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4
Outlook

At first glance, Chapter 2 and Chapter 3 do not appear connected in a cohesive
way, but together they certainly endeavor to lay the foundations of understanding
the mathematical mechanisms driving the formation and nonlinear evolution of
ecosystems and the observations thereof. While achieving this, they consolidate
the universality of distinct features that bridge the gap between mathematics and
ecology.

This thesis constitutes a constant interplay and wavering between two paral-
lel, yet complementary worlds: a fundamental and a realistic one. Both Chapter
2 and Chapter 3 have shown the importance of ecological background in un-
derstanding the nature of patterns exhibited by reaction-diffusion models. Ad-
ditionally, the scope of patterns we were initially interested in was broadened.
By posing the relevant ecological questions, the underlying mathematical mech-
anisms unrolled themselves into a realm of expected and unexpected patterns
and geometrical constructions. Rigorous analysis of reaction-diffusion models
in return demarcates the possible outcomes and sceneries an ecosystem can have
as well as its spatio-temporal evolution. A real ecosystem is typically not close
to onset, i.e., features parameters µ that are not close to the critical parameter
value µc, thereby yielding patterns exhibited by (1.20–1.21–2.1–3.1) that are ‘far-
from-equilibrium’. This allows for these patterns to be studied by the methods
of geometric singular perturbation theory (as has been done in this thesis).

This is a mere recapitulation of the longer call we have stated in the intro-
duction, that, trying to understand natural complex phenomena such as climate
change and soil degradation, requires the fusing of these two fields of research. It
has become clear throughout this thesis that in the study of ecosystem dynamics
the knowledge of both ecology and mathematics needs to be combined in order
to optimize the posed research questions and the models that are used in order
to describe the processes at play. As data acquisition and sampling methods
develop and expand by the minute, the areas of ecosystem modeling and model
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assessment are just set out. Along this development, a multitude of follow-up
research questions arise from the studies done in this thesis, from the establish-
ment of the Busse balloon in Chapter 2 to the geometric singular perturbation
theory tools of Chapter 3.

As outlined in Chapter 1.2, the models studied differ in their approach by
their different ecological settings, one being more conceptual and the other trying
to include more realistic parameters and environmental constraints. Studying the
most conceptual model, the extended-Klausmeier model, and its Busse balloon
in Chapter 2, and laying it next to real state-of-the-art acquired dryland vegeta-
tion data, confirmed that ecological systems are more resilient on a fundamental
level than previously thought and that various patterns can co-exist simultane-
ously for the same parameter values. In an analogous way, in Chapter 3, we have
found the Turing bifurcation in model (3.1) and we have constructed by means
of geometric singular perturbation theory several classes of spatially periodic
far-from equilibrium patterns as seen in Figures (3.17a,3.18a) of Chapter 3.6.
These represent sections of the Busse balloon of the model of Chapter 3, and
form a basis to build upon in completing the Busse balloon in parameter-space
and thus for the existence of the Busse balloon and the multistability of periodic
patterns for this model.

Along the lines of parameter-space and parameters, the more realistic model
of Chapter 3, may also also have been used to analyze the data of Chapter 2
from a quantitative perspective. With the abundance of ecological parameters
within this model, this would have gone beyond qualitatively establishing the
fundamental phenomenon of increased resilience through multistability. Thus,
this may be a relevant extension of the study of these sites, by providing a more
qualitative interpretation of the latter. For this, a meticulous study of the eco-
logical literature is required to acquire realistic values of the parameters present.
In model (3.1), the Busse balloon of the model of Chapter 3 can be determined
explicitly. The model of Chapter 3 can also easily incorporate an advection term
to account for the topological variations (which was initially done in the 3D
Gilad et al. version [61]) that were present on site. This would be an interesting
next step: to put both models side by side in order to analyze and compare their
predictions. Actual model comparison, to my knowledge, has not been done
systematically as the parameters’ choices of each model are often hard to retrace,
therefore making one-on-one correlation a challenge. Nevertheless, a qualitative
comparison of both models and their predictions with respect to actual obser-
vations would be a natural follow-up, in order to also fine-tune the ecological
parameters that have been worked with for years within Klausmeier-type models.

A fundamental challenge that we did not touch upon is, of course, the direct
relevance of the 1D model analyses of Chapters 2 and 3 in the realistic setting
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2-dimensional (spatial) domains. Naturally, extrapolating the patterns found in
the one dimensional case to the 2-dimensional case using the symmetry in the
y-direction results in trivial straight stripes. Moreover, perfectly circular sym-
metric patterns can also be studied by the 1D-methods of this thesis – see for
instance [158] and the references therein. However, these idealized two dimen-
sional shapes are, for example, very different from the realistic ecological case,
where we have a broad range of patterns that are far from being perfectly sym-
metric: fairy circles, labyrinths, gaps, curved stripes as can be seen in Figure 4.1.
Thus, a mere extension of the 1D analysis of our models to a two dimensional
space is too simplistic (in fact, it should even be noted that the precise nature
of the interaction terms in the model may be different in 2-space dimensions –
see Chapter 3, and [106]). However, the patterns exhibited in Figure 4.1 also
suggest that the analysis of realistic patterns may be developed by a perturbative
approach that starts out from perfectly symmetrical intrinsically 1D patterns.
Moreover, even if one would restrict oneself to perhaps the most simple start-up
problem, the evolution of curved interfaces, a problem that has been extensively
studied in the mathematical literature (see for instance [23] and the references
therein), the mathematical challenge should not be underestimated: unlike the
evolving interfaces generally considered in the literature, ecologically relevant
stripes and interfaces may be destabilized by their evolution or through their in-
teractions with other stripes/interfaces – see for instance [11] for examples in one
space dimension. Nevertheless, we may conclude that the 1D analysis applied
and further developed in this thesis does provide a first stepping stone towards
understanding the evolution and dynamics of ecologically relevant patterns in
2D.

(a) Fairy circles in the Namibian desert
[1].

(b) A site displaying curved banded veg-
etation patterns in the Western Creek
Basin southwest of Newman, Australia
(−23.5◦N, 119.5◦E). Picture taken from
[60].

Figure 4.1: Two dimensional vegetation patterns in nature.

The dimensionality of an ecosystem model is not the only place where space
and spatial coordinates play a key role in the type of patterns exhibited and their
behavior. A research question that has not yet been thoroughly explored is the
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role of topography and its effect, even on a small scale, on the family of pat-
terns that the models can exhibit and that can be observed. Model predictions
in Chapter 2 regarding the role of slope with respect to migration speed was
not corroborated by the empirical data analyzed, suggesting that the inclusion
of small-scale topographical heterogeneities is a promising avenue for future
model analysis, something that was further researched in [10] Including slope
into model of Chapter 3 would be a next step into incorporating the topograph-
ical effect into the analysis of ecosystem dynamics. The curvature of the slow
manifolds has played a crucial role in the asymmetrical type of connections
that we encountered, starting with the ’basic’ connections between bare soil and
vegetated state. Including advection into the model, that is, breaking of the re-
versibility symmetry (u(x, t), v(x, t))→ (u(−x,−t), v(−x,−t)) of the system will
at the very least affect the profile of the connections established, if not completely
reshape the family of periodic patterns found on the slow manifolds, as these
are symmetric stationary solutions and breaking of the reversibility symmetry
would disrupt these constructions. Such modifications have, for example, been
researched in [9] for a 2-component extended Klausmeier-type model, the basic
connections between bare soil and vegetated stated will be altered from being
completely symmetric in the case of a pulse and a gap to the new patterns that
can be seen in Figure 4.2.

Figure 4.2: Shown are the different patterned solutions of an extended Klausmeier-type
model. Presented figures show 1D cross-sections u(x) (blue) and v(x) (red) of direct
numerical simulations. Figures from [9] – where water diffusion has been omitted for
simplicity.
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Aside from the possible model extensions and further ecological applica-
tions, a natural next step building on the existence proofs of Chapter 3 is to study
the stability of the new found orbits and connections in both one and two di-
mensions. This is, besides its mathematical importance, of high relevance to the
ecological community as the only observable patterns in nature are those that are
mathematically stable. As the model of Chapter 3 encapsulates a ‘new’ variety
of slow localized patterns, that are completely embedded in a slow manifold of
the singularly perturbed spatial dynamical system, further stability analysis is
required, by performing the corresponding spectral stability analysis. In [40], a
very first step in this direction has been taken.

One overall clear takeaway from this thesis is that the practical applicability
of geometrical singular perturbation theory transcends specific model formula-
tion. Given a reaction-diffusion system that incorporates spatial scale separation,
a successful geometric singular perturbation analysis will make clear which
patterns exist, what they look like, what their period is (if present), and how
these properties depend on the model parameters [41, 44]. Given that patterns
in real ecosystems are singularly perturbed by definition [113], as biomass and
water diffuse with very different speeds, geometric singular perturbation theory
is an excellent tool to go with in order to investigate the different vegetation
patterns exhibited. The existence and properties of orbits are directly related
to the shape and transversal intersection of the geometrical objects (stable and
unstable manifolds) introduced in Chapter 1 and Chapter 3 in phase space. This
has, from a model perspective, two consequences. First, recent insight shows
that the existence and properties of several important types of special orbits can
be established [31, 40, 46] using only general properties of the reaction terms
f (u) : Rm → Rm in (1.8)- that is, patterns such as pulses or periodic orbits, and
their properties, can be found for general classes of reaction-diffusion systems.
For a specific reaction-diffusion system, one only needs to check whether its
reaction terms obey certain (mild) conditions; if so, the pattern properties are
explicitly given in terms of integrals involving the reaction terms, and certain
solutions to lower-dimensional differential equations. A second, and related, con-
sequence of the geometric approach is that because the specific functional form
of the reaction terms f (u) is not important, the reaction terms can be directly
defined for instance through an (experimentally obtained) response curve. Only
the geometric shape of this curve determines the existence and properties of
pattern solutions, not the specific algebraic implementation of this shape. There-
fore, patterns obtained by a geometric singular perturbation construction are
structurally stable. Thus, geometric singular perturbation theory is an extremely
suitable ‘tool’ by which we can understand ecosystem models – even the more
realistic and thus complex ones. However, the present state-of-the-art theory
is still insufficiently developed (especially concerning the stability of patterns):
ecology will keep on driving the development of the theory for quite a number
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of years.


