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3
The existence of localized

vegetation patterns in a
systematically reduced model

for dryland vegetation

In this chapter we consider the 2-component reaction-diffusion model that
was recently obtained by a systematic reduction of the 3-component Gilad
et al. model for dryland ecosystem dynamics [62]. The nonlinear struc-
ture of this model is more involved than other more conceptual models,
such as the extended-Klausmeier model, and the analysis a priori is more
complicated. However, the present model has a strong advantage over
these more conceptual models in that it can be more directly linked to eco-
logical mechanisms and observations. Moreover, we find that the model
exhibits a richness of analytically tractable patterns that exceeds that of
Klausmeier-type models. Our study focuses on the 4-dimensional dynam-
ical system associated with the reaction-diffusion model by considering
traveling waves in 1 spatial dimension. We use the methods of geomet-
ric singular perturbation theory to establish the existence of a multitude
of heteroclinic/homoclinic/periodic orbits that ‘jump’ between (normally
hyperbolic) slow manifolds, representing various kinds of localized veg-
etation patterns. The basic 1-front invasion patterns and 2-front spot/gap
patterns that form the starting point of our analysis have a direct ecological
interpretation and appear naturally in simulations of the model. By exploit-
ing the rich nonlinear structure of the model, we construct many multi-front
patterns that are novel, both from the ecological and the mathematical point
of view. In fact, we argue that these orbits/patterns are not specific for the
model considered here, but will also occur in a much more general (singu-
larly perturbed reaction-diffusion) setting. We conclude with a discussion
of the ecological and mathematical implications of our findings.
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1 Introduction

Ecosystems consist of organisms that interact among themselves and with their
environment. These interactions involve various kinds of feedback processes that
may combine to form positive feedback loops and instabilities when environ-
mental conditions change [107, 108]. In many ecosystems – drylands, peatlands,
savannas, mussel beds, coral reefs, and ribbon forests – the leading feedback
processes have different spatial scales: a short-range facilitation by local modifi-
cation of the environment versus a long-range competition for resources [126].
Like the well-established activator-inhibitor principle in bio-chemical systems
[113], the combination of these scale-dependent feedback mechanisms can in-
duce instabilities that result in large-scale spatial patterns, which are similar to a
wide variety of vegetation patterns observed in drylands, peatlands, savannas and
undersea [13, 32, 61, 66, 125, 128, 134]. Varying climatic conditions and human
disturbances may continue to propel ecosystem dynamics. Ecosystem response
to decreasing rainfall, for example, may take the form of abrupt collapse to a
nonproductive ‘desert state’ [125, 130, 161], or involve gradual desertification,
consisting of a cascade of state transitions to sparser vegetation [12, 146], or
gradual vegetation retreat by front propagation [14, 174]. Understanding the dy-
namics of spatially extended ecosystems has become an active field of research
in the last two decades – within communities of ecologists, environmental scien-
tists, mathematicians and physicists. Apart from its obvious environmental and
societal relevance, the phenomena exhibited pose fundamental challenges to the
research field of pattern formation.

Several models of increasing complexity have been proposed in the past two
decades. Of these, the models that have received most attention are the one-
component model by Lefever and Lejeune [97], the two-component models by
Klausmeier [90] and von Hardeberg et al. [161], and the three-component mod-
els by Rietkerk et al. [124] and Gilad et al. [62]. A basic difference between
these models is the manner by which they describe water dynamics. The Lefever-
Lejeune model does not describe water dynamics at all, the Klausmeier model
does describe water dynamics but does not make a clear distinction between soil
water and surface water [155], while the von Hardenberg et al. model only takes
soil water into account. The Rietkerk model and the Gilad et al. model describe
both soil water and surface water dynamics and, therefore, capture more aspects
of real dryland ecosystems. A major difference between these two models is the
inclusion of water conduction by laterally spread roots, as an additional water-
transport mechanism, in the Gilad et al. model.

Despite these differences, all models appear to share a similar bifurcation struc-
ture, as analytical and numerical-continuation studies reveal [38, 67, 98, 173],
except the Klausmeier model. This structure includes, in particular, a stationary
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uniform instability (i.e., involving the monotonic growth of spatially uniform
perturbations) of the bare soil (zero biomass) state as the precipitation rate ex-
ceeds a threshold value. The Klausmeier model fails to capture that instability,
leaving the bare soil state stable at all precipitation values. This behavior limits
the applicability of the Klausmeier model to ecological contexts where the bare
soil state is stabilized at relatively high precipitation rates, e.g. by high evapora-
tion rates. Nevertheless, of all models, the Klausmeier model and its extension to
include water diffusion have been studied to a greater extent [21, 135, 139, 155],
partly because the extended form coincides with the much studied Gray-Scott
model for autocatalytic chemical reactions – see [11, 24, 133] and the references
therein.

All models have been analyzed mathematically to various extents. Two main
analytical approaches can be distinguished in these studies (see however Goto
et al. [64]); linear stability and weakly nonlinear analysis near instability points
[30, 56, 65, 67, 98, 155], and singular perturbation analysis, based on the dis-
parate length scales associated with biomass (short) and water (long) [11, 21, 24,
133]. Studies of the first category are strictly valid only near instability points,
although they do capture essential parts of the bifurcation structure even far from
these points and are quite insightful in this respect. By contrast, studies of the
second category apply to the strongly nonlinear ‘far-from-equilibrium’ regime,
where desertification transitions take place, and are, potentially, of higher eco-
logical interest. So far, however, these studies have been limited to the simpler
and less realistic Klausmeier model.

In this chapter we apply a geometric singular perturbation analysis to a reduced
version of the Gilad et al. model in order to study the existence of various forms
of localized patterns. Singular perturbation theory has already been applied to
three-component models – see for instance [46, 159] – and could be applied,
in principle, to the non-local three-component Gilad et al. model. Here we
choose to consider ecological contexts that allow to reduce that model to a local
two-component model for the vegetation biomass and the soil water content.
Specifically, we assume soil types characterized by high infiltration rates of
surface water into the soil, such as sandy soil, and plant species with laterally
confined root zones (see 3.A for more details). These conditions are met, for
example, by Namibian grasslands showing localized and extended gap patterns
(‘fairy circles’) [175]. We further simplify the problem by assuming one space
dimension. The reduced model reads:


∂B̃
∂T

= ΛW̃B̃(1 − B̃/K)(1 + EB̃) − MB̃ + DB
∂2B̃
∂X̃2

,

∂W̃
∂T

= P − N(1 − RB̃/K)W̃ − ΓW̃B̃(1 + EB̃) + DW
∂2W̃
∂X̃2

,

(3.1)
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where B̃(X̃,T ) ≥ 0 and W̃(X̃,T ) ≥ 0 represent areal densities of biomass and
soil water, respectively, and X̃ ∈ R, T ∈ R+ are the space and time coordinates.
In the biomass (B̃) equation, Λ represents the biomass growth rate coefficient,
K the maximal standing biomass, E is a measure for the root-to-shoot ratio, M
the plant mortality rate and DB the seed-dispersal or clonal growth rate, while
in the water (W̃) equation, P represents the precipitation rate, N the evaporation
rate, R the reduction of the evaporation rate due to shading, Γ the water-uptake
rate coefficient and DW the effective soil water diffusivity. Notice that the power
of the factor (1 + EB̃) in both equations is unity, whereas in the reduced model
in [175] the power is two. This difference stems from the consideration in this
study of one space dimension rather than two (see 3.A).

From the ecological point of view, the advantage in studying model (3.1) over
the much analyzed Klausmeier model lies in the fact that it has been systemati-
cally derived from a more extended model that better captures relevant ecolog-
ical processes, such as water uptake by plant roots (controlled by E), reduced
evaporation by shading (controlled by R), and late-growth constraints, such as
self-shading (controlled by K) – see [62, 63, 106, 134]. As a consequence,
(mathematical) insights in (3.1) can be linked to ecological observations and
mechanisms in a direct fashion. Naturally, there also is a disadvantage to an-
alyzing a model that incorporates concrete ecological mechanisms: the more
involved – algebraically more complex – nonlinear structure of (3.1) a priori
makes it less suitable for an analytical study than the Klausmeier model (or other
more conceptual models). However, that apparent disadvantage turned around
into an advantage: we will find that the reduced model transcends by far the
Klausmeier model in terms of richness of analytically tractable pattern solutions.

The model equations (3.1) represent a singularly perturbed system, because
of the low seed-dispersal rate as compared with soil water diffusion, that is,
DB � DW [63, 155, 175]. To make this explicit and to simplify (3.1) as much as
possible, we introduce the following scalings,

B =
B̃
α
, W =

W̃
β
, t = δT, x = γX̃, (3.2)

and set,

α = K −
1
E
, β =

MK
α2ΛE

, γ =

√
α2βΛE
KDB

, δ =
α2βΛE

K
. (3.3)

By also introducing our main parameters,

a =
KE

(KE − 1)2 , ε2 =
DB

DW
� 1, (3.4)
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Figure 3.1: The 4 basic patterns exhibited by numerical simulations of model (3.5): a
traveling (heteroclinic) invasion front (Theorem 3.4), a stationary, homoclinic, 2-front
vegetation spot (Theorem 3.11), a stationary homoclinic, 2-front vegetation gap (Theorem
3.13), and a stationary, spatially periodic multi-front spot/gap pattern (Theorem 3.15) –
see Remark 4.1 for the precise parameter values.

we arrive at,


Bt = (aW − 1) B + WB2 −WB3 + Bxx,

Wt = Ψ −
[
Φ + ΩB + ΘB2

]
W +

1
ε2 Wxx,

(3.5)

in which,

Ψ =
α2PΛE

M2K
, Φ =

N
M
, Ω =

α

M

(
Γ −

R
K

)
, Θ =

α2ΓE
M

. (3.6)

A more detailed derivation of the scaled equations (3.5) from (3.1) is given in
3.B. Since the signs of the parameters in (3.5) will turn out to be crucial in the
upcoming analysis, we note explicitly that a,Ψ,Φ,Θ ≥ 0 while Ω ∈ R, i.e., Ω

may be negative.

We study pattern formation in (3.1) by analyzing (3.5) using the methods of
(geometric) singular perturbation theory [83, 86] and thus ‘exploit’ the fact that
ε � 1 (3.4). In fact – apart from some observations in section 2.3 and the
discussion section 4.2 – we focus completely on the ‘spatial’ 4-dimensional
dynamical system that is obtained from (3.5) by considering ‘simple’ solutions
that are stationary in a co-moving frame traveling with constant speed c. More
specifically, in this chapter we study the existence of traveling (and stationary)
solutions – in particular localized (multi-)front solutions connecting a (uniform)
bare soil state to a uniform vegetation state, or a bare soil state to itself (with
a ‘passage’ along a vegetated state), etc. – by taking the classical approach of
introducing a (uniformly) traveling coordinate ξ = x − ct, with speed c ∈ R an
a priori free O(1) parameter (w.r.t. the asymptotically small parameter ε). By

setting (B(x, t),W(x, t)) = (b(ξ),w(ξ)) and introducing p = bξ and q =
1
ε

wξ,
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PDE (3.5) reduces to

bξ = p,

pξ = wb3 − wb2 + (1 − aw)b − cp,

wξ = εq,

qξ = ε
(
−Ψ +

[
Φ + Ωb + Θb2

]
w
)
− ε2cq.

(3.7)

Fig. 3.1 shows four basic patterns that naturally appear in simulations of (3.5)
and have identifiable ecological counterparts: vegetation fronts (ecotones), iso-
lated vegetation spots and gaps, and periodic patterns [49, 55, 61, 109]. These
patterns are rigorously constructed by the methods of singular perturbation the-
ory in section 3. From the geometrical point of view, these constructions are
natural and thus relatively straightforward: all patterns in Fig. 3.1 ‘jump’ be-
tween two well-defined slow manifolds (of (3.7)) – see Theorems 3.4, 3.11, 3.13,
and 3.15. Therefore, the main work in establishing these results lies in resolving
technical issues (which can be done by the preparations of section 2). However,
the preparations of section 2 also form the origin of the construction of a surpris-
ingly rich ‘space’ of traveling and/or stationary patterns that goes way beyond
those exhibited in Fig. 3.1 – see for instance the sketches of Fig. 3.2. These are
novel patterns, at least from the point of view of explicit rigorous mathematical
constructions in multi-component reaction-diffusion equations. However, simi-
lar patterns have been analyzed as (perturbations of) heteroclinic networks in a
more abstract framework – see [120, 121] and the references therein. Moreover,
patterns similar to those of Fig. 3.2 have been observed in simulations of the
Klausmeier-Gray-Scott model [172], although with parameter settings beyond
that for which the mathematical singular-perturbation approach can be applied.

Here, our motivation to study these patterns is primarily ecological; however,
we claim that patterns like these must also occur generically in the setting of a
completely general class of singularly perturbed 2-component reaction-diffusion
systems – as we will motivate in more detail in section 4.2. Thus, our explicit
analysis of model (3.5) provides novel mathematical insights beyond that of the
present ecological setting. The driving mechanism behind these patterns origi-
nates from the perturbed integrable flow on the slow manifolds associated with
(3.7) – see sections 2.2 and 2.4. The perturbation terms are generically intro-
duced by the O(ε) differences between the slow manifold and its ε → 0 limit,
and they transform the (Hamiltonian) integrable reduced slow flow to a (pla-
nar) ‘nonlinear oscillator with nonlinear friction’ that can be studied by explicit
Melnikov methods. Typically, one for instance expects (and finds: Theorem
2.4) persistent periodic solutions on the slow manifold. Associated with these
persisting periodic solutions, one can subsequently construct heteroclinic 1-front
connections between a critical point – representing the uniform bare soil state in
the ecological setting – and such a periodic pattern (Theorems 3.5 and 3.9 and



1. Introduction 61

Figure 3.2: Four sketches of ‘higher order’ localized patterns constructed in this chapter.
(a) A secondary traveling 1-front, the second one in a countable family of traveling
1-fronts between the bare soil state and a uniform vegetated state – all traveling with
different speeds – that starts with the primary 1-front of Fig. 3.1(a) (Theorem 3.6).
(b) The limiting orbit of the family sketched in (a): a 1-front connection between the
bare soil state and a spatially periodic vegetation state (Theorem 3.5). (c,d) The first 2
representations of a (countable) ‘higher order’ family of localized (stationary, homoclinic
2-front) spot patterns with an increasing number of ‘spatial oscillations’ (Theorem 3.12).

Fig. 3.2b) and a countable family of ‘higher order’ heteroclinic 1-fronts between
critical points that limits on these orbits (Theorem 3.6 and Fig. 3.2a – where we
note that Fig. 3.1a represents the very first – primary – member of this family).
In the case of (stationary) localized spot patterns, one can construct a countable
family of connections that follow the periodic orbit for arbitrarily many ‘spatial
oscillations’ (Theorem 3.12 and Fig. 3.2c, 3.2d). Combining these insights with
the ideas of [44], one may even construct many increasingly complex families of
spatially periodic and aperiodic multi-spot/gap patterns (Corollary 3.16 and sec-
tion 3.6). Moreover, we can explicitly study the associated bifurcation scenarios:
in section 3.3 we present a scenario of cascading saddle-node bifurcations of
heteroclinic 1-front connections starting from no such orbits to countably many
– all traveling with different speed (Theorem 3.6 and Figs. 3.1a, 3.2a and 3.2b)
– back to 1 unique 1-front pattern (of the type presented in Fig. 3.1a) – see Fig.
3.9 in section 3.3.

Finally, we illustrate our analytical findings by several numerical simulations of
PDE model (3.1)/(3.7) – see also Fig. 3.1. We did not systematically investigate
the question whether all heteroclinic/homoclinic/periodic (multi-)front orbits of
(3.7) constructed here indeed may be (numerically) observed as stable patterns
in (3.7), either for general parameter combinations in (3.5) or for the more re-
stricted class of ecologically relevant parameter combinations. This will be the
subject of future work, as will be the analytical question about the spectral stabil-
ity of the constructed patterns. These issues will be discussed more extensively
in section 4.2, where we will also discuss further implications of our findings –
both from the mathematical as well as from the ecological point of view.

The set-up of this chapter is as follows. Section 2 is a preparatory section:
in section 2.1 and 2.2 we consider the fast and slow reduced problems associated
with (3.7), followed by a brief section – section 2.3 – in which we discuss the
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nature (and stability) of the critical points of (3.7) as uniform vegetated states
in (3.5); in section 2.4 we study the full, perturbed, slow flow on the slow mani-
folds (leading to Theorem 2.4). All localized patterns are constructed in section
3, which begins with (another) preparatory section – section 3.1 – in which we
set up the geometry of orbits ‘jumping’ between slow manifolds. The primary
traveling 1-front patterns of Fig. 3.1a are constructed in section 3.2, the asso-
ciated higher order 1-fronts of Figs. 3.2a and 3.2b in section 3.3. Stationary
patterns are considered in 3.4 – on 1-fronts – and 3.4 – on 2-fronts of spot and
gap type as shown in Figs. 3.1b, 3.1c and Fig. 3.2(c,d); various families of
spatially periodic multi-front patterns – including the basic ones of Fig. 3.1d –
are constructed in section 3.6. Section 4 begins with section 4.1 in which we
show various numerically obtained patterns – some of them beyond the analysis
of the present chapter – and ends with discussion section 4.2.

Remark 1.1. While the original model (3.1) has 8 parameters – (Λ,Γ,R,K,
E,M,N, P) – (neglecting DB,DW which are represented by ε), rescaled model
(3.5) has only 5 parameters – (a,Ψ,Φ,Ω,Θ). We will formulate our results by
stipulating conditions on (a,Ψ,Φ,Ω,Θ) and refrain from giving a corresponding
range for the original parameters. Moreover, we notice that we have implicitly
assumed that α > 0, i.e., that EK > 1 (3.3). This is a technical assumption
(and not unrealistic from ecological point of view), the case 0 < EK < 1 can be
treated in a completely analogous way – see 3.B.

2 Set-up of the existence problem
We first notice that (3.7) is the ‘fast’ description of the ‘spatial ODE’ associated
with (3.5). By introducing X = εξ (= ε(x − ct)) we obtain its equivalent slow
form, 

εbX = p,

εpX = wb3 − wb2 + (1 − aw)b − cp,

wX = q,

qX = −Ψ +
[
Φ + Ωb + Θb2

]
w − εcq.

(3.8)

Note that these systems possess a c→ −c symmetry that reduces to a reversibility
symmetry for c = 0,

(c, ξ, p, q)→ (−c,−ξ,−p,−q) or (c, X, p, q)→ (−c,−X,−p,−q). (3.9)

2.1 The fast reduced problem
The fast reduced limit problem associated to (3.7) is a two-parameter family of
planar systems that is obtained by taking the limit ε→ 0 in (3.7),

bξξ = w0b3 − w0b2 + (1 − aw0)b − cbξ, (w, q) ≡ (w0, q0) ∈ R2. (3.10)
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These planar systems can have up to 3 (families of) critical points (parameterized
by (w0, q0)) given by,

(b0, p0) = (0, 0), (b±, p±) = (b±(w0), 0) =

1
2
±

√
a +

1
4
−

1
w0
, 0

 . (3.11)

Clearly, (b0,w0) represents the (homogeneous) bare soil state B(x, t) ≡ 0, the
other two solutions correspond to uniform vegetation states and only exist for
w0 > 4/(1 + 4a). The critical points also determine 3 two-dimensional invariant
(slow) manifolds, M0

0 and M±
0 ,

M0
0 =

{
(b, p,w, q) ∈ R4 : b = 0, p = 0

}
,

M±
0 =

(b, p,w, q) ∈ R4 : b = b±(w) =
1
2
±

√
a +

1
4
−

1
w
, p = 0

 .
(3.12)

A straightforward analysis yields that the critical points (b+, 0) are saddles for
all c ∈ R and that the points (b0, p0) = (0, 0) are saddles for all c as long as
w0 < 1/a. Therefore, we consider in this chapter w0 such that,

w0 ∈ Ua =

{
w0 ∈ R |

4
1 + 4a

< w0 <
1
a

}
, (3.13)

so that (parts of) the manifolds M0
0 and M+

0 are normally hyperbolic for all w0
that satisfy (3.13) (and thus persist as ε becomes nonzero [83, 86]); moreover,
all stable and unstable manifolds W s,u(M0

0) and W s,u(M+
0 ) are 3-dimensional.

(In this chapter, we do not consider the manifold M−
0 for several reasons: (i)

it is not normally hyperbolic in the crucial case of stationary patterns (i.e., for
c = 0, under the – natural – assumption that the water concentration w0 does not
become negative), (ii) critical points for the full system (3.7) that limit on M−

0
as ε → 0 cannot correspond to stable homogeneous states of PDE (3.5) – see
section 2.3.)

The manifolds W s,u(M0
0) and W s,u(M+

0 ) are determined by the stable and un-
stable manifolds of (0, 0) and (b+, 0). By the (relatively) simple cubic nature
of (3.10) we do have explicit control over these manifolds in the relevant cases
that they collide, i.e., that there is a heteroclinic connection between (0, 0) and
(b+, 0). Although this is a classical procedure – see [113] – we provide a brief
sketch here.

We assume that a heteroclinic solution of (3.10) between (0, 0) and (b+, 0) can
also be written as a solution of the first order equation

bξ = nb(b+(w0) − b), (3.14)

where n is a free pre-factor (and we know that this assumption provides all
possible heteroclinic connections). Taking the derivative (w.r.t. ξ) yields an



64
3. The existence of localized vegetation patterns in a systematically

reduced model for dryland vegetation

equation for bξξ that must equal (3.10) – that we write as bξξ = w0b(b − b−)(b −
b+) − cbξ. Working out the details yield explicit expressions for n and c,

n = n±(w0) = ±

√
1
2

w0,

c = c±(w0) = ±

√
1
2

w0

3 √
a +

1
4
−

1
w0
−

1
2

 . (3.15)

Thus, for a given c, there is a heteroclinic connection between M0
0 and M+

0 at
the ‘level’ w0 = w±h (c) if w0 solves (3.15). A direct calculation yields that c±(w0)
are strictly monotonic function of w0 with inverse

w±h (c) =
4(9 + 2c2)2(

3
√

2c2(1 + 4a) + 4(2 + 9a) ∓
√

2c
)2 . (3.16)

We conclude that for a given c, there may be ‘parabolic’ – by the relation be-
tween b and p (3.14) – two-dimensional intersections Wu(M0

0) ∩W s(M+
0 ) and

W s(M0
0) ∩Wu(M+

0 ) explicitly given by,

Wu(M0
0) ∩W s(M+

0 ) =
{
0 < b < b+(w+

h ), p = n+(w+
h )b(b+(w+

h ) − b),w = w+
h

}
,

W s(M0
0) ∩Wu(M+

0 ) =
{
0 < b < b+(w−h ), p = n−(w−h )b(b+(w−h ) − b),w = w−h

}
(3.17)

(where we recall that q = q0 ∈ R is still a free parameter). See Lemma 3.2 for a
further discussion and analysis (for instance on the allowed c-intervals for which
the heteroclinic connections exist: w±h (c) must satisfy (3.13)).

In the case of stationary patterns (c = 0), fast reduced limit problem (3.10)
is integrable, with Hamiltonian H f given by,

H f (b, p; w0) =
1
2

p2 −
1
2

(1 − aw0)b2 +
1
3

w0b3 −
1
4

w0b4, (3.18)

which is gauged such that H f (0, 0; w0) = 0. This system has a heteroclinic con-
nection between (0, 0) and (b0

+, 0) for w0 = w±h (0) such that H f (b+(w0), 0; w0) =

H f (0, 0; w0) = 0. It follows by (3.11) and (3.18) that w+
h (0) = w−h (0) = 9/(2+9a)

(which agrees with (3.16)) – see Fig. 3.3.

2.2 The slow reduced limit problems
The slow reduced limit problem is obtained by taking the limit ε→ 0 in (3.8). It
is a planar problem in (w, q),

wXX = −Ψ +
[
Φ + Ωb + Θb2

]
w. (3.19)
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Figure 3.3: Numerical simulations of dynamics of the fast reduced system (3.7) for

a =
1
4

and two choices of w0 ∈ Ua (3.13), both featuring a heteroclinic orbit between
the saddle points (0, 0) and (b+(w0), 0): (i) w0 = 9/(2 + 9a), c = c±(w0) = 0; (ii) w0 =

9/(2 + 9a) + 0.1, c = c+(w0) ≈ 0.17.

restricted to (p, b) such that,

p = 0, wb3 − wb2 + (1 − aw)b = 0

i.e., (3.19) describes the (slow) flow on the (slow) manifolds M0
0 and M±

0 (3.12).
The flow on M0

0 is linear,

wXX = −Ψ + Φw, (3.20)

with critical point P0
0 = (0, 0,Ψ/Φ, 0) ∈M0

0 of saddle type – that corresponds
to the uniform bare soil state (B(x, t),W(x, t)) ≡ (0,Ψ/Φ) of (3.5) – that has the
stable and unstable manifolds (on M0

0) given by

W s(P0
0)|M0

0
:= `s

0 =

{
(b, p,w, q) ∈M0

0 : q = −
√

Φ

(
w −

Ψ

Φ

)}
,

Wu(P0
0)|M0

0
:= `u

0 =

{
(b, p,w, q) ∈M0

0 : q =
√

Φ

(
w −

Ψ

Φ

)} (3.21)

Since we focus on orbits – patterns – that ‘jump’ between M0
0 and M+

0 (in the
limit ε → 0), we do not consider the flow on M−

0 but focus on (the flow on)
M+

0 ,

wXX = −A + (B + aΘ) w + Cw

√
a +

1
4
−

1
w
, (3.22)

where

A = Ψ + Θ ≥ 0, B = Φ +
1
2

Ω +
1
2

Θ ∈ R, C = Ω + Θ ∈ R, (3.23)
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and we notice explicitly that B and C may be negative (since Ω may be negative).
For w satisfying (3.13), we define,

W =

√
a +

1
4
−

1
w
≥ 0, D = B + aΘ −

(
a +

1
4

)
A ∈ R, (3.24)

and conclude that the critical points P+, j
0 = (b+(w+, j

0 ), 0,w+, j
0 , 0) ∈ M+

0 are
determined as solutions of the quadratic equation,

AW2 + CW + D = 0. (3.25)

Thus, the points P+, j
0 exist for parameter combinations such that C2 − 4AD > 0.

There are 2 critical points if additionally C < 0 and D > 0 and only 1 if D < 0.

Clearly, the flow (3.22) is integrable, with Hamiltonian given by

H+
0 (w, q) =

1
2

q2 + Aw −
1
2

(B + aΘ) w2 − CJ +
0 (w), (3.26)

with, for ã = a +
1
4

,

J +
0 (w) =

1
4ã

(2ãw − 1)
√

ãw2 − w −
1

8ã
√

ã
ln

∣∣∣∣∣12 (2ãw − 1) +
√

ã
√

ãw2 − w
∣∣∣∣∣.

(3.27)
Hence, if non-degenerate, the critical points P+, j

0 are either centers – P+,c
0 – or

saddles – P+,s
0 . Notice that, except the uniform bare soil state (0,Ψ/Φ), all critical

points correspond to uniform vegetation states (B(x, t),W(x, t)) ≡ (B̄, W̄) in (3.5)
– see section 2.3. In the case that there is only 1 critical point P+

0 ∈M+
0 , it can

either be of saddle or center type: P+
0 is a saddle if,

E = B + aΘ +
1
2
C

W +

a +
1
4

W

 > 0 (3.28)

where W > 0 is the solution of (3.25). We notice that the stable and unstable
manifolds (restricted to M+

0 ) of the saddle point P+,s
0 ∈M+

0 are represented by,

W s(P+,s
0 )∪Wu(P+,s

0 )|M+
0

=
{
(b, p,w, q) ∈M+

0 : H+
0 (w, q) ≡ H+,s

0 := H+
0 (w+,s

0 , 0)
}
.

(3.29)
In the upcoming analysis, we will be especially interested in the case of 2 critical
points P+,s

0 , P+,c
0 ∈ M+

0 , therefore we investigate this situation on some more
detail. First, we introduce DS N and σ ≥ 0 by setting,

D(σ2) = DS N −Aσ2 =
C2

4A −Aσ
2 > 0 : σ =

√
D −DS N

A , (3.30)
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Figure 3.4: Phase portrait of the unperturbed flow (3.22) on M+
0 for parameters

(a,Ψ,Φ,Ω,Θ) such that (3.40) holds.

so that the solutions of (3.25) are given by W = WS N ± σ = −
C

2A ± σ. We
rewrite (3.22) in terms of (a,A, C,D)

wXX = −A +

(
D +

(
a +

1
4

)
A

)
w + Cw

√
a +

1
4
−

1
w
. (3.31)

Clearly, σ = 0 corresponds to the degenerate saddle-node case in which P+,s
0 and

P+,c
0 merge,

PS N
0 =

(
b+(wS N

0 ), 0,wS N
0 , 0

)
(3.32)

with

wS N
0 =

4A2

(1 + 4a)A2 − C2 , (1 + 4a)A2 − C2 , 0, (3.33)

where we note that wS N
0 satisfies (3.13) for 0 < C2 < A2 (independent of a).

In fact, we can consider the unfolding of the saddle-node bifurcation by the
additional assumption that 0 < σ � 1,

w+, j
0 = wS N

0 ± wS N
1 σ + O(σ2) = wS N

0 ± 2WS N(wS N
0 )2σ + O(σ2), (3.34)

( j = 1, 2), where the ” + ”-case represents the saddle P+,s
0 and the ” − ”-case the

center P+,c
0 : w+,c

0 < w+,s
0 – see Fig. 3.4. In this parameter region, the slow reduced

system (3.22) features a homoclinic orbit (whom, qhom) to P+,s
0 and a family of

periodic solutions around the center point P+,c
0 (Fig. 3.4).

Remark 2.1. We conclude from (3.31) that the reduced slow flow on M+
0 is

fully determined by the values of (a,A,B,D). Clearly, the (linear) mapping
(Ψ,Φ,Ω,Θ) 7→ (A,B,D) has a kernel: we can vary one of the parameters – for
instance Φ – and determine (Ψ,Ω,Θ) such that this does not have an effect on the
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reduced flow (3.31) on M+
0 (by choosing (Ψ(Φ),Θ(Φ),Ω(Φ)) such that (A,B,D)

are kept at a chosen value). We will make use of this possibility extensively in
section 3.

2.3 Critical points and homogeneous background states

Since the critical points P j = (b j, p j,w j, q j) of the full ε , 0 system (3.7) must
have p j = q j = 0, their (b,w) coordinates are determined by the intersections of
the b- and w-nullclines,

wb3 − wb2 + (1 − aw)b = 0, −Ψ +
[
Φ + Ωb + Θb2

]
w = 0, (3.35)

where we recall that the b-nullcline determines the slow manifolds M0
0 and M±

0
– see Fig. 3.5. Hence, all critical points P j must correspond to critical points of
the slow reduced flows on either one of the (unperturbed) slow manifolds M0

0,
M+

0 or M−
0 . This immediately implies that P1 = P0

0 = (0, 0,Ψ/Φ, 0) ∈M0
0. The

(potential) critical points on M−
0 can be determined completely analogously to

P+, j
0 ∈M+

0 in section 2.2 – the only difference is that the term +CW in (3.25)
must be replaced by −CW . Thus, we conclude that there are two additional
critical points P2 and P3 if C2−4AD ≥ 0 (and that P1 = P0

0 is the unique critical
point if C2 − 4AD ≤ 0). Moreover, if C2 − 4AD ≥ 0 then,
• if D < 0, then P2 = P−0 ∈M−

0 and P3 = P+
0 ∈M+

0 ;
• if D > 0 and C > 0, then P2 = P−,1, P3 = P−,2 and both P−, j ∈M−

0 ;
• if D > 0 and C < 0, then P2 = P+,1, P3 = P+,2 and both P+, j ∈M+

0 .

Naturally, the critical points P j correspond to homogeneous background states
(B(x, t),W(x, t)) ≡ (B̄ j, W̄ j) of the full PDE (3.5). In this chapter, we focus on the
existence of patterns in (3.5) and do not consider the stability of these patterns
(which is the subject of work in progress). However, there is a strong relation
between the local character of critical points P j in the spatial system (3.7) and
their (in)stability as homogeneous background pattern in (3.5) – see for instance
[39]. Therefore, we may immediately conclude,
• the bare soil state (B̄, W̄) = (0,Ψ/Φ) is stable as solution of (3.5) for Ψ/Φ <
1/a, i.e., as long as (0,Ψ/Φ) corresponds to a critical point on the normally hy-
perbolic part of M0

0 (3.13);
• background states (B̄, W̄) that correspond to critical points on M−

0 are unsta-
ble;
• a background state (B̄, W̄) that corresponds to a center point on M+

0 is unsta-
ble;
• a background state (B̄, W̄) that corresponds to a saddle point on M+

0 is stable
as solution of (3.5) if one additional (technical) condition on the parameters of
(3.5) is satisfied.
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Figure 3.5: Various relative configurations of the nullclines (3.35) and the associated
critical points for w ∈ Ua (3.13).

Of course this motivates our choice to study homoclinic and heteroclinic connec-
tions between the saddle points on M0

0 and M+
0 in this chapter.

Remark 2.2. The singular perturbation point of view also immediately provides
insight in the possible occurrence of a Turing bifurcation in (3.5). In the setting
of (3.7) – with c = 0 – a Turing bifurcation corresponds to a reversible 1 : 1
resonance Hopf bifurcation [76], i.e., the case of a critical point with 2 collid-
ing pairs of purely imaginary eigenvalues. By the slow/fast nature of the flow
of (3.7), such a critical point cannot lay inside one of the 3 possible reduced
slow manifolds M0

0, M−
0 or M+

0 (critical points not asymptotically close to the
boundaries must have 2 O(ε) and 2 O(1) eigenvalues). Thus, critical points that
may undergo a Turing/reversible 1 : 1 Hopf bifurcation have to be asymptoti-
cally close to the edge of M+

ε where it approaches M−
ε (where we note that we

a priori do not claim that M−
ε persists). Indeed, the bifurcation appears in that

region – although we refrain from going into the details. See Fig. 3.18a for a
thus found spatially periodic Turing pattern in (3.5).

Remark 2.3. By directly focusing on (3.35) – and thus by not following the path
indicated by the singularly perturbed structure of (3.7) – the uniform vegetation
background states can also be computed in a more straightforward way: assum-

ing b , 0, yields w = −
1

b2 − b − a
, which implies that (Θ + Ψ)b2 + (Ω − Ψ)b +

(Φ − aΨ) = 0. Hence it follows (for (Ω − Ψ)2 − 4(Θ + Ψ)(Φ − aΨ) ≥ 0) that

(b1,2,w1,2) =

−(Ω − Ψ) ±
√

(Ω − Ψ)2 − 4(Θ + Ψ)(Φ − aΨ)
2(Θ + Ψ)

,−
1

b2
1,2 − b1,2 − a

 .
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2.4 The slow flows of the ε , 0 system

Condition (3.13) was chosen such that the points (0, 0,w, q) ∈M0
0 and

(b+(w), 0,w, q) ∈M+
0 are saddles for the fast reduced limit problem (3.10) (so

that the associated background states may be stable as trivial, homogeneous, pat-
terns of (3.5) – section 2.3). Thus, where (3.13) holds, M0

0 and M+
0 are normally

hyperbolic and they thus persist as M0
ε and M+

ε for ε , 0 [83, 86]. Clearly, M0
0

is also invariant under the flow of the full system (3.7): M0
ε = M0

0. Moreover,
the flow on M0

ε is only a slight – O(ε) – (linear) perturbation of the unperturbed
flow (3.20) on M0

0 – due to the (asymmetric) −εcq term. As a consequence,
only the orientation of the (un)stable manifolds W s,u(P0

0)|M0
ε

= `s,u
ε undergoes

an O(ε) change w.r.t. `s,u
0 (3.21).

The situation is very different for M+
ε . A direct perturbation analysis yields,

M+
ε =

{
(b, p,w, q) ∈ R4 : b = b+(w) + εcqb1(w) + O(ε2), p = εqp1(w) + O(ε2)

}
,

(3.36)
with

p1(w) =
1

2w2

√
a +

1
4
−

1
w

, b1(w) =
p1(w)

2wb+(w)

√
a +

1
4
−

1
w

(3.37)

and b+(w) as defined in (3.11). Since we only consider situations in which there
are critical points (of the full flow) P+, j on M+

0 , and thus on M+
ε , we know (and

use) that M+
ε is determined uniquely. The slow flow on M+

ε is given by

wXX = −A + (B + aΘ) w + Cw

√
a +

1
4
−

1
w

+ εcqρ1(w) + O(ε2), (3.38)

(cf. (3.22)), with

ρ1(w) = (Ω + 2b+(w)Θ) wb1(w) − 1 =

C + 2Θ

√
a +

1
4
−

1
w

 wb1(w) − 1.

(3.39)
Thus, for c , 0 the flow on M+

ε is a perturbed integrable planar system with
‘nonlinear friction term’ εcqρ1(w). In the case that there is only one critical
point P+,s of saddle type on M+

0 – and thus on M+
0 – the impact of this term is

asymptotically small. The situation is comparable to that of the flow on M0
ε w.r.t.

the flow on M0
0. The stable and unstable manifolds of P+,s restricted to the slow

manifolds remain close: Wu,s(P+,s)|M+
ε

is O(ε) close to Wu,s(P+,s)|M+
0

(for O(1)
values of (w, q)) and the span Wu,s(P+,s) ∪Wu,s(P+,s)|M+

ε
has becomes slightly

asymmetric – cf. (3.29). This is drastically different in the case that there are
2 critical points P+,c – the center – and P+,s – the saddle – on M+

ε . We deduce
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by classical dynamical system techniques – such as the Melnikov method (see
for instance [72]) – the following (bifurcation) properties of (3.38), and thus of
(3.10).

Theorem 2.4. Let parameters (a,Ψ,Φ,Ω,Θ) of (3.7) be such that there is a
center P+,c = (b+(w+,c), 0,w+,c, 0) and a saddle P+,s = (b+(w+,s), 0,w+,s, 0) on
M+

ε and assume that the unperturbed homoclinic orbit
(whom,0(X), qhom,0(X)) to P+,s of (3.19) on M+

0 lies entirely in the w-region in
which both M0

0 and M+
0 are normally hyperbolic. More explicitly, assume that,

C2 − 4AD > 0, C < 0,D > 0 and
4

1 + 4a
< wh,0 < w+,c < w+,s <

1
a

(3.40)

(3.23), (3.24), (3.13), where (wh,0, 0) is the intersection of
(whom,0(X), qhom,0(X)) with the w-axis – see Fig. 3.4. Then, for all c , 0 (but
O(1) w.r.t. ε) and ε sufficiently small,
• there is a co-dimension 1 manifold RHopf = RHopf(a,Ψ,Φ,Ω,Θ) such that
a periodic solution (dis)appears in (3.38) – and thus in (3.7) – for parameters
(a,Ψ,Φ,Ω,Θ) that cross through RHopf; moreover, RHopf is at leading order (in
ε) determined by ρ1(w+,c) = 0 (3.39);
• there is a co-dimension 1 manifold Rhom = Rhom(a,Ψ,Φ,Ω,Θ) such that for
(a,Ψ,Φ,Ω,Θ) ∈ Rhom, the unperturbed homoclinic solution
(whom,0(X), qhom,0(X)) on M+

0 persists as homoclinic solution to P+,s of
(3.38)/(3.7); moreover, Rhom is at leading order determined by,

∆Hhom = c
∫ w+,s

wh,0

ρ1(w)
√

2H+,s
0 − 2Aw + (B + aΘ) w2 + 2CJ +

0 (w) dw = 0.

(3.41)
with H+,s

0 , J +
0 (w) as defined in (3.29), (3.27).

• there is an open region Sper in (a,Ψ,Φ,Ω,Θ)-space – with RHopf ∪ Rhom ⊂

∂Sper – such that for all (a,Ψ,Φ,Ω,Θ) ∈ Sper, one of the (restricted) periodic
solutions (wp,0(X), qp,0(X)) of the integrable flow (3.22) on M+

0 persists as a
periodic solution (bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) of (3.38)/(3.7) on M+

ε ; the
stability of the periodic orbit on M+

ε is determined by (the sign of) c.
The flow on M+

ε is reversible for c = 0: there always is a one-parameter family
of periodic solutions on M+

ε enclosed by a homoclinic loop if (3.40) holds, i.e.,
the phase portrait remains as in the ε = 0 case of Fig. 3.4, it is not necessary to
restrict parameters (a,Ψ,Φ,Ω,Θ) to Sper or to Rhom for c = 0.

Proof. A periodic solution (wp,0(X), qp,0(X)) of the unperturbed flow (3.22)
on M+

0 is described by the value H+
p,0 of the Hamiltonian H+

0 (w, q) (3.26), where
necessarily H+

p,0 ∈ (H+,c
0 ,H+,s

0 ) – with H+,c
0 < H+,s

0 the values of H+
0 (w, q) at

the center P+,c
0 , resp. saddle P+,s

0 (cf. (3.29)). We define Lp,0 = Lp,0(H+
p,0) as

the period – or wavelength – of (wp,0(X), qp,0(X)) and wp,0 = wp,0(H+
p,0) and

wp,0 = wp,0(H+
p,0) as the minimal and maximal values of wp,0(X), i.e wp,0 ≤
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wp,0(X) ≤ wp,0 – see Fig. 3.4.

Hamiltonian H+
0 (w, q) (3.26) becomes a slowly varying function in the perturbed

system (3.38),
dH+

0

dX
(w, q) = εcq2ρ1(w) + O(ε2).

Thus, unperturbed periodic solution (wp,0(X), qp,0(X)) on M+
0 persists as peri-

odic solution (wp,ε(X), qp,ε(X)) of (3.38) on M+
ε – with |Lp,ε−Lp,0|, |wp,ε−wp,0| =

O(ε) and, by definition, wp,ε = wp,0 – if,∫ Lp,ε

0

dH+
0

dX
(wp,ε(X), qp,ε(X)) dX = εc

∫ Lp,ε

0
(qp,ε(X))2ρ1(wp,ε(X)) dX+O(ε2) = 0.

(3.42)
The approximation of (wp,ε(X), qp,ε(X)) by (wp,0(X), qp,0(X)) yields, together
with (3.26),∫ Lp,ε

0
(qp,ε(X)2ρ1(wp,ε(X)) dX

=

∫ Lp,0

0
qp,0(X)2ρ1(wp,0(X)) dX + O(ε)

= 2
∫ wp,0

wp,0

ρ1(w)
√

2H+
p,0 − 2Aw + (B + aΘ) w2 + 2CJ +

0 (w) dw + O(ε).

(3.43)

Thus, unperturbed periodic solution/pattern (wp,0(X), qp,0(X)) persists as periodic
solution on M+

ε for parameter combinations such that,

∆H(H+
p,0) = c

∫ wp,0(H+
p,0)

wp,0(H+
p,0)

ρ1(w)
√

2H+
p,0 − 2Aw + (B + aΘ) w2 + 2CJ +

0 (w) dw

= 0. (3.44)

Note that this expression does not depend on the speed c – see however Remark
2.8 – but that (the sign of) c indeed determines the stability of (wp,ε(X), qp,ε(X))
on M+

ε . For given H+
p,0 ∈ (H+,c

0 ,H+,s
0 ), condition (3.44) determines a co-

dimension 1 manifold Rper(H+
p,0) in (a,Ψ,Φ,Ω,Θ)-space for which a periodic

orbit (bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) on M+
ε exists. Clearly

Sper ⊂ ∪H+
p,0∈(H

+,c
0 ,H+,s

0 )Rper(H+
p,0).

Moreover, wp,0(H+
p,0) ↑ w+,c and wp,0(H+

p,0) ↓ w+,c as H+
p,0 ↓ H

+,c
0 , so that (3.44)

indeed reduces to ρ1(w+,c) = 0 as H+
p,0 ↓ H

+,c
0 : RHopf = Rper(H+,c

0 ). Note that
ρ1(w)→ −∞ as w ↓ 4/(1 + 4a) – recall that C < 0 – and that

ρ1

(
1
a

)
= a2 (Ω + 2Θ) − 1 = −

(
1 − a2C

)
+ a2Θ
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can be made positive by choosing Θ sufficiently large: ρ1(w) must change
sign for Θ not too small (in fact, it can be shown by straightforward analy-
sis of (3.39) that ρ1(w) may change sign twice (at most)). It thus follows that
RHopf , ∅ and consequentially that Sper is nonempty. Since wp,0(H+

p,0) ↓ wh,0
and wp,0(H+

p,0) ↑ w+,s as H+
p,0 ↑ H+,s

0 , it follows that ∆H(H+
p,0) → ∆Hhom and

thus that Rhom = Rper(H+,s
0 ), which also can be shown to be non-empty – see

Lemma 2.6. �

Of course, Theorem 2.4 has a direct interpretation in terms of traveling waves in
the full PDE (3.5),

Corollary 2.5. Let the conditions formulated in Theorem 2.4 hold, then for all
c ∈ R O(1) w.r.t. ε,
• there is a traveling spatially periodic wave (train) solution
(Bp,ε(ε(x − ct)),Wp,ε(ε(x − ct)) of (3.5) for (a,Ψ,Φ,Ω,Θ) ∈ Sper;
• there is a traveling pulse (Bhom,ε(ε(x − ct)),Whom,ε(ε(x − ct)) in (3.5) – homo-
clinic to the background state (B̄+,s, W̄+,s) = (b+(w+,s),w+,s) – for
(a,Ψ,Φ,Ω,Θ) ∈ Rhom.

It is possible to (locally) get full analytical control over the set Sper and its
boundary manifolds RHopf and Rhom in (a,Ψ,Φ,Ω,Θ)-space by considering the
unfolding of the saddle-node bifurcation on M+

ε as in section 2.2 (cf. (3.34)).

Lemma 2.6. Let the conditions formulated in Theorem 2.4 hold, introduceσ > 0
as in (3.30) and consider σ sufficiently small (but still O(1) w.r.t. ε). Then,
system (3.38)/(3.7) has a periodic solution
(bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) on M+

ε for all (a,Ψ,Φ,Ω,Θ) such that,

5
7
σwS N

1 ρ′1(wS N
0 ) + O(σ2) < ρ1(wS N

0 ) < σwS N
1 ρ′1(wS N

0 ) + O(σ2), (3.45)

where ρ1(w), σ, wS N
0 and wS N

1 are explicitly given in terms of the parameters
(a,Ψ,Φ,Ω,Θ) in (3.39), (3.30), (3.34) (with (3.23),(3.24)): Sper is given by (3.45)
and its boundaries RHopf and Rhom by the upper, respectively lower, boundary
of (3.45).

Proof. For D O(σ2) close to DS N (3.30), the unperturbed flow (3.22) on
M+

0 can be given locally, i.e., in an O(σ) neighborhood of the critical points
P+,c = (b+(w+,c

0 ), 0,w+,c
0 , 0) and P+,s = (b+(w+,s

0 ), 0,w+,s
0 , 0) with w+,c

0 = w+,1
0 <

w+,2
0 = w+,s

0 (3.34), be given by its quadratic approximation,

wXX = α̃(w − w+,c
0 )(w − w+,s

0 ) + O(σ3) = α̃
(
(w − wS N

0 )2 − σ2(wS N
1 )2

)
+ O(σ3),

(3.46)
(3.34), where α̃ > 0 is the second derivative of the right-hand side of (3.22)
evaluated at wS N

0 . Thus, the integral H+
0 (3.26) can locally be given by,

H+
0 (w, q) =

1
2

q2 − α̃

(
1
3

(w − wS N
0 )3 − σ2(wS N

1 )2w
)

+ O(σ4). (3.47)
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Direct evaluation yields that the stable/unstable manifolds of P+,s (restricted to
M+

0 ) are given by,

H+
0 (w, q) = H+,s

0 = α̃σ2(wS N
1 )2

(
wS N

0 +
2
3
σwS N

1

)
+ O(σ4) (3.48)

(cf. (3.29)), which implies that the (second) intersection with the w-axis of the
homoclinic orbit connected to P+,s (in M+

0 ) is given by,

wh,0 = wS N
0 − 2σwS N

1 + O(σ2)
(
< w+,c

0 = wS N
0 − σwS N

1 + O(σ2)
)

(3.49)

(cf. Theorem 2.4)). Now, we consider parameter combinations such that ρ1(w)
has a zero O(σ) close to wS N

0 , i.e., we set

ρ1(w) = β̃
(
w − (wS N

0 + σµ)
)

+ O(σ2),

where σµ represents the position of the zero and β̃ = ρ′1(wS N
0 ). Hence, the

condition ∆Hhom = 0 (3.41) – that determines the manifold Rhom – is at leading
order (in σ) given by,

cβ̃
∫ w+,s

wh,0

(
w − (wS N

0 + σµ)
) √

2H+,s
0 + 2α̃

(
1
3

(w − wS N
0 )3 − σ2(wS N

1 )2w
)

dw = 0

(3.50)
(3.48). Introducing ω by w = wS N

0 + σω and using (3.34), (3.49), we reduce
(3.50) to,

β̃σ3

√
2
3
α̃σ
√
σ

∫ wS N
1

−2wS N
1

(ω − µ)
√
ω3 − 3(wS N

1 )2ω + 2(wS N
1 )3 dω = 0.

Thus, the homoclinic orbit to P+,s (in M+
0 ) persists for µ such that,∫ wS N

1

−2wS N
1

(ω − µ)(ω − wS N
1 )

√
ω + 2wS N

1 dω = 0

(at leading order in σ (and in ε)). Straightforward integration yields that µ =

µhom = −
5
7
ωS N

1 + O(σ), i.e., that on Rhom, the zero of ρ1(w) must be at wS N
0 −

5
7
σwS N

1 + O(σ2) > w+,c
0 = wS N

0 − σwS N
1 + O(σ2).

We conclude that for σ (and ε) sufficiently small, the boundaries RHopf and
Rhom of the domain Sper are given by ρ1(wS N

0 − σwS N
1 + O(σ2)) = 0 (first bul-

let of Theorem 2.4), respectively ρ1(wS N
0 −

5
7
σwS N

1 + O(σ2)) = 0 – which is
equivalent to the boundaries of (3.45) by Taylor expansion (in σ). Finally, we
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notice that for parameter values between RHopf and Rhom, i.e., for which (3.45)
holds, one of the periodic orbits between the center point and the homoclinic
loop must persist – in other words, for parameter combinations that satisfy (3.45),
∆H(H+

p,0) = 0 (3.44) for certain H+
p,0 ∈ (H+,c

0 ,H+,s
0 ). �

Remark 2.7. Lemma 2.6 ‘rediscovers’ the periodic solutions associated to a
Bogdanov-Takens bifurcation. In 3.C we present a brief embedding of our result
into the normal form approach to the Bogdanov-Takens bifurcation scenario.

Remark 2.8. A higher order perturbation analysis yields that the O(ε) correc-
tions to RHopf and Rhom – and thus to Sper – explicitly depend on c.

Remark 2.9. Of course one can also establish the persistence of periodic orbits
of the slow reduced flow – as in Theorem 2.4 – under the assumption that there
is only one critical point P+,c of center type on M+

0 , instead of focusing on the
present case in which the reduced slow flow (3.19) has a homoclinic orbit on M+

0
(Theorem 2.4). Since we decided to focus on situations in which there is a saddle
point on M+

0 – that is potentially stable as homogeneous background state in
(3.5) (section 2.3) – we do not consider this possibility here. Note however that
the analysis of this case is essentially the same as presented here. See also
Remark 3.7.

3 Localized front patterns

In this section we use the slow-fast geometry of the phase space associated to
(3.7) to establish a remarkably rich variety of localized vegetation patterns (po-
tentially) exhibited by model (3.5). First, we consider various kinds of traveling
and stationary ‘invasion fronts’ that connect the bare soil state to a uniform or an
‘oscillating’ vegetation state and their associated bifurcation structures (sections
3.2, 3.3 and 3.4), next we study stationary homoclinic 2-front spot and gap pat-
terns (section 3.5) and finally spatially periodic multi-front (spot/gap) patterns
(section 3.6). As starting point, we need to control the intersection of Wu(P0)
and W s(M+

ε ).

Remark 3.1. We start by considering localized patterns that correspond to or-
bits in Wu(P0), i.e., patterns that approach the bare soil state (B̄, W̄) = (0,Ψ/Φ)
of (3.5) as x→ −∞. In fact, the upcoming results on 1-fronts are all on orbits in
(3.7) that connect P0 ∈M0

ε either to a critical point or to a persisting periodic
orbit in M+

ε (Theorem 2.4): all constructed 1-fronts originate from the uniform
bare soil state. The existence of 1-front patterns that approach (B̄, W̄) = (0,Ψ/Φ)
as t → +∞ is embedded in these results through the application of the symmetry
(3.9).



76
3. The existence of localized vegetation patterns in a systematically

reduced model for dryland vegetation

3.1 Wu(P0) ∩W s(M+
ε ) and its touch down points on M+

ε

A (traveling) front pattern between the bare soil state (0,Ψ/Φ) and a (potentially
stable) uniform vegetation state (B̄, W̄) of (3.5) corresponds to a heteroclinic
solution γh(ξ) = (wh(ξ), ph(ξ), bh(ξ), qh(ξ)) of (3.7) between the critical points
P0 = P0

0 = (0, 0,Ψ/Φ, 0) ∈M0
ε and P+,s = (b+(w+,s), 0,w+,s, 0) ∈M+

ε – see sec-
tion 2.3. We know by Fenichel’s second Theorem that, by the normal hyperbol-
icity M0

0 and M+
0 , their stable and unstable manifolds W s,u(M0

0) and W s,u(M+
0 )

persist as W s,u(M0
ε) and W s,u(M+

ε ) for ε , 0 as w ∈ (1/(a + 1/4), 1/a) (3.13),
[83, 86]. Thus, γh(ξ) ⊂ Wu(P0) ∩W s(P+,s) ⊂ Wu(M0

ε) ∩W s(M+
ε ) – where we

note that the manifolds Wu(P0) and W s(P+,s) are 2-dimensional, while Wu(M0
ε)

and W s(M+
ε ) are 3-dimensional (and that the intersections take place in a 4-

dimensional space).

We know by (3.17) that Wu(M0
0) and W s(M+

0 ) intersect transversely – and thus
that Wu(M0

0)∩W s(M+
0 ) is 2-dimensional. Since Wu(M0

ε) and W s(M+
ε ) are C1-

O(ε) close to Wu(M0
0) and W s(M+

0 ), it immediately follows that Wu(M0
ε) and

W s(M+
ε ) also intersect transversely, that Wu(M0

ε) ∩W s(M+
ε ) is 2-dimensional

and at leading order (in ε) given by (3.17). Since Wu(P0) ⊂ Wu(M0
ε), Wu(P0) ∩

W s(M+
ε ) is a 1-dimensional subset of Wu(M0

ε) ∩ W s(M+
ε ) – i.e., an orbit –

that follows Wu(P0)|M0
ε

= `u
ε (3.21) exponentially close until its w-component

reaches w+
h (c) (3.16) at which it ‘takes off’ from M0

ε to follow the fast flow
along the ‘parabolic’ manifold given by (3.17), all at leading order in ε – see
sections 2.1, 2.4. Since w, q only vary slowly (3.7), the (w, q)-components of the
orbit Wu(P0) ∩W s(M+

ε ) remain constant at leading order during its fast jump:
it ‘touches down’ on M+

ε with (at leading order) the same (w, q)-coordinates
(Remark 3.3). Therefore, we define the touch down curve Tdown(c) ⊂M+

ε as the
set of touch down points of the orbits Wu(P0) ∩W s(M+

ε ) that take off from M0
ε

exponentially close to the intersection `u
ε ∩ {w = w+

h (c)} (3.16), parameterized by
c; it is at leading order (in ε) given by,

Tdown(c) =

{(
b+(w+

h (c)), 0,w+
h (c),

√
Φ

(
w+

h (c) −
Ψ

Φ

))}
(3.51)

In terms of the projected (w, q)-coordinates by which the dynamics on M+
ε are

described (3.38), Tdown(c) describes a smooth 1-dimensional manifold Idown =

{(wdown(c), qdown(c))} parameterized by c with boundaries (its endpoints): the
family of base points of the Fenichel fibers of Wu(P0) ∩ W s(M+

ε ) on M+
ε –

Remark 3.3; at leading order in ε, Idown is a straight interval with endpoints
determined by the bounds (3.13) on w = w+

h (c).

Lemma 3.2. At leading order in ε,

Idown =

{(
w+

h (c),
√

Φ

(
w+

h (c) −
Ψ

Φ

))
, c ∈ [−

1
√

2(1 + 4a)
,

1
√

2a
]
}
.
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The map [−
1

√
2(1 + 4a)

,
1
√

2a
]→ Idown is bijective and

w+
h

(
−

1
√

2(1 + 4a)

)
=

4
1 + 4a

, w+
h (0) =

9
2 + 9a

, w+
h

(
1
√

2a

)
=

1
a
.

Expression (3.16) a priori does not exclude the possibility that w+
h has sev-

eral extremums as function of c, in fact
d
dc

w+
h (−

1
√

2(1 + 4a)
) = 0. The proof –

derivation – of this lemma thus requires some careful, but straightforward, anal-
ysis. We refrain from going into the details here.

We conclude this section by noticing that heteroclinic connections γh(ξ) be-
tween P0 ∈ M0

ε and P+,s ∈ M+
ε directly correspond to intersections Idown ∩

W s(P+,s)|M+
ε

(Remark 3.3). However, the coordinates of this intersection deter-
mine c (through Idown), while W s(P+,s)|M+

ε
also varies as function of c. More-

over, by the perturbed integrable nature of the flow on M+
ε (3.38), there can a

priori be (countably) many intersections Idown ∩ W s(P+,s)|M+
ε
. Thus, the anal-

ysis is more subtle and richer than (perhaps) expected – as we shall see in the
upcoming sections.

Remark 3.3. We (for instance) refer to [41] for a more careful treatment of
‘take off’ and ‘touch down’ points/manifolds. In fact, these points/manifolds
correspond to base points of Fenichel fibers (that persist under perturbation
by Fenichel’s third Theorem [83, 86]). By construction/definition, an orbit that
touches down at a certain (touch down) point on a slow manifold is asymptotic
to the orbit of the slow flow that has this point as initial condition. Therefore,
if an orbit touches down on a stable manifold of a critical point on the slow
manifold, it necessarily is asymptotic to this critical point.

3.2 Traveling 1-front patterns – primary orbits
Our first result – on the existence of primary heteroclinic orbits – can be de-
scribed in terms of the slow reduced flow on M+

0 , or more precise, on inter-
sections of the touch down manifold Idown and the restricted stable manifold
W s(P+,s)|M+

0
⊂ {H+

0 (w, q) = H+,s
0 } (3.29) of the reduced slow flow (3.22) on

M+
0 . However, it is a priori unclear whether such intersections may exist and

how many of such intersections may occur: the many parameters of system (3.7)
have a ‘nontrivial’ effect on Idown and W s(P+,s)|M+

0
and thus on their relative

positions. To obtain a better insight in this, we ‘freeze’ the flow of (3.22) by

fixing a,A, C,D at certain values. Since B + aΘ = D + (a +
1
4

)A (3.24), this

indeed fixes all coefficients of the reduced slow flow (3.22) on M+
0 . At the same

time, this leaves a 1-parameter freedom in the parameters Φ,Ψ,Ω,Θ. Defining,

χ =
1
a

(
1
4
A − 1

2
C + D

)
, (3.52)



78
3. The existence of localized vegetation patterns in a systematically

reduced model for dryland vegetation

we see that for all Φ, the choices

Ψ =
1
a

Φ − χ, Θ = A − 1
a

Φ + χ, Ω = C −A +
1
a

Φ − χ (3.53)

yield identical slow reduced flows (3.22). On the other hand, the (leading order)
interval Idown clearly varies as function of Φ,

Idown(Φ) =

{
q =
√

Φ

(
w −

(
1
a
−
χ

Φ

))
, w ∈

(
4

1 + 4a
,

1
a

)}
. (3.54)

Note that for χ > 0, the intersection of Idown with the w-axis can be varied
between the critical w values 4/(1+4a) and 1/a by increasing Φ from a(1+4a)χ
to ∞. In fact, χ > 0 necessarily holds in case there are 2 critical points on M+

ε

(since in that case A,D > 0, C < 0), while χ can also be chosen to be positive in
the case that there is only 1 critical point on M+

ε . Thus, by choosing Ψ,Ω,Θ as
in (3.53) and varying Φ we can control Idown ∩W s(P+,s)|M+

0
.

Theorem 3.4. Let P+,s = (b+(w+,s), 0,w+,s, 0) ∈M+
0 be a critical point of (3.7)

that is a saddle point for the slow reduced flow (3.22) on M+
0 , and consider

the touch down manifold Idown at leading order given in Lemma 3.2 and the
restricted stable manifold W s(P+,s)|M+

0
of the reduced slow flow (3.22). If there

is a non-degenerate intersection point (w̄prim,0, q̄prim,0) ∈ Idown ∩ W s(P+,s)|M+
0
,

then, for ε sufficiently small, there exists for c = cprim a primary heteroclinic
orbit
γprim(ξ) = (wprim(ξ), pprim(ξ), bprim(ξ), qprim(ξ)) ⊂ Wu(P0) ∩ W s(P+,s) of (3.7)
connecting P0 ∈ M0

ε to P+,s ∈ M+
ε – where cprim = cprim,0 + O(ε) and cprim,0

is the unique solution of w+
h (c) = w̄prim,0 (3.16). Departing from P0 (and at

leading order in ε), γprim(ξ) first follows `u
0 ⊂ M0

0 (3.21) until it reaches
the take off point (0, 0, w̄prim, q̄prim) from which it jumps off from M0

0 and fol-
lows the fast flow along Wu(M0

0) ∩ W s(M+
0 ) (3.17) to touch down on M+

0 at
(b+(w̄prim), 0, w̄prim, q̄prim) ∈ W s(P+,s)|M+

0
; from there, it follows W s(P+,s)|M+

0
to-

wards P+,s. Moreover,
• if P+,s is the only critical point on M+

ε , i.e., if C2 − 4AD > 0, D < 0, E > 0
(3.28), there is an open region S1

s−prim in (a,Ψ,Φ,Ω,Θ) parameter space for
which Idown and W s(P+,s)|M+

0
intersect transversely; however, there is at most

one intersection (w̄prim, q̄prim) ∈ Idown ∩W s(P+,s)|M+
0

and thus at most one pri-
mary heteroclinic orbit γprim(ξ); in fact, this is the only possible heteroclinic
orbit between P0 and P+,s;
• if there are two critical points on M+

ε , the center P+,c and saddle P+,s, i.e., if
C2 − 4AD > 0, C < 0, D > 0, then there are open regions S1

cs−prim, respectively
S2

cs−prim, in (a,Ψ,Φ,Ω,Θ) parameter space for which Idown and W s(P+,s)|M+
0

have 1, resp. 2, (transversal) intersections, so that there can be (up to) 2 dis-
tinct primary heteroclinic orbit γ j

prim(ξ) that travel with different speeds, i.e.,
c2

prim < c1
prim.
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Figure 3.6: Sketches of the intersections of Idown and W s(P+,s)|M+
0

in M+
0 , i.e., the

leading order configurations as described by the (integrable) slow reduced flow (3.22), in
the 2 cases considered in Theorem 3.4: there is one critical point P+,s of saddle type on
M+

0 or there is a center P+,c and a saddle P+,s on M+
0 .

A primary heteroclinic orbit γprim(ξ) = (wprim(ξ), pprim(ξ), bprim(ξ), qprim(ξ)) cor-
responds to a (localized, traveling, invasion) 1-front pattern
(B(x, t),W(x, t)) = (bprim(x − cprimt),wprim(x − cprimt)) in PDE (3.5) that con-
nects the bare soil state (B̄, W̄) = (0,Ψ/Φ) to the uniform vegetation state
(B̄, W̄) = (b+(w+,s),w+,s).

In the case of 2 critical points on M+
ε , we shall see that the primary orbits

may only be the first of many ‘higher order’ heteroclinic orbits – see section
3.3. We refer to Fig. 3.6 for sketches of the constructions in M0

ε that yield
the primary heteroclinic orbits γprim(ξ) and to Figs. 3.1a, 3.13 and 3.14b for
the associated – numerically obtained – primary 1-front patterns in (3.5)– see
especially Fig. 3.13b in which the the slow-fast-slow structure of a (numerically
obtained) heteroclinic front solutions of (3.5) is exhibited by its projection in the
3-dimensional (b,w, q)-subspace of the 4-dimensional phase space associated to
(3.7).

Proof. The existence of the heteroclinic orbit γprim(ξ) follows by construc-
tion – Remark 3.3 – from an intersection of Idown and W s(P+,s)|M+

ε
. Thus, we

first need to show that a (non-degenerate) intersection Idown ∩W s(P+,s)|M+
0

im-
plies an intersection Idown ∩ W s(P+,s)|M+

ε
. More precise, since W s(P+,s)|M+

ε

varies with c, i.e., since W s(P+,s)|M+
ε

= W s(P+,s)|M+
ε
(c), we need to determine

c∗ such that W s(P+,s)|M+
ε
(c∗) intersects Idown = {(w̄down(c), q̄down(c))} exactly at

(w̄down(c∗), q̄down(c∗)).

By the assumption that (w̄prim,0, q̄prim,0) ∈ Idown∩W s(P+,s)|M+
0

is a non-degenerate
intersection point, we know that the intersection is transversal, and thus that
W s(P+,s)|M+

ε
(c̃) – i.e., W s(P+,s)|M+

ε
for (3.38) with c = c̃ – also intersects Idown

transversally as c̃ is varied around cprim,0 in an O(1) fashion. Thus, for c̃ suffi-
ciently (but O(1)) close to cprim,0, Idown ∩W s(P0)|M+

ε
(c̃) = (w̄down(ci), q̄down(ci))

determines a curve ci = ci(c̃) by ci = w̄down(ci). Since the flows of (3.22) and
(3.38) are O(ε) close, we know that
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‖(w̄prim,0, q̄prim,0) − (w̄down(ci), q̄down(ci))‖ = O(ε), which implies that
ci(c̃) = cprim,0 + O(ε). Hence, the O(1) variation of c̃ through cprim,0 yields at
leading order (in ε) a horizontal line ci(c̃) ≡ cprim,0: there must be a unique
intersection ci(c̃∗) = c̃∗, and thus, by construction, Idown ∩ W s(P+,s)|M+

ε
(c̃∗) =

(w̄down(c̃∗), q̄down(c̃∗)): c̃∗ = cprim.

If P+,s is the only critical point on M+
ε – i.e., if C2−4AD > 0, D < 0, E > 0 – we

freeze the flow of (3.22) with A, C,D such that χ > 0 (3.52) and define Φ = Φ+,s

such that Ψ(Φ)/Φ = 1/a − χ/Φ = w+,s, the w-coordinate of the saddle P+,s on
M+

0 – see (3.53), (3.54). Since q is an increasing function of w on Idown and
W s(P+,s)|M+

ε
is decreasing near P+,s – see Fig 3.6a – it follows that there must be

a transversal intersection Idown ∩W s(P+,s)|M+
0

for values of Φ in an (open) inter-
val around Φ+,s. Transversality implies that the intersection persists under vary-
ing A, C,D around their initially frozen values, which establishes the existence of
the open region S1

s−prim in (a,Ψ,Φ,Ω,Θ)-space for which Idown and W s(P+,s)|M+
0

intersect. Moreover, the manifold W s(P+,s)|M+
0
⊂ {H+

0 (w, q) = H+,s
0 } (3.29) is

given by a (strictly) decreasing function q+,s|M+
0
(w) for all w ∈ (4/(1 + 4a), 1/a)

since it cannot have extremums: zeroes of
d

dw
q+,s|M+

0
(w) correspond to zeroes

of
∂

∂w
H+

0 (w, q) (3.26) and thus to critical points of (3.22). By assumption, there

are no critical points besides P+,s, which yields that there indeed can be maxi-
mally one intersection Idown ∩W s(P+,s)|M+

0
.

To control the case with a center P+,c and saddle P+,s on M+
0 , we again con-

sider the unfolded saddle-node case of Lemma 2.6 and define Φ = Φ+,c such that
Ψ(Φ)/Φ = 1/a − χ/Φ = w+,c, the w-coordinate of the center P+,c. The level set
{H+

0 (w, q) = H+,s
0 } forms a small (w.r.t. the unfolding parameter σ) homoclinic

loop around P+,c that intersects Idown (transversally) in two points (w̄ j,0
prim, q̄

j,0
prim),

j = 1, 2 – see Fig. 3.6(b). By varying Φ around Φ = Φ+,c and A, C,D around
their initially frozen values, we find the open region S2

cs−prim in (a,Ψ,Φ,Ω,Θ)-
space for which both elements of the intersection Idown ∩ W s(P+,s)|M+

0
per-

sist: for (a,Ψ,Φ,Ω,Θ) ∈ S2
cs−prim, (3.7) has 2 (distinct) primary heteroclinic

orbits γ j
prim(ξ), j = 1, 2, that correspond to 1-front patterns traveling with

speeds c1
prim , c2

prim – where c j,0
prim is the unique solution of w+

h (c) = w̄ j,0
prim.

Finally, we note that the existence of the open set S1
cs−prim follows by considering

Idown ∩W s(P+,s)|M+
0

for values of Φ > Φ+,s (as defined above). �
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3.3 Traveling 1-front patterns by the perturbed integrable
flow on M+

ε

As in Theorem 2.4, we assume throughout this section that there is a center
P+,c = (b+(w+,c), 0,w+,c, 0) and a saddle P+,s = (b+(w+,s), 0,w+,s, 0) on M+

ε and
– for simplicity – that the unperturbed homoclinic orbit (whom,0(X), qhom,0(X)) to
P+,s of (3.22) on M0

0 – that is a subset of W s(P+,s)|M+
0
⊂ {H+

0 (w, q) = H+,s
0 } –

lies entirely in the w-region in which both M0
0 and M+

0 are normally hyperbolic,
i.e., we assume that (3.40) holds.

The homoclinic orbit (whom,0(X), qhom,0(X)) of (3.22) typically breaks open under
the perturbed flow of (3.38), and W s(P+,s)|M+

ε
either spirals inwards in back-

wards ‘time’, i.e., as ξ → −∞, or not. In the former case, there will be (typically
many) further intersections Idown ∩W s(P+,s)|M+

0
– see Fig. 3.7. Of course, this

is determined by the sign of ∆Hhom (3.41): if

∆Hhom = c
∫ w+,s

wh,0

ρ1(w)
√

2H+,s
0 − 2Aw + (B + aΘ) w2 + 2CJ +

0 (w) dw > 0

(3.55)
(at leading order in ε), we may expect further heteroclinic connections γh, j in
(3.7) connecting P0 ∈M0

ε to P+,s ∈M+
ε beyond the primary orbits γprim(ξ) es-

tablished in Theorem 3.4. In fact, it follows directly that γ1
prim(ξ) and γ2

prim(ξ) are
the only heteroclinic orbits between P0 and P+,s if (3.55) does not hold. If (3.55)
does hold, the (spiraling part of) W s(P+,s)|M+

0
clearly must limit – for ξ → −∞

– on either the center P+,c or, if (a,Ψ,Φ,Ω,Θ) ∈ Sper, on the persistent periodic
solution (bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) ⊂ M+

ε (Theorem 2.4). Therefore,
we first formulate a result on the existence of heteroclinic connections between
P0 ∈ M0

ε and (bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) ⊂ M+
ε . Like in Theorem 3.4,

this can be done in terms of the unperturbed flow in M+
0 .

Theorem 3.5. Assume that (3.40) holds and that (a,Ψ,Φ,Ω,Θ) ∈ Sper. Let
(wp,0(X), qp,0(X)) ⊂ {H+

0 (w, q) = H+
p,0} with H+

p,0 ∈ (H+,c
0 ,H+,s

0 ) (3.26) be the
periodic solution of (3.22) that persists (on M+

ε ) as periodic solution
(bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) on M+

ε of (3.7). Then there is an open set
Sh−p ⊂ Sper∩S2

cs−prim – with S2
cs−prim defined in Theorem 3.4 – such that there are

2 (non-degenerate) intersection points (w̄ j
h−p, q̄

j
h−p) ∈ Idown ∩ {H+

0 (w, q) = H+
p,0},

j = 1, 2, that correspond – for ε sufficiently small – to 2 distinct heteroclinic
orbits γ j

h−p(ξ) = (b j
h−p(ξ), p j

h−p(ξ),w j
h−p(ξ), q j

h−p(ξ)) of (3.7) – in which c = c j
h−p –

between the critical point P0 ∈M0
ε and the periodic orbit

(bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) ⊂ M+
ε ; at leading order in ε, c j

h−p is deter-

mined by w+
h (c) = w̄ j

h−p, with c2
prim < c2

h−p < c1
h−p < c1

prim (Theorem 3.4).

The orbits γ j
h−p(ξ) correspond traveling 1-front patterns

(B(x, t),W(x, t)) = (b j
h−p(x − c j

h−pt),w j
h−p(x − c j

h−pt)) in PDE (3.5) that connect
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a
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"
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Figure 3.7: A sketch of the flow (3.38) on M+
ε for (a,Ψ,Φ,Ω,Θ) ∈ Sh−p (Theorem

3.5) and c = c1
prim (Theorem 3.4) in the case that (3.55). Since W s(P+,s)|M+

ε
‘wraps

around’ the persistent periodic solution (bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) (Theorem 3.5)
– in backwards time – and since Idown intersects this orbit in 2 points (by assumption),
there are two countable sets of intersections Idown ∩W s(P+,s)|M+

ε
.

the bare soil state (B̄, W̄) = (0,Ψ/Φ) to the traveling wave train (Bp,ε(ε(x −
c j

h−pt)),Wp,ε(ε(x − c j
h−pt)) of Corollary 2.5.

Notice that this result is independent of condition (3.55), i.e., Theorem 3.5
holds independent of the sign of ∆Hhom. Moreover, we could formulate similar
limiting result concerning heteroclinic 1-front connections between P0 ∈ M0

ε

and P+,c ∈M+
ε for (a,Ψ,Φ,Ω,Θ) on a certain co-dimension 1 manifold. Since

the background state associated to P+,c cannot be stable – section 2.3 – we re-
frain from going into the details.

Proof. The proof goes exactly along the lines of that of Theorem 3.4. �

Theorem 3.5 provides the foundation for a result on the existence of multiple – in
fact countably many – distinct traveling 1-front connections between P0 ∈M0

ε

and P+,s ∈M+
ε for an open set in parameter space – see also the sketches in Figs.

3.2a and 3.2b.

Theorem 3.6. Assume that the conditions of Theorem 3.5 hold and let
(a,Ψ,Φ,Ω,Θ) ∈ Sh−p. If c j

h−p and c j
prim have the same sign (for either j = 1 or

2) and if (3.55) holds for c of this sign, then – for ε sufficiently small – there are
countably many distinct heteroclinic orbits γ j,k

h (ξ) = (b j,k
h (ξ), p j,k

h (ξ),w j,k
h (ξ), q j,k

h (ξ)),
k ≥ 0, of (3.7) with c = c j,k

h connecting P0 ∈ M0
ε to P+,s ∈ M+

ε . Moreover,
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γ
j,0
h (ξ) = γ

j
prim(ξ), |c1,k+1

h − c1,k
h | = O(ε), and,

j = 1 : c1
h−p < ... < c1,k

h < ... < c1,1
h < c1,0

h = c1
prim, c1,k

h ↓ c1
h−p for k → ∞,

j = 2 : c2
prim = c2,0

h < c2,1
h < ... < c2,k

h < ... < c2
h−p, c2,k

h ↑ c2
h−p for k → ∞.

(3.56)
Each orbit γ j,k

h (ξ) corresponds to a (localized, traveling, invasion) 1-front pattern
(B(x, t),W(x, t)) = (bk, j

h (x − ck, j
h t),wk, j

h (x − ck, j
h t)) in PDE (3.5) that connects the

bare soil state (B̄, W̄) = (0,Ψ/Φ) to the uniform vegetation state (B̄, W̄) =

(b+(w+,s),w+,s).

As in the proofs of Theorems 2.4 and 3.4, we can verify that there indeed are
open regions in (a,Ψ,Φ,Ω,Θ)-space for which c j

h−p and c j
prim have the same sign

(for either j = 1, 2 or for both) and such that (3.55) holds, by considering the un-
folded saddle-node case of Lemma 2.6. In fact, we know from Lemma 3.2 that c
changes sign as the w-coordinate of the intersection point on Idown∩W s(P+,s)|M+

0

passes through 9/(2 + 9a). Thus (and for instance), all 4 values c j
h−p and c j

prim,
j = 1, 2, must have the same sign as the entire homoclinic orbit spanned by
W s(P+,s)|M+

0
either is to the left or to the right of w = 9/(2 + 9a) – more precise,

if either (wh,0,w
+,s) ⊂ (4/(1 + 4a), 9/(2 + 9a)) or (wh,0,w

+,s) ⊂ (9/(2 + 9a), 1/a)
(cf. (3.40)). Note that it follows from (3.32) that wS N

0 = 9/(2 + 9a) implies
that C2 = A2/9 (independent of a), so that we can indeed move the homoclinic
loop associated to the unfolded saddle-node – i.e., σ � 1 as in (3.34) – through
w = 9/(2 + 9a) by increasing C2 ∈ (0,A2) through A2/9. On the other hand, it
is certainly also possible that c j

h−p and c j
prim do not have the same sign. Hence,

apart from the PDE point of view – from which it is natural to consider station-
ary patterns – this gives us an additional motivation to study the sign-changing
stationary case c = 0 in more detail, as we will briefly do in Remark 3.10 in
section 3.4.

Proof. We only consider the case j = 1, i.e., we assume that c1
h−p and c1

prim

have the same sign and that (3.55) holds for c = c1
h−p, c

1
prim. The proof for j = 2

goes exactly along the same lines.

For c = c1
prim, W s(P+,s)|M+

ε
by assumption spirals inwards in backwards ‘time’

and ‘wraps around’ the (perturbed) periodic orbit (wp,ε(X), qp,ε(X)) on (the pro-
jection of) M+

ε – see Fig. 3.7. Since (a,Ψ,Φ,Ω,Θ) ∈ Sh−p, W s(P+,s)|M+
ε

must intersect Idown countably many times. We define (w̄1,1
i , q̄1,1

i ) as the next
intersection of W s(P+,s)|M+

ε
(c1

prim) with Idown beyond the 2 primary intersection

points: it is the first non-primary intersection point and has q̄1,1
i > 0. As before,

(w̄1,1
i , q̄1,1

i ) ∈ Idown = {(w̄down(c), q̄down(c))} determines the value c1,1
i through

w̄down(c) = w̄1,1
i – where we know that c1,1

i < c1
prim since the w-component of

Idown is a monotonically increasing function of q (Lemma 3.2). Since the pertur-
bation term in (3.38) is O(ε), it follows that ‖(w̄1

prim, q̄
1
prim) − (w̄1,1

i , q̄1,1
i )‖ = O(ε)
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and thus that c1
prim − c1,1

i = O(ε). An O(ε) change in c yields an O(ε2) change
in the flow of (3.38), hence for all c̃ O(ε) close to c1

prim, the first non-primary in-

tersection of W s(P+,s)|M+
ε
(c̃) and Idown – denoted by (w̄1,1

i (c̃), q̄1,1
i (c̃)) – must be

O(ε2) close to (w̄1,1
i , q̄1,1

i ) ∈ Idown ∩W s(P+,s)|M+
ε
(c1

prim). Thus, the speed c1,1
i (c̃)

associated to this intersection – by w̄down(c) = w̄1,1
i (c̃) – must also be O(ε2) close

to c1,1
i . The situation is therefore similar to that in the proof of Theorem 3.4:

an O(ε) variation of c̃ around c1,1
i in (3.38) yields only an O(ε2) change in the

c-coordinate associated the first non-primary intersection Idown∩W s(P+,s)|M+
ε
(c̃)

so that there must be an unique c̃ = c1,1
h such that Idown ∩W s(P+,s)|M+

ε
(c1,1

h ) =

(w̄down(c1,1
h ), q̄down(c1,1

h )). This establishes the existence of the first non-primary
heteroclinic 1-front orbit γ1,1

h (ξ) for c = c1,1
h in (3.7).

We can now iteratively consider the first intersection in backwards ‘time’ – de-
noted by (w̄1,2

i , q̄1,2
i ) – of W s(P+,s)|M+

ε
(c1,1

h ) with Idown beyond
(w̄down(c1,1

h ), q̄down(c1,1
h )) with q̄1,2

i > 0 – so that the speed c1,2
i associated to

this intersection is O(ε) close to c1,1
h . Completely analogous to the above ar-

guments, we deduce the existence of an unique c = c1,2
h such that Idown ∩

W s(P+,s)|M+
ε
(c1,2

h ) = (w̄down(c1,2
h ), q̄down(c1,2

h )), which establishes the existence
of the next non-primary 1-front orbit γ1,2

h (ξ) of (3.7) with 0 < c1,1
h − c1,2

h = O(ε).
Next, we construct γ1,3

h (ξ) in (3.7) with 0 < c1,2
h − c1,3

h = O(ε) through the inter-
section Idown ∩W s(P+,s)|M+

ε
(c1,3

h ) = (w̄down(c1,3
h ), q̄down(c1,3

h )), etc.

Theorem 2.4 holds independent of c, which implies that W s(P+,s)|M+
ε
(c) wraps

around the periodic orbit periodic orbit (wp,ε(X), qp,ε(X)) of (3.38) (in backwards
‘time’) for all c with the same sign as c1

h−p and c1
prim (cf. Fig. 3.7). Thus, there

must be countably many heteroclinic orbits γ1,k
h (ξ) – every W s(P+,s)|M+

ε
(c) inter-

sects Idown countably many times – and the associated speeds c1,k
h must all be

between c1
h−p and c1

prim. Moreover, the decreasing sequence {c1,k
h }
∞
k=1 must have a

limit that cannot differ from c1
h−p: c1,k

h ↓ c1
h−p as k → ∞. �

By establishing the existence of countably many distinct heteroclinic connec-
tions between P0 and P+,s, Theorem 3.6 in a sense considers (one of) the most
complex case(s), which is quite far removed from situations in which there are
no such connections. To obtain insight in the bifurcations that occur ‘in be-
tween’, we can again freeze the reduced slow flow and vary Idown = Idown(Φ) by
increasing Φ (from a(1 + 4a)χ to∞ (3.52), (3.53), (3.53)). We consider the most
simple case and assume that the homoclinic orbit of the frozen flow lies entirely
in the w-region (4/(1 + 4a), 9/(2 + 9a)) – so that all c j,k

h ’s of Theorem 3.6 are
positive – and that Idown(Φ)∩W s(P+,s)|M+

0
= ∅ at Φ = a(1+4a)χ (this can easily

be achieved by the unfolded saddle-node approach). As Φ increases, Idown(Φ)
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becomes steeper and the intersection Idown(Φ) ∩ {q = 0} moves over the entire
interval determined by (3.13), i.e., from 4/(1+4a) to 1/a. Thus, Idown(Φ) moves
through the homoclinic loop spanned by W s(P+,s)|M+

0
and through the enclosed

persistent periodic orbit established by Theorem 2.4. We tune the parameters
such that during the passage of the latter, (3.55) holds and (a,Ψ,Φ,Ω,Θ) ∈ Sh−p,
i.e., that Theorem 3.6 can be applied – which is also possible. It should be
noticed that although the reduced flow (3.22) is frozen, this is not the case for
the perturbed flow (3.38), since ρ1(w) varies with Θ (3.39) and Θ = Θ(Φ) (3.53),
thus the persistent periodic orbit established in Theorem 2.4 is not frozen, but
also varies with Φ – this is represented in the sketches of Fig. 3.8 by the decreas-
ing size of the limiting periodic orbit on M+

ε .

Fig. 3.8 exhibits sketches of 3 configurations of Idown(Φ) and W s(P+,s)|M+
0

for increasing Φ, the associated bifurcation scenario is sketched in Fig. 3.9. In
Fig. 3.8a, Φ has already passed through the first bifurcation value Φprim at which
the first 2 primary heteroclinic orbits γ j

prim(ξ), j = 1, 2 of Theorem 3.4 are cre-
ated, and through a second one, Φb

S N,1 – O(ε) close Φprim – at which the first 2
secondary orbits appear. This bifurcation is followed by countably subsequent
saddle-node bifurcations until Φ reaches Φb

per at which the 2 limiting heteroclinic
orbits between P0 and the persistent periodic solution of Theorem 3.5 appear
and we enter into the realm of Theorem 3.6. These orbits next disappear at
Φe

per, Fig. 3.8(b) is similar to Fig. 3.7 and represents the 2 countable families of
heteroclinic orbits that exist for Φ ∈ (Φb

per,Φ
e
per) (Theorem 3.6). All these orbits

step-by-step disappear in pairs as Φ is increased further: Fig. 3.8c shows the
situation with only 5 left – 4 of these will disappear just before Φ reaches Φ+,s

at which Idown(Φ) passes through P+,s.

We refrain from giving all rigorous details on which the above sketched sce-
nario is based – this is in essence a matter of following the lines set out in the
proofs of the preceding results. Moreover, we also refrain from working out
all possible alternative bifurcation scenarios that may occur – there are many
(sub)cases to consider, some more simple, others more complex than that of Fig.
3.9. Nevertheless, we do briefly come back to this in the upcoming section –
where we consider stationary, sign-changing, case c = 0 case.

Remark 3.7. As in Remark 2.9, we note that a result like Theorem 3.5 on the
existence of heteroclinic connections between P0 and a periodic orbit on M+

ε

can also be established under the assumption that there is only one critical point
P+,c of center type on M+

0 . Similar remarks can be made about the upcoming
Theorems 3.9, 3.12 and Corollary 3.16. We note – also as in Remark 2.9 –
that the analysis of these additional cases is essentially the same as already
presented.
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P+,s
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Figure 3.8: Sketches of 3 relative configurations of Idown(Φ) and W s(P+,s)|M+
0

for in-
creasing Φ that represent 3 distinct stages in the bifurcation scenario of Fig. 3.9.

3.4 Stationary 1-front patterns
In this section, we construct stationary heteroclinic 1-front patterns that are sim-
ilar to those constructed in Theorems 3.4 and 3.5. We immediately note that
if the reduced flow on M+

0 has an unperturbed homoclinic loop W s(P+,s)|M+
0
∩

W s(P+,s)|M+
0

– as in Fig. 3.4 – that it persists as homoclinic solution of (3.7) on
M+

ε for ε , 0 – since (3.7) with c = 0 is a reversible system (see also Theorem
2.4). Thus, we a priori deduce that there cannot be any further non-primary
heteroclinic 1-front connections between P0 ∈M0

ε and P+,s ∈M+
ε as those of

Theorem 3.6 for c , 0 (see however also Remark 3.10 for a result similar to
Theorem 3.6). In the subsequent sections, we will proceed to construct homo-
clinic and periodic multi-front patterns – i.e., solutions of (3.7) that jump up and
down between M0

ε and M+
ε – and show that there is a richness in these kinds of

patterns similar to that of Theorem 3.6.

As in the previous sections, we approach the bifurcation analysis by freezing the
flow on M+

ε . Thus, we choose Ψ,Ω,Θ as in (3.53) and vary Φ. We know by
Lemma 3.2 and (3.54) that for c = 0, the touch down point of Wu(P0)∩W s(M+

ε )
is represented by a vertical line/half line Js−d in the (w, q)-plane

Js−d =

{
Js−d(Φ) = (ws−d(Φ), qs−d(Φ)) =

(
9

2 + 9a
,
√

Φ

(
χ

Φ
−

2
a(2 + 9a)

))
,Φ > 0

}
(3.57)

(at leading order in ε). Clearly, a 1-front connection between P0 and P+,s corre-
sponds to those values of Φ for which Js−d(Φ) ∈ W s(P+,s)|M+

0
.

Theorem 3.8. Let c = 0 and let ε be sufficiently small. Then, there is a co-
dimension 1 set Rs−1f in (a,Φ,Ψ,Ω,Θ)-space for which (stationary) 1-front
heteroclinic orbits γs−1f(ξ) ⊂ Wu(P0) ∩ W s(P+,s) exists in (3.7). More precise,
let Ψ,Ω,Θ as in (3.53), then:
(A) If P+,s = (w+,s, 0) is the only critical point on (the projection of) M+

ε , i.e., if
C2 − 4AD > 0, D < 0, E > 0 (3.28), then,
• if χ > 0, then there is a unique value Φs−1f such that there is a 1-front hetero-
clinic orbit γs−1f(ξ) ⊂ Wu(P0) ∩W s(P+,s) in (3.7);
• if χ < 0, w+,s < ws−d = 9/(2 + 9a) (3.57) and there are Φ such that
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Figure 3.9: A sketch of the bifurcation scenario as function of Φ representing the ap-
pearance in a saddle-node bifurcation of the 2 primary heteroclinic 1-front orbits γ j

prim(ξ),
j = 1, 2, of Theorem 3.4, followed by further saddle-node bifurcations leading to the situ-
ation governed by Theorem 3.6 in which countably many 1-front orbits exist; these orbits
subsequently disappear in another cascade of saddle-node bifurcations eventually leaving
only one (primary) 1-front orbit behind (Theorem 3.4). The relative configurations of
Idown(Φ) and W s(P+,s)|M+

0
sketched in Fig. 3.8 occur at the Φ-values indicated by the

vertical (a), (b) and (c) lines.

H+
0 (ws−d(Φ), qs−d(Φ)) < H+,s

0 (3.18), (3.29), then there are 2 values Φ
j
s−1f ,

j = 1, 2 for which 1-front heteroclinic orbits γs−1f(ξ) ⊂ Wu(P0) ∩ W s(P+,s)
exist in (3.7);
• if χ < 0 and either one of the above additional conditions does not hold, then
there is no such stationary 1-front orbit.
(B) If there are two critical points on M+

ε , the center P+,c and saddle P+,s, i.e.,
if C2 − 4AD > 0, C < 0, D > 0, then,
• if wh,0 < 9/(2 + 9a) < w+,s – with wh,0 as defined in Theorem 2.4 – then
there are 2 values Φ1

s−1f < Φ2
s−1f for which 1-front heteroclinic orbits γs−1f(ξ) ⊂

Wu(P0) ∩W s(P+,s) exist in (3.7);
• if 9/(2+9a) > w+,s there is a unique value Φs−1f such that a 1-front heteroclinic
orbit γs−1f(ξ) ⊂ Wu(P0) ∩W s(P+,s) exists in (3.7);
Every heteroclinic orbit γs−1f(ξ) = (ws−1f(ξ), ps−1f(ξ), bs−1f(ξ), qs−1f(ξ)) corre-
sponds to a stationary 1-front pattern
(B(x, t),W(x, t)) = (bs−1f(x),ws−1f(x)) in PDE (3.5) that connects the bare soil
state (0,Ψ/Φ) to the uniform vegetation state (b+(w+,s),w+,s).

We refer to Fig. 3.14a for an example of a numerical simulation of (3.5)
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3. The existence of localized vegetation patterns in a systematically

reduced model for dryland vegetation

exhibiting a stationary 1-front pattern. Moreover, we notice that – by symmetry
(3.9) of (3.7) with c = 0 – the heteroclinic orbit γs−1f(ξ) ⊂ Wu(P0) ∩W s(P+,s)
has a counterpart ⊂ Wu(P+,s) ∩W s(P0), i.e., an orbit from P+,s to P0. Together,
these obits form a heteroclinic cycle between the saddles P+,s to P0.

Proof. The result follows directly by studying the possible intersections of
W s(P+,s)|M+

ε
and the (vertical) line Js−d in combination with the observation

that the range of qs−d(Φ) is R for χ > 0, while it’s bounded from above by a
negative number for χ < 0 (3.57). See Fig. 3.10.

Since all periodic orbits on M+
ε persist for c = 0 (Theorem 2.4), we also

‘automatically’ obtain a result similar to Theorem 3.5 on the existence of het-
eroclinic connections γ j

s−p(ξ) = (b j
s−p(ξ), p j

s−p(ξ),w j
s−p(ξ), q j

s−p(ξ)) of (3.7) be-
tween the critical point P0 ∈ M0

ε and one of the periodic orbits γp,ε(X) =

(bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) ⊂ M+
ε determined by H+

p,0 ∈ (H+,c
0 ,H+,s

0 )
(3.26) – note that this orbit is O(ε2) close to the level set H+

0 (w, q) = H+
p,0 (cf.

(3.38) with c = 0).

Theorem 3.9. Let c = 0, Ψ,Ω,Θ as in (3.53) such that (3.40) holds, let
(bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) ⊂ M+

ε be a periodic solution of (3.7) de-
termined by H ∈ (H+,c

0 ,H+,s
0 ) and let ε be sufficiently small. Assume that

wh,0 < 9/(2 + 9a) < w+,s and define

Φs−t =
1
2

a(2 + 9a)χ ∈
(
Φ1

s−1f ,Φ
2
s−1f

)
, (3.58)

H+
s−t = H+

0 (ws−d(Φs−t), qs−d(Φs−t)) = H+
0

(
9

2 + 9a
, 0

)
(3.59)

with Φ
1,2
s−1f as defined in Theorem 3.8, (ws−d(Φ), qs−d(Φ)) as in (3.57) and H+

s−t >

H+,c
0 (unless P+,c =

(
9

2 + 9a
, 0

)
(restricted to M+

0 ) – see Fig. 3.10c). For all

H ∈ (H+
s−t,H+,s

0 ), there are 2 values Φ
1,2
p−1f = Φ

1,2
p−1f(H) – with Φ1

s−1f < Φ1
p−1f <

Φs−t < Φ2
p−1f < Φ2

s−1f – that determine 2 distinct heteroclinic orbits γ j
s−p(ξ;H) of

(3.7) between the critical point P0 ∈M0
ε and the periodic orbit

(bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) ⊂M+
ε

(and γ
j
s−p(ξ;H) = (b j

s−p(ξ;H), p j
s−p(ξ;H),w j

s−p(ξ;H), q j
s−p(ξ;H))). The orbits

γ
j
s−p(ξ;H) ( j = 1, 2) correspond to stationary 1-front patterns (B(x),W(x)) =

(b j
s−p(x;H),w j

s−p(x;H)) in PDE (3.5) that connect the bare soil state (0,Ψ/Φ) to
the spatially periodic pattern (bp,ε(X),wp,ε(X)).

Remark 3.10. Together, Theorems 3.8 and 3.9 provide the possibility to estab-
lish a result similar to that of Theorem 3.6 in the case that c j

h−p and c j
prim do not
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Figure 3.10: Sketches of 3 configurations of the line Js−d (3.57) and W s(P+,s)|M+
0

as
consider in Theorem 3.8: (a) P+,s is the only critical point on M+

ε and χ > 0; (b) P+,s

is the only critical point on M+
ε and χ < 0; (c) a center and a saddle on M+

ε with
wh,0 < 9/(2 + 9a) < w+,s.

have the same signs. Assume we have – for a certain parameter combination
(a,Ψ,Φ,Ω,Θ) such that (3.40) holds – that c1

h−p < 0 < c1
prim. This implies that

the point Js−d(Φ) on Tdown – Lemma 3.2 – must lie between the intersections of
Tdown with the unperturbed homoclinic orbit that determines c1

prim > 0 (Theorem
3.8) and the persisting periodic orbit that determines c1

h−p < 0 (Theorem 3.9).
Thus, Js−d(Φ) determines a level set H+

0 (w, q) = H+
0 (ws−d(Φ), qs−d(Φ)) = H̄ ∈

(H+,c
0 ,H+,c

0 ) and we know by Theorem 3.9 that Φ = Φ2
p−2f(H̄): (ws−d(Φ), qs−d(Φ))

is the touchdown point of a heteroclinic orbit between the bare soil state and the
persisting (stationary) periodic orbit determined by the level set H+

0 (w, q) = H̄.
It then follows by arguments similar to those in the proof of Theorem 3.6 that
there are countably many c-values 0 < ... < c1,k

h < ... < c1,1
h < c1,0

h = c1
prim with

c1,k
h ↓ 0 for k → ∞ for which non-primary heteroclinic connections between

P0 and P+,s exist – as in Theorem 3.6. The main difference with Theorem 3.6
is that c = 0 determines a stationary orbit and not an attracting one: for c
slightly above c = 0, the unstable manifold W s(P+,s)|M+

ε
only spirals inwards

very weakly (in backward time). As a consequence, the number of intersections
W s(P+,s)|M+

ε
∩ Tdown with H+

0 (w, q) > H̄ increases (without bound) as c ↓ 0.

3.5 Stationary homoclinic 2-front patterns: vegetation spots
and gaps

In this section we construct stationary 2-front patterns that correspond to vege-
tation spots or vegetation gaps – the latter sometimes also interpreted as fairy
circles. These patterns are observed in nature and appear as stable patterns in sim-
ulations of (3.1)/(3.5) – see [175] and Figs. 3.14c and 3.15a. The patterns/orbits
to be constructed are symmetric with respect to the reversibility symmetry in
(3.5) that persists as (3.9) into (3.7) – with c = 0. As a consequence, we may
expect that these patterns are generic, in the sense that they exist in open regions
within parameter space – see for instance [39]. Notice that this is unlike the
stationary – but non-symmetric – 1-front patterns of the previous section, that
only exist for (a,Φ,Ψ,Ω,Θ) ∈ Rs−1f , an explicitly determined co-dimension 1



90
3. The existence of localized vegetation patterns in a systematically

reduced model for dryland vegetation
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Figure 3.11: Sketches of 3 (projected) ‘skeleton structures’ of stationary 2-fronts ho-
moclinic to P0: (a) (b) Two examples of the 2 skeleton structures Γs-2f as considered
in Theorem 3.11; (c) The extended skeleton Γext

s−2f of Theorem 3.12 and an associated
higher order 2-front homoclinic with an additional full extra ‘spatial oscillation’ during
its passage along M+

ε .

manifold (Theorem 3.8).

We first consider the (localized) spots: localized vegetated regions embedded
within bare soil. Thus, these spots correspond to solutions of (3.7) that are ho-
moclinic to the bare soil state P0. Singularly perturbed models of the type (3.7),
can have homoclinic (pulse) solutions of various types. The localized vegetation
(spot) patterns constructed in [11, 133] in the context of the extended-Klausmeier
model – also called generalized Klausmeier-Gray-Scott model [155] – make a
fast excursion away from the slow manifold that contains the critical point asso-
ciated to the bare soil state following a homoclinic solution of the fast reduced
system. As a consequence these spots are ‘narrow’, their size scales with ε.
Although such pulses are also exhibited by the present model – see Fig. 3.15b
and Remark 3.14 – we focus here on 2-front patterns, i.e., orbits homoclinic
to P0 that ‘jump’ from M0

ε to M+
ε , follow the slow flow on M+

ε over an O(1)
distance and jump back again – by its second fast reduced heteroclinic front
– to M0

ε. Since the extended-Klausmeier model only has one slow manifold
[11, 133], such orbits cannot exist in that model. Moreover, these patterns have
a well-defined width that does not decrease to 0 as ε ↓ 0, a property that appears
to be natural in observed ecosystems [175].

The construction of the most simple – primary, cf. section 3.2 – singular
‘skeleton structure’ Γs−2f ⊂ R

4 – the phase space of (3.7) – of a stationary
homoclinic 2-front orbit γs−2f(ξ) to P0 of (3.7) is relatively straightforward (but
somewhat involved/technical). Since the homoclinic orbit γs−2f(ξ) ⊂ Wu(P0), it
follows `u along M0

ε, takes off from M0
ε by following the fast reduced flow

and touches down on M+
ε near an element of Idown – see section 3.1. In

fact, since we consider stationary spots, the touch down point is near a point
Js−d ∈ Js−d (3.57) – where we note that γs−2f(ξ) cannot exactly touch down on
Idown/Js−d since γs−2f(ξ) < W s(M+

ε ) – see the proof of (upcoming) Theorem
3.11. The touch down point Js−d determines (at leading order) a level set Hs−d
of the Hamiltonian H+

0 (w, q) (3.26) of the slow reduced flow (3.22) on M+
ε :
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Hs−d = Hs−d(Φ) = H+
0 (ws−d(Φ), qs−d(Φ)). As long as it remains (exponentially)

close to M+
ε , the homoclinic orbit-to-be-constructed remains asymptotically

close to the level set H+
0 (w, q) = Hs−d. This construction provides the first half

of skeleton Γs−2f , the second part follows by the symmetry (3.9) – with c = 0.
Completely analogous to Idown, one can define Ioff as the points on M+

ε that
determine the evolution of orbits in W s(P0) ∩ Wu(M+

ε ) after their jump from
`s ⊂M0

ε through the fast field in backwards time. In fact, it follows by the sym-
metry (3.9) that Ioff and its stationary counterpart Js−o correspond exactly to
the reflections of Idown and Js−d with respect to the q-axis – where we consider
Idown/Js−d and Idown/Js−d within the (projected) 2-dimensional representation
of M+

ε as in Lemma 3.2 and in (3.57). Thus, for a given Φ, the take off point
Js−d is given by Js−o(Φ) = (ws−d(Φ),−qs−d(Φ)); this point also lies on the level
set Hs−d – since H+

0 (w, q) (of course) also is symmetric in q→ −q.

We define the region Ss−2 f in (a,Ψ,Φ,Ω,Θ)-space for which the point Js−d
(and thus Js−o) can be constructed (as above) and there is a solution of the slow
reduced flow (3.22) on M+

ε that connects Js−d to Js−o – so that Γs−2f indeed
exists as closed singular ‘loop’. Obviously, Ss−2 f , ∅ – see also Fig. 3.11 –
however, the fact that both Js−d, Js−o ∈ {H+

0 (w, q) = Hs−d} does not necessarily
imply that (a,Ψ,Φ,Ω,Θ) ∈ Ss−2 f for all values for which these points exist on
M+

ε . For instance, in the case that the saddle P+,s is the only critical point on
M+

ε , Js−d and Js−o are not connected by a solution of (3.22) if Hs−d > H+,s
0 – the

value of H+
0 (w, q) at P+,s – see Fig. 3.11a. Moreover, if Hs−d < H+,s

0 there is
an additional condition on Φ that is determined by the relative positions of w+,s

(the w-coordinate of P+,s), 9/(2 + 9a) (the w-coordinate of Js−d/Js−o) and Ψ/Φ
(the w-coordinate of the bare soil state associated to P0). Here, we refrain from
working out the full ‘bookkeeping’ details by which (the boundary of) Ss−2 f is
determined – see also a further brief discussion following Theorem 3.11. We
refer to Fig. 3.11a for a case w+,s < 9/(2 + 9a) < Ψ/Φ (and implicitly χ > 0)

for which Js−d can only be connected to Js−o if Φ < Φs−t =
1
2

a(2 + 9a)χ (3.58) –
since we need that qs−d(Φ) < 0. Notice that the sketch in Fig. 3.11a in principle
also covers a (sub)case of the situation with two critical points P+,c and P+,s on
M+

ε and that Fig. 3.11b considers the case 9/(2 + 9a) < w+,s < Ψ/Φ for this
situation. Clearly, there are no further restrictions on Φ if Hs−d < H+,s

0 if there
are two critical points P+,c and P+,s on M+

ε , since the orbits on the level set
associated to Hs−d(Φ) are periodic, while one again has to impose Φ < Φs−t to
have a connection between Js−d and Js−o for level sets outside the homoclinic
loop, i.e., for Hs−d > H+,s

0 . Finally, we note that the skeleton structure Γs−2f can
in principle also be constructed for (a,Ψ,Φ,Ω,Θ) such that there is no critical
point on M+

ε , or only one critical point that is not a saddle but a center (in the
limit ε→ 0).

Summarizing, the (open) region Ss−2 f is defined such that for parameter combi-
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nations (a,Ψ,Φ,Ω,Θ) ∈ Ss−2 f , a singular skeleton Γs−2f ⊂ R
4 can be constructed

as above. In the limit ε → 0, Γs−2f is spanned by a piece of `u ⊂M0
0 from P0

up to the (ε → 0 limit of the) take off point from M0
0 (that has the same (w, q)-

coordinates as Js−d in the limit ε→ 0), the jump through the fast field along (a
piece of) Wu(M0

0) ∩W s(M+
0 ) (3.17) towards the ε→ 0 limit of the (projected)

touch down point Js−d ∈ M+
0 , the connection along M+

0 to Js−d by the slow
reduced flow (on the level set {H+

0 (w, q) = Hs−d}) up to (the ε → 0 limit of)
the take off point Js−o, followed by a fast jump backwards along (a piece of)
W s(M0

0) ∩Wu(M+
0 ) to M0

0 and a final piece of `s (up to P0) – see Figs. 3.11a
and 3.11b for 2 sketches of projections of Γs−2f on M+

0 that skip both jumps
through the fast field. The proof of the persistence of Γs−2f for ε , 0 relies
heavily on the reversibility symmetry of (3.7) with c = 0 (3.9).

Theorem 3.11. Let (a,Ψ,Φ,Ω,Θ) ∈ Ss−2 f and Γs−2f ⊂ R
4 be the singular skele-

ton constructed above. Then, there is for ε > 0 sufficiently small a symmetric
homoclinic 2-front orbit
γs−2f(ξ) = (bs−2f(ξ), ps−2f(ξ),ws−2f(ξ), qs−2f(ξ)) ⊂ Wu(P0) ∩W s(P0) of (3.7) with
c = 0 that merges with Γs−2f as ε ↓ 0. The associated stationary pattern
(B(x, t),W(x, t)) = (bs−2f(x),ws−2f(x)) in (3.5) represents a stationary localized
vegetation spot embedded in bare soil.

We refer to Figs. 3.1b and 3.14c for numerical observations of these 2-front spot
patterns. In Fig. 3.16, the projection of the 2-front orbit on the (w, b)-plane is
given; it clearly shows the slow-fast-slow-fast-slow nature of the pattern: it first
follows M0

ε (slowly), jumps to M+
ε , follows the slow flow on M+

ε , jumps back
to M0

ε and slowly returns to P0.

To get some insight in the boundaries of Ss−2 f – and thus is the bifurcations
of γs−2f(ξ) – we can (as usual) ‘freeze’ the flow on M+

0 by choosing Ψ,Ω,Θ
as in (3.53) and vary Φ. We need to be aware though that `u,s and P0 do vary
with Φ (i.e., they are not frozen). In the situation sketched in Fig. 3.11a – thus
with w+,s < 9/(2 + 9a) < Ψ/Φ and χ > 0 – we see that the distance between
the 2 fronts of γs−2f(ξ) approaches ∞ as Φ ↓ Φs−1f < Φs−t as defined in The-
orems 3.8 and 3.9: γs−2f(ξ) obtains the character of the superposition of the
1-front heteroclinic orbit γs−1f(ξ) of Theorem 3.8 between P0 and P+,s and its
symmetrical counterpart – (3.9) – connecting P+,s back to P0. The other bound-
ary corresponds to Φ ↑ Φs−t: the distance traveled along M+

ε decreases to 0
and γs−2f(ξ) detaches from M+

ε . However, since the angle between `u and `s

is determined by
√

Φ (3.21), this can only happen as also Ψ/Φ ↓ 9/(2 + 9a),
i.e., as the ‘projected triangle’ of Fig. 3.11a that represents the skeleton Γs−2f
entirely contracts to a point – see also Remark 3.14. The bifurcational struc-
ture associated to the situation sketched in Fig. 3.11b is quite different: as Φ

decreases towards Φ1
s−1f < Φs−t, γs−2f(ξ) does not merge with a (superposition

of 2) 1-front(s) γs−1f(ξ) of Theorem 3.8. In fact, γs−2f(ξ) does not bifurcate at
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all, the distance between the 2 fronts of γs−2f(ξ) remains bounded as Φ passes
through Φ1

s−1f (the main difference between the cases Φ > Φ1
s−1f and Φ < Φ1

s−1f
is the sign of Hs−d −H+,s

0 : γs−2f(ξ) follows an orbit of (3.22) outside the homo-
clinic loop for Φ < Φ1

s−1f). Moreover, as Φ increases towards Φs−t, the distance
γs−1f(ξ) travels along M+

ε also does not go to 0, in fact γs−1f(ξ) (almost) follows
the entire periodic orbit of the level set {H+

0 (w, q) = Hs−d(Φs−t) = Hs−t}, the
critical/limiting orbit of Theorem 3.9. Again, this can only happen if also the
projection of P0 on M+

ε merges with this periodic orbit. We refrain from going
any further into the details of these – and other – bifurcations of γs−2f(ξ).

Proof of Theorem 3.11. The proof follows the geometrical approach devel-
oped in [41, 42], equivalently the more analytical approach of [84] could be
employed. The construction of γs−2f(ξ) is based on the ‘intermediate’ orbit
γi−1f(ξ) ⊂ Wu(P0) ∩W s(M+

ε ), the heteroclinic connection between P0 and M+
ε

that touches down on Js−d ∈M+
ε ; γi−1f(ξ) follows the slow flow along M+

ε and
is thus asymptotically close to the skeleton Γs−2f up to the take off point Js−o
(γi−1f(ξ) ⊂ W s(M+

ε ) and thus cannot take off from M+
ε ). The homoclinic orbit

γs−2f(ξ) is constructed as a symmetric orbit – i.e., an orbit that passes through
the plane {p = q = 0} at its ‘midpoint’ – that is exponentially close to γi−1f(ξ) up
to the point it takes off from M+

ε .

Since b−(w) < 1/2 < b+(w) (3.11), γi−1f(ξ) intersects the hyperplane {b = 1/2}
transversally in the point Pi−1f – by definition. We define for some sufficiently
smallσ (independent of ε), the (bounded) 1-dimensional curve Cσ

i−1f ⊂ {b = 1/2}
as the (first, transversal) intersection of Wu(P0) and {b = 1/2} that is at a dis-
tance of maximal σ away from Pi−1f ; in other words, Cσ

i−1f = Wu(P0) ∩ {b =

1/2} ∩ {|(b, p,w, q) − Pi−1f | ≤ σ}. By choosing γ(0) ∈ Cσ
i−1f , the curve Cσ

i−1f
provides a parametrization of orbits γ(ξ) in Wu(P0) near γi−1f(ξ). In fact, the
saddle structure of the fast flow around M+

ε cuts Wu(P0), and thus Cσ
i−1f , exactly

in two along γi−1f(ξ) ⊂ W s(M+
ε ): orbits γ(ξ) ⊂ Wu(P0) with (by definition)

γ(0) ∈ Cσ,r
i−1f cross through the plane {p = 0} near M+

ε so that their b-coordinate
changes direction; the b-coordinates of γ(ξ)’s with γ(0) in Cσ

i−1f \ Cσ,r
i−1f do not

change direction, these γ(ξ)’s pass along M+
ε without the possibility of return-

ing to M0
ε. Thus, we may uniquely parameterize orbits γ(ξ) ⊂ Wu(P0) that

pass through {p = 0} near by M+
ε that are σ-close to γi−1f(ξ) by the distance

d between their initial point γ(0) ∈ Cσ,r
i−1f and Pi−1f (∈ ∂Cσ,r

i−1f) – where we have
implicitly used the fact that Wu(M0

ε) ⊃ Wu(P0) is C1 −O(ε) close to its ε→ 0
limit Wu(M0

0) [83, 86]. We denote these γ(ξ)’s by γ(ξ; d).

Since the flow on M+
ε is O(ε) slow, orbits γ(ξ; d) with γ(0) ∈ Cσ,r

i−1f can only
follow M+

ε over an O(1) distance (w.r.t. ε) for d exponentially small; in fact it
is necessary that d = O(exp(−λ f ,+(9/(2 + 9a))/ε), where
λ f ,+(w0) =

√
w0b+(w0) + 2aw0 − 2, the unstable eigenvalue of the reduced fast
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flow (3.10) – with c = 0 – associated to the critical point (b+(w0), 0), and
w0 = 9/(2 + 9a) is the (leading order) w-coordinate of Js−d (3.57). As d de-
creases, the ‘time’ (i.e., distance) γ(ξ; d) remains exponentially close to M+

ε

increases monotonically (as follows from a direct perturbation analysis – for
instance along the lines of [22]). Equivalently, the distance between Js−d and the
(projected) point on M+

ε at which γ(ξ; d) crosses through the {p = 0}-plane also
increases monotonically with decreasing d – where we note that this point marks
the transition between γ(ξ; d) approaching the ‘fast saddle’ M+

ε exponentially
close to W s(M+

ε ) and moving away from M+
ε exponentially close to Wu(M+

ε ).
Clearly, for d ‘too large’ γ(ξ; d) passes through {p = 0} before the slow flow
on M+

ε – and thus γ(ξ) itself (since it is exponentially close to M+
ε ) – passes

through {q = 0} – Fig. 3.11. However, by decreasing d, we can delay the passage
of γ(ξ; d) through {p = 0} until after it passes through {q = 0}. It follows that
there must be a d∗ such that the associated orbit γ(ξ; d∗) passes through {p = 0}
and {q = 0} simultaneously: γ(ξ; d∗) ∩ {p = q = 0} , ∅.

The orbit γs−2f(ξ) coincides with γ(ξ; d∗): by the reversibility symmetry (3.9) –
with c = 0 – it is symmetric around the ‘midpoint’ at which it passes through
{p = q = 0} , so that indeed γs−2f(ξ) ⊂ Wu(P0) ∩W s(P0), a homoclinic 2-front
orbit to P0 (asymptotically close to the skeleton Γs−2f). �

The orbit γs−2f(ξ) is only the first of a countable family of homoclinic 2-front
orbits if the slow piece of the skeleton Γs−2f is part of a closed orbit, i.e., if
the connected part of the level set {H+

0 (w, q) = Hs−d} that contains the (ε → 0
limits of the) touch down and take off points Js−d and Js−o is a closed orbit. In
this case, the intermediate heteroclinic 1-front γi−1f(ξ) ⊂ Wu(P0) ∩ W s(M+

ε )
introduced in the proof of Theorem 3.11 coincides with one of the 2 hetero-
clinic orbits γ j

s−p(ξ;Hs−d) between the critical point P0 ∈M0
ε and the periodic

orbit γp,ε(X) ⊂ M+
ε established in Theorem 3.9. Thus, in this case γi−1f(ξ)

passes countably many times through the plane {q = 0}. By steadily decreasing
d, we can now determine a sequence of critical values di

∗, i = 0, 1, 2, ... such
that the associated orbits γ(ξ; di

∗) pass through {p = q = 0} after i preceding
passages through {q = 0}. Thus, the primary orbits γs−2f(ξ) of Theorem 3.11
correspond to γ(ξ; d0

∗) and the ‘higher order’ (stationary) homoclinic 2-front or-
bits γi

s−2f(ξ) ⊂ Wu(P0) ∩W s(P0) coincide with the orbits γ(ξ; di
∗) for i ≥ 1. By

the symmetry (3.9) – with c = 0 – these orbits are also symmetric around the
‘midpoint’ at which they pass through {p = q = 0}: γi

s−2f(ξ) traces i full circuits
over the closed orbit determined by the level set {H+

0 (w, q) = Hs−d} during its
passage along M+

ε – see the sketches in Fig. 3.2(c,d).

Theorem 3.12. Let (a,Ψ,Φ,Ω,Θ) ∈ Ss−2 f such that (3.40) holds, and let Γext
s−2f ⊂

R4 be the extension of the singular skeleton Γs−2f of Theorem 3.11 that includes
the entire closed orbit on M+

ε determined by the level set {H+
0 (w, q) = Hs−d}.

Then, for ε > 0 sufficiently small, there is a countable family of symmetric 2-front
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orbits
γi

s−2f(ξ) = (bi
s−2f(ξ), pi

s−2f(ξ),w
i
s−2f(ξ), q

i
s−2f(ξ)) ⊂ Wu(P0) ∩ W s(P0) of (3.7)

with c = 0 (i = 0, 1, 2, ...) that merges with Γext
s−2f as ε ↓ 0 for all i ≥ 1

(γ0
s−2f(ξ) = γs−2f(ξ) of Theorem 3.11 merges with Γs−2f as ε ↓ 0). The associ-

ated stationary patterns (B(x, t),W(x, t)) = (bi
s−2f(x),wi

s−2f(x)) in (3.5) represent
stationary localized vegetation spots embedded in bare soil with an increasing
number of spatial oscillations in the vegetated area.

The construction of stationary homoclinic 2-front gap patterns – localized bare
soil areas surrounded by vegetation – goes along exactly the same lines as the
above construction of localized spot patterns. The main difference is that the
homoclinic orbits-to-be-constructed are ⊂ Wu(P+,s) ∩W s(P+,s) so that the struc-
ture of orbits taking off and touching down now has to start out from the saddle
P+,s ∈ M+

ε . Nevertheless, the construction of the skeleton structure Γg−2f is
completely similar to that of Γs−2f . Therefore, we only provide the essence of
the construction of Γg−2f .

First, we need to assume that there is a critical point P+,s ∈M+
0 of saddle type.

The skeleton structure Γg−2f consists of a piece of Wu(P+,s) ⊂M+
0 from P+,s up

to the (ε → 0 limit of the) take off point J+,0
g−o from M+

0 , followed by (a piece
of) Wu(M+

0 ) ∩W s(M0
0) (3.17) up to the (ε→ 0 limit of the) touch down point

J+,0
g−d ∈M0

0 (that has the same (w, q)-coordinates as J+,0
g−o in the limit ε→ 0). Note

that the take off/touch down points J+,0
g−0/J+,0

g−d differ essentially from their counter-
parts as Js−d/Js−0 (3.57) considered so far: while Js−d/Js−0 concerned the evolu-
tion of Wu(P0)∩W s(M+

ε )/W s(P0)∩Wu(M+
ε ) along M+

ε in forwards/backwards
‘time’, J+,0

g−0/J+,0
g−d govern the orbits of Wu(P+,s) ∩W s(M0

ε)/W
s(P+,s) ∩Wu(M0

ε)
along M0

ε. Nevertheless, the coordinates of all take off/touch down points are at
leading order determined by their ε → 0 limits (3.17) with w±h (0) = 9/(2 + 9a)
(3.16). The next piece of Γg−2f consists of a symmetric part of a (cosh-type) orbit
along M0

0 of the (linear) slow reduced flow (3.20) up to the (ε → 0 limit of
the) take off point J0,+

g−o, which is again followed by a fast jump backwards along
(a piece of) W s(M+

0 ) ∩Wu(M0
0) to the (ε → 0 limit of the) touch down point

J0,+
g−d ∈M+

0 . The final piece is the symmetrical counterpart of the first piece: the
flow of (3.22) along M+

0 from the final touch down point back towards P+,s –
see Fig. 3.12a for a sketch of a projection of Γs−2f (without its fast jumps).

The (open) region Sg−2 f is defined by those (a,Ψ,Φ,Ω,Θ)-combinations for
which Γg−2f can be constructed. We note that there cannot be points in the in-
tersection of Ss−2 f as defined in Theorem 3.11 and Sg−2 f : the (projections of
the) take off/touch down points Js−d/Js−0 lie on the level set {H+

0 (w, q) = Hs−d}

for which Hs−d < H+,s
0 , the value of H+

0 (w, q) for P+,s and its (un)stable man-
ifolds (3.29). By construction, J+,0

g−0, J
+,0
g−d ⊂ {H+

0 (w, q) = H+,s
0 } – compare
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Fig. 3.11a to Fig. 3.12a. This also implies that Ss−2 f ∩ Sg−2 f , ∅, in fact,
∂Ss−2 f ∩ ∂Sg−2 f ⊃ Rs−1f as defined in Theorem 3.8: both the homoclinic spots
γs−2f(ξ) of Theorem 3.11 and the gaps γg−2f(ξ) of (upcoming) Theorem 3.13
merge with the heteroclinic cycle spanned by the standing 1-front γs−1f(ξ) of
Theorem 3.8 and its symmetrical counterpart as Ss−2 f ∪ Sg−2 f approaches Rs−1f .

Theorem 3.13. Let (a,Ψ,Φ,Ω,Θ) ∈ Sg−2 f and Γg−2f ⊂ R
4 be the singular

(gap) skeleton constructed above. Then, there is for ε > 0 sufficiently small a
symmetric 2-front orbit
γg−2f(ξ) = (bg−2f(ξ), pg−2f(ξ),wg−2f(ξ), qg−2f(ξ)) ⊂ Wu(P+,s) ∩W s(P+,s) of (3.7)
with c = 0 that merges with Γg−2f as ε ↓ 0. The associated stationary pattern
(B(x, t),W(x, t)) = (bg−2f(x),wg−2f(x)) in (3.5) represents a stationary localized
bare soil gap embedded in vegetation.

Of course the proof of this Theorem goes exactly along the lines of the proof of
Theorem 3.11. The main difference between the cases of (stationary, symmetric,
homoclinic) 2-front spots and (stationary, symmetric, homoclinic) 2-front gaps
is that there cannot be periodic orbits on M0

ε – the slow reduced flow (3.20) on
M0

0 is linear – so that there cannot be any higher order localized gap patterns
(as in Theorem 3.12 for localized spots). We refer to Figs. 3.1c and 3.15a for
numerical observations of – (most likely) stable – localized 2-front spot and gap
patterns in PDE (3.5).

Remark 3.14. We refer to [91, 92] for studies of the process of a homoclinic
2-front orbit between a slow manifold M1

ε and a second slow manifold M2
ε

detaching from M2
ε to become a slow-fast homoclinic to M1

ε that only makes 1
homoclinic excursion through the fast field (instead of 2 fast heteroclinic jumps
between M1

ε and M2
ε). The focus of [91] is on the (exchange of) stability

between these 2 types of homoclinic patterns and the associated bifurcations
– especially as localized stripes in 2 space dimensions. In the present work
the situation is somewhat more involved than in [91, 92], since the skeleton
structures as sketched in Figs. 3.11 and 3.12a must become asymptotically small
in this transition – which is not necessary in the setting of [91, 92]. Notice that
this implies that here the W-component of the homoclinic pulse becomes ‘small’
– a certain well-defined magnitude in ε – during this transition, but that this is
not the case for the B-component since the orbit still has to make (almost) a full
jump between M0

ε and M+
ε . See Figs. 3.14c, 3.15b and 3.16 in section 4.1.

3.6 Spatially periodic multi-front patterns

A stationary, non-degenerate, symmetric homoclinic pulse solution of a (re-
versible) reaction-diffusion system (defined for x ∈ R) – such as the spots and
gaps of Theorems 3.11 and 3.13 – must be the ‘endpoint’ (within phase space)
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Figure 3.12: Sketches of 2 skeleton structures of multi-front patterns: (a) The stationary
homoclinic 2-front gap pattern of Theorem 3.13. (b) The spatially periodic multi-front
spot/gap pattern of Theorem 3.15 as (projected) closed orbit.

of a continuous family – a ‘band’ – of spatially periodic patterns (as the pe-
riod/wavelength→ ∞) – see for instance [39]. Systems (3.5) and (3.7) indeed
have large families of spatially periodic solutions.

Theorem 3.15. Let (a,Ψ,Φ,Ω,Θ) ∈ Ss−2 f ∪ Sg−2 f ∪ Rs−1f (Theorems 3.11,
3.13 and 3.8) and let c = 0. Let there be a ρ ∈ R, ρ , 0, such that there is a
solution of the reduced slow flow (3.20) on M0

0 that connects (ρ, 9/(2 + 9a)) to
(−ρ, 9/(2+9a)) over the branch Γ0

ρ (by definition) and a solution of the (projected)
reduced flow (3.22) on M+

0 that connects (−ρ, 9/(2 + 9a)) back to (ρ, 9/(2 + 9a))
over Γ+

ρ – see Fig. 3.12b. Then, for ε > 0 sufficiently small, there is a periodic
solution γmf,ρ(ξ) = (bmf,ρ(ξ), ρmf,ρ(ξ),wmf,ρ(ξ), qmf,ρ(ξ)) of (3.7) that merges in
the limit ε → 0 with the skeleton structure spanned by Γ0

ρ, the fast jump over
Wu(M0

0) ∩W s(M+
0 ) with w+

h = 9/(2 + 9a), q = −ρ (3.17), Γ0
ρ and the fast jump

back over Wu(M+
0 ) ∩ W s(M0

0) with w−h = 9/(2 + 9a), q = ρ. The associated
stationary pattern (B(x, t),W(x, t)) = (bmf,ρ(x),wmf,ρ(x)) in (3.5) represents a
stationary spatially periodic multi-pulse spot/gap pattern.

Note that if γmf,ρ(ξ) exists for a certain ρ∗, there clearly must be a neighborhood
of ρ∗ for which γmf,ρ(ξ) also exists: the periodic solutions of (3.5)/(3.7) indeed
come in continuous families/bands [39]. Typically, there is a ‘subband’ of stable
periodic patterns – see Figs. 3.1d and 3.17 for examples of numerically stable
patterns (bmf,ρ(x),wmf,ρ(x)) in (3.5).

Proof of Theorem 3.15. This proof can be set up very much along the lines
of the proofs of similar results – the existence of spatially periodic patterns in
the (generalized) Gierer-Meinhardt equation – in [44], therefore we restrict our-
selves to the essential ingredients of the proof here.
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The approach is similar to that of the proof of Theorem 3.11: we construct
an orbit that intersects the plane {p = q = 0} and apply the reversibility symme-
try (3.9) – with c = 0. However, unlike for the homoclinic orbits in Theorem
3.11, we do not ‘start out’ – as ξ → −∞ – at the critical point P0 ∈ M0

ε, but
choose the initial condition of the orbit-to-be-constructed at the – exponentially
short – interval Ib = {p = q = 0,w = w0

ρ, b = b ∈ (0, bM)}, where w0
ρ is the

midpoint of Γ0
ρ, i.e., (w0

ρ, 0) = Γ0
ρ ∩ {q = 0} and bM is exponentially small in ε,

so that orbits γρ,b(ξ) with γρ,b(0) ∈ Ib remain exponentially close to M0
ε over

O(1) distances in b, p and O(1/ε) ‘time’ ξ (more precise, and as in the proof of
Theorem 3.11: b = O(exp(−λ f ,0(w0

ρ)/ε) with λ f ,0(w0) =
√

1 − aw0, the unstable
eigenvalue of the reduced fast flow (3.10) – with c = 0 – associated to (0, 0)).
Consider the 2-dimensional ‘strip’ Tρ,b spanned by all γρ,b(ξ), b ∈ (0, bM): as
it takes off from M0

ε, it is exponentially close to Wu(M0
ε) and thus intersects

W s(M+
ε ) transversely along the orbit γ

ρ,b
∗ (ξ) (the intersection Tρ,b ∩W s(M+

ε ) is
1-dimensional and thus an orbit of (3.7)).

Clearly, W s(M+
ε ) cuts Tρ,b into 2 parts – distinguished by b ≶ b

∗
– due to

the ‘fast saddle’ structure of M+
ε (as in the proof of Theorem 3.11). Orbits

γρ,b(ξ) ⊂ T r
ρ,b
⊂ Tρ,b cross through {p = 0}, turn around (in their b-components)

and return back towards M0
ε; the b-components of orbits γρ,b(ξ) ⊂ Tρ,b\T r

ρ,b
–

the complement of T r
ρ,b

– increase beyond M+
ε . It depends on the relative mag-

nitudes of w0
ρ and 9/(2 + 9a) whether T r

ρ,b
is determined by b ∈ (0, b

∗
) or by

b ∈ (b
∗
, bM). If w0

ρ > 9/(2 + 9a) – as in Fig. 3.12 – orbits γρ,b(ξ) that take off

‘too soon’ – i.e., with b > b
∗

– have w > 9/(2 + 9a) at take off (Fig. 3.12). Since
the unstable manifold Wu((0, 0)) of the (planar) fast reduced system (3.10) with
w0 > 9/(2 + 9a) contains a closed homoclinic orbit, it follows that orbits γρ,b(ξ)

with b > b
∗

follow such a homoclinic orbit through the fast field (at leading
order in ε). Hence, they pass through {p = 0} and turn back towards M+

ε : T r
ρ,b

is

spanned by γρ,b(ξ) with b ∈ (b
∗
, bM). For simplicity, we only consider this case

(the arguments run along exactly the same lines in the case that w0
ρ < 9/(2 + 9a)

and T r
ρ,b

is determined by b ∈ (0, b
∗
)).

We can now copy the main (geometrical) argument of the proof of Theorem
3.11: if γρ,b(ξ) ⊂ T r

ρ,b
is too far removed from – but still exponentially close to –

γ
ρ,b
∗ (ξ) ⊂ W s(M+

ε ) – i.e., if b− b
∗

is too large – it will follow M+
ε – and thus Γ+

ρ

– over a relatively short distance (Fig. 3.12), take off again from M+
ε and thus

cross through {p = 0} before reaching {q = 0}. By decreasing b − b
∗
, one can

keep γ
ρ,b
∗ (ξ) sufficiently long close to M+

ε that it first passes through {q = 0} be-

fore crossing {p = 0}: there is a value b = bρ such that γρ,bρ(L/2) ∈ {p = q = 0}
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for certain L > 0 (in fact, L = O(1/ε)). It follows by (3.9) – with c = 0 – that
γmf,ρ(ξ) = γρ,bρ (ξ), a periodic orbit with period L. �

As in the case of the homoclinic spots patterns – Theorem 3.12 – we may im-
mediately conclude that there are countably many (families of) higher order
periodic patterns if Γ+

ρ (as defined in Theorem 3.15) is part of a periodic orbit on
M+

0 (determined by the level set {H+
0 (w, q) = Hρ}) – see Fig. 3.11c. By steadily

decreasing |b − b
∗
|, the orbit γρ,b(ξ) ⊂ T r

ρ,b
can be made to pass arbitrarily many

times through {q = 0} before taking off from M+
ε .

Corollary 3.16. Let (a,Ψ,Φ,Ω,Θ) ∈ Ss−2 f ∪ Sg−2 f ∪ Rs−1f such that (3.40)
holds. Let ρ, Γ0

ρ ⊂ M0
0 and Γ+

ρ ⊂ M+
0 be as defined in Theorem 3.15, with

Γ+
ρ such that it is part of a closed orbit on M+

ε determined by the level set
{H+

0 (w, q) = Hρ}. Then, for ε > 0 sufficiently small, there is a countable family
of symmetric multi-front periodic orbits
γi

mf,ρ(ξ) = (bi
mf,ρ(ξ), pi

mf,ρ(ξ),w
i
mf,ρ(ξ), q

i
mf,ρ(ξ)) of (3.7) with c = 0 (i = 1, 2, ...)

that merges in the limit ε → 0 with the extended skeleton structure spanned by
Γ0
ρ, the fast jump over Wu(M0

0) ∩W s(M+
0 ) with w+

h = 9/(2 + 9a), q = −ρ (3.17),
the full closed orbit of {H+

0 (w, q) = Hρ} that contains Γ+
ρ and the fast jump back

over Wu(M+
0 )∩W s(M0

0) with w−h = 9/(2+9a), q = ρ. The associated stationary
patterns (B(x, t),W(x, t)) = (bi

mf,ρ(x),wi
s−2f(x)) in (3.5) are symmetric periodic

spot/gap patterns with an increasing number of oscillations in the vegetated
areas.

Finally, we note that the families of ‘higher order’ periodic patterns γi
mf,ρ(ξ)

are only the first of further – more complex – families containing periodic (and
aperiodic) patterns of increasing complexity. We refer to [44] for the precise
settings and proofs, here we only give a sketch of one specific example. How-
ever, this sketch provides the main ideas by which all further orbits may be
constructed.

Let bi
ρ ∈ (0, bM) be such that the i-th periodic pattern γi

mf,ρ(ξ) of Corollary

3.16 is given by γρ,b(ξ) with b = bi
ρ (see the proof of Theorem 3.15). We can

now choose b so close to bi
ρ that γρ,b(ξ) ⊂ T r

ρ,b
follows γi

mf,ρ(ξ) along its i circuits

over M+
ε – with i ≥ 1 – and its jump back to M0

ε. Since b , bi
ρ, γρ,b(ξ) does

not close as it passes along Ib, instead it keeps on following γi
mf,ρ(ξ) as it makes

it second jump towards M+
ε . By the approach of the proofs of Theorems 3.11

and 3.15, we can now tune b so that it has its second take off from M+
ε precisely

and that it passes through {p = q = 0} while following Γ+
ρ (without making any

further circuits over the periodic orbit on M+
ε that contains Γ+

ρ ). It follows by
the application of the reversibility symmetry (3.9) that for this value of b, γρ,b(ξ)
is a symmetric periodic orbit that ‘starts’ at Γ0

ρ ⊂M0
ε, jumps to M+

ε to make i
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circuits along M+
ε , jumps back again to M0

ε, follows Γ0
ρ ⊂M0

ε to return again
to M+

ε where it follows Γ+
ρ and subsequently immediately jumps back again to

M0
ε – from which it repeats the same path, etc.. Note that the associated periodic

pattern in (3.5) consists of an alternating array of 2 different types of localized
vegetation spots. Clearly, this procedure can be further refined to establish the
existence of patterns containing arbitrary arrays of arbitrarily many different
types of vegetation spots – under the conditions of Corollary 3.16.

Remark 3.17. We decided to focus in this chapter on stationary 2- and multi-
front patterns. Of course, (3.5) also exhibits traveling multi-front patterns – see
for instance Fig. 3.14d in which a vegetation spot travels towards a stationary,
stable (and attracting) spot of the type established by Theorem 3.11. System (3.7)
can also have homoclinic orbits to P0 for (certain specific values of) c , 0, i.e.,
vegetation spots may be traveling with constant speed (without changing shape).
An approach along the lines of [45] indicates that bifurcations to traveling
spots appear when the touch down manifold Idown (Lemma 3.2) is tangent to
a level set {H+

0 (w, q) = H} of the slow reduced flow on M+
0 with c = 0 at

the (non-transversal) intersection Idown ∩ {H+
0 (w, q) = H} (recall that Idown is

parameterized by c). A similar property holds for bifurcations of stationary
spatially periodic multi-front patterns into traveling spatially periodic (wave
train) patterns. A simple investigation of the relative orientations of Idown and
the various possible phase plane configurations of the slow reduced flow on M+

0
shows that there indeed are parameter combinations (a,Ψ,Φ,Ω,Θ) at which
these bifurcations into traveling 2-/multi-fronts must occur. This bifurcation may
have relevant ecological implications, nevertheless, we refrain from going into
the details here (and leave this to future work) – see also section 4.2.

4 Simulations and discussion

4.1 Simulations
The motivation for the numerical simulations presented in this section is three-
fold: 1) to illustrate some of the analytic results of the previous sections (without
doing a systematic search for all constructed patterns) 2) to give a brief outlook
beyond the worked out analysis to solution types that may be constructed by
the geometric set-up developed here and, finally, 3) to give a flavor of the rich
dynamics that PDE (3.1)/(3.5) exhibits. All numerical simulations have been
carried using MATLAB’s ‘pdepe’ routine. The corresponding parameter settings
are specified in the captions of the figures. Almost all figures show a snapshot
in time of the spatial profile of the PDE solution/pattern after it converged to a
stationary or uniformly traveling solution.

The opening figure of this section, Fig. 3.13a, can be seen as a binding ele-
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Figure 3.13: (a) Spatial profiles of the B- and W-components of a traveling front solution
of the original, unscaled model (3.1) – corresponding to a heteroclinic orbit of (3.7) as
established by Theorem 3.4 – together with the 3 background states. (b) The profile from
(a) as a projection in (b,w, q)-space where q was computed by numerical differentiation.
Parameter settings in (3.1): P = 180,Λ = 0.9,K = 0.4, E = 18,M = 15,N = 15,R =

0.7, Γ = 12,DW = 150,DB = 1.2, corresponding to ε2 = 0.008, a ≈ 0.187,Ψ ≈ 3.84,Φ =

1,Ω ≈ 0.235,Θ ≈ 1.71 in (3.5).

ment between the chapters that have a more ecological emphasis and motivated
the present work – see [174, 175] and the references therein – and the analysis
here. It displays a traveling front solution as established by Theorem 3.4 for
a parameter regime comparable to the one from [175] (with slight adjustment
in the parameters to compensate for the choice of a 1-D model – 3.A). This
profile is then shown in Fig. 3.13b as a projection in (b,w, q)-space to illustrate
that it indeed starts on the slow manifold M0

ε and then jumps to the M+
ε slow

manifold. As established by the analysis, the solution first follows the unstable
manifold associated to the bare soil state (B̄0, W̄0) (as a solution of (3.7)), makes
a fast excursion through the fast field to then touch down on M+

ε following the
stable manifold associated to the uniform vegetation state (B̄+, W̄+). Note, of
course, that this figure contains two approximations: first, the manifold M+

ε is
only accurate up to second order in ε – see section 2.4 – while the flows on M0

ε

and M+
ε are computed numerically (using MATLAB routines).

As demonstrated in section 3, heteroclinic 1-front orbits can occur both as
traveling – Theorem 3.4 – or stationary patterns – Theorem 3.8. We confirm
this numerically in Figs. 3.14a and 3.14b. Note that these fronts may either
represent the retreat of vegetation by the invasion of the bare soil state into the
homogeneous vegetation state – c > 0 – or the expansion of a (homogeneously)
vegetated area into the bare soil state – c < 0. In fact, in order to find the
stationary 1-front, we need to tune a single parameter – Φ in the statement of
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(a) a = 0.0008,Φ = 0.3,Ω = 0.1,Θ =

0.2, ε =
√

0.005 and Ψ = Ψs−1f =

1.6226 (so that (a,Φ,Ψs−1f ,Ω,Θ) ∈

Rs−1f , Theorem 3.8).
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(b) a = 0.0008,Φ = 0.3,Ω = 0.1,Θ =

0.2, ε =
√

0.005 and Ψ+c = 1.6205 <

Ψs−1f , Ψ−c = 1.6248 > Ψs−1f .
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(c) a = 0.032,Ψ = 1.3714,Φ =

0.3,Ω = 0.1,Θ = 0.2, ε =
√

0.005.
(d) a = 0.00175,Ψ = 1.6762,Φ =

0.3,Ω = 0.1,Θ = 0.7, ε =
√

0.1.

Figure 3.14: (a) A heteroclinic stationary 1-front pattern of (3.5); (b) Two traveling
1-front patterns connecting the bare soil state to a homogeneous vegetation state, one
invading the bare soil (c < 0), the other the vegetation state (c > 0); (c) A homoclinic
stationary 2-front spot pattern; (d) Evolution of the middles of the 2 interacting fronts of
an evolving 2-front pattern.

Theorem 3.8 and Ψ in Fig. 3.14 – to the border point between the ranges of
left-traveling and right-traveling 1-fronts (the ‘Maxwell point’ [14] described by
the co-dimension 1 set Rs−1f in Theorem 3.8).

The existence of the homoclinic stationary 2-front pattern depicted in Fig. 3.14c
was established in Theorem 3.11. Note that the level of vegetation on the plateau
that determines the spot remains relatively far away from the value B̄+ of the
uniform vegetation state (B̄+, W̄+). This is caused by the fact that the homoclinic
orbit associated to the spot pattern follows an orbit on the slow manifold M+

ε of
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(3.7) that does not approach the critical point associated to (B̄+, W̄+) on M+
ε –

see the sketch of the skeleton structure in Fig. 3.11. From the ecological point
of view, a vegetation spot benefits from soil water diffusion from the adjacent
water-rich bare soil areas – see the W-profile in Fig. 3.13a – besides direct
rainfall, and therefore has higher biomass density as compared with uniform
vegetation. This also explains (in ecological terms) why the biomass density
at the edge of a front, a spot or a gap is higher – a property also exhibited by
‘fairy circles’ [168, 175]. See also the upcoming discussion below of 2-front
vegetation gaps (Fig. 3.15a). In Fig. 3.14d, we show the dynamics of the 2
interacting fronts of an evolving 2-front pattern: the distance between the fronts
slowly increases while it settles into a stationary standing spot – see Remark
3.17 and the discussion in section 4.2.

One of the original motivations to analyze far-from-equilibrium patterns in the
Gilad et al. model, was to gain a fundamental understanding of ‘fairy circles’
– a somewhat subtle phenomenon (for instance) observed in western Namibia
[168, 175]. The homoclinic stationary 2-front gap patterns of (3.5) established
by Theorem 3.13 and shown in Fig. 3.15a indeed have the strongly localized na-
ture of observed fairy circles. Moreover, the spot/gap patterns of Theorem 3.15
represent the observed (nearly) periodic arrays of fairy circles (see Fig. 3.17a
and notice that the ratio between the lengths of the vegetated state and the bare
soil patches typically varies from 0 to∞ in this family (section 3.6)). As noted,
fairy circle gap patterns have an excess of vegetation at the edge of the gap as
distinctive feature – see for instance the images in [168, 175]. In mathematical
terms, this means that the connecting fronts are non-monotonous. In the context
of the present model, this non-monotonicity is caused by the orientation and
curvature of the slow manifold M+

ε relative to the path traced by the gap pattern
over M+

ε – see the projection in Fig. 3.16a for a representation of this ‘geomet-
rical mechanism’ for spot patterns. We refer to [55] for a 1-component model in
which the non-monotonicity of the fronts originates from nonlocal effects.

In section 3.5 – and especially in Remark 3.14 – we discussed the bifurcation
of the homoclinic slow-fast-slow-fast-slow 2-front spot pattern of Theorem 3.11
into a homoclinic slow-fast-slow pulse pattern as it ‘detaches’ from M+

ε . Such
a (numerically stable) ‘detached’ spot pattern of pulse type is shown Fig. 3.15b.
In Fig. 3.16, the detachment process is shown by projections of both the 2-front
spot pattern of Fig. 3.14c and the pulse pattern of Fig. 3.15b on the (w, b)-plane:
as the parameter Ψ – which is linearly related to the rainfall P in the original
model (3.6) – is decreased below a critical value Ψ∗ = 1.2952 the vegetated
plateau disappears and the 2-front spot solution transforms into a 1-pulse solu-
tion. Note that this 1-pulse solution is of the ‘classical’ Klausmeier-Gray-Scott
(and/or Gierer-Meinhardt [41]) type already discussed in the introduction of sec-
tion 3.5: its existence may be established by the methods of [41, 46] and the
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(a) a = 0.032,Ψ = 1.2762,Φ =

0.3,Ω = 0.1,Θ = 0.2, ε =
√

0.005.
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(b) a = 0.032,Ψ = 1.2762,Φ =

0.3,Ω = 0.1,Θ = 0.2, ε =
√

0.005.

Figure 3.15: (a) A stationary homoclinic vegetation gap pattern (of fairy circle type)
that is asymptotic to the stable homogeneous vegetation state (B̄+, W̄+). (b) A stationary
homoclinic spot solution of (classical) 1-pulse Gierer-Meinhardt/Gray-Scott type.

references therein. We also found that the spatially periodic spot/gap patterns
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Figure 3.16: Projections into the (w, b)-plane of the homoclinic 2-front and 1-pulse
solutions of Figs. 3.14c and 3.15b together with the slow manifolds M0

ε and M±
ε . Note

that the trajectories are symmetric around the middle of the 2-front/1-pulse – due to the
reversibility symmetry (3.9) of (3.5)/(3.7) – which results in the red branches shown.

of Theorem 3.15 may have quite a large domain of attraction: Fig. 3.17b shows
the evolution of a traveling vegetation front into the bare soil state that leaves
behind a spatially periodic spot/gap pattern – Fig. 3.17a. This behavior may
possibly be related to the existence of a Turing bifurcation – see Remark 2.2 –
of the uniform vegetation state and calls for further studies. Finally, we show
in Fig. 3.18a such a numerically obtained, almost sinusoidal, small amplitude
Turing pattern that bifurcated from a (destabilized) uniform vegetation state and
note that there are paths through parameter space on which this Turing pattern
evolves into a (periodic) multi-pulse pattern – built from homoclinic 1-pulses
of Gierer-Meinhardt/Gray-Scott type as in Fig. 3.15b and typically observed in



4. Simulations and discussion 105

Klausmeier-type models [133, 146, 155] – that subsequently touches down on
M+

ε like the solitary pulses of Figs. 3.15b and 3.14c, to indeed take the shape of
the periodic fairy circle-type spot/gap pattern of Theorem 3.15 and Fig. 3.17a.
By further tuning parameters it may also happen that the stationary, spatially
periodic, Turing pattern undergoes a Hopf bifurcation (in time), resulting in an
oscillating pattern that is periodic both in space and in time – see Fig. 3.18b.
(Note, however, that it is not clear whether this may occur for ecologically feasi-
ble parameters – see [151].)
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Figure 3.17: (a) The standing asymptotic (for t → ∞) spatially periodic spot/gap pattern
generated by the invasion dynamics of Fig. 3.17b. (b) A time/space plot of a vegetation
front that invades the bare soil state and leaves the spatially periodic pattern of Fig. 3.17a
behind. In both plots: a = 0.032,Ψ = 1.619,Φ = 0.3,Ω = 0.1,Θ = 0.5, ε =

√
0.01.
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(b) a = 0.25,Ψ = 0.38539,Φ =

0.059,Ω = 0.4,Θ = 0.5, ε =
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Figure 3.18: (a) A small amplitude stationary spatially periodic solution generated by
a Turing bifurcation (see Remark 2.2. (b) A pattern that is periodic in space and time
that appeared by decreasing Ψ from the Turing pattern of Fig. 3.18a through a Hopf
bifurcation (in time).
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Remark 4.1. The basic configurations shown in Fig. 3.1 have been obtained by
the same procedures as used in this section, with the following parameter settings.
The traveling 1-front: a = 0.0008,Ψ = 1.6248,Φ = 0.3,Ω = 0.1,Θ = 0.2, ε =√

0.005; the stationary homoclinic 2-front vegetation spot: a = 0.032,Ψ =

1.3714,Φ = 0.3,Ω = 0.1,Θ = 0.2, ε =
√

0.005; the stationary homoclinic
2-front vegetation gap: a = 0.032,Ψ = 1.2762,Φ = 0.3,Ω = 0.1,Θ = 0.2, ε =√

0.005; the stationary spatially periodic multi-front: a = 0.032,Ψ = 1.619,Φ =

0.3,Ω = 0.1,Θ = 0.5, ε =
√

0.01.

4.2 Discussion
Of course, the potential relevance of the various singular slow/fast patterns con-
structed in this chapter is ultimately determined by their stability as solutions of
PDE (3.1)/(3.5). In general, this is a seriously hard problem to study analytically.
However, the singularly perturbed nature of the patterns considered here enables
us to explicitly and rigorously analyze the (spectral) stability of the constructed
(multi-)front patterns. In fact, the explicit ‘control’ we established on the slow-
fast structure of the (multi-)fronts provides the perfect (and necessary) starting
point for a spectral stability analysis along the lines of (for instance) [20, 43] and
[31] (for the spatially periodic patterns). This is especially the case for the basic
front/spot/gap/periodic patterns of Theorems 3.4, 3.8, 3.11, 3.13, 3.15 shown in
Fig. 3.1.

However, the question whether the non-basic, ‘higher order’ patterns (for in-
stance) sketched in Fig. 3.2 can be stable also requires novel mathematical
insights and methods. All constructed higher order patterns involve the exis-
tence of persisting periodic solutions on the slow manifold M+

ε – see Theorems
3.5, 3.6, 3.9, 3.12 and Corollary 3.16. Therefore, the structure of the spectrum
associated to the stability of the higher order patterns essentially depends on the
preliminary question about the spectrum and stability of the persistent periodic
solutions on the slow manifold of Theorem 2.4 – and especially of their homo-
clinic (or heteroclinic) limits also considered in Theorem 2.4. In fact, this issue
is not (at all) specific for the explicit model here. We claim that higher order
patterns of the type sketched in Fig. 3.2 will generically appear as potentially
stable solutions in a fully general class of singularly perturbed reaction-diffusion
models that includes (3.5), Ut = Uxx + F(U,V),

Vt =
1
ε2 Vxx + G(U,V).

(3.60)

By going into a traveling framework – and thus introducing ξ = x − ct, U(x, t) =

u(ξ), V(x, t) = v(ξ), p(ξ) = uξ(ξ), q = vξ(ξ)/ε as in section 1 – (3.60) is reduced
into the 4-dimensional form of (3.7). By taking the ε→ 0 limit, we find that the
2-dimensional (reduced) slow manifolds are determined by F(v0, u) = 0 (and
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p = 0, (v0, q0) ∈ R2) – see section 2 – which generically determines J ≥ 1
branches, locally given by graphs,

M j
0 = {(u, p, v, q) ∈ R4 : u = f j(v), p = 0}, j = 1, 2, ..., J,

with f j(v) such that F( f j(v), v) ≡ 0 (cf. (3.12) and note that J = 3 for (3.5)). For
those (parts of) M j

0 that are normally hyperbolic, M j
0 persists as M j

ε, that is
approximately given by,

M j
ε = {(u, p, v, q) ∈ R4 : u = f j(v) + εcqu j

1(v) + O(ε2), p = εqp j
1(v) + O(ε)2}

with
u j

1(v) = − f ′j (v)/
∂F
∂u

( f j(v), v), p j
1(v) = f ′j (v).

(cf. (3.36), (3.37)). Thus, completely analogous to the analysis in section 2.4, we
find that the slow flow on a persisting, normally hyperbolic 2-dimensional slow
manifold M j

ε is given by a planar Hamiltonian system perturbed by a nonlinear
friction term,

vXX + G( f j(v), v) + εcq
[
1 −

∂G
∂u

( f j(v), v)u j
1(v)

]
= O(ε2),

with X = εξ (cf. (3.38)). Typically, the unperturbed ε→ 0 limit vXX +G( f j(v), v)
– i.e., the reduced slow flow on M j

0 – is nonlinear and has families of peri-
odic solutions and homoclinic or heteroclinic orbits to critical points on M j

ε

that correspond to (potentially stable [39]) homogeneous background states
(U(x, t),V(x, t) ≡ (Ū, V̄) of PDE (3.60) – as is the case for (3.22) on M+

0 .
Thus, indeed, the situation is completely similar to that of section 2.4: using
Melnikov-type arguments persistence results equivalent to Theorem 2.4 may be
deduced, also in the present general setting. The geometric framework of or-
bits ‘jumping up and down’ between two (normally hyperbolic) slow manifolds
M j

ε and Mk
ε presented in section 3.1 is based on the persistence of both the

stable and unstable manifolds W s,u(M j,k
ε ) of M j,k

ε and thus of the intersections
Wu(M j

ε) ∩W s(Mk
ε) and W s(M j

ε) ∩Wu(Mk
ε). Therefore, we may use the argu-

ments, methods and insights of section 3 to deduce the equivalents of the ‘higher
order’ existence Theorems 3.5, 3.6, 3.9, 3.12 and Corollary 3.16 in the setting
of general system (3.60). Moreover, this also implies that bifurcation scenarios
as sketched in Fig. 3.9 appear generically (where we notice that the sketch in
Fig. 3.9 was just a first example – many other scenarios may occur). In fact, the
geometrical setting allows us to (for instance) explicitly establish the existence
of heteroclinic networks of orbits jumping between various slow manifolds M j

ε

and (slowly) following periodic orbits on M j
ε in between its fast jumps – like

the networks considered in [120, 121] and the references therein. Thus, the
above noted preliminary (and essential) issue of the spectrum associated to the
stability of the persisting periodic and homoclinic solutions on M+

ε of Theorem
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2.4 also has a fully general – and thus fundamental – counterpart, with a similar
relevance for the higher order patterns (almost) heteroclinic to these orbits. In
other words, insight in the spectrum associated to the stability of the orbits on
M j

ε established by a generalization of Theorem 2.4 for (3.60) is expected to
yield explicit insight in the stability and bifurcations of the higher order patterns
in PDE (3.60) established by the generalizations of Theorems 3.5, 3.6, 3.9, 3.12,
etc. and the subsequent more complex ‘networks’.

This will be the subject of future work, both in the setting of explicit system
(3.5) – which will also include a systematic numerical search for the higher or-
der patterns sketched in Fig. 3.2 – and in the general setting of (3.60).

To optimally embed the present analysis in the ecological context, we first need
to obtain insight in the ranges of the (scaled) parameters (a,Ψ,Φ,Ω,Θ) of (3.5)
that may correspond to ecologically realistic settings of the unscaled model.
Finding such parameter ranges is possible (more than in the Klausmeier model)
since (3.1) is directly linked to the more elaborate 3-component model of Gilad
et al. [62] – [175], 3.A – and thus to concrete underlying ecological mecha-
nisms [63, 106, 134]. A crucial question for the potential ecological relevance
of the above discussed higher order patterns is whether there are realistic values
of (Λ,K, E,M, P,N,R,Γ) for which there are 2 critical points on M+

ε , i.e., for
which C2 − 4AD > 0, C < 0,D > 0 (section 2.3) – where (A, C,D) is related to
(Λ,K, E,M, P,N,R,Γ) in a rather nonlinear fashion by (3.3), (3.5), (3.6) (3.23),
(3.24). Naturally, this will be part of our upcoming work on (3.5).

Each of the higher order invasion fronts established by Theorem 3.6 and sketched
in Figs. 3.2a and 3.2b travels with a different speed – in fact, the (discrete) fam-
ily may even limit on a stationary front pattern (Remark 3.10). Thus, when
stable, these invasion fronts may introduce the possibility of slowing down grad-
ual desertification. Moreover, stationary multi-front patterns may bifurcate into
traveling patterns with the same structure – see Remark 3.17 for a brief sketch
of the underlying geometrical mechanism. When stable, the appearance of such
traveling multi-front patterns – either localized spots or spatially periodic wave
trains – may have a similar ecological interpretation and relevance: localized
vegetated states may even reverse desertification by invading bare soil – see
[172, 174, 176]. Together, the various traveling 1-front patterns and traveling
multi-spots form an interacting group of invasion patterns within the transition
zone between the bare soil state and a homogeneous vegetation state; in princi-
ple all entities in this group travel with different speed. Understanding pattern
formation in this zone – and especially also understanding the translation and/or
expansion of this zone in terms of the parameters in the model – may have a
direct ecological significance. In mathematical terms, such a study may also
be performed by a front interaction analysis along the lines of [25, 26, 157] –
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although the dynamics generated by (3.5) in this ecological transition zone is
expected to be richer than that of the generalized FitzHugh-Nagumo model con-
sidered there.

To truly obtain ecological relevance, we must consider the model in 2 space
dimensions. Clearly, the extension to more than 1 space dimension does pose
fundamental challenges, moreover 2-dimensional systems show much richer dy-
namical behaviors associated with propagating fronts – see for instance [73, 74].
However, the results obtained here form a foundation upon which aspects of the
step from 1 to 2 space dimensions can be taken – see for instance [143, 159,
162, 165] and the references therein. By extending the patterns constructed here
trivially in the second spatial direction, the above mentioned stability analysis
can be directly extended to include the stability (and bifurcations) of planar
(multi-)fronts/interfaces (where we for simplicity neglect the (technical) fact that
(3.5) takes a somewhat different form in R2, [106, 175], 3.A). Unlike in the
extended-Klausmeier model [133, 143], localized stripes are of 2-front type and
may thus be expected to possibly be stable – see [9] for a rigorous treatment in
a generalized Klausmeier type model (posed on a sloped terrain without a diffu-
sion term for the water component – like the original Klausmeier model [90]).
Naturally, the interfaces will evolve and their curvature driven dynamics may be
studied analytically along the lines of [111]. Especially in the above discussed
multi-front transition region between bare soil and homogeneous vegetation, the
ecosystem dynamics generated by the model may be very rich and complex –
see for instance [73–75].

As a final direction of possible future research, we note that our results may
be used to establish the existence – and later stability – of localized patterns in
the original 3-component model of Gilad et al. [62]. Since (3.1) and thus (3.5) –
is obtained from the nonlocal, 3-component model of Gilad et al. (see (3.A.61))
in a systematic way – i.e., by taking several limits ([106, 175], 3.A) – it may be
expected that it is possible to establish the persistence of patterns constructed
here into the nonlocal, 3-component setting, especially since these patterns are
constructed geometrically through transversal intersections of invariant mani-
folds. Once again, this is interesting and relevant both from mathematical and
ecological point of view: (asymptotically) small nonlocal and topographical
terms may have a significant effects, even on the most simple – ‘basic’ – (vege-
tation) patterns exhibited by a model [10, 49].
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Appendices

3.A Derivation of the model equations in one spa-
tial dimension

We follow [175] to briefly show how model (3.1) is derived from the original
model introduced in [63] and given by

∂T B = GBB(1 − B/K) − MB + DB∇
2B,

∂T W = IH − N(1 − RB/K)W −GWW + DW∇
2W,

∂T H = P − IH + DH∇
2(H2) + 2DH∇H · ∇Z + 2DH H∇2Z,

(3.A.61)

where

GB(X,T ) = Λ

∫
Ω

G(X,X′,T )W(X′,T )dX′ (3.A.62a)

GW (X,T ) = Γ

∫
Ω

G(X′,X,T )B(X′,T )dX′ (3.A.62b)

G(X,X′,T ) =

 1√
2πS 2

0


2

exp
− |X − X′|2

2S 2
0(1 + EB(X,T ))2

 (3.A.62c)

I = A
B(X,T ) + Q f
B(X,T ) + Q

(3.A.62d)

with X = (X,Y) the spatial coordinates of the 2-dimensional system. The last
equation in (3.A.61) describes overland water flow with H being the height of a
thin layer of surface water above ground level given by the topography function
Z. We consider the case of a flat terrain , for which Z = constant, and of high
infiltration rates I, both in bare soil and vegetated areas (no infiltration contrast),
for which I can be assumed to be independent of B. Both conditions are met in
the Namibian fairy-circles ecosystems that consist of sandy soil. Since H varies
on time scales much shorter than those of W and B, these conditions imply fast
equilibration of surface water at H = P/I. Insertion of this equilibrium value in
the equation for W results in the elimination of the surface water equation.
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A further simplification we make is related to the nonlocal forms of the biomass
growth rate, GB, and the water uptake rate, GW , in (3.A.61). We assume, con-
sistently with the plant species in the Namibian fairy-circles ecosystems, that
the roots, described by the root kernel G(X,X′,T ), are laterally confined. We
employ this assumption by taking the lateral root extension of a seedling, S 0, to
be very small. Using the limit S 0 → 0 in the integrals in (3.A.62c) we obtain,
for a 1-dimensional system, the simpler algebraic expressions

GB(X,T ) = Λ

∫
Ω

lim
S 0→0

1√
2πS 2

0

exp
− |X − X′|2

2S 2
0(1 + EB(X,T ))2

 B(X′,T )dX′

= Λ (1 + EB(X,T )) B(X,T ). (3.A.63)

Similarly,

GW (X,T ) = Γ (1 + EB(X,T )) W(X,T ). (3.A.64)

Inserting these expressions in (3.A.61) we obtain the 2-component model (3.1).
Finally, we note that in [175] this reduction was performed in 2 space dimensions
and that the general n-dimensional situation is considered in [106].

3.B The derivation of the scaled model
Introducing the scalings (3.2) into (3.1) yields, αδBt = αβΛWB(1 − αB/K)(1 + αEB) − αMB + αγ2DBBxx,

βδWt = P − NβW(1 − αRB/K) − αβΓWB(1 + αEB) + βγ2DWWxx,
(3.B.65)

which can be brought into the form,
δK

α2βΛE
Bt =

(
K
α2E

W −
MK

α2βΛE

)
B +

K
αE

(
E −

1
K

)
WB2 −WB3 +

γ2K
α2βΛE

DBBxx

δK
α2βΛE

Wt =
PK

α2β2ΛE
−

K
α2βΛE

[
N

(
1 −

αR
K

B
)

+ αΓB(1 + αEB)
]

W +
γ2K
α2βΛE

DWWxx.

(3.B.66)
By choosing δ and γ as in (3.3), we arrive at,

Bt =

(
K
α2E

W −
MK

α2βΛE

)
B +

1
α

(
K −

1
E

)
WB2 −WB3 + Bxx,

Wt =
PK

α2β2ΛE
−

K
α2βΛE

[
N

(
1 −

αR
K

B
)

+ αΓB(1 + αEB)
]

W +
DW

DB
Wxx.

(3.B.67)
Next, we use our freedom in α and β to simplify the B-equation and scale the
factors of the B- and WB2-terms (to −1 and to +1 respectively) – which is
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achieved by the choices in (3.3),
Bt =

(
KE

(KE − 1)2 W − 1
)

B + WB2 −WB3 + Bxx,

Wt =
α2PΛE

M2K
−

[
N

(
1 −

αR
K

B
)

+ αΓB(1 + αEB)
] W

M
+

DW

DB
Wxx.

(3.B.68)

This is equivalent to (3.5) by definitions (3.4) and (3.6).

Note that our choice to scale the factor of the term WB2 in the B-equation to +1
implies – together with the (implicit, natural) assumption that B̃ and B have the
same signs (3.2) – that we have chosen to consider EK > 1. Of course, it may
happen that 0 < EK ≤ 1. In these cases, either the term WB2 disappears from
the equation – in the ‘non-generic’ case EK = 1 – or its pre-factor can be scaled
to −1. All of the analysis in this work can also be performed for EK ≤ 1, without
any conceptual differences. However, we chose to focus of EK > 1 – and thus
on a +WB2 term in (3.5) – to not further complicate the necessary ‘algebra’.

3.C Lemma 2.6 and the Bogdanov-Takens bifurca-
tion scenario

A planar ODE of the form yX̃ = z ,

zX̃ = β1 + β2y + y2 + syz + G(y, z). ,

for β1, β2 ∈ R, s = +1 is known to possess two fixed points - a saddle and a
focus - with an unstable periodic orbit (that emerged from the focus in a Hopf
bifurcation in the open parameter region)

SBT =

{
(β1, β2) | β2 < 0 , β1 < −

6
25
β2

2 + o(β2
2)
}
,

The right border {β2 < 0, β1 = 0} marks the Hopf bifurcation, while the left

border {β2 < 0 , β1 = −
6
25
β2

2 + o(β2
2)} describes the region where a homoclinic

orbit emerged from the periodic orbit (whose period tends to infinity towards
that border).

Here, we denote the slow system (3.38) by wX = q ,

qX = F(w) + εcqρ1(w) + G(w, q)
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where F(w) = −A+(B + aΘ) w+Cw

√
a +

1
4
−

1
w

and G accounts for the higher

order term, and assume that the parameters are chosen such that both fixed points
are on M+

ε , D is close (but beyond) the saddle-node bifurcation point, that is,

D =
C2

4A −σ
2A , 0 < σ � 1 and the w-coordinate of both emerging fixed points

is well within the strip (4/(1 + 4a), 1/a). For σ sufficiently small, there is a
neighborhood of wS N

0 such that the slow ODE has the form wX = q ,

qX = µ1 + µ2w + µ3w2 + δq + µ4wq + G̃(w, q)
(3.C.69)

where

µ1 = F(wS N
0 ) , µ2 = F′(wS N

0 ) , µ3 =
1
2

F′′(wS N
0 ) , δ = εcρ1(wS N

0 ) , µ4 = εcρ′1(wS N
0 ) ,

and µ j = µ j(σ2), δ = δ(σ2). By assuming the non-degeneracy condition

µ3(σ2)µ4(σ2) , 0, performing a shift and scaling q = q̃ −
δ(σ)
β4(0)

(assuming that

δ(0) , 0 for simplicity), w =
µ3(σ2)
µ4(σ2)2 y, X̃ =

∣∣∣∣∣∣µ3(σ2)
µ4(σ2)

∣∣∣∣∣∣ X, we bring (3.C.69) into

the form  yX̃ = z ,

zX̃ = β1 + β2y + y2 + syz + G(y, z). ,

where

β1(σ2) =
µ4

4(σ2)

µ3
3(σ2)

µ1(σ2) , β2(σ2) =

(
µ4(σ2)
µ3(σ2)

)2

µ2(σ2) ,

and s = sign(β3(σ2)β4(σ2)). Hence, in order to conclude the corresponding
scenario as described for SBT for our original system, it remains to analyze the
mapping σ2 7→ (β1(σ2), β2(σ2)), which we refrain from doing here.


