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1
Introduction

Understanding nature has been one of mankind’s biggest yearnings. We are con-
tinuously trying to decipher nature’s adjustments as a complex environment of
which we, the human species, only represents a fraction, albeit a very impactful
one [50]. A universal feature of nature is its ability to adapt to external shifting
factors. This adaptation results in catastrophic changes [130, 131, 160]- such as
the extinction of animal species [17] - or gradual ones, evolving towards, con-
ceivably temporary, new states [81].

One of the major shifting factors throughout history has been climate change,
especially since the Industrial Revolution [110]. Climate change is, arguably,
the most severe challenge facing planet Earth during the 21st century [57], also
according to the United Nations [3].

Soil degradation - which is mainly caused by human activities - has a direct
impact on climate change [149, 156]. This directly results in desertification, a
form of land degradation in arid and semi-arid areas. Arid and semi-arid areas
are land surfaces receiving less than 400mm of annual precipitation [167]. They
cover more than 40% of the global land surface [37]. This development has led
to escalating concerns about the impact of climate change on desertification and
biodiversity loss [5, 47], thereby propelling the search for indicators of imminent
ecosystem shifts and the understanding thereof – from a theoretical perspective
– in the last two decades. In addition to that, aerial photographs and, later on,
satellite images have opened up a research field area that goes beyond laboratory
dimensions, trying to understand the mysteries of these landscapes such as spa-
tial plant distributions [58, 78, 102, 112, 152].

One emergent feature that came to light while studying (semi-)arid land-
scapes with the aid of aerial photographs, is nature’s adaptability to ‘self-organize’
in order to sustain itself under changing environmental conditions [32, 102, 106].
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Self-organization is the emergence of patterns and order in a system by
internal processes, rather than external constraints or forces [68]. As a result,
local interactions between individuals may often spawn global features. Self-
organization and the formation of patterns encapsulates all fields and scales,
from the smallest molecular DNA structure [85] to the Copernican solar system
model [170] and beyond, making it a universal feature of nature. Ecological
examples of self-organization range from the structure of animal social groups
to spatial patterns associated with plant distributions [68]. A few visual examples
are given in Figure 1.1.

(a) The cheetah has a spotted body with
a stripy tail [4].

(b) Google Earth satellite image of a
fractal pattern in the Egyptian desert
(27◦28′N; 32◦14′E).

Figure 1.1: Different patterns at different scales in nature.

Vegetation patterns form a characteristic feature of semi-arid regions through
the formation of distinct spatial plant distributions [137]. Water scarcity hampers
the ecosystem into spatial separation of plants; patches of dense biomass and
areas of bare soil appear, induced by a positive feedback between local vegeta-
tion growth and water redistribution towards areas of high biomass [126]. This
manifests itself in different shapes and on different spatial scales as can be seen
in Figure 1.2.

Lots of research within the ecological community has already been done
about this specific type of land degradation [58, 61, 66, 87, 88, 100, 138, 141,
145, 161, 172, 176]. The proposed ecological models studied in these papers
have already shown to numerically reproduce the vegetation patterns observed
[14, 90, 124].

Given the magnitude and tragic consequences of the process of land degra-
dation and desertification, a few questions naturally present themselves

• How does the study of vegetation patches in any way relate to mathematics
where - stereotypically - research relies on pencil, paper and nowadays
some computational power?
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(a) Fairy circles in the Namibian desert
[1].

(b) Striped pattern of woody vegeta-
tion (Acacia) that grows parallel to dry
slopes in Australia [2].

Figure 1.2: Different vegetation patterns located in different parts of the world.

• How can the abstractness and clarity of mathematics help with the ran-
domness and complexity of the real ecological world?

• Can ecology and mathematics fruitfully join efforts in order to get a better
understanding and grasp of this pressing phenomenon?

The answers to these questions are not that simple nor straightforward. On the
one hand, aerial observations do not form proof of a universal feature. Adding to
that, solely relying on numerical simulations has it restrictions as the latter rely
on a whole set of specific conditions, making it harder to formulate generalized
statements about an ecosystem. On the other hand, the complexity of vegetation
ecosystems limits rigorous mathematical analysis. Fortunately, pattern forma-
tion models can play an important role in validating (or refuting) the results
acquired from topographical data and numerics.

The challenge and aim of this thesis is bridging the gap between ecology
and mathematics, real world observations and theorems and finding a common
ground to further build new research on. It transcends the study of spatial vegeta-
tion structures to enclose a whole variety of patterns that fit into the generalized
mathematical framework of dynamical systems. The motivation behind this
piece of work is threefold:

• To assess the extent to which conceptual models’ predictions and results
apply to real world observations as has been done in Chapter 2.

• To extend the ecological insights acquired from an ecosystem model and
apply rigorous mathematical analysis to prove the existence of various
(already observed) spatial patterns as has been done in Chapter 3.

• To exploit the rich nonlinear structure of an ecosystem model and to inves-
tigate the existence of a broad class of novel spatial patterns, both from an
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ecological and a mathematical perspective as has been done in Chapter 3.

So how does mathematics lend a hand to ecology and vice versa? A few of the
models proposed within the ecological community rely on reaction-(advection)-
diffusion equations [14, 90, 124], which have played a key role in understanding
the spatio-temporal evolution of complex dynamical systems. Two of these mod-
els are studied within this thesis, and have been meticulously selected to achieve
the aims listed above: the most conceptual model at hand, in order to maximize
data and model prediction comparison and in contrast, one of the most elabo-
rated ecosystem models that had not been analyzed in such a mathematical way
before. Both these models are, deducibly, or reaction-(advection)-diffusion type.

A reaction-diffusion equation, as the term suggests, comprises a reaction
term and a diffusion term, describing the evolution in time and space of a certain
concentration or density of a component of a system. The addition of a diffusion
term to a reactive system, according to Turing [150], would disrupt a system
in a way it may change from a homogeneous spatial state to a heterogeneous
patterned state, giving rise to all sorts of spatial structures [150].

Pattern formation in this type of equations is of high interest both in ecology
and mathematics. Understanding the cross-fertilization of ecology and math-
ematics along the specific problem at hand can be hard. The complexity of
the domain of pattern formation compels the boundaries of different areas of
research to fuse. Trying to bridge the gaps and breaches between different fields
of science can be a tough quest, starting with the linguistic barrier of mere defini-
tions and concepts. Therefore, a thorough and detailed presentation of the basics
of each side of the spectrum is required, in order to set a firm and clear working
ground to advance with.

First, an ecological background is given, exploring the methodologies and
mechanisms preceding the models discussed. Second, an overview of the mathe-
matical concepts and tools is given, as a basic foundation of the work within this
thesis. Last but not least, a brief outline of the studies carried out in this work is
presented.

1 Ecological background

The pattern of variation shown by the distribution of species among
quadrants of the earth’s surface chosen at random hovers in a tanta-
lizing manner between the continuous and the discontinuous [164].
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1.1 Ecological context
The complexity and diversity of factors involved in the study of ecological sys-
tems, in particular vegetation ecology, demands for a reflection on the scientific
methodology adopted and for a diligent modeling approach. This has been cause
for divisiveness within the ecological community since the early twentieth cen-
tury [154]. However, the concept of patterns in vegetation had already become
standard since Watt’s 1947 paper on pattern and process in the plant community
[163].

It is to be expected that the most consistent and clearest ecological patterns
will almost invariably have several explanations, driven by various mechanisms
all pulling in the same direction. According to Whittaker [166], two main prin-
ciples are at play when it comes to spatial vegetation dynamics, forming the
skeleton of the different modeling approaches adopted so far:

– The principle of species individuality – each species has its unique en-
vironmental requirements and distribution, according to its own genetic
structure, physiological characteristics and population dynamics. The indi-
vidualistic nature of the species reflects itself in the individualistic nature
of plant community distributions.

– The principle of community continuity, i.e., continuum principle – commu-
nities which occur along continuous environmental gradients usually inter-
grade continuously, with gradual changes in population levels of species
along the gradient.

These two principles resulted in two main modeling approaches in use in studies
of plant population dynamics [106]; agent-based models, i.e., stochastic compu-
tational algorithms, based on the individuality principle and often capture the
characteristics of a plant in great detail. The continuum principle was incor-
porated in partial differential equations (PDE’s) which focus on deterministic
processes at small spatial scales rather than addressing individual plants. The
plant population is then described by a continuous biomass areal density [106].
The second approach has been adopted throughout this thesis, as it fits into the
well-developed theory of PDE’s. Within these ecosystem models, different types
of environmental variables can be recognized, e.g. of abiotic or biotic type. Abi-
otic variables such as precipitation and soil nitrogen content directly determine
plant growth and success. Biotic variables such as the competition from other
plants, pathogens, herbivores and fungi (mycorrhizae), may be beneficial or detri-
mental to plant growth or have complex effects contingent on abiotic variables
[154]. The main abiotic variable is the amount of water a plant can acquire in
order to survive. Therefore, in order to understand the basic dynamics of plant
population, most models have stripped these complex ecosystems to their "bare
essentials": biomass and water, and the interaction thereof.
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Water transport has two main effects; providing an extra source of water
to vegetation patches as well as inhibiting vegetation growth in the patch sur-
roundings. As shown and explained in Figure 1.3, there are different ways water
transport contributes to biomass and root system growth.

Figure 1.3: Schematic illustration of three different modes of water transport capable of
inducing pattern-forming feedback in water-limited vegetation.
Left: Infiltration feedback: typically presents itself in soil areas covered in soil crust that
change the rate of surface-water infiltration inducing overland-water flow towards densely
vegetated areas.
Middle: Root-augmentation feedback: laterally extended root systems allow water uptake
and conduction from a larger domain.
Right: Soil-water diffusion feedback: confined root systems create a soil-water gradient
due to high water uptake resulting in lateral water diffusion [106].

The most simple reaction-(advection)-diffusion system of partial differential
equation that would heuristically describe the dynamics of a plant population in
a water-scarce environment takes the formchange in biomass = growth - mortality + spread through seed dispersal,

change in water = precipitation - evaporation - uptake + spread of water.
(1.1)

In the above, the abiotic variable has been "limited" to precipitation and evap-
oration, i.e., water availability, and the biotic variable is modeled through seed
dispersal and plant growth/mortality.

The above heuristic concept has been translated into several PDE models
for dryland vegetation [62, 63, 90, 97, 124, 161]. The simplest two-component
model that takes into account both biomass and water was proposed by Klaus-
meier [90]. The extended version of this model (system (1.2)) is studied in
Chapter 2. More detailed models include two water variables representing soil-
water content and overland-water flow [62, 79, 142].

Finding a fruitful balance in the realm of adequately modeling vegetation
patterns in semi-arid ecosystems is a double-edged blade. Models that capture
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the plant population dynamics in more detail are more advantageous in that they
provide better defined and measurable parameters, though being less prone to
mathematical analysis. In contrast, considering specific contexts for vegetation
patterns such as steady rainfall, a single plant species, high soil-water diffusivity,
allows for model simplifications that facilitate mathematical assessment of the
model [107]. The latter method has been adopted for the analysis of the ecosys-
tems studied, which we will present next.

1.2 Ecosystem models studied
“Dynamic models bridge over two other modeling concepts in ecol-
ogy; descriptive models, which presents relationships between mea-
sured variables, either graphically or algebraically and conceptual
models, which seek to unravel basic mechanisms that underlie ob-
served behaviors, but remain at the level of qualitative propositions
[106].”

Two dynamical ecosystem models have been studied in detail in this thesis, both
two-component reaction–diffusion models describing the interaction between
plant biomass and water. They exhibit spatial vegetation patterns that have been
observed in semi-arid regions [61, 102]. Both models have been analyzed from
different perspectives and with different purposes. The mathematical processes
and patterns enclosed within these two models are of the highest interest, from
ecological and analytical perspectives. The proposed models do not only grant
deeper understanding of the process of desertification but also dig into an even
richer realm of patterns, with novel connections and mathematical frameworks
that have yet to be explored in more detail.

The first model is the extended-Klausmeier model [155], based on the model
proposed by Klausmeier [90]:

∂w
∂t

= e
∂2w
∂x2 +

∂(vw)
∂x

+ a − w − wn2,

∂n
∂t

=
∂2n
∂x2 − mn + wn2.

(1.2)

where w(x, t) ≥ 0 and n(x, t) ≥ 0 represent areal densities of soil water and
biomass, respectively, and x ∈ R, t ∈ R+ are the space and time coordinates. The
reaction terms model the change in water as a combined effect of rainfall (+a),
evaporation (−w) and uptake by plants (−wn2). Note that the coupling to plants
is nonlinear, as more plants enable a better uptake of water through a bigger root
system. The change of plant biomass comes from mortality (−mn) and plant
growth (+wn2). Note here again that the plant growth scales nonlinearly, as
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more present biomass encourages water uptake and thus growth. Dispersion by
plants is modeled as diffusion and the movement of water as a combined effect of
diffusion (+e) and advection. The latter is due to gradients in the terrain, which
are proportional to the slope parameter v.

The second model is a reduced version of the three-component model pro-
posed by Gilad et al. for flat terrains [63]:

∂B̃
∂T

= ΛW̃B̃(1 − B̃/K)(1 + EB̃) − MB̃ + DB
∂2B̃
∂X̃2

,

∂W̃
∂T

= P − N(1 − RB̃/K)W̃ − ΓW̃B̃(1 + EB̃) + DW
∂2W̃
∂X̃2

,

(1.3)

where B̃(X̃,T ) ≥ 0 and W̃(X̃,T ) ≥ 0 represent areal densities of biomass and
soil water, respectively, and X̃ ∈ R, T ∈ R+ are the space and time coordinates.
In the biomass (B̃) equation, Λ represents the biomass growth rate coefficient,
K the maximal standing biomass, E is a measure for the root-to-shoot ratio, M
the plant mortality rate and DB the seed-dispersal or clonal growth rate, while
in the water (W̃) equation, P represents the precipitation rate, N the evaporation
rate, R the reduction of the evaporation rate due to shading, Γ the water-uptake
rate coefficient and DW the effective soil water diffusivity. Notice that the power
of the factor (1 + EB̃) in both equations is unity, whereas in the reduced model
in [175] the power is two. This difference stems from the consideration in the
study of one space dimension rather than two.

System (1.3) represents a similar set-up to system (1.2). The equation lacks
a first derivative, that is, an advection term, as it is constrained to flat terrains.
Note that the original three component model [62] does account for topography.
A simple glimpse at both equations discloses that system (1.3) takes more param-
eters into account and exhibits a less trivial mathematical structure than system
(1.2). This allows for a more realistic modeling of real ecosystems. In addition
to reproducing banded vegetation, the model has also reproduced the famous
fairy circles [14, 61].

A closer look at both models reveals more contrast. In the extended-
Klausmeier model, plant growth is unbounded (+wn2), while in the Gilad et al.
model, it is bounded ((1 − B̃/K)). Once the biomass reaches a certain height, it
"suffers" from self-shading, which prohibits the process of photosynthesis and
therefore further growth. In addition, the water and biomass growth/loss in the
extended-Klausmeier model are coupled nonlinearly in the same manner in both
equations while in the Gilad et al. model, the coupling between the two variables
is more elaborated.
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From an ecological perspective, system (1.3), which represents the master
equation of this thesis, thus accounts for a vaster parameter space and a more
realistic representation of dryland ecosystems. Unfortunately, this also makes it
harder to analyze and numerically simulate, as numerics require specific initial
conditions, parameter values and boundary conditions. To be blunt, it boils down
to trying to grasp the behavior of an infinite dimensional continuous space in a
finite dimensional discrete manner, which has its obvious limitations. Rigorous
mathematical analysis of ecosystems like (1.2) and (1.3) has formed a bridge
between ecologists and mathematicians within the pattern formation community.
Setting the basis for the methods used in this type of analysis naturally leads us
to the mathematical part of this introduction.

1.3 Ecosystem dynamics
Consider the compactly reformulated PDE of system (1.3), as done in Appendix
B of Chapter 3 

Bt = (aW − 1) B + WB2 −WB3 + Bxx,

Wt = Ψ −
[
Φ + ΩB + ΘB2

]
W +

1
ε2 Wxx,

(1.4)

where the emphasis has to be made on the introduction of the small parameter

ε2 =
DB

DW
� 1, that is, ε is asymptotically small compared to 1, which will

play a crucial role in the tools presented in this introduction and in the proofs of
Chapter 3.

The classical approach to studying systems like (1.4) is to search for sta-
tionary and/or uniformly traveling solutions, that is, solutions that are stationary
with respect to a co-moving frame with constant speed c. Introduce a new coor-
dinate ξ = x − ct, with speed c ∈ R, an a priori free O(1) parameter (w.r.t. the
asymptotically small parameter ε). By setting

(B(x, t),W(x, t)) = (b(ξ),w(ξ)) (1.5)

and introducing

p = bξ, q =
1
ε

wξ, (1.6)

PDE (1.4) reduces to the four-dimensional ‘spatial’ dynamical system
bξ = p,
pξ = wb3 − wb2 + (1 − aw)b − cp,
wξ = εq,
qξ = ε

(
−Ψ +

[
Φ + Ωb + Θb2

]
w
)
− ε2cq.

(1.7)
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The fully vegetated state and the bare soil state are equilibria of this system,
while solutions connecting the two - so called heteroclinic orbits - represent
interfaces of vegetation patterns and, hence, the fundamental entities to study in
order to understand pattern formation.
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(a) Spatial profiles of the B- and W-
components of a stationary front solution of
the original, unscaled model (1.3) – corre-
sponding to a stationary 1-front.

(b) The profile from (a) as a projec-
tion in (b,w, q)-space. The B− and W-
coordinates were extracted from the sim-
ulation of (a) and q was computed by
numerical differentiation

Figure 1.4: (a) Profile of a stationary 1-front connection of the original, unscaled model
(1.3) connecting the bare soil state to the vegetated state in real space (a) and in phase
space (b).

Although (1.7) represents a 4-dimensional system of ordinary differential
equations (ODE’s), it is still rather difficult to analyze in full. A "simple" con-
nection between the bare soil state and the fully vegetated state as seen in the
simulation from Figure 1.4a takes the complex geometrical form of Figure 1.4b
when studied in the context of (1.7). The rigorous mathematical construction of
such heteroclinic solutions in 4-D is a challenging task making use of various
theories and techniques, the basics of which we review next.

2 Mathematical concepts

2.1 Reaction-diffusion equations, orbits and patterns
Similar to the complexity of ecosystems and ecology, only a limited amount
of statements can be made about most nonlinear dynamical systems and their
behavior [72]. Nonetheless, investigating their "somewhat" simpler parts, such
as stationary or uniformly traveling solutions, yields a bigger understanding of
the dynamics of the system than one might intend to think. In order to properly
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address the questions that the dryland models in Chapter 2 and Chapter 3 present,
some mathematical concepts and theorems are of indispensable importance.

The following can be seen as a stripped down, hands-on, guide to the basic
understanding of the tools and techniques used in the following chapters, accom-
panied with a simple example to set the scene.

We are looking for stationary solutions of the reaction-diffusion equation

∂u
∂t

= D∆u + f (u). (1.8)

where u(x, t) ∈ Rm is a vector of state variables describing the densities of a
population or a concentration at position x ∈ Rn ⊂ Ω with Ω an open set, at
time t ⊂ R+. On the right side of the equation, D represents a constant diagonal
"diffusion" matrix, ∆ represents the Laplacian operator working on u and f (u)
represents a smooth (nonlinear) vector field f : Rm → Rm, the "reaction" term
of the equation.

Introducing the traveling wave coordinate ξ = x − ct, with speed c ∈ Rn,
above solution is referred to as a traveling wave Φ(ξ) = Φ(x − ct) if it satisfies

DΦ′′ + cΦ′ + f (Φ) = 0. (1.9)

Solutions to (1.9) can take different forms, from single fixed points to whole
orbits/trajectories. This is quantified within the notion of invariant sets. An
invariant set is a set such that a solution of (1.8) through each point of the set lies
in the specific set for all time. We can further specify forward and backward in-
variant sets, respectively. A forward invariant set Λ+ is a set for which Φ(ξ) ∈ Λ+

for all ξ ≥ ξ+. A backward invariant set Λ− is a set for which Φ(ξ) ∈ Λ− for all
ξ ≤ ξ−. A rough sketch of invariant sets is given in Figure 1.5.

The notion of invariant sets can be cast in the more general notion of in-
variant manifolds. For sufficiently smooth systems, the invariant set represents
an invariant manifold. For a detailed definition, we refer the reader to classical
books on differential dynamical systems [104, 169]. Similar to forward and
backward invariant sets, we can specify unstable and stable manifolds W s and
Wu for a set Λ, respectively:

W s(Λ) = {ξ0 ∈ R
n : Φ(ξ, ξ0)→ Λ for ξ → ∞}, (1.10)

Wu(Λ) = {ξ0 ∈ R
n : Φ(ξ, ξ0)→ Λ for ξ → −∞}. (1.11)

Again, for sufficiently smooth systems, W s,u(Λ) are differentiable manifolds.

Once we focus our attention on fixed points (equilibria) and trajectories
connected to them, we can classify the different orbits (that are stationary in the
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co-moving frame) we are interested in, depending on their behavior within the
invariant sets:

• A homoclinic orbit γ(p) is a closed orbit where the stable manifold W s(p)
of a fixed point p intersects with the unstable manifold Wu(p) of the same
fixed point p, that is, γ(p) ⊂ W s(p) ∩ Wu(p) and all points tend to the
same fixed point p for ξ → ±∞.

• A heteroclinic orbit A heteroclinic orbit γ(p1, p2) is an orbit where for
two different fixed points p1 and p2 the unstable manifold Wu(p1) of
p1 intersects with the stable manifold W s(p2) of p2, that is, γ(p1, p2) ⊂
Wu(p1) ∩W s(p2), and for which all points tend to p1 and p2 for ξ → −∞
and ξ → +∞, respectively.

Figure 1.5: Sketch of unstable (blue) and stable (red) invariant sets Λ+ and Λ−, respec-
tively, of a trajectory Φ. For every ξ ≥ ξ†, it holds that Φ(ξ) ∈ Λ+(Φ(ξ†)) and for every
ξ ≤ ξ∗, it holds that Φ(ξ) ∈ Λ−(Φ(ξ∗)).

Besides these two orbits, frequently studied solutions are periodic orbits, to
which Chapter 2 is basically dedicated. Periodic orbits have the characteristic
that they contain no fixed points and that there exists a specific 0 < L < ∞ with
the property that Φ(ξ + L) = Φ(ξ) for all ξ ∈ Rn. This is equivalent to having a
distinct wavenumber. A system of equations such as (1.8) generally displays a
whole continuous families of periodic orbits [39]. From the point of view of the
underlying PDE (1.8), these orbits are spatially periodic (traveling) ‘wave trains’.
Of course, one is especially interested in those wave trains that are stable and
thus observable as solutions of the PDE. The family of stable "observable" pe-
riodic orbits within (parameter, wavenumber)-space is referred to as the "Busse
balloon" [18]. This concept is extensively studied within Chapter 2, where the-
ory and real world data are put side by side. A schematic representation of a
section of a Busse balloon is given in Figure 1.6.
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Figure 1.6: A schematic representation of a section of a Busse balloon, where the
stable patterns are depicted in (parameter, wavenumber)-space. The green area encloses
all stable periodic orbits. Outside this area the periodic patterns are unstable. As the
parameter is declined, the patterns become narrower and vice versa. Per parameter value,
there exists a whole set of observable stable patterns with different wavenumbers.

In order to get a visual understanding of the potential different patterns pre-
sented above, consider the following one-component toy model in one spatial
dimension:

ut = uxx − u3 − u2 + (1 − a)u (1.12)

where a ∈ R is a free parameter we can vary. Note that this is the equivalent
of PDE (1.8) in this simplified setting, with diffusion term D∆u = uxx and
nonlinear reaction term f (u) = u3 − u2 + (1 − a)u. Introducing v = ux and
looking at stationary solutions, that is setting ut = 0, we get the following two
dimensional system of ODE’sux = v,

vx = u3 − u2 + (1 − a)u,
(1.13)

System (1.13) represents a stripped down version of equation (1.9) where we
have set for simplicity c = 0 (i.e., we only consider stationary patterns). It
exhibits up to three fixed points, given by:

(u0, v0) = (0, 0)

(u±, v0) =

1 ±
√

4a − 3
2

, 0
 . (1.14)

Clearly, for a <
3
4

, system (1.13) possesses only one fixed point (u0, v0) = (0, 0).
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For a =
3
4

, it possesses two fixed points (u0, v0) = (0, 0) and (u±, v±) = (
1
2
, 0).

For a = 1, it again possesses two fixed points (u0, v0) = (u−, v0) = (0, 0) and

(u+, v0) = (1, 0). For a ∈ (
3
4
,∞)\{1} we get three distinct fixed points as given in

(1.14). Different values of a thus generate different possible connections - orbits
- between the different fixed points. To illustrate the possible orbits we focus

on the case where a >
3
4

. System (1.13) represents a Hamiltonian system. The
solutions to the set of equations lay on the level sets of the Hamiltonian H = b
with b ∈ R where

H(u, v) =
v2

2
−

u4

4
+

u3

3
−

(1 − a)u2

2
. (1.15)

This yields phase portraits, that can look different, depending on the value
of a, as can be seen in Figure 1.7.

(a) Homoclinic orbit connecting the

fixed point (u0, v0) to itself for a =
7
9

+

1
250

.

(b) Heteroclinic orbits connecting the
fixed point (u0, v0) to the fixed point

(u+, v0) with a =
7
9

. Note that due to
the symmetry of the system we have two
heteroclinic orbits (red and green).

Figure 1.7: Phase portraits of solutions of system (1.13).
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Each orbit in a phase portrait corresponds to a distinct spatial pattern in
real space associated to (1.13). A homoclinic orbit in the ODE (1.13) system
corresponds to what is commonly referred to as a pulse in the PDE (1.12) as
shown in Figure 1.8a, a heteroclinic orbit similarly corresponds to a 1-front
connection (Figure 1.8b) and a periodic orbit simply corresponds to a periodic
pattern (Figure 1.8c).

(a) The stationary homoclinic orbit cor-
responding to the phase portrait of Fig-

ure 1.7a and a =
7
9

+
1

250
.

(b) The unique stationary heteroclinic
orbit connecting (u0, v0) to (u+, v0) in the

phase portrait of Figure 1.7b for a =
7
9

,
where v ≥ 0 ∀x.

(c) A stationary periodic orbit

for a =
7
9

+
1

200
.

Figure 1.8: Spatial profile of the different stationary patterns exhibited by system (1.12).
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The analysis and spatial patterns extracted from toy model (1.12) are pretty
simple and straightforward. The patterns obtained from toy model (1.12) are
similar to those observed in real ecosystems, such as the ones described in
Chapter 3, where the ecosystem model involved (1.3) is more realistic yet more
mathematically involved. This yields the following "real ecosystem patterns
counterpart" of the patterns in Figure 1.8.
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(a) A homoclinic stationary 2-front spot
pattern of system (1.4).
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(b) The unique heteroclinic stationary
1-front pattern of system (1.4).
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(c) A small amplitude stationary spa-
tially periodic solution generated by a
Turing bifurcation in system (1.4).

Figure 1.9: Spatial profile of the different patterns exhibited by system (1.4). For the
exact parameter settings, we refer to section 4 of Chapter 3.
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The spatial profile of the homoclinic and heteroclinic patterns of Figure 1.9 is
non-monotonous, due to the geometry of the invariant slow manifolds of model
(1.3). Due to the complexity of the model at hand, basic ODE solving tools often
fail to deliver. Luckily, when it comes to connections, especially homoclinic
and heteroclinic, a mathematical theory comes in handy: geometrical singular
perturbation theory.

2.2 Geometric singular perturbation theory

Geometrical singular perturbation theory is a geometric approach revolving
around scale separation within a dynamical system, as is the case in the models
presented in Section 1.2. The geometric approach endeavors to identify the cen-
tral dynamical structures such as invariant sets and invariant manifolds, present
in the phase space of the system. Often within reaction-diffusion equations,
the time evolution of different variables differs by several orders of magnitude.
Similarly, their spatial evolution can take place on various length scales. A
‘magnification’ of (one of) these scale separations can be very insightful. As-
sumptions with respect to processes that have different time or length scales
might simplify the problem we want to understand, yielding a first insight into
the structures and dynamics involved. Assuming that very fast processes regu-
late instantly or that slow processes stand still are examples of these possible
magnifications. They describe the system in some limiting case, which is usually
easier to analyze mathematically. The foundation of this approach was set by
Fenichel [51–54]. Since then, these mathematical methods have evolved and
found their way towards applications, including ecological models. For a more
mathematical introduction, including proofs of the theorems, we refer to the
surveys of Jones [83] and Kaper [86].

Consider the system of singularly perturbed ordinary differential equations
in general form:  ux = f (u, v, ε),

vx = εg(u, v, ε).
(1.16)

In the equation above, u ∈ Rm, v ∈ Rn. The constant real parameter ε is small,
i.e., 0 < ε � 1. The functions f and g are assumed to be sufficiently smooth.
‘Sufficiently smooth’ here means at least C1 in u, v and ε.

A reformulation of system (1.16) in terms of the rescaled variable y = εx
yields  εuy = f (u, v, ε),

vy = g(u, v, ε).
(1.17)
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Systems (1.16) and (1.17) are equivalent for ε , 0. System (1.16) is referred
to as the fast system and system (1.17) is referred to as the slow system. For
ε = 0, the fast system (1.16) reduces to an m-dimensional reduced fast system on
a manifold { f (u, v0) = 0} in (m + n)- dimensional space with the n-dimensional
variable v as a constant parameter ux = f (u, v0, 0),

v = v0.
(1.18)

For ε = 0, the slow system (1.17) reduces to an n-dimensional reduced slow
system with  0 = f (u, v, 0),

vy = g(u, v, 0).
(1.19)

Under (1.18) the solutions are defined in Rm+n , but are in fact an n-parameter
family of m-dimensional systems. Moreover, the solutions under (1.18) on the
n-dimensional set f (u, v, 0) = 0 are trivial. On the other hand, (1.19) does pre-
scribe a nontrivial solution on f (u, v, 0) = 0, but at the same time it is limited to
only this set.

Geometric singular perturbation theory seeks to exploit the properties of
these fast-slow decompositions and the intersections of various manifolds in
order to establish the existence of different desired orbits (periodic, heteroclinic,
homoclinic). The two reduced systems (1.18) and (1.19) offer different insights
into the behavior of orbits and geometric structures in the fast and slow regimes,
respectively, but in either formulation the ε > 0 system (1.16) can’t be described
in full. The goal of geometric singular perturbation theory is to analyze the
dynamics of system (1.16) with ε nonzero but small by suitably combining the
dynamics of the two limits of the reduced fast and slow systems. Certain geo-
metric structures in the phase space of (1.16) with 0 < ε � 1 can be found close
to counterparts from (1.18). These structures are usually easier to locate. In
addition, certain other geometric constructs of (1.16) with 0 < ε � 1 lie close to
objects in the phase space of (1.19). By exploiting this decomposition into fast
and slow, the geometric approach reduces the full singularly perturbed system
to separate lower-dimensional regular perturbation problems in the fast and slow
regimes, respectively.

The basic ingredient is to combining these ‘puzzle pieces’ is illustrated in
Figure 1.10 and is as follows. Suppose we are given an n-dimensional manifold
M0 which is contained in the set { f (u, v, 0) = 0}. Note that this implies that M0
consists of critical points of the reduced fast system (1.18). Of all the systems
like (1.16), we focus on the one for which the manifold M0 consists of only
hyperbolic points of the reduced fast system (1.18), that is, critical points whose
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eigenvalues λ of the Jacobian
∂ f
∂u

(u, v, 0)|hyperbolic point are uniformly bounded
away from the imaginary axis. Then the so-called critical manifold M0, is said
to be normally hyperbolic, and persists as a locally invariant slow manifold Mε

of the full problem (1.16) that is O(ε) close to M0. The restriction of the flow
(1.17) to Mε is a small perturbation of the trajectories of the limiting problem
(1.19). Moreover, the stable and unstable manifolds W s(M0) and Wu(M0)
of M0 persist as manifolds W s(Mε) and Wu(Mε) too. They lie within O(ε)
distance of, and are diffeomorphic to, W s(M0) and Wu(M0) respectively [77].
These persistence theorems, proved by Fenichel [51–54], form the basis for the
construction of global singular orbits. By ‘gluing’ together fast and slow pieces
obtained in the fast and slow regimes, respectively, and verifying the persistence
of these global structures for small ε , 0, the desired orbits can be obtained for
the full system.

Figure 1.10: Unperturbed critical manifolds M0 consisting of fixed points (·) and their
local stable and unstable manifolds W s,u(M0). The manifolds persist for 0 < ε � 1 as
perturbed manifolds Mε with trajectories on them [77].
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3 The onset of patterns

The study of the formation and nonlinear evolution of ecosystems canonically
emerges from combining the pre-requisites of Section 1 and Section 2 of this
introduction. This section is focused on providing the mathematical mechanisms
by which spatio-temporal heterogeneities may occur in a reaction-diffusion sys-
tem, and their interpretation in terms of the underlying ecological mechanisms.
In doing so, we lay out the basics of the localized structures considered in Chap-
ter 2 and Chapter 3 of this thesis.

Consider equation (1.8), in the simplest case that still generates rich pat-
tern dynamics, that is, a 2-component reaction-diffusion equation in one spatial
dimension, the unbounded domain R:

 ut = uxx + f (u, v; µ),
vt = dvxx + g(u, v; µ),

(1.20)

where u(x, t), v(x, t) ∈ R with x ∈ R and t ∈ R+. The coefficient d is a constant
diffusion coefficient and the vector fields f (u, v; µ), g(u, v; µ) : R2 → R2 repre-
sent the reaction terms of the equations where we specified their dependence on
(a number of) constant parameters µ ∈ Rm of the system.

In the ecological setting of this thesis, system (1.20) models the spatial in-
teractions between biomass density and water in vegetation ecosystems on a flat
terrain. In reality, ecosystems are subject to another spatial property of their
environment: its topography. This is characterized by the (local) slope of the ter-
rain, which can have a significant effect on the vegetation dynamics. It has been
observed that vegetation aligns in resilient striped patterns perpendicular to the
slope of the terrain due to an oriented flow of water downhill [6, 9, 33, 101, 152].
Therefore, we will study the effect of the presence of slope on the classical ‘flat
terrain’ Turing destabilization.

Including slope into system (1.20), the displacement of water is mathemati-
cally modeled as a combined effect of diffusion (dvxx) and advection (svx), where
s ∈ R is a measure for the slope of the terrain [90]. The latter is a topographical
effect, which in general depends on the spatial variable x, that is, takes the form
h(x). This would yield addition terms hxvx + hxxv in (1.20) [11].Thus by model-
ing the topographical effect as svx with s a constant, we consider the case of a
constant slope, h(x) ≡ sx.

In the general mathematical setting of the system (1.20), we thus extend the
reaction-diffusion equation into a (2-component) reaction-advection-diffusion
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equation (in one spatial dimension) of the form ut = uxx + f (u, v; µ),
vt = dvxx + svx + g(u, v; µ).

(1.21)

In the ecological setting, v represents the water equation, where the diffusion
coefficient d � 1 as water diffuses on a much faster timescale than vegetation
disperses, the latter being described by the u-equation. Since vt = svx yields
v = v(x + st), i.e., an advective transport with speed −s , this means that increas-
ing x corresponds to the uphill direction. Moreover, for the case s = 0, system
(1.21) is equivalent to system (1.20), which has been studied extensively in [39]
and the references therein.

Denote the trivial background states of (1.20) and (1.21) as (U,V), for which
we know that f (U,V) = g(U,V) = 0. Note that the stationary solutions are the
same for both systems, as the additions of the svx term does not alter the steady
state solutions.

The spectral – or linearized – stability of (U,V) of system (1.21) against
(bounded) perturbations can be determined by plugging the decomposition,(

u(x, t)
v(x, t)

)
=

(
U
V

)
+

(
up

vp

)
(1.22)

with (
up

vp

)
=

(
α
β

)
eikx+λt + c.c. (1.23)

into (1.21), with k ∈ R, λ ∈ C and (α, β) ∈ C2. The linearized 2 × 2 eigenvalue
problem is then determined by

A(k; µ)
(
α
β

)
=

(
fu − k2 fv

gu gv − dk2 + isk

) (
α
β

)
= λ

(
α
β

)
(1.24)

with

fu =
∂ f
∂u

(U(µ),V(µ); µ), fv(µ) =
∂ f
∂v

(U(µ),V(µ); µ), etc. (1.25)

Since k ∈ R, the associated characteristic polynomial,

λ2−λ[( fu+gv−(1+d)k2+isk]+[dk4−(gv+d fu)k2+( fugv−gu fv)]+isk( fu−k2) = 0
(1.26)

defines 2 functions λ1,2 : R → C which we assume to be ordered; Re(λ2(k)) ≤
Re(λ1(k)). Note that λ j is symmetric in k for s = 0 while λ(−k) = λ̄(−k) for
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s , 0.

A trivial background state (U,V) of (1.21) is spectrally stable for those values
of the parameter µ for which Re(λ1,2(k; µ)) < 0 for all k ∈ R. Pattern formation
sets in (from (U,V)) as µ crosses through a critical value µc beyond which
there are values of k for which Re(λ1(k; µ)) > 0. Here we focus on the Turing
mechanism , i.e., we assume that (U,V) is marginally stable at µ = µc and that
there is a kc , 0 such that Re(λ1(±kc; µc)) = 0 while Re(λ1(k; µc)) < 0 for all
k ∈ R with k , ±kc. Note that this implicitly implies that Re(λ1,2)(0, µc) < 0, i.e.,
that (U,V) is stable against spatially homogeneous perturbations [113, 150]. It
follows from the smoothness of λ1,2(k; µ), that k = kc must be a local maximum

of Re(λ1(k; µc)) : Re(
dλ1

dk
(±kc; µc)) = 0 for all k in neighborhoods of ±kc.

Analyzing this for the classical case s = 0 yields

kc = kc(µ) = ±

√
d fu + gv

2d
with d fu + gv > 0., (1.27)

(see for instance [39, 113]). The critical value µc can be computed by plugging
(1.27) back into (1.26). Further manipulations, for which we refer the reader to
[39], yield the classical conditions for the destabilization by the Turing mecha-
nism

fu > 0, gv < 0, (1.28)
fu + gv < 0, (1.29)

fugv − fvgu > 0, (1.30)

where we have used that d > 1. Note that the two components u(x, t) and v(x, t)
are thus diffusing with different speeds, thereby fulfilling the roles of an activa-
tor u and an inhibitor v within the equation, that is, fu(U(µc),V(µc); µc) > 0 and
gv(U(µc),V(µc); µc) < 0 Figure 1.11, depicts two different critical eigenvalue
curves λ1,2(k) for the distinct possible cases in the classical scenario s = 0.

Figure 1.11: Two critical eigenvalue curves in the classical case s = 0. (a,b): The
real parts of the solutions λ1,2(k) of (1.26) for a Turing destabilization, i.e., kc , 0 with
λ1,2(k) ∈ R for all k ∈ R in (a), and parameter combinations such that λ1,2(k) < R for
certain k in (b) citeDreview.



3. The onset of patterns 23

To investigate the impact of the slope on the classical Turing bifurcation and
to minimize the technicalities of the stability analysis, we assume that s is small,
i.e., we introduce 0 < δ � 1 and set s = δs̃.

We know from the above classical Turing analysis that λ1(k; µ), that is, the
critical λ j, is real for (k, µ) close to (kc, µc). Thus we may conclude from (1.26)
that

λ1(k; µ) = λr(k; µ) + λi(k; µ) = λr + iδλ̃i(k; µ) (1.31)

A straightforward perturbation analysis yields that

kc(s) = kc(0) + O(δ2) and µc = µc(0) + O(δ2), (1.32)

with kc(0), µc(0) as determined by the classical Turing analysis (i.e., in (1.20)/(1.21)
with s = 0 – see Appendix 1.A). That same analysis yields

λi(kc) = δλ̃i(kc) = −
s̃

d − 1
kcδ + O(δ3). (1.33)

Thus we find by (1.22) that the most critical perturbation, i.e., the perturbation
that is the first to start growing at the Turing destabilization is given by

(
up

vp

)
∼

(
αc

βc

)
eikc x+λ(kc,µc)t + c.c. =

(
αc

βc

)
e

ikc

x−
δs̃

d − 1
t

(1+O(δ2))
+ c.c. (1.34)

and travels with speed

c =
δs̃

d − 1
+ O(δ3). (1.35)

The interpretation in terms of (1.21) as ecosystem model in biomass u and water
v confirms the ecological intuition that vegetation patterns should move uphill:
as was already argued, the term svx in (1.21) determines the downhill direction
by its associated ‘advective speed’ = −s. Since water diffuses much faster than
biomass, i.e., d � 1, in (1.35) Turing patterns travel in the opposite direction:
biomass travels towards the down flowing water.

While the conditions for the onset of a Turing destabilization are relatively
straightforward, the determination of the nature of the pattern that is exhibited
is a more difficult problem since beyond the bifurcation point, a finite band of
wavenumbers is growing exponentially. Therefore, it is a priori unclear whether
the perturbations also evolve into stable (spatially periodic) Turing patterns. This
is actually only the case if the associated Turing bifurcation is supercritical [39].
The nature of the Turing bifurcation can be determined by a weakly nonlinear
amplitude equation approach – we refrain from going in the details here.
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4 Content of thesis
The nature of the research done in this thesis is diverse. Two different "paths"
have been taken in executing interdisciplinary research in ecology and mathe-
matics through the lens of pattern formation as will become clear in Chapter 2
and Chapter 3. Nonetheless, the foundation of the work at hand is concordant:
an ecological phenomenon is modeled with explicit two-component ecosystem
models, allowing for rigorous mathematical analysis and numerical computa-
tions, that reproduce the patterns observed in nature. The mixture of analyzing
the underlying mathematical structure of the ecosystem model and exploring
the ecological data and parameters at hand allows for a deeper understanding
of the mechanisms at play, thereby leading to qualitative conclusions about the
ecosystem, the patterns it exhibits and the knowledge thereof. This represents a
step towards a better comprehension and theoretical predictions of the behavior
of the process of desertification as well as pattern formation in ecosystems. The
work done in this thesis even goes beyond the latter, by unraveling new insights
in both the ecological and mathematical community.

4.1 Multistability of striped vegetation patterns
Chapter 2, titled "Multistability of model and real dryland ecosystems through
spatial self-organization"1, represents a novel study providing a meticulous com-
parison between theoretical model predictions and empirical data of spatial veg-
etation patterns in dryland ecosystems.

Model predictions by the extended-Klausmeier model, which exhibits dif-
ferent patterns (such as bands and gaps) are put side by side with state of the
art aerial and topographical observations of banded vegetation patterns obtained
in two regions in Somalia and characteristics thereof (biomass density, spatial
spread of bands). Since it is considered the most "conceptual" reaction-diffusion
model at hand for these types of ecosystems, the extended-Klausmeier model
constitutes a perfect candidate to assess basic yet fundamental correlations be-
tween theory and data.

Regularly spaced banded vegetation patterns have long been considered to
be leading indicators for the proximity of an ecosystem to desertification and
changes thereof. They are characterized by their wavenumber/period as well
as their size and biomass density. In this study, we establish multi-stability of
banded vegetation patterns, which implies the co-existence of a whole (continu-

1Joint work with Robbin Bastiaansen, Vincent Deblauwe, Maarten B. Eppinga, Koen Siteur,
Stéphane Mermoz, Alexande Bouvet, Arjen Doelman and Max Rietkerk; has appeared as publication
in PNAS [13].
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ous) range of wavenumbers of significant spread, for the same set of parameters
of the ecosystem model. That is, an ecosystem can display a whole family of
stable (i.e., observable) banded patterns for a given set of parameters. This is
theoretically contained in the notion of Busse balloon, the set of stable spatially-
periodic solutions in (parameter, wavenumber)-space to the reaction-diffusion
model. The concept of Busse balloon introduces the possibility of an ecosystem
to increase its resilience - a mechanism that cannot take place in the classical
mono-stable point of view and which thus offers a way to avoid collapse into the
desert state. A disruption of stable banded patterns in a relatively large region
was thought to result in a catastrophic shift towards desertification, with the
disappearance of all vegetation bands. This study indicates that once a stable
banded pattern is destabilized due to environmental changes, it may adapt its
wavenumber (as well as its biomass density) to a new value which might still be
contained within the Busse balloon, therefore still being stable (thus observable),
making the shift in ecosystem change less drastic.

For this study, we did not consider changes in yearly rainfall, as the data over
longer time periods was insufficient. Therefore, the main parameter worked with
in the Busse balloon was the local slope of the terrain, using topographical and
biomass data to gather precise information about the two regions studied.
In addition to the notion of multi-stability, this study shows a vast spread in the
wavenumber, biomass density and migration speed of banded vegetation patterns
of the site, further corroborating model predictions thereof.

4.2 Existence of (novel) localized vegetation patterns in a gen-
eralized ecosystem model

Chapter 3, titled "The existence of localized vegetation patterns in a systemat-
ically reduced model for dryland vegetation"2, focuses on the two-component
reaction-diffusion model for vegetation biomass and soil water content, as intro-
duced in (1.3), which was obtained in Appendix 3.B by a systematic reduction
of the three-component Gilad et al. model for dryland ecosystem dynamics
[62]. The starting motivation was to gain a fundamental understanding of the
underlying mathematical mechanism behind the infamous ‘fairy circles’ of the
Namibian Desert presented in [175], which are localized extended gaps patterns
(with an excess of vegetation at the edge). For this, the local two-component
model obtained in Appendix3.A is fully adequate, given the environmental char-
acteristics of the present vegetation and soil (such as confined root systems and
sandy soil). Exploring the model in this context resulted in a change of course
and a broadening of the study. The goal of this study then became two-fold: first,
to analytically prove the existence of a multitude of vegetation patterns that have

2Joint work Arjen Doelman, Martina Chirilus-Bruckner and Ehud Meron; has appeared as
publication in Physica D [82].
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been observed in nature and can be found in numerical simulations of the model
[175]. Second, to go beyond the existing observations and exploit the nonlinear
richness of the model at hand in order to successfully construct and prove the
existence of novel, both from an ecological and mathematical perspective, multi-
front patterns.

In comparison to more conceptual models, such as the much studied extended-
Klausmeier model, the Gilad et al. model possesses a more involved nonlinear
structure. Although this yields a more complicated mathematical analysis, it
has a strong advantage in that it can be more directly linked to ecological mech-
anisms and observations. That being said, no basic mathematical analysis on
the patterns generated by the Gilad et al. model had been done before, until
this study. Therefore, an in depth analysis and set-up of the basic mathematical
characteristics of the model is required. This has been done in detail in the first
part of the study, where the slow/fast dynamics of the 4-dimensional spatial ODE
as presented in (1.7) are analyzed.

Building on this, a geometric singular perturbation analysis is applied to
the rescaled version of the model introduced in (1.3). Geometric singular per-
turbation theory addresses the disparate length scales associated with biomass
and water, and focuses on the strongly nonlinear ‘far-from-equilibrium’ regime,
where desertification transitions typically take place and vegetation patterns ex-
ist.

The study proves the existence of ‘basic’ 1-front invasion patterns and 2-
front spot/gap patterns which have a direct ecological interpretation and appear
to be stable in simulations of the model. In fact, the existence of novel countably
many distinct traveling 1-front patterns connecting the bare soil to the vegetated
state is established as well as the existence of (traveling) 2-front spot and gap
patterns for a whole open set of parameters of the model. A glimpse of the
various patterns simulated and constructed can be seen in Figure 1.12.

The basic 1- and 2-front patterns, in addition, form the building blocks of the
novel multi-front patterns. Based on the fast/slow dynamics of the 4-dimensional
ODE, a whole set of localized vegetation spots embedded in bare soil with a vary-
ing number of spatial oscillations is constructed, as well as periodic versions of
the latter as presented in Figure 1.12. In fact, we argue that these orbits/patterns
are not specific for the model considered here, but will also occur in a much
more general (singularly perturbed reaction-diffusion) setting as well as in an
ecological setting. The study calls for further analysis of the findings in terms of
(spectral) stability of the constructed (multi-)front patterns and their application
in terms of ecology.
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Figure 1.12: Left half : Two basic patterns exhibited by numerical simulations of model
(1.3): a traveling (heteroclinic) invasion front and a stationary homoclinic, 2-front vegeta-
tion gap, i.e., a fairy circle. Right half: Two sketches of ‘higher order’ localized patterns
constructed in Chapter 3: a 1-front connection between the bare soil state and a spatially
periodic vegetation state and a representation of a ‘higher order’ localized (stationary,
homoclinic 2-front) spot pattern with a countable number of ‘spatial oscillations’.
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Appendices

1.A Turing bifurcation on sloped terrains
By setting

s = δs̃, λ = λr + iλi = λr + iδλ̃i, 0 < δ � 1 (1.A.36)

equation (1.26) expands to

λ2
r + 2iδλrλ̃i + δ2λ̃2

i − λr[( fu + gv) − (1 + d)k2]
− iδλ̃i[( fu + gv) − (1 + d)k2] − iλr s̃δk + λ̃i s̃δ2k

+ [dk4 − (gv + d fu)k2 + ( fugv − gu fv)] + iδs̃k( fu − k2) = 0. (1.A.37)

Isolating both real and complex parts of (1.A.37) gives:

Re:

λ2
r +δ2λ̃2

i −λr[( fu+gv)−(1+d)k2]+λ̃i s̃δ2k+[dk4−(gv+d fu)k2+( fugv−gu fv)] = 0.
(1.A.38)

Im:

2δλrλ̃i − δλ̃i[( fu + gv) − (1 + d)k2] − λr s̃δk + δs̃k( fu − k2) = 0. (1.A.39)

At k = kc : it holds that
∂λr

∂k
= λr = 0. This gives 4dk3 − 2(gv + d fu)k + δ2(−2λ̃iλ̃i,k + s̃λ̃i + s̃kλ̃i,k) = 0,

−λ̃i,k[( fu + gv) − (1 + d)k2] + 2λ̃i(1 + d)k + s̃( fu − 3k2) = 0.
(1.A.40)

At λr = 0 we get dk4 − (gv + d fu)k2 + ( fugv − gu fv) + δ2λ̃i(s̃k − λ̃i) = 0,

−λ̃i[( fu + gv) − (1 + d)k2] + s̃k( fu − k2) = 0.
(1.A.41)

Expanding kc as
kc = kc,0 + δ2kc,2 + . . . (1.A.42)
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yields
4dk3

c,0 − 2(gv + d fu)kc,0 = 0. (1.A.43)

which confirms that here that kc0 is the critical wave number of the standard
Turing bifurcation (i.e., for s = 0). Substituting this in equation (1.A.41) for λ̃i

yields:

−λ̃i[( fu + gv) − (1 + d)k2
c,0] + s̃kc,0( fu − k2

c,0) = O(δ2) (1.A.44)

and thus

λ̃i(kc) =
fu − k2

c,0

( fu + gv) − (1 + d)k2
c,0

· s̃kc,0 + O(δ2) (1.A.45)

=

fu −
gv + d fu

2d

( fu + gv) − (1 + d)
gv + d fu

2d

· s̃

√
(gv + d fu)

2d
+ O(δ2)(1.A.46)

= −
s̃

d − 1
· kc + O(δ2). (1.A.47)

This confirms (1.32) and (1.33),

λi(kc) = −
δs̃

d − 1
· kc + O(δ3), µc = µc,0 + O(δ2). (1.A.48)


