysis of this contamination is outside the scope of this paper, and we

leave a full modelling of the gI term that can disentangle the two contribu-

tions to a forthcoming paper. Given the argument above, we assume that

at first order satellites do not contribute to the IA signal at large scales.

2.3.3 A weighted linear alignment model

We have seen in the previous section that, for the sake of accounting for

IA contamination in cosmic shear analyses, the role played by satellites is

small at large scales. In this sense, central galaxies provide a more con-

sistent picture as they follow the linear alignment mechanism, while the

contribution of satellites is mainly to add noise to the measurements. In
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this context, we can assume that the majority of the contamination comes

from the alignment of red central galaxies, while blue central galaxies are

expected to add a minor although still very uncertain contribution.

Motivated by the need of priors for our signals, we decide here to use the

NLAmodel for both red and blue galaxies. In this way, we can directly link

our predictions to observational constraints, for which the NLA model has

been used to fit the signal (J19). In principle, if the linear alignment mech-

anism is truly responsible for the alignment of blue galaxies, a cross term

between red and blue galaxies should arise. However, theory suggests that

blue galaxies gain their alignment from a torquing mechanism that aligns

their spins (Catelan et al. 2001; Crittenden et al. 2001), also known as the

Quadratic Alignment Model (Hirata & Seljak 2004). The lack of obser-

vational constraints leaves the question of the driving mechanism of blue

galaxy alignment open. Our use of the NLAmodel for blue galaxies should

thus be considered as an effective description. We omit the cross term, and

consider this approximate treatment sufficient for the scope of the paper,

but note that future studiesmight need to revisit this assumption. The large

scale power spectra thus read:

%2ℎ
XI (:, I) = 5 red

cen %
2ℎ,red
XI,22 (:, I) + 5 blue

cen %
2ℎ,blue
XI,22 (:, I) , (2.3)

%2ℎ
II (:, I) = ( 5 red

cen )2%2ℎ,red
II,22 (:, I) + ( 5 blue

cen )2%2ℎ,blue
II,22 (:, I) , (2.4)

where we have introduced the superscript 2ℎ to indicate that these power
spectra describe the alignment in the two-halo regime, i.e. for galaxies

that do not belong to the same halo (large scale alignment). Similarly, the

subscript 22 indicates that the correlation only involves central galaxies.

5
red/blue
cen is the fraction of red/blue central galaxies in the sample, and we

have 5 blue = 1 − 5 red, 5 red
cen + 5 blue

cen = 5cen of the entire sample. Note that
these rescalings are necessary when converting between any two samples

with different characteristics.

Figure 2.3 shows the competing effect of blue and satellite galaxies in

suppressing the signal at high and low redshift respectively. Assuming a

constant IA signal with amplitude � = 1, it illustrates how the change of

the red and the satellite fractions across the tomographic bins can affect

the IA amplitude at large scales. The purple solid line shows the total am-

plitude (equation 2.3): the evolution of the fraction of red central galaxies

induces a sample-dependent redshift evolution of themeasured IA signal.

Weighting the signal by the (red) central galaxies only significantly reduces

the amplitude of the predicted IA.
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Figure 2.3: An illustration of the redshift dependence of the IA power spectrum at large
scales (2-halo regime) due to the change of the fraction of red and satellite galaxies over
the I-bins for our simulated cosmic shear survey. We plot the ratio of a ‘weighted’ GI power
spectrum and the standard LA one. We assume a constant signal with amplitude � = 1
(gold dashed line); incorporating the satellite fraction decreases the overall amplitude; at
high redshift the fraction of satellites drops (see table 2.1), with a consequent increase of
the signal (blue dotted line). At high redshift blue galaxies become important, suppressing
the signal (red dot-dashed line). In this toy model, only red central galaxies are expected to
contribute to the total signal (purple solid line).
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2.3.4 Luminosity dependence of the IA signal

A luminosity dependence of the IA signal has been explored in the context

of the large scale alignment of elliptical galaxies in a number of works (Hi-

rata et al. 2007; Joachimi et al. 2011; Singh et al. 2015, J19). A common

approach to model this is to follow the parametrisation in Joachimi et al.

(2011):

�IA ↦→ �V

(
!

!0

) V
(2.5)

where !0 is a pivot luminosity, assumed to correspond to "A = −22.
The value of V is, however, being debated: while Joachimi et al. (2011)

in theMegaZ-LRG+SDSSLRG+L4+L3 samples - hereafter simplyMegaZ

- and Singh et al. (2015) in LOWZ find similar values (�MegaZ = 5.76+0.60
−0.62

VMegaZ = 1.13+0.25
−0.27; �LOWZ = 4.5+0.6

−0.6, VLOWZ = 1.27+0.27
−0.27), J19, fitting to

red galaxy alignments in the GAMA + SDSS Main samples, find �G+S =

3.17+0.55
−0.54 and V = 0.09+0.32

−0.33
5. As pointed out by J19, the galaxies employed

in their study contain a larger fraction of satellites compared to the MegaZ

and LOWZ samples; the way this can impact the luminosity dependence is,

however, non-trivial.

Since cosmic shear surveys span a range in luminosity much broader

than what is used in those analyses, the impact of a luminosity dependence

can be important in modulating the signal over the redshift bins. Differ-

ent values of V can lead to a significantly different contamination of lens-

ing measurements (Chisari et al. 2015a). To illustrate this, we consider

the case of a population of red central galaxies with an input amplitude of

�V ∼ 5, and vary the value of V (Fig. 2.4). The typical luminosity of the
different redshift tomographic bins causes a redshift dependence in the

signal. We also note that the typical luminosity of the red central sam-

ple per I-bin in our mock survey is always below the pivot luminosity of

"A = −22 (Table 2.1), such that the effect of the luminosity dependence is
to reduce the effective IA amplitude. To evaluate the average luminosity

scaling 〈(!/!0)V〉 for our comic shear-like sample, we integrate over the
pdf shown in Fig. 2.1b.

Since the impact of an evolving signal would not be captured by a fixed

IA amplitude, as often done in weak lensing analyses, it is important to

understand whether a luminosity dependence exists in the data. A way

5Mismatched definitions of the pivot luminosity !0, between SDSS Main and GAMA,
prompted us to recompute MCMC chains for the �V , V constraints, such that they differ

slightly from those reported in J19 – the updated constraints are consistent in all cases and

conclusions from that work remain unchanged.
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Figure 2.4: The IA signal for different values of the slope of the power law V. The observed
I−dependence of the signal is only caused by the different galaxy samples that populate the
redshift bins. Here, we only consider the luminosity of the red central population in our
simulation.

around is to introduce a I−dependence in the alignment model, which can
effectively capture the alignment variation across the I−tomographic bins.
We do not include any intrinsic redshift evolution in our IA model as, cur-

rently, there are only weak constraints on it (Joachimi et al. 2011; Samuroff

et al. 2019) butwe consider its effectiveness in capturing the sample-induced

redshift dependence in Sect. 5.6.

We point out that since the luminosity dependence has only been ob-

served in the context of red galaxy alignment, in the rest of this section we

limit the discussion to the red population only.

The case of GAMA galaxies

The GAMA survey is a highly complete spectroscopic survey (>98 per cent

in the A-band down to A = 19.8), which overlaps with ∼ 180 deg2 of KiDS
data. The KiDS data provide high-quality galaxy images, fromwhich Geor-

giou et al. (2019a) has measured the shapes with the DEIMOS (DEconvo-

lution In MOments Space) shape algorithm (Melchior et al. 2011). This

shape catalogue is employed in J19 and G19 for IA studies.
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Figure 2.5: Overview of different estimates of the IA amplitude as a function luminosity. The
best-fit relation from Joachimi et al. (2011) (blue line) for the MegaZ, SDSS L3 and L4 and
SDSS LRG samples (blue downward facing triangles); Singh et al. (2015) best-fit (red line)
on LOWZ (red circles) and the revised best-fit to GAMA+SDSS Main from J19 reported in
the text (green line). The three individual samples used by J19 are shown as green squares
(GAMA) and limegreen (SDSS Main sample). The yellow diamond indicates our best fit
amplitude for the GAMA red central galaxies.



42 IA halo model for cosmic shear analyses

J19’s fit of V is obtained using three samples of red galaxies: the SDSS

Main, and two samples from the GAMA, cut at I = 0.26 in two equally pop-
ulated redshift bins, Z1 and Z2. The individual fits to these samples are

shown in Fig. 2.5. In this section, we explore whether the discrepancy on

the value of V can be due to the presence of satellites in their samples. We

focus on the GAMA samples only, for which we can obtain an estimate of

the fraction of satellites through the GAMA Group Catalogue6.

GAMA (ℎ = 0.7) data-points from J19 must be shifted in the log(!/!0)
axis by a factor ℎ−2 in order to align conventions for the pivot luminos-
ity !0 with SDSS (ℎ = 1); a re-analysis of the J19 luminosity dependence,
with !0 convention homogenised for all of their samples, does not signif-
icantly change the slope of their best-fit relation7. Here, we follow the

ℎ = 1 convention, such that all the ratios reported are assuming !0 =

4.69 × 1010!�ℎ−2. Interestingly, this means that the measurements from
J19 cover a region of the parameter space different from Joachimi et al.

(2011) and Singh et al. (2015).

As mentioned in Section 2.3, satellite galaxies tend to randomly ori-

ent their shapes at large scales, not contributing to a alignment signal. At

the same time, they preferentially lie along the major axis of their central

galaxy, contributing to the satellite position - central shape correlation. In

a halo model fashion, we can think of any possible contribution to sum

up linearly (i.e. central position - central shape, central position - satellite

shape, satellite position - central shape, satellite position - satellite shape),

weighted by the fraction of galaxies that contribute to each term, together

yielding the final signal that we measure.

The individual fits to the alignment signals of the Z1 and Z2 samples in

J19 show roughly a similar amplitude (�Z1 = 3.63+0.79
−0.79, �Z2 = 3.55+0.90

−0.82) cor-
responding to galaxies of different luminosity (〈!/!0〉/1 = 0.25, 〈!/!0〉/2 =

0.72), compatible with their finding of no luminosity dependence. How-
ever, at low redshift the fraction of satellite galaxies in their red population

is roughly 0.36, which decreases to 5sat ∼ 0.27 in the second redshift bin.
We have seen in Sect. 2.3.2 that the net effect of satellites is to lower

the measured amplitude. To get a sense of how this might affect our data

points, we up-weight the signal by the fraction 5sat in each given bin: this
increases the signal, which maintains the same flat relation, without sig-

6http://www.gama-survey.org
7We also note that the fiducial f8 in J19 was misquoted as 0.8, and should in fact be

0.73. Their IA model constraints are unaffected, though their best-fit galaxy biases should

be rescaled by 0.73/0.8 ∼ 0.91 to compare with a f8 = 0.8 cosmology.

http://www.gama-survey.org
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nificant tilts. We note that this up-weighting procedure is not quite correct

and therefore should not be considered as the underlying true shape signal,

because the gI correlation contains two terms that suppress the amplitude

(i.e. those for which the satellites act as shape tracers) and two where they

contribute positively to the final amplitude (the central-central correlation

and the satellite position - central shape correlation). Our re-weighting

does not consider the positive contribution of the satellite position - cen-

tral shape correlation and thus overestimates the suppression induced by

the satellites. Nevertheless, it gives us a sense of the overall shift and can

be considered as an upper-limit to the expected central-only alignment am-

plitude.

To further explore the role played by the satellites, we measure the IA

amplitude of the red central sample only in GAMA (22 correlation). The

mean luminosity of this sample is 〈!/!0〉 = 0.46, for which we find a best
fit amplitude �GAMA,22 = 5.08+0.97

−0.95, with a reduced j
2 = 2.0 (#dof = 4).

This measurement does not agree with the curve predicted by MegaZ

and LOWZ, which would correspond to 2.40+0.59
−0.47 at that given luminosity

(assuming MegaZ best-fit parameters), as illustrated in Fig. 2.5. Our new

measurement is displayed as a yellow diamond, while the predicted best

fit luminosity dependent IA amplitude measured byMegaZ and LOWZ are

shown as blue and red curves, respectively. Note that the MegaZ best fit

curve also includes a I−dependent power law that was poorly constrained

in that work. We do not include it here, as recent studies have not found

evidence for an intrinsic I-dependence of alignment strength, so the curve

reported in Fig. 2.5 is only the luminosity dependent part of their fit.

A central-only luminosity dependent signal

The complexity of the arising picture does not allow for a direct interpre-

tation of the role of satellites in the context of the luminosity dependence,

but we can at least identify two main scenarios.

1. Central galaxies follow a single power law as observed in Joachimi

et al. (2011) and Singh et al. (2015) on MegaZ and LOWZ galaxies.

The lack of such luminosity dependence detection in J19 can be ac-

counted by the non-negligible presence of satellites in their sample.

The fact themeasurement of the central-central galaxy alignment from

GAMAdoesnot coincidewith theMegaZ/LOWZpredictions canpoint

towards a shallower relation than what was measured by those sam-

ples. This can be a consequence of satellites also contaminating the
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MegaZ and LOWZ samples.

2. Bright central galaxies follow the luminosity dependence in Joachimi

et al. (2011) and Singh et al. (2015), while faint galaxies are charac-

terised by a different slope, in a double power law scenario. Given the

current measurements in this part of the parameter space, the most

extreme case is a flat luminosity dependence for ! < !0 (V!<!0 = 0).

In all of these cases, we are restricting the IA luminosity dependence

at large scales to central galaxies, a choice that finds a natural theoreti-

cal frame in the context of the linear alignment mechanism, where the in-

trinsic shear power spectrum can be expressed as a power of the mass of

the hosting halo (Piras et al. 2018). This can in turn be related to the lu-

minosity of its central galaxy. In the rest of the paper, we assume that in

the 2-halo regime, the luminosity dependence is only caused by the central

galaxy population and that the bright-end of such relation is well described

by the best-fit values fromMegaZ and LOWZ analyses. At the faint-end, we

allow for both scenarios described above: our case (i) corresponds to the

luminosity dependence from MegaZ and LOWZ, such that the luminosity

dependence is described by a single power law,

%red
XI (:, I, !) = 5 red

cen %XI(:, I)
〈(
!red

cen
!0

) V〉
(2.6)

and

%red
II (:, I, !) = ( 5 red

cen )2%II(:, I)
〈(
!red

cen
!0

) V 〉2

, (2.7)

while in our case (ii) we consider a broken power law that passes through

the best fitting amplitude of the central-central correlation, flat for ! < !0
and then assuming the form of a power law with index V = 1.2 for ! > !0.
This is shown with a black dashed line in Fig, 2.5. Any intermediate slope

of the luminosity dependence of faint galaxies would be in between these

two cases, and thus we can have an estimate of the range of impact of this

term in the lensing contamination from IA.

Although the alignment of central galaxies with luminosities ! > !0
seems to be captured better by the LOWZ/MegaZ best fit curve, we cau-

tion that LOWZ andMegaZ are not pure central galaxy samples (for exam-

ple, LOWZ has roughly a fraction 11% of satellites, see Singh et al. (2015),

Sect. 3.3), which also contaminates the results, particularly at the faint end
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of the curve. At low luminosities, the contribution of satellite galaxies to the

final signal is more important, as satellites are predominantly faint. This

implies that as we move from left to right in Fig. 2.5, we observe a simulta-

neous increase of the IA signal due to the increase of the galaxy luminosity

and a depletion of the satellite suppressing contribution. If we assume that

MegaZ and LOWZmeasurements also suffer from the presence of satellites

in their low luminosity bins, the net effect would be a lower value of V, and

thus a less steep relation.

This scenario remains possible as we lack a proper normalisation for

this term. As bright galaxies are in general not abundant and at high lumi-

nosities the sample is not significantly contaminated by satellites, this sce-

nario is only relevant in the intermediate luminosities around !0. Below !0
this falls between the two cases we are considering. Future IA studies that

aim to constrain the IA signal using observations and simulations should

focus on the impact of satellites on the value of V, as galaxies at !/!0 ∼ 1
are already expected to have > 10% of satellites (based on 5sat(!) in our
GAMA sample).

2.3.5 Colour dependence

A key aspect of our approach is that we weight the alignment signal by the

fraction of galaxies that contributes to that specific amplitude. We have

seen that the IA alignment is strongly morphology dependent: this implies

that the weighting by the red fraction plays a significant role in the predic-

tion of the final signal. The different measurements compared in the pre-

vious section have been measured on samples selected with different red

cuts. However, Singh et al. (2015) has explored the dependence of the IA

signal on colour, finding no evidence for a colour-dependence in the data.

Since J19 provide IA amplitudes for both the red and blue samples, and we

have shown that their measurements agree with the results in MegaZ and

LOWZonce restricting the analysis to the central sample only, we adopt J19

amplitude for the blue population and consistently apply a red cut similar

to the one in their work (see Sect. 2.2.1).

2.4 The impact of satellites at small scales

To model the impact of satellite alignment at small scales, we revisit the

halo model formalism by SB10 to take into account new observational re-

sults. The spherical halo approximation should capture most of the small-
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Figure 2.6: A cartoon showing the current picture of satellite alignment provided by obser-
vations. Satellite galaxies (green ellipses) tend to preferentially segregate along the direction
of the central galaxy (red ellipse) major axis; the closest satellites to the centre of the halo
show a preferential alignment in the direction of the central galaxy major axis. The source
galaxies (blue ellipses) are tangentially aligned with respect to the halo shape, resulting in
an opposite alignment with respect to the aligned satellites and the central galaxy. We can
expect source galaxies to be lensed more along the halo major axis, due to the excess of
matter in that direction. The dotted circles illustrate the way a spherical halo model can
describe this alignment signal.

scale GI signal. As discussed in Sect. 2.3, the anisotropic distribution of

satellites boosts the signal of the gI correlation, so a spherical model would

underestimate F6+. How it propagates exactly in the context of the GI con-
tamination is not trivial. The satellite segregation along the central galaxy

major axis is expected to source a large 1-halo satellite position - satel-

lite shear correlation, confirmed in J19, but also of an opposite satellite-

satellite II term, for which we do not have any observational measurement.

Moreover, if only the innermost satellites are aligned in the direction of the

central galaxy, as observed in G19, the impact on GI should be significantly

reduced compared to gI. For an illustration of these terms, see the cartoon

in Fig. 2.6. Although further study is needed, we use the spherical halo

model formalism because we expect it to capture the leading contribution,

providing a fair sense of the amplitude of the satellite alignment.

2.4.1 The halo model formalism for satellite alignment

Following SB10 we adopt an effective radial satellite alignment and de-

scribe galaxy orientations inside the halo through the stick approximation.
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In this approximation, the twominor axes of the elliptical galaxy have equal

lengths on average and the length and the orientation of the stick corre-

spond to those of the galaxy major axis.

Defining a Cartesian reference system centred on the halo and with the

I−axis along the line of sight, the position of a satellite galaxy inside the
halo is identified by the vector r = (A, \, q). The orientation of the satellite
major axis can then be expressed through the unit vector

4̂ = (sin \4 cos q4, sin \4 sin q4, cos q4), (2.8)

where \4 and q4 are, respectively, the polar and azimuthal angles that the

satellite major axis forms with the radial vector r.
In principle, we expect satellite galaxies to follow a distribution of an-

gles between their major axes 4̂ and the radial vector r. However, SB10
showed that the main effect of including this term is simply to reduce the

amplitude of the correlation functions with respect to the case of perfect

radial alignment, independently of the halo mass. Thus, we can simply

consider the case of perfect radial alignment, absorbing any misalignment

into the amplitude of the intrinsic alignment signal. In this case, \4 = \

and q4 = q. In a sense, the perfect radial alignment configuration can

be considered as an effective description: we can only measure the ten-

dency of galaxies to point in a certain direction, so the length of the sticks –

which determines the amplitude of the signal – quantifies the combination

of the amplitude of the misalignment angle and the intrinsic ellipticity of

the galaxy. This provides a direct map between the formalism of the stick

model and the measured alignment |n |〈cos(2q)〉, where |n | is the modulus
of the ellipticity and q is the misalignment angle.

Calling W̄ the length of the stick, and assuming the alignment to be a

function of the distance to the halo centre and the mass of the halo, it fol-

lows that (SB10)

W� (r, ", 2) = W̄(A, ", 2) sin \482q . (2.9)

Here, W̄(A, ") sin \ is the observed length of the stick, corresponding to the
projection of the major axis along the line of sight. In principle, this quan-

tity can also depend on the halo concentration, but we assume a determin-

istic relation betweenmass and concentration (see also Sect. 2.5) and so we

omit such dependence in the following.

Since we only measure the IA signal at galaxy locations, it is necessary

to introduce a density weighting in the model (Hirata & Seljak 2004), W̃� =

W� (1 + X6). Following SB10, we weight the 3D projected ellipticity by the
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number of galaxies inside the halo, #6 and the normalised matter density

profile D(r|") = d(A |")/":

W̃�1−halo(r, ") = W̄(A, ") sin \28q#6D(r|"), (2.10)

where we identify the density-weighted shear with a tilde (Hirata & Seljak

2004, SB10).

Having defined the density-weighted ellipticity W̃� for a given halo, we

can construct a continuous intrinsic ellipticity field by summing up the con-

tributions from each individual halo 8, in the usual halo model fashion:

W̃�B (r) =
1
=̄6

∑
8

W� (r − ri, "8)#6,8D(r − ri, "8)

=
∑
8

∫
d"

∫
d3A ′ X� (" − "8)X (3)� (r − ri)

#6,8

=̄6

× W� (r − r′, ")D(r − r′, ") ,

where =̄6 is the galaxy number density per unit of volume, which is a func-

tion of redshift. The subscript B indicates that this density weighted shear

only refers to satellites.

We calculate the correlation functions of interest for IA by correlating

W̃�B (r) with itself and with the matter density contrast X<. In Fourier space,
the � and �modes of the IA are defined as

W̃�� (k) = cos(2q:)W̃�1 (k) + sin(2q:)W̃�2 (k) (2.11)

W̃�� (k) = sin(2q:)W̃�1 (k) − cos(2q:)W̃�2 (k) , (2.12)

where

W̃� (k, ") ≡
∫

d3r W̃�9 (r, ")8k ·r. (2.13)

is the Fourier transform of the complex density-weighted shear, with 9 =

1, 2 being the two components. Thus,

〈W̃�∗� (k, I)W̃�� (k′, I)〉 = (2c)3X (3)
�

(k − k′)%��
W̃�

(k, I) (2.14)

and

〈X∗(k, I)W̃�� (k′, I)〉 = (2c)3X (3)
�

(k − k′)%X,W̃� (k, I) (2.15)

Without loss of generality, we can rotate our reference system such that

W�1 = W�+, where W
�
+ is the tangential component of the shear. This corre-

sponds to fixing q: = 0 in equations 2.11 and 2.12, transforming �� into

II.
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For computational reasons, it is convenient to separate the radially de-

pendent part of the density-weighted shear, which is affected by the Fourier

transform, from the terms that are only mass dependent. We then define:

Ŵ�B (k, ") ≡ F
(
W� (r, ") D(r, ")

)
. (2.16)

We now have the ingredients to compute all of the possible IA power

spectra. In a spherical halo model, the only terms that survive are: the II

satellite-satellite power spectrum and the satellite-matter term for the XI

power spectrum. These can be written as

%B
XI,1h(k, I) =

∫
d" =(") "

d̄<
5B (I)

〈#B |"〉
=̄B (I)

|Ŵ�B (k|") |D(:, ") (2.17)

and

%BBII,1h(k, I) =
∫

d" =(") 5 2
B (I)

〈#B (#B − 1) |"〉
=̄2
B (I)

|Ŵ�B (k|") |2 (2.18)

where =(") is the halomass function, 5B (I) is the fraction of satellite galax-
ies as a function of redshift and 〈#B |"〉 is the halo occupation distribution
of satellite galaxies.

The power spectra in equations 2.14-2.15 are functions of (:, \:). How-
ever, \: only modulates the strength of the amplitude of the signal. In the

rest of the paper, we decide to fix \: = c/2 (Limber approximation; for a
more detailed discussion of the angular dependence of the power spectra,

see Appendix A3).

2.4.2 Radial dependent satellite alignment

We use the mean radial alignment signal 〈n+〉 measured in G19 to model
the satellite alignment in Eq. 2.10, W̄(r, "). Theymeasured a satellite align-
ment in bins of projected distance of the satellite from the group’s brightest

galaxy, Asat/A200 and found a radially dependent signal. It is well-fitted by a
power law of the form 〈n+〉 = �(Asat/A200)1. The slope is chosen to be fixed
at 1 = −2 and the amplitude is fit for the different galaxy samples. G19 do
not detect any mass dependence, so we do not include it in our parametri-

sation.

The estimator 〈n+〉 is related to the shear via

W+ =
〈n+〉
R , (2.19)
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where R is the shear responsivity and quantifies the response of the ellip-

ticity to a small shear8. Rounded object are easier to shear than highly

elliptical objects. Here, we assume a typical value of R ≈ 1 − f2
n = 0.91 to

convert n+ to W� .

In order to prevent unphysiscal behaviour at very small scales, we adopt

a piecewise function of the form

W̄(A) =

01ℎ

(
0.06
Avir

) 1
, if A < 0.06 Mpc/ℎ

01ℎ
(
A
Avir

) 1
, if A > 0.06 Mpc/ℎ ,

(2.20)

where 01ℎ is the amplitude of the power law. We further impose that W̄(A)
never exceeds 0.3, which corresponds to a perfect alignment. We choose to

set A = 0.06 Mpc/ℎ based on the minimum angular separation for a shape

measurement, which we assume to be \max = 4 arcsec for a ground-based
telescope. At high redshifts, the largest separation that can be resolved is

around 60 kpc/ℎ. At low redshifts, the spatial resolution is much smaller,

but the light coming from the central galaxy, in particular for themostmas-

sive ones, can contaminate the measurements up to this scale (Sifón et al.

2018). A cut at 0.06 Mpc/ℎ slightly suppresses the signal of the low mass

galaxies, for which the satellite alignment is expected to be small. A space-

based telescope such as Euclid will be able to resolve objects down to a

smaller separation, but the physical extent and the contamination from the

central galaxy still impose a truncation at small scales. Reducing the tran-

sition scale increases the amplitude of the signal, as satellites get more and

more aligned as we approach the centre of the group/cluster. We experi-

mented with different values of the truncation parameter and we find the

impact to be subdominant with respect to the other source of uncertain-

ties considered in this paper. However, future lensing studies that aim to

include very small separations have to cope with an increasing IA contami-

nation, in a regimewhere we do not have observations to properly calibrate

its impact.

The measurements by G19 are performed in projection, which means

that we can easily relate the projected shear W� to 〈n+〉. However, the radial
position within the halo in our framework requires the 3d position, while

G19 measure the signal in projected distance. For A > 0.06 Mpc/ℎ, this

8Our definition of ellipticity is |n | = (1 − @)/(1 + @), where @ is the semi-minor to semi-
major axis ratio and thus we do not need to double the responsivity in eq. 2.19, as in the

case of shapes measured via polarisation.
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introduces a sin1 \ term in our expression of W� (see also Appendix A3),

W� (A, \) = W̄(A) sin \ = 01h

(
A sin \
Avir

) 1
. (2.21)

As for the large scale signal, we distinguish between the alignment of

red and blue satellites, for which G19 find a different amplitudes.

2.4.3 Luminosity dependence of the satellite galaxy align-
ment

In the spirit of including any observational insights into our model, we fo-

cus here on the luminosity dependence of satellites. This was detected in

Huang et al. (2018) in the SDSS redMaPPer galaxies but not confirmed by

G19 in galaxy groups. The same dependence was explored in clusters by

(Sifón et al. 2015), who did not find any evident trend with the given S/N.

Addressing whether a luminosity dependence of satellites exists is par-

ticularly important for the IA contamination of the lensing signal in the low

redshift bins, where the satellite population is more abundant and spans a

large range in luminosities. In particular, the lowest redshift bins of a typ-

ical lensing survey do not reflect the satellite population employed in G19,

containing a larger fraction of faint blue satellites, while their sample peaks

at "A − 22 and has an equivalent fraction of red and blue satellites. If faint
satellites are characterised by a different alignment behaviour with respect

to the bright ones, extrapolating their findings might largely overestimate

the IA impact on such bins.

We focus on the SDSS-redMaPPer andGAMA+KiDSanalyses here. Huang

et al. (2018) observed that when using the re-Gaussianization shape algo-

rithm, the satellites with 0.1"A < −21, located closer to central galaxies,
show a more prominent signal. Since the redMaPPer algorithm selects

luminous red galaxies, one of the major differences between the galaxy

samples used in the two studies is the colour of the satellites. G19 investi-

gate the luminosity dependence only for the full sample, while Huang et al.

(2018) focus on the red population only.

We re-analyse the galaxies in G19, looking for a luminosity scaling of

the signal for the two separate cases of red and blue galaxies. We select red

galaxies imposing the same cut as G19. We split the samples into two bins,

cutting at "A = −22 to ensure that the two bins have a comparable number
of galaxies. We detect a luminosity dependence for both the red and blue

sample. As before, we fit a power law with fixed index 1 = −2. Our results
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Figure 2.7: Mean tangential ellipticity components versus satellite projected distance from
the brightest galaxy in the group, for the galaxy sample in G19. We separately consider the
red (top panel) and blue (bottom panel) sample. We jointly fit the luminosity and radial
dependence for each of the two samples, as in equation 2.22. The data points in the grey
region are excluded from the fit. Our best fit is on top of the data points, with the 1 − f
uncertainty on the fit.
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Table 2.2: Satellite luminosity dependence best fit amplitude (01h) for the red and blue
sample. The samples are split in two luminosity bins, L1 (bright) and L2 (faint), with a cut
at "A = −22. In all of the fits, we assume a radial dependence with the form of a power law
with slope -2, as in G19. In the joint fit, the luminosity dependence is modelled with a power
law with slope Z , as in eq. 2.22.

Sample Ngal 01ℎ Z j2/dof
Individual sample fits:

Red L1 7505 0.0014 ± 0.0002 - 0.59

L2 6618 0.0008 ± 0.0002 - 1.76

Blue L1 5989 0.0008 ± 0.0004 - 1.97

L2 8778 −0.0002 ± 0.0003 - 0.67

Joint fit:

Red all 0.0009 ± 0.0001 0.7 ± 0.2 1.02

Blue all 0.0006 ± 0.0002 0.5 ± 0.4 1.50

are summarised in Table 2.2. Following G19, we do not include the first

radial bin in our fits, since the light from the brightest galaxy of the group

biases the shapes.

Although the signal-to-noise ratio does not allow for a definitive con-

straint on the luminosity dependence of the satellite alignment, we can

draw the following conclusions: the faint blue satellites do not show any

alignment signal, while the bright sample shows an alignment signal only

for the innermost radial bin. The red satellites show amore prominent sig-

nal for both the faint and the bright samples. While the bright sample of

the blue and the red satellites are still consistent with each other within

the error bars, what drives the main difference in the red and blue satellite

alignment is the behaviour of the faint bin.

Tomodel the luminosity dependence, wedecide to follow theparametri-

sation adopted for the red central galaxies, a power law in !/!0, where !
is now the luminosity of the satellite sample under consideration and !0
is the pivot luminosity, corresponding to a magnitude of "A = −22. We

perform a joint fit of the radial and luminosity dependence for the red and

blue sample separately, assuming the functional form:

〈n+〉(Asat, !) = 01ℎ

(
!

!0

) Z (
Asat
Avir

) 1
. (2.22)

As for the rest of the analysis, we do not fit for 1, which is chosen to

be 1 = −2. Table 2.2 reports our best fit values of 01ℎ and Z for the two
samples, and Fig. 2.7 shows our best fit curves on top of the data points.
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2.5 Halo model setup

To inform our model about the properties of the galaxy sample for which

we predict the IA signal, we extract the HODs of central and satellites from

our Stage III survey mock. We checked that this procedure gives us num-

ber densities of galaxies that match those measured in the simulations in

redshift bins.

We define dark matter haloes as spheres with an average density of

200d̄<. The mass of the haloes provided by MICE is based on the Friends-
of-Friends (FoF) algorithm. The two definitions slightly differ from each

other, in particular at high redshifts. We employ MICE masses only when

computing the HODs, which enter in the small scales of the model. Those

scales are important at low redshift only, so this mass-definition discrep-

ancy is expected to not have a major impact for our analysis. This is fur-

ther confirmed by the fact that we can recover compatible measured galaxy

number densities within our halo model setup. In the following, we always

use the "200 definition.

We assume that dark matter haloes follow the Navarro-Frenk-White

distribution (Navarro et al. 1996), with a concentration-mass relation from

Duffy et al. (2008) and that satellite galaxies are spatially unbiased with

respect to the darkmatter particles9. For the halomass function and for the

halo bias function we adopt the functional forms from Tinker et al. (2010).

For the implementation of the former we make use of the public available

python package HMF10 (Murray 2014).

The total IA power spectra are given by the sum of the contributions

introduced in Sect. 2.3 eq. 2.6-2.7, describing the behaviour at large scales

(2h regime), and at small scales, presented in Sect. 2.4, eq. 2.17-2.18. When

evaluating themass integralswe considermasses in the range [1010.5, 1015.5]
ℎ−1"� to match the observed one in our mocks. To weight the IA signal,
we do not use the galaxy fractions that we directly measure from the simu-

lations, but those computed as the integral of the HOD and the halo mass

function. In this way we ensure that the large and small scales contain the

same galaxy numbers and ratios. Our recovered fractions are overall more

accurate for the red sample, with an error around 5% in the relevant bins,

while for the blue sample, we recover the true values with an error of 15%.
As blue galaxies have a smaller alignment amplitude, this is not a major

9We do not provide galaxy positions within the halo as implemented in MICE, but only

the mean halo occupation, #6 given the mass of the halo.
10https://github.com/steven-murray/hmf

https://github.com/steven-murray/hmf
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concern here. We have also tested that our main results are not affected by

reasonable changes of the mass ranges.

As discussed in Sect. 2.3.4, to model the large-scale alignment of the

red sample, we consider two cases:

1. Simple power-law: �red = 5.33 ± 0.6 and a luminosity dependence
with slope V = 1.2 ± 0.4, given by the weighted mean of LOWZ and

MegaZ best fit �0 and V

2. Broken power-law: �red = 5.08+0.97
−0.95, V!<!0 = 0 and V!>!0 = 1.2 ± 0.4

For the blue galaxy alignment at large scales, we refer to the best fit am-

plitude in J19, who found �blue = 0.21 ± 0.3711. For the satellite alignment
we consider a combined radial and luminosity dependence, as discussed

in Sect. 2.4.3. We de-project the signal as described in Sect. 2.4.2, so that

our final W� is in terms of A rather than the projected separation Asat. The
radial dependence is described by 2.21, including the piece-wise term as in

equation 2.20. Note that in the case of the luminosity dependence, ! is the

mean luminosity of the red/blue satellites for each redshift tomographic

bin. The final parameters are summarised in Table 2.3.

2.6 Results

Figure 2.8 shows our predictions for the IA power spectra for case (i) (solid

lines) and (ii) (dashed lines). Our fiducial power spectra correspond to the

best fit values in Table 2.3. Here, we also plot the associated 1f uncertain-
ties, to illustrate the current uncertainties in our IA parameters. The one-

halo parameters 01h and Z aremodelled as amultivariate Gaussianwith the
covariancematrix computed in the fitting procedure outlined in Sect. 2.4.3.

Since we do not have information on the covariance matrix between the

parameters �IA, V, we assume that they follow uncorrelated Gaussian dis-

tributions centred on the best fit values and with standard deviation given

by the 1f uncertainties. We then draw 300Monte Carlo realisations of the

model, andwe derive the lower and upper uncertainties using, respectively,

the 16th and the 84th percentiles of the resulting distributions.

For both our case (i) and (ii), at low redshift and small scales, we find

a larger signal that decreases as the redshifts increase, due to the drop of

11We decided to use J19 best fit amplitude for the blue sample as input parameter for the

IA signal of the central blue galaxies only. This is motivated by the fact that our sample is

significantly fainter than the one used in J19 and we have seen that faint blue satellites to

not show any alignment signal (Sect. 2.4.3).
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Table 2.3: The IA parameters adopted in our model. In the 2-halo regime, we consider two
different cases for the luminosity dependence of the central galaxy population: a single power
law (case i) and a double (broken) power law (case ii).

Sample Model Parameter Value

Red 2-halo (i) �V 5.33 ± 0.60
V 1.2 ± 0.27

2-halo (ii) �V 5.08 ± 0.97
V!>!0 1.2 ± 0.27
V!<!0 0

1-halo 01ℎ 0.0010 ± 0.0001
Z 0.7 ± 0.2
1 −2

Blue 2-halo �IA 0.21 ± 0.37
V 0

1-halo 01ℎ 0.0006 ± 0.0002
Z 0.5 ± 0.4
1 −2

satellite galaxies at high redshifts imposed by the flux limit. The opposite

happens for the large scales, where we observe an inverted trend in the

redshift dependence: at high redshifts, where only bright galaxies are ob-

served, the large-scale signal increases due to the luminosity dependence

of the red central galaxy alignment. These trends are more pronounced for

the single slope scenario (i), where we observe more variation among the

different redshift bins. The power spectra of the red sample of our case (ii)

maintains an almost constant effective amplitude, as expected for a lumi-

nosity distribution predominantly below !0. The radial alignment of satel-
lite galaxies shifts the contribution of the 1-halo term to larger :, reducing

the impact of the IA at intermediate scales.

At small scales, the uncertainty in the luminosity dependence of the

blue satellite alignment dominates our predictions. We note that the joint

constrains on the luminosity and radial dependence of the faint blue sam-

ple do not fully capture the measurements, as the curve always remains

slightly above the data points (Fig. 2.7). Indeed, the individual fit for the

blue L2 sample is consistent with zero (Table 2.2). This is driven by the

fixed slope of the radial dependence when performing the combined radial

and luminosity dependence fit. We find that a steeper radial dependence

can capture themeasurements better, but given the limited S/Nwe decided
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to not adopt separate dependencies for the red and blue samples.

2.6.1 Impact on lensing

To assess the contamination to the lensing measurements, we use the pro-

jected angular power spectra,� (ℓ), where ℓ is the 2D angular frequency. In
the flat sky approximation, these can be written as:

�
(8 9)
obs (ℓ) = �

(8 9)
GG (ℓ) + � (8 9)

GI (ℓ) + � (8 9)
II (ℓ) (2.23)

where

�
(8 9)
GG (ℓ) =

∫ jhor

0
dj@

(8) (j)@ ( 9) (j)
j2 %XX

(
ℓ

j
, j

)
, (2.24)

�
(8 9)
GI (ℓ) =

∫ jhor

0
dj@

(8) (j)? ( 9) (j) + ? (8) (j)@ ( 9) (j)
j2 %XI

(
ℓ

j
, j

)
, (2.25)

and

�
(8 9)
II (ℓ) =

∫ jhor

0
dj ?

(8) (j)? ( 9) (j)
j2 %II

(
ℓ

j
, j

)
. (2.26)

Here, j denotes the comoving distance, jhor the comoving distance to the
horizon, ?8 (j)dj the distribution of source galaxies in the sample 8, nor-
malised to

∫
dj ?8 (j) = 1, and @(j) is the lensing efficiency, defined as

@ (8) (j) =
3�2

0Ω<

222

∫ jℎ

j

dj′ ? (8) (j′) j
′ − j
j′

. (2.27)

We compute the power spectra %(:, I) for the true redshifts and then in-
tegrate over the =(I) of six photo-z bins with ranges reported in Table 2.1.
To simulate the effect of photometric scatter we generate six Gaussian red-

shift distributions with a scatter fI = 0.05(1 + I), as described in Chisari
et al. (2019). We assume a total shape dispersion of fn = 0.35.

We compute a fully analytical covariance matrix, as described in Hilde-

brandt et al. (2020). To be consistent with current cosmic shear analyses,

we do not include the IA contribution in the covariance matrix. To gener-

ate our predictions, wemake use of the latest version of the public available

software CosmoSIS12 (Zuntz et al. 2015). Our results are shown in Fig. 2.9.

For clarity, here we do not show the 1f contours derived from the uncer-

tainty in the IA parameters. In practise, when it comes to the contami-

nation to lensing, the unknown luminosity dependence of the IA of faint

12https://bitbucket.org/joezuntz/cosmosis

https://bitbucket.org/joezuntz/cosmosis
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galaxies dominates our uncertainty, being the distance between the curves

labelled as (i) and (ii) larger than the individual uncertainties in the fits of

the IA signal of the specific sub-samples.

At low redshift, the large fraction of satellite galaxies is reflected in the

IA signal, which becomes important. As expected, the II term is only rel-

evant in the auto-correlation bins, while the GI is larger in all of the off-

diagonal terms. Overall, the relative contamination from IA is larger at

low redshifts, where also lensing is less efficient.

2.6.2 The impact of the modelling choice on the cosmo-
logical parameter estimate

The main goal of this paper is to investigate whether the emerged com-

plexity of satellite contribution in the IA signal can lead to a bias in the

Stage-III cosmological parameter estimate if not properly accounted. To

explore this, we consider two cases of a generic cosmic shear analysis: in

the first we simply assume the NLAmodel to hold for the full sample, with-

out splitting in red and blue galaxies and without considering any luminos-

ity dependence - so with only one free parameter, the amplitude �IA; in the
second case we introduce a power law to capture the redshift evolution of

the signal due to the IA dependence on the galaxy sample:

%XI(:, I) =
(

1 + I
1 + I0

) [
%NLA
XI (:, I) (2.28)

and

%II(:, I) =
(

1 + I
1 + I0

) 2[
%NLA

II (:, I), (2.29)

where we choose I0 = 0.3. We refer to this model as NLA-I.

To do so, we generate a data vector of angular correlation functions

b±(\) with the setup discussed in Sect. 2.5 and analyse it assuming the NLA
and NLA-I as typically done in most of the Stage-III analyses. In this way,

we have perfect knowledge of the signal injected and we can isolate the im-

pact of marginalisation.

We perform the analysis in real space, using the projected correlation

functions b±, which we derive from the angular power spectra � (ℓ) using
the implementation available in CosmoSIS (Kilbinger et al. 2009). The

minimum and maximum angular scales adopted in this analysis are, re-

spectively: \min
+ = 3′, \max

+ = 72′, \min
− = 6′ and \max

+ = 153′, based on the
KV450 (Hildebrandt et al. 2020) cosmic shear analysis.
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We limit our interest to the cosmological parameters to which lensing

is most sensitive, Ω<, f8 and F. Instead of f8, we sample the logarithm
of the scalar amplitude ln(1010�B), so our final parameter vector is _ =

{Ω<, ln(1010�B), F} and one (two) nuisance parameter(s), �IA (�IA, [). We

adopt uniform priorsΩ< = [0.1, 0.8], ln(1010�B) = [1.5, 5], F ∈ [−5.0, 0.33],
�IA = [−6, 6] ([ = [−5, 5]). To sample the parameter space we make use
of the Emcee sampler (Foreman-Mackey et al. 2013). The same analysis is

performed for both scenarios; we only change the IA recipe while generat-

ing the data vector.

Our results show that for Stage-III surveys the NLA model provides an

adequate description. For both scenarios the redshift dependence of the IA

signal caused by the variation of the galaxy sample is not large enough to

induce a bias in the cosmological parameters, with only marginal shifts in

both (8 and F for our case (ii). The recovered IA amplitudes are instead,

as expected, different. In our case (i) we find a �IA, (i) = 0.14 ± 0.14, while
for our case (ii) we find �IA, (ii) = 0.44 ± 0.13.

When adopting the NLA−I model as the reference, in both cases the
cosmological parameters are correctly recovered, but the [ parameter re-

mains unconstrained in our case (i) and it is very weakly constrained in our

case (ii).

Our low IA amplitude for case (i) is in line with the best fit NLA ampli-

tude found in J19 for the full GAMA sample, while their best fit value for

the joint GAMA+SDSSMain has an amplitude of �IA ∼ 1, compatible with
the fact that SDSSMain contains a larger fraction of red galaxies and fewer

satellites to lower the signal at large scales. The comparison is, however,

complicated by the fact that J19’s results are based on the gI correlations.

Compared to the KV450 IA amplitude, �IA = 0.981+0.694
−0.678, we find our case

(i) to provide a lower value for a similar galaxy sample. However, different

redshift distributions are adopted in the two works. We note that the full

shape of the =(I) is critical for the accuratemodelling of the IA contribution
(see Appendix A4). The redshift distributions of KV450 are more peaked

and with more prominent tails, which increase the impact of the II in real

data: as a consequence, since II and GI have opposite contributions, the IA

balance changes. The way this effect can couple with the IA sample depen-

dence is not obvious, as calibration errors in the final =(I) can be absorbed
by the �IA amplitude during the fit (Li et al. 2021). In addition to this, a

luminosity dependence of the signal reduces the presence of IA in the data

(Joachimi et al. 2011; Krause et al. 2016): if the faint end of the luminos-

ity dependence of red central galaxies is significantly shallower than what
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we assumed in our case (i), the final amplitude would increase, as already

suggested by our case (ii) setup. Similarly, our predictions are based on the

assumption that the blue central galaxy population does not significantly

contribute to the signal (�blue
IA = 0.21), a constraint that suffers from large

uncertainties. Our results (i) and (ii) point toward a lower amplitude to

what is preferred by the cosmic shear analysis in DES data, for both their

results with the NLA and NLA−I models (Troxel et al. 2018), although we
observe the same increase of the overall IA amplitude as a function of red-

shift. Samuroff et al. (2019) find a lower IA amplitude inDESgalaxieswhen

simultaneously fitting for the cosmology and the IA amplitude in a 3x2pt

statistics (WW + X6W + X6X6, �NLA = 0.49+0.15
−0.15), which is in closer agreement

with our findings. We want to stress that the aim of these comparisons is

only to provide a sense of the ranges of the IA amplitudes currently con-

strained by lensing analyses: we should not interpret the IA amplitudes as

stand-alone quantities, without taking into account the best fit cosmologi-

cal parameters and the exact =(I).

Stage-IV

Given our results on a Stage-III setup, we investigate whether in the case

of a Stage-IV survey we still recover the right cosmological parameters. We

leave our setup unchanged, and only replace the covariance matrix to ac-

count for the larger area (15 000 deg2) and double the number density per
redshift bin. We note that we do not modify our HODs, resulting in an un-

derestimate of the satellite number density. Thus, our results have to be

considered a lower limit on the possible induced biases.

Fig. 2.11 illustrates our findings for the NLA model. Overall, we find

that case (i) leads to a lower level of bias in all the cosmological parameters

compared to case (ii); this is expected, given the lower IA signal present in

the data when assuming a steep luminosity dependence. In our case (i) we

observe a 1f bias inΩ< only, while for case (ii) all parameters are biased by
more than 1f, with the bias inΩ< exceeding 2f. We note that the NLA �IA
amplitude recovered by the fits is dominated by the effective amplitude of

the low redshift bins. The relative importance of IA over lensing is indeed

strongest when the foreground galaxies are at low redshift (see the first

columns of Fig. 2.9) and thus, even if the data contain a significantly higher

alignment signal at high redshift, the fit is not particularly sensitive to these

bins.

We also explore the performance of the NLA−I model for the same se-
tups. We find the flexibility of the NLA−I sufficient to recover the cos-
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Figure 2.10: Constraints on the cosmological parameters Ω<, (8 = f8
√
Ω</0.3 and F,

marginalising over the IA amplitude, for a Stage-IV survey. We inject the IA signal as predicted
by the full halo model formalism assuming at larger scales a steep luminosity dependence (i:
indigo) or a broken power law with constant amplitude for faint galaxies (ii: plum) - Table 2.3
lists the IA parameters used for constructing the data vectors. We perform the analysis
assuming a NLA model with no distinction between red and blue galaxies. The orange lines
and the square markers indicate the fiducial values of the cosmological parameters.
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fiducial values of the cosmological parameters.
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mological parameters for both our case (i) and (ii), with best-fit values:

�IA, (i) = 0.16+0.02
−0.02, [ (i) = 2.91+0.68

−0.73 and �IA, (ii) = 0.42+0.02
−0.02, [ (ii) = 2.21+0.22

−0.23.
The predicted redshift dependence of the signal for our sample can be cap-

tured by its power-law scaling, while the scale dependence introduced by

the 1-halo term is not recovered. Because the amplitude of the 1-halo term

is small andwe remove the smallest scales in our fit with the cuts presented

in Sec. 2.6.2, this remains a subdominant effect compared to the redshift

variation in the IA signal induced by the galaxy sample selection across the

redshift tomographic bins. In this case, we also note that the fits are driven

by the low-z bins, with a worse recovery of the large scale alignment at high

redshifts. This is more pronounced for case (ii), where the double power-

law induces a more complex redshift scaling in the IA signal.

Given the precision of a Stage-IV survey, any specific choice in the setup

can impact the results. We identify as the most significant ingredient the

treatment of the halo exclusion. We caution that our implementation of

the halo exclusion is not based on simulations, but merely aims to avoid

the double counting at small scales, due to the use of the NLA−Vmodel for
the 2-halo term. While this is sufficient for a Stage-III survey, we observe

that the bias in the cosmological parameters is affected by the specific im-

plementation of the halo exclusion for a Stage-IV. In general, a smoother

transition that would remove more power at the intermediate scales would

result in less bias in Ω< and more bias in (8 and F. The IA amplitude is

instead weakly affected by the specific choice of the halo exclusion recipe.

We also note that a full double counting at the small scales does not sig-

nificantly change our results. We conclude that a proper modelling of the

intermediate scales is more important than the exact amplitude of the 1-

halo term.

2.7 Conclusions

We have performed a comprehensive analysis of the contamination by IA

in cosmic shear surveys, with a particular focus on modelling the satellite

contributions at small and large scales, based on the most recent obser-

vational IA findings. We proposed a new model to describe the IA signal,

which explicitly accounts for the fact that only central galaxies contribute

to the alignment signal at large scales. We introduced a satellite alignment

signal at small scales, modelled through the halo model formalism, which

includes a radial and luminosity dependence. We also differentiated the

contribution from the red and blue population at all scales.
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At large scales, we investigated whether limiting a luminosity depen-

dence of the IA signal to the central galaxy sample provides a unified pic-

ture for all the measurements in the literature. Although in this scenario

the slope measured by MegaZ/LOWZ seems to be favoured at high lumi-

nosities, the current uncertainty in the measurements does not allow for

a definitive constraint on the luminosity dependence at low luminosities.

For this reason, we decided to follow two alternative scenarios for all our

forecasts: a single power law with slope V = 1.2 and a double power law
with a faint end characterised by a flat slope, V!<!0 = 0, and a bright-end
with same slope as case (i), V!>!0 = 1.2. Future IA studies should focus on
constraining the faint end of Fig. 2.5, where uncertainties dominate. Up-

coming surveys such as the Physics of the Accelerating Universe Survey13

(PAUS; Eriksen et al. 2019; Padilla et al. 2019) can help gaining insight

into our understanding of the faint central galaxy alignment, a key feature

to properly predict the IA contamination in cosmic shear surveys.

At small scales, we model the satellite alignment with a power law for

the radial dependence, as recently measured by G19 in groups. We re-

analyse the G19 data splitting the sample in red and blue, and we found

that in this case a cut at "A = −22 suggests a luminosity dependence in the
signal. We jointly fitted the radial and luminosity dependence assuming a

double power law, and used this result as input for our forecasting model.

More data are needed to tightly constrain the luminosity dependence of

satellites, as the statistical uncertainties in the measurements might play

a role in constraining the amplitude of the power law. It is also relevant

to note that since red and blue satellites show a different alignment am-

plitude, it is important to model them separately, as their relative fraction

depends on the magnitude cut of the specific survey.

Although satellites do not share the same alignment mechanisms as

central galaxies, the dichotomy in morphology observed at large scales is

reflected also in their alignmentmechanism. A different radial dependence

of red and blue satellites might reveal a more complex alignment mecha-

nism for the two populations and/or probe the galaxy in-fall history. With

current measurements it is not possible to further investigate this possi-

bility, but future dedicated high resolution hydrodynamical simulations

might shed light in the understanding of the intra-halo alignment. Such

simulations can also improve themodelling of intermediate scales, towhich

the lensing signal is most sensitive, but where our model is relatively sim-

plistic. A proper calibration of the IA alignment in this intermediate regime

13https://www.pausurvey.org

https://www.pausurvey.org
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is of primary importance for the interpretation of data from Stage-IV sur-

veys.

Our predicted power spectra show two opposite trends at high and low

redshifts, as shown in Fig. 2.8. While at low redshift the small scales have

a larger IA signal, due to the presence of satellites, the large scales are dom-

inated by the alignment of red central galaxies. The large scale signal be-

comes stronger as we go to higher redshifts, due to the survey magnitude

cut: this selects brighter galaxies, which are those that carry most of the

IA signal, due to the observed luminosity dependence of the red central

galaxy alignment. The opposite happens to the small scales, which are al-

most completelywashed out by the suppression of satellites in the high red-

shift bins. These trends are enhanced when considering the single power

law for the luminosity dependence.

In this work we have not accounted for the anisotropic distribution of

satellites within the halo, which is also known to contaminate lensingmea-

surements. In the context of cosmic shear analyses, this is expected to be

important only at small and intermediate scales. The satellite segregation

along the central galaxy major axis complicates the interpretation of IA

measurements performed using the central galaxy position - satellite shear

correlation (gI), and future studies should focus on modelling it, in order

to have a clear mapping between gI and GI. However, our spherical model

can be considered as an effectivemodel: in the perspective of a direct fit of

IA to data, the free amplitude in the 1-halo term can potentially capture to

first order the extra correlation due to the anisotropic term.

While direct IAmeasurements provide unique insights into the IAmech-

anisms and amplitudes, translating those results into informative priors

for cosmic shear analyses requires a full modelling of the sample depen-

dence of the IA signal. This aspect has often been underestimated in lens-

ing studies, adopting simplistic models that do not distinguish between the

different IA signatures of different galaxy populations, and adopting broad,

uninformative priors. We investigated what is the impact of this choice for

the IA signal that we expect for a cosmic shear survey given our model.

We considered the case of a Stage-III analysis on a simulated data vector,

built to reproduce our best knowledge of the IA, and then analysed it using

simple NLA and NLA−Imodels. Limiting our analysis to Ω<, (8 and F, we
find bothmodels to be sufficient to capture the IA signal without biasing in

the cosmological parameters. This is no longer true for Stage-IV surveys,

where we observe a bias inΩ< that exceeds 2f bias when adopting a simple
NLAmodel. Including a power-law redshift dependence, theNLA−Imodel
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is able to recover our input cosmological parameters in the presence of a

sample-dependent IA signal. Hence we recommend the use of a flexible

redshift dependent model of IA for Stage-IV surveys.

In all cases the recovered IA amplitudes are smaller than 1, similar to

typical values obtained by current cosmic shear studies. The amplitude de-

pends on the specific IA model assumed: we find the broken power law for

the red central galaxy luminosity dependence to provide a larger effective

amplitude. This is a consequence of the larger amplitude assumed for the

faint population in this setup, which dominates our overall alignment, as

faint galaxies are more abundant than bright galaxies. We find the IA sig-

nal to be smaller than what was assumed in previous works: this is driven

by the central galaxy weighting at large scales which significantly reduces

the effective IA amplitude. This has implications for the inferred level of

bias in the cosmological parameters. These findings are, however, based

on several assumptions that represent our best extrapolation of the cur-

rent picture of IA as emerging from dedicated studies. Future studies on

the behaviour of faint central and satellite galaxies are needed to confirm

these results. However, the model is extremely flexible and any new find-

ings can be easily incorporated.

We find our fits to be driven by the low-z bins, where IA dominates over

cosmic shear, whereas at high-z a bias in IA barely affects the results. We

also note that the redshift dependence of the signal is more important than

the scale dependence introduced by the 1-halo term. This is a consequence

of the small satellite alignment we adopt in the model, based on current

observational constraints. The inclusion of a term for the anisotropic dis-

tribution of the satellites might change this conclusion.

As the impact of IA is larger for the lowest redshift bin, excluding it can

mitigate the impact of uncertainties in themodelling of the IA signal. Alter-

natively, improving the constraints at low-I, with a focus on faint galaxies,

will be essential.

We want to stress that these model predictions are based on idealised

redshift distributions and so our results cannot be directly compared with

the best fit parameters inferred by cosmic shear studies. At higher redshifts

and lower luminosities, the mocks might suffer from a larger uncertainty,

as the luminosity is calibrated locally and then evolved to high redshifts.

This has to be considered as part of the uncertainty in the model predic-

tions, which requires additional data to be assessed. Upcoming surveys

that aim to use the model can use clustering information in their data and

the observed luminosity function to further constrain these parameters.
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In light of future cosmological analyses, this model can be used to ac-

count for the IA signatures on different galaxy populations allowing for a

direct map between IA observations and cosmic shear contamination. The

model can be used to predict the IA signal in a given cosmic shear based

on its galaxy composition at different redshifts: provided that the galaxy

mocks are sufficiently representative of the data, it is possible to provide

priors for different IA models. We caution that the current uncertainty in

the luminosity dependence of the signal currently prevents the use of tight

priors; instead the range covered by both our (i) and (ii) scenarios should

be considered. Given a halo occupation distribution model for the red and

blue galaxy populations, this model can be employed to jointly fit the clus-

tering, IA and lensing observables.
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A1 Satellite galaxy fractions in MICE

We investigate here how well MICE reproduces the GAMA survey in the

corresponding redshift and magnitude space, because we use that sam-

ple as input for our study. Our reference GAMA catalogue is obtained by

matching the StellarMassLambda-v2 catalogue, fromwhichwe obtain pho-

tometric information, and the G3CGal, which contains the group informa-

tion. We identify the satellite population by imposing RankBCG>1.

http://www.gama-survey.org/
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We build a GAMA-like sample from MICE in the following way. We

select from our mock all galaxies brighter that A < 19.8, the flux-limit of
our GAMA catalogue, and limited the analysis to a sub-patch of ∼ 180 deg2,
which is the size of the overlapping region with the KiDS survey employed

by J19, C19 and in this work. With only these conditions, we find a very

good agreement with the colour andmagnitude distributions of the GAMA

galaxies.

Given the compatibility in the colour-magnitude space, we select red

galaxies in GAMA by applying the same cut as used in the rest of the paper

(2.2.1). We then measure the galaxy fraction for all the sub-samples that

enter in the halomodel, to quantify the accuracy of ourmocks. Fig. 12 illus-

trates our findings. We observe a remarkable agreement for the red galaxy

population. For the blue sample, MICE exhibits a larger satellite fraction at

low redshift and the opposite behaviour at high redshifts; however, the ab-

solute difference between the fractions found in MICE and GAMA is 0.065

at maximum.

A2 Halo exclusion and intermediate scales

One of the limitations of the halo model is its lack of a proper treatment

of the intermediate, mildly non-linear scales. In particular, the configura-

tion with radially dependent satellite alignment pushes the one-halo term

to very small scales ( : < 6ℎ/Mpc). This implies that the intermediate
scales do not arise as a simple sum of the 1h and 2h terms, with the one

halo term being too small in this regime. Current observations of the IA

signal show amuch stronger alignment at intermediate scales than what is

predicted by this model. However, a further complication comes from the

fact that the intermediate scales are significantly affected by the central-

satellite correlation, which is known to be large in the context of gI, due

to the anisotropic distribution of satellites within the halo. Since direct

IA measurements are performed correlating galaxy positions with galaxy

shapes, we lack a proper reference for this term in the case of the matter-

shear and shear-shear correlations. A proper treatment of this problem

requires a dedicated calibration with simulations, which we defer to future

work.

To compensate the lack of power at intermediate scales, we use the non-

linear power spectrum as done in the context of the NLAmodel. This leads,

however, to double counting at the level of the 1-halo term. To avoid this,

we truncate the 2-halo term at :2h = 6ℎ/Mpc, roughly corresponding to a
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halo of 1 Mpc/ℎ, via a window function of the form:

5 2h−trunc(:) = exp
[
− (:/:2h)2] . (30)

Similarly, we truncate the 1-halo term to :1h = 4ℎ/Mpc applying

5 1h−trunc(:) = 1 − exp
[
− (:/:1h)2] . (31)

We allow for a small overlap of the signal at intermediate scales, where

the aforementioned truncations gradually reduce both the 1h and 2h terms.

A3 The angular part of the satellite alignment

density run

We compute the satellite alignment following the formalism developed in

Schneider & Bridle (2010), assuming a perfect radial alignment scenario.

We report here our expansion for 5; and themain steps to derive it. Wehave

tested our results against the analytical solution for the first two non-zero

multipoles (;max = 4), finding excellent agreement.
The complex phase in equation 2.13 can be re-written through the plane

wave expansion:

exp(8k · r) =
∞∑
;=0

8; (2; + 1)%; (cos W) 9; (:A) , (32)

where %; (G) are the Legendre polynomials of order ; and cos W is the angle
between r = (A, \, q) and k = (:, \: , q:),

cos W = sin \: sin \ cos (q: − q) + cos \: cos \ . (33)

We can rewrite the Legendre polynomials through the identity

%; (G) = 2;
;∑

<=0
G<

(
;

<

) ( ;+<−1
2
;

)
, (34)

where G = cos W. We can express (cos W)< using the binomial theorem, such
that all of the terms on the right in equation 33 are of the form 0 9 and those

on the left 1<− 9 , where 9 goes from 0 to <. Separating the integrals on q

and \, we have that the azimuthal part reduces to∫ 2c

0
dq

(
cos(2q)
sin(2q)

)
(cos q: cos q + sin q: sin q) 9 , (35)
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where the integrals over q are all zeros for odd 9 , while the even terms are

6 9=2= =

{
0, c2 ,

c

2 ,
15c
32 , ...

}
for n=1,2,3, … . (36)

The terms in q: can be rearranged to be of the form e82q: . The integral over
the polar angle \ gives instead∫ 1

−1
d cos \ sin 9+1 \ cos<− 9 \ =

∫ 1

−1
d cos \

(
1 − cos2 \

) 9+1
2 cos<− 9 \

= � ( 9 + 1, < − 9) ,
(37)

where, following SB10, we have defined

� (0, 1) =
∫ 1

−1
dG(1 − G2) 0

2 G1 . (38)

Collecting all the terms together, we get

5; (\: , q:) = e82q:2;
;∑

<=0

(
;

<

) ( ;+<−1
2
;

) <∑
9=0

(
<

9

)
6 9

× � ( 9 + 1, < − 9) sin 9 \: cos<− 9 \: .

(39)

Since the �− and �−modes of the intrinsic alignment are invariant un-
der rotation in the plane of the sky, we can choose without loss of gener-

ality to fix q: = 0. The polar angle \: defines the projection of the wave
vector k on the plane of the sky: modes perpendicular to the line of sight
are identified by \: =

c
2 , for which we have the strongest alignment signal,

as illustrated in Fig. 13. Indeed, the angular part of Ŵ(k, ") is dominated
by the lowest term of the expansion, ; = 2, which peaks at \: = c/2. The
main effect of \: is to change the amplitude of Ŵ(k, ") (Fig. 13). We decide

to assume \: =
c
2 throughout our analysis, i.e. to only consider the modes

perpendicular to the line of sight, and to truncate the expansion at ;max = 6.
Note that we decide to not adopt the definition of the density-weighted

shear in SB10, F(: |") and insteadworkwith their original definition (their
equation 7), from which we can naturally derive the expression for the ra-

dially dependent case. Here, we normalise the density-weighted shear with

the NFWmass, as originally in eq. 7 of SB10.

In our work, the intrinsic shear has the form

W� (A, \, !) ≡ W̄(A, !) sin \ = 01h(!) sin1 \
(
A

Avir

) 1
, (40)
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Figure 13: The Fourier transform of the density-weighted shear (eq. 2.13) for q: = 0 and
\: ∈

[
c
2 , c

]
, in the case of constant radial dependence. For clarity, we normalise the curves

by the input amplitude, 01h. The amplitude of the curves decreases as we go from \: = c
2

(red) to \: = c. Note that 5 (\: ) is symmetric around \: = c/2, so the curves from
[
0, c2

]
coincide with the ones plotted here, with increasing amplitude for increasing values of \: .

where the sin1 \ in the right-hand side comes from the de-projection of the

satellite separation from the BCG. This brings sin \ ↦→ sin1 \ and only af-
fects the integral in d cos \, such that � ( 9+1, <− 9) ↦→ � ( 9+1, <− 9) in eq. 39.
To avoid singularities along the line-of-sight, we perform the integral in the

range [−1 + Y, 1 − Y], with Y = 10−10.

A4 Intrinsic alignmentdependenceonphotomet-

ric redshift distributions

We illustrate here the impact on the choice of =(I) in predicting the IA sig-
nal. As discussed in Sect. 5.6, the specific choice of the =(I) distribution
plays an important role in enhancing the II term, changing the balance be-

tween the different IA components. Here, we try to disentangle which fea-

ture has the largest impact onmodulating themagnitude of the II term and

its scale dependence. For this exercise, we use the IA model referred as (i),

where the IA dependence on the red central galaxy luminosities ismodelled

as a single power law. We generate three different distributions (14), which

progressively include a new feature. Fig. 15 illustrates our findings. We
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Figure 14: Two of the four different =(I) adopted in our comparison. The dotted curves
refer to the case of Gaussian photometric distributions with fI = 0.05(1 + I) as discussed in
the text (see Sect. 2.6.1), the dashed curves to broader Gaussians (fI = 0.1(1+ I)), while the
solid lines are the =(I) built from the broader Gaussians with the inclusion of ‘catastrophic
outliers’ and more pronounced peaks in the distributions.

start with the Gaussian distributions adopted in the paper and presented

in Sect. 2.6.1 (solid orange lines), then we broaden them by increasing the

standard deviation per bin, fbroad
I = 0.1(1 + I) (dashed green lines): this

increases the amplitude of the II power spectra in the off-diagonal terms,

due to the overlap of the tails of the distributions from different adjacent

bins; on the diagonal terms, the broadening slightly reduces the II power

spectrum. We then introduce ‘catastrophic outliers’, which we generate

as Gaussian islands centred on random points extracted from the original

3#/3I, with a similar approach as Samuroff et al. (2020b). The presence of
the outliers increases the II contribution (dash-dotted magenta lines): this

is particular prominent at low redshift, for highly separated I−bins, where
the outliers introduce correlated pairs between bins that would otherwise

been uncorrelated.
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3| KiDS-1000: Constraints on
the intrinsic alignment of
luminous red galaxies

M.C Fortuna, H. Hoekstra, H. Johnston, M. Vakili, A. Kannawadi, C.

Georgiou, B. Joachimi, A. H. Wright, M. Asgari, M. Bilicki, C. Heymans,

H. Hildebrandt, K. Kuijken, M. Von Wietersheim-Kramsta 2021, A&A,
654, A76

We constrain the luminosity and redshift dependence of the intrinsic alignment (IA) of a

nearly volume-limited sample of luminous red galaxies selected from the fourth public data

release of the Kilo-Degree Survey (KiDS-1000). To measure the shapes of the galaxies, we

used two complementary algorithms, finding consistent IA measurements for the overlap-

ping galaxy sample. The global significance of IA detection across our two independent

luminous red galaxy samples, with our favoured method of shape estimation, is ∼ 10.7f.
We find no significant dependence with redshift of the IA signal in the range 0.2 < I < 0.8,
nor a dependence with luminosity below !A . 2.9 × 1010ℎ−2!A ,�. Above this luminosity,

however, we find that the IA signal increases as a power law, although our results are also

compatible with linear growth within the current uncertainties. This behaviour motivates

the use of a broken power lawmodel when accounting for the luminosity dependence of IA

contamination in cosmic shear studies.
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3.1 Introduction

Galaxies that form close to a matter over-density are affected by the tide

induced by the quadrupole of the surrounding gravitational field, and the

distribution of stars will adjust accordingly. This process, which starts dur-

ing the initial stages of galaxy formation (Catelan et al. 2001), can persist

over their entire lifetime, as galaxies have continuous gravitational inter-

actions with the surroundingmatter (e.g. Bhowmick et al. 2020), and leads

to the intrinsic alignment (IA) of galaxies.

This tendency of neighbouring galaxy pairs to have a similar orientation

of their intrinsic shapes is an important contaminant forweak gravitational

lensing measurements (e.g. Joachimi et al. 2015). The matter distribution

along the line-of-sight distorts the images of background galaxies, resulting

in apparent correlations in their shapes. Intrinsic alignment contributes to

the observed correlations, complicating the interpretation. To infer unbi-

ased cosmological parameter estimates it is therefore crucial to account for

the IA contribution. This is particularly important in the light of future sur-

veys, such as Euclid1 (Laureijs et al. 2011) and the Large Synoptic Survey

Telescope (LSST)2 at the Vera C. Rubin Observatory (Abell et al. 2009),

which aim to constrain the cosmological parameters with sub-percent ac-

curacy (for a forecast of the IA impact on current and upcoming surveys

see Kirk et al. 2010; Krause et al. 2016, among others). Some recent re-

sults on current weak lensing studies are available in, for example, Aihara

et al. (2018); Asgari et al. (2021); DES Collaboration et al. (2021).

To provide informative priors to lensing studies, it is essential to learn

as much as possible from direct observations of IA. It is, however, also im-

portant that such results can be related to the properties of galaxies that

give rise to the alignment signal in cosmic shear surveys (Fortuna et al.

2021a). Intrinsic alignment studies are typically limited to relatively bright

galaxies, which often sit at the centre of their own group or cluster, and it

is thus possible to connect their alignment to the underlying dark matter

halo alignment via analytic models (Hirata & Seljak 2004). The picture

becomes more complicated when considering samples that contain a sig-

nificant fraction of satellite galaxies: The alignment of satellites arises as a

result of the continuous torque exercised by the intra-halo tidal fields while

the satellite orbits inside the halo (Pereira et al. 2008; Pereira & Bryan

2010). This leads to a radial alignment, which also depends on the galaxy

1https://www.euclid-ec.org
2https://www.lsst.org

https://www.euclid-ec.org
https://www.lsst.org


3.1 Introduction 79

distance from the centre of the halo (Georgiou et al. 2019b). At the same

time, satellites fall into halos through the filaments of the large-scale struc-

ture, and this persists as an anisotropic distribution within the halo, which

has been detected both in simulations (Knebe et al. 2004; Zentner et al.

2005) and observations (West & Blakeslee 2000; Bailin et al. 2008; Huang

et al. 2016; Johnston et al. 2019; Georgiou et al. 2019b). The combina-

tion of these two effects complicates the picture. At small scales, where the

satellite contribution is expected to be important, their signal may be de-

scribed using a halo model formalism (Schneider & Bridle 2010; Fortuna

et al. 2021a), but their contribution to IA on large scales remains poorly

constrained (Johnston et al. 2019); although it is expected that they are

not aligned, they do affect the inferred amplitude because they contribute

to the overall mix of galaxies. This prevents a straightforward interpreta-

tion of any secondary sample dependence of the IA signal sourced by the

central galaxy population, such as the dependence on luminosity or colour,

in mixed samples where the fraction of satellites is relevant.

Observational studies have founddiscordant results regarding the pres-

ence of a luminosity dependence of the IA signal, with the bright end being

well described by a steep power law with index ∼ 1.2 (Hirata et al. 2007;
Joachimi et al. 2011; Singh et al. 2015), while less luminous galaxies do not

show any significant dependence of the IA signal with luminosity (John-

ston et al. 2019). A recent investigation using hydrodynamic simulations

by Samuroff et al. (2020a) supports a flatter slope, in agreementwith John-

ston et al. (2019) and Fortuna et al. (2021a) at low luminosities but in ten-

sion with previous studies that probe more luminous galaxies. The inter-

pretation of these results is also affected by the presence of satellites, whose

fraction varies with luminosity and depends on the specific selection func-

tion of the data. At low redshift, a cosmic shear survey is dominated by

faint galaxies, and improving our understanding of the IA signal at low lu-

minosities is one of the most urgent questions for IA studies.

Another relevant aspect that is often neglected is the dependence of IA

on the shapemeasurement method (Singh &Mandelbaum 2016). The ten-

dency to align in the direction of the surrounding tidal field is a function

of galaxy scale (Georgiou et al. 2019b), with the outermost parts – which

are more weakly gravitationally locked to the galaxy – showing a more se-

vere twist. It increases the IA signal associated with shapes measured via

algorithms that assign more importance to the galaxy outskirts. In con-

trast, lensing studies typically prefer shape methods that give more weight

to the inner part of a galaxy. Accounting for this discrepancy is potentially
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relevant for future cosmic shear studies.

In this work we focus on investigating the luminosity dependence of

the IA signal in the least constrained regime, "A & −22. We employ two

different samples, which differ in mean luminosity and number density.

We limit the analysis to the large-scale alignment, for which a theoreti-

cal framework is already available and where the luminosity dependence

is known to play a crucial role (Fortuna et al. 2021a). We also provide es-

timates of the satellite fractions present in our samples in order to guide

future work on the modelling of satellite alignment at large scales. We also

explore the dependence of our signal on the shapemeasurement algorithm

used to create the shape catalogue. We compare the signal as measured

by two complementary algorithms: DEIMOS (DEconvolution In MOment

Space; Melchior et al. 2011), which has been widely used in IA studies

(Georgiou et al. 2019a; Johnston et al. 2019; Georgiou et al. 2019b), and

lensfit (Miller et al. 2007, 2013) which has been used for the cosmologi-

cal analysis of the Canada-France-Hawaii Telescope Lensing Survey (Hey-

mans et al. 2013, CFHTLenS;) and the Kilo-Degree Survey (KiDS; see As-

gari et al. 2021, and references therein).

One of the main limitations for measuring IA is the necessity of simul-

taneously relying on high-quality images and precise redshifts to properly

identify physically close pairs of galaxies that share the same gravitational

tidal shear. Wide field image surveys provide high-quality images, but the

uncertainty in the photometric redshifts is too large for useful IA measure-

ments. Fortunately, using a specific selection in colours, it is possible to

obtain a sub-sample of galaxies with more precise photometric redshifts:

the luminous red galaxies (LRGs). At any given redshift, LRGs populate a

well-defined region in the colour-magnitude diagram, known as the red-

sequence ridgeline. Using this unique property, it is possible to design a

specific algorithm to select LRGs in photometric surveys, which results in

both precise and accurate redshifts (Rozo et al. 2016; Vakili et al. 2019,

2020). Luminous red galaxies have also been shown to be strongly affected

by the surrounding tidal fields, making them an extremely suitable sample

for exploring the behaviour of IA at different redshifts and as a function of

secondary galaxy properties, such as luminosity and type (central or satel-

lites).

Joachimi et al. (2011) first studied the IA signal of an LRG sample with

photometric redshifts. In this paper we follow their main approach but use

a catalogue of LRGs selected by Vakili et al. (2020) using the KiDS fourth

public data release (KiDS-1000 Kuijken et al. 2019).
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The paper is structured as follows. In Sect. 3.2 we describe our data

and the characteristics of our two main samples. In Sect. 3.3 we introduce

the two shapemeasurementmethods employed in the analysis and present

the strategy adopted to calibrate the bias in the measured shapes. Section

3.4 presents the estimators we use to extract the signal from the data, while

Sect. 3.5 illustrates the theoretical framework we rely on when modelling

the signal: the way the model accounts for the use of photometric redshifts

as well as the way we account for astrophysical contaminants. Finally, we

present our main results in Sect. 5.6 and conclude in Sect. 4.8.

Throughout the paper, we assume a flat Λ cold dark matter cosmology

with ℎ = 0.7,Ωm = 0.25,Ωb = 0.044, f8 = 0.8, and =s = 0.96.

3.2 KiDS

The Kilo-Degree Survey is a multi-band imaging survey designed for weak

lensing studies, currently at its fourth data release (KiDS-1000; Kuijken

et al. 2019). The data are obtained with the OmegaCAM instrument (Kui-

jken 2011) on the VLT Survey Telescope (VST; Capaccioli et al. 2012). This

combination of telescope and camera was designed specifically to produce

high-quality images in the D6A8 filters, with best seeing-conditions in the

A−band, and a mean magnitude limit of ∼ 25 (5f in a 2′′ aperture). These
measurements are combined with results from the VISTA Kilo-degree IN-

frared Galaxy survey (VIKING; Edge et al. 2013), which surveyed the same

area in five infrared bands (/.�� s). This resulted in high-quality pho-
tometry in nine bands across approximately 1000 deg2 imaged by the fourth
data release3. The VIKINGdata are important for the LRG selection at high

redshift (Vakili et al. 2020): the / band is included in the red-sequence

template and improves the constraints on the redshift of the high-redshift

galaxies, while the  s band allows for a clean separation between galaxies
and stars in the (A −  s) − (A − I) colour-colour space.

3.2.1 The LRG sample

Red-sequence galaxies are characterised by a tight colour-redshift relation,

so that at any given redshift they follow a narrow ridgeline in the colour-

magnitude space. This relation can be exploited to select red galaxies from

photometric data and obtain precise photometric redshifts. Here we use

the catalogue of LRGs presented inVakili et al. (2020). It uses a variation of

3The survey was recently completed, imaging a final total of 1350 deg2.
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Figure 3.1: Photometric redshift distributions for our density (all) and shape catalogues
(lensfit and DEIMOS; see text for details). The orange histograms show the distribution for
the dense samples, which is limited to Iphot < 0.6, whereas the luminous sample (green) is
restricted to Iphot < 0.8.

the redMagiC algorithm (Rykoff et al. 2014) to select LRGs from the KiDS-

1000 data. As detailed in Vakili et al. (2019) and Vakili et al. (2020), the

red-sequence template is calibrated using the regions of KiDS that overlap

with a number of spectroscopic surveys: SDSS DR13 (Albareti et al. 2017),

2dFLenS (Blake et al. 2016), GAMA (Driver et al. 2011), together with the

GAMA G10 region, which overlaps with COSMOS (Davies et al. 2015).

The algorithm is designed to return a sample of LRGs with a constant

comovingnumber density. It achieves this by imposing a redshift-dependent

magnitude cut that depends on <
pivot
A (I), the characteristic A-band magni-

tude of the Schechter (1976) function, assuming a faint-end slope U = 1
(for more details, see Vakili et al. 2019, sect. 3.1). We use this to define two

samples that differ from each other in terms of their minimum luminosity

relative to the luminosity !pivot(I). We refer to them as our luminous sam-
ple (high luminosity, low number density, !min/!pivot(I) = 1) and dense
sample (lower luminosity, higher number density, !min/!pivot(I) = 0.5).
To ensure that the two samples are separate, we removed the galaxies in

the dense sample that also belong to the luminous one. However, this does
not mean they do not overlap in their physical properties. In particular,
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Figure 3.2: The magnitude distributions of the samples used in the analysis. Left panel:

Histograms of the apparent magnitude, MAG_AUTO in the A-band for the galaxies in the dense
(orange lines) and luminous (green lines) samples with shapes measured by lensfit (darker
colours) and DEIMOS (lighter colours). Right panel: Histograms of the absolute magni-
tudes in the A-band ( + 4 corrected) for the same samples.

they overlap partially in luminosity, a feature that we will exploit later in

the paper.

As shown inFig. 3.1, the two samples also spandifferent redshift ranges.

The luminous sample extends from I = 0.2 to I = 0.8. After applying a
conservative mask to select only objects with a high probability to be red-

sequence galaxies (corresponding to objects with a clear separation from

the star sequence in the colour-colour diagram), we are left with 117 001
galaxies, which comprise our density sample. By density sample—not to be

confused with the dense sample described above—we refer to the sample
used to trace galaxy positions, as opposed to the shape sample, which is the

sample used for the measurement of galaxy orientations and is composed

by the galaxies of the corresponding density sample for which a given shape

measurement algorithm is able to measure the galaxy shape. The density

and shape samples used in this analysis are visible in Fig. 3.1, where the

density samples of the luminous and dense samples are referred to as ‘all’
galaxies. The dense sample is obtained with the same strategy, but we fur-
ther impose I < 0.6 to ensure the completeness and purity of the sample
(see Fig. 4 in Vakili et al. (2020)). This leads to a final sample of 173 445
galaxies. As shown in Vakili et al. (2020), the redshift errors are well de-

scribed by a Student’s C−distribution. The width of the distribution in-

creases slightly with redshift, with typical values around fI ∼ 0.014−0.019.
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For further details on the sample selection and redshift estimation, we refer

the interested reader to Vakili et al. (2020).

We infer galaxy absolute magnitudes using Lephare4 (Arnouts & Ilbert

2011), assuming the dust extinction law from (Calzetti et al. 1994) and the

stellar population synthesismodel fromBruzual &Charlot (2003). We cor-

rect our magnitudes to I = 0; the K-correction is provided by Lephare and
the correction for the evolution of the stellar populations (4−correction) is
computed with the python package EzGal5 (Mancone & Gonzalez 2012),

assuming Salpeter initial mass function (Chabrier 2003) and a single star

formation burst at I = 3. These corrections are based on the magnitudes
used to define the colours (MAG_GAAP), which are measured using Gaussian
apertures (Kuijken et al. 2019). Although ideal for colour estimates, these

underestimate the flux and should not be used to compute the luminosity.

For that purpose we correct6 them using the Kron-like MAG_AUTOmeasured
from the A-band images by SExtractor (Bertin & Arnouts 1996).

The left panel of Fig. 3.2 shows the distribution in apparent magnitude

MAG_AUTO for galaxies in the dense and luminous samples for which shapes
were determined by lensfit or DEIMOS. In Sect. 3.3 we describe the two

shape measurement methods and explain the difference in their number

counts. We note that the LRGs are much brighter than the limiting mag-

nitude of KiDS in the A-band. The corresponding distributions in absolute

magnitude in the rest-frame A filter, K+4 corrected to I = 0, are presented
in the right panel of Fig. 3.2. This shows that the dense sample overlaps
somewhat with the luminous sample in terms of luminosity, as a conse-
quence of the photometric redshift uncertainty7.

4https://www.cfht.hawaii.edu/~arnouts/LEPHARE/lephare.html
5http://www.baryons.org/ezgal
6The total flux in the G filter can be computed using <G = MAG_AUTOA + (MAG_GAAPG −

MAG_GAAPA ), which implicitly assumes that colour gradients are negligible.
7The selection through the redshift-dependent apparent magnitude cut results in an

overlap in apparent magnitudes of the dense and luminous samples. Because the cut is
redshift-dependent, this implies a threshold in luminosity: In the case of perfect redshifts,

this would result in a disjoint sample, becausewe removed the galaxies from the dense sam-
ple that overlap with the luminous one. The photometric redshift uncertainty, however,
assigns to galaxies with the same apparent magnitude different luminosities, and thus a

portion of the dense sample extends above the luminosity threshold of the luminous sam-
ple.

https://www.cfht.hawaii.edu/~arnouts/LEPHARE/lephare.html
http://www.baryons.org/ezgal
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3.2.2 Satellite galaxy fraction estimation

Observations suggest that satellite galaxies are onlyweakly aligned (see e.g.

Georgiou et al. 2019b, for recent constraints) and thus suppress the IA sig-

nal at large scales. We do not take this into account in our analysis but

provide here an estimate of the fraction of satellites we expect in our sam-

ples. Such information will be useful for future modelling studies.

We used the publicly available G3GGal and G3GFoFGroup catalogues
(Robotham et al. 2011) from the GAMA survey (Driver et al. 2009, 2011;

Liske et al. 2015). Since KiDS overlaps with GAMA, these catalogues pro-

vide group information for a subset of our galaxies, obtainedwith aFriends-

of-Friends algorithm. We cross-matched our LRG sampleswith the G3GGal
catalogue and selected galaxies with I < 0.21 (I < 0.32), which provide a
roughly volume-complete match to the dense (luminous) sample. With

the information in both group catalogues, we identify both the brightest

group galaxies and ungrouped galaxies as centrals, and the rest as satel-

lites. With this strategy, we obtain 5sat = 0.34 for our dense×GAMA sample
and 5sat = 0.23 for the luminous×GAMA8. Since our samples are selected
to resemble the same galaxy populations at different redshifts, these esti-

mates should be fairly representative beyond the redshift range probed by

our direct comparison.

3.3 Shape measurements

In addition to precise redshifts, a successful IA measurement requires ac-

curate shape measurements. In this work, we compare two different al-

gorithms, DEIMOS and lensfit both in terms of their ability to recover re-

liable ellipticity measurements and the resulting IA signal. Exploring the

dependence of the IA signal on the shape measurement algorithm is im-

portant if one aims to provide informative priors to lensing studies (Singh

& Mandelbaum 2016). Both algorithms have been used to analyse KiDS

data: DEIMOS to provide the shape catalogue (Georgiou et al. 2019a) for a

number of IA studies, while lensfit was used for cosmic shear analyses (see

Giblin et al. 2021, for the most recent shape measurements).

8These estimates refer to the full samples, but should be representative for the shape

samples as well.
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3.3.1 DEIMOS

DEIMOS (Melchior et al. 2011) is a moment-based shape measurement al-

gorithm designed to measure the moments of the surface brightness dis-

tribution from an image, which are subsequently used to estimate the el-

lipticity. The main features of DEIMOS are its rigorous treatment of the

PSF moments to arbitrary order, the lack of model assumptions and the

flexibility in changing the size of the weight function so that it is possible

to assign more importance to different parts of a galaxy while performing

the shape measurement (bulge or outskirts).

The unweighted moments of the surface brightness� (®G) are defined as

&8 9 ≡ {�}8 9 =
∫

� (®G) G8H 9 dG dH , (3.1)

where (G, H) are the Cartesian coordinates with origin at the galaxy’s cen-
troid. The complex ellipticity is then defined in terms of the second-order

moments as

n ≡ n1 + in2 =
Q20 − Q02 + 2i Q11

Q20 + Q02 + 2
√

Q20 Q02 − Q2
11

. (3.2)

In practice, unweighted moments cannot be used because of noise in

the images, and weighted moments have to be employed instead. We will

return to this issue later. Moreover, the galaxy images are smeared and

distorted by the atmospheric blurring and the telescope optics, so that the

observed image, �∗, is convolved with the PSF kernel %(®G),

�∗(®G) =
∫

� (®G ′) %(®G − ®G ′) d®G ′ . (3.3)

TheDEIMOS algorithm estimates the unweightedmoments by correct-

ing the observed weighted moments of the galaxy surface brightness for

the convolution by the PSF. The underlying mathematical framework is

a deconvolution in moment space. In order to measure the moments in

Eq. (3.1) we then need to deconvolve them. This can easily be achieved in

Fourier space, where the convolution becomes a product. Using theCauchy

product, we can write (Melchior et al. 2011):

{�∗}8 9 =
8∑
:

9∑
;

(
8

:

) (
9

;

)
{�}:;{%}8−:, 9−; , (3.4)
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which shows that the (8 + 9)-order convolved moments are determined by
the same- or lower-order moments of the galaxy and the PSF kernel. The

deconvolution procedure to estimate the galaxy moments is to invert the

above hierarchical system of equations, starting from the zeroth order.

As mentioned above, it is necessary to introduce a weight function to

avoid noise dominating the second-ordermoments outside the galaxy light

profile. In this work, we adopt an elliptical Gaussian weight function with

size Awf = Aiso, where Aiso is the isophotal radius, defined as Aiso =
√
�iso/c,

following Georgiou et al. (2019a). The area �iso of the galaxy’s isophote is
computed using the ISOAREA_IMAGEby SExtractor (Bertin&Arnouts 1996).
The shape measurement procedure is the same as described in Georgiou

et al. (2019a) and we point the interested reader to their Section 2 for a

detailed description of the algorithm. In Appendix A1 we report our anal-

ysis of the measured shape bias for different setups, which led to our final

choice reported above.

UsingDEIMOS,we successfullymeasured the shapes of 96863 galaxies

from the luminous sample, ∼ 83% of the corresponding density sample,

and 152832 shapes from the dense sample, roughly ∼ 88% of its density

sample. The shape measurements mainly fail9 for the faintest galaxies in

the sample.

3.3.2 lensfit

The second shape catalogue is obtained using the self-calibrating version

of lensfit (Miller et al. 2013), described in more detail in Fenech Conti

et al. (2017). It is a likelihood-based model-fitting method that fits a PSF-

convolved two-component bulge and disk galaxy model. This is applied si-

multaneously to the multiple exposures in the KiDS-1000 A-band imaging,

to get an ellipticity estimate for each galaxy.

lensfit provides shapes for 84 785 galaxies from the luminous sample
(72% of the density sample), and for 121 500 galaxies from the dense sam-
ple (70% of the density sample). The lower completeness with respect to

DEIMOS is largely explained by the fact that lensfit has been optimised for

cosmic shear studies, where the signal ismaximised for high-redshift galax-

ies, which are typically small and faint. Whilst lensfit could determine ellip-

ticity measurements for the large bright galaxies with MAG_AUTO < 20, this
model-fitting algorithmbecomes prohibitively slow given the large number

9We only considered shapes with flag_DEIMOS==0000, corresponding tomeasurements
that do not raise any flag (see Georgiou et al. 2019a).
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of pixels that these bright galaxies span. Therefore, the lensfit catalogue

only contains galaxies fainter than MAG_AUTO > 20 (hence the sharp cut-off
in apparent magnitude in Fig. 3.2). It performs better than DEIMOS for

relatively faint and low signal-to-noise (S/N) galaxies. As these are prefer-

entially found at higher redshifts, this also explains the different redshift

distributions, as illustrated in Fig. 3.1.

3.3.3 Image simulations

We want to measure the shapes of galaxies from images that are corrupted

by noise and blurred by the atmosphere and telescope optics. These bias

the inferred shapes and thus need to be carefully corrected for. Although

both DEIMOS and lensfit are designed to do so, residual biases remain.

These can be expressed as (Heymans et al. 2006)

nobs
8 = (1 + <8)n true

8 + 28 , (3.5)

with 8 ∈ {1, 2} the ellipticity components introduced in 3.2. Here n true
8

is

the true ellipticity, while nobs
8

is the output of the shape measurement algo-

rithm; <8 is the multiplicative bias and 28 is the additive bias. Differently

from what is done in lensing studies (e.g. Kannawadi et al. 2019), here we

calibrated the ellipticity rather than the shear. Our aim is to determine the

biases in our shape measurements using realistic image simulations, with

a precision that is better than the statistical error on our IA signal.

We stress that although it is important to start with an algorithm that

does not lead to a large bias in the first place, what matters the most is to

calibrate the residual bias on realistic image simulations in order to prop-

erly account for galaxy blending and thedifferent observing conditions (Hoek-

stra et al. 2017; Kannawadi et al. 2019; Samuroff et al. 2018; MacCrann

et al. 2020). We use dedicated image simulations generated with the COl-

lege pipeline (COSMOS-like lensing emulation of ground experiments; Kan-

nawadi et al. 2019). These simulations reproduce the observations from

the Cosmic Evolution Survey (COSMOS, Scoville et al. 2007), for which

we have both KiDS imaging (KiDS-COSMOS) and deeper images from the

Hubble Space Telescope (HST). We use the HST observations to generate

our input catalogue and simulate the KiDS observations by varying the ob-

servation conditions. Under the assumption that COSMOS is representa-

tive of our galaxy sample (in practice we only require that it covers the S/N

and size parameter space, while we do not need the galaxy distributions to

match) we study the <−bias properties of the LRGs in our KiDS-COSMOS
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Figure 3.3: Average multiplicative bias, < = (<n1 + <n2 )/2, as a function of (a) the galaxy
resolution, ', and (b) the signal-to-noise ratio, S/N. Each point is measured on the same
number of simulated galaxies and the error bars are estimated using bootstraps. For a com-
parison we also display in the background the weighted distribution of the two definitions of
' and the S/N in the real data for the dense shape samples (pink: ;4=Bfit; blue: DEIMOS).
The solid lines show the polynomial fit to <(') and <(S/N), which guided the construction
of the two-dimensional bias surface.
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field and use the bias model obtained from this set of galaxies to calibrate

our full sample.

The image simulations used in this work differ slightly from those pre-

sented in Kannawadi et al. (2019) because we required a larger number of

simulated LRGs for our calibration. To achieve this, we adopted the ZEST

catalogue (Zurich Estimator of Structural Type; Scarlata et al. 2007; Sar-

gent et al. 2007) for the input galaxy parameters. We generated 52 KiDS-

like images by varying the observing conditions and rotating the galaxies.

We used 13 different PSF sets and four rotations per each image. Since our

underlying galaxy selection is identical for both the lensfit and DEIMOS

shape catalogues, we employed the same suite of simulations for both cal-

ibrations.

The shape measurement bias depends on the size, S/N, radial surface

brightness profile and ellipticity of the galaxy, as well as the observing con-

ditions. Of these, the size and S/N are the most relevant, and we use these

to capture the dependence of the bias for our set of simulated galaxies.

Rather than the intrinsic size of the galaxy, we use a proxy for how well

it is resolved: ' quantifies the relative size of the PSF compared to the size

of the galaxy. Here, we adopt two slightly different definitions, depending

on the shape algorithm employed. For DEIMOS we use

'DEIMOS = 1 − )
PSF

)gal , (3.6)

where )PSF = &PSF
20 + &PSF

02 and )gal = &
∗gal
20 + &∗gal

02 , where &
∗gal
8 9

are the

unweighted moments of the PSF-convolved surface brightness profile (see

Eqs. 3.4 and 3.1). In the case of ;4=Bfit we use

';4=Bfit = 1 −
A2

PSF(
A2

ab + A2
PSF

) , (3.7)

where A2
PSF =

√
%11%22 − %2

12 and Aab = Ae
√
@. Here, %8 9 are the ;4=Bfit PSF

weighted quadrupole moments (see Eq. (2) in Giblin et al. 2021), mea-

sured with a circular Gaussian function of size 2.5 pixels; Ae is the half-light
radius measured along the major axis of the best-fit elliptical profile by

;4=Bfit, which is an estimate of the true galaxy size before PSF-convolution,

while @ is the axis ratio, such that Aab is the azimuthally averaged size of the
galaxy. As we can see, ' can in practice only assume values between 0 and

1, where 1 corresponds to galaxies with sizes that are much larger than the

PSF.
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We evaluate the multiplicative bias < in bins of S/N and ' that con-

tain an equal number of galaxies and the error bars are computed using

500 bootstrap realisations. The resulting biases are presented in Fig. 3.3

for both lensfit and DEIMOS. We find that the two components n1,2 show
similar dependencies, and, therefore, we calibrate the bias for the two com-

ponents jointly. The additive bias for both components is consistent with

zero, and thus we do not consider it further in our calibration.

For both<(S/N) and<('), we find that lensfit has a small bias and thus
also our correction is small; in general, it performs better than DEIMOS

for poorly resolved galaxies and low S/N. It is, however, prohibitively slow

when measuring shapes for large galaxies, limiting the lensfit sample to

galaxies with <A > 20. In contrast, DEIMOS shows a large bias for low
values of ': the galaxy size correlates with its ellipticity, and we find that

removing the highly elliptical galaxies significantly reduces the bias. How-

ever, once we calibrate the shapes of those galaxies, we recover a very sim-

ilar signal for the full shape sample and the one cut in ellipticity. Simi-

larly, we have also tested that adding inverse-variance weights to account

for these noisy galaxies does not significantly improve our signal. This mo-

tivates our choice to keep all galaxies in our sample and not to introduce

additional weighting; we assume that the measurements are dominated by

shape noise only.

We can see that<(') for bothDEIMOS and lensfit is well described by a
polynomial curve, which we truncate at degree 3 and 4, respectively, while

<(S/N) is well described by the expansion: 3 (S/N) = 31/
√

S/N + 32/(S/N).
We combine the two individual bias dependencies into a single bias surface

as detailed in Appendix A1. The specific functional forms for the two shape

methods differ to better adapt the surface to our observed bias. We use

these empirical relations to infer the <-bias associated with each galaxy,

given its S/N and '.

To ensure that our empirical correction performs well on our sample,

we selected sets of galaxies from the image simulations that resemble our

LRG samples by reproducing the observed distributions in S/N and '. We

measured the residual biases for these samples, defined as the difference

in the estimated<-bias (inferred using ourmodel for the bias) and the bias

measured directly from the simulations for the given set of galaxies. For the

DEIMOS shapemethod, we find an average residual of−0.002±0.007 for the
dense-like sample, while this is −0.002 ± 0.008 for the luminous-like sam-
ple. Similarly, in the case of lensfit the residuals for the luminous-like and
dense-like galaxies are, respectively, −0.0014±0.0013 and −0.0019±0.0020.
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Figure 3.4: Histogram of the difference of the n1 component of the ellipticity measured by
the two shape measurement algorithms, lensfit and DEIMOS, on a common sub-sample of
galaxies, after applying the <−bias correction as described in the text. The n2 component
shows the same behaviour. The distribution is more peaked than a Gaussian (red dashed line)
and is best described by a Student’s C−distribution with a = 4.3, and a width f = 0.08 with
zero mean (black solid line).

Aswewill see later, this ismuch smaller than the uncertainty in the IAmea-

surements: the average bias introduced by the shapemeasurement process

is subdominant and does not affect our best estimate of the IA amplitude.

The LRGs are relatively bright and we thus expect the shape measure-

ments to be shape noise-dominated. This also implies that the DEIMOS

and lensfitmeasurements are correlated. To quantify this, we show the dis-

tribution of the difference between the <−corrected ellipticities measured
by the two algorithms in Fig. 3.4. The distribution is more peaked than a

Gaussian, and well described by a Student’s C−distribution centred on zero,
with a = 4.30 (degrees of freedom) and with scale parameter f = 0.08.
This is to be compared to the intrinsic ellipticity of galaxies, which is about

nrms = 0.12 based on DEIMOS measurements for galaxies with apparent
magnitude <A < 20. It is interesting to note that our sample is consider-
ably rounder than a typical cosmic shear sample, as expected for an LRG

sample (see for example van Uitert et al. 2012); this implies that it might

be affected differently by a weighting scheme in a lensing analysis. The

differences between the DEIMOS and lensfit measurements are caused by

differences in how each method deals with noise in the images.
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3.4 Correlation function measurements

Wemeasured the IA signal using the two-points statisticFg+, defined as the
projection along the line-of-sight of the cross-correlation between galaxy

positions and galaxy shapes. It measures the tendency of galaxies to point

in the direction of another galaxy as a function of their comoving trans-

verse separation, Ap, and comoving line-of-sight separation,Π. To quantify
the alignment signal in our data, we employed the estimator presented in

Mandelbaum et al. (2006)10,

b̂6+(Ap,Π) =
(+� − (+'D

'S'D
, (3.8)

where 'D and 'S are catalogues of random points designed to reproduce

the galaxy distribution of the density and shape samples, respectively. We

indicatewith� the density sample that provides the galaxy positions, while

(+ is the shape sample, such that the quantity

(+� =
∑
8≠ 9

W+(8 | 9), (3.9)

gives us the tangential shear component of the galaxy pair (8, 9), W+(8 | 9),
where 8 is extracted from the shape sample and 9 from the density sample.

W+, in turn, is defined as

W+(8 | 9) =
1
R<

[
n8 exp(−28q8 9)

]
, (3.10)

where< denotes the real part; n8 is the complex ellipticity associated with

the galaxy 8, n8 = n1,8 + 8n2,8, whose components 1,2 are measured by the
shapemeasurement algorithmspresented in Sect. 3.3; q8 9 is the polar angle

of the vector that connects the galaxy pair; R = mn/mW is the shear respon-
sivity and it quantifies by howmuch the ellipticity changes when a shear is

applied: for an ensemble of sources, R = 1 − n2
rms.

The galaxy clustering signal is computed with the standard estimator

(Landy & Szalay 1993),

b̂gg (Ap,Π) =
�� − 2�'� − '�'�

'�'�
. (3.11)

10Instead of normalising by 'S'D, we actually normalise by the density - randoms vs.
shapes pair count, 'D�S. This significantly speeds up the computation and has been tested
to have negligible impact (Johnston et al. 2019).
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To measure our clustering and IA signals, we used uniform random

samples that reproduce the KiDS footprint, accounting for the masked re-

gions; to these we assigned redshifts randomly extracted from the galaxy

unconditional photometric redshift distributions. For each sample, we con-

structed the random sample to match their redshift distribution.

To account for the spatial variation in the survey systematics, we ap-

plied weights to the galaxies when computing the signal, as discussed in

Vakili et al. (2020). These weights are designed to remove the systematic-

induced variation in the galaxy number density across the survey footprint.

For a detailed discussion of how the weights are generated and tested, we

refer to Sect. 4 in Vakili et al. (2020). To capture the variation in the survey

systematics along the line-of-sight, we split each sample into three redshift

bins and assigned the weights to those sub-samples. We tested that this

procedure does not induce a correlation between the galaxy weights and

the redshifts themselves. We also verified that the impact of the weights is

very small and can be neglected when considering the split in luminosity of

the samples (see Sect. 3.6.1). We applied such weights to both the density

and shape samples.

In this work, we measured the clustering and IA signals using an up-

dated version of the pipeline presented in Johnston et al. (2019), which

makes use of the publicly available software Treecorr (Jarvis et al. 2004)11

for clustering correlations. bg+ and bgg are then projected by integrating
over the line-of-sight component of the comoving separation, Π,

F̂g8 (Ap) =
∫ Πmax

−Πmax

dΠ b̂g8 (Ap,Π) 8 = {+, 6} . (3.12)

The largest scales probed in this analysis are limited by the effective

survey area (∼ 777 deg2). We set a maximum transverse separation of

60 ℎ−1Mpc and measure the signal in 10 logarithmically spaced bins, from
Ap,min = 0.2 ℎ−1Mpc.

We performed the measurements for three different setups: we adopt

Πmax = 120 ℎ−1Mpc as the fiducial case, but repeated the analysis forΠmax =

90 ℎ−1Mpc and Πmax = 180 ℎ−1Mpc (see Appendix A5). We always bin our

galaxies in equally spaced bins with ΔΠ = 10 ℎ−1Mpc. We observe an ex-

tended signal to Π > 180 ℎ−1Mpc, but the signal is comparable to the noise
at those distances.

11https://github.com/rmjarvis/TreeCorr

https://github.com/rmjarvis/TreeCorr
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Our choice of Πmax is conservative since the uncertainties in the photo-
metric redshifts are fI < 0.02(1 + I) for both the denseand luminous sam-
ples (Vakili et al. 2020), and if we chooseΠmax based on the 1f uncertainty
in the photometric redshifts (Joachimi et al. 2011), we could potentially re-

duce Πmax to 70 ℎ−1Mpc. However, this might be too optimistic given that
the error on fI increases with redshift. The choice of Πmax is motivated by
two opposite necessities: to maximise the S/N, we want to minimise the

amount of signal that we discard, whilst we also want to avoid adding un-

correlated pairs that would increase the noise. To find the best balance,

we calculate the S/N of our signal as a function of (Ap,Π) by dividing the
measured Fgg (Ap,Π) by the root-diagonal of the jackknife covariance. We

truncate at Πmax based on the 10 f detection, which roughly corresponds

to Πmax = 120 ℎ−1Mpc. In addition to these considerations, there is a fur-
ther motivation to limit the integral to modest line-of-sight separations: as

discussed in Appendix A3, the contamination from galaxy-galaxy lensing

has a shallower dependence on the line-of-sight separation; as we move

along the Π direction, we see an increase in the contamination with a mild

increase in the IA signal, until lensing dominates.

The error bars are computed via a delete-one jackknife re-sampling of

the observed volume. The covariance matrix is constructed as

Covjack. =
# − 1
#

#∑
U=1

(FU − F̄) (FU − F̄)>, (3.13)

where FU is the signal measured from jackknife sample U, while F̄ is the

average over # samples; > denotes the transpose of the vector.

The number of regions # is ultimately set by the size of the survey and

the scales we aim to probe. A maximum value of Ap = 60 ℎ−1Mpc corre-
sponds to an angular separation of ∼ 8 degrees (dense sample) and ∼ 6
degrees (luminous sample) at the lowest redshifts probed in the analysis.
However, to increase the number of jackknife regions, we decided to set the

minimum angular scale to 5 degrees, which strictly satisfies our require-

ment only for I & 0.2. This is motivated by the fact that the majority of
our galaxies are at high redshift and hence only . 5% of our galaxies have

unreliable error estimates in the last Ap−bin. The total number of jackknife
regions that we are able to obtain for our samples is # = 37. We corrected

our inverse covariance matrices, which enter into our likelihood estima-

tions, as recommended in Hartlap et al. (2007): because of the presence of

noise, the inverse of a covariance matrix obtained from a finite number of

jackknife (or bootstrap) realisations is a biased estimator of the true inverse
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covariance matrix.

3.5 Modelling

The linear alignment model (Catelan et al. 2001; Hirata & Seljak 2004)

predicts a linear relation between the contribution to the shear induced

by IA and the quadrupole of the gravitational field responsible of the tidal

effect. This can be expressed as

WI = (WI
+, W

I
×) = − �1

4c� (m2
G + m2

H , mGmH)Φp , (3.14)

where the partial derivatives are with respect to comoving coordinates and

provide the tangential and cross components of the shear with respect to

the G-axis;Φp is the gravitational potential at the moment of galaxy forma-
tion, assumed to take place during thematter-dominated era (Catelan et al.

2001); �1 is a normalisation constant and � is the gravitational constant.

Using Eq. (3.14), by correlating the intrinsic shearwith itself or with the

matter density field X, we can construct the relevant equations for the IA

correlation functions (Hirata & Seljak 2004). In Fourier space, the matter

density-shear power spectrum (XI) becomes

%LA
XI (:, I) = �IA�1dc

Ω<

� (I) %
lin
XX (:, I) . (3.15)

Here, � (I) is the linear growth factor, normalised to unity at I = 0, dc is the
critical density of the Universe today, and %lin

XX
is the linear matter power

spectrum. We set �1 = 5 × 10−14ℎ−2"−1
� Mpc3 based on the IA amplitude

measured at low redshifts using SuperCOSMOS (Hartlap, Simon& Schnei-

der Bro), which is the standard normalisation for IA power spectra.

Galaxies are biased tracers of thematter density field, and at large scales

this relation is linear, Xg ∼ 1gX. We can thus relate the galaxy position–

intrinsic shear power spectrum to thematter density–intrinsic shear power

spectrum via the galaxy bias 1g:

%LA
gI (:, I) = 1g%

LA
XI (:, I) , (3.16)

which is the power spectrum of interest for our analysis.

A successful modification of the LA model replaces the linear matter

power spectrum in Eq. (3.15) with the non-linear one, to account for the

non-linearities arising at intermediate scales (Bridle & King 2007). This
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so-called NLAmodel was succesfully employed in a number of studies (e.g.

Blazek et al. 2011; Joachimi et al. 2011) and here we follow the same ap-

proach tomodel our signal. More sophisticated treatments of the IA signal,

which include the modelling of the mildly or fully non-linear scales, have

been developed in the last decade (Schneider & Bridle 2010; Blazek et al.

2019; Fortuna et al. 2021a), but given the scales probed in our analysis (see

Sect. 3.5.3) and the homogeneous characteristics of the galaxy population

studied, the NLAmodel provides a sufficient description for this work. Un-

less stated otherwise, in the following we always assume the NLAmodel as

our reference choice. To generate the linear matter power spectrum we

use CAMB12 (Lewis et al. 2000; Lewis & Bridle 2002), while the non-linear

modifications are computed using Halofit (Smith et al. 2002) with the im-

plementation presented in Takahashi et al. (2012). In the rest of the paper,

we simply refer to the non-linear matter power spectrum as %XX (:, I).

3.5.1 Incorporating the photometric redshift uncertainty
into the model

The use of photometric redshifts results in an uncertainty in the estimated

distance of the galaxies, which has to be included in the model. In par-

ticular, if we express the correlation function bgI in terms of the two com-
ponents of the galaxy separation vector r, (Ap,Π), we can map the redshift
probability distribution into the probability that the true values of Ap andΠ
correspond to their photometric estimates. Here, we follow the approach

derived in Joachimi et al. (2011) and use their approximated expression,

b
ph
gI (Āp, Π̄, Īm) =

∫ dℓℓ
2c �2

(
ℓ\ (Āp, Īm)

)
�gI

(
ℓ; Ī1( Īm, Π̄), Ī2( Īm, Π̄)

)
. (3.17)

The observables are: Ī1 and Ī2, the photometric redshift estimates of
the pair of galaxies for which we are measuring the correlation, and their

angular separation \. These can be related to (Āp, Π̄, Īm), through the ap-
proximate relations

Im =
1
2 (I1 + I2) , (3.18)

Ap ≈ \j(Im) , (3.19)

Π ≈ 2

� (Im) (I2 − I1) , (3.20)

12https://camb.info
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where j(Im) and � (Im) are, respectively, the comoving distance and the
Hubble parameter at redshift I<, and 2 is the speed of light.

The conditional redshift probability distributions are incorporated into

the angular power spectrum �gI, which can be expressed in terms of the
three-dimensional power spectrum %gI(:, I),

�gI(ℓ, Ī1, Ī2) =
∫ jhor

0
dj′ ?= (j

′ |j( Ī1))? n (j′ |j( Ī2))
j′2

× %gI

(
ℓ + 1/2
j′

, I(j′)
)

(3.21)

wherewe have implicitly assumed the flat-sky and Limber approximations,

and = and n indicate the density and shape sample respectively. ?(j′ |j)
are the conditional comoving distance probability distributions, which are

related to the redshift distributions via ?(j′ |j)dj = ?(I | Ī)dI. When com-

puting our predictions, we bin our photometric data and compute the cor-

responding ?(I | Ī) ≡ ?(Ispec |Iphot) per each bin; I1 and I2 in Eq. (3.18) cor-
responds to the mean values of the probability distribution with I1 being
the mean of the i-th bin and I2 of the j-th bin. In Appendix A2 we show the
redshift distributions entering our analysis. We refer the interested reader

to appendices A.2 and A.3 in Joachimi et al. (2011) for the full derivation of

equation 3.21. The exact same formalism can then be applied to the clus-

tering signal, where �gI → �gg, �2 → �0 and the redshift distributions are
those corresponding to the density sample.

The projected correlation functions Fg+ and F66 can then be obtained
as:

Fg+(Ap) =
∫

dΠ̄
∫

dImW( Īm)bph
gI (Āp, Π̄, Īm) (3.22)

and

Fgg (Ap) =
∫

dΠ̄
∫

dImW( Īm)bph
gg (Āp, Π̄, Īm) , (3.23)

where the redshift window functionW(I) is defined as (Mandelbaum et al.

2011):

W(I) =
?8 (I)? 9 (I)
j2(I)dj/dI

[∫
dI

?8 (I)? 9 (I)
j2(I)dj/dI

] −1
, (3.24)

where ?8, 9 (I) with 8, 9 ∈ (, � are now the unconditional redshift distribu-

tions for the shape and density samples, and j(I) is the comoving distance
to redshift I.
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3.5.2 Contamination to the signal

All possible two-point correlations between galaxy shapes and positions

contribute to the estimator inEq. (3.12). Following thenotation in Joachimi

& Bridle (2010), here we consider: the correlation between the intrinsic

shear and the galaxy position (g+), which is the quantity we aim to con-

strain; but also the correlation between gravitational shear and galaxy posi-

tion, sourced by the galaxy lensing of a background galaxy by a foreground

galaxy (gG); and the apparent modification of the galaxy number counts

due to the effect of lensing magnification, which affects both the correla-

tions with the intrinsic shear and the gravitational shear (mI and mG).

Among these effects, galaxy-galaxy lensing is the main contaminant to

our signal. While IA requires physically close galaxies, galaxy-galaxy lens-

ing occurs between galaxies at different redshifts. This implies that the

level of contamination depends on our ability to select close pairs of galax-

ies, which ultimately depends on the photometric redshift precision. For

this reason, the width and the tails of the redshift distributions play an im-

portant role in the amount of contamination. Since our ?(Ispec |Iphot) are
quite narrow (see Appendix A2) we do not expect this to be a major effect

in our data. Nevertheless, we fully model both lensing and magnification

effects, and account for them when interpreting the signal. We note that

the sign of the gI and gG terms are opposite, such that adding the lensing

to the model allows us to remove its suppressing contribution and capture

the true IA signal.

It is convenient to write the various correlations in terms of the pro-

jected angular power spectra: indicating with = the density sample (that

provides the galaxy positions) and with n the shape sample, we have

�
(8 9)
=n (ℓ) = � (8 9)

gI (ℓ) + � (8 9)
gG (ℓ) + � (8 9)

mI (ℓ) + � (8 9)
mG (ℓ) , (3.25)

where, in a flat cosmology, these read

�
(8 9)
gG (ℓ) = 16

∫ jhor

0
dj ?

(8)
= (j)@ ( 9)n (j)

j2 %XX

(
ℓ + 1/2
j

, j

)
, (3.26)

�
(8 9)
mI (ℓ) = 2(U (8) − 1)� (8 9)

IG (ℓ), (3.27)

and

�
(8 9)
mG (ℓ) = 2(U (8) − 1)� (8 9)

GG (ℓ) . (3.28)
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Here U (8) is the slope of the faint-end logarithmic luminosity function13.
The lensing weight function, @- , - ∈ {=, n} is defined as

@- (j) =
3�2

0Ω<

222
j

0(j)

∫ jhor

0
dj′?- (j′)

j′ − j
j′

. (3.29)

�
(8 9)
IG is the intrinsic-shear power spectrum. It models the correlation be-

tween the shearing of source galaxies by a foreground matter overdensity

and the simultaneous IA of galaxies located near that overdensity:

�
(8 9)
IG (ℓ) =

∫ jhor

0
dj ?

(8)
= (j)@ ( 9)n (j)

j2 %XI

(
ℓ + 1/2
j

, j

)
; (3.30)

�
(8 9)
GG is instead defined as:

�
(8 9)
GG (ℓ) =

∫ jhor

0
dj@

(8)
= (j)@ ( 9)n (j)

j2 %XX

(
ℓ + 1/2
j

, j

)
. (3.31)

We note that with respect to the usual shear power spectrum, we require

here that one of the samples refers to the density sample, =.

To account for these sources of contamination in the fit, we replace bgI
with bnn , which can be obtained from Eq. (3.25). The prediction for bobs

is then used to constrain the measured signal F̂g+. In Appendix A3 we ex-
pand further on the impact of lensing on our measurements, while in Ap-

pendix A4we describe our strategy tomeasure the values of U (8) in our data.

3.5.3 Likelihoods

Weperform the fits to the data using aMarkov ChainMonte Carlo (MCMC)

that samples the multi-dimensional parameter posterior distributions and

finds the set of parameters that maximise the likelihood. We assume a

Gaussian likelihood of the form L ∝ exp(−j2/2), where

j2 = j2
Fgg + j

2
Fg+ (3.32)

and we simultaneously fit for the galaxy bias, 1g and the IA amplitude, �IA.

13Formally, the magnification of the lensfit sample is also affected by the slope of the

luminosity function at the bright end of <A = 20. We ignore such complexity: we find

magnification to be a subdominant effect for the faint distant galaxies, thus the contribution

of low-redshift galaxies is expected to be negligible for our analysis.
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To correct for the effects of a partial-sky survey window, we also intro-

duce an integral constraint, IC, when modelling the clustering, signal,

Fgg → Fgg + IC . (3.33)

This term, which becomes important only on large scales, has the function

of capturing the bias that arises from a mis-estimation of the global mean

density (Roche & Eales 1999). We treat this term as a nuisance parameter,

such that our parameter vector reads

_ = {16, �IA; IC} . (3.34)

We limit our fits to the quasi-linear regime, Ap > 6 ℎ−1Mpc, to ensure
that the linear bias approximation is satisfied and the IA signal is well de-

scribed by the NLA model. To perform our fits, we make use of the Emcee

(Foreman-Mackey et al. 2013) package as implemented in the cosmology

software CosmoSIS14 (Zuntz et al. 2015). When analysing the chains, we

exclude the first 30% of samples for a burn-in phase.

3.6 Results

The left panels in Fig. 3.5 show themeasurements of the projected position-

shape correlation functionFg+ for the luminous (top panel) and dense (bot-
tom panel) samples. We present results for both the lensfit (dark green tri-

angles) and DEIMOS (light green squares) shape catalogues. As described

in Sect. 3.5.3, we simultaneously fit the IA and the clustering signals. We

show the resulting best-fit models to measurements with Ap > 6 ℎ−1Mpc
of Fg+ and Fgg as solid lines in the figures. The estimates from the two

shape measurement algorithms are fit independently, but given that the

corresponding clustering signal is the same, here we only show the best-fit

curve for theDEIMOS fit. The clusteringmeasurements use the full density

samples, and thus do not rely on a successful shape measurement.

We observe similar signals for the DEIMOS and lensfit samples, with

the lensfit measurements having a lower S/N, because of the lack of shape

measurements for galaxies with <A < 20. We note that we do not neces-

sarily expect to observe the same signal, because DEIMOS contains more

bright, low-redshift galaxies, whereas the lensfit sample includes fainter,

distant galaxies (see Figs. 3.1 and 3.2). If the alignment signal depends

14http://bitbucket.org/joezuntz/cosmosis/wiki/Home

http://bitbucket.org/joezuntz/cosmosis/wiki/Home
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Figure 3.6: Projected correlation function, Fg+, measured for the different cuts in luminosity
of the DEIMOS dense sample. The best-fit curves are plotted on top of the data points,
and the fits are performed for Ap > 6 ℎ−1Mpc. All but the yellow points have been slightly
offset horizontally; to better visualise the goodness of fit, the corresponding best-fit curves
have been displaced accordingly.

on luminosity or redshift, the two shape samples would give different sig-

nals. In Appendix A6 we restrict the comparison to the sample of galaxies

with shape measurements from both methods, and find that the average

difference 〈ApΔFg+〉 = 0.003 ± 0.13 is negligible, especially compared to the
amplitude of the IA signal quantified as 〈ApFg+〉 = 0.90 ± 0.17 (DEIMOS
shapes; see Appendix A6 for details).

We also show the models that provide the best-fit to the combined Fgg
and Fg+ measurements in Fig. 3.5, and report the values for the bias 1g
and IA amplitude �IA in Table 3.1. The results for DEIMOS and lensfit are

consistent.

Our constraints on the galaxy bias of the dense and luminous samples
are in broad agreement with the values presented in Vakili et al. (2020):

We find a larger bias for the luminous sample than for the dense one, as
expected by its higher luminosity and the higher redshift baseline.

3.6.1 Luminosity dependence

Previous studies of LRGs (Joachimi et al. 2011; Singh et al. 2015) have

found a significant dependence of their IA signal with luminosity, with
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more luminous galaxies showing stronger alignments. On average our LRG

sample probes somewhat lower luminosities than those earlier studies, but

the overlapwith these earlierworks also enables a direct comparison. Thanks

to the large range in luminosity it covers, the dense sample is particularly
suited to explore the dependence with luminosity. To do so, we use the

DEIMOS shape catalogue15 and split the dense LRG galaxies in five sub-

samples: D1, D2, and D3, correspond to the lowest three quartiles in lumi-
nosity; the remaining two, D4 and D5, are obtained by splitting the highest
luminosity quartile into two equally sized samples. The motivation to split

the quartile with the highest luminosities is that it encompasses a very large

range in luminosity, which complicates the interpretation if the signal de-

pends on luminosity (see below). Relevant details for the sub-samples are

listed in Table 3.1. We keep the dense and luminous samples separate, in
order to better isolate the effect of the luminosity dependence from any

redshift evolution of the sample itself. For instance, as listed in Table 3.1,

the mean redshift of the sub-samples increases somewhat from D1 to D5.
We cross-correlate theDEIMOSshape catalogues for the individual sub-

samples with the positions of galaxies in the full dense sample. In this

way, we can disentangle the luminosity dependence of the IA signal from

the luminosity dependence of the density tracer (brighter galaxies are typ-

ically found in denser environments). The measurements and the best-

fit models are presented in Fig. 3.6. In Table 3.1 we list the best-fit val-

ues for the galaxy bias 1g and IA amplitude �IA, as well as the reduced
j2, as before, using the measurements for Ap > 6 ℎ−1Mpc. We also show

the measurements in Fig. 3.7 as orange stars as a function of !/!0, where
!0 = 4.6 × 1010ℎ−2!�.

We repeat the same analysis for the luminous sample, which we divide
in three bins, with a similar bin refining approach as for the dense sam-
ple (in this case L1 contains half of the luminous galaxies, while L2 and
L3 the remaining quarters). The best-fit amplitudes for these samples are
reported in Table 3.1, and presented as green stars in Fig. 3.7. In the lumi-

nosity range where the luminous and dense samples overlap, we find the
results between the two samples to be compatible. The luminous sample
seems to show amore pronounced luminosity dependence compared to the

dense sample, which can either be an effect of being brighter overall (from
L1 to L3, !/!0 = 0.46, 0.64, 1.01) or due to the satellite fraction being lower
(see Sect. 3.2.2), or a combination of the two. We note that the measure-

15The internal cut at <A < 20 in lensfit makes it less suitable for this analysis, as we have
fewer galaxies at high luminosities.
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Figure 3.7: Luminosity dependence of the IA amplitude as measured by different observa-
tional studies (Joachimi et al. 2011; Singh et al. 2015; Johnston et al. 2019; Fortuna et al.
2021a); our new measurements on the LRG samples are shown as star markers. We provide
horizontal error bars to indicate that the measurement is performed on a bin in luminosity,
here plotted as the weighted standard deviation of the luminosity distribution of each sample,
with the marker placed at the weighted mean. The solid (dashed) black line shows the median
of the distribution of the MCMC sample associated with the double (single) power law; the
shaded area corresponds to the 68% confidence region.
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Figure 3.8: Constraints on the double power law parameters described in equation 3.35 by
jointly fitting all the measurements in Fig. 3.7. The red crosses indicate the value of the
parameters that maximise the likelihood, while the blue squares correspond to the medians.
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ments of the L3 sample appear to scattermore than the covariance predicts,
which results in higher j2. A similar issue is present in the D4 sample and
it is visible in Fig. 3.6.

The horizontal error bars in Fig. 3.7 indicate the weighted standard de-

viation of the luminosity distribution within the bin for each sample, with

the measurement placed at the luminosity-weighted mean of the bin. If

the range is too large, and the IA signal varies within the bin, the resulting

amplitude is difficult to interpret, andmay even appear discrepant. For in-

stance, when we combine the D4 and D5 samples we obtain �IA = 6.70+1.15
−1.14.

We note, however, that the luminosity range probed by this combined bin

is particularly extended, and the high signal measured is mainly driven by

the galaxies in the high luminosity tail of the bin (D5, �IA = 8.39+1.04
−1.30). The

other half of the bin has a relatively low signal with very large uncertainties

(D4, �IA = 3.02+2.37
−2.33). This is relevant because it suggests that the alignment

of galaxies with luminosities below !/!0 ∼ 0.60 − 0.70 hardly depends on
luminosity, and thus with a similar amplitude to D1 and D3, the smaller
sample is less constraining. As soon as we exceed this approximate thresh-

old, the signal increases significantly, suggesting a luminosity dependence.

This overall picture is enhanced when we also consider previous results for

LRGs (Joachimi et al. 2011; Singh et al. 2015; Johnston et al. 2019; For-

tuna et al. 2021a)16. These are also shown in Fig. 3.7. We investigate how

well the current measurements support the picture of a single or double

power law by fitting the data points in Fig. 3.7, assuming them to be uncor-

related. For each data point, we only use the quoted !/!0 as we do not have
the underlying luminosity distribution for most of the measurements. We

propose a double power law with knee at !break, amplitude �V and slopes
V1,2:

�(!) = �V
(

!

!break

) V
with

{
V = V1 for ! < !break

V = V2 for ! > !break
(3.35)

and fit for

_ =
{
�V , V1, V2, !scale

}
, (3.36)

where !scale = !break/!0. We explore the parameter space using a MCMC

and assuming a Gaussian likelihood. Figure 3.8 shows our parameter con-

straints, while themodel prediction is shown in Fig 3.7 as a solid black line.

16The GAMA points (Johnston et al. 2019) have been adjusted to homogenise the units

convention, as discussed in Fortuna et al. (2021a).
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Our best-fit parameters are reported in Table 3.217. We repeat the same

analysis assuming a single power law, as parametrised in Joachimi et al.

(2011). The best-fit parameters are also reported in Table 3.2. The larger

j2/dof of the single power law compared to the double power law suggests
that the latter is a better description of our current data, although the scat-

ter between the points at low ! is still too large to draw definitive conclu-

sions and the data are alsomildly inconsistent in that regime. The degener-

acy between the parameters, and in particular between �V and !scale, shows
that the data can weakly constrain the model. Nevertheless, the emerging

picture seems to support more the broken power law scenario presented in

Fortuna et al. (2021a), but with a transition luminosity around 0.4− 0.6!0,
also in line with the results from simulations by Samuroff et al. (2020a).

The double power law is also supported by the fact that the alignment of

redMaPPer clusters (van Uitert & Joachimi 2017; Piras et al. 2018), not in-

cluded in this analysis, forms a smooth extension towards higher mass of

the alignment observed for the high luminosity LRGs. This result is hard

to reconcile with a single shallow power law, but finds a natural framework

in the double power law scenario, where the slope of the relation at high lu-

minosities recovers the trend in Joachimi et al. (2011); Singh et al. (2015).

We caution that this analysis does not aim to be fully comprehensive,

but rather to provide a sense of the current trends. A proper analysis should

jointly fit all of the measurements incorporating the full luminosity distri-

butions of each sample, as well as accounting for the presence of satellites,

which might suppress the signal at low luminosities.

3.6.2 Redshift dependence

Having assessed that the two shape measurements produce compatible IA

signals and that their calibrations are robust, we merge the two shape cat-

alogues to span the largest possible range in redshift. This allows us to

extend the sample from the low-I, high S/N galaxies, where only DEIMOS

provides shapes, to the high-I, low S/N galaxies, where we preferentially

measure the shapes via lensfit. In the case of overlap between DEIMOS

and lensfit, we select the DEIMOS shapes. We only focus on the luminous
sample as we are interested in a long redshift baseline with the same lumi-

nosity cut. In this way, we can probe the redshift evolution of the sample,

without confusing the results with any luminosity dependence.

17We note that the parameters that maximise the likelihood differ from the medians of

the posterior distributions as a consequence of the degeneracies between the parameters.

This is particularly evident for V1, which has negative slope, V1 = −0.75.
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Figure 3.9: Projected correlation function, Fg+, measured on our different cuts in redshift
of the luminous sample. The best-fit curves are plotted on top of the data points, and the
fits are performed for Ap > 6 ℎ−1Mpc. The red points are slightly displaced for clarity and
the corresponding best-fit curve has been displaced accordingly.
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Figure 3.10: Intrinsic alignment amplitude, �IA, as a function of redshift and luminosity for
different best-fit values in the literature. Different markers refer to different studies and are
colour-coded based on their luminosity: MegaZ (Joachimi et al. 2011) is shown as triangles,
LOWZ (Singh et al. 2015) as circles, GAMA (Johnston et al. 2019) as squares and the LRG
luminous sample Z1 and Z2 as stars.

Our final catalogue contains 115 322 galaxies that we split at I = 0.585,
which roughly provides two equally populated bins. We call these two sam-

ples Z1 and Z2. The measurements for Fg+ are presented in Fig. 3.9. The
best-fit values for the two redshift bins are listed in Table 3.1 and agree

within their error bars, despite their mean redshift being 〈I〉 = 0.44 and
〈I〉 = 0.70, respectively.

We note that the j2 of our Z2 sample is quite high: This is driven by the
poor fit of the clustering signal. We attribute this to our photo−I, which
at high redshift are less reliable. We note, however, that the uncertainty in

the IA amplitude is large enough to absorb the inaccuracies in ?(Ispec |Iphot),
such that modifying the redshift distributions has little impact on the re-

covered IA amplitude.

Figure 3.10 compares our results with the best-fit amplitudes at vari-

ous redshifts found by previous studies (Joachimi et al. 2011; Singh et al.

2015; Johnston et al. 2019). The colour of the data points reflects the lu-
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minosity of the sample used to measure the signal18. As previously dis-

cussed, galaxies with different luminosities may manifest different levels

of IA, and hence even with a lack of redshift dependence, we should still

expect points at different amplitudes: the bottom part of the plot should be

mainly populated by darker points and the upper part by brighter points.

Figure 3.10 confirms this scenario: overall, the points exhibit a similar

alignment and the scatter between the different points is consistent with

the extra luminosity dependence. We can conclude that there is little evi-

dence for a strong redshift dependence of the IA signal.

3.7 Conclusions

We have constrained the IA signal of a sample of LRGs selected by Vak-

ili et al. (2020) from KiDS-1000, which images ∼ 1000 deg2. These data
allowed us to investigate the luminosity dependence and the redshift evo-

lution of the signal. To do so, wemeasured the shapes of the LRGswith two

different algorithms, DEIMOS and lensfit. We used custom image simula-

tions to calibrate and correct the residual biases that arise from measure-

ments of noisy images.

We used the calibrated ellipticities to compute the projected position-

shape correlation function Fg+ and analyse the signals obtained by the two
different algorithms independently, thus exploring the dependence of IA

on the specific shape method employed. We found lensfit measurements

to be overall noisier than the DEIMOS ones and we attributed this to the

prevalence of faint galaxies in the sample, due to the internalmagnitude cut

in the lensfit algorithm. Because bright galaxies typically carry more align-

ment signal, this cut, which removes galaxies with <A < 20, can potentially
reduce the IA contamination in KiDS cosmic shear analyses, which em-

ploy lensfit as the shape method. For a sub-sample of galaxies, where both

shape methods return successful measurements of the shapes, we find a

remarkable agreement in the measured Fg+, with a difference in the signal
of 0.003 ± 0.13 (amplitude of a fitted power law).

We explored the luminosity dependence and the redshift evolution in-

dependently, selecting our galaxies in such a way that ensures the two do

not mix. Within the luminosity range probed by the measurements our re-

18The colour of the marker corresponds to the bin centre, which may not be sufficient if

the range in luminosity is large, as it is typically the case for these samples. The information

provided by the colour has therefore only qualitative meaning and should be considered as

such.
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sults agree with previous studies (Joachimi et al. 2011; Singh et al. 2015;

Johnston et al. 2019). However, a single power law fit, as was used in

Joachimi et al. (2011) and Singh et al. (2015) does not describe the mea-

surements well. Instead, our results suggest a more complex dependence

with luminosity: for !A . 2.9 × 1010ℎ−2!A ,� the IA amplitude does not

vary significantly, whereas the signal rises rapidly at higher luminosity.

This also has implications for the width of the luminosity binning, as the

use of broad bins may complicate the interpretation of the measurements.

Analyses that aim to combine these measurements to model the luminos-

ity dependence should incorporate the underlying luminosity distributions

to properly link the signal to the galaxy luminosity. Nevertheless, we pro-

vide a preliminary fit on the current measurements available in the liter-

ature and found that the data are best described by a broken power law.

This result can already be used by cosmic shear analyses to improved their

modelling of the IA carried by the red galaxy population. We remind the

reader that this sample is not representative of the galaxy population. Dif-

ferent galaxy samples carry different alignment signals and should thus be

individually modelled as described in Fortuna et al. (2021a).

To probe the redshift dependence of the IA signal with the largest base-

line to date, we merged the DEIMOS and lensfit catalogues. We find no

evidence for redshift evolution of the IA signal. This result is in line with

previous studies of LRG samples (Joachimi et al. 2011; Singh et al. 2015),

and it is consistent with the current paradigm that IA is set at the moment

of galaxy formation. However, it is also possible that galaxy mergers coun-

teract the evolution of the tidal alignment, such that the net signal does not

change. Further improvements in the measurements are needed to distin-

guish between scenarios.
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A1 m-bias calibration

In this Appendix, we detail our procedure to calibrate the <-bias in our

shape measurements. We follow the same procedure for both DEIMOS

and lensfit, but we present the results separately.

A1.1 DEIMOS

One of the key features of DEIMOS that was exploited by Georgiou et al.

(2019b) is that the weight function that is used to measure the moments

of the surface brightness distribution can be adjusted. As explained in

Sect. 3.3, we follow Georgiou et al. (2019a) and adopt a Gaussian weight

function with a width Aiso. However, not only the radial profile can be

changed, but one can also choose between a circular or an elliptical weight

function. Hence, before proceeding with the shape calibration, we investi-

gate which choice of weight function would suit our data best.

In both cases, the weight function is centred on the centroid of the

galaxy, with the size and ellipticity iteratively matched to those measured

for the galaxy (see Georgiou et al. 2019a, for details). While an elliptical

weight function matches the shape of an elliptical galaxy better, a circular

one generally performs better on small and faint objects.

The circular weight function performs similar to the elliptical weight

function for low-to-intermediate S/N (S/N< 60), but with an overall con-
stant bias of ∼ 0.2 as the S/N increases. Hence, the elliptical weight func-

tion performs significantly better for more than half of the (real) galaxy

sample, which motivates our choice to adopt an elliptical weight function

in our analysis.

DEIMOS measured the shapes of 13 301 simulated LRGs from our im-

age simulations, and we use these to calibrate our ellipticity estimates. To

do so, we first explore the dependence of the<-bias on the individual galaxy

parameters S/N and ', as discussed in Sect. 3.3. Figure 3.3 indicates

that <(') is well described by a polynomial curve, which we truncate at
degree 3, ?(') = ?1' + ?2'

2 + ?3'
3, while 2(S/N) is well described by:

3 (S/N) = 31/
√

S/N + 32/(S/N).
We have tested different combinations of the two functions<(S/N) and

<('), and explored if higher-order polynomials are needed: while the fit
to <(') is indeed better described by a polynomial of degree 5, we stress
that we are not interested to reproduce all of the noisy features in the data,

but rather to capture the trend in the two components. We therefore keep
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Table 3: Best-fit parameters for the empirical correction of the two-dimensional multiplicative
bias surface (Sect. 3.3.3).

Parameter DEIMOS lensfit

10 −0.895 0.1794
31 5.238 −5.081
32 −0.006 1.292
?1 −1.900 −0.972
?2 5.147 0.669
?3 −3.148 0.783
?4 – −0.698

the number of the parameters as low as possible. This is also motivated by

the fact that the image simulations suffer from galaxy repetitions.

The final expression for our empirical correction for the DEIMOSmea-

surements is then:

<(S/N, ') = 10 +
1 + 3 (S/N)
1 + ?(') . (37)

To find the best-fit parameters in 37, we re-computed the value of the

<−bias by binning the data in 64 regions using the :−means algorithm19.

We then measured the bias for the two components n1,2 in each region,
identifying the bin coordinate in S/N and ' as their mean value within the

bin. We then fit the average of the two components (<1 +<2)/2 with equa-
tion 37. Some of the galaxies have very small shape measurement errors,

and to avoid them dominating the fit, we also added an intrinsic scatter

fint to our error-bars. This accounts for the fact that the number of unique
galaxies in our simulations is limited and mitigates the importance of the

highly resolved ones. The intrinsic scatter fint is chosen such that the re-
duced j2 is ∼ 1. The best-fit parameters are reported in Table 3. We stress

here that since we are only correlating shapes with positions, we are not

interested in a perfect calibration of the bias per galaxy but rather want to

ensure that the mean ellipticity of an ensemble is unbiased.

19https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
KMeans.html

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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A1.2 lensfit

In the case of lensfit we follow a very similar procedure to calibrate the

residual <-bias. lensfit successfully measured the shapes of 17 573 simu-

lated galaxies, which are used for the calibration. The dependence of the

<-biaswith S/N can be described by the sameparametrisation thatwe used

for the DEIMOS sample, 3 (S/N), while <(') is better described by a poly-
nomial of degree four, ?(') = ?1' + ?2'

2 + ?3'
3 + ?4'

4.
The combination that best reproduces our measurements of the <-bias

in k-means cells of the two-dimensional space (S/N,') is

<(S/N, ') = 10 + 3 (S/N) + ?(') , (38)

with the specific values of the parameters reported in Table 3. We note

that compared to DEIMOS, the lensfit-bias is small, and hence so is our

correction.

A2 Redshift distributions

We describe here the redshift distributions, ?(Ispec |Iphot), employed in our
analysis as reported in Sect. 3.5 and which are used in the computation of

the angular power spectra in Eq. (3.25). We bin the galaxies for which we

have spectroscopic redshifts in bins ofΔIdense
phot = 0.0146(1+I) andΔIluminous

phot =

0.0139(1 + I) with an iterative procedure; this constructs unequal binning
whose size increases with I. The last bin is adjusted to avoid spurious re-

sults: If the maximum redshift found with the iterative procedure exceed

themaximum redshift of the sample, we remove the last bin and extend the

second-to-last up to Imax. In the case of the luminous sample we further
increase the scatter at high redshift to account for the increasing uncer-

tainty of our photometric redshifts: for I > 0.7we increase the bin width to
ΔIluminous

phot = 0.027. We adopt the same approach for the Z1 and Z2 samples,

for which we use, respectively, fI = 0.0133 and 0.0190. We use the result-

ing spec-I histograms in our analysis. We employ the same conditional

redshift distributions for both our density and shape samples; while this is

a very good approximation for DEIMOS, lensfit lacks bright galaxies that

would populate our spec-I, and thus this approximation might partially be

responsible for the worse fit of the model.

We tested that our IA constraints are only marginally dependent on the

width of the bins adopted, and the changes in the best-fit amplitude are

subdominant to the statistical uncertainty.
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Figure 11: The ?(Ispec |Iphot) of our dense and luminous samples.
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Figure 12: Ratio of the cumulative galaxy-galaxy lensing signal over the cumulative IA signal
as a function of Πmax at the mean redshift of the dense sample, I = 0.44.

A3 Contamination from galaxy-galaxy lensing

As discussed in Sect. 3.5.2, galaxy-galaxy lensing is the main astrophysical

contaminant to our signal. Here, we focus on its dependence on the line-

of-sight integration range. The lensing and the IA signals scale differently

with distance: this can be used to maximise the signal and avoid an excess

of contamination. In this Appendix we therefore explore in more detail the

modelling of the galaxy-galaxy lensing and how this has guided our choice

for the value of Πmax.

Figure 12 shows the amount of lensing contamination as a function of

the maximum Π used in the integral along the line-of-sight. We illustrate

it by plotting the cumulative contribution of the galaxy-galaxy lensing over

the one of IA for different values of the truncation, Πmax. To generate the
signal, we used the ?(Ispec |Iphot) associated with the dense sample and

evaluated the correlation functions at the mean redshift of the sample, as-

suming the fiducial bias and IA amplitude reported in Table 3.2. The ratio

is almost constant in Ap, thus we plot it for fixed Ap = 10 ℎ−1Mpc. We also

note that the lensing signal has negligible impact for negative Π because

the source is in front of the lens in that case.
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In principle, if one had perfect knowledge of the galaxy-galaxy lens-

ing contribution, extending the integration up to very large line-of-sight

separations would allow us recover the full IA signal from the measure-

ments, without discarding any information. In practice, even though we

fully model the galaxy-galaxy lensing contribution, we are limited by the

accuracy of the lensing modelling we rely on, and thus it is safer to trun-

cate the integral to values of Π that are not severely affected by it.

We use Fig. 12 to choose the fiducial Πmax that enters in Eq. (3.12): al-
though the specific values of the ratio depend on the input parameters (1g,
�IA), it provides a realistic estimate of the amount of contamination for
our LRG samples. We chose as our fiducial setup a conservative value of

Πmax = 120 ℎ−1Mpc, which ensures that the mean contamination is below
∼ 20% of the signal.

A4 Contamination frommagnification

The changes in the galaxy number counts determined by lensing magni-

fication arise as a result of two competing effects: on one hand, the lens-

ing locally stretches the sky, diluting the observed number density; on the

other hand, it enlarges the apparent sizes of the galaxies withoutmodifying

the surface brightness: at the faint end, this allows the detection of galax-

ies that are intrinsically fainter than the magnitude limit, enhancing the

observed number density.

The theory of magnification for flux-limited surveys is well established

and allows us to relate the changes in the number density to the differential

galaxy count =(<) over a given band magnitude range from < to < + d<
(Bartelmann & Schneider 2001; Joachimi & Bridle 2010):

U(<) = 2.5d log[=(<)]
d< . (39)

The case of a non-flux-limited sample, such as our LRG sample, is more

complicated and we lack a proper theoretical framework for the interpre-

tation of U. Here, we follow von Wietersheim-Kramsta et al. (2021) and

calibrate U using dedicated mocks, which we present in Appendix A7. We

remind the reader that our samples are selected by imposing a luminosity

threshold, which implies a redshift-dependent magnitude selection.

The calibration works as follows: the mocks provide the reference re-

lation between the convergence ^ and the slope U, which we can measure
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as the difference in the number density of a ’magnified’ sample and a ’non-

magnified’ one,

=(< <) − =0(< <)
=0(< <)

≈ 2(U − 1)^ . (40)

Here, =(< <) is the local number density of magnified sources with
magnitudes below <, while =0(< <) is the underlying true number density
without the enhancement due to the flux magnification and the simultane-

ous lensing dilution.

We used our mocks to measure U in Eq. (40), obtained as the mean

value of ^ on sufficiently small patches of the sky. To partition the sky

we used the public available python module Healpy20 (Zonca et al. 2019),

based on the HEALPix pixellization of the sphere21 (Górski et al. 2005).

We used this value of U to calibrate the magnitude range over which the

observable U in equation 39 best agrees with the true one obtained from

equation 40. If the mocks reproduce the data selection function to good

accuracy, this provides the optimal magnitude range to use to measure U

via observable quantities (Eq. (39)) in the data.

To evaluate Eq. (39) we used the A−band magnitude and we ensured
that the magnitude distribution of the mocks and the data agree to high

accuracy. We find that, when applied to the data, the method results in

values of U that depend somewhat on the binning scheme employed along

the redshift baseline. While the values of U are robust against changing

the bins at intermediate and high redshifts, the very low-I bins are poorly

constrained by the method. However, at such low redshifts magnification

is negligible, and our samples contain only a few galaxies, so it is reasonable

to expect the same value of U to hold for the entire sample. Moreover, the

LRG selection ensures a constant comoving number density, which reduces

the sensitivity to magnification even further.

We find U ∼ 1.5 for both our dense and luminous sample. In Ap-

pendix A5 we show that the effect of including magnification is subdom-

inant in our analysis.
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Table 4: Reduced j2 statistics to assess the significance of our signals Fg+ and Fg× against
the null hypothesis.

Sample Shapes Signal j2
a,null ?−value

dense DEIMOS Fg+ 8.01 (7.56) 4.88 × 10−13 (4.35 × 10−6)
Fg× 0.59 (0.36) 0.83 (0.83)

lensfit Fg+ 3.52 (4.99) 0.0001 (0.0005)

Fg× 0.66 (0.64) 0.76 (0.63)

luminous DEIMOS Fg+ 9.46 (5.85) 6.66 × 10−16 (0.0001)
Fg× 0.37 (0.33) 0.96 (0.85)

lensfit Fg+ 2.48 (1.49) 0.006 (0.20)

Fg× 0.40 (0.40) 0.95 (0.81)

A detection of Fg× would hint at the presence of unaccounted systematics in the
measurements. The numbers in brackets refer to the signal for Ap > 6 ℎ−1Mpc.

A5 Systematic tests and significance of the de-

tection

To ensure the robustness of our analysis, we performed a number of tests

for residual systematics. We present the results of these in this Appendix.

Many of these are commonly used to testweak gravitational lensing signals.

In one of the most basic tests, the galaxy shapes are rotated by 45 deg
and the correlation between n× and galaxy position, Fg× is measured. This
correlation is expected to vanish, and any detection of a non-vanishing sig-

nal is therefore an indication of residual systematics. Table 4 reports the re-

duced j2
a,null, which we used to assess the significance of the signal against

the null hypothesis for both Fg+ and Fg×. We choose a significance level of

5%: for ?−values below 0.05 we discard the null hypothesis. We can see

that all of our Fg× measurements have a ?−value above 0.05 and thus sup-
port the null hypothesis. In contrast, we observe a significant detection for

all of our Fg+ measurements, for both DEIMOS and lensfit shapes.
As a further look into possible systematics in the data, we measured

the signal for a very large value of the line-of-sight truncation, Πmax =

1000 ℎ−1Mpc, using our dense sample. Extending the value of Πmax to very
large separations introduces uncorrelatedpairs into the estimator, and thus

20https://healpy.readthedocs.io/en/latest/
21http://healpix.sourceforge.net

https://healpy.readthedocs.io/en/latest/
http://healpix.sourceforge.net
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we expect the IA signal to vanish, while the galaxy-galaxy lensing can po-

tentially arise. We find a signal consistentwith anull detection, with j2
a,null =

0.35 and ?−value of 0.96.
We also investigated the impact of specific choices for the setup of our

modelling, with a particular focus on how our results depend on the value

of the Πmax adopted in the analysis. To do so, we repeat our analysis of
the dense sample using two different values of Πmax: 90 and 180 ℎ−1Mpc.
Table 5 reports our results. We find compatible results that also agree with

our fiducial value of Πmax = 120 ℎ−1Mpc.
In Table 5 we also report the results when we include magnification in

the modelling for the dense sample, or ignore it for the luminous sample.
The resulting parameter estimates agree with the baseline results (also see

Sect. 5.6), suggesting magnification is small in our data, as expected from

theory (Unruh et al. 2020).

A6 IA dependence on the shape measurement

method

Singh & Mandelbaum (2016) compared the IA signal measured with dif-

ferent shape methods and found that the signal depends on the specific al-

gorithm employed. Georgiou et al. (2019a) explored this further, and used

DEIMOS to show that the IA signal depends on the width of the weight

function. Since different methods use different weight functions, the dif-

ference in the IA detection can be linked to the parts of the galaxies they

probe.

In this Appendix, we therefore explore how the IA signal depends on the

shape measurement methods used in our analysis. To ensure this is done

consistently, we only selected galaxies that belong to both our DEIMOS

and lensfit catalogues, irrespective whether they are part of the luminous
or dense sample. We identify 173 499 galaxies in common between the two

shape catalogues.

We measure Fg+ for this sub-sample for both shape catalogues, and
show the difference in the signal, ΔFg+ = Fg+,DEIMOS − Fg+,;4=Bfit (indigo
squared markers) in Fig. 13. The error bars are computed via bootstrap;

we are only interested in the shape noise contribution: We are measuring

the difference of signals obtained using the same sample of galaxies and

thus the sample variance should vanish. We generated 215 re-samplings

with replacement of our input galaxies and provided the same input cat-

alogue to both our DEIMOS and lensfit measurement of Fg+. The error
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Figure 13: Difference in the Fg+ measurements as measured by DEIMOS and lensfit. The
indigo dashed line shows the best-fit amplitude of the difference, here parametrised as �/A?.
Similarly, the light blue dashed line illustrates the best-fit amplitude for the DEIMOS sample,
both performed for A? > 6 ℎ−1Mpc. The shaded areas delimit the 1f contour of the fit.

Table 6: Parameters of the Student’s C-distributions that best-fit the residuals (Iphot −
Ispec)/fI of our samples.

Sample a ` B

dense 3.79 0.06 0.90

luminous 3.99 −5.43 × 10−6 0.86

bars are then computed as the standard deviation of the difference in the

measured signal for this ensemble.

To quantify the amplitude of the signal to the potential differences in

measurement method, we fit both Fg+,DEIMOS and ΔFg+ with a curve of
the form 5 (A?) = �/A?, for A? > 6 ℎ−1Mpc. The best-fit amplitudes are,
respectively, 0.90 ± 0.17 and 0.003 ± 0.13, which means that we detect a
signal that is more than six sigma above the uncertainty due to the choice

in the shape measurement algorithm adopted.

A7 Mock catalogues

To investigate the impact of magnification bias on the interpretation of our

measurements, we generated two mock catalogues that resemble our LRG

samples. Our simulated catalogues are obtained from the KiDS photomet-
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Figure 14: Comparison between the redshift distributions of the data and those reproduced
by the mocks. Left: The photometric redshift distribution of our data is shown as an orange
hatched histogram, while the solid red line shows the distribution of the photometric redshifts
of the mock, obtained from the true (’spectroscopic’) redshifts (blue solid line) as detailed in
the text. Right: Comparison of the mock spectroscopic redshift distribution (solid blue line)
and the estimated spectroscopic distribution of our data (light blue line).

ricmock catalogue presented in van den Busch et al. (2020), which is based

on the MICEv2 simulation22 (Fosalba et al. 2015b; Crocce et al. 2015; Fos-

alba et al. 2015a; Carretero et al. 2017; Hoffmann et al. 2015) and is specifi-

cally designed to reproduce the KiDS photometry. We did not run the LRG

selection algorithm on themock, but rather used their observed location in

the redshift-colour space (D− 6, 6− A, A − 8, 8− I) to select them in the mock.

We first apply a broad colour selection using theMICE z_cgal ’spectro-
scopic’ redshift. After assigning the photo-I to ourmocks, we repeat the se-

lection replacing the spectroscopic redshift with the photometric one. The

photometric redshifts are designed to reproduce the distributions reported

in Sect. 3.3 of Vakili et al. (2020). To do so, we draw a random value from

a Student’s C−distribution centred on Ispec − `fI and with the scale param-
eter equal to BfI , with `, a and B the Student’s C−parameters fitted to the
full distribution (of the real data). We remind the reader that a defines the

peakiness of the distribution, ` its mean and B sets the width. In the limit

of the Student’s C−distribution approaching a Gaussian (a → ∞), B can be
interpreted as the standard deviation of the distribution.

We note that our samples differ from Vakili et al. (2020), since we ex-

cluded the galaxies that overlap with the luminous sample from the dense

22http://maia.ice.cat/mice/

http://maia.ice.cat/mice/
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sample. We therefore recomputed the parameters of the Student’s C−dis-
tributions specifically for our samples and report these in Table 6. Some

care has to be taken when assigning fI to the mocks. The per-galaxy fI of

the LRG samples correlates with the magnitude of the galaxy. We, there-

fore, identify the closest real galaxy in the (I, <A ) space to each galaxy in
the mock, and assign it the corresponding fI . We repeat the process for

one iteration, replacing the ’spectroscopic’ redshift with the preliminary

estimate of the photometric one. We note that this procedure results in

multiple assignments of the same fI to the mock galaxies, but this is not a

concern as we do not require it to be unique.

Since we require a high fidelity reproduction of the line-of-sight distri-

bution of our galaxies, we divide our samples and their correspondingmock

catalogues in thin redshift slices and match the galaxy number density per

slice. At this step, we do not require a perfect match. In this way, we still

have enough galaxies to apply the same <
pivot
A (I) cut as for our real data.

We repeat these steps iteratively until the number densities are matched

between the samples. We tested that the final ?(Ispec |Iphot) of our mocks
are in good agreement with the data ?(Ispec |Iphot) (see Fig. 14) and that the
resulting clustering signal at large scales reproduces the one in our data.

We generate two sets of mock catalogues: a magnified one and one

without magnification. We use these for the calibration of U as discussed

in Appendix A4.
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4| KiDS-1000: weak lensing
and intrinsic alignment
around luminous red
galaxies

M.C Fortuna, H. Hoekstra, A.Dvornik

We study the properties of the Luminous Red Galaxies (LRGs) selected from the 4th data

release of the Kilo Degree Survey (KiDS-1000) via galaxy-galaxy lensing of the background

galaxies fromKiDS-1000. We use a halomodel formalism tomodel ourmeasurements and

obtain estimates of the halo masses and the satellite fractions of the LRGs. We use these to

interpret the intrinsic alignment (IA) measurements in Fortuna et al. (2021b), who studied

the tendency of the LRGs to point in the direction of other LRGs, via the galaxy shape-

galaxy position correlation. Here, we directly link the observed IA of the (central) galaxy to

themass of the hosting halo, which is expected to be a fundamental quantity in establishing

the alignment, and find that the dependence of the IA amplitude on halo mass is described

well by a single power law. We also find that both red and blue galaxies from the source

sample associated with the LRGs are oriented randomly with respect to the LRGs.
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4.1 Introduction

The intrinsic alignment (IA) of galaxies, defined as the tendency of galaxies

to point in a coherent direction, has gained attention in the last two decades

as an important contaminant to lensing (Heavens et al. 2000; Crittenden

et al. 2001; Kirk et al. 2010; Krause et al. 2016, among others). N-body

simulations have explored the origin of the triaxility and angular momen-

tum of dark matter haloes, and how they orient their major axis in the di-

rection of matter overdensities, finding that the orientation also depends

on the environment and the location on the large scale structure (Dubin-

ski 1992; Croft & Metzler 2000; Hopkins et al. 2005; Hahn et al. 2007;

Lee et al. 2008; Forero-Romero et al. 2014). Models of galaxy alignment

predict that the galaxy inherits the orientation of its major axis from the

orientation of the parent halo: such a relation is expected to be primarily

sourced by the effect of tidal fields during galaxy formation (Catelan et al.

2001). These models predict a dichotomy in the alignment of elliptical,

pressure-supported galaxies, and disc-like, rotationally supported galaxies

(e.g. Catelan et al. 2001; Hirata & Seljak 2004), in agreement with results

from observations (Hirata et al. 2007; Faltenbacher et al. 2009; Joachimi

et al. 2011; Blazek et al. 2011; Singh et al. 2015; Johnston et al. 2019; Man-

delbaum et al. 2011).

Observations have shown that luminous red galaxies (LRGs) are the

main source of IA and that the dependence on luminosity can be described

by a power law (Hirata et al. 2007; Joachimi et al. 2011; Singh et al. 2015).

Fortuna et al. (2021b) extended observational constraints on the IA ampli-

tude to samples of LRGs with significantly lower luminosities compared to

previous studies, and found that the dependence with luminosity is shal-

lower compared to the high-! samples. This points toward amore complex

behaviour in the luminosity-alignment relation.

The relationbetween luminosity andhalomass itself is complex. Hence,

a simple dependencewith halomass, as predicted bymodels of IA (Xia et al.

2017; Piras et al. 2018), would result in a complex dependence of the IA sig-

nal with luminosity. It is therefore interesting to explore the observational

link between the IA of galaxies and themass of the hosting halo. This could

simplify the modelling and help generate synthetic galaxy catalogues that

reproduce the observed IA using halo catalogues from N-body simulations

(e.g. Carretero et al. 2017). A direct measure of IA as a function of halo

mass avoids the intermediate step of calibrating IA on secondary galaxy

properties that are not directly responsible for the alignment mechanism
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and that have non-negligible scatter.

In this paper we determine the average halo mass for the samples used

in Fortuna et al. (2021b), direct linking their IA signal and their halo mass.

Singh et al. (2015); van Uitert & Joachimi (2017) and Piras et al. (2018)

have addressed the same question using higher luminosity/higher mass

samples, finding a single power law relation for the IA dependence on halo

mass. Here, we extend the analysis to the faint-end, where the IA depen-

dence on luminosity changes its slope. This allows us to address the ques-

tion whether the observed flattening in the IA amplitude is a consequence

of a similar flattening in the halo mass-luminosity relation.

To measure the halo masses, we employ weak gravitational lensing:

light bundles of the distant galaxies are deflected by the matter distribu-

tion along the line of sight, which leads to an apparent correlation between

the shape of a background galaxy (source) and the position of a foreground

galaxy (lens). This galaxy-galaxy lensing (GGL) signal is an important tool

to investigate the dark matter distribution around galaxies (e.g. Hoekstra

et al. 2005; Mandelbaum et al. 2006; Velander et al. 2014; Miyatake et al.

2015; van Uitert et al. 2015; Dvornik et al. 2020; Bilicki et al. 2021).

In this paper, we use the halomodel to connect the statistical properties

of dark matter haloes to those of the galaxies. It is an analytical approach

to predict observable quantities based on the link between the galaxy occu-

pation statistics, the abundance, and the clustering of dark matter (Seljak

2000; Ma & Fry 2000; Cooray & Sheth 2002).

In this study, the lens sample consists of LRGs in the footprint of the 4th

data release of KiDS (KiDS-1000, Kuijken et al. 2019), which were selected

via a variation of the redMagiC algorithm (Rykoff et al. 2014), as presented

in Vakili et al. (2020). To measure the lensing signal, we use the source

sample presented in Giblin et al. (2021).

LRGs are typically the central galaxies in massive haloes, and are re-

sponsible for the alignment at large scales. The alignment at small scales is

sourced by satellite galaxies: the intra-halo tidal fields align the satellites in

a torquing mechanism that leads to a net radial alignment signal towards

the halo centre (Pereira et al. 2008). In this paper, we investigate this sig-

nal by determining the alignment of galaxies in the source sample. These

are selected to be physically close to the LRGs, so that the LRG can be con-

sidered a proxy for the halo centre. To do so, we employ an estimator that

is similar to the one used GGL, following the approach presented in Blazek

et al. (2012). When measuring the signal, we account for the lensing con-

tamination and the lensing dilution that occurs between galaxies that are
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physically associated. The IA of the sources presented here is complemen-

tary to the study of the IA signal in Fortuna et al. (2021b), who looked at the

alignment signal of the LRG sample at large scales. Here, we constrain the

small scale signal (Ap < 10ℎ−1Mpc) sourced by non-LRG galaxies. These

results can thus be used to inform models such as the halo model.

The paper is organised as follows: in Sect. 4.2 we present the data em-

ployed in this work; in Sect. 4.3we introduce the estimator used tomeasure

the signal, while in Sect. 4.4 we present the model framework we use to in-

terpret the measurements. In Sect. 4.5 we detail the fitting procedure and

in Sect. 4.6 and Sect. 4.7 we present our results. In Sect. 4.8 we draw our

conclusions.

Throughout the paper, we assume a flat ΛCDM cosmology with ℎ =

0.7,Ωm = 0.25,Ωb = 0.044, f8 = 0.8 and =s = 0.96. Absolute magnitudes are
computed assuming ℎ = 1.

4.2 Data

The data employed in this work are collected by the Kilo Degree Survey

(KiDS), a multi-band imaging survey that hasmapped 1350 deg2 of the sky,
divided in two equally sized patches, one in the equatorial region and one

in the Southern hemisphere. The latest data release (DR4, hereafter KiDS-

1000) covers 1006 deg2 and provides high quality images in the D6A8 bands,
obtained on the VLT Survey Telescope (VST; Capaccioli et al. 2012) with

the OmegaCAM instrument (Kuijken 2011). By survey design, the best im-

ages are provided in the A−band, where the meanmagnitude limit is A ∼ 25
(5f in a 2′′ aperture), and thus we will always refer to the A−band images in
the rest of this work. Five infrared bands, /.�� s, obtained from the com-

panion survey VISTA Kilo-degree INfrared Galaxy survey (VIKING; Edge

et al. 2013), complement the data, allowing for a robust photometric red-

shift calibration (Wright et al. 2019; Hildebrandt et al. 2020).

4.2.1 The lens sample

The LRG sample is selected from KiDS-1000 using a variation of the red-

MagiC algorithm (Rykoff et al. 2014), as presented in Vakili et al. (2019,

2020). Details of the sample properties can be found in Vakili et al. (2020).

Here we summarise the most relevant ones. The sample is selected with a

redshift-dependent magnitude cut to ensure a constant comoving number

density. The parameter that regulates the selection is <
pivot
A (I), the char-
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acteristic A-band magnitude of the Schechter (1976) function, assuming a

faint-end slope U = 1. The resulting luminous-threshold samples are de-
fined by the ratio:

!

!pivot(I)
= 10−0.4

(
<A−<A,pivot (I)

)
, (4.1)

where <
pivot
A (I) is evaluated using the EzGal (Mancone & Gonzalez 2012)

implementation of Bruzual & Charlot (2003), assuming a Salpeter initial

mass function (Chabrier 2003), a solar metallicity (/ = 0.02) and a single
star formation burst at I = 3.

Two samples are obtained with the aforementioned strategy: a high lu-

minosity (!/!pivot(I) > 1) and sparser sample (=̄g = 2.5 × 10−4ℎ3Mpc−3)
named luminous sample and a denser (=̄g = 10−3ℎ3Mpc−3) and less lu-
minous one (!/!pivot(I) > 0.5), the dense sample. In this work, we fol-
low Fortuna et al. (2021b) and use both samples for our analysis, but from

the dense samples we removed the galaxies that are in common with the
luminous sample. For a detailed explanation of why the two samples con-
tain overlapping galaxies, we refer to Fortuna et al. (2021b). We also adopt

the same luminosity-binning scheme as Fortuna et al. (2021b), with some

minor variation as described in Sect. 4.6.

We quantify the scatter in the photometric-spectroscopic redshift rela-

tion using the scaled median absolute deviation of (Iphot − Ispec)/(1+ Ispec).
This increases with redshift and it is tighter for the luminous sample. In
particular, we find fI = 0.0139 for the luminous sample and fI = 0.0146
for the dense sample. This is also responsible for some overlap of the galaxy
properties between the two samples, even when removing the overlapping

galaxies.

The stellar masses and absolute magnitudes are obtained via LePhare

(Arnouts & Ilbert 2011), assuming the stellar population synthesis model

from Bruzual & Charlot (2003), the Chabrier (2003) initial mass function

and Calzetti et al. (1994) dust-extinction law. We use the MASS_BEST output
from LePhare as our best estimate of the mass to use for the point mass

approximation (see Sect. 4.4). When computing the mean stellar mass per

bin, we remove the galaxies for which the masses estimated as MASS_MED
are flagged as bad (-99), indicating that the best fit was performed by a

non-galaxy template1.

1These galaxies are, however, used in the measurements, as our main focus is the

luminosity-to-halo mass relation and the luminosity is robustly measured. We note that

the change in the average mass is at the sub-percent level.
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Figure 4.1: The photometric redshift distributions of the source and lens samples employed
in the analysis. When computing the GGL signal, we only consider source galaxies at higher
redshift than the lens, and with a minimum separation of In = 0.2.

Wecorrect the absolutemagnitudes for the passive evolution of the stel-

lar population (4−correction). We use EzGal to compute it and follow the

setup used in Vakili et al. (2020) to identify the limiting magnitude for the

selection of the LRG candidates as described above.

4.2.2 The source sample

The shapes of our galaxies are computed via a self-calibrating version of

lensfit (Miller et al. 2007, 2013; Fenech Conti et al. 2017; Kannawadi et al.

2019;Giblin et al. 2021)2. lensfit is amodel-based algorithm that provides a

measure of the ellipticity by fitting a PSF-convolved two-component bulge

and discmodel of a galaxy. It returns the ellipticity components n = n1+8n2,
with |n | = (0 − 1)/(0 + 1), where 0, 1 are, respectively, the major and minor
axis. For each galaxy, themethod returns also a weight, Fs, which accounts
for the increase/decrease in the S/N due to the relative orientation of the

galaxy with respect to the PSF and the overall S/N. Note that with this def-

inition, the average ellipticity is an estimator of the shear, 〈n〉 = W.
The KiDS-1000 shear catalogue benefits from the improvement in the

PSF treatment due to the available information provided by the Gaiamis-

2The catalogue is publicly available at http://kids.strw.leidenuniv.nl/DR4/
KiDS-1000_shearcatalogue.php

http://kids.strw.leidenuniv.nl/DR4/KiDS-1000_shearcatalogue.php
http://kids.strw.leidenuniv.nl/DR4/KiDS-1000_shearcatalogue.php
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sion (Gaia Collaboration et al. 2018). The shears are also calibrated to

account for the multiplicative bias (<−bias) that arises as a further cor-
relation between shear systematics: this is calibrated employing high fi-

delity image simulations based on deep images of the Cosmic Evolution

Survey (COSMOS Scoville et al. 2007). We will discuss the<−bias again in
Sec. 4.3, where we apply it to our lensing measurements. A full description

of the catalogue and the systematic tests can be found inGiblin et al. (2021),

while more details on the strategy to calibrate residual biases in described

in Kannawadi et al. (2019).

The distributions of our photometric redshifts are illustrated in Fig. 4.1.

These redshifts of the source galaxies are estimated based on deep spectro-

scopic catalogues that cover a sub-sample of the galaxies: these are then

re-weighted using a self-organised map (SOM, Wright et al. 2020) to re-

semble the KiDS-1000 sample, and only sources that fill the SOM cells (a

nine-dimensional magnitude-space volume) enter our final sample. The

method is also validated by using a clustering−I algorithm. Details on the
photometric redshift calibration can be found in Hildebrandt et al. (2021).

We restrict our analysis to source galaxies in the redshift range 0.1 < Is <
1.2, based on the available calibration of their photometric redshift via the
SOM, where Is indicates the photometric redshift of the source galaxy.

4.3 Measuring the signal

The GGL signal is quantified by the tangential distortion in the shapes of

background galaxies (sources) induced by themass distribution of the fore-

ground galaxies (lenses) along the line-of-sight. As the distortion for a sin-

gle lens galaxy is small and we lack information on the intrinsic shape of

the background galaxy, we perform a statistical analysis of the signal en-

coded by a large number of lens-source galaxy pairs andmeasure themean

tangential shear around each lens as a function of lens-source galaxy pro-

jected separation, 〈Wt(Ap)〉. This is a direct measure of the enclosed mass,
as we will see later. Note that the S/N of the lensing signal around indi-

vidual lenses is too small to be detected, and thus we average the signals of

an ensemble of lenses. Here, we are implicitly assuming the weak lensing

regime, so that the effective shear of a background galaxy can be approxi-

mated by the sum of the shears of the individual galaxies in the foreground.

We measure the signal of both the dense and luminous samples in bins of
luminosity.

For each source-lens pair, we measure the tangential component of the
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ellipticity: indicating with q the angle between the G−axis and the lens-
source separation vector, and using the ellipticity definition introduced in

Sec. 4.2.2, we have [
nt
n×

]
=

[
− cos(2q) − sin(2q)
sin(2q) − cos(2q)

] [
n1
n2

]
. (4.2)

Here, n× is the cross-component of the ellipticity, which corresponds to
a rotation of 45 deg. The cross-component is an important test of resid-
ual systematics and in our measurements we always ensure that the cross-

component is compatible with noise.

The ensemble average of the ellipticities of all the sources – which we

remind the reader is an estimator of the shear – at projected separation Ap
from the lens is directly related to the the amount ofmatter that we observe

around a galaxy, which is quantified by the excess surface mass density

(ESD) profile:

ΔΣ(Ap) = Σ̄(< Ap) − Σ(Ap) = Wt(Ap) Σcrit . (4.3)

The ESD is thus defined as the difference between the mean projected sur-

face mass density enclosed in a projected radius Ap and the surface mass
density at Ap. The critical surface mass density is a geometrical factor de-
fined as

Σcrit =
22

4c� (1 + Il)2
� (Is)

� (Il)� (Il, Is)
, (4.4)

where the factor (1+Il)2 at the denominator accounts for our use of comov-
ing units (see also Dvornik et al. 2018, Appendix C for a discussion on this

term). Here, Il (Is) is the redshift of the lens (source) galaxy, and � (Il),
� (Is) and � (Il, Is) are, respectively, the angular diameter distance to the
lens, to the source and between the lens and the source galaxies.

As we rely on photometric redshifts, we need to integrate Eq. 4.4 for the

redshift probability distributions of the source sample, =(Is), and the indi-
vidual redshift probability distribution of each lens, ?(Il). This provides an
effective estimate of Σcrit:

Σ−1
crit,eff =

4c�
22

∫ ∞

0
(1 + Il)2� (Il)

(∫ ∞

Il

� (Il, Is)
� (Is)

=(Is)dIs
)
?(Il)dIl . (4.5)

Tomodel ?(Il)weuse aGaussian centred on the photometric redshift of the
given lens and with standard deviation given by the value of fI associated

to the specific sample, as discussed in Sect. 4.2.1. The redshift probability
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distribution of the source sample, =(Is), is instead obtained from the SOM

as described in Sec. 4.2.2.

The lensing signal decreases as the distance between the lenses and the

sources decreases (due to the � (Il, Is) in Σ−1
crit). In our case, while the lenses

span a large range in redshift (0.15 < Il < 0.8), the signal is limited by
the source sample, for which we have robust redshift estimates only up to

Is = 1.2 (Wright et al. 2020). This means that our lensing efficiency peaks

around Ils ∼ 0.3 and rapidly decreases as we approach high redshifts.
To each lens-source pair we also assign a weight determined by three

components: a weight associated to the source sample, Fs, which down-
weights the shears of the galaxies with low S/N, and that corresponds to

the lensfit weight reported as weight in theKiDS-1000 shear catalogue (see
Sect. 4.2.2); a weight associated to the lens galaxies, which is designed to

remove residual correlations between the spatial galaxy number density

and the survey observing conditions (Vakili et al. 2020); and a geometric

term that down-weights lens-source pairs that are close in redshift, given

by the square of the inverse critical mass surface density:

Fls,eff = FsFl
(
Σ−1

crit,eff

) 2
. (4.6)

Our estimator (here indicated with a hat) for the excess surface mass

density thus reads:

Δ̂Σls(Ap) =
[∑

ls Fls,eff nt,s Σcrit,eff∑
ls Fls,eff

]
1

1 + <̄

�����
Ap

, (4.7)

where we have included an average correction to the galaxy shear obtained

from dedicated simulations, which quantifies the residual multiplicative

bias in the estimate shear due to the presence of noise and blending in the

images. The <−bias is a function of redshift (Kannawadi et al. 2019): here
we rely on the calibration presented in Kannawadi et al. (2019) and evalu-

ate it in narrow redshifts slices and weight it by F′ = Fs� (Il, Is)/� (Is):

<̄ =

∑
8 F

′
8
<8∑

8 F
′
8

(4.8)

where 8 is the 8−th redshift slice. The<−biasmeasured in our samples goes
from −0.01 to −0.03.
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4.3.1 Contamination from physically associated galaxies:
boost factor and IA

Because galaxies tend to cluster and the clustering is a function of galaxy

separation, there is an overdensity of sources that are physically associ-

ated with the lens. This has two implications: on one hand, these galaxies

are not lensed, diluting the GGL signal at small scales; on the other hand,

because these galaxies experience the local tidal field, some of them are

intrinsically aligned towards the lens, that is, opposite to the lensing sig-

nal, further suppressing the signal. The former effect can be accounted by

comparing the weighted number of pairs between the lens and source sam-

ple and the weighted number of pairs that a random distribution of lenses

forms with the source sample, as a function of the projected separation Ap
(Sheldon et al. 2004; Mandelbaum et al. 2005). This term is typically re-

ferred as boost factor:

�(Ap) =
∑

r Fr∑
l Fl

∑
ls Fls,eff∑
rs Frs,eff

�����
Ap

(4.9)

where Frs,eff = Fs
(
Σ−1

crit,eff

) 2
and Fr = 1.

Both the lensing dilution from unlensed galaxies and the negative con-

tribution from IA can be removed by selecting only source galaxies that

have separations larger than In from the lens, with Is − Il = In (Leauthaud
et al. 2017). Although we also apply the boost factor, we make use of this

cut when measuring the lensing signal, to ensure that any contamination

is low and adopt In = 0.2.

4.3.2 Random subtraction

On top of the correction discussed in the previous section, we follow Singh

et al. (2017) and subtract the signal around randompoints from the lensing

signal. This ensures that residual additive biases, introduced by the survey

edges and by the presence of masks are removed from our measurement.

The random signal is obtained in exact analogy to Eq. 4.7, but measuring

the lensing signal around points uniformly distributed over the survey foot-

print with removal of the masked regions. The final estimator is thus given

by

Δ̂Σ(Ap) = �(Ap)Δ̂Σls(Ap) − Δ̂Σrs(Ap) . (4.10)
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4.3.3 Estimator for the IA signal

We are, however, also interested in measuring the IA signal of the source

galaxies around the lenses. To this end, we only select galaxies within a

small redshift separation from the lenses. We chose ΔI ≡ |Il − Is | < In with
In = 0.15. The computation is analogous to the case of lensing, (Eq. 4.10):
we label the resulting signal ΔΣΔI to denote the redshift range used for this

measurement. The signal measured in this way is still affected by the lens-

ing contamination, which can be removed using lensing signal measured

for the ‘lensing’ sample. Focusing on physically associated galaxies, in this

case it is crucial to correctly account for the boost factor.

The excess of lens-source pairs after the random subtraction described

in the previous section causes the IA signal (as this corresponds to the clus-

tered galaxies): the average critical surface density thus becomes:

〈Σcrit,eff〉ex =

∑
ls Fls,effΣ

(ls)
crit,eff −∑

rs Frs,effΣ
(rs)
crit,eff∑

ls Fls,eff −∑
rs Frs,eff

. (4.11)

Finally, the IA estimator is (Blazek et al. 2012):

ŴIA(Ap) =
Δ̂ΣΔI − Δ̂Σlens

(�ΔI − 1)〈Σ(ΔI)
crit,eff〉ex − (�lens − 1)〈Σ(lens)

crit,eff〉ex

�����
Ap

. (4.12)

Leonard et al. (2018) presented an improved version of this estimator

which exploits the scale dependence of IA to better separate it from lens-

ing. This requires multiple measurements of the source galaxy shapes, ob-

tained with different shape estimates that weigh different galaxy scales dif-

ferently. Here, we do not investigate this possibility, mainly motivated by

the results in Georgiou et al. (2019b), who used very high S/N measure-

ments and found that the scale dependence of IA is mainly limited to red

satellites. The gain is therefore expected to be minimal in a mixed sample.

4.4 Modelling the signal with the halo model

The GGL signal captures the projected two-point correlation function be-

tween a galaxy position and a galaxy shear, which in turn is ameasure of the

three-dimensional correlation between matter and density distributions.

Because lensing is sensitive to density contrasts, in practise we measure

the difference between the projected mass density at a certain radius and

the average mass density contained in that radius (eq. 4.3).
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In order to model the signal, we need to provide an analytical expres-

sion for the projected surface mass density around galaxies. This is related

to the three-dimensional correlation function via a projection integral. In

the distant observer approximation, it can be expressed as an Abel trans-

form

Σ(Ap) = 2d̄<
∫ ∞

Ap

bXg (A)
A dA√
A2 − A2

p

. (4.13)

Here bXg (A) is the correlation between the galaxy and the fractional matter
density contrast, 〈X(x)Xg (x + r)〉, with X(x) = (dX(x) − d̄X)/d̄X, - ∈ {X, g}.
In the following, we will always use the short-notation X to indicate the

dark matter and g for the galaxy. Since galaxies form inside dark matter

haloes, the halomodel is a natural framework to describe thematter-galaxy

correlation function, bXg (A). We present this formalism in the next section.

The projected mass contained within the radius Ap can be written as

Σ̄(< Ap) =
2
A2

p

∫ Ap

0
Σ('′)'′3'′ (4.14)

and from eq. 4.3 we can recover the ESD.

While this formalism strictly describes only the lensing effect due to the

darkmatter distribution, we also include the GGL due to the baryonicmass

of the galaxy, here modelled as a point mass (pm),

ΔΣpm =
〈"∗〉
cA2
?

. (4.15)

This approximation is motivated by the fact that the minimum scale we

probe is A? = 60 ℎ−1kpc, much larger than the physical extent of the stellar
component of a galaxy.

We evaluate the model at the effective redshift of the lenses, Ieff , given
by the weighted mean of the lenses, with weight the lensing efficiency in

equation 4.6. For the luminous sample, this corresponds to Ieff = 0.406,
while for the dense sample Ieff = 0.368.

4.4.1 The halo model

The halo model (Seljak 2000; Ma & Fry 2000; van den Bosch et al. 2013;

Cooray & Sheth 2002, for a review) is a well-established formalism for pre-

dicting and interpreting the clustering and lensing statistics of galaxies and

dark matter. The key idea behind the halo model is that the mass of the
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halo is the fundamental property that drives halo clustering statistics. It

assumes that all dark matter in the Universe is bound in haloes and that

dark matter haloes are fully described by a universal density profile.

The formalism is based on a set of ingredients: a density profile for the

dark matter distribution; a halo mass function, that provides a prescrip-

tion of howmany haloes populate a given comoving volume at a given red-

shift; and a halo bias function, which quantifies the bias of the bounded

haloes with respect to the underlying matter distribution. Then, galaxies

can be included into the formalism through a prescription that provides the

way galaxies occupy dark matter haloes. The halo occupation distribution

(HOD), is a convenient way of doing that, assigning the number of galaxies

#g per a give halo of mass ", 〈#g |"〉. We discuss in detail the model we

adopt for the HOD in Sect. 4.4.3

We define darkmatter haloes as spheres with an average density of 200

times the background density today, dh = 200dm. We assume that the dark

matter is spatially distributed following the Navarro-Frenk-White profile

(NFW, Navarro et al. 1996), with a concentration-mass relation fromDuffy

et al. (2008). We also assume that satellite galaxies are spatially unbiased

with respect to the dark matter particles, i.e. that their spatial distribu-

tion is described by ds(A, ") = dh(A, ") ≡ "D(A, "), with D(A, ") the nor-
malised density profile of dark matter and A the distance from the centre

of the halo. We allow central galaxies to have a different amplitude of the

concentration-mass relation, which we parametrise as a free pre-factor 52.

For the halo mass function, =("), as for the halo bias function, 1ℎ ("), we
adopt the functions presented in Tinker et al. (2010). We explicitly force

the halo bias to be normalised at each redshift: the normalisation is ob-

tained by integrating the halo bias function over a large range of masses

(102 − 1018 ℎ−1"�). We do not model the off-centering of central galaxies,

i.e. we always assume that they sit at the centre of their halo.

4.4.2 The galaxy-matter power spectrum

Given a prescription for the HOD (Sect. 4.4.3) and the set of ingredients

introduced in Sect. 4.4.1, it is possible to build the correlation functions

between the matter density field and a continuous galaxy field, as well as

their auto-correlations. As such relations involve convolutions, for compu-

tational reasons it is convenient to work in Fourier space and then trans-

form the quantities back to real space. We thus present them in Fourier

space, as they are implemented this way in the code.

One of the main advantages of the halo model is its separate treatment
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of the correlation that arise between the galaxies/matter within the halo,

which leads to the so called 1-halo term, and the correlation between those

that belong to different haloes, the 2-halo term. As a general result, the full

power spectrum is

%(:, I) = %1h(:, I) + %2h(:, I) (4.16)

regardless whether we are describing the clustering of galaxies, of dark

matter or the matter-galaxy correlation.

In turn, we can split the contributions from central and satellite galax-

ies andmodel them individually. Denoting with ‘c’ the central-galaxy com-

ponents, with ‘s’ the terms which are sourced by the satellite population,

and with X those corresponding to matter, we have that any correlation is

given by the sum of all of the possible correlations between these terms. In

Fourier space, for the case of the galaxy-matter cross power spectrum, this

reads:

%gX (:, I) = 5c%
1h
cX (:, I) + 5s%

1h
sX (:, I) + 5c%

2h
cX (:, I) + 5s%

2h
sX (:, I) . (4.17)

Here 5- with - ∈ {c, s} is the fraction of galaxies of a given type entering
the correlation. These can be obtained from the galaxy number densities

as predicted by the HOD as

5- =
=-

=g
, (4.18)

where

=- =

∫ ∞

0
〈#- |"〉 =(") d" . (4.19)

It is convenient to introduce the functions H- , where - = {X, c, s} and
are thus associated to a given component:

HX (:, ") = "

dm
D(:, ") , (4.20)

Hc(:, ") = 〈#2 |"〉
=6

(4.21)

and

Hs(:, ") = 〈#B |"〉
=6

D(:, ") . (4.22)

The 1-halo and 2-halo terms of the power spectrum thus read:

%1ℎ
GH (:) =

∫ ∞

0
HG (:, ")HH (:, ") =(") d" (4.23)
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and

%2ℎ
GH (:) = %lin(:)

∫ ∞

0
d"1 HG (:, "1)1h("1)=("1)

×
∫ ∞

0
d"2 HH (:, "2)1h("2)=("2) .

(4.24)

A relevant quantity that we can predict via this formalism is the average

mass mass of bounded haloes that host a central galaxy. This is defined as:

〈"200〉 =
1

=c(Ieff)

∫
〈#c |"〉=(")"d" . (4.25)

4.4.3 The halo occupation distribution

Following Cacciato et al. (2009), we derived theHOD from the Conditional

Luminosity Function (CLF) obtained for the SDSS by Yang et al. (2003).

The CLF, dΦ(! |")d", specifies the average number of galaxies with lumi-
nosity in the range ! ± d!/2 that reside in a halo of mass ". Thus, inte-
grating over a certain luminosity bin provides the number of galaxies with

a certain luminosity ! ∈ [!1, !2] that reside in a halo of mass ",

〈#6 |", !1, !2〉 =
∫ !2

!1

Φ(! |")d! (4.26)

As in Cacciato et al. (2009), we split the CLF in two components,

Φ(! |") = Φc(! |") +Φs(! |"), (4.27)

where Φc(! |") is the CLF associated with central galaxies, while Φs(! |")
is the CLF associated with satellite galaxies.

The central galaxy CLF is described by a log-normal function,

Φc(! |")3! =
log 4
√

2c
exp

[
− (log ! − log !c)2

2f2
c

]
d!

!
, (4.28)

where

!c(") = !0
("/"1)W1

[1 + ("/"1))W1−W2] (4.29)

is the mean luminosity of central galaxies in a halo of mass ". "1 is the
characteristic mass scale at which !c(") changes its slope (!c ∝ "W1 for

" � "1 and !c ∝ "W2 for " � "1). Eq. 4.29 is one of the key relations
we aim to constrain for the LRG sample (see Sec. 4.6).
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Satellite galaxies obey

Φs(! |") = Φ∗
s

(
!

!∗B

) Us+1
exp

[
−
(
!

!s∗

) 2
]
d!

!
, (4.30)

where !s∗ (") = 0.562!c(") and

log[Φ∗
s (")] = 10 + 11(log"12) (4.31)

In total, our halo occupation distribution is described by nine parame-

ters: log"1, log !0, W1, W2, fc, 5cUs, 10, 11.

4.5 Fitting procedure

We sample the parameter space via a Monte Carlo Markov Chain proce-

dure, using the Emcee sampling3 (Foreman-Mackey et al. 2013) sampler.

We assume a Gaussian Likelihood of the form

L ∝ exp
[
−1

2 (D8 − M(\)8)TC−1
8 9 (D 9 − M(\) 9)

]
, (4.32)

whereD is the data vector,M(\) is themodel evaluated for the set of param-
eters \, and 8, 9 refer to the radial bin under consideration, and C−1

8 9
is the

inverse of the data covariance matrix. We employ 120 walkers and check

the convergence of the chains by visually inspecting the chains. The priors

for the HOD parameters are reported in Table 4.1 and are based on previ-

ous results in literature. In particular, while we broadly follow the choice

of the priors in Bilicki et al. (2021), we adopt more informative priors in

the following cases: fc has been shown to be tightly constrained by current
measurements as investigated in Cacciato et al. (2014, see e.g. their Fig.

6); W1 is expected to be poorly constrained by a luminous sample such as
the LRGs: here we follow Cacciato et al. (2014), but rather than fixing it we

provide an informative prior centred on the best-fit value in C13; the prior

for W2 is typically extremely broad: however, the best-fit values obtained
for different samples are all in good agreement and span the range 0.2−2.0
(Cacciato et al. 2013, 2014; van Uitert et al. 2016a; Dvornik et al. 2018; Bil-

icki et al. 2021): we thus restrict the sample to the rangeU(0, 2). We also

reduce the range of 5c based on some preliminary runs and exclude zero to
avoid unphysical behaviour of the model.

3https://emcee.readthedocs.io/en/stable/

https://emcee.readthedocs.io/en/stable/
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Table 4.1: The priors adopted in the fit and the corresponding fiducial values, here reported
as the median of the marginal posteriors, while the best fit values are reported in brackets.
The error bars correspond to the 16th and 84th percentiles. N(`, f) indicates a normal
distribution with mean ` and standard deviation f.

Parameter Prior Fiducial

5c [0.1, 1] 0.977+0.017
−0.054 (0.999)

log(!0/[ℎ−2!�]) [7, 13] 9.950+0.331
−0.577 (10.357)

log("1/[ℎ−1"�]) [9.0, 14.0] 11.656+0.341
−0.434 (12.070)

W1 N(3.18, 2) 4.224+1.888
−1.863 (3.146)

W2 [0, 2] (0.266) 0.421+0.174
−0.140 (0.266)

fc [0.1, 0.3] 0.131+0.060
−0.022 (0.115)

Us N(−1.1, 0.9) −1.734+0.524
−0.404 (-1.478)

10 N(0, 1.5) −1.355+0.491
−0.456 (-1.607)

11 N(1.5, 2.0) 0.864+0.287
−0.359 (1.056)

4.6 Constraints on the lens sample properties

We measured the ESD signal of the dense and luminous samples in bins
in luminosity, applying the cuts presented in Fortuna et al. (2021b) and la-

belled D1, D2, D3, D4, D5, L1, L2, L3. The D1 and L1 samples of this
studies slightly differ from those in Fortuna et al. (2021b), because of the

removal of the galaxies that reside in the tails of the distributions4. Re-

moving the tail is crucial for the correct interpretation of the luminosity

distributions by the model: the HOD modelling assumed here is designed

for volume-complete samples. Given the lack of a selection function in the

model, the long faint-tail would be populated by a large number of faint

galaxies, as predicted by the modified Schechter function in Eq. 4.30. We

explore how well our model can capture the luminosity distribution of our

samples in Appendix A1.

The properties of the lens samples are reported in Table 4.2. We jointly

fit all the samples with a single model and found a unique set of HOD pa-

rameters, which we report in Table 4.1. The reduced j2 is 1.05.
The best-fit HOD parameters agree within the error bars with the best-

fit parameters of the red population of theKiDS-Bright sample (Bilicki et al.

2021). This is a sign that the two samples, albeit selected with different

4The tail is due to the photo-z scatter, such that a<A (I) cut does not translate into a sharp
cut in absolute magnitudes. We also remove part of the high-!, with a cut at "A −5 log(ℎ) =
−22.6.
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Figure 4.2: The ESD measurements for the samples listed in Table 4.2. We plot the best fit
curves (Table 4.1) on top of the data points. The grey shadowed area is excluded from the
fit. The reduced j2 of the fit is j2

red = 1.05.

cuts, are characterised by similar scaling relations. It is, however, surpris-

ing that the stellar-to-halo mass relation of the red galaxies of the Bright

sample has a very similar scaling to the luminosity-to-halo mass relation

of the LRG sample (see Sect. 4.6.1). We interpret this result as a conse-

quence of the observed luminosity-to-stellar mass-relation for the LRGs,

which is close to unity (see Tab. 4.2).

4.6.1 Luminosity-halo mass relation

For each sample, we derive the corresponding average halo mass, 〈"200〉
(Eq. 4.25). These are reported in Table 4.2. At intermediate luminos-

ity (D5, L2 L3), our results are in good agreement with previous studies
(Mandelbaum et al. 2006; Miyatake et al. 2015; van Uitert et al. 2015), al-

though at high luminosity the extrapolation of our best-fit curve is above

the measurements from literature. Here, we only show the point from van

Uitert et al. (2015) which are the closest to the effective redshift of our sam-

ples. We also note thatMandelbaum et al. (2006) use a different definition

of halo mass, and thus the comparison has to be considered only qualita-

tive. However, our samples are overall fainter than these, providing an

extension to the ! − " towards lower luminosities. This is illustrated in

Fig. 4.3, where we also plot the luminosity-halo mass relation for the cen-

tral galaxies as predicted in Eq. 4.29. Given that the fraction of satellites

is overall low (see Table 4.2), the qualitative agreement between the data
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Figure 4.3: The luminosity-halo mass relation for the LRG sample (dense orange circles;
luminous green squares), compared with similar measurements from different sample in the
literature. The solid line shows the !c (") relation predicted by our model.

Table 4.2: Properties of the lens samples.

Sample 〈log ! [ℎ−2!�]〉 〈log"∗ [ℎ−2"�]〉 〈log"200 [ℎ−1"�]〉 5s
D1 10.01 10.25 12.43 ± 0.05 0.29 ± 0.05
D2 10.20 10.35 12.53 ± 0.06 0.27 ± 0.04
D3 10.21 10.46 12.65 ± 0.07 0.24 ± 0.03
D4 10.35 10.62 12.84 ± 0.08 0.2 ± 0.02
D5 10.59 10.84 13.32 ± 0.03 0.13 ± 0.01
L1 10.33 10.63 12.81 ± 0.08 0.19 ± 0.02
L2 10.48 10.77 13.02 ± 0.07 0.16 ± 0.02
L3 10.65 10.94 13.42+0.02

−0.05 0.11 ± 0.02
〈"200〉 and 5s are derived from the set of HOD parameters that maximise the
likelihood. The error bars correspond to the 16th and 84th percentiles.
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Figure 4.4: The dependence of IA on halo mass for different IA measurements. The halo
masses, 〈"eff〉, are obtained as described in the text. We indicate our measurements with
star markers (orange: dense sample, green: luminous); the other data points are taken from
the literature. The solid black line shows the best fit curve of the �IA (") relation described
by Eq. (4.33), while the shaded area delimits the 68% confidence region.

and the curve is expected and the curve provides a useful comparisons for

simulations and the galaxy properties in mock catalogues.

4.6.2 IA dependence on halo mass

To explore the implications of the observed luminosity-to-halo mass rela-

tion for the IA signal of the LRGs, we use the measurements in Fortuna

et al. (2021b) and place them into context using the estimates of the halo

masses obtained in the previous section. Fortuna et al. (2021b) used a

Non-Linear Linear Alignment model (Hirata & Seljak 2004; Bridle & King

2007), adapted to account for the photometric redshift uncertainty (Joachimi

et al. 2011), to fit the IA signal at large scales (Ap > 6 ℎ−1Mpc). The best-fit
IA amplitudes, �IA, of the different sub-samples are shown in Fig. 4.4 as
orange (dense) and green (luminous) stars.

When combinedwith previousmeasurements in the literature, Fortuna
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et al. (2021b) found that the IA dependence of the red galaxies can be de-

scribed well by a double power law, with a break at !A . 3.2 × 1010ℎ−2!A ,�,
although the data show a large scatter at low-!. We are now in a position

to investigate whether this dependence was primarily sourced by the halo

mass, or if the relation is more complex and requires the addition of sec-

ondary galaxy properties. Interestingly, our measurements of ! (") lie on
the transition between the two regimes of the power law in Eq. 4.29. This

means that the double power law in the IA-! plane reflects at least partially

the double power law in the ! −" plane. We explore this further by show-

ing the IA amplitudes in Fortuna et al. (2021b) as a function of weak lensing

mass in Fig. 4.4. Although the scatter is too large to draw definitive conclu-

sions, we note that the overall trend matches a single power law. To obtain

a more complete picture, we also added the measurements from Joachimi

et al. (2011) (MegaZ, SDSS LRGs, the L3 and L4 samples from the SDSS)

and Singh et al. (2015) (LOWZ) to Fig. 4.4, which are based on LRGs and

thus can safely be assumed to be mainly centrals5 To do so, we converted

the luminosity of each sample into an estimate of their halo mass, via the

relation found in Sect. 4.6 and displayed in Fig. 4.3. Singh et al. (2015) pro-

vide estimates of the halo masses of their samples, but those are based on a

different definition of halo mass and for ease of comparison we decided to

use our scaling relation. Since van Uitert & Joachimi (2017) do not provide

the luminosity of the clusters, but use the same definition of halo mass, we

decided to use their halo mass estimate. We fit all the measurements in

Fig. 4.4 with a single power law of the form:

�IA(") = �
(
"

"0

) V"
, (4.33)

with "0 = 1013.5ℎ−1"�. We find a best fit amplitude of � = 5.74+0.32
−0.32 and

slope V" = 0.44+0.04
−0.04. The reduced j

2 is 1.64 for 21 degrees of freedom. We

stress, however, that some of themasses associated to thesemeasurements

lie beyond the range constrained by our data, and are thus an extrapolation.

This is relevant because a small variation of the slope becomes significant

at high−!. We test the impact of this by replacing our ! − " relation with

the one in van Uitert et al. (2015) for the high-mass points (LOWZ, MegaZ

and SDSS LRGs). This relation was also adopted in Piras et al. (2018) and

includes a redshift dependence, which we do not consider in our model.

When repeating the fit with this new set of data, we still find comparable

5For this reason, we decided to omit the measurements from Johnston et al. (2019),

which are known to have a larger fraction of satellites.
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Figure 4.5: The IA signal of the source galaxy sample around the LRGs, selected for small
redshift separations (|Il − Is | < 0.15). We consider the signal from the full source sample
(black squares), and its split in red/blue (red circles/blue triangles). At separations below
0.06 ℎ−1Mpc (grey region) blending becomes important and thus we do not consider it in
the analysis. For clarity, the red and blue points are shifted horizontally.

results within the model uncertainty although we notice an improvement

in the reduced j2, which in this case is 1.19. We also tested the impact of the

clustering measurements on our fit: the interpretation of their IA signal is

indeed complicated by the fact that their shapes are obtained with a differ-

ent technique than for the LRG samples (van Uitert & Joachimi 2017). We

thus removed them from our data vector and repeated the fit: the result of

this test is compatible with our fiducial setup.

4.7 Constraints on the IA of the source sample

To constrain the IA of the source galaxies we measured the 〈Wt〉 signal in
narrow bins in redshift (ΔI ≡ |Il − Is | = 0.15)6 and subtracted the lens-

6We note that with this definition, the galaxy-galaxy separation is a function of redshift.

Here, we are primarily limited by the photometric redshift uncertainty, and thus consider
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ing contribution as described in Sect. 4.3.37. Selecting only galaxies with

a small separation along the line-of-sight enhances the IA signal, while re-

moving a substantial part of the lensing contribution. The different choice

in I-binning is fully accounted for in themodel through Σcrit, which is com-
puted according to the new galaxy selection. The average signal, 〈Wt(Ap)〉
is computed as in Eq. 4.12 and thus is the average tangential ellipticity nt,
weighted by the lensing efficiency. Hence, the IA signal is expressed in

terms of the weighted intrinsic shear instead of the intrinsic ellipticity, as

in Georgiou et al. (2019b).

Here, we only consider the lens galaxies from the dense sample, without
any split in luminosity. In Appendix A2 we report the fraction of galaxies

of the source sample that are physically associated to the LRGs. The results

are presented in Fig. 4.5. We do not detect any intrinsic alignment for the

full source sample, 〈WC ,IA〉 = −0.0001 up to 10 ℎ−1Mpc, with a j2 of the null-
hypothesis of j2

null = 1.67. As for the GGL signal, we do not consider the
data points below 0.06 ℎ−1Mpc, where observational systematics become
important. Although at small scales IA is expected to be radial dependent

(Pereira et al. 2008; Pereira & Bryan 2010), having detected zero signal,

we limit our fit to a constant value and do not consider more sophisticated

models: we find � = (−0.49 ± 1.4) × 10−4.

We explore now the possibility that the signal is washed out by the

presence of blue galaxies in the sample, which are expected to be poorly

or none aligned. We thus split the source galaxies based on their mor-

phology. We follow Li et al. (2021) and use the parameter )B from the

BPZ photo-I code (Benítez 2000; Coe et al. 2006) as a proxy for the mor-

phology: we identify the ‘red’ population (a combination of E1, Sbc, Scd

types) as the galaxies satisfying )B 6 3, while the ‘blue’ one is the com-
plementary sample, selected by requiring )B > 3. The signal is displayed
in Fig. 4.5. Also in this case we do not observe any alignment signal, with

〈W (red)
C ,IA 〉 = −0.0007 (j2

null,red = 1.39) and 〈W (blue)
C ,IA 〉 = 0.0011 (j2

null,blue = 1.35).
We also report the best fit values of the constant fit, which in this cases are:

� (red) = −0.0003 ± 0.0002 and � (blue) = 0.0003 ± 0.0002.
Tomeasure the IA with the split in colour, we subtracted the same lens-

ing signal as for the full sample. This is motivated by the fact that lensing

does not depend on the source galaxy colour. We tested, however, that the

residual IA that might contaminate the signal did not affect the results by

this effective treatment as sufficient.
7We stress that this IA signal differs from the one discussed in the previous section,

which was obtained by using the two-point projected correlation function.
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measuring the lensing signal only for the red source galaxies andmeasured

the IA by subtracting this ‘red lensing’ ESD from ΔΣ
(red)
ΔI

. We found the re-

sults to be compatible within the statistical uncertainty with our fiducial

setup.

Our results are in line with previous measurements (Hirata & Seljak

2004; Blazek et al. 2012; Chisari et al. 2014; Sifón et al. 2015). Dark mat-

ter only simulations predict satellite galaxies to be radially aligned towards

the centre of the halo (Pereira et al. 2008; Pereira & Bryan 2010), but this

signal is significantly washed out when considering the stellar component

(Velliscig et al. 2015b), as a possible consequence of the misalignment be-

tween the luminous and the dark component of the galaxy (Velliscig et al.

2015a). Pereira & Kuhn (2005) and Faltenbacher et al. (2007) both de-

tected a radial alignment signal, the fist in cluster galaxies and the second

on red satellites in the SDSS galaxy group catalogue (Yang et al. 2007). In

line with these findings, recently, Georgiou et al. (2019b) detected a ra-

dial signal for both red and blue satellites in galaxy groups selected from

the Galaxy And Mass Assembly survey (GAMA, Driver et al. 2009). How-

ever, all of these studies rely on spectroscopic redshifts, and thus to a more

robust assignment of the galaxies to their group: here, we considered all

galaxieswithin a given redshift separation, which significantly degrades the

signal. The uncertainty in photometric redshifts also contributes to dilute

the signal due to the promotion of uncorrelated pairs within the selection

as well as the removal of physically associated galaxies. Moreover, Velliscig

et al. (2015a) find that IA depends on the subset of stars used to the signal:

using all the stars bound in sub-haloes, the signal is significantly increased

compared to the alignment of stars within the half-mass radius. In this lat-

ter case, they find compatible values for 〈ng+〉 to Chisari et al. (2014); Sifón
et al. (2015); Singh et al. (2015). This is in line with the finding in Georgiou

et al. (2019b) that the alignment signal is a function of galaxy scale, with

the outskirt of the galaxy being more aligned with the position of the cen-

tral galaxy. In this sense, lensfit, which weighs more the inner part of the

galaxy, might also contribute to the low signal observed in our samples.

4.8 Conclusions

We used weak gravitational lensing to measure the mass of a sample of

LRGs for which the IA signal was measured in Fortuna et al. (2021b). We

split the sample into bins based on their luminosity, and used a halo model

to interpret our data. We fit the ESD measurements of all the luminos-
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ity bins jointly, with a single model. We confirmed that the LRG sample

consists mainly of central galaxies, as expected for this kind of galaxy pop-

ulation, and provide the satellite fraction for each !−bin. We ensured that

the modelling recovers the true galaxy properties sufficiently well, by in-

specting the luminosity distribution per each luminosity bin predicted by

themodel: we find good agreement between the predicted and the real dis-

tributions.

The best fit model predicts an increasing average halo mass with lumi-

nosity, which we model with a double power law, for which we obtain the

following slopes: W1 = 4.412 and W2 = 0.476 (Eq. 4.29). We note, however,

that our data mainly constrain the high mass-end of the double power law

(" > "1), which is reflected by the uncertainties in W1. Our results are in
good agreement with previous studies at high luminosity and extend the

luminosity-to-halo mass relation towards the faint-end (low mass).

We used these results to interpret the IA dependence with halo mass,

starting from the luminosity dependence measured in the literature. The

IA-halo mass relation can be parametrised by a single power law, as pre-

dicted by current models (Piras et al. 2018). This suggests that the flatten-

ing at low luminosity, hinted at by Fortuna et al. (2021b), may be caused

by the double power law in the luminosity-to-halo mass relation. Although

the scatter in the measurements remains large, this would imply that the

halo mass is the driving source of the alignment.

We also measured the IA signal of the lensing source sample around

the LRGs, by selecting only pairs with a maximum separation of |Il − Is | =
0.15. We considered three cases: the full source sample, and a split in red

and blue. We did not detect any alignment signal, in none of the cases

considered for Ap > 0.06 ℎ−1Mpc. We mainly attribute our null-detection

to the photometric redshift selection of the galaxy pair: the use of better

photo-I might revisit our conclusions.

Acknowledgements

MCF and HH acknowledge support from Vici grant 639.043.512, financed

by the Netherlands Organisation for Scientific Research (NWO). HH also

acknowledges funding from the EU Horizon 2020 research and innova-

tionprogrammeunder grant agreement 776247. ADacknowledges support

from the European Research Council under grant agreement No. 770935.

Based on data products from observations made with ESO Telescopes

at the La Silla Paranal Observatory under programme IDs 177.A- 3016,



154 KiDS-1000: weak lensing and IA around LRGs

9.95 10.00
0

1000

2000

D1

10.05 10.10
0

1000

2000

D2

10.15 10.20 10.25
0

1000

2000

D3

10.3 10.4
0

500

1000

1500
D4

10.6 10.8
0

1000

2000

3000
D5

10.3 10.4
0

2000

4000
L1

10.45 10.50
0

1000

2000
L2

10.6 10.8
0

1000

2000

3000

L3

log(Lr [h−2L�])

N
u

m
b

er
co

u
nt

s

Figure 6: The real data number counts per luminosity bin (dense: orange, luminous:green)
and the prediction from the best-fit model (black), normalised for the number of objects in
the given bin.

177.A-3017 and 177.A-3018, and on data products produced by Tar- get/

OmegaCEN, INAF-OACN, INAF-OAPD and the KiDS production team, on

behalf of the KiDS consortium. OmegaCEN and the KiDS production team

acknowledge support by NOVA and NWO-M grants. Members of INAF-

OAPD and INAF-OACN also acknowledge the support from the Depart-

ment of Physics & Astronomy of the University of Padova, and of the De-

partment of Physics of Univ. Federico II (Naples).

Author contributions: All authors contributed to the development and

writing of this paper. The authorship list is given in three groups: the lead

authors (MCF, HH, AD) followed by two alphabetical groups. The first al-

phabetical group includes those who are key contributors to both the sci-

entific analysis and the data products. The second group covers those who

have either made a significant contribution to the data products, or to the

scientific analysis.

A1 How well does the model predict the lumi-

nosity distribution of the galaxies?

TheHODmodelling adopted in this work relies on the relation between the

halo mass and the luminosity of the galaxies that populate it via the CLF.

This allows us to test how well the best-fit model recovers the luminosity

distributions of the galaxy samples, a quantity which is not directly used
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Figure 7: The fraction of source galaxies that are physically associated to the LRGs.

in the fit. This represents an independent test of the ability of the model

to recover the properties of the lens galaxies. Fig. 6 shows our results. We

use the predicted luminosity function (LF) at the Ieff of the correspond-

ing sample to generate the model distributions (black solid line), while the

orange/green lines show the underlying true number counts. Overall, the

model reproduces sufficiently well the galaxy distribution per luminosity

bin, with the exception of L1, where the distribution is significantly more
peaked than the real one.

A2 Fraction of physically associated galaxies

In this Appendix we report the fraction of galaxies of the different source

samples (all/red/blue) that are physically associated to the LRGs. The frac-

tions are presented in Fig. 7 as a function of projected separation, and they

are computed as (�(Ap) − 1)/�(Ap).
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5| Forecasting the potential
of weak lensing magnifica-
tion to enhance LSST large-
scale structure analyses

C. Mahony,M.C Fortuna, B. Joachimi, A. Korn, H. Hoekstra

Recent works have shown that weak lensing magnification must be included in upcoming

large-scale structure analyses, such as for the Vera C. Rubin Observatory Legacy Survey of

Space and Time (LSST), to avoid biasing the cosmological results. In this work we investi-

gate whether including magnification has a positive impact on the precision of the cosmo-

logical constraints, as well as being necessary to avoid bias. We forecast this using an LSST

mock catalog, a halomodel to calculate the galaxy power spectra and amultiplicative factor

to account for systematic effects in the magnification measurement. We find that includ-

ing magnification has little effect on the cosmological parameter constraints for an LSST

galaxy clustering analysis. In particular, we find that for the LSST gold sample (8 < 25.3)
including weak lensing magnification only improves the galaxy clustering constraint on

Ωm by a factor of 1.03, and when using a deeper LSST mock sample (8 < 26.5) by a fac-
tor of 1.3. Since magnification predominantly contributes to the clustering measurement

and provides similar information to that of cosmic shear, this mild improvement would

be further reduced for a combined galaxy clustering and shear analysis. We also confirm

that not modelling weak lensing magnification will catastrophically bias the cosmological

results from LSST. Magnification must therefore be included in LSST large-scale structure

analyses even though it does not significantly enhance the cosmological constraints.
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5.1 Introduction

As light fromdistant galaxies travels towards telescopes it is deflected grav-

itationally by intervening matter. This means that galaxy images appear

distorted. On average, the distortions to individual galaxy images are very

small, but when combined, they can be used to statistically map the mat-

ter distribution in the universe. This technique is called weak gravitational

lensing.

Weak gravitational lensing distorts both the shape and size of galaxy

images. Statistical measurements of the shape distortions are referred to

as cosmic shear, and statistical measurements of the size distortions are

referred to as magnification. Making a magnification measurement of the

matter distribution in the Universe, which directly uses size information

is challenging because there is a large intrinsic variation in the sizes of

galaxies, and it is more prone to serious systematics (Hoekstra et al. 2017).

However, Schmidt et al. (2011) achieved a simplified magnification mea-

surement using the joint distribution of galaxy sizes and magnitudes, and

there are developing techniques which anchor the size distribution using

the fundamental plane of galaxies (Huff & Graves 2013; Freudenburg et al.

2019). Most magnification analyses therefore focus on making a magnifi-

cation measurement using galaxy number density information (Scranton

et al. 2005; Myers et al. 2005; Hildebrandt et al. 2009). In a flux limited

survey, distortions to the sizes of galaxy images affect the observed number

density of galaxies for two reasons:

1. Since surface brightness is conserved by lensing if the observed size of

a galaxy is increased, so is its observed flux. This means that galaxies

previously too faint to be observed by a galaxy survey become observ-

able. The number density of galaxies is increased.

2. It is not only the observed size of individual galaxies that is increased

by magnification, but the observed size of the whole patch of sky be-

hind the lens. This means that the observable separation between

galaxies behind the lens increases and there is a dilution in the num-

ber density of galaxies.

These two effects compete and contribute to an overall fluctuation in the

number density of galaxies, as a result of weak lensing magnification (for

the associated equations see section 5.3.1). Here we are concerned with

how magnification can probe the total matter distribution, but it can also

be used to constrain the mass of galaxy clusters (e.g. Tudorica et al. 2017).
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Weak lensing using cosmic shear has been a highly successful tech-

nique. In recent years there have been increasingly precise results using

cosmic shear from galaxy surveys such as the Kilo Degree Survey (KiDS)

(van Uitert et al. 2018; Joudaki et al. 2018; Hildebrandt et al. 2020), the

Dark Energy Survey (DES) (Abbott et al. 2018; Troxel et al. 2018) and

the Hyper Suprime-Cam Survey (HSC) (Hikage et al. 2019). Weak lens-

ing magnification has not been included in standard weak lensing analyses

to date. All that has been included is the sensitivity of results to includ-

ing a simplified magnification model (Abbott et al. 2019). The reasoning

is that magnification provides similar information to that of cosmic shear

and has a poorer signal-to-noise ratio (Bartelmann 2010). However, due to

improvements in statistical precision, recent works have shown that cos-

mological results from upcoming surveys such as the Vera C. Rubin Obser-

vatory Legacy Survey of Space and Time (LSST) and Euclid will be biased

if the effects of weak lensing magnification are not included (Duncan et al.

2014; Cardona et al. 2016; Lorenz et al. 2018; Thiele et al. 2019).

These works have shown that magnification must be included in future

surveys to avoid bias, but the aim of this work is to determine whether in-

cludingmagnification as a complementary probe can also improve the final

precision of the LSSTweak lensing results. Duncan et al. (2014) andLorenz

et al. (2018) found no increase in precision from including magnification

in a weak lensing analysis, however LSST is a special case, because it is a

very deep ground based galaxy survey. This means that there will be a lot

of very faint, small and distant galaxies, which will be poorly resolved. It

will therefore not be possible to measure the shape of these galaxies, but it

may be possible to count them for a weak lensing magnification analysis.

This means that the potentially usable sample size for weak lensing mag-

nification is significantly larger than that for cosmic shear, and as such it

is worth investigating magnification’s potential as a complementary probe

in the case of LSST 1. Particularly, as Nicola et al. (2020) showed that even

with only approximately 100 square degrees, deep samples are already sen-

sitive to magnification.

In summary, we wish to determine the effect of including weak lens-

ing magnification on the precision of the final constraints from LSST weak

lensing. We determine this using the Fisher matrix formalism introduced

in section 5.2. We then describe the modelling of the observables (weak

lensing power spectra and the galaxy luminosity function) in sections 5.3

1Lorenz et al. (2018) also considered LSST specifically, but did not include systematics

or explore departures from the gold sample used for cosmic shear.
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and 5.4. We describe the details of our LSST specific survey modelling in

section 5.5; and present our results and conclusions in sections 5.6 and 5.7.

We verify the stability of our Fisher matrices in appendix A2.

5.2 Fisher Analysis

The Fisher Information matrix summarises the expected curvature of the

log-Likelihood function around its maximum,

�8 9 =

〈
−m2 ln !
m\8m\ 9

〉
, (5.1)

where ! is the likelihood and \8 is a model parameter. If the likelihood

function is sharply peaked for a given parameter, the parameter is tightly

constrained by the data (Dodelson 2003). Themarginal uncertainty on the

model parameter \8 can be calculated from the Fisher matrix as:

Δ\8 >
√
(�−1)88 . (5.2)

The greater than or equal relation is in reference to the Cramér-Rao in-

equality, which specifies that the Fishermatrix gives theminimumpossible

uncertainty on an unbiased model parameter (Tegmark et al. 1997).

The Fisher information matrix can be calculated without data and is

therefore a useful tool for forecasting best case parameter constraints. In

the case of a Gaussian likelihood function and a parameter independent

covariance matrix the Fisher matrix is given by:

�8 9 =
∑
ℓ

m�ℓ

m\8
Cov−1 m�ℓ

m\ 9
, (5.3)

where� is the theory datavector andCov is the associated covariance (Tegmark
et al. 1997). In this work we consider two component Fisher matrices,

which we then add together since they concern separate observables: the

Fisher matrix where the theory datavector consists of the weak lensing ob-

servables (detailed in section 5.3) and the Fisher matrix where the theory

datavector consists of the galaxy luminosity function (detailed in section

5.4). There may be a small correlation between the observables due to cos-

mic variance, but we do not consider this in this forecast. The associated

covariances are detailed in sections 5.5.4 and 5.5.5 respectively.
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5.3 Weak Lensing Observables

The two observable quantities used in this weak lensing analysis are the

shape, often referred to as ellipticity, and the number density of galaxy im-

ages. Since weak lensing is a local effect, the mean ellipticity n and fluc-

tuation in the number density of galaxies =, resulting from weak lensing,

is equal to zero when averaged over large scales. Therefore, the key sta-

tistical quantity used in weak lensing analyses is the two-point correlation

function. There are three two-point correlation functions commonly con-

sidered in large-scale structure and weak lensing analyses: cosmic shear

(ellipticity-ellipticity), angular galaxy clustering (number density-number

density) and galaxy-galaxy lensing (number density-ellipticity). These two-

point correlation functions can be considered as individual probes or com-

bined together into a joint analysis, commonly referred to as ‘3x2pt’. Per-

forming a joint analysis is desirable as it helps to control uncertainties in

themeasurement, since the two-point functions are subject to different sys-

tematic effects and have different sensitivity to the cosmological parame-

ters.

The Fourier transform of the two-point correlation function for cosmic

shear is given by:

〈ñ 8 (ℓ)ñ 9 (ℓ′)〉 = (2c)2X (2) (ℓ + ℓ′)�8 9n n (ℓ) , (5.4)

where ñ is the Fourier transformof the ellipticity, ℓ is the angular frequency,
X (2) is the two-dimensional Dirac delta function and�8 9n n is the projected el-
lipticity power spectrum between redshift bins 8 and 9 (Joachimi & Bridle

2010). It is useful to work in Fourier space because it simplifies linking to

the theory predictions. The galaxy samples used for weak lensing are often

split into redshift bins; a technique called redshift tomography. This bin-

ning enables weak lensing to probe the evolution of the power spectrum

with time, through auto- and cross-correlations between the different red-

shift bins, and hence study the expansion of the universe and dark energy.

TheFourier space two-point correlation function for angular galaxy clus-

tering is given by:

〈=̃8 (ℓ)=̃ 9 (ℓ′)〉 = (2c)2X (2) (ℓ + ℓ′)�8 9nn(ℓ) , (5.5)

where =̃ is the Fourier transform of the number density contrast and �
8 9
nn

is the projected number density power spectrum between redshift bins 8

and 9 . The Fourier space two-point correlation function for galaxy-galaxy
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lensing and is given by:

〈=̃8 (ℓ)ñ 9 (ℓ′)〉 = (2c)2X (2) (ℓ + ℓ′)�8 9nn (ℓ) , (5.6)

where �
8 9
nn is the projected number density-ellipticity power spectrum be-

tween redshift bins 8 and 9 . In this work we focus on angular galaxy clus-

tering as an individual probe, and also consider a combined clustering and

shear analysis, where the analyses occur on separate patches of sky (see

section 5.6.2).

5.3.1 2D power spectra

The key quantities in equations 5.4, 5.5 and 5.6 are the two-dimensional

(2D) power spectra �n n , �nn and �nn . These are the observables we model
and include in our Fisher matrix theory datavector, see section 5.2.

In this work we model the 2D observable power spectra �n n , �nn and
�nn by breaking them down into their constituent parts. The observed el-

lipticity of a galaxy comes from a combination of the intrinsic ellipticity of

the galaxy before it is lensed n� (the intrinsic alignment, see Joachimi et al.

2015 for a review), the distortion of the shape byweak lensing shear W�, and

a randomuncorrelated component nrnd which accounts for the randomness
in the intrinsic ellipicity of galaxies,

n 8 ()) = W8� ()) + n
8
� ()) + n 8rnd()) , (5.7)

where 8 denotes the redshift bin. The observed number density of galaxies

comes from a combination of the number density fluctuation of galaxies as

a result of galaxy clustering =6, the distortion to the number density from

weak lensing magnification =<, and a random component =rnd which ac-
counts for the shot noise contribution,

=8 ()) = =86 ()) + =8<()) + =8rnd()) . (5.8)

In terms of the Fourier space 2D power spectra the uncorrelated ran-

dom components lead to noise power spectra, and separating out the re-

maining contributions gives:

�
8 9
n n (ℓ) = �8 9GG(ℓ) + �8 9IG(ℓ) + � 98IG(ℓ) + �8 9II (ℓ) ,

�
8 9
nn(ℓ) = �8 9gg (ℓ) + �8 9gm(ℓ) + � 98gm(ℓ) + �8 9mm(ℓ) ,
�
8 9
nn (ℓ) = �8 9gG(ℓ) + �8 9gI (ℓ) + �

8 9

mG(ℓ) + �8 9mI(ℓ) ,
(5.9)



5.3 Weak Lensing Observables 163

whereG represents ellipticity fromweak lensing shear, I ellipticity from the

intrinsic alignment of galaxies, g number density fluctuations as a results

of intrinsic galaxy clustering andm number density fluctuations as a result

of weak lensing magnification.

We compute all these two-dimensional power spectra �ab from their

associated three-dimensional power spectra %ab using the Limber approx-
imation in Fourier space (Kaiser 1992):

�
8 9

GG(ℓ) =
∫ jhor

0
dj@

8 (j)@ 9 (j)
5 2
 
(j)
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: =
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0
dj ?

8 (j)@ 9 (j)
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8 9
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0
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�
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gm(ℓ) = 2(U 9 − 1)�8 9gG(ℓ) ,

�
8 9
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�
8 9
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0
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8 9

mI(ℓ) = 2(U8 − 1)�8 9GI(ℓ) ,

(5.10)

where j is the comoving distance, 5 (j) is the comoving angular diameter
distance and ?8 (j) is the probability distribution of galaxies in redshift bin
8. @8 (j) is a weight function given by:

@8 (j) =
3�2

0Ωm

222
5 (j)
0(j)

∫ jhor

j

dj′?8 (j′) 5 (j
′ − j)

5 (j′)
, (5.11)

for further details see Bartelmann & Schneider (2001). The calculation of

the three-dimensional power spectra %ab is detailed in the following sec-
tion.

Equation (5.10) shows that the 2D power spectra associated with mag-

nification �gm, �mm, �mG and �mI can be computed from the 2D power
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spectra associated with weak lensing shear �gG, �GG and �IG using U8 the

faint end slope of the galaxy luminosity function in redshift bin 8. We dis-

cuss the galaxy luminosity function in section 5.4 but detail the relationship

between the magnification and shear power spectra here.

As mentioned previously, weak lensing magnification contributes to

fluctuations in the number density of galaxies =. If the number density of

galaxies above the flux limit 5 is #0(> 5 ), magnification alters the number
density of sources as:

# (> 5 ) = 1
`
#0(> 5 /`) , (5.12)

where # (> 5 ) is the observed cumulative number density of sources and
` is the local magnification factor (Bartelmann & Schneider 2001). If the

cumulative number density of galaxies is assumed to follow a power law

#0(> 5 ) = : 5 −U near the flux limit of the survey then,

# (> 5 ) = 1
`
:

(
5

`

) −U
= #0(> 5 )`U−1, (5.13)

where U is equivalent to U8 mentioned in the previous paragraph. This

means the fluctuation in the observed number density of galaxies as a result

of magnification =< is given by,

=< =
# (> 5 ) − #0(> 5 )

#0(> 5 ) = `U−1 − 1 ≈ (1 + 2^)U−1 − 1

≈ 2(U − 1)^,
(5.14)

where the weak lensing limit ` ≈ 1 + 2^ has been employed.

5.3.2 3D power spectra

The fundamental ingredient for the construction of all of the 3D power

spectra %ab in eq. (5.10) is the matter power spectrum %XX . It summarises

the clustering of matter in the universe and can be derived numerically us-

ing the Boltzmann equations and the primordial power spectrumpredicted

by inflation. For the other power spectra, we can only rely on an effective

description, which we detail in this section.

In this work, we compute %lin
XX
using the Boltzmann code CAMB (Lewis

et al. 2000). To include non-linear corrections we use HALOFIT (Taka-

hashi et al. 2012). The remaining power spectra used in this analysis are

%XI, %II, %gg and %gX . %XI and %II are the intrinsic alignment (IA) power
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spectra, which encode the tendency of galaxy shapes to point in the direc-

tion of amatter overdensity (%XI) or to have an intrinsic coherent alignment
with other galaxy shapes (%II). %gg summarises the clustering of galaxies,
and %gX the cross-correlations between galaxy position and gravitational
shear. %gX is linearly related to the galaxy-magnification power spectrum,
which is the quantity of interest in this work.

We employ a halo model formalism to calculate %gg and %gX , while for
the IA power spectra we use the empirical Non-linear Linear Alignment

(NLA) model (Bridle & King 2007).

The halo model (e.g. Cooray & Sheth 2002) assumes that dark matter

clusters into dark matter halos and that all dark matter exists within dark

matter halos. We define dark matter haloes as spheres of average density

Δd̄<, with Δ = 200 and d̄< as the present day mean matter density of the

Universe. Galaxies are then assumed to form within these dark matter ha-

los, andhence the galaxy distribution traces the distribution of darkmatter.

The model relies on two ingredients, the underlying distribution of dark

matter and how galaxies populate dark matter halos.

The darkmatter distribution is summarised by: the halomass function,

which gives the number density of dark matter halos with mass " at red-

shift I; the halo bias function, which accounts for dark matter halos being

biased tracers of the underlying darkmatter distribution; and the halo den-

sity profile, which summarises how mass is distributed within dark matter

halos. In this work we use the Tinker et al. (2010) functional forms for the

halo mass function and halo bias function, and assume that the density of

dark matter halos follows the Navarro-Frenk-White distribution (Navarro

et al. 1996). To parametrise the concentration-mass relation that enters in

the NFW profile, we follow Duffy et al. (2008). We compute the halo mass

function using the publicly available python package hmf 2 (Murray et al.

2013).

We summarise the second ingredient, how galaxies populate dark mat-

ter halos, using the conditional luminosity function (CLF) (Yang et al. 2003;

Cacciato et al. 2013; van den Bosch et al. 2013). The CLF gives the average

number of galaxies with a luminosity ! between ! ± d!/2 in a halo of mass
". It is divided into two parts:

Φ(! |") = Φc(! |") +Φs(! |") , (5.15)

where Φc(! |") is the CLF for central galaxies and Φs(! |") is the CLF for
satellite galaxies. Central galaxies reside at the centre of dark matter halos

2https://github.com/steven-murray/hmf
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and satellite galaxies orbit around them. Following the approach detailed

in Cacciato et al. (2013) we take the CLF of central galaxies to be modelled

by a lognormal distribution,

Φc(! |")d! =
log 4
√

2cfc
exp

[
− (log ! − log !c)2

2f2
c

]
d!
!
, (5.16)

where fc represents the scatter in the log luminosity of central galaxies and
!c is parametrised as:

!c(") = !0
("/"1)W1

[1 + ("/"1)]W1−W2
. (5.17)

!0 = 2W1−W2!c("1) is a normalisation and "1 is a characteristic mass scale.
The CLF of satellite galaxies is modelled by a modified Schechter function,

Φs(! |")d! = q∗s

(
!

!∗s

) Us+1
exp

[
−
(
!

!∗s

) 2] d!
!
. (5.18)

where Us is the faint end slope of the satellite luminosity function. q
∗
s is

parametrised as:

log[q∗s (")] = 10 + 11(log"12) + 12(log"12)2, (5.19)

where "12 = "/(1012ℎ−1"�) and !∗s is parametrised as:

!∗s (") = 0.562!c(") . (5.20)

Both of the functional forms in eq. (5.16) and (5.18) are derived from the

SDSS galaxy group catalog in Yang et al. (2008). In total we have 9 free

parameters in our CLF model: log"1, log !0, W1, W2, fc, Us, 10, 11 and 12.
We include all of these parameters in our Fisher matrix.

The Halo Occupation Distribution (HOD) can then be obtained as the

integral of the CLF over the luminosity interval [!1, !2]:

〈#x |"〉 =
∫ !2

!1

Φx (! |")d! , (5.21)

where x can be c, s or g=c+s; 〈#c |"〉 and 〈#s |"〉 are the average number
of central and satellite galaxies in a halo of mass " within the luminosity

interval [!1, !2]. Similarly, we can write =̄g as the average number density
of galaxies across all halo masses in a given luminosity interval:

=̄g (I) =
∫

〈#g |"〉=(", I)d" , (5.22)
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where =(", I) is the halo mass function mentioned above. To keep the no-
tation compact, we have omitted the redshift dependence of the HOD: it

arises as a consequence of the survey flux-limit: in this case, the luminos-

ity limits !1 and !2 in eq. (5.21) depend on the specific redshift bin under
consideration.

Once we have defined the HOD, we can calculate the 3D power spectra

%gg and %gX . First, the power spectra can be split into contributions from
the one-halo (1h) and two-halo (2h) terms. The 1h term describes the clus-

tering of galaxies on small scales within the same dark matter halo and the

2h term describes the clustering of galaxies on large scales between differ-

ent halos. These contributions can then be split into the contributions from

central c and satellite s galaxies, as with the CLF. This gives:

%gg = 2%1h
cs + %1h

ss + %2h
cc + 2%2h

cs + %2h
ss ,

%gX = %
1h
cX + %1h

sX + %2h
cX + %2h

sX .
(5.23)

As shown in van den Bosch et al. (2013) these contributions can be calcu-

lated using,

%1h
xy (:, I) =

∫
Hx (:, ", I)Hy(:, ", I)=(", I)d" ,

%2h
xy (:, I) =%lin

XX (:, I)
∫

d"1Hx (:, "1, I)=("1, I)1("1, I)

×
∫

d"2Hy(:, "2, I)=("2, I)1("2, I) ,

(5.24)

where x and y can be c, s or X, and 1(", I) is the halo bias. The functionH
encodes the matter or galaxy contribution:

HX (:, ", I) =
"

d̄m
D̃h(: |", I) ,

Hc(:, ", I) = Hc(", I) =
〈#c |"〉
=̄g (I)

,

Hs(:, ", I) =
〈#s |"〉
=̄g (I)

D̃s(: |", I) .

(5.25)

where D̃h is the Fourier transform of the normalised density distribution

of dark matter in a halo of mass " (mentioned above), and D̃s is the nor-
malised number density distribution of satellite galaxies in a halo of mass

". In his work, we assume satellites to follow the spatial distribution of the

underlying dark matter, i.e. D̃s ≡ D̃h.
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To calculate the 3D power spectra %II and %IX we employ the widely
used NLA model. This model links the strength of the tidal field when a

galaxy forms to the intrinsic ellipticity of the galaxy. This gives,

%XI(:, I) = −�IA�1dc
Ωm
� (I) %XX ,

%II(:, I) =
(
�IA�1dc

Ωm
� (I)

) 2
%XX ,

(5.26)

where�1 is a normalisation constant, dc the critical density of the Universe
today and � (I) the linear growth factor. We set�1 = 5×10−14"−1

� ℎ−2Mpc3

based on the IA amplitudemeasured at low redshifts using SuperCOSMOS

(Hartlap, Simon & Schneider Bro), and �IA captures the amplitude of the

deviation from this reference case. We take �IA as a free parameter in our

Fisher matrix. The NLA model is sufficiently flexible for current studies

but can be extended by including a redshift dependent parameter, or using

a halo model formalism to calculate %II and %IX on small scales. Recently,
Fortuna et al. (2021a) explored these options and found that the IA signal

in the one halo regime can be ignored at first order, and that including an

extra redshift dependent parameter is possibly sufficient for LSST.Herewe

consider the simplest NLAmodel, but implementing thesemodels could be

a future extension of this work.

5.4 Galaxy Luminosity Function

The second part of our Fisher matrix theory datavector, see section 5.2, is

the galaxy luminosity function. The galaxy luminosity function describes

the distribution of luminosities in a galaxy sample, the number density of

galaxies with a certain luminosity, and is often directly measured from a

galaxy sample. As specified in Cacciato et al. (2013) the galaxy luminosity

function at a given redshift I can be calculated from the CLF detailed in

section 5.3.2:

Φ(!, I) =
∫

3" Φ(! |")=(", I) , (5.27)

whereΦ(! |") is the CLF and =(", I) is the halo mass function (see section
5.3.2). In this analysis we work with a galaxy sample divided into redshift

bins (labelled 8 and 9 previously) so we wish to compute the galaxy lumi-

nosity function for each redshift bin,

Φ8 (!) =
∫

3I =8 (I)Φ(!, I) , (5.28)
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where Φ8 (!) denotes the luminosity function of galaxies in redshift bin 8,
and =8 (I) the redshift distribution in bin 8. We include a prediction for the

galaxy luminosity function in each redshift bin in our theory datavector as

it helps to constrain the 9 CLF parameters detailed in section 5.3.2, and

hence is critical for obtaining information from the small scale clustering.

The faint end slope of the galaxy luminosity function is also required to

calculate the magnification 2D power spectra, see eq. (5.29).

5.5 Survey Modelling

We perform our Fisher forecast using the cosmological parameter estima-

tion framework CosmoSIS (Zuntz et al. 2015). To calculate the 3D power

spectra detailed in section 5.3.2 we use our own halo model code, which

has been tested against other halo model codes used in the literature.

In this analysis we define two mock LSST galaxy samples; an elliptic-

ity sample n-sample and a number density sample n-sample. We use a 440

square degreemock catalog from the LSSTDark Energy Science Collabora-

tion (DESC)Data Challenge 2 (DC2) simulations (cosmoDC2 1.1.4; Korytov

et al. 2019). These simulations were designed to enable preliminary LSST

DESC analyses, and the statistical distributions of galaxies have undergone

a wide range of validation tests, for details see Korytov et al. (2019); Kovacs

et al. (prep). The catalog includes photometric redshifts for all galaxieswith

an i-bandmagnitude less than 26.5, up to redshift 3. The photometric red-

shifts were calculated using the template fitting code BPZ (Benítez 2000).

The n-sample is defined as all galaxies in this mock catalog with an i-band

magnitude less than 26.5 and photometric redshift greater than 0.1 and

less than 2.0. We set an upper limit as the photometric redshifts begin to

degrade significantly beyond 1.5, see Fig. 5.1. The n-sample is defined as a

subset of galaxies in n-sample with 8 < 25.3. This corresponds to the LSST
gold sample, which will be used for weak lensing (LSST Science Collabora-

tion 2009). We do not apply a separate signal-to-noise cut but, galaxies in

the n-sample have a signal-to-noise ratio > 5 and galaxies in the n-sample
have a signal-to-noise ratio > 20.

5.5.1 Redshift distributions

To compute the 2Dpower spectra in eq. (5.10) and the luminosity functions

in eq. (5.28) we require the redshift distribution of galaxies in each photo-

metric redshift bin. In this workwe split both the galaxy samples, n-sample
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Figure 5.1: Photometric redshift point estimate mode against true redshift
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((b)) ellipticity sample n-sample

and n-sample, into 10 tomographic redshift bins containing equal numbers

of galaxies using their photometric redshifts. Figure 5.2 shows the result-

ing distribution of galaxies with redshift for each tomographic bin, as well

as the tomographic bin boundaries. Figure 5.2 shows that the photomet-

ric redshifts are close to random for bin 10 of n-sample, so our maximum

photometric redshift cut of 2.0 is well justified.

We compute the number density of galaxies in each tomographic bin

to be 12.7 arcmin−2 for n-sample and 4.9 arcmin−2 for n-sample. However,
weak lensing shape measurements typically weight galaxies by the uncer-

tainty or ability to calibrate the shapemeasurements, this would reduce the

number density for n-sample, especially at high redshifts. TheLSST science

book estimates that the number density of galaxies in the gold sample will

be 55 arcmin−2, with the number density of galaxies useful for weak lens-
ing approximately 40 arcmin−2 (LSST Science Collaboration 2009; Chang
et al. 2013). This means that our n-sample is slightly optimistic, with a

galaxy number density of 49 arcmin−2.

5.5.2 Faint end luminosity slopes

The key quantity in determining the amplitude of the fluctuation in the

number density of galaxies as a result of weak lensing magnification is the

faint end slope of the galaxy luminosity function U. If U is equal to 1 there is

no overall fluctuation but if U does not equal 1 there is either an increase or
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Figure 5.2: Number density of galaxies as a function of true redshift for each photometric
bin in the galaxy sample. The dashed lines indicate the photometric bin boundaries.
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decrease in the number density of galaxies. U can be represented in terms

of magnitudes as,

U(8mag) = 2.5
d log10 # (> 8mag)

d8mag
, (5.29)

where 8mag represents the 8 band magnitude, and # (> 8mag) the unlensed
cumulative number density of galaxies with an 8 band magnitude greater

than 8mag (e.g. Duncan et al. 2014).

We measure the faint end slopes U from our LSST DC2 mock catalog.

We compute a value U 9 for each redshift bin 9 , in each mock sample. To

compute U 9 we vary the 8 band magnitude in eq. (5.29) and compute the

cumulative number counts # (> 8mag). We then fit the logarithm of # (>
8mag) with a straight line, and use the slope to compute U 9 . Since we are
only interested in the slope at the faint end (high magnitudes) we only fit

log10 # (> 8mag) over the last magnitude before the samplemagnitude limit;
25.5-26.5 for n-sample, and 24.3-25.3 for n-sample. Figure 5.3 shows that

in general this lower fit limit (marked by a dotted line) captures the value

of U 9 at the faint end of the sample. Increasing the lower fit limit has little

effect on the value ofU 9 obtained, whereas decreasing the fit limit in general

gives a higher value of U 9 .

Table 5.1 shows the U 9 values obtained for each sample and their asso-

ciated uncertainties. The uncertainties come from the uncertainty on the

slope coefficient of the least-squares straight line fit detailed above, since
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Figure 5.3: The faint end slope of the galaxy luminosity function U8 as a function of the
limiting magnitude for each tomographic bin in n-sample (red) and n-sample (blue). The
U8 values used in this analysis were found by fitting the slope of the logarithmic cumulative
number counts (see eq. (5.29)) between the vertical line and the right hand side of the figure.
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Table 5.1: Faint end magnitude slopes U 9 for each redshift bin 9 in n-sample and n-sample,
with their associated 1f uncertainties.

n-sample &-sample

U1 0.445 ± 0.005 U1 0.412 ± 0.005
U2 0.663 ± 0.006 U2 0.624 ± 0.004
U3 0.848 ± 0.006 U3 0.677 ± 0.004
U4 0.781 ± 0.005 U4 0.825 ± 0.006
U5 0.573 ± 0.004 U5 0.97 ± 0.01
U6 0.694 ± 0.006 U6 0.74 ± 0.01
U7 0.74 ± 0.01 U7 0.895 ± 0.006
U8 0.95 ± 0.02 U8 0.99 ± 0.01
U9 1.39 ± 0.01 U9 1.08 ± 0.01
U10 2.24 ± 0.02 U10 1.42 ± 0.01

they were found to be much larger than the uncertainties on the values of

the cumulative number counts # (> 8mag) due to the large number of galax-
ies in each sample. The uncertainties are very small, and would become

even smaller when using the full 18000 square degree LSST area instead

of a 440 square degree mock catalog. We therefore consider the U 9 param-

eters as fixed in our forecast, but note that they can be difficult to measure

accurately from real data due to the presence of systematics and selection

effects (see conclusions for further discussion) .

We can compare the U values in Table 5.1 to those found in Duncan

et al. (2014) for the Canada–France–Hawaii Lensing Survey (CFHTLenS).

In both cases U 9 generally increases with redshift. CFHTLenS reaches an

U 9 value of approximately 1 at its 8 band magnitude limit of 24.7, for its

highest redshift bin between 1.02 and 1.3. This roughly corresponds to U7

and U8 in n-sample, where the magnitude limit of 24.7 is included in the U 9

fit. Table 5.1 shows that our U7 and U8 values for n-sample are consistent
with CFHTLenS.

5.5.3 Systematics

We include a number of systematics in our analysis using nuisance parame-

ters. For the fiducial values of these parameters and their associated priors

please see Table 5.2. To apply a Gaussian prior to a particular parameter

in a Fisher matrix, one simply adds 1/f2
prior to the diagonal element asso-
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ciated with the parameter (Coe 2009). In conceptual terms, the priors on

the Fisher matrix parameters can be summarized by a diagonal covariance

matrix with elements f2
prior. This covariance matrix can then be inverted

into a prior Fisher matrix, giving 1/f2
prior diagonal elements, and added to

the experimental Fisher matrix.

Shear multiplicative bias

Systematic uncertainties in the measuring and averaging of galaxy shapes

can result in a multiplicative scaling of the observed shear. These system-

atic effects include: noisy galaxy images, the applicability of themodel used

to describe the light profile of galaxies, the details of the galaxy morphol-

ogy and selection biases (e.g. Heymans et al. 2006). We parametrise this

multiplicative scaling using one parameter <8 per redshift bin (10 parame-

ters in total), which scale the cosmic shear and galaxy-galaxy lensing power

spectra as:

�
8 9
n n (;) → (1 + <8) (1 + < 9)�8 9n n (;) ,

�
8 9
nn (;) → (1 + < 9)�8 9nn (;) .

(5.30)

We impose Gaussian priors on these multiplicative parameters, which are

guided by the LSSTDESC science requirements (Alonso et al. 2018). These

science requirements forecast the uncertainties LSST will need to achieve

in order to meet their main objectives of significantly improving the con-

straints on the dark energy parameters F0 and F0, compared to previous
dark energy experiments, and obtaining dark energy constraints where the

total calibratable systematic uncertainty is less than the marginalised sta-

tistical uncertainty. For the case of shear multiplicative bias the require-

ment is that the ‘systematic uncertainty in the redshift-dependent shear

calibration’ should not exceed0.003by year 10. We therefore apply aGaus-

sian prior centred on zero with a standard deviation of 0.003 to each of our

shear multiplicative bias parameters.

Clustering Multiplicative Bias

We parametrise uncertainties in the number count measurement using a

similar approach to that for shear. Systematics which affect the number

density of galaxies include: galactic dust obscuring background galaxies,

variable survey depth impacting the number of sources promoted across

the flux limit by magnification, and stars contaminating the galaxy sam-

ple (Hildebrandt 2015; Thiele et al. 2019). Usually these effects would be
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partially absorbed by the galaxy bias (CLF) parameters, however since we

include the galaxy luminosity function in our analysis the CLF parameters

will be tightly constrained. We therefore felt it was important to include

this multiplicative bias parameterisation for clustering as well as shear.

Analogous to shear multiplicative bias, the observed clustering power

spectra are scaled by a multiplicative factor as,

�
8 9
nn(;) → (1 + <8eff) (1 + < 9

eff)�
8 9
nn(;) ,

�
8 9
nn (;) → (1 + <8eff)�

8 9
nn (;) .

(5.31)

However, sincemost systematics decrease with signal to noise ratio, we as-

sume <8eff has a power law dependence on the signal to noise of galaxies

in redshift bin 8. This enables us to reduce the number of clustering mul-

tiplicative bias parameters from ten parameters (one <8eff per redshift bin)
to two parameters 0m and 1m. <

8
eff is given in terms of 0m and 1m by,

<8eff = <step − <fid

=
1
#8

[
0m

#8∑
==1

( (
#

) 1m

=
− 0fid

#8∑
==1

( (
#

) 1fid

=

]
,

(5.32)

where #8 is the number of galaxies in tomographic bin 8, the sum is over

the signal-to-noise ratio (/# of all galaxies in tomographic bin 8, 0fid is the
fiducial value of 0m and 1fid is the fiducial value of 1m. We introduce the<fid
term because if <eff = <step, 1m becomes unconstrained when 0m is equal

to zero, which breaks the Gaussian Likelihood assumption in the Fisher

matrix prediction.

We compute the signal to noise ratio for each galaxy in our samples

from the error on the i band apparent magnitude (Hainaut 2005). Using

the signal to noise of every galaxy in this bias calculation is computationally

expensive, since the total number of galaxies in n-sample and n-sample is

of order 107 and 108. We therefore use a randomly selected 1% subsample

of galaxies in this calculation. This subsample is representative of the full

galaxy sample, but prevents our bias calculation from being prohibitively

slow.

Photometric redshift uncertainties

We model uncertainties in the redshift distributions shown in figure 5.2

by introducing shift factors Δ8 (Bonnett et al. 2016). Δ8 simply shifts the
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redshift distribution in bin 8 so,

=8 (I) → =8 (I − Δ8). (5.33)

Since we have two redshift distributions, one for n-sample and one for n-

sample, each divided into 10 bins this results in 20 shift parameters Δ8.

These parameters are likely to be correlated, so we are making a conser-

vative choice by allowing 20 separate shift parameters, which may some-

what weaken our final constraints. We impose Gaussian priors on each of

these shift parameters, once again guided by the LSST DESC science re-

quirements (Alonso et al. 2018). The prior is centred on zero, with a stan-

dard deviation of 0.003 for the n-sample parameters and of 0.001 for the

n-sample parameters.

A future extension of this work could be to include other modes of red-

shift uncertainty, such as a change in thewidth or to the high redshifts tails,

as in Nicola et al. (2020). These may be particularly interesting for magni-

fication, as they change the level of overlap between different redshift bins.

5.5.4 Covariances

In this forecast we consider two component Fisher matrices. The Fisher

matrix for theweak lensing observables and theFishermatrix for the galaxy

luminosity function (see section 5.2). We therefore require two covari-

ances: the weak lensing observables covariance and the galaxy luminosity

function covariance.

Weak lensing observables covariance

We compute a Gaussian covariance for the observable weak lensing power

spectra (�n n ,�nn,�nn ) usingCosmoSIS. The covariance between twopower
spectra is given by,

Cov
[
�8 9 (ℓ), �:; (ℓ′)

]
= Xℓℓ′

2c
�ℓΔℓ

[
�̄8: (ℓ)�̄ 9; (ℓ) + �̄8; (ℓ)�̄ 9: (ℓ)

]
, (5.34)

where 8 9 :; denote redshift bins, Xℓℓ′ is the Kronecker delta, � is the survey

area and Δℓ the size of the angular frequency ℓ bin (Joachimi et al. 2008;

Joachimi & Bridle 2010). We do not include the non-gaussian contribu-

tions to the covariance since their effect is small, and unlikely to impact

our final results (Barreira et al. 2018). To account for the random terms in

equations 5.7 and 5.8 we define,

�̄8 9 (ℓ) = �8 9 (ℓ) + # 8 9 , (5.35)
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where # 8 9 is the shot or shape noise contribution. In the case of �n n ,

# 8 9 = X8 9
f2
n

2=̄8
, (5.36)

in the case of �nn,

# 8 9 = X8 9
1
=̄8
, (5.37)

and in the case of �nn , #
8 9 = 0. Where fn is the total intrinsic ellipticity

dispersion, and =̄8 is the average number density of galaxies in redshift bin

8 (Bartelmann & Schneider 2001). We compute the power spectra covari-

ance for 20 log-spaced angular frequency ; bins from ;min = 30, to avoid
inaccuracies in the Limber approximation, to ;max = 3000, to avoid the very
non-linear regime.

Galaxy luminosity function covariance

We compute the galaxy luminosity function covariance by measuring the

galaxy luminosity functions of our mock LSST galaxy samples and then

computing a bootstrap covariance. Since Fisher forecasts do not require

a datavector, only a covariance, we only use themeasured luminosity func-

tions to compute the covariance and model the galaxy luminosity function

in the forecast using the CLF formalism (see section 5.4).

Tomeasure the luminosity functions for the n-sample and n-sample we

begin by computing the luminosity of each galaxy from its rest-frame ab-

solute magnitude in the 8 band. We then divide our sample into the 10 to-

mographic bins described above and scale the luminosity function for each

bin 9 by the volume of bin 9 , to convert the histogram to a number density.

When calculating the bin volumewe assume that the galaxies do not scatter

beyond the tomographic bin boundaries. This is an approximation, which

figure 5.2 shows, is becoming problematic for bin 10.

Ideally, we would use the full range of galaxy luminosities to compute

our bootstrap covariance. However in order to use the low luminosity re-

gion we would need to correct our galaxy samples to be volume complete,

for example through the 1/+max method (Schmidt 1968; Felten 1976; Cole
2011). High luminosity objects can be observed across the full volume of

the survey, but low luminosity objects can only be observed at smaller dis-

tances. This introduces a bias referred to as Malmquist bias, and we there-

fore only want to include galaxies that can be observed across the whole

volume of the survey. For the purposes of this work we deemed it sufficient

to simply cut out the low luminosity galaxies to make the sample volume
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limited, since this is still a significant step forward compared to previous

analyses. For details of how we determine the volume complete cut see

appendix A1.

We then compute a bootstrap covariance for ourmeasured galaxy lumi-

nosity functions. First, we sample our dataset with replacement 100 times

and compute the associated datavectors. We then assume that each lumi-

nosity bin in each tomographic bin is independent (each of our datapoints

is independent) and calculate the variance of these 100 samples. This gives

us a diagonal covariance. The variance of the 100 samples is in general

small, due to the very large numbers of galaxies in each sample.

5.5.5 Fiducial values

TheFishermatrix gives the curvature of the log-Likelihood function around

its peak. It does not find the location of the peak, this is defined with a set

of fiducial values (shown in Table 5.2). The set of parameters required to

calculate the 3D power spectra in section 5.3.2 are the cosmological param-

eters and the CLF parameters. In this work we consider the constraints on

a flat ΛCDM cosmology, and vary the cosmological parametersΩm, ℎ0, Ωb,
=s, �s/10−9, F and Fa. We take their fiducial values from the input values

used to generate the simulation for the LSST DESC mock catalog, or from

the values obtained by the Planck satellite (Aghanim et al. 2018).

We also vary the full set of CLF parameters log"1, log !0, W1, W2, fc,
Us, 10, 11 and 12, detailed in section 5.3.2. Here we use the fiducial values
found for SDSS by Cacciato et al. (2013), which have been shown to also be

applicable to higher redshift surveys (Cacciato et al. 2014; van Uitert et al.

2016b).

5.6 Results

5.6.1 Clustering

Figure 5.4 shows the forecast constraints on the cosmological parameters

from �nn with and without including magnification terms for n-sample. In
the case of includingmagnification the observable is�nn = �gg +�gm +�mm
instead of �nn = �gg. Including magnification has only a small impact on
the cosmological parameter constraints. The greatest change is the 1f con-

straint on Ω<, which is improved by a factor of 1.3 from 0.003 to 0.0023.
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Table 5.2: Fiducial values and priors for the model parameters used to compute the fisher
matrices in this work.

Parameter Fiducial Value Prior

Survey

Area 18000 deg2 fixed

f4 0.35 fixed

Cosmology

Ωm 0.265 flat

ℎ0 0.71 flat

Ωb 0.0448 flat

=s 0.963 flat

�s/10−9 2.1 flat

F −1.0 flat

Fa 0.0 flat

Ωk 0.0 fixed

CLF

log("1) 11.24 flat

log(!0) 9.95 flat

W1 3.18 flat

W2 0.245 flat

f2 0.157 flat

Us −1.18 flat

10 −1.17 flat

11 1.53 flat

12 −0.217 flat

Intrinsic Alignments

�IA 1.0 flat

n-sample Photo-z

Δ8n 0.0 Gauss(0.0, 0.003)

n-sample Photo-z

Δ8n 0.0 Gauss(0.0, 0.001)

Shear Bias

<8 0.0 Gauss(0.0, 0.003)

Clustering Bias

0m 0.001 flat

1m 0.0 flat
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�nn including magnification terms for n-sample. Including magnification has only a small
impact on the constraints.
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The forecast constraints on the cosmological parameters from �nn and
�nn including magnification terms for n-sample show that the impact of

magnification is further reduced compared to the deeper n-sample. The

1f constraint on Ω< is only improved by a factor of 1.03 from 0.0032 to

0.0031, instead of a factor of 1.3 with the deeper n-sample. This shows

that includingmagnification has a greater, albeitmodest, impact for deeper

samples.

Figure 5.5 shows the forecast constraints on the CLF parameters from

�nn with and without including magnification terms for the n-sample. In-
cluding magnification has little effect on the constraints on the CLF pa-

rameters. This is expected because the CLF constraints are predominantly

determined by the galaxy luminosity function. We focus on the cosmologi-

cal and CLF parameters, instead of presenting the full 28 parameter space,

for clarity. The steps taken to ensure the stability of our Fisher matrix are

detailed in appendix A2.

A useful measure of the constraining power of an analysis is the Figure

of Merit (FoM) defined as,

FoM = det( [F−1]@)
1
#@ , (5.38)

where [F−1]@ is the inverse Fisher matrix for the set of parameters @ and
#@ is the number of parameters @ in the set. In this work we define @ as the

full set of cosmological parameters, so the FoM represents the power of the

constraints on the cosmological parameters. It is also common to define a

Dark Energy FoM where @ = {F, F0} (Albrecht et al. 2006).
Whenmagnification is included in the clustering analysis for the deeper

n-sample the FoM is increased by a factor of 1.45. However, when magni-

fication is included in the clustering analysis for n-sample (the LSST gold

sample) the FoM is increased by a factor of 1.08. This mirrors the con-

clusions from looking at the parameter constraints on Ω< – magnification

is more beneficial for deeper samples with greater numbers of low signal-

to-noise ratio galaxies. Interestingly, there is no increase in the FoM for

clustering without magnification when using the deeper n-sample instead

of n-sample. This implies that it is more beneficial to have a smaller sample

of high signal-to-noise objects than a larger sample including lower signal-

to-noise objects. This is likely due to the additional fainter objects having

poorer photometric redshifts and therefore largely contributing to the tails

of the redshift distribution. Looking back at figure 5.2 we can see that the

redshift distribution for the shallower n-sample is much cleaner.
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5.6.2 Shear calibration

The previous section showed that including weak lensing magnification

only has a small effect on the cosmological parameter constraints from an

LSST-like angular galaxy clustering analysis. In a combined clustering and

cosmic shear analysis the impact of magnification on the cosmological pa-

rameter constraints can only be reduced. This is because magnification

predominantly contributes to the clustering signal and provides very simi-

lar information to shear. We therefore focus on the effect of magnification

on the shear multiplicative bias parameters.

We examine the impact of including magnification on the shear mul-

tiplicative bias parameters for a combined LSST clustering �nn and shear
�n n analysis, where the analyses occur on separate patches of sky. This is

because the full ‘3x2pt’ (�nn, �nn , �n n ) analysis requires careful treatment
of the cross terms, which is beyond the scope of this work. We are therefore

investigating whether the improved cosmological constraints frommagni-

fication translate into an improved calibration.

Figure 5.6 shows the forecast constraints on the shear multiplicative

bias parameters from our �nn and �n n analysis, with and without magnifi-
cation terms, where �n n is calculated for n-sample and �nn for the deeper
n-sample. Including magnification only slightly improves the constraints

on the shear calibration parameters, with a greater effect at higher redshift.

The 1f constraint on<1 is improved by a factor of 1.06,<6 by 1.3 and<10 by
1.34 when including magnification. When �nn is calculated using the shal-
lower n-sample the impact is similar, but less pronounced. These results

show that including magnification is not particularly helpful for calibrat-

ing the shear measurement. However, the impact of magnification may be

slightly improved when performing a full ‘3x2pt’ analysis, where the clus-

tering and shear are measured on the same patch of sky.

5.6.3 Bias

Recentworks have shown that cosmological results fromupcoming surveys

such as LSST will be biased if the effects of weak lensing magnification are

not included, due to improvements in statistical precision (Duncan et al.

2014; Cardona et al. 2016; Lorenz et al. 2018; Thiele et al. 2019). To exam-

ine this for our forecast, figure 5.7 shows the absolute difference between

the clustering power spectra �nn with and without magnification in terms
of the 1f uncertainty on the clustering power spectra without magnifica-

tion. In this case the clustering power spectra have been calculated using
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n-sample. The grey shaded region indicates where �nn including magnifi-
cation is more than 2f away from �nn without magnification. Particularly
at high ℓ (small scales) �nn including magnification significantly diverges
from �nn without magnification.

For comparison, we have also shown the impact of changingΩm and �s
by 5f in Fig. 5.7. In all of the redshift bin combinations shown, the dif-

ference from including magnification is larger than or comparable to the

difference from changing Ωm and �s by 5f. This clearly indicates that not
including magnification terms will catastrophically bias cosmological con-

straints from LSST. Additionally, the difference from not including mag-

nification seems to mimic the behaviour of biasing �s by 5f. This implies
that not including magnification could particularly bias the constraints for

�s, one of the parameters weak lensing is most sensitive to.

Figure 5.8 shows the absolute difference between the clustering power

spectra �nn with and without magnification in terms of the 1f uncertainty
on the clustering power spectra without magnification, where the cluster-

ing power spectra have been calculated using the shallower n-sample. In

this case the difference from including magnification is not as large as for

n-sample, however in most redshift bin combinations is still comparable

or larger than the differences from changing Ωm and �s by 5f.

5.7 Conclusions

Previous works have shown that upcoming results from surveys such as

LSST and Euclid will be biased if the effects of weak lensing magnification

are not included (Duncan et al. 2014; Cardona et al. 2016; Lorenz et al.

2018; Thiele et al. 2019). In this work we forecast whether including weak

lensing magnification as a complementary probe can additionally improve

the precision of the LSST weak lensing constraints. We determined this

using the Fisher matrix formalism, where our theory datavector included

the weak lensing observables and the galaxy luminosity function. To cal-

culate the weak lensing observables and the galaxy luminosity function, we

employed a halo model, detailed in Cacciato et al. (2013). We defined two

mock LSST galaxy samples from the LSST DC2 simulations (Korytov et al.

2019) for use in our forecast; a sample which corresponds to the LSST gold

sample where the 8 band magnitude is less than 25.3 (intended to be used

for the weak lensing shear measurement), and a deeper sample where the

8 band magnitude is less than 26.5.

We found that weak lensing magnification provides little additional in-
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formation as a complementary probe for LSST. For a galaxy clustering anal-

ysis using the LSST gold sample we found that including magnification in-

creased the Figure of Merit (FoM) for the set of cosmological parameters

Ωm, ℎ0,Ωb, =s, �s/10−9, F andFa by a factor of 1.08. When using the deeper

galaxy samplewe found thatmagnification increased the FoMby a factor of

1.45. In terms of the precision of the Ω< constraints, we found for a galaxy

clustering analysis using the LSST gold sample that including magnifica-

tion increased the 1f precision by a factor of 1.03, using the deeper sample

we found a factor increase of 1.3. These results show that including mag-

nification is more beneficial for deeper samples, but still has a fairly small

impact.

The effect of including magnification would be even smaller in a com-

bined galaxy clustering and cosmic shear analysis because magnification

provides similar information to that of cosmic shear. However, we investi-

gated the impact of including magnification on the calibration of the shear

measurement. We found that including magnification only slightly im-

proves the constraints on the shear calibration parameters.

While this forecast is more realistic than many to date, as it includes

LSST mock catalog data and a flexible galaxy bias model, it still relies on a

number of simplified assumptions about magnification. Firstly, the mag-

nification modelling assumes that the galaxy sample is purely flux limited.

Often galaxies are also selected based on their signal-to-noise ratio, colours

and morphology which complicates the magnification modelling (Hilde-

brandt 2015). Secondly, there are a large number of systematics associ-

ated with the magnification measurement such as dust attenuation, vari-

able survey depth, star-galaxy separation and the blending of galaxy im-

ages (Hildebrandt et al. 2013; Morrison & Hildebrandt 2015; Thiele et al.

2019). We included a multiplicative factor in our modelling of the cluster-

ing power spectra in order to incorporate these effects, but more detailed

modelling is likely required. For example, we could havemarginalised over

the faint end luminosity slopes U8, which are required to compute the mag-

nification power spectra. We chose to fix them, since at least for the gold

sample it should be comparatively easy to explore the luminosity function

beyond the magnitude limit, so measurement errors on U8 can be expected

to be very small. This forecast could therefore be considered a best case

scenario for magnification, and even in this scenario we found that includ-

ing magnification has little impact. However, we also confirmed that not

including magnification will strongly bias cosmological results from LSST,

so must be modelled.



A1 Volume Complete Cut for Galaxy Luminosity Function Covariance 189

Acknowledgements

WethankHendrikHildebrandt for comments on themanuscript, andChris

Duncan for useful discussions. CMwas supported by the Spreadbury Fund,

Perren Fund, IMPACT Fund, and by the European Research Council un-

der grant 770935. CM acknowledges travel support provided by STFC for

UK participation in LSST through grant ST/N002512/1. MCF and HH ac-

knowledge support from Vici grant 639.043.512, financed by the Nether-

lands Organisation for Scientific Research (NWO). HH also acknowledges

funding from the EU Horizon 2020 research and innovation programme

under grant agreement 776247.

A1 VolumeCompleteCut forGalaxyLuminosity

Function Covariance

A deeper galaxy sample will be volume complete to lower luminosities, so

when the luminosity function of a shallower sample diverges from the lu-

minosity function of a deeper sample, we know the shallower sample has

ceased to be volume complete. We can therefore determine the volume

complete luminosity cut for the n-sample by finding where it diverges from

the n-sample. Our divergence condition is

|Φ8n (!) −Φ8
=(n ) (!) |

Φ8n (!)
> 0.2 , (39)

where Φ8n is the luminosity function for the n-sample and Φ8
=(n ) is the lu-

minosity function for the n-sample, where the n-sample has been binned

using the n-sample tomographic bins. We cut Φ8n when there is a differ-

ence of 20% from the deeper sampleΦ8
=(n ) . This value was found to cutΦ

8
n

before it significantly diverged from the deeper sample whilst allowing for

small deviations, see the right panel of Fig. 9.

Since we did not have a sample deeper than the n-sample available to

us, we made a more stringent volume complete cut on the n-sample lumi-

nosity function based on where the luminosity function of our shallower

sample n-sample diverged. If the shallower sample is volume complete we

can be sure that the deeper sample is also volume complete. In this case

our divergence condition is

|Φ8= (!) −Φ8
n (=) (!) |

Φ8=
> 0.2 , (40)
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the location of the luminosity cuts to n-sample (left) and n-sample (right) to make sure they
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where Φ8= is the luminosity function for n-sample and Φ8
n (=) is the lumi-

nosity function for n-sample, where n-sample has been binned using the n-

sample tomographic bins. While this luminosity cut enforces thatn-sample

is volume complete, using a shallower sample means that the cut is much

more conservative than necessary.

A2 Fisher Matrix Stability

High-dimensional Fishermatrices canbeunstable. Herewedetail the steps

taken to ensure the stability of our Fisher matrices and hence the robust-

ness of our results.

The derivatives in eq. (5.3) are calculated numerically using a method

of numerical differentiation called a 5-pt stencil. This method requires the

pipeline to be evaluated at 4 points around the model parameter’s fiducial

value (5 points including the fiducial value). The separation between these

points is referred to as the step size. If the step size is too large the Fisher

matrix fails to capture the curvature of the likelihood function about the

peak and if it is too small numerical difficulties can arise. Therefore when

usingFishermatrices it is vital to verifywhether the step size is appropriate,

otherwise any results are meaningless.

We verify our step sizes in 1 dimension by fixing all but one model pa-

rameter. We then calculate the 1D likelihood using a Fisher matrix with a

specified step size and by sampling the likelihood function directly. If the

1D likelihoods match we know we are using a reasonable step size when

calculating our Fisher matrix. We sample the likelihood function directly

using a simulated datavector generated at the Fisher matrix fiducial values

and a grid sampler. Grid samplers evaluate the likelihood at a specified set

of grid points. Since we are assuming a Gaussian Likelihood when calcu-

lating our Fisher matrix (eq. (5.3)) we are only interested in whether the

standard deviation f of the likelihood calculated using the Fisher matrix

matches the f of the likelihood from sampling directly using a grid sam-

pler.

Figure 10 shows the f of the 1D likelihood calculated using the Fisher

matrix for different choices of step size. These plots show that as the step

size decreases the f of the 1D likelihood reaches a plateau, where the step

size is actually capturing the shape of the likelihood, before becoming un-

stable (see subplot for the photometric redshift bias parameter for redshift

bin 10). We therefore select a step size in the range where the f of the

Fisher likelihood is stable. Figure 11 shows the Fisher likelihoods gener-
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ated using the selected step sizes overlaid with the likelihood from the grid

sampler to verify that theymatch. For the case of themagnification bias pa-

rameter 1m the Fisher and grid likelihoods do not match. This is because

when calculating the Fisher matrix we assume that the likelihood is Gaus-

sian, and the likelihood of 1m from direct sampling is clearly not Gaussian.

This is a limitation of the Fisher matrix approach.

We additionally check the Fisher step sizes for the cosmological param-

eters, by varying all the cosmological parameters at once and exploring

the multivariate posterior with Markov Chain Monte Carlo (MCMC) sam-

pling3. Figure 12 shows a comparison between the constraints obtained

from theMCMC and the Fisher matrix. Theymatch well and show that our

Fisher matrix is adequately capturing the shape of the likelihood.

Figures 10 and 11 show only an example case for the parameters used to

generate the �nn Fisher matrix for n-sample. However, the step sizes have
been verified using this method for every Fisher matrix referred to in the

results section.

3the MCMC we use is emcee (Foreman-Mackey et al. 2013)
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Ons huidige begrip van het Heelal berust op de grote doorbraken van de

vorige eeuw: de uitwerking van de Algemene Relativiteitstheorie, het pos-

tulaat van een “donkere”, onzichtbare materie om de spreiding in de waar-

genomen snelheden van sterrenstelsels in clusters te verklaren, net als de

waargenomen rotatiesnelheid in de sterrenstelsels zelf, en ten slotte de ont-

dekking van de versnellende uitdijing van het Heelal. Theoretisch gezien

zijn we nu in staat om de groei van structuur op grote schalen te verbin-

den met het vroege Heelal en om diverse waarnemingen op verschillende

schalen en tijden te beschrijven met één enkel model. Dit model vereist

het bestaan van twee “donkere” ingrediënten: donkere materie die de ex-

tra waargenomen zwaartekracht rondom sterrenstelsels verklaart en ook

leidt tot het ontstaan van structuur, en donkere energie die de versnelde

uitdijing veroorzaakt. De totale hoeveelheid energie in het Heelal bestaat

voor meer dan 95% uit deze twee bestanddelen. Het is duidelijk dat niet-

tegenstaande het succes van dit model, er een enorme open vraag resteert:

wat is de ware aard van de twee voornaamste ingrediënten van het Heelal?

Naast de directe zoektocht naar het donkere materiedeeltje in het lab,

kunnen we ook waarnemingen van het Heelal op grote schaal gebruiken

om mogelijke afwijkingen van dit standaardmodel te onderzoeken. Speci-

fiek willen we weten of donkere energie evolueert in de tijd, wat de vor-

ming van structuur in verschillende tijdperken zou beïnvloeden, en ook of

de zwaartekracht van de donkere materie te onderscheiden valt van een

mogelijke aanpassing aan de Algemene Relativiteitstheorie. Hiervoor heb-

ben we grootschalige waarnemingen nodig ommet de enorme hoeveelheid

data die zij leveren, mogelijke afwijkingen van het standaardmodel van de

kosmologie met grotere statistische zekerheid te meten. Een grote precisie

moet echter ook gepaard gaan met een grote nauwkeurigheid: we moeten

mogelijke systematische fouten, zowel in de waarnemingstechnieken als in

de interpretatie van de data, tot op een ongezien niveau begrijpen. Dit is
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het voornaamste doel van deze thesis.

Zwakke zwaartekrachtslenzen zijn een van de krachtigstemethodes om

de donkere kant van het Heelal te onderzoeken. Lichtstralen volgen de lo-

kale kromming van de ruimtetijd veroorzaakt door een nabije massaver-

deling, wat resulteert in een gecorreleerde vervorming van de afbeelding

van achterliggende sterrenstelsels. Uit deze vervorming kan de hoeveelheid

donkere materie langs de gezichtslijn bepaald worden.

De interpretatie van dit signaal wordt bemoeilijkt door intrinsieke uit-

lijningen (intrinsic alignment, IA) van sterrenstelsels. Naburige sterren-

stelsels hebben intrinsiek een gecorreleerde oriëntatie omdat ze ontstaan

binnenin ophopingen van donkerematerie, ookwel halo’s genoemd, en on-

derhevig zijn aan de getijdenvelden van de omliggendemassaverdeling. Dit

laat een voorkeursoriëntatie na in de vorm van sterrenstelsels voordat hun

licht doorheen de tussenliggende zwaartekrachtslens naar ons propageert.

Vanwege de correlatie tussen de verschillende overdichtheden die verant-

woordelijk zijn voor het zwaartekrachtsveld nabij de sterrenstelsels, is de

uitlijning van de sterrenstelsels ook gecorreleerd, zowel opmiddelgrote als

op grote schalen. Op kleine schaal is de uitlijning daarentegen het gevolg

van de getijdenvelden binnenin de halo.

De intrinsieke uitlijning van sterrenstelsels is dus niet enkel een belang-

rijke bron van onzekerheid die zorgvuldig gemodelleerd moet worden: ze

gunt ook een unieke blik op het vormingsproces van sterrenstelsels en de

mogelijkheid om het verband tussen sterrenstelsels en hun donkere mate-

riehalo’s te begrijpen.

In deze thesis focussen we op het begrip van hoe intrinsieke uitlijnin-

gen afhangen van de eigenschappen van sterrenstelsels om de variatie in

de sterkte van het signaal in zwakke zwaartekrachtslenzen te verklaren.

We gebruiken waarnemingen om het uitlijningssignaal direct te bepalen

voor specifieke deelverzamelingen van de data. We introduceren een en-

kel model dat de complexe afhankelijkheid van het uitlijningssignaal van

de waargenomen sterrenstelseleigenschappenmeeneemt en de impact van

het uitlijningssignaal op de waarnemingen kan voorspellen. Hier is een

tweevoudige winst: enerzijds kan het model direct gerelateerd worden aan

waarnemingen en zodoende kunnen zwaartekrachtslensanalyses waarden

uit de literatuur gebruiken voor de a priori aannames van de parameters

van het model, anderzijds kan de verwachte sterkte van het uitlijningssig-

naal in een specifieke dataset bepaald worden om simpele modellen een

betere voorkennis te leveren over de beste a priori aanname voor de ver-

wachte signaalsterkte.
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We vatten de inhoud van de hoofdstukken van deze thesis samen.

InHoofdstuk 2 introduceren we een model dat de diversiteit van het IA-

signaal van verschillende soorten sterrenstelsels kan beschrijven, inclusief

de afhankelijkheid van hun morfologie (meegenomen via de kleur van de

sterrenstelsels) en type (centraal of satelliet). Met dit model en een gesi-

muleerde populatie sterrenstelsels die de verdeling in kleur en type van de

willekeurige dataset reproduceert, kan het IA-signaal voorspeld worden.

We hebben deze methode toegepast op gesimuleerde zwakke gravitatie-

lenswaarnemingen en zo het totale IA-signaal en de schaalafhankelijkheid

bestudeerd. We gebruiken dit gesimuleerde signaal om de impact van IA

op huidige en toekomstigewaarnemingen te voorspellen,met als specifieke

interesse het onderzoeken of simplistische IA-modellen een systematische

fout in de afgeleide kosmologische parameters introduceren.We conclude-

ren dat dit effect verwaarloosbaar is voor huidige waarnemingen maar dat

in de toekomst tenminste een effectieve roodverschuivingsafhankelijkheid

moet meegenomen worden in simpele IA-modellen om de juiste kosmolo-

gie te bekomen.

InHoofdstuk 3 bepalen we de amplitude van het IA-signaal voor de hel-

dere rode sterrenstelsels (luminous red galaxies, LRGs) van de vierde data-

uitgave van de Kilo Degree Survey. We meten de vormen van de sterren-

stelsels met twee verschillende methodes en vergelijken het resulterende

IA-signaal om een mogelijke afhankelijkheid van de methode te onderzoe-

ken. Beide methodes zijn in overeenkomst. Vervolgens onderzoeken we de

lichtkrachtsafhankelijkheid van het signaal door de sterrenstelsels te groe-

peren volgens hun lichtkracht. In combinatie met voorgaande metingen in

de literatuur, vinden we dat de afhankelijkheid goed beschreven kan wor-

den met behulp van een functie met een dubbele machtsschaling. Bij lage

lichtkracht hangt het signaal significant minder af van de lichtkracht dan

voor heldere sterrenstelsels. We hebben de roodverschuivingsafhankelijk-

heid van het signaal onderzocht en vinden geen bewijs voor enige evolutie

in het roodverschuivingsbereik 0.2 < I < 0.8.

InHoofdstuk 4 gebruiken we de LRGs van Hoofstuk 3 als lens voor ach-

terliggende sterrenstelsels om hun totalemassa te bepalen.Wemodelleren

het signaalmet eenhalo-model in combinatiemet de voorwaardelijke licht-

krachtsfunctie (conditional luminosity function) omsterrenstelselsmet don-

kere materiehalo’s te verbinden. We groeperen de sterrenstelsels volgens
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hun lichtkracht en beschrijven de vervorming door de zwaartekrachtslens

met één model. Hierdoor verkrijgen we de relatie tussen de massa en de

lichtkracht van de LRGs die we gebruiken om het gemeten IA-signaal in

Hoofdstuk 3 te heranalyseren.Demassa-afhankelijkheid vanhet IA-signaal

kan goed beschreven worden met een enkele machtsafhankelijkheid over

eenmassabereik vanmeer dan drie ordes van grootte.We onderzoeken ook

de neiging van naburige sterrenstelsels om in de richting van de LRG tewij-

zen: in dit geval meten we geen signaal.

Ten slotte, in Hoofdstuk 5, bestuderen we de invloed van de vergroting

van afbeeldingen door de zwaartekrachtslens voor de Large Synoptic Sur-

vey Telescope (LSST). We onderzoeken of het meenemen van deze vergro-

ting in een analyse van het clusteren van sterrenstelsels de bepaling van de

kosmologische parameters kan verbeteren. We vinden slechts een klein ef-

fect. Daarnaast probeerden we ook de vergroting mee te nemen een gelijk-

tijdigemeting van het clusteren en het vervormingssignaal van de zwaarte-

krachtslenzen aan verschillende delen van de hemel om zo de ijking van het

vervormingssignaal te verbeteren. Ook in dit geval is de verbetering klein.

Tot slot vinden we een significante systematische fout in het signaal wan-

neer de vergroting niet wordt meegenomen in de analyse. We concluderen

dus dat het cruciaal is om de vergroting mee te nemen in een kosmologi-

sche analyse om systematische fouten te voorkomen, maar dit leidt echter

niet tot een grote verbetering in de precisie waarmee de kosmologische pa-

rameters bepaald kunnen worden.
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Summary

Our current view of the Universe relies on the great discoveries that char-

acterised the last century: from the formulation of the theory of General

Relativity to the postulation of a ‘dark’, invisible matter to account for the

velocity dispersion and the rotational curves of galaxy clusters and galax-

ies, to the discovery of the accelerated expansion of the Universe. From a

theoretical point of view, we are now able to link the very early Universe to

the formation of structures at large scales and provide a singlemodel to de-

scribe multiple observations that invoke different scales and epochs. This

model postulates the existence of two ‘dark’ components, the dark matter,

which accounts for the extra gravity observed around galaxies and it is also

expected to provide the seeds for structure formation, and a dark energy,

responsible for the accelerated expansion. Those two ingredients account

together for more than 95% of the total energy budget of the Universe. It is

thus clear that, although successful in so many aspects, this model leaves

open an enormous question: What is the true nature of the two main in-

gredients of the Universe?

While searching for a dark matter particle in the laboratories, we can

also use observations of the Universe at large scales to investigate possi-

ble deviations from the standard paradigm of this model. In particular, we

aim to know whether the dark energy has evolved over time, affecting the

structure formation over the epochs, and to discriminate the gravitational

effect of dark matter from a possible extension of general relativity. To do

so, we need wide surveys that can collect an enormous amount of data:

in this way, statistical uncertainties are reduced and we can capture de-

viations from the standard cosmological model. However, high precision

needs to be paired with great accuracy: We need to control all the possible

systematics, both observational and in the interpretation of the data to an

unprecedented level. This is the main goal of this thesis.

One of the most powerful probes to investigate the dark sector of the
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Universe is weak lensing, a phenomenon caused by the distortion of space-

time by a mass distribution, which forces the light-rays to travel bent in

the proximity of the mass. This generates correlated distortions of the im-

ages of background galaxies that can be used to infer the properties of dark

matter along the line-of-sight.

Intrinsic alignment (IA) complicates the interpretation of this signal by

adding a correlation between the orientation of galaxy shapes before be-

ing lensed. This is caused by the fact that galaxies form inside dark matter

haloes and are subjected to the surrounding tidal fields: this imprints a

preferred direction to their shapes. Since the overdensities responsible for

the gravitational fields where the galaxies form are correlated, the align-

ment of galaxies is also correlated both at intermediate scales and at large

scales. At small scales, the alignment is instead sourced by the intra-halo

tidal fields.

Intrinsic alignment is thus not only an important contaminant to lens-

ing that needs to be carefully modelled, but it is also a unique window to

understand better the processes of galaxy formation and the dark matter-

galaxy connection.

In this work, we mainly focus on understanding how IA depends on

galaxy properties to capture the variation of amplitudes that the signal car-

ries in a weak lensing analysis. We use observations to directly constrain

the IA in specific subsets of data. We combine the observed complexity of

IA signal on galaxy sample into a single model to forecast the impact on

lensing. The gain is twofold: on one hand, we provide a model that can di-

rectly be linked to observations, such that theweak lensing analyses can use

priors from the literature (which are always based on specific galaxy sam-

ples); on the other hand, this can be used to study the effective IA content

in a specific data-set, and then learn the level of contamination expected, to

inform effective models on which amplitude should be adopted as a prior.

In the following, we summarise inmore detail the content of each chap-

ter.

In Chapter 2 we provide a model to account for the diversity of the IA

signal as sourced by different kinds of galaxies, including the dependence

on morphology (here accounted via galaxy colour) and type (central/satel-

lite). Thismodel allows predicting the total IA in any kind of data-set, given

amock for the galaxy population that includes colour and type. We applied

such amethod to a simulated weak lensing survey and studied the total sig-

nal and its scale dependence. We use this simulated signal to forecast the
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impact of IA on ongoing and upcoming surveys, with a particular interest

in investigating whether the use of simplistic models for IA would bias the

inferred cosmological parameters. We found this to be negligible for ongo-

ing surveys, but upcoming ones need to at least include an effective redshift

dependence in their modelling to recover the correct cosmology.

In Chapter 3 we constrain the IA amplitude of the luminous red galaxy

(LRG) sample in the 4th data release of the Kilo Degree Survey. We mea-

sure the shapeswith twodifferent shapemeasurement algorithms and com-

pare the resulting IA signal to investigate a possible dependence on the

IA amplitude on the shape method adopted. We found the methods to be

compatible. We then investigate the luminosity dependence by binning the

sample in luminosity bins: when analysing these in combination with pre-

vious measurements from the literature, we found that these could be well

described by a double power law. At low-luminosity we found the signal to

be significantly less luminosity dependent than for bright objects. We ex-

plored the redshift dependence of the signal finding no support in the data

for any evolution in the redshift range 0.2 < I < 0.8.

In Chapter 4 we use galaxy-galaxy lensing to infer the total masses of the

LRGs used in Chapter 3. We model the signal using a halo model com-

bined with a conditional luminosity function to populate the haloes: We

bin our data in luminosity and fit all the resulting lensing signals with a

single model. This provides a luminosity-mass relation that we use to re-

analyse the IA signal measured in Chapter 3. We find that the IA depen-

dence on halomass is well described by a single power law, in amass range

that spans more than three orders of magnitude. We also investigate the

tendency of the surrounding galaxies to point in the direction of the LRGs:

in this case, we do not detect any signal.

Finally, in Chapter 5 we investigate the impact of weak lensing magnifi-

cation in the Large Synoptic Survey Telescope (LSST).We study howmuch

the inclusion of magnification can improve the cosmological parameter

constrain in a clustering analysis: We found it to be very mild. We also

considered the combined case of clustering and shear signals on separate

patches of the sky and investigated whether magnification could improve

the shear calibration, but also in this case the improvement was small. Fi-

nally, we considered the effect of ignoring magnification in these analyses,

and this time we found a significant deviation in the signal: We thus con-

clude that although the improvement by the including magnification is not
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significant, it is crucial to include it in the analysis to avoid biasing the cos-

mological parameters.
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