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2
Multi-stability of model and

real dryland ecosystems
through spatial

self-organization

Spatial self-organization of dryland vegetation constitutes one of the most
promising indicators for an ecosystem’s proximity to desertification. This
insight is based on studies of reaction-diffusion models that reproduce vi-
sual characteristics of vegetation patterns observed on aerial photographs.
However, until now, the development of reliable early warning systems
has been hampered by the lack of more in-depth comparisons between
model predictions and real ecosystem patterns. In this chapter, we com-
bined topographical data, (remotely sensed) optical data and in-situ biomass
measurements from two sites in Somalia to generate a multi-level descrip-
tion of dryland vegetation patterns. We performed an in-depth comparison
between these observed vegetation pattern characteristics and predictions
made by the extended-Klausmeier model for dryland vegetation patterning.
Consistent with model predictions, we found that for a given topography,
there is multi-stability of ecosystem states with different pattern wavenum-
bers. Furthermore, observations corroborated model predictions regarding
the relationships between pattern wavenumber, total biomass and maxi-
mum biomass. In contrast, model predictions regarding the role of slope
angles were not corroborated by the empirical data, suggesting that inclu-
sion of small-scale topographical heterogeneity is a promising avenue for
future model development. Our findings suggest that patterned dryland
ecosystems may be more resilient to environmental change than previously
anticipated, but this enhanced resilience crucially depends on the adaptive
capacity of vegetation patterns.
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1 Introduction

A key aim of ecological modeling is to generate an understanding of the mech-
anisms driving observed patterns [99]. A significant challenge in this pursuit,
however, is that multiple alternative processes may generate the same emergent
outcome [48, 70, 99, 153], a phenomenon also referred to as equifinality [93, 94].
As a result, modeling efforts may reveal that a particular ecological pattern can
be explained by a suite of alternative driver mechanisms. Therefore, a match
between a pattern simulated with a mechanistic model and a pattern observed in
a real ecosystem may only constitute limited support for the modeled mechanism
being its true driver [70, 93, 94].

Pattern-oriented modeling [69, 70] aims to address the challenge of equifi-
nality of alternative model formulations. In this approach, model assessment
is based on the degree to which the output corresponds to observed patterns.
A distinction is made between strong and weak patterns. Strong patterns are
the dominant emergent features a model should reproduce, such as the cycles
within predator and prey population sizes, or a spatial distribution of vegetation
patches [69, 94]. Weak patterns are typically qualitative relationships, such as
the existence of a population over a specific timespan, or a positive association
between one state variable and another [69, 94]. Rather than comparing model
output to a single strong pattern, additional comparisons to multiple weak pat-
terns, at different scales or levels of organization, provide more power to model
validation and selection procedures [69, 70, 94].

A specific type of ecological patterns that has received considerable attention
is regular spatial patterning of sessile biota [126]. On flat terrain, the reported
patterns are gaps, labyrinths, and spots [124, 161]. On sloping grounds banded
patterns form, their regular spacing enabling a description of the characteristic
band-inter-band period and wavenumber. Evidence is accumulating that these
patterns are self-organized, meaning that the larger-scale patterning is driven by
internal ecosystem processes operating at smaller scales [125, 126]. The cru-
cial component in this self-organization process is a long-range negative effect
of biota on itself, either directly or through modulation of resource availabil-
ity. In cases where this long-range negative feedback is coupled to a locally
positive feedback, the mechanism creating pattern formation may be linked to
the existence of alternative stable states, as well as the possibility of so-called
catastrophic shifts between these states [125]. This phenomenon has been most
prominently studied in (semi-)arid ecosystems, where decreases in resource
availability or increases in grazing pressure may trigger catastrophic shifts from
vegetated states to desert states without vegetation [103, 115, 127]. In this con-
text, the formation of regular spatial vegetation patterns may indicate proximity
to a threshold of catastrophic change [125].
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There is a long tradition in the scientific literature of explaining regular spa-
tial patterning with reaction-diffusion models [29, 114, 150]. In line with this
work, a variety of reaction-diffusion models has been applied to investigate self-
organization in (semi-)arid ecosystems [62, 90, 124, 161]. Despite the broad
support for the findings obtained with these models and their implications for
(semi-)arid ecosystem functioning, comparisons of model results with empirical
data have mainly been limited to comparison of a single strong pattern, namely
the spatial distribution of vegetation patches. Until now, the few studies consid-
ering additional weak patterns have shown that reaction-diffusion model simu-
lations successfully reproduce associations between pattern shape and aridity,
and associations between pattern shape and slope of the terrain [34]. In addition,
models that account for sloped terrain also seem to capture the observed migra-
tion of the location of banded patterns in uphill direction [33]. Despite these
promising agreements between model results and empirical data, a more system-
atic comparison between model results and data, based on multiple patterns at
different levels of organization [69, 70], was still lacking.

Advanced model analyses that have recently been applied to ecological mod-
els have yielded a number of findings which, when confronted with high quality
remote sensing products, makes a more systematic comparison possible. More
specifically, recent theoretical studies have shown that for a given environmental
condition (i.e., a given parameter combination), not a single ecosystem state,
but multiple ecosystem states with patterns spanning a range of wavenumbers
may be stable, hence observable [143, 146, 155]. The range of observable
patterns, across a range of environmental conditions forms a bounded region
in (parameter,wavenumber)-space. This region is referred to as the Busse bal-
loon, after F.H. Busse, who studied similar phenomena in the field of fluid
dynamics [18]. Although the patterned ecosystem states in the Busse balloon are
defined by their wavenumber, other properties, like migration speed and spatially
averaged biomass, have also been studied [138] and are suggested to depend on
the position of a system within the Busse balloon. These theoretical findings pro-
vide multiple additional weak patterns that can be compared to empirical data,
providing opportunities for more powerful tests of the validity of the developed
reaction-diffusion models to describe dryland ecosystems.

The aim of this study was to confront theoretical findings regarding pattern
wavenumber, biomass and migration speed with the same pattern properties
derived from aerial imagery and remote sensing products of banded vegetation
patterns in the Horn of Africa, a location with prominent undisturbed presence of
vegetation pattern formation. Hence, a multi-level comparison between theory
and data in line with the pattern-oriented modeling approach was conducted [69,
70, 94].
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2 Theory

2.1 Model description
Multiple reaction-diffusion models of dryland vegetation dynamics include a
mechanism in which vegetation acts as an ecosystem engineer, locally increas-
ing the influx of available water [62, 90, 124, 161]. Despite the different nu-
ances between these models, a number of predictions can be robustly derived
from these frameworks. One of the simplest of these ecosystem models – and
the archetype considered in this article – is an extended version of the dry-
land ecosystem model by Klausmeier [90, 155], which we will refer to as the
extended-Klausmeier model. This model describes the interaction between wa-
ter, w, and plant biomass, n. A non-dimensional version of this model is used for
the purposes of this article. A dimensional version of the model and the physical
meaning of its parameters can be found in Appendix 2.A. The model is given by
the following equations

∂w
∂t

= e
∂2w
∂x2 +

∂(vw)
∂x

+ a − w − wn2,

∂n
∂t

=
∂2n
∂x2 − mn + wn2.

(2.1)

The reaction terms model the change in water as a combined effect of rain-
fall (+a), evaporation (−w) and uptake by plants (−wn2). The change of plant
biomass comes from mortality (−mn) and plant growth (+wn2). Dispersion by
plants is modeled as diffusion and the movement of water as a combined effect
of diffusion and advection. The latter is due to gradients in the terrain, which are
proportional to the slope parameter v.

2.2 Theoretical outcomes

1 Multi-stability of patterned states

Reaction-advection-diffusion equations in general – and the extended-Klausmeier
model in particular – exhibit a vast variety of spatial patterns [96, 117]. However,
not all feasible patterns are stable solutions of these models. Which patterned
states are stable (hence, observable) depends on the combination of the model
parameters. For regular patterns, the concept of the Busse balloon can help to
illustrate this dependency [18]. A Busse balloon is a model dependent shape in
the (parameter,wavenumber)-space that indicates all combinations of parameter
and wavenumber that represent stable solutions of the model. If, for a given
set of model parameters, a wavenumber k lies within the Busse balloon, then
regular patterns with wavenumber k are observable. So, in measurements, all
(non-transient) patterns are expected to be present in the Busse balloon.
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Typically, the Busse balloon is a high-dimensional structure due to the num-
ber of parameters in a system. Therefore, usually, only one parameter is varied
when a Busse balloon is visualized. This produces a 2D-slice of the full Busse
balloon. In the context of desertification research, the straightforward choice
would be to vary the rainfall [146]. However, mean annual rainfall was relatively
constant in our study sites during the observation period considered. Instead,
topography (i.e., the slope gradient) comprised the main source of environmen-
tal variation within our study areas. Thus, relevant theoretical predictions for
our study sites can be generated by varying the slope parameter v (while keep-
ing rainfall constant). Here, we present two of such 2D-Busse balloon slices
for the extended-Klausmeier model (Figure 2.1), which were constructed by
tracking the boundary of the Busse balloon using numerical continuation meth-
ods [122, 141, 143, 146]. The shaded region in these figures indicates the com-
binations of pattern wavenumber k and slope v for which stable solutions exist.
Thus, the model shows multi-stability; a given slope v can sustain a continuous
range of wavenumbers k. That is, knowing all current parameter values of a
system is not enough to predict the pattern, but only gives a range of possible
wavenumbers – as indicated by the Busse balloon. For patterns with wavenum-
bers above this range, there are too few resources to sustain all bands; below
this range, there is an abundance of resources that leads to the formation of ad-
ditional vegetation bands. It is in general not possible to predict which of these
wavenumbers is selected at a specific location; small changes in the (entire) his-
tory of environmental changes can have large impacts on the wavenumber that is
currently selected [138, 140]. To understand these hysteretic dynamics, it is vital
to acknowledge that model patterns do not change their wavenumber unless they
have to [141, 146]: if an environmental change forces the system outside of the
Busse balloon, the current pattern has become unstable, and will need to adapt
into a new pattern that is again stable – thus part of the Busse balloon. During
this (fast) adaption, only part of the vegetation bands are lost, while the remain-
ing bands increase in volume; these adaptations thus have limited effect on the
total biomass in the system [146]. Hence, multiple wavenumber adaptations
are expected to occur after each other that will, gradually, lead to a complete
desertification of the system [146]. Both the moment of a destabilization and the
then occurring wavenumber adaption can be vastly different depending on (his-
torical) environmental conditions [11, 138, 140]. Thus, indeed, precisely which
wavenumber k gets selected at each of these destabilizations is difficult to predict.

Numerical simulations help to get an insight in the kind of wavenumber
distribution one ought to expect in observations. To illustrate the typical spread in
wavenumber, a total of 200 simulations on a flat terrain (v = 0) were run, where
the rainfall parameter was slowly decreased from a = 3 to a = 0.5. The initial
configurations for these runs were chosen randomly, but close to the equilibrium
state of uniform biomass before the onset of patterns (between 90% and 110%
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(a) a = 3.0, m = 0.45 and e = 500.
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(b) a = 2.5, m = 0.45 and e = 500.

Figure 2.1: (slope, wavenumber)-Busse balloon slices for the extended-Klausmeier
model for two different values of the rainfall parameter a. A banded pattern solution
to the extended-Klausmeier model with slope v and wavenumber k is stable if the (v, k)-
combination lies inside the Busse balloon. This indicates that a wide spread of (v, k)-
combinations yields stable banded patterns. The latter are therefore expected for a broad
range of wavenumbers – and not for specific (v, k)-choices only. The shape of a Busse
balloon can change between models and between parameter values. This is illustrated in
the figures which were computed for different a-values.
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(a) Total biomass contours.
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(b) Migration speed contours

Figure 2.2: (slope, wavenumber)-Busse balloon slices for the extended Klausmeier
model that include contours for the total biomass (per area) B (a) and the migration
speed c (b). Biomass (per area) is positively correlated with both wavenumber k and
slope v; the migration speed is negatively correlated with the wavenumber k. Model
parameters used: a = 3, m = 0.45, e = 500.

of the uniform vegetated equilibrium state). At the end of each simulation –
after several pattern selections – the wavenumber of the remaining pattern was
measured. This gives a snapshot of the wavenumber distribution, similar to the
snapshots acquired from observations. Note that a similar experiment was done
before, albeit on a much smaller scale [141]. The histogram of the resulting
wavenumbers is shown in Figure 2.3. It shows a substantial spread, which goes
from a wavenumber of 0.08 to 0.16 (a difference of 100%).

2 Biomass & migration speed

Besides a wavenumber, each ecosystem state also has a specific biomass and a
specific pattern migration speed. The biomass of regular patterned states has
been studied using numerical simulations [146] and more general formulas have
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Figure 2.3: Histogram demonstrating a spread in wavenumber (k) at the end of 200
simulations of the extended-Klausmeier model on a flat terrain (v = 0) with model
parameters e = 500 and m = 0.45. These simulations had a random initial configuration
close to a stable fully vegetated state. A climate change was simulated by decreasing
the rainfall parameter a linearly from 3 to 0.5 over the course of 105 time unit, causing
several pattern selections and corresponding changes in wavenumber.

been derived for patterns with small wavenumber [11]. Both indicate that the
biomass (per unit area) is positively correlated with both the wavenumber k of the
pattern and the slope parameter v [146]; see also Figure 2.2a. This has a physical
interpretation: both steeper slopes and higher wavenumbers (lower wavelengths)
reduce the time it takes for water to reach vegetation bands, and thereby reduce
water losses during the transportation process. As a result, the vegetation will be
able to harvest water from the uphill inter-bands more effectively. The biomass
per wavelength is also of interest. The same studies indicate that the band
biomass (per wavelength) is increased when the wavenumber k is decreased
and when the slope v is increased. Hence, vegetation bands are expected to
have more biomass when other vegetation is farther away, because of the larger
(upslope) inter-band area water can be collected from.

The theoretical predictions for migration speed (of a pattern’s location) are a
bit more subtle. For terrains with a constant slope, numerical simulations have
been done [136, 139] and general formulas have been determined for patterns
with small wavenumber [11, 133]. In these idealized limit cases, migration
speed is negatively correlated with wavenumber k and positively correlated with
slope v. However, beyond these idealizations, numerical computations show the
contour lines are slightly humped, see Figure 2.2b. This indicates a (slightly)
negative correlation between speed and slope v for large slopes.

2.3 Testable predictions
The theoretical findings in this section lead to predictions that can be con-
fronted with the field data. First of all, the model possesses a Busse balloon,
which should lead to a wide spread in observable pattern wavenumbers (Fig-
ures 2.1 and 2.3). Moreover, biomass and migration speed are affected by pattern
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wavenumber. The biomass (per unit area) is expected to be positively correlated
with both the wavenumber and the slope of the terrain (Figure 2.2a). Migration
speed is expected to decrease as a function of pattern wavenumber; the effect of
slope on the migration speed is context-specific, as it can be either positive or
negative depending on the specific topographical and environmental conditions
(Figure 2.2b).

3 Data acquisition & processing
For this comparison study, two sites were selected in Somalia. The first one
(8◦0′14′′ to 8◦15′11′′N; 47◦11′54′′ to 47◦31′4′′E) is located in the Haud pas-
toral region, which will be referred to as the ‘Haud’ site. The other site (9◦18′49′′

to 9◦34′34′′N; 48◦8′15′′ to 48◦43′15′′E) is located in the Sool-Plateau pastoral
area and will be called the ‘Sool’ site. Both sites mainly exhibit banded veg-
etation and have ground slopes ranging from 0% to 1%. Vegetation mainly
constitutes of perennial grasses, which typically have an average lifetime of 1-7
years [19, 95, 171]. A more detailed description of these sites can be found in
Appendix 2.B; a map with the location of these sites along with the mean annual
rainfall in these areas is shown in Figure 2.D.1.

To study the pattern properties in these study areas, each site was divided
into square windows (of size 750m×750m for the Haud site and of size 1010m×
1010m for the Sool site). As has been done in previous studies, the type of
pattern (e.g. bare soil, banded vegetation), along with its wavenumber, was de-
termined using spectral analysis [7, 27, 34, 118]. Only those windows were kept
that exhibited banded vegetation with a wavenumber that could be determined
with enough certainty (i.e., between 0.4 and 2.5 cycles per 100m). Moreover,
windows with a too large curvature were ignored, because the theoretical predic-
tions only apply to terrains with a constant slope. To obtain data on the migration
speed of the banded vegetation, a cross-spectral analysis was performed, along
the lines of previous studies [8, 33, 66]. A more in-depth explanation of the
processing steps can be found in Appendix 2.D.

The topographical data used in this article were derived from the Advanced
Land Observation Satellite (ALOS) World 3D (AW3D) digital raster elevation
model; biomass data for the Haud site have been retrieved from a recently made
map on (above-ground) biomass of African savannahs and woodlands [15] (no
reliable data for the Sool site was available). Finally, optical data was acquired
from various sources: three multi-spectral WorldView-2 images were mosaicked
and used as reference for the Haud site; a panchromatic Ikonos “Geo” Imagery
was acquired for the same site. For the Sool site, six WorldView-2 images were
used and a panchromatic Satellite Pour l’Observation de la Terre (SPOT) 4 image
preprocessed to level 2A was used as reference layer (©Cnes 2004 – Spot Image
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(a) Frequency distribution for the Haud site
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(b) Frequency distribution for the Sool site

Figure 2.4: Frequency distribution of banded patterns as function of ground slope and
wavenumber (number of cycles per 100m) for the Haud site (a) and Sool site (b). The
distribution on the right indicates the relative frequency of banded vegetation with corre-
sponding wavenumber. The color gradient indicates the amount of windows (N).

distribution). Moreover, two 7µm digitized panchromatic declassified Corona
spy satellite image, national intelligence reconnaissance system, available from
the US Geological Survey, were obtained for the Haud and the Sool sites. More
information about these data sets can be found in Appendix 2.C.

4 Results

Empirical Busse balloon

The most prominent pattern property studied in this article is the pattern wave-
number, which was derived from aerial imagery. The resulting distribution of
wavenumbers is reported in Figure 2.4 (a map with the spatial distribution of
wavenumbers over the study sites is shown in Figure 2.D.2). These figures show
the number of windows that have a particular slope-wavenumber combination.
Also given is the relative frequency that indicates the spread of wavenumbers
across all windows. The data display banded vegetation with wavenumbers
roughly between 0.4 and 2.0 cycles per 100m. Importantly, this large spread is
present for all of the ground slope values which had a representative sample size
and could not be explained by present heterogeneities in elevation or rainfall.
This shows that for a given environmental condition not a single wavenumber
pattern, but rather multiple patterns spanning a sizable range of wavenumbers are
observable. Additionally, measurements used to determine the migration speed
show barely any changes in wavenumber over the scope of 39 years (consistent
with [66]), indicating that these patterns are in fact quite stable. Therefore, the
observations are in agreement with the existence of a Busse balloon in the real
ecosystem.
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Figure 2.5: Biomass distribution per area (a) and per period (b) as a function of ground
slope and wavenumber (cycles per 100m) for the Haud site. The color gradient indicates
the amount of biomass measured for a particular (slope, wavenumber)-combination.

Biomass and migration speed
The processed biomass data for the Haud site is shown in Figure 2.5. In Fig-
ure 2.5a the relation between biomass per area (in t ha−1) is plotted against the
ground slope and the wavenumber. From the same data the biomass per period
is computed – which is biomass per area divided by the window’s wavenum-
ber. The resulting plot is given in Figure 2.5b. The measurements of biomass
show agreement with theoretical predictions of model studies; in both, the total
biomass increases (all slopes: r2 = 0.64, n = 714, P < 0.001; linear regression)
and the biomass per period decreases when the wavenumber increases (all slopes:
r2 = 0.09, n = 714, P < 0.001; linear regression). However, a more in-depth in-
spection reveals disagreements. For one, the effect of ground slope is not strongly
present in the data, though its effect is clear in the extended-Klausmeier model
(Figure 2.2a). Additionally, the more refined details of wavenumber dependence
also differ (it is concave in the theoretical model and convex in the real-life data).

The migration speed is plotted in Figure 2.6 for both the Haud and the Sool
sites. These measurements show an increase in speed when the wavenumber
decreases (Haud: r2 = 0.43, n = 104, P < 0.001; Sool: r2 = 0.45, n = 79, P <
0.001; linear regression), corroborating theoretical predictions (see Figure 2.2b).

5 Discussion

Leading ecological frameworks emphasize the potential role of regular spa-
tial vegetation patterns as indicators for proximity to catastrophic ecosystem
shifts [125, 129]. In these frameworks, however, mono-stability of patterns is
implicitly assumed, suggesting that for a given environmental condition there is
only one stable vegetated state, i.e., a single pattern with a specific wavelength
[125, 129]. Subsequent theoretical insights have challenged this view, highlight-
ing the possibility of multi-stability of patterns, bounded by the so-called Busse
balloon. In this study, we provide empirical evidence corroborating the exis-
tence of a Busse balloon for stable vegetation patterns in dryland ecosystems.
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Figure 2.6: Observed (average) migration speed of vegetation bands in the Haud (a) and
the Sool (b) sites over the course of 39 years as a function of ground slope and wavenum-
ber (cycles per 100m). The color gradient indicates the migration speed for a particular
(slope, wavenumber)-combination. The sign indicates the direction of migration rela-
tive to the slope, with positive and negative values indicating upslope and downslope
migration respectively.

Specifically, our two study sites in Somalia revealed the sustained (i.e., over a
39 year period) co-occurrence of banded vegetation with wavenumbers varying
over a substantial range. Our findings have major implications for the way in
which vegetation patterns indicate ecosystem resilience and mediate ecosystem
responses to environmental change.

Specifically, the existence of a Busse balloon implies that an ecosystem’s
resilience can no longer merely be defined by the magnitude of environmental
change it can cope with [80]. In these systems there is not one tipping point, but
a cascade of destabilizations – indicated by the boundary of the Busse balloon.
When environmental changes push a patterned ecosystem beyond the boundary
of the Busse balloon, a wavelength adaptation occurs, and typically part of the
vegetation patches are lost, while the remaining patches grow in size. The extent
of these adaptations depends on the rate of environmental change [138, 144–146].
Moreover, human activities or natural variations can cause local disturbances, di-
minishing the regularity of ecosystem patterns. The recovery process from such
disturbances may involve a rearrangement of patches in the landscape [11, 146].
Again, the extent to which such recovery is possible depends on the rate of envi-
ronmental change that the ecosystem is exposed to [145]. Hence, the existence
of a Busse balloon of stable dryland vegetation patterns suggests that adaptability
of patches to changing environmental conditions provides a more comprehensive
indicator for the ecosystem’s resilience than the shape of the pattern itself, as
suggested in current leading frameworks [125, 129]. To fully comprehend the
consequences of this, it is necessary to provide a more thorough understanding
of what determines the spatial rearrangement of vegetation patches resulting
from disturbances, environmental changes, and spatial heterogeneities in the
landscape.

The pattern-oriented modeling approach was mainly developed to aid model
development and design, but the approach can also be used to evaluate the suc-
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cess of existing models to explain multiple strong and weak patterns observed
[69]. This so-called ‘reverse pattern-oriented modeling’ approach [69] was used
in the current study. Such systematic comparisons between model predictions
and empirical data can be part of an iterative process toward further model im-
provement [93, 94]. In this context, it is interesting to note the discrepancy that
we observed between model predictions and field measurements of the influence
of the ground slope on pattern migration speeds. Because topography critically
changes the distribution of water within ecosystems, it also alters the migration
speed of patterns. Therefore, it is of interest to determine the effects of more
complex topographies for dryland ecosystem dynamics.

Moreover, the available empirical data aligns with theoretical predictions on
both strong and weak patterns. However, environmental conditions were charac-
terized by differences in slope gradient only. Although, indeed, the topography
comprised the main source of environmental variation, other less pronounced
heterogeneities are present and can cause spreads in wavenumber. The observed
spread could not be attributed to variation in rainfall or elevation, but the role of
other heterogeneities (e.g. soil composition and grazing activity) could not be
fully determined for lack of precise and accurate data sets. When these become
more readily available, further research might infer to which extent the observed
wavenumber spread is explained by these environmental drivers.

Since their appearance on aerial photographs in the 1950s [102], the origin of
regular vegetation patterns in dryland ecosystems has been a topic of fascination
within the scientific community. The study of these patterns through reaction-
diffusion modeling subsequently highlighted the importance of these patterns
for the functioning of dryland ecosystems, and their response to environmental
change. The recent increase in the availability of optical and topographical data
provides unprecedented opportunities to confront model predictions with empir-
ical data [94, 140]. In this study, we combined these data sources with in-situ
measurements of biomass, enabling the comparison of multiple pattern charac-
teristics of Somalia drylands with predictions derived from reaction-diffusion
modeling. The empirical evidence corroborates theories of multi-stability of
patterned vegetation states, improving our understanding of these systems’ re-
silience to environmental changes. In addition, our results call for more detailed
investigations of the role of small-scale topographic variability in pattern forma-
tion and migration.



Appendices

2.A Dimensional extended-Klausmeier
The dimensional extended-Klausmeier model is given by (2.A.2). The model
used throughout the chapter, equation (2.1), can be obtained from the dimen-
sional version by the right set of scaling. Following [146, Appendix A], the
required scaling is given in (2.A.3) for the variables and in (2.A.4) for the pa-
rameters of the model.

∂W
∂T

= E
∂2W
∂X2 +

∂(VW)
∂X

+ A − LW − RWN2,

∂N
∂T

= D
∂2N
∂X2 + RJWN2 − MN

(2.A.2)

w =

√
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L
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√
R
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√
L
√

D
X t = LT (2.A.3)

a =

√
RJ

L
√

L
A m =

1
L

M v =
1
√

LD
V e =

E
D

(2.A.4)

In these equations, water is supplied to the system at a rate +A, modeling uniform
rainfall. Because of evaporation, water is lost at a rate −LW; water is also lost
through uptake by plants, at rate −RWN2. The parameter J models the increase
of biomass per unit of water consumed, which results in the reproduction of
plants at rate +RJWN2. Plant mortality is modeled as −MN. The parameter V is
the speed at which water flows downhill; this is proportional to the slope gradient.
Finally, E is the diffusion coefficient of water; D is the diffusion coefficient of
vegetation, modeling the dispersal of biomass. See also [90].

2.B Description of study sites
For this study, two sites in Somalia were selected that exhibit mostly banded
vegetation. The Haud site is a 35km by 28km study area (8◦0′14′′ to 8◦15′11′′N;
47◦11′54′′ to 47◦31′4′′E) at 650-750m elevation in the Haud pastoral region –
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see also Figure 2.D.1. Here, banded vegetation dominates the landscape with
some minor occurrences of gapped vegetation on flat ground on the summits of
rolling hills. Bands display a broad range of wavelengths (from 60m to 200m).
Ground slope ranges from 0 to 1%. Mean annual precipitation, ranging from
210mm to 270mm, is distributed in two rainy seasons around spring (April-May)
and fall (September-November) separated by two dry seasons. Rainfall data was
extracted from Climate Hazards Group InfraRed Precipitation with Stations [59].
Estimates were provided by [35].

In the north-eastern corner of this area near Kalabaydh city, the soils of the
bands and inter-bands are very similar [78]. Moreover, the large perennial tus-
sock grass Andropogon kelleri dominates the core of the band along with some
scattered small trees and bushes [78]. Characteristically, plants are sparsely dis-
tributed on the downslope side of the bands. Along this edge and below it, in
the bare inter-band, dead trees of all of the species found within the bands were
present. Along the bands’ upslope side, some initial colonization by two peren-
nial grass species, tussock-forming Chrysopogon aucheri var. quinqueplumis
and stoloniferous Dactyloctenium scindicum, was observed [78]. Although the
lifespan of perennial grasses is highly variable, ranging from less than a year
to multiple decades [95], the average lifespan of perennial grasses in arid and
semi-arid environments is typically 1-7 years [19, 95, 171]. Upon inspection of
satellite imageries taken 39 years apart, an upslope migration speed of 0.3m yr−1

was observed [33].

The Sool site is an approximately 77km by 29km study site, located 190km
to the NE of the Haud site (9◦18′49′′ to 9◦34′34′′N; 48◦8′15′′ to 48◦43′15′′E);
it is located in the Sool-Plateau pastoral area, which has more arid conditions
(100mm-140mm) and higher elevations (900m-1000m) – see also Figure 2.D.1.
Here, the ground slope ranges from 0 to 1%, and ground is either bare or covered
with banded vegetation which sometimes displays a dashed physiognomy. To
the authors knowledge, there is no published record of the composition of these
vegetated bands and associated soils. Remote sensing analysis of vegetation
dynamic in this area over the last decades have shown a continuous upslope
migration of the bands as well as a change in band width. However, no change
in wavelength has been observed [33, 66].

2.C Data sets

2.C.1 Topographical data
For both sites, topographical data was retrieved from the ALOS World 3D 30m
(AW3D30, v. 2.1) digital raster elevation model. This model describes the height
above sea level (in m, rounded to the nearest integer), at a ground resolution of
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approximately 30m at the equator. The elevation data was preprocessed for the
removal of artifacts by applying a global soft-thresholding on its dual tree com-
plex wavelet transform. Specifically, we set a threshold of 0.9 on the first five
dual-tree complex wavelet transform levels. From the preprocessed data, we cal-
culated the slope gradient (in %) and slope aspect (in degrees). We first extracted
square DEM windows of 33 by 33 cells (i.e., approximately 990m × 990m), cen-
tered on the image windows. We then applied a least squares fitting procedure
of an unconstrained quadratic surface on the unweighted elevation values. From
the first derivatives of this fitted surface, evaluated at the focal cell, we could
then calculate slope gradient and aspect analytically, following [146]. Complex
topographic features were discarded from subsequent analysis by ignoring win-
dows (see below) with quadratic fit RMSE above 1m or a total curvature (as
defined by [132]) above 10−10 radians per m2.

2.C.2 Biomass measurements
Recently, a map has been made with data on (above-ground) biomass of African
savannahs and woodlands at a resolution of 25m [15], which provides the biomass
data of the patterns studied in this article. This map is built from 2010 L-band
PALSAR mosaic produced by JAXA following a method adapted from [105],
while the perturbing sources that affect the SAR data have been minimized: the
environmental effects (soil and vegetation moisture) were reduced by stratifying
the African continent into wet/dry season areas, and the speckle noise inherent to
SAR data acquisitions was decreased by applying a multi-image filter developed
by [16] that preserves the spatial resolution of the images. Then, the sensitivity
of the radar backscatter to AGB was analyzed to develop a direct model relating
the PALSAR backscatter to AGB, calibrated with the help of in-situ and ancil-
lary data. The in-situ data were composed of 144 selected field plots, located
in 8 countries (Cameroon, Burkina Faso, Malawi, Mali, Ghana, Mozambique,
Botswana and South Africa), with plot size larger than 0.25ha and a mean plot
size of 0.89ha.

2.C.3 Optical data
Three multi-spectral WorldView-2 images, acquired on December 25th 2011,
January 21st 2012 and July 21st 2012, were mosaicked and used as reference
orthoimage for the Haud site. For the diachronic study, a panchromatic Ikonos
“Geo” imagery, with a 1m nominal ground resolution, was used as the reference
layer. It was acquired on January 7th 2006. Orthorectification was performed
using a rational polynomial coefficient (RPC) camera model block adjustment
without ground control points [71].

A mosaic of six WorldView-2 images, acquired between February 3rd 2011
and September 12th 2013, was used for the Sool sites. For the diachronic study,
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a panchromatic SPOT4 image preprocessed to level 2A, with a 10m nominal
ground resolution, was use as reference layer (©Cnes 2004 – Spot Image distri-
bution). It was acquired on February 18th 2004.

Two 7µm digitized panchromatic declassified Corona spy satellite image,
national intelligence reconnaissance system, available from the USGS, were
acquired on February 28th 1967 (KH-4A, mission 1039, AFT camera) and De-
cember 12th 1967 (KH-4B, mission 1102, FWD camera), respectively for the
Haud and the Sool. The images were co-registered with the orthorectified ref-
erence imagery. Co-registration was performed using a third-order polynomial
adjustment using landmarks such as geological features, crossroads, isolated
trees, or large termite nests. We obtained an RMS adjustment error below the
KH-4A ground resolution, which is 3m for this area. The resolution of the im-
agery was then lowered through pixel averaging to match the coarsest image pair.

The analysis of pattern wavelength was performed over the full area of the
study sites. However, for the diachronic study, a subset of each of the sites
covered by the historic and reference image was selected. Projection and datum
for all data sets were WGS 1984, UTM Zone 38N and 39N respectively for the
Haud and the Sool sites.

2.D Data processing

2.D.1 Spectral analysis, direction of anisotropy
and wavelength

On visible light digital images over drylands, bright pixels correspond to bare
soil, intermediate gray-scale levels to closed grass cover, and darker pixels to
woody vegetation. As a first approximation, gray-scale levels can thus be consid-
ered as a monotonically decreasing function of the above-ground biomass [28].
This approximation allows us to analyze the spatio-temporal dynamics of biomass
organization through image analysis techniques.

We used a Fourier windowing technique equivalent to short time Fourier
transforms to obtain spatial maps of dominant pattern wavelength λ and ori-
entation θ from the satellite images as previously used for banded vegetation
systems [7, 27, 34, 118]. We applied a two-dimensional (2D) Fourier transform
to obtain the power spectrum within square, non-overlapping moving windows.
In order to maintain resolution and signal-to-noise ratio a boxcar windowing
function to signal was applied. This choice is, in this case, reasonable as only
one periodic component is expected to be present in the vegetation. The tech-
nique provides information about the local wave-vector k = kx x̂ + kyŷ. The
two-dimensional (2D) fast Fourier transform f̃ (kx, ky) of the pattern of biomass
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f (x, y) was obtained for each window f̃ (k) of size L × L. As L increases, the
spatial resolution, i.e., localization in space of frequency or orientation change,
is reduced. Conversely, as L decreases, the frequency resolution is decreased,
i.e., the likelihood of separating frequency components close together in Fourier
space. To optimize both, L was chosen to be at least 3λ, i.e., 750m and 1010m
respectively for the Haud and the Sool sites.

To separate the characteristics of the signal that are meaningful for this study,
each k, of frequency 2π/λ (wavenumber), was decomposed into its orientation
θ and its magnitude. For each window, the power spectrum S (k) = | f̃ (k)|2 was
computed. The power spectrum measures how the variation, or power, of the
pattern is distributed over the wavevectors k, of different frequencies and spatial
directions. To identify the dominant k in each window, S (k) was binned into
annular rings of unit width [123]. The resulting radial spectrum thus quantifies
the contribution of successive ranges of spatial frequencies to the image variance
across all orientations.

To deconvolve the natural 1/k scaling of the power spectrum, the total power
within each annular ring, S (k), was computed instead of the mean power. The
location peak of this total power is used to define the most energetic wavenumber,
k1. To compensate for the discrete k-resolution in Fourier space, the location of
the weighted average k1 :=

(∑
k kS (k)

)
/
(∑

k S (k)
)

was computed over all rings
that formed part of the peak and contained more than 70% of the peak power.

The patterns were characterized in terms of level and orientation of anisotropy
(i.e., direction orthogonal to the long axis of the bands) following [34]. The av-
erage pattern orientation was studied using the circular mean direction weighted

by the power spectrum values, θ̄ :=
1
2

arctan2(S ,C), where

S :=

∑
k

2kx,y sin θx,y

 / ∑
k

k


and

C :=

∑
k

2kx,y cos θx,y

 / ∑
k

k

 .
The norm of the resultant vector, R̄ :=

√
S 2 + C2/

(∑
k k

)
, was used as an index of

pattern anisotropy. The division by the sum of periodogram amplitudes ensures
bounding between zero (perfect isotropy) and one (all variance concentrated in
one direction, i.e., perfect bands). Pattern orientation features were extracted
from the power spectrum, within the frequency ring characterizing periodic
vegetation patterns, i.e., between 0.4 and 2.5 cycles 100m−1 for both the Haul and
the Sool site, to exclude anisotropy sources resulting from large scale gradients
or small scale (anthropogenic) features.
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2.D.2 Pattern classification
The vegetation cover of each window was quantified by converting the gray-scale
intensity image to a binary image using the Otsu thresholding method [116].
Windows with less than 15% vegetation cover were considered as bare soil and
discarded. Windows with dominant patterns within the acceptable range (i.e.,
between 0.4 and 2.5 cycles 100m−1 for both sites) and with anisotropy index
above 0.2 were considered as banded patterns.

2.D.3 Cross-spectral analysis and migration speed
Scale specific comparisons between pairs of periodic 2D signals – in this case,
images taken at different dates – can be performed through 2D Fourier cross-
spectral analysis. In principle, this means identifying the frequencies and ori-
entations of patterns dominating in any two images as well as possible shifts
among them. Correction of radiometric variability between dates is not required
since Fourier coefficients are invariant to linear rescaling of gray-scale levels.
A detailed mathematical development of the analysis can be found in [8]. The
procedure can be summarized as follows [33, 66].

To assess band migration distance for each temporal pair of image windows,
a coherency spectrum and a phase spectrum were computed. The coherency
spectrum expresses the correlation between the frequency components of the
Fourier spectra of the pair of windows. For each spatial frequency, the co-
herency value is interpreted in a similar way to the classical Pearson’s coefficient
but in absolute values, because the sign of the correlation is expressed by the
phase spectrum. For each window pair, the maximum value of coherency and its
associated frequency were recorded along the direction of maximal anisotropy
computed for the first acquisition date. Window pairs with a maximum co-
herency below 0.9 were rejected from the analysis, because this indicates that
pattern characteristics (wavelength and orientation) changed between the dates.
Rejected windows often corresponded to man-made perturbations or ephemeral
patterns, which are not the subject of this study. The obtained frequency value
therefore corresponds to a pattern of constant scale and orientations dominating
at both acquisition dates. The corresponding phase-spectrum value provides
the phase difference, i.e., the angular distance, between the selected frequency
components at both dates in the maximal anisotropy direction. This value is
defined between −180 and 180 degrees, with the sign representing the forward
(+) vs. backward (−) displacement, with the direction of reference as the upslope
direction. Angular distances were then converted into meters by multiplying the
phase difference by the wavelength, which in turn were converted to an average
migration speed for the time period. This conversion allows for inter-site com-
parisons independent of varying time intervals. An inherent limitation to this
procedure is that only migration distances not exceeding half the wavelength
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will be correctly estimated (phase saturation). This condition was verified by
visual inspection prior to image analysis.

2.D.4 Assessment of uncertainty in calculations of slope gra-
dient and aspect from topographical data

As the digital raster elevation model contains errors, these will propagate into
derived estimates of slope gradient and aspect. Ideally, one would use ground
observations (e.g. using differential global navigation satellite systems) to as-
sess the magnitude of these errors (e.g. [119]). Since such observations are
not available for our study areas, we used a simulation method to evaluate the
propagation of error from the elevation data to the estimates of slope gradient
and aspect. Specifically, we created artificial elevation grids with a fixed (from
here referred to as ‘true’) slope and aspect, and added to these grids (normally
distributed) random errors with a similar standard deviation as observed in the
AW3D30 dataset. The resulting elevation values were rounded to the nearest
integers, as this is also done in the AW3D30 dataset. Then, utilizing the same
procedures as described above (see section 2.C2.C.1), we derived slope gradients
and aspects from these simulated grids. Comparison of this ‘observed’ slope
and aspect and the ‘true’ slope and aspect of the grid yielded insight in the
propagation of errors from the elevation model to the calculated metrics. Seven
fixed slope levels were considered: 0; 0.025; 0.05; 0.1; 0.2; 0.3 and 0.4%. For
each level, we simulated 10, 000 replicate grids of errors that were added to the
fixed slope level. For each replicate, the aspect was a randomly assigned value
between 0 and 360 degrees.

Following the above procedure, we found that the distributions of errors in
the calculated slope gradients and aspects were relatively small, for all slope lev-
els considered (Figure 2.D.3). Because the estimated slope is bounded between
zero and positive infinity, a small positive bias was observed for slopes less than
0.1%. For slopes of 0.025% and higher, the RMSE is 0.010% and 95% of the
observed errors for slopes of 0.1% or higher are within ± 0.016% (5th and 95th

percentiles). For aspect, the magnitude of errors was inversely proportional to
the magnitude of the slopes (abscissa; Figure 2.D.3). For slopes of 0.2% and
higher, the RMSE is 2.9 degrees or lower, and 95% of the observed errors are
within ±4.8 degrees (5th and 95th percentiles). These results show that the errors
in calculated slopes and aspects were relatively small compared to the observed
range in the dataset. Hence, it is unlikely that correlations between pattern met-
rics and slope gradients, as observed in the main text, are strongly affected by
the errors originating from the underlying topographical database.

Moreover, it should be noted that the above procedure may even be over-
estimating the errors associated with the AW3D30 dataset (from here referred
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to as the 30m elevation dataset). To generate the simulated errors, we used the
global average standard deviation of the difference between the original AW3D
5m elevation dataset (from here referred to as the 5m dataset), from which the
30m dataset has been derived, and a reference LiDAR dataset. This standard
deviation is 1.73m for gently sloping terrain (below 17.6%) [148]. However, as
the 30m elevation dataset was produced by averaging non-overlapping windows
of 7 by 7 pixels of the 5m elevation dataset, the resulting standard deviation will
be lower [147]. Additionally, the ground slope in our study areas is at the lower
end of the 0-17.6% range, namely below 1.5%, and therefore likely to suffer
from smaller errors than reported for the whole range. Finally, the Somalian
area we are studying displays relatively small errors in elevation measurements
compared to other areas of the world [148].

2.D.5 Assessment of uncertainty in estimation of pattern fre-
quency from optical imagery

The estimation of the dominant pattern frequency using a Fourier windowing
technique introduces an unknown uncertainty in these estimations. This un-
certainty stems from the decomposition of the signal into a discrete set of fre-
quencies and from the noise in the analyzed (non-stationary) signal. To asses
the model’s uncertainty in the wavenumber estimations, we have used a simu-
lation method. Specifically, we simulated 200 synthetic images, representing a
two-dimensional sinusoid of each frequency class between 0.4 and 2.4 cycles
100m−1, with step size of 0.2. The directions of the sinusoidal waves were se-
lected randomly and the signal was standardized to have zero mean and standard
deviation of one. To mimic real images of vegetation patterns, we have added
red noise with zero mean and standard deviation of 0.5 to each simulated signal.
Red noise is a self-similar, or fractal, random spatial structure; this is a desirable
property here because these are common in nature and especially in natural land-
scapes [89]. The noise was created using the Fourier synthesis technique with
an energy spectrum exponent of 0.5 [36]. Finally, in order to account for the fact
that reflectance values are constant over the width of both vegetated and bare
bands, the signal was converted to binomial values; that is, values between 0
and 1 were rounded to the nearest integer value. Several examples of simulated
bands are presented in Figure 2.D.5.

Using the characteristics of the optical image windows of the Haud site (cell-
size of 2.36m and windows 317 by 317 cells), the root-mean-square error of the
estimated frequency was 0.082 cycles 100m−1. For the Sool (cell-size of 2.36m
and windows 425 by 425 cells), the root-mean-square error was 0.044 cycles
100m−1. The magnitude of this error is significantly less than the observed
variability in frequency in both sites (for every slope bin of Figure 3 in the
main text, Levene’s test, P < 0.001), showing significance of the observed
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wavenumber spread in both study sites.
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Figure 2.D.1: Locations of the study sites and rainfall gradient in the Horn of Africa.
The ‘Haud’ site (8◦0′14′′ to 8◦15′11′′N; 47◦11′54′′ to 47◦31′4′′E) has a mean annual
rainfall of 210–270mm yr−1 whilst the ‘Sool’ site (9◦18′49′′ to 9◦34′34′′N; 48◦8′15′′ to
48◦43′15′′E) has a mean annual rainfall of 100–140mm yr−1. The distribution of periodic
vegetation pattern shown in green is adapted from [32]. Precipitation data was extracted
from Climate Hazards Group InfraRed Precipitation with Stations [59] and is averaged
over the years 1981–2013.
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Figure 2.D.2: The distribution of the measured banded pattern’s wavenumber over the
Haud site (a) and the Sool site (b). Here, darker red indicates a lower wavenumber and
lighter yellow a higher wavenumber. On the x- and y-axes the UTM coordinates of the
locations are given.
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Figure 2.D.3: Slope (a) and aspect (b) estimation error from simulated topographical
surfaces. Median errors are shown as horizontal bars with 25th-75th percentile ranges
(boxes) and 5th and 95th percentile outlier cutoffs (whiskers). Note that aspect error could
range from −180 to +180 degrees but has been cropped to largest measured error for
visual purpose.
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Figure 2.D.4: Examples of simulated vegetation patterns with frequency decreasing from
left (2.4 cycles 100m−1) to right (0.4 cycles 100m−1).
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Figure 2.D.5: Pattern frequency estimation error for the Haud (a) and the Sool (b) sites.
Actual frequency of the simulated patterns and the corresponding estimation of these
frequencies is shown by the blue dots. The straight line represents the perfect estimation
line.
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