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1
Introduction

Understanding nature has been one of mankind’s biggest yearnings. We are con-
tinuously trying to decipher nature’s adjustments as a complex environment of
which we, the human species, only represents a fraction, albeit a very impactful
one [50]. A universal feature of nature is its ability to adapt to external shifting
factors. This adaptation results in catastrophic changes [130, 131, 160]- such as
the extinction of animal species [17] - or gradual ones, evolving towards, con-
ceivably temporary, new states [81].

One of the major shifting factors throughout history has been climate change,
especially since the Industrial Revolution [110]. Climate change is, arguably,
the most severe challenge facing planet Earth during the 21st century [57], also
according to the United Nations [3].

Soil degradation - which is mainly caused by human activities - has a direct
impact on climate change [149, 156]. This directly results in desertification, a
form of land degradation in arid and semi-arid areas. Arid and semi-arid areas
are land surfaces receiving less than 400mm of annual precipitation [167]. They
cover more than 40% of the global land surface [37]. This development has led
to escalating concerns about the impact of climate change on desertification and
biodiversity loss [5, 47], thereby propelling the search for indicators of imminent
ecosystem shifts and the understanding thereof – from a theoretical perspective
– in the last two decades. In addition to that, aerial photographs and, later on,
satellite images have opened up a research field area that goes beyond laboratory
dimensions, trying to understand the mysteries of these landscapes such as spa-
tial plant distributions [58, 78, 102, 112, 152].

One emergent feature that came to light while studying (semi-)arid land-
scapes with the aid of aerial photographs, is nature’s adaptability to ‘self-organize’
in order to sustain itself under changing environmental conditions [32, 102, 106].
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Self-organization is the emergence of patterns and order in a system by
internal processes, rather than external constraints or forces [68]. As a result,
local interactions between individuals may often spawn global features. Self-
organization and the formation of patterns encapsulates all fields and scales,
from the smallest molecular DNA structure [85] to the Copernican solar system
model [170] and beyond, making it a universal feature of nature. Ecological
examples of self-organization range from the structure of animal social groups
to spatial patterns associated with plant distributions [68]. A few visual examples
are given in Figure 1.1.

(a) The cheetah has a spotted body with
a stripy tail [4].

(b) Google Earth satellite image of a
fractal pattern in the Egyptian desert
(27◦28′N; 32◦14′E).

Figure 1.1: Different patterns at different scales in nature.

Vegetation patterns form a characteristic feature of semi-arid regions through
the formation of distinct spatial plant distributions [137]. Water scarcity hampers
the ecosystem into spatial separation of plants; patches of dense biomass and
areas of bare soil appear, induced by a positive feedback between local vegeta-
tion growth and water redistribution towards areas of high biomass [126]. This
manifests itself in different shapes and on different spatial scales as can be seen
in Figure 1.2.

Lots of research within the ecological community has already been done
about this specific type of land degradation [58, 61, 66, 87, 88, 100, 138, 141,
145, 161, 172, 176]. The proposed ecological models studied in these papers
have already shown to numerically reproduce the vegetation patterns observed
[14, 90, 124].

Given the magnitude and tragic consequences of the process of land degra-
dation and desertification, a few questions naturally present themselves

• How does the study of vegetation patches in any way relate to mathematics
where - stereotypically - research relies on pencil, paper and nowadays
some computational power?
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(a) Fairy circles in the Namibian desert
[1].

(b) Striped pattern of woody vegeta-
tion (Acacia) that grows parallel to dry
slopes in Australia [2].

Figure 1.2: Different vegetation patterns located in different parts of the world.

• How can the abstractness and clarity of mathematics help with the ran-
domness and complexity of the real ecological world?

• Can ecology and mathematics fruitfully join efforts in order to get a better
understanding and grasp of this pressing phenomenon?

The answers to these questions are not that simple nor straightforward. On the
one hand, aerial observations do not form proof of a universal feature. Adding to
that, solely relying on numerical simulations has it restrictions as the latter rely
on a whole set of specific conditions, making it harder to formulate generalized
statements about an ecosystem. On the other hand, the complexity of vegetation
ecosystems limits rigorous mathematical analysis. Fortunately, pattern forma-
tion models can play an important role in validating (or refuting) the results
acquired from topographical data and numerics.

The challenge and aim of this thesis is bridging the gap between ecology
and mathematics, real world observations and theorems and finding a common
ground to further build new research on. It transcends the study of spatial vegeta-
tion structures to enclose a whole variety of patterns that fit into the generalized
mathematical framework of dynamical systems. The motivation behind this
piece of work is threefold:

• To assess the extent to which conceptual models’ predictions and results
apply to real world observations as has been done in Chapter 2.

• To extend the ecological insights acquired from an ecosystem model and
apply rigorous mathematical analysis to prove the existence of various
(already observed) spatial patterns as has been done in Chapter 3.

• To exploit the rich nonlinear structure of an ecosystem model and to inves-
tigate the existence of a broad class of novel spatial patterns, both from an
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ecological and a mathematical perspective as has been done in Chapter 3.

So how does mathematics lend a hand to ecology and vice versa? A few of the
models proposed within the ecological community rely on reaction-(advection)-
diffusion equations [14, 90, 124], which have played a key role in understanding
the spatio-temporal evolution of complex dynamical systems. Two of these mod-
els are studied within this thesis, and have been meticulously selected to achieve
the aims listed above: the most conceptual model at hand, in order to maximize
data and model prediction comparison and in contrast, one of the most elabo-
rated ecosystem models that had not been analyzed in such a mathematical way
before. Both these models are, deducibly, or reaction-(advection)-diffusion type.

A reaction-diffusion equation, as the term suggests, comprises a reaction
term and a diffusion term, describing the evolution in time and space of a certain
concentration or density of a component of a system. The addition of a diffusion
term to a reactive system, according to Turing [150], would disrupt a system
in a way it may change from a homogeneous spatial state to a heterogeneous
patterned state, giving rise to all sorts of spatial structures [150].

Pattern formation in this type of equations is of high interest both in ecology
and mathematics. Understanding the cross-fertilization of ecology and math-
ematics along the specific problem at hand can be hard. The complexity of
the domain of pattern formation compels the boundaries of different areas of
research to fuse. Trying to bridge the gaps and breaches between different fields
of science can be a tough quest, starting with the linguistic barrier of mere defini-
tions and concepts. Therefore, a thorough and detailed presentation of the basics
of each side of the spectrum is required, in order to set a firm and clear working
ground to advance with.

First, an ecological background is given, exploring the methodologies and
mechanisms preceding the models discussed. Second, an overview of the mathe-
matical concepts and tools is given, as a basic foundation of the work within this
thesis. Last but not least, a brief outline of the studies carried out in this work is
presented.

1 Ecological background

The pattern of variation shown by the distribution of species among
quadrants of the earth’s surface chosen at random hovers in a tanta-
lizing manner between the continuous and the discontinuous [164].
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1.1 Ecological context
The complexity and diversity of factors involved in the study of ecological sys-
tems, in particular vegetation ecology, demands for a reflection on the scientific
methodology adopted and for a diligent modeling approach. This has been cause
for divisiveness within the ecological community since the early twentieth cen-
tury [154]. However, the concept of patterns in vegetation had already become
standard since Watt’s 1947 paper on pattern and process in the plant community
[163].

It is to be expected that the most consistent and clearest ecological patterns
will almost invariably have several explanations, driven by various mechanisms
all pulling in the same direction. According to Whittaker [166], two main prin-
ciples are at play when it comes to spatial vegetation dynamics, forming the
skeleton of the different modeling approaches adopted so far:

– The principle of species individuality – each species has its unique en-
vironmental requirements and distribution, according to its own genetic
structure, physiological characteristics and population dynamics. The indi-
vidualistic nature of the species reflects itself in the individualistic nature
of plant community distributions.

– The principle of community continuity, i.e., continuum principle – commu-
nities which occur along continuous environmental gradients usually inter-
grade continuously, with gradual changes in population levels of species
along the gradient.

These two principles resulted in two main modeling approaches in use in studies
of plant population dynamics [106]; agent-based models, i.e., stochastic compu-
tational algorithms, based on the individuality principle and often capture the
characteristics of a plant in great detail. The continuum principle was incor-
porated in partial differential equations (PDE’s) which focus on deterministic
processes at small spatial scales rather than addressing individual plants. The
plant population is then described by a continuous biomass areal density [106].
The second approach has been adopted throughout this thesis, as it fits into the
well-developed theory of PDE’s. Within these ecosystem models, different types
of environmental variables can be recognized, e.g. of abiotic or biotic type. Abi-
otic variables such as precipitation and soil nitrogen content directly determine
plant growth and success. Biotic variables such as the competition from other
plants, pathogens, herbivores and fungi (mycorrhizae), may be beneficial or detri-
mental to plant growth or have complex effects contingent on abiotic variables
[154]. The main abiotic variable is the amount of water a plant can acquire in
order to survive. Therefore, in order to understand the basic dynamics of plant
population, most models have stripped these complex ecosystems to their "bare
essentials": biomass and water, and the interaction thereof.
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Water transport has two main effects; providing an extra source of water
to vegetation patches as well as inhibiting vegetation growth in the patch sur-
roundings. As shown and explained in Figure 1.3, there are different ways water
transport contributes to biomass and root system growth.

Figure 1.3: Schematic illustration of three different modes of water transport capable of
inducing pattern-forming feedback in water-limited vegetation.
Left: Infiltration feedback: typically presents itself in soil areas covered in soil crust that
change the rate of surface-water infiltration inducing overland-water flow towards densely
vegetated areas.
Middle: Root-augmentation feedback: laterally extended root systems allow water uptake
and conduction from a larger domain.
Right: Soil-water diffusion feedback: confined root systems create a soil-water gradient
due to high water uptake resulting in lateral water diffusion [106].

The most simple reaction-(advection)-diffusion system of partial differential
equation that would heuristically describe the dynamics of a plant population in
a water-scarce environment takes the formchange in biomass = growth - mortality + spread through seed dispersal,

change in water = precipitation - evaporation - uptake + spread of water.
(1.1)

In the above, the abiotic variable has been "limited" to precipitation and evap-
oration, i.e., water availability, and the biotic variable is modeled through seed
dispersal and plant growth/mortality.

The above heuristic concept has been translated into several PDE models
for dryland vegetation [62, 63, 90, 97, 124, 161]. The simplest two-component
model that takes into account both biomass and water was proposed by Klaus-
meier [90]. The extended version of this model (system (1.2)) is studied in
Chapter 2. More detailed models include two water variables representing soil-
water content and overland-water flow [62, 79, 142].

Finding a fruitful balance in the realm of adequately modeling vegetation
patterns in semi-arid ecosystems is a double-edged blade. Models that capture
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the plant population dynamics in more detail are more advantageous in that they
provide better defined and measurable parameters, though being less prone to
mathematical analysis. In contrast, considering specific contexts for vegetation
patterns such as steady rainfall, a single plant species, high soil-water diffusivity,
allows for model simplifications that facilitate mathematical assessment of the
model [107]. The latter method has been adopted for the analysis of the ecosys-
tems studied, which we will present next.

1.2 Ecosystem models studied
“Dynamic models bridge over two other modeling concepts in ecol-
ogy; descriptive models, which presents relationships between mea-
sured variables, either graphically or algebraically and conceptual
models, which seek to unravel basic mechanisms that underlie ob-
served behaviors, but remain at the level of qualitative propositions
[106].”

Two dynamical ecosystem models have been studied in detail in this thesis, both
two-component reaction–diffusion models describing the interaction between
plant biomass and water. They exhibit spatial vegetation patterns that have been
observed in semi-arid regions [61, 102]. Both models have been analyzed from
different perspectives and with different purposes. The mathematical processes
and patterns enclosed within these two models are of the highest interest, from
ecological and analytical perspectives. The proposed models do not only grant
deeper understanding of the process of desertification but also dig into an even
richer realm of patterns, with novel connections and mathematical frameworks
that have yet to be explored in more detail.

The first model is the extended-Klausmeier model [155], based on the model
proposed by Klausmeier [90]:

∂w
∂t

= e
∂2w
∂x2 +

∂(vw)
∂x

+ a − w − wn2,

∂n
∂t

=
∂2n
∂x2 − mn + wn2.

(1.2)

where w(x, t) ≥ 0 and n(x, t) ≥ 0 represent areal densities of soil water and
biomass, respectively, and x ∈ R, t ∈ R+ are the space and time coordinates. The
reaction terms model the change in water as a combined effect of rainfall (+a),
evaporation (−w) and uptake by plants (−wn2). Note that the coupling to plants
is nonlinear, as more plants enable a better uptake of water through a bigger root
system. The change of plant biomass comes from mortality (−mn) and plant
growth (+wn2). Note here again that the plant growth scales nonlinearly, as
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more present biomass encourages water uptake and thus growth. Dispersion by
plants is modeled as diffusion and the movement of water as a combined effect of
diffusion (+e) and advection. The latter is due to gradients in the terrain, which
are proportional to the slope parameter v.

The second model is a reduced version of the three-component model pro-
posed by Gilad et al. for flat terrains [63]:

∂B̃
∂T

= ΛW̃B̃(1 − B̃/K)(1 + EB̃) − MB̃ + DB
∂2B̃
∂X̃2

,

∂W̃
∂T

= P − N(1 − RB̃/K)W̃ − ΓW̃B̃(1 + EB̃) + DW
∂2W̃
∂X̃2

,

(1.3)

where B̃(X̃,T ) ≥ 0 and W̃(X̃,T ) ≥ 0 represent areal densities of biomass and
soil water, respectively, and X̃ ∈ R, T ∈ R+ are the space and time coordinates.
In the biomass (B̃) equation, Λ represents the biomass growth rate coefficient,
K the maximal standing biomass, E is a measure for the root-to-shoot ratio, M
the plant mortality rate and DB the seed-dispersal or clonal growth rate, while
in the water (W̃) equation, P represents the precipitation rate, N the evaporation
rate, R the reduction of the evaporation rate due to shading, Γ the water-uptake
rate coefficient and DW the effective soil water diffusivity. Notice that the power
of the factor (1 + EB̃) in both equations is unity, whereas in the reduced model
in [175] the power is two. This difference stems from the consideration in the
study of one space dimension rather than two.

System (1.3) represents a similar set-up to system (1.2). The equation lacks
a first derivative, that is, an advection term, as it is constrained to flat terrains.
Note that the original three component model [62] does account for topography.
A simple glimpse at both equations discloses that system (1.3) takes more param-
eters into account and exhibits a less trivial mathematical structure than system
(1.2). This allows for a more realistic modeling of real ecosystems. In addition
to reproducing banded vegetation, the model has also reproduced the famous
fairy circles [14, 61].

A closer look at both models reveals more contrast. In the extended-
Klausmeier model, plant growth is unbounded (+wn2), while in the Gilad et al.
model, it is bounded ((1 − B̃/K)). Once the biomass reaches a certain height, it
"suffers" from self-shading, which prohibits the process of photosynthesis and
therefore further growth. In addition, the water and biomass growth/loss in the
extended-Klausmeier model are coupled nonlinearly in the same manner in both
equations while in the Gilad et al. model, the coupling between the two variables
is more elaborated.
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From an ecological perspective, system (1.3), which represents the master
equation of this thesis, thus accounts for a vaster parameter space and a more
realistic representation of dryland ecosystems. Unfortunately, this also makes it
harder to analyze and numerically simulate, as numerics require specific initial
conditions, parameter values and boundary conditions. To be blunt, it boils down
to trying to grasp the behavior of an infinite dimensional continuous space in a
finite dimensional discrete manner, which has its obvious limitations. Rigorous
mathematical analysis of ecosystems like (1.2) and (1.3) has formed a bridge
between ecologists and mathematicians within the pattern formation community.
Setting the basis for the methods used in this type of analysis naturally leads us
to the mathematical part of this introduction.

1.3 Ecosystem dynamics
Consider the compactly reformulated PDE of system (1.3), as done in Appendix
B of Chapter 3 

Bt = (aW − 1) B + WB2 −WB3 + Bxx,

Wt = Ψ −
[
Φ + ΩB + ΘB2

]
W +

1
ε2 Wxx,

(1.4)

where the emphasis has to be made on the introduction of the small parameter

ε2 =
DB

DW
� 1, that is, ε is asymptotically small compared to 1, which will

play a crucial role in the tools presented in this introduction and in the proofs of
Chapter 3.

The classical approach to studying systems like (1.4) is to search for sta-
tionary and/or uniformly traveling solutions, that is, solutions that are stationary
with respect to a co-moving frame with constant speed c. Introduce a new coor-
dinate ξ = x − ct, with speed c ∈ R, an a priori free O(1) parameter (w.r.t. the
asymptotically small parameter ε). By setting

(B(x, t),W(x, t)) = (b(ξ),w(ξ)) (1.5)

and introducing

p = bξ, q =
1
ε

wξ, (1.6)

PDE (1.4) reduces to the four-dimensional ‘spatial’ dynamical system
bξ = p,
pξ = wb3 − wb2 + (1 − aw)b − cp,
wξ = εq,
qξ = ε

(
−Ψ +

[
Φ + Ωb + Θb2

]
w
)
− ε2cq.

(1.7)
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The fully vegetated state and the bare soil state are equilibria of this system,
while solutions connecting the two - so called heteroclinic orbits - represent
interfaces of vegetation patterns and, hence, the fundamental entities to study in
order to understand pattern formation.

-80 -60 -40 -20 0 20 40 60 80

0

0.5

1

1.5

2

2.5

3

3.5

4

(a) Spatial profiles of the B- and W-
components of a stationary front solution of
the original, unscaled model (1.3) – corre-
sponding to a stationary 1-front.

(b) The profile from (a) as a projec-
tion in (b,w, q)-space. The B− and W-
coordinates were extracted from the sim-
ulation of (a) and q was computed by
numerical differentiation

Figure 1.4: (a) Profile of a stationary 1-front connection of the original, unscaled model
(1.3) connecting the bare soil state to the vegetated state in real space (a) and in phase
space (b).

Although (1.7) represents a 4-dimensional system of ordinary differential
equations (ODE’s), it is still rather difficult to analyze in full. A "simple" con-
nection between the bare soil state and the fully vegetated state as seen in the
simulation from Figure 1.4a takes the complex geometrical form of Figure 1.4b
when studied in the context of (1.7). The rigorous mathematical construction of
such heteroclinic solutions in 4-D is a challenging task making use of various
theories and techniques, the basics of which we review next.

2 Mathematical concepts

2.1 Reaction-diffusion equations, orbits and patterns
Similar to the complexity of ecosystems and ecology, only a limited amount
of statements can be made about most nonlinear dynamical systems and their
behavior [72]. Nonetheless, investigating their "somewhat" simpler parts, such
as stationary or uniformly traveling solutions, yields a bigger understanding of
the dynamics of the system than one might intend to think. In order to properly
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address the questions that the dryland models in Chapter 2 and Chapter 3 present,
some mathematical concepts and theorems are of indispensable importance.

The following can be seen as a stripped down, hands-on, guide to the basic
understanding of the tools and techniques used in the following chapters, accom-
panied with a simple example to set the scene.

We are looking for stationary solutions of the reaction-diffusion equation

∂u
∂t

= D∆u + f (u). (1.8)

where u(x, t) ∈ Rm is a vector of state variables describing the densities of a
population or a concentration at position x ∈ Rn ⊂ Ω with Ω an open set, at
time t ⊂ R+. On the right side of the equation, D represents a constant diagonal
"diffusion" matrix, ∆ represents the Laplacian operator working on u and f (u)
represents a smooth (nonlinear) vector field f : Rm → Rm, the "reaction" term
of the equation.

Introducing the traveling wave coordinate ξ = x − ct, with speed c ∈ Rn,
above solution is referred to as a traveling wave Φ(ξ) = Φ(x − ct) if it satisfies

DΦ′′ + cΦ′ + f (Φ) = 0. (1.9)

Solutions to (1.9) can take different forms, from single fixed points to whole
orbits/trajectories. This is quantified within the notion of invariant sets. An
invariant set is a set such that a solution of (1.8) through each point of the set lies
in the specific set for all time. We can further specify forward and backward in-
variant sets, respectively. A forward invariant set Λ+ is a set for which Φ(ξ) ∈ Λ+

for all ξ ≥ ξ+. A backward invariant set Λ− is a set for which Φ(ξ) ∈ Λ− for all
ξ ≤ ξ−. A rough sketch of invariant sets is given in Figure 1.5.

The notion of invariant sets can be cast in the more general notion of in-
variant manifolds. For sufficiently smooth systems, the invariant set represents
an invariant manifold. For a detailed definition, we refer the reader to classical
books on differential dynamical systems [104, 169]. Similar to forward and
backward invariant sets, we can specify unstable and stable manifolds W s and
Wu for a set Λ, respectively:

W s(Λ) = {ξ0 ∈ R
n : Φ(ξ, ξ0)→ Λ for ξ → ∞}, (1.10)

Wu(Λ) = {ξ0 ∈ R
n : Φ(ξ, ξ0)→ Λ for ξ → −∞}. (1.11)

Again, for sufficiently smooth systems, W s,u(Λ) are differentiable manifolds.

Once we focus our attention on fixed points (equilibria) and trajectories
connected to them, we can classify the different orbits (that are stationary in the
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co-moving frame) we are interested in, depending on their behavior within the
invariant sets:

• A homoclinic orbit γ(p) is a closed orbit where the stable manifold W s(p)
of a fixed point p intersects with the unstable manifold Wu(p) of the same
fixed point p, that is, γ(p) ⊂ W s(p) ∩ Wu(p) and all points tend to the
same fixed point p for ξ → ±∞.

• A heteroclinic orbit A heteroclinic orbit γ(p1, p2) is an orbit where for
two different fixed points p1 and p2 the unstable manifold Wu(p1) of
p1 intersects with the stable manifold W s(p2) of p2, that is, γ(p1, p2) ⊂
Wu(p1) ∩W s(p2), and for which all points tend to p1 and p2 for ξ → −∞
and ξ → +∞, respectively.

Figure 1.5: Sketch of unstable (blue) and stable (red) invariant sets Λ+ and Λ−, respec-
tively, of a trajectory Φ. For every ξ ≥ ξ†, it holds that Φ(ξ) ∈ Λ+(Φ(ξ†)) and for every
ξ ≤ ξ∗, it holds that Φ(ξ) ∈ Λ−(Φ(ξ∗)).

Besides these two orbits, frequently studied solutions are periodic orbits, to
which Chapter 2 is basically dedicated. Periodic orbits have the characteristic
that they contain no fixed points and that there exists a specific 0 < L < ∞ with
the property that Φ(ξ + L) = Φ(ξ) for all ξ ∈ Rn. This is equivalent to having a
distinct wavenumber. A system of equations such as (1.8) generally displays a
whole continuous families of periodic orbits [39]. From the point of view of the
underlying PDE (1.8), these orbits are spatially periodic (traveling) ‘wave trains’.
Of course, one is especially interested in those wave trains that are stable and
thus observable as solutions of the PDE. The family of stable "observable" pe-
riodic orbits within (parameter, wavenumber)-space is referred to as the "Busse
balloon" [18]. This concept is extensively studied within Chapter 2, where the-
ory and real world data are put side by side. A schematic representation of a
section of a Busse balloon is given in Figure 1.6.
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Figure 1.6: A schematic representation of a section of a Busse balloon, where the
stable patterns are depicted in (parameter, wavenumber)-space. The green area encloses
all stable periodic orbits. Outside this area the periodic patterns are unstable. As the
parameter is declined, the patterns become narrower and vice versa. Per parameter value,
there exists a whole set of observable stable patterns with different wavenumbers.

In order to get a visual understanding of the potential different patterns pre-
sented above, consider the following one-component toy model in one spatial
dimension:

ut = uxx − u3 − u2 + (1 − a)u (1.12)

where a ∈ R is a free parameter we can vary. Note that this is the equivalent
of PDE (1.8) in this simplified setting, with diffusion term D∆u = uxx and
nonlinear reaction term f (u) = u3 − u2 + (1 − a)u. Introducing v = ux and
looking at stationary solutions, that is setting ut = 0, we get the following two
dimensional system of ODE’sux = v,

vx = u3 − u2 + (1 − a)u,
(1.13)

System (1.13) represents a stripped down version of equation (1.9) where we
have set for simplicity c = 0 (i.e., we only consider stationary patterns). It
exhibits up to three fixed points, given by:

(u0, v0) = (0, 0)

(u±, v0) =

1 ±
√

4a − 3
2

, 0
 . (1.14)

Clearly, for a <
3
4

, system (1.13) possesses only one fixed point (u0, v0) = (0, 0).
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For a =
3
4

, it possesses two fixed points (u0, v0) = (0, 0) and (u±, v±) = (
1
2
, 0).

For a = 1, it again possesses two fixed points (u0, v0) = (u−, v0) = (0, 0) and

(u+, v0) = (1, 0). For a ∈ (
3
4
,∞)\{1} we get three distinct fixed points as given in

(1.14). Different values of a thus generate different possible connections - orbits
- between the different fixed points. To illustrate the possible orbits we focus

on the case where a >
3
4

. System (1.13) represents a Hamiltonian system. The
solutions to the set of equations lay on the level sets of the Hamiltonian H = b
with b ∈ R where

H(u, v) =
v2

2
−

u4

4
+

u3

3
−

(1 − a)u2

2
. (1.15)

This yields phase portraits, that can look different, depending on the value
of a, as can be seen in Figure 1.7.

(a) Homoclinic orbit connecting the

fixed point (u0, v0) to itself for a =
7
9

+

1
250

.

(b) Heteroclinic orbits connecting the
fixed point (u0, v0) to the fixed point

(u+, v0) with a =
7
9

. Note that due to
the symmetry of the system we have two
heteroclinic orbits (red and green).

Figure 1.7: Phase portraits of solutions of system (1.13).
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Each orbit in a phase portrait corresponds to a distinct spatial pattern in
real space associated to (1.13). A homoclinic orbit in the ODE (1.13) system
corresponds to what is commonly referred to as a pulse in the PDE (1.12) as
shown in Figure 1.8a, a heteroclinic orbit similarly corresponds to a 1-front
connection (Figure 1.8b) and a periodic orbit simply corresponds to a periodic
pattern (Figure 1.8c).

(a) The stationary homoclinic orbit cor-
responding to the phase portrait of Fig-

ure 1.7a and a =
7
9

+
1

250
.

(b) The unique stationary heteroclinic
orbit connecting (u0, v0) to (u+, v0) in the

phase portrait of Figure 1.7b for a =
7
9

,
where v ≥ 0 ∀x.

(c) A stationary periodic orbit

for a =
7
9

+
1

200
.

Figure 1.8: Spatial profile of the different stationary patterns exhibited by system (1.12).
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The analysis and spatial patterns extracted from toy model (1.12) are pretty
simple and straightforward. The patterns obtained from toy model (1.12) are
similar to those observed in real ecosystems, such as the ones described in
Chapter 3, where the ecosystem model involved (1.3) is more realistic yet more
mathematically involved. This yields the following "real ecosystem patterns
counterpart" of the patterns in Figure 1.8.
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(a) A homoclinic stationary 2-front spot
pattern of system (1.4).

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

0 5 10

0

5

10
10

3

(b) The unique heteroclinic stationary
1-front pattern of system (1.4).
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(c) A small amplitude stationary spa-
tially periodic solution generated by a
Turing bifurcation in system (1.4).

Figure 1.9: Spatial profile of the different patterns exhibited by system (1.4). For the
exact parameter settings, we refer to section 4 of Chapter 3.
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The spatial profile of the homoclinic and heteroclinic patterns of Figure 1.9 is
non-monotonous, due to the geometry of the invariant slow manifolds of model
(1.3). Due to the complexity of the model at hand, basic ODE solving tools often
fail to deliver. Luckily, when it comes to connections, especially homoclinic
and heteroclinic, a mathematical theory comes in handy: geometrical singular
perturbation theory.

2.2 Geometric singular perturbation theory

Geometrical singular perturbation theory is a geometric approach revolving
around scale separation within a dynamical system, as is the case in the models
presented in Section 1.2. The geometric approach endeavors to identify the cen-
tral dynamical structures such as invariant sets and invariant manifolds, present
in the phase space of the system. Often within reaction-diffusion equations,
the time evolution of different variables differs by several orders of magnitude.
Similarly, their spatial evolution can take place on various length scales. A
‘magnification’ of (one of) these scale separations can be very insightful. As-
sumptions with respect to processes that have different time or length scales
might simplify the problem we want to understand, yielding a first insight into
the structures and dynamics involved. Assuming that very fast processes regu-
late instantly or that slow processes stand still are examples of these possible
magnifications. They describe the system in some limiting case, which is usually
easier to analyze mathematically. The foundation of this approach was set by
Fenichel [51–54]. Since then, these mathematical methods have evolved and
found their way towards applications, including ecological models. For a more
mathematical introduction, including proofs of the theorems, we refer to the
surveys of Jones [83] and Kaper [86].

Consider the system of singularly perturbed ordinary differential equations
in general form:  ux = f (u, v, ε),

vx = εg(u, v, ε).
(1.16)

In the equation above, u ∈ Rm, v ∈ Rn. The constant real parameter ε is small,
i.e., 0 < ε � 1. The functions f and g are assumed to be sufficiently smooth.
‘Sufficiently smooth’ here means at least C1 in u, v and ε.

A reformulation of system (1.16) in terms of the rescaled variable y = εx
yields  εuy = f (u, v, ε),

vy = g(u, v, ε).
(1.17)
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Systems (1.16) and (1.17) are equivalent for ε , 0. System (1.16) is referred
to as the fast system and system (1.17) is referred to as the slow system. For
ε = 0, the fast system (1.16) reduces to an m-dimensional reduced fast system on
a manifold { f (u, v0) = 0} in (m + n)- dimensional space with the n-dimensional
variable v as a constant parameter ux = f (u, v0, 0),

v = v0.
(1.18)

For ε = 0, the slow system (1.17) reduces to an n-dimensional reduced slow
system with  0 = f (u, v, 0),

vy = g(u, v, 0).
(1.19)

Under (1.18) the solutions are defined in Rm+n , but are in fact an n-parameter
family of m-dimensional systems. Moreover, the solutions under (1.18) on the
n-dimensional set f (u, v, 0) = 0 are trivial. On the other hand, (1.19) does pre-
scribe a nontrivial solution on f (u, v, 0) = 0, but at the same time it is limited to
only this set.

Geometric singular perturbation theory seeks to exploit the properties of
these fast-slow decompositions and the intersections of various manifolds in
order to establish the existence of different desired orbits (periodic, heteroclinic,
homoclinic). The two reduced systems (1.18) and (1.19) offer different insights
into the behavior of orbits and geometric structures in the fast and slow regimes,
respectively, but in either formulation the ε > 0 system (1.16) can’t be described
in full. The goal of geometric singular perturbation theory is to analyze the
dynamics of system (1.16) with ε nonzero but small by suitably combining the
dynamics of the two limits of the reduced fast and slow systems. Certain geo-
metric structures in the phase space of (1.16) with 0 < ε � 1 can be found close
to counterparts from (1.18). These structures are usually easier to locate. In
addition, certain other geometric constructs of (1.16) with 0 < ε � 1 lie close to
objects in the phase space of (1.19). By exploiting this decomposition into fast
and slow, the geometric approach reduces the full singularly perturbed system
to separate lower-dimensional regular perturbation problems in the fast and slow
regimes, respectively.

The basic ingredient is to combining these ‘puzzle pieces’ is illustrated in
Figure 1.10 and is as follows. Suppose we are given an n-dimensional manifold
M0 which is contained in the set { f (u, v, 0) = 0}. Note that this implies that M0
consists of critical points of the reduced fast system (1.18). Of all the systems
like (1.16), we focus on the one for which the manifold M0 consists of only
hyperbolic points of the reduced fast system (1.18), that is, critical points whose
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eigenvalues λ of the Jacobian
∂ f
∂u

(u, v, 0)|hyperbolic point are uniformly bounded
away from the imaginary axis. Then the so-called critical manifold M0, is said
to be normally hyperbolic, and persists as a locally invariant slow manifold Mε

of the full problem (1.16) that is O(ε) close to M0. The restriction of the flow
(1.17) to Mε is a small perturbation of the trajectories of the limiting problem
(1.19). Moreover, the stable and unstable manifolds W s(M0) and Wu(M0)
of M0 persist as manifolds W s(Mε) and Wu(Mε) too. They lie within O(ε)
distance of, and are diffeomorphic to, W s(M0) and Wu(M0) respectively [77].
These persistence theorems, proved by Fenichel [51–54], form the basis for the
construction of global singular orbits. By ‘gluing’ together fast and slow pieces
obtained in the fast and slow regimes, respectively, and verifying the persistence
of these global structures for small ε , 0, the desired orbits can be obtained for
the full system.

Figure 1.10: Unperturbed critical manifolds M0 consisting of fixed points (·) and their
local stable and unstable manifolds W s,u(M0). The manifolds persist for 0 < ε � 1 as
perturbed manifolds Mε with trajectories on them [77].
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3 The onset of patterns

The study of the formation and nonlinear evolution of ecosystems canonically
emerges from combining the pre-requisites of Section 1 and Section 2 of this
introduction. This section is focused on providing the mathematical mechanisms
by which spatio-temporal heterogeneities may occur in a reaction-diffusion sys-
tem, and their interpretation in terms of the underlying ecological mechanisms.
In doing so, we lay out the basics of the localized structures considered in Chap-
ter 2 and Chapter 3 of this thesis.

Consider equation (1.8), in the simplest case that still generates rich pat-
tern dynamics, that is, a 2-component reaction-diffusion equation in one spatial
dimension, the unbounded domain R:

 ut = uxx + f (u, v; µ),
vt = dvxx + g(u, v; µ),

(1.20)

where u(x, t), v(x, t) ∈ R with x ∈ R and t ∈ R+. The coefficient d is a constant
diffusion coefficient and the vector fields f (u, v; µ), g(u, v; µ) : R2 → R2 repre-
sent the reaction terms of the equations where we specified their dependence on
(a number of) constant parameters µ ∈ Rm of the system.

In the ecological setting of this thesis, system (1.20) models the spatial in-
teractions between biomass density and water in vegetation ecosystems on a flat
terrain. In reality, ecosystems are subject to another spatial property of their
environment: its topography. This is characterized by the (local) slope of the ter-
rain, which can have a significant effect on the vegetation dynamics. It has been
observed that vegetation aligns in resilient striped patterns perpendicular to the
slope of the terrain due to an oriented flow of water downhill [6, 9, 33, 101, 152].
Therefore, we will study the effect of the presence of slope on the classical ‘flat
terrain’ Turing destabilization.

Including slope into system (1.20), the displacement of water is mathemati-
cally modeled as a combined effect of diffusion (dvxx) and advection (svx), where
s ∈ R is a measure for the slope of the terrain [90]. The latter is a topographical
effect, which in general depends on the spatial variable x, that is, takes the form
h(x). This would yield addition terms hxvx + hxxv in (1.20) [11].Thus by model-
ing the topographical effect as svx with s a constant, we consider the case of a
constant slope, h(x) ≡ sx.

In the general mathematical setting of the system (1.20), we thus extend the
reaction-diffusion equation into a (2-component) reaction-advection-diffusion
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equation (in one spatial dimension) of the form ut = uxx + f (u, v; µ),
vt = dvxx + svx + g(u, v; µ).

(1.21)

In the ecological setting, v represents the water equation, where the diffusion
coefficient d � 1 as water diffuses on a much faster timescale than vegetation
disperses, the latter being described by the u-equation. Since vt = svx yields
v = v(x + st), i.e., an advective transport with speed −s , this means that increas-
ing x corresponds to the uphill direction. Moreover, for the case s = 0, system
(1.21) is equivalent to system (1.20), which has been studied extensively in [39]
and the references therein.

Denote the trivial background states of (1.20) and (1.21) as (U,V), for which
we know that f (U,V) = g(U,V) = 0. Note that the stationary solutions are the
same for both systems, as the additions of the svx term does not alter the steady
state solutions.

The spectral – or linearized – stability of (U,V) of system (1.21) against
(bounded) perturbations can be determined by plugging the decomposition,(

u(x, t)
v(x, t)

)
=

(
U
V

)
+

(
up

vp

)
(1.22)

with (
up

vp

)
=

(
α
β

)
eikx+λt + c.c. (1.23)

into (1.21), with k ∈ R, λ ∈ C and (α, β) ∈ C2. The linearized 2 × 2 eigenvalue
problem is then determined by

A(k; µ)
(
α
β

)
=

(
fu − k2 fv

gu gv − dk2 + isk

) (
α
β

)
= λ

(
α
β

)
(1.24)

with

fu =
∂ f
∂u

(U(µ),V(µ); µ), fv(µ) =
∂ f
∂v

(U(µ),V(µ); µ), etc. (1.25)

Since k ∈ R, the associated characteristic polynomial,

λ2−λ[( fu+gv−(1+d)k2+isk]+[dk4−(gv+d fu)k2+( fugv−gu fv)]+isk( fu−k2) = 0
(1.26)

defines 2 functions λ1,2 : R → C which we assume to be ordered; Re(λ2(k)) ≤
Re(λ1(k)). Note that λ j is symmetric in k for s = 0 while λ(−k) = λ̄(−k) for
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s , 0.

A trivial background state (U,V) of (1.21) is spectrally stable for those values
of the parameter µ for which Re(λ1,2(k; µ)) < 0 for all k ∈ R. Pattern formation
sets in (from (U,V)) as µ crosses through a critical value µc beyond which
there are values of k for which Re(λ1(k; µ)) > 0. Here we focus on the Turing
mechanism , i.e., we assume that (U,V) is marginally stable at µ = µc and that
there is a kc , 0 such that Re(λ1(±kc; µc)) = 0 while Re(λ1(k; µc)) < 0 for all
k ∈ R with k , ±kc. Note that this implicitly implies that Re(λ1,2)(0, µc) < 0, i.e.,
that (U,V) is stable against spatially homogeneous perturbations [113, 150]. It
follows from the smoothness of λ1,2(k; µ), that k = kc must be a local maximum

of Re(λ1(k; µc)) : Re(
dλ1

dk
(±kc; µc)) = 0 for all k in neighborhoods of ±kc.

Analyzing this for the classical case s = 0 yields

kc = kc(µ) = ±

√
d fu + gv

2d
with d fu + gv > 0., (1.27)

(see for instance [39, 113]). The critical value µc can be computed by plugging
(1.27) back into (1.26). Further manipulations, for which we refer the reader to
[39], yield the classical conditions for the destabilization by the Turing mecha-
nism

fu > 0, gv < 0, (1.28)
fu + gv < 0, (1.29)

fugv − fvgu > 0, (1.30)

where we have used that d > 1. Note that the two components u(x, t) and v(x, t)
are thus diffusing with different speeds, thereby fulfilling the roles of an activa-
tor u and an inhibitor v within the equation, that is, fu(U(µc),V(µc); µc) > 0 and
gv(U(µc),V(µc); µc) < 0 Figure 1.11, depicts two different critical eigenvalue
curves λ1,2(k) for the distinct possible cases in the classical scenario s = 0.

Figure 1.11: Two critical eigenvalue curves in the classical case s = 0. (a,b): The
real parts of the solutions λ1,2(k) of (1.26) for a Turing destabilization, i.e., kc , 0 with
λ1,2(k) ∈ R for all k ∈ R in (a), and parameter combinations such that λ1,2(k) < R for
certain k in (b) citeDreview.
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To investigate the impact of the slope on the classical Turing bifurcation and
to minimize the technicalities of the stability analysis, we assume that s is small,
i.e., we introduce 0 < δ � 1 and set s = δs̃.

We know from the above classical Turing analysis that λ1(k; µ), that is, the
critical λ j, is real for (k, µ) close to (kc, µc). Thus we may conclude from (1.26)
that

λ1(k; µ) = λr(k; µ) + λi(k; µ) = λr + iδλ̃i(k; µ) (1.31)

A straightforward perturbation analysis yields that

kc(s) = kc(0) + O(δ2) and µc = µc(0) + O(δ2), (1.32)

with kc(0), µc(0) as determined by the classical Turing analysis (i.e., in (1.20)/(1.21)
with s = 0 – see Appendix 1.A). That same analysis yields

λi(kc) = δλ̃i(kc) = −
s̃

d − 1
kcδ + O(δ3). (1.33)

Thus we find by (1.22) that the most critical perturbation, i.e., the perturbation
that is the first to start growing at the Turing destabilization is given by

(
up

vp

)
∼

(
αc

βc

)
eikc x+λ(kc,µc)t + c.c. =

(
αc

βc

)
e

ikc

x−
δs̃

d − 1
t

(1+O(δ2))
+ c.c. (1.34)

and travels with speed

c =
δs̃

d − 1
+ O(δ3). (1.35)

The interpretation in terms of (1.21) as ecosystem model in biomass u and water
v confirms the ecological intuition that vegetation patterns should move uphill:
as was already argued, the term svx in (1.21) determines the downhill direction
by its associated ‘advective speed’ = −s. Since water diffuses much faster than
biomass, i.e., d � 1, in (1.35) Turing patterns travel in the opposite direction:
biomass travels towards the down flowing water.

While the conditions for the onset of a Turing destabilization are relatively
straightforward, the determination of the nature of the pattern that is exhibited
is a more difficult problem since beyond the bifurcation point, a finite band of
wavenumbers is growing exponentially. Therefore, it is a priori unclear whether
the perturbations also evolve into stable (spatially periodic) Turing patterns. This
is actually only the case if the associated Turing bifurcation is supercritical [39].
The nature of the Turing bifurcation can be determined by a weakly nonlinear
amplitude equation approach – we refrain from going in the details here.
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4 Content of thesis
The nature of the research done in this thesis is diverse. Two different "paths"
have been taken in executing interdisciplinary research in ecology and mathe-
matics through the lens of pattern formation as will become clear in Chapter 2
and Chapter 3. Nonetheless, the foundation of the work at hand is concordant:
an ecological phenomenon is modeled with explicit two-component ecosystem
models, allowing for rigorous mathematical analysis and numerical computa-
tions, that reproduce the patterns observed in nature. The mixture of analyzing
the underlying mathematical structure of the ecosystem model and exploring
the ecological data and parameters at hand allows for a deeper understanding
of the mechanisms at play, thereby leading to qualitative conclusions about the
ecosystem, the patterns it exhibits and the knowledge thereof. This represents a
step towards a better comprehension and theoretical predictions of the behavior
of the process of desertification as well as pattern formation in ecosystems. The
work done in this thesis even goes beyond the latter, by unraveling new insights
in both the ecological and mathematical community.

4.1 Multistability of striped vegetation patterns
Chapter 2, titled "Multistability of model and real dryland ecosystems through
spatial self-organization"1, represents a novel study providing a meticulous com-
parison between theoretical model predictions and empirical data of spatial veg-
etation patterns in dryland ecosystems.

Model predictions by the extended-Klausmeier model, which exhibits dif-
ferent patterns (such as bands and gaps) are put side by side with state of the
art aerial and topographical observations of banded vegetation patterns obtained
in two regions in Somalia and characteristics thereof (biomass density, spatial
spread of bands). Since it is considered the most "conceptual" reaction-diffusion
model at hand for these types of ecosystems, the extended-Klausmeier model
constitutes a perfect candidate to assess basic yet fundamental correlations be-
tween theory and data.

Regularly spaced banded vegetation patterns have long been considered to
be leading indicators for the proximity of an ecosystem to desertification and
changes thereof. They are characterized by their wavenumber/period as well
as their size and biomass density. In this study, we establish multi-stability of
banded vegetation patterns, which implies the co-existence of a whole (continu-

1Joint work with Robbin Bastiaansen, Vincent Deblauwe, Maarten B. Eppinga, Koen Siteur,
Stéphane Mermoz, Alexande Bouvet, Arjen Doelman and Max Rietkerk; has appeared as publication
in PNAS [13].
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ous) range of wavenumbers of significant spread, for the same set of parameters
of the ecosystem model. That is, an ecosystem can display a whole family of
stable (i.e., observable) banded patterns for a given set of parameters. This is
theoretically contained in the notion of Busse balloon, the set of stable spatially-
periodic solutions in (parameter, wavenumber)-space to the reaction-diffusion
model. The concept of Busse balloon introduces the possibility of an ecosystem
to increase its resilience - a mechanism that cannot take place in the classical
mono-stable point of view and which thus offers a way to avoid collapse into the
desert state. A disruption of stable banded patterns in a relatively large region
was thought to result in a catastrophic shift towards desertification, with the
disappearance of all vegetation bands. This study indicates that once a stable
banded pattern is destabilized due to environmental changes, it may adapt its
wavenumber (as well as its biomass density) to a new value which might still be
contained within the Busse balloon, therefore still being stable (thus observable),
making the shift in ecosystem change less drastic.

For this study, we did not consider changes in yearly rainfall, as the data over
longer time periods was insufficient. Therefore, the main parameter worked with
in the Busse balloon was the local slope of the terrain, using topographical and
biomass data to gather precise information about the two regions studied.
In addition to the notion of multi-stability, this study shows a vast spread in the
wavenumber, biomass density and migration speed of banded vegetation patterns
of the site, further corroborating model predictions thereof.

4.2 Existence of (novel) localized vegetation patterns in a gen-
eralized ecosystem model

Chapter 3, titled "The existence of localized vegetation patterns in a systemat-
ically reduced model for dryland vegetation"2, focuses on the two-component
reaction-diffusion model for vegetation biomass and soil water content, as intro-
duced in (1.3), which was obtained in Appendix 3.B by a systematic reduction
of the three-component Gilad et al. model for dryland ecosystem dynamics
[62]. The starting motivation was to gain a fundamental understanding of the
underlying mathematical mechanism behind the infamous ‘fairy circles’ of the
Namibian Desert presented in [175], which are localized extended gaps patterns
(with an excess of vegetation at the edge). For this, the local two-component
model obtained in Appendix3.A is fully adequate, given the environmental char-
acteristics of the present vegetation and soil (such as confined root systems and
sandy soil). Exploring the model in this context resulted in a change of course
and a broadening of the study. The goal of this study then became two-fold: first,
to analytically prove the existence of a multitude of vegetation patterns that have

2Joint work Arjen Doelman, Martina Chirilus-Bruckner and Ehud Meron; has appeared as
publication in Physica D [82].
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been observed in nature and can be found in numerical simulations of the model
[175]. Second, to go beyond the existing observations and exploit the nonlinear
richness of the model at hand in order to successfully construct and prove the
existence of novel, both from an ecological and mathematical perspective, multi-
front patterns.

In comparison to more conceptual models, such as the much studied extended-
Klausmeier model, the Gilad et al. model possesses a more involved nonlinear
structure. Although this yields a more complicated mathematical analysis, it
has a strong advantage in that it can be more directly linked to ecological mech-
anisms and observations. That being said, no basic mathematical analysis on
the patterns generated by the Gilad et al. model had been done before, until
this study. Therefore, an in depth analysis and set-up of the basic mathematical
characteristics of the model is required. This has been done in detail in the first
part of the study, where the slow/fast dynamics of the 4-dimensional spatial ODE
as presented in (1.7) are analyzed.

Building on this, a geometric singular perturbation analysis is applied to
the rescaled version of the model introduced in (1.3). Geometric singular per-
turbation theory addresses the disparate length scales associated with biomass
and water, and focuses on the strongly nonlinear ‘far-from-equilibrium’ regime,
where desertification transitions typically take place and vegetation patterns ex-
ist.

The study proves the existence of ‘basic’ 1-front invasion patterns and 2-
front spot/gap patterns which have a direct ecological interpretation and appear
to be stable in simulations of the model. In fact, the existence of novel countably
many distinct traveling 1-front patterns connecting the bare soil to the vegetated
state is established as well as the existence of (traveling) 2-front spot and gap
patterns for a whole open set of parameters of the model. A glimpse of the
various patterns simulated and constructed can be seen in Figure 1.12.

The basic 1- and 2-front patterns, in addition, form the building blocks of the
novel multi-front patterns. Based on the fast/slow dynamics of the 4-dimensional
ODE, a whole set of localized vegetation spots embedded in bare soil with a vary-
ing number of spatial oscillations is constructed, as well as periodic versions of
the latter as presented in Figure 1.12. In fact, we argue that these orbits/patterns
are not specific for the model considered here, but will also occur in a much
more general (singularly perturbed reaction-diffusion) setting as well as in an
ecological setting. The study calls for further analysis of the findings in terms of
(spectral) stability of the constructed (multi-)front patterns and their application
in terms of ecology.
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Figure 1.12: Left half : Two basic patterns exhibited by numerical simulations of model
(1.3): a traveling (heteroclinic) invasion front and a stationary homoclinic, 2-front vegeta-
tion gap, i.e., a fairy circle. Right half: Two sketches of ‘higher order’ localized patterns
constructed in Chapter 3: a 1-front connection between the bare soil state and a spatially
periodic vegetation state and a representation of a ‘higher order’ localized (stationary,
homoclinic 2-front) spot pattern with a countable number of ‘spatial oscillations’.



28 1. Introduction



Appendices

1.A Turing bifurcation on sloped terrains
By setting

s = δs̃, λ = λr + iλi = λr + iδλ̃i, 0 < δ � 1 (1.A.36)

equation (1.26) expands to

λ2
r + 2iδλrλ̃i + δ2λ̃2

i − λr[( fu + gv) − (1 + d)k2]
− iδλ̃i[( fu + gv) − (1 + d)k2] − iλr s̃δk + λ̃i s̃δ2k

+ [dk4 − (gv + d fu)k2 + ( fugv − gu fv)] + iδs̃k( fu − k2) = 0. (1.A.37)

Isolating both real and complex parts of (1.A.37) gives:

Re:

λ2
r +δ2λ̃2

i −λr[( fu+gv)−(1+d)k2]+λ̃i s̃δ2k+[dk4−(gv+d fu)k2+( fugv−gu fv)] = 0.
(1.A.38)

Im:

2δλrλ̃i − δλ̃i[( fu + gv) − (1 + d)k2] − λr s̃δk + δs̃k( fu − k2) = 0. (1.A.39)

At k = kc : it holds that
∂λr

∂k
= λr = 0. This gives 4dk3 − 2(gv + d fu)k + δ2(−2λ̃iλ̃i,k + s̃λ̃i + s̃kλ̃i,k) = 0,

−λ̃i,k[( fu + gv) − (1 + d)k2] + 2λ̃i(1 + d)k + s̃( fu − 3k2) = 0.
(1.A.40)

At λr = 0 we get dk4 − (gv + d fu)k2 + ( fugv − gu fv) + δ2λ̃i(s̃k − λ̃i) = 0,

−λ̃i[( fu + gv) − (1 + d)k2] + s̃k( fu − k2) = 0.
(1.A.41)

Expanding kc as
kc = kc,0 + δ2kc,2 + . . . (1.A.42)
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yields
4dk3

c,0 − 2(gv + d fu)kc,0 = 0. (1.A.43)

which confirms that here that kc0 is the critical wave number of the standard
Turing bifurcation (i.e., for s = 0). Substituting this in equation (1.A.41) for λ̃i

yields:

−λ̃i[( fu + gv) − (1 + d)k2
c,0] + s̃kc,0( fu − k2

c,0) = O(δ2) (1.A.44)

and thus

λ̃i(kc) =
fu − k2

c,0

( fu + gv) − (1 + d)k2
c,0

· s̃kc,0 + O(δ2) (1.A.45)

=

fu −
gv + d fu

2d

( fu + gv) − (1 + d)
gv + d fu

2d

· s̃

√
(gv + d fu)

2d
+ O(δ2)(1.A.46)

= −
s̃

d − 1
· kc + O(δ2). (1.A.47)

This confirms (1.32) and (1.33),

λi(kc) = −
δs̃

d − 1
· kc + O(δ3), µc = µc,0 + O(δ2). (1.A.48)
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Multi-stability of model and

real dryland ecosystems
through spatial

self-organization

Spatial self-organization of dryland vegetation constitutes one of the most
promising indicators for an ecosystem’s proximity to desertification. This
insight is based on studies of reaction-diffusion models that reproduce vi-
sual characteristics of vegetation patterns observed on aerial photographs.
However, until now, the development of reliable early warning systems
has been hampered by the lack of more in-depth comparisons between
model predictions and real ecosystem patterns. In this chapter, we com-
bined topographical data, (remotely sensed) optical data and in-situ biomass
measurements from two sites in Somalia to generate a multi-level descrip-
tion of dryland vegetation patterns. We performed an in-depth comparison
between these observed vegetation pattern characteristics and predictions
made by the extended-Klausmeier model for dryland vegetation patterning.
Consistent with model predictions, we found that for a given topography,
there is multi-stability of ecosystem states with different pattern wavenum-
bers. Furthermore, observations corroborated model predictions regarding
the relationships between pattern wavenumber, total biomass and maxi-
mum biomass. In contrast, model predictions regarding the role of slope
angles were not corroborated by the empirical data, suggesting that inclu-
sion of small-scale topographical heterogeneity is a promising avenue for
future model development. Our findings suggest that patterned dryland
ecosystems may be more resilient to environmental change than previously
anticipated, but this enhanced resilience crucially depends on the adaptive
capacity of vegetation patterns.
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1 Introduction

A key aim of ecological modeling is to generate an understanding of the mech-
anisms driving observed patterns [99]. A significant challenge in this pursuit,
however, is that multiple alternative processes may generate the same emergent
outcome [48, 70, 99, 153], a phenomenon also referred to as equifinality [93, 94].
As a result, modeling efforts may reveal that a particular ecological pattern can
be explained by a suite of alternative driver mechanisms. Therefore, a match
between a pattern simulated with a mechanistic model and a pattern observed in
a real ecosystem may only constitute limited support for the modeled mechanism
being its true driver [70, 93, 94].

Pattern-oriented modeling [69, 70] aims to address the challenge of equifi-
nality of alternative model formulations. In this approach, model assessment
is based on the degree to which the output corresponds to observed patterns.
A distinction is made between strong and weak patterns. Strong patterns are
the dominant emergent features a model should reproduce, such as the cycles
within predator and prey population sizes, or a spatial distribution of vegetation
patches [69, 94]. Weak patterns are typically qualitative relationships, such as
the existence of a population over a specific timespan, or a positive association
between one state variable and another [69, 94]. Rather than comparing model
output to a single strong pattern, additional comparisons to multiple weak pat-
terns, at different scales or levels of organization, provide more power to model
validation and selection procedures [69, 70, 94].

A specific type of ecological patterns that has received considerable attention
is regular spatial patterning of sessile biota [126]. On flat terrain, the reported
patterns are gaps, labyrinths, and spots [124, 161]. On sloping grounds banded
patterns form, their regular spacing enabling a description of the characteristic
band-inter-band period and wavenumber. Evidence is accumulating that these
patterns are self-organized, meaning that the larger-scale patterning is driven by
internal ecosystem processes operating at smaller scales [125, 126]. The cru-
cial component in this self-organization process is a long-range negative effect
of biota on itself, either directly or through modulation of resource availabil-
ity. In cases where this long-range negative feedback is coupled to a locally
positive feedback, the mechanism creating pattern formation may be linked to
the existence of alternative stable states, as well as the possibility of so-called
catastrophic shifts between these states [125]. This phenomenon has been most
prominently studied in (semi-)arid ecosystems, where decreases in resource
availability or increases in grazing pressure may trigger catastrophic shifts from
vegetated states to desert states without vegetation [103, 115, 127]. In this con-
text, the formation of regular spatial vegetation patterns may indicate proximity
to a threshold of catastrophic change [125].
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There is a long tradition in the scientific literature of explaining regular spa-
tial patterning with reaction-diffusion models [29, 114, 150]. In line with this
work, a variety of reaction-diffusion models has been applied to investigate self-
organization in (semi-)arid ecosystems [62, 90, 124, 161]. Despite the broad
support for the findings obtained with these models and their implications for
(semi-)arid ecosystem functioning, comparisons of model results with empirical
data have mainly been limited to comparison of a single strong pattern, namely
the spatial distribution of vegetation patches. Until now, the few studies consid-
ering additional weak patterns have shown that reaction-diffusion model simu-
lations successfully reproduce associations between pattern shape and aridity,
and associations between pattern shape and slope of the terrain [34]. In addition,
models that account for sloped terrain also seem to capture the observed migra-
tion of the location of banded patterns in uphill direction [33]. Despite these
promising agreements between model results and empirical data, a more system-
atic comparison between model results and data, based on multiple patterns at
different levels of organization [69, 70], was still lacking.

Advanced model analyses that have recently been applied to ecological mod-
els have yielded a number of findings which, when confronted with high quality
remote sensing products, makes a more systematic comparison possible. More
specifically, recent theoretical studies have shown that for a given environmental
condition (i.e., a given parameter combination), not a single ecosystem state,
but multiple ecosystem states with patterns spanning a range of wavenumbers
may be stable, hence observable [143, 146, 155]. The range of observable
patterns, across a range of environmental conditions forms a bounded region
in (parameter,wavenumber)-space. This region is referred to as the Busse bal-
loon, after F.H. Busse, who studied similar phenomena in the field of fluid
dynamics [18]. Although the patterned ecosystem states in the Busse balloon are
defined by their wavenumber, other properties, like migration speed and spatially
averaged biomass, have also been studied [138] and are suggested to depend on
the position of a system within the Busse balloon. These theoretical findings pro-
vide multiple additional weak patterns that can be compared to empirical data,
providing opportunities for more powerful tests of the validity of the developed
reaction-diffusion models to describe dryland ecosystems.

The aim of this study was to confront theoretical findings regarding pattern
wavenumber, biomass and migration speed with the same pattern properties
derived from aerial imagery and remote sensing products of banded vegetation
patterns in the Horn of Africa, a location with prominent undisturbed presence of
vegetation pattern formation. Hence, a multi-level comparison between theory
and data in line with the pattern-oriented modeling approach was conducted [69,
70, 94].
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2 Theory

2.1 Model description
Multiple reaction-diffusion models of dryland vegetation dynamics include a
mechanism in which vegetation acts as an ecosystem engineer, locally increas-
ing the influx of available water [62, 90, 124, 161]. Despite the different nu-
ances between these models, a number of predictions can be robustly derived
from these frameworks. One of the simplest of these ecosystem models – and
the archetype considered in this article – is an extended version of the dry-
land ecosystem model by Klausmeier [90, 155], which we will refer to as the
extended-Klausmeier model. This model describes the interaction between wa-
ter, w, and plant biomass, n. A non-dimensional version of this model is used for
the purposes of this article. A dimensional version of the model and the physical
meaning of its parameters can be found in Appendix 2.A. The model is given by
the following equations

∂w
∂t

= e
∂2w
∂x2 +

∂(vw)
∂x

+ a − w − wn2,

∂n
∂t

=
∂2n
∂x2 − mn + wn2.

(2.1)

The reaction terms model the change in water as a combined effect of rain-
fall (+a), evaporation (−w) and uptake by plants (−wn2). The change of plant
biomass comes from mortality (−mn) and plant growth (+wn2). Dispersion by
plants is modeled as diffusion and the movement of water as a combined effect
of diffusion and advection. The latter is due to gradients in the terrain, which are
proportional to the slope parameter v.

2.2 Theoretical outcomes

1 Multi-stability of patterned states

Reaction-advection-diffusion equations in general – and the extended-Klausmeier
model in particular – exhibit a vast variety of spatial patterns [96, 117]. However,
not all feasible patterns are stable solutions of these models. Which patterned
states are stable (hence, observable) depends on the combination of the model
parameters. For regular patterns, the concept of the Busse balloon can help to
illustrate this dependency [18]. A Busse balloon is a model dependent shape in
the (parameter,wavenumber)-space that indicates all combinations of parameter
and wavenumber that represent stable solutions of the model. If, for a given
set of model parameters, a wavenumber k lies within the Busse balloon, then
regular patterns with wavenumber k are observable. So, in measurements, all
(non-transient) patterns are expected to be present in the Busse balloon.
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Typically, the Busse balloon is a high-dimensional structure due to the num-
ber of parameters in a system. Therefore, usually, only one parameter is varied
when a Busse balloon is visualized. This produces a 2D-slice of the full Busse
balloon. In the context of desertification research, the straightforward choice
would be to vary the rainfall [146]. However, mean annual rainfall was relatively
constant in our study sites during the observation period considered. Instead,
topography (i.e., the slope gradient) comprised the main source of environmen-
tal variation within our study areas. Thus, relevant theoretical predictions for
our study sites can be generated by varying the slope parameter v (while keep-
ing rainfall constant). Here, we present two of such 2D-Busse balloon slices
for the extended-Klausmeier model (Figure 2.1), which were constructed by
tracking the boundary of the Busse balloon using numerical continuation meth-
ods [122, 141, 143, 146]. The shaded region in these figures indicates the com-
binations of pattern wavenumber k and slope v for which stable solutions exist.
Thus, the model shows multi-stability; a given slope v can sustain a continuous
range of wavenumbers k. That is, knowing all current parameter values of a
system is not enough to predict the pattern, but only gives a range of possible
wavenumbers – as indicated by the Busse balloon. For patterns with wavenum-
bers above this range, there are too few resources to sustain all bands; below
this range, there is an abundance of resources that leads to the formation of ad-
ditional vegetation bands. It is in general not possible to predict which of these
wavenumbers is selected at a specific location; small changes in the (entire) his-
tory of environmental changes can have large impacts on the wavenumber that is
currently selected [138, 140]. To understand these hysteretic dynamics, it is vital
to acknowledge that model patterns do not change their wavenumber unless they
have to [141, 146]: if an environmental change forces the system outside of the
Busse balloon, the current pattern has become unstable, and will need to adapt
into a new pattern that is again stable – thus part of the Busse balloon. During
this (fast) adaption, only part of the vegetation bands are lost, while the remain-
ing bands increase in volume; these adaptations thus have limited effect on the
total biomass in the system [146]. Hence, multiple wavenumber adaptations
are expected to occur after each other that will, gradually, lead to a complete
desertification of the system [146]. Both the moment of a destabilization and the
then occurring wavenumber adaption can be vastly different depending on (his-
torical) environmental conditions [11, 138, 140]. Thus, indeed, precisely which
wavenumber k gets selected at each of these destabilizations is difficult to predict.

Numerical simulations help to get an insight in the kind of wavenumber
distribution one ought to expect in observations. To illustrate the typical spread in
wavenumber, a total of 200 simulations on a flat terrain (v = 0) were run, where
the rainfall parameter was slowly decreased from a = 3 to a = 0.5. The initial
configurations for these runs were chosen randomly, but close to the equilibrium
state of uniform biomass before the onset of patterns (between 90% and 110%
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(a) a = 3.0, m = 0.45 and e = 500.
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(b) a = 2.5, m = 0.45 and e = 500.

Figure 2.1: (slope, wavenumber)-Busse balloon slices for the extended-Klausmeier
model for two different values of the rainfall parameter a. A banded pattern solution
to the extended-Klausmeier model with slope v and wavenumber k is stable if the (v, k)-
combination lies inside the Busse balloon. This indicates that a wide spread of (v, k)-
combinations yields stable banded patterns. The latter are therefore expected for a broad
range of wavenumbers – and not for specific (v, k)-choices only. The shape of a Busse
balloon can change between models and between parameter values. This is illustrated in
the figures which were computed for different a-values.
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(a) Total biomass contours.
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(b) Migration speed contours

Figure 2.2: (slope, wavenumber)-Busse balloon slices for the extended Klausmeier
model that include contours for the total biomass (per area) B (a) and the migration
speed c (b). Biomass (per area) is positively correlated with both wavenumber k and
slope v; the migration speed is negatively correlated with the wavenumber k. Model
parameters used: a = 3, m = 0.45, e = 500.

of the uniform vegetated equilibrium state). At the end of each simulation –
after several pattern selections – the wavenumber of the remaining pattern was
measured. This gives a snapshot of the wavenumber distribution, similar to the
snapshots acquired from observations. Note that a similar experiment was done
before, albeit on a much smaller scale [141]. The histogram of the resulting
wavenumbers is shown in Figure 2.3. It shows a substantial spread, which goes
from a wavenumber of 0.08 to 0.16 (a difference of 100%).

2 Biomass & migration speed

Besides a wavenumber, each ecosystem state also has a specific biomass and a
specific pattern migration speed. The biomass of regular patterned states has
been studied using numerical simulations [146] and more general formulas have
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Figure 2.3: Histogram demonstrating a spread in wavenumber (k) at the end of 200
simulations of the extended-Klausmeier model on a flat terrain (v = 0) with model
parameters e = 500 and m = 0.45. These simulations had a random initial configuration
close to a stable fully vegetated state. A climate change was simulated by decreasing
the rainfall parameter a linearly from 3 to 0.5 over the course of 105 time unit, causing
several pattern selections and corresponding changes in wavenumber.

been derived for patterns with small wavenumber [11]. Both indicate that the
biomass (per unit area) is positively correlated with both the wavenumber k of the
pattern and the slope parameter v [146]; see also Figure 2.2a. This has a physical
interpretation: both steeper slopes and higher wavenumbers (lower wavelengths)
reduce the time it takes for water to reach vegetation bands, and thereby reduce
water losses during the transportation process. As a result, the vegetation will be
able to harvest water from the uphill inter-bands more effectively. The biomass
per wavelength is also of interest. The same studies indicate that the band
biomass (per wavelength) is increased when the wavenumber k is decreased
and when the slope v is increased. Hence, vegetation bands are expected to
have more biomass when other vegetation is farther away, because of the larger
(upslope) inter-band area water can be collected from.

The theoretical predictions for migration speed (of a pattern’s location) are a
bit more subtle. For terrains with a constant slope, numerical simulations have
been done [136, 139] and general formulas have been determined for patterns
with small wavenumber [11, 133]. In these idealized limit cases, migration
speed is negatively correlated with wavenumber k and positively correlated with
slope v. However, beyond these idealizations, numerical computations show the
contour lines are slightly humped, see Figure 2.2b. This indicates a (slightly)
negative correlation between speed and slope v for large slopes.

2.3 Testable predictions
The theoretical findings in this section lead to predictions that can be con-
fronted with the field data. First of all, the model possesses a Busse balloon,
which should lead to a wide spread in observable pattern wavenumbers (Fig-
ures 2.1 and 2.3). Moreover, biomass and migration speed are affected by pattern
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wavenumber. The biomass (per unit area) is expected to be positively correlated
with both the wavenumber and the slope of the terrain (Figure 2.2a). Migration
speed is expected to decrease as a function of pattern wavenumber; the effect of
slope on the migration speed is context-specific, as it can be either positive or
negative depending on the specific topographical and environmental conditions
(Figure 2.2b).

3 Data acquisition & processing
For this comparison study, two sites were selected in Somalia. The first one
(8◦0′14′′ to 8◦15′11′′N; 47◦11′54′′ to 47◦31′4′′E) is located in the Haud pas-
toral region, which will be referred to as the ‘Haud’ site. The other site (9◦18′49′′

to 9◦34′34′′N; 48◦8′15′′ to 48◦43′15′′E) is located in the Sool-Plateau pastoral
area and will be called the ‘Sool’ site. Both sites mainly exhibit banded veg-
etation and have ground slopes ranging from 0% to 1%. Vegetation mainly
constitutes of perennial grasses, which typically have an average lifetime of 1-7
years [19, 95, 171]. A more detailed description of these sites can be found in
Appendix 2.B; a map with the location of these sites along with the mean annual
rainfall in these areas is shown in Figure 2.D.1.

To study the pattern properties in these study areas, each site was divided
into square windows (of size 750m×750m for the Haud site and of size 1010m×
1010m for the Sool site). As has been done in previous studies, the type of
pattern (e.g. bare soil, banded vegetation), along with its wavenumber, was de-
termined using spectral analysis [7, 27, 34, 118]. Only those windows were kept
that exhibited banded vegetation with a wavenumber that could be determined
with enough certainty (i.e., between 0.4 and 2.5 cycles per 100m). Moreover,
windows with a too large curvature were ignored, because the theoretical predic-
tions only apply to terrains with a constant slope. To obtain data on the migration
speed of the banded vegetation, a cross-spectral analysis was performed, along
the lines of previous studies [8, 33, 66]. A more in-depth explanation of the
processing steps can be found in Appendix 2.D.

The topographical data used in this article were derived from the Advanced
Land Observation Satellite (ALOS) World 3D (AW3D) digital raster elevation
model; biomass data for the Haud site have been retrieved from a recently made
map on (above-ground) biomass of African savannahs and woodlands [15] (no
reliable data for the Sool site was available). Finally, optical data was acquired
from various sources: three multi-spectral WorldView-2 images were mosaicked
and used as reference for the Haud site; a panchromatic Ikonos “Geo” Imagery
was acquired for the same site. For the Sool site, six WorldView-2 images were
used and a panchromatic Satellite Pour l’Observation de la Terre (SPOT) 4 image
preprocessed to level 2A was used as reference layer (©Cnes 2004 – Spot Image
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(a) Frequency distribution for the Haud site
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(b) Frequency distribution for the Sool site

Figure 2.4: Frequency distribution of banded patterns as function of ground slope and
wavenumber (number of cycles per 100m) for the Haud site (a) and Sool site (b). The
distribution on the right indicates the relative frequency of banded vegetation with corre-
sponding wavenumber. The color gradient indicates the amount of windows (N).

distribution). Moreover, two 7µm digitized panchromatic declassified Corona
spy satellite image, national intelligence reconnaissance system, available from
the US Geological Survey, were obtained for the Haud and the Sool sites. More
information about these data sets can be found in Appendix 2.C.

4 Results

Empirical Busse balloon

The most prominent pattern property studied in this article is the pattern wave-
number, which was derived from aerial imagery. The resulting distribution of
wavenumbers is reported in Figure 2.4 (a map with the spatial distribution of
wavenumbers over the study sites is shown in Figure 2.D.2). These figures show
the number of windows that have a particular slope-wavenumber combination.
Also given is the relative frequency that indicates the spread of wavenumbers
across all windows. The data display banded vegetation with wavenumbers
roughly between 0.4 and 2.0 cycles per 100m. Importantly, this large spread is
present for all of the ground slope values which had a representative sample size
and could not be explained by present heterogeneities in elevation or rainfall.
This shows that for a given environmental condition not a single wavenumber
pattern, but rather multiple patterns spanning a sizable range of wavenumbers are
observable. Additionally, measurements used to determine the migration speed
show barely any changes in wavenumber over the scope of 39 years (consistent
with [66]), indicating that these patterns are in fact quite stable. Therefore, the
observations are in agreement with the existence of a Busse balloon in the real
ecosystem.
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Figure 2.5: Biomass distribution per area (a) and per period (b) as a function of ground
slope and wavenumber (cycles per 100m) for the Haud site. The color gradient indicates
the amount of biomass measured for a particular (slope, wavenumber)-combination.

Biomass and migration speed
The processed biomass data for the Haud site is shown in Figure 2.5. In Fig-
ure 2.5a the relation between biomass per area (in t ha−1) is plotted against the
ground slope and the wavenumber. From the same data the biomass per period
is computed – which is biomass per area divided by the window’s wavenum-
ber. The resulting plot is given in Figure 2.5b. The measurements of biomass
show agreement with theoretical predictions of model studies; in both, the total
biomass increases (all slopes: r2 = 0.64, n = 714, P < 0.001; linear regression)
and the biomass per period decreases when the wavenumber increases (all slopes:
r2 = 0.09, n = 714, P < 0.001; linear regression). However, a more in-depth in-
spection reveals disagreements. For one, the effect of ground slope is not strongly
present in the data, though its effect is clear in the extended-Klausmeier model
(Figure 2.2a). Additionally, the more refined details of wavenumber dependence
also differ (it is concave in the theoretical model and convex in the real-life data).

The migration speed is plotted in Figure 2.6 for both the Haud and the Sool
sites. These measurements show an increase in speed when the wavenumber
decreases (Haud: r2 = 0.43, n = 104, P < 0.001; Sool: r2 = 0.45, n = 79, P <
0.001; linear regression), corroborating theoretical predictions (see Figure 2.2b).

5 Discussion

Leading ecological frameworks emphasize the potential role of regular spa-
tial vegetation patterns as indicators for proximity to catastrophic ecosystem
shifts [125, 129]. In these frameworks, however, mono-stability of patterns is
implicitly assumed, suggesting that for a given environmental condition there is
only one stable vegetated state, i.e., a single pattern with a specific wavelength
[125, 129]. Subsequent theoretical insights have challenged this view, highlight-
ing the possibility of multi-stability of patterns, bounded by the so-called Busse
balloon. In this study, we provide empirical evidence corroborating the exis-
tence of a Busse balloon for stable vegetation patterns in dryland ecosystems.
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Figure 2.6: Observed (average) migration speed of vegetation bands in the Haud (a) and
the Sool (b) sites over the course of 39 years as a function of ground slope and wavenum-
ber (cycles per 100m). The color gradient indicates the migration speed for a particular
(slope, wavenumber)-combination. The sign indicates the direction of migration rela-
tive to the slope, with positive and negative values indicating upslope and downslope
migration respectively.

Specifically, our two study sites in Somalia revealed the sustained (i.e., over a
39 year period) co-occurrence of banded vegetation with wavenumbers varying
over a substantial range. Our findings have major implications for the way in
which vegetation patterns indicate ecosystem resilience and mediate ecosystem
responses to environmental change.

Specifically, the existence of a Busse balloon implies that an ecosystem’s
resilience can no longer merely be defined by the magnitude of environmental
change it can cope with [80]. In these systems there is not one tipping point, but
a cascade of destabilizations – indicated by the boundary of the Busse balloon.
When environmental changes push a patterned ecosystem beyond the boundary
of the Busse balloon, a wavelength adaptation occurs, and typically part of the
vegetation patches are lost, while the remaining patches grow in size. The extent
of these adaptations depends on the rate of environmental change [138, 144–146].
Moreover, human activities or natural variations can cause local disturbances, di-
minishing the regularity of ecosystem patterns. The recovery process from such
disturbances may involve a rearrangement of patches in the landscape [11, 146].
Again, the extent to which such recovery is possible depends on the rate of envi-
ronmental change that the ecosystem is exposed to [145]. Hence, the existence
of a Busse balloon of stable dryland vegetation patterns suggests that adaptability
of patches to changing environmental conditions provides a more comprehensive
indicator for the ecosystem’s resilience than the shape of the pattern itself, as
suggested in current leading frameworks [125, 129]. To fully comprehend the
consequences of this, it is necessary to provide a more thorough understanding
of what determines the spatial rearrangement of vegetation patches resulting
from disturbances, environmental changes, and spatial heterogeneities in the
landscape.

The pattern-oriented modeling approach was mainly developed to aid model
development and design, but the approach can also be used to evaluate the suc-
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cess of existing models to explain multiple strong and weak patterns observed
[69]. This so-called ‘reverse pattern-oriented modeling’ approach [69] was used
in the current study. Such systematic comparisons between model predictions
and empirical data can be part of an iterative process toward further model im-
provement [93, 94]. In this context, it is interesting to note the discrepancy that
we observed between model predictions and field measurements of the influence
of the ground slope on pattern migration speeds. Because topography critically
changes the distribution of water within ecosystems, it also alters the migration
speed of patterns. Therefore, it is of interest to determine the effects of more
complex topographies for dryland ecosystem dynamics.

Moreover, the available empirical data aligns with theoretical predictions on
both strong and weak patterns. However, environmental conditions were charac-
terized by differences in slope gradient only. Although, indeed, the topography
comprised the main source of environmental variation, other less pronounced
heterogeneities are present and can cause spreads in wavenumber. The observed
spread could not be attributed to variation in rainfall or elevation, but the role of
other heterogeneities (e.g. soil composition and grazing activity) could not be
fully determined for lack of precise and accurate data sets. When these become
more readily available, further research might infer to which extent the observed
wavenumber spread is explained by these environmental drivers.

Since their appearance on aerial photographs in the 1950s [102], the origin of
regular vegetation patterns in dryland ecosystems has been a topic of fascination
within the scientific community. The study of these patterns through reaction-
diffusion modeling subsequently highlighted the importance of these patterns
for the functioning of dryland ecosystems, and their response to environmental
change. The recent increase in the availability of optical and topographical data
provides unprecedented opportunities to confront model predictions with empir-
ical data [94, 140]. In this study, we combined these data sources with in-situ
measurements of biomass, enabling the comparison of multiple pattern charac-
teristics of Somalia drylands with predictions derived from reaction-diffusion
modeling. The empirical evidence corroborates theories of multi-stability of
patterned vegetation states, improving our understanding of these systems’ re-
silience to environmental changes. In addition, our results call for more detailed
investigations of the role of small-scale topographic variability in pattern forma-
tion and migration.



Appendices

2.A Dimensional extended-Klausmeier
The dimensional extended-Klausmeier model is given by (2.A.2). The model
used throughout the chapter, equation (2.1), can be obtained from the dimen-
sional version by the right set of scaling. Following [146, Appendix A], the
required scaling is given in (2.A.3) for the variables and in (2.A.4) for the pa-
rameters of the model.

∂W
∂T

= E
∂2W
∂X2 +

∂(VW)
∂X

+ A − LW − RWN2,

∂N
∂T

= D
∂2N
∂X2 + RJWN2 − MN

(2.A.2)
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(2.A.4)

In these equations, water is supplied to the system at a rate +A, modeling uniform
rainfall. Because of evaporation, water is lost at a rate −LW; water is also lost
through uptake by plants, at rate −RWN2. The parameter J models the increase
of biomass per unit of water consumed, which results in the reproduction of
plants at rate +RJWN2. Plant mortality is modeled as −MN. The parameter V is
the speed at which water flows downhill; this is proportional to the slope gradient.
Finally, E is the diffusion coefficient of water; D is the diffusion coefficient of
vegetation, modeling the dispersal of biomass. See also [90].

2.B Description of study sites
For this study, two sites in Somalia were selected that exhibit mostly banded
vegetation. The Haud site is a 35km by 28km study area (8◦0′14′′ to 8◦15′11′′N;
47◦11′54′′ to 47◦31′4′′E) at 650-750m elevation in the Haud pastoral region –
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see also Figure 2.D.1. Here, banded vegetation dominates the landscape with
some minor occurrences of gapped vegetation on flat ground on the summits of
rolling hills. Bands display a broad range of wavelengths (from 60m to 200m).
Ground slope ranges from 0 to 1%. Mean annual precipitation, ranging from
210mm to 270mm, is distributed in two rainy seasons around spring (April-May)
and fall (September-November) separated by two dry seasons. Rainfall data was
extracted from Climate Hazards Group InfraRed Precipitation with Stations [59].
Estimates were provided by [35].

In the north-eastern corner of this area near Kalabaydh city, the soils of the
bands and inter-bands are very similar [78]. Moreover, the large perennial tus-
sock grass Andropogon kelleri dominates the core of the band along with some
scattered small trees and bushes [78]. Characteristically, plants are sparsely dis-
tributed on the downslope side of the bands. Along this edge and below it, in
the bare inter-band, dead trees of all of the species found within the bands were
present. Along the bands’ upslope side, some initial colonization by two peren-
nial grass species, tussock-forming Chrysopogon aucheri var. quinqueplumis
and stoloniferous Dactyloctenium scindicum, was observed [78]. Although the
lifespan of perennial grasses is highly variable, ranging from less than a year
to multiple decades [95], the average lifespan of perennial grasses in arid and
semi-arid environments is typically 1-7 years [19, 95, 171]. Upon inspection of
satellite imageries taken 39 years apart, an upslope migration speed of 0.3m yr−1

was observed [33].

The Sool site is an approximately 77km by 29km study site, located 190km
to the NE of the Haud site (9◦18′49′′ to 9◦34′34′′N; 48◦8′15′′ to 48◦43′15′′E);
it is located in the Sool-Plateau pastoral area, which has more arid conditions
(100mm-140mm) and higher elevations (900m-1000m) – see also Figure 2.D.1.
Here, the ground slope ranges from 0 to 1%, and ground is either bare or covered
with banded vegetation which sometimes displays a dashed physiognomy. To
the authors knowledge, there is no published record of the composition of these
vegetated bands and associated soils. Remote sensing analysis of vegetation
dynamic in this area over the last decades have shown a continuous upslope
migration of the bands as well as a change in band width. However, no change
in wavelength has been observed [33, 66].

2.C Data sets

2.C.1 Topographical data
For both sites, topographical data was retrieved from the ALOS World 3D 30m
(AW3D30, v. 2.1) digital raster elevation model. This model describes the height
above sea level (in m, rounded to the nearest integer), at a ground resolution of
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approximately 30m at the equator. The elevation data was preprocessed for the
removal of artifacts by applying a global soft-thresholding on its dual tree com-
plex wavelet transform. Specifically, we set a threshold of 0.9 on the first five
dual-tree complex wavelet transform levels. From the preprocessed data, we cal-
culated the slope gradient (in %) and slope aspect (in degrees). We first extracted
square DEM windows of 33 by 33 cells (i.e., approximately 990m × 990m), cen-
tered on the image windows. We then applied a least squares fitting procedure
of an unconstrained quadratic surface on the unweighted elevation values. From
the first derivatives of this fitted surface, evaluated at the focal cell, we could
then calculate slope gradient and aspect analytically, following [146]. Complex
topographic features were discarded from subsequent analysis by ignoring win-
dows (see below) with quadratic fit RMSE above 1m or a total curvature (as
defined by [132]) above 10−10 radians per m2.

2.C.2 Biomass measurements
Recently, a map has been made with data on (above-ground) biomass of African
savannahs and woodlands at a resolution of 25m [15], which provides the biomass
data of the patterns studied in this article. This map is built from 2010 L-band
PALSAR mosaic produced by JAXA following a method adapted from [105],
while the perturbing sources that affect the SAR data have been minimized: the
environmental effects (soil and vegetation moisture) were reduced by stratifying
the African continent into wet/dry season areas, and the speckle noise inherent to
SAR data acquisitions was decreased by applying a multi-image filter developed
by [16] that preserves the spatial resolution of the images. Then, the sensitivity
of the radar backscatter to AGB was analyzed to develop a direct model relating
the PALSAR backscatter to AGB, calibrated with the help of in-situ and ancil-
lary data. The in-situ data were composed of 144 selected field plots, located
in 8 countries (Cameroon, Burkina Faso, Malawi, Mali, Ghana, Mozambique,
Botswana and South Africa), with plot size larger than 0.25ha and a mean plot
size of 0.89ha.

2.C.3 Optical data
Three multi-spectral WorldView-2 images, acquired on December 25th 2011,
January 21st 2012 and July 21st 2012, were mosaicked and used as reference
orthoimage for the Haud site. For the diachronic study, a panchromatic Ikonos
“Geo” imagery, with a 1m nominal ground resolution, was used as the reference
layer. It was acquired on January 7th 2006. Orthorectification was performed
using a rational polynomial coefficient (RPC) camera model block adjustment
without ground control points [71].

A mosaic of six WorldView-2 images, acquired between February 3rd 2011
and September 12th 2013, was used for the Sool sites. For the diachronic study,
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a panchromatic SPOT4 image preprocessed to level 2A, with a 10m nominal
ground resolution, was use as reference layer (©Cnes 2004 – Spot Image distri-
bution). It was acquired on February 18th 2004.

Two 7µm digitized panchromatic declassified Corona spy satellite image,
national intelligence reconnaissance system, available from the USGS, were
acquired on February 28th 1967 (KH-4A, mission 1039, AFT camera) and De-
cember 12th 1967 (KH-4B, mission 1102, FWD camera), respectively for the
Haud and the Sool. The images were co-registered with the orthorectified ref-
erence imagery. Co-registration was performed using a third-order polynomial
adjustment using landmarks such as geological features, crossroads, isolated
trees, or large termite nests. We obtained an RMS adjustment error below the
KH-4A ground resolution, which is 3m for this area. The resolution of the im-
agery was then lowered through pixel averaging to match the coarsest image pair.

The analysis of pattern wavelength was performed over the full area of the
study sites. However, for the diachronic study, a subset of each of the sites
covered by the historic and reference image was selected. Projection and datum
for all data sets were WGS 1984, UTM Zone 38N and 39N respectively for the
Haud and the Sool sites.

2.D Data processing

2.D.1 Spectral analysis, direction of anisotropy
and wavelength

On visible light digital images over drylands, bright pixels correspond to bare
soil, intermediate gray-scale levels to closed grass cover, and darker pixels to
woody vegetation. As a first approximation, gray-scale levels can thus be consid-
ered as a monotonically decreasing function of the above-ground biomass [28].
This approximation allows us to analyze the spatio-temporal dynamics of biomass
organization through image analysis techniques.

We used a Fourier windowing technique equivalent to short time Fourier
transforms to obtain spatial maps of dominant pattern wavelength λ and ori-
entation θ from the satellite images as previously used for banded vegetation
systems [7, 27, 34, 118]. We applied a two-dimensional (2D) Fourier transform
to obtain the power spectrum within square, non-overlapping moving windows.
In order to maintain resolution and signal-to-noise ratio a boxcar windowing
function to signal was applied. This choice is, in this case, reasonable as only
one periodic component is expected to be present in the vegetation. The tech-
nique provides information about the local wave-vector k = kx x̂ + kyŷ. The
two-dimensional (2D) fast Fourier transform f̃ (kx, ky) of the pattern of biomass
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f (x, y) was obtained for each window f̃ (k) of size L × L. As L increases, the
spatial resolution, i.e., localization in space of frequency or orientation change,
is reduced. Conversely, as L decreases, the frequency resolution is decreased,
i.e., the likelihood of separating frequency components close together in Fourier
space. To optimize both, L was chosen to be at least 3λ, i.e., 750m and 1010m
respectively for the Haud and the Sool sites.

To separate the characteristics of the signal that are meaningful for this study,
each k, of frequency 2π/λ (wavenumber), was decomposed into its orientation
θ and its magnitude. For each window, the power spectrum S (k) = | f̃ (k)|2 was
computed. The power spectrum measures how the variation, or power, of the
pattern is distributed over the wavevectors k, of different frequencies and spatial
directions. To identify the dominant k in each window, S (k) was binned into
annular rings of unit width [123]. The resulting radial spectrum thus quantifies
the contribution of successive ranges of spatial frequencies to the image variance
across all orientations.

To deconvolve the natural 1/k scaling of the power spectrum, the total power
within each annular ring, S (k), was computed instead of the mean power. The
location peak of this total power is used to define the most energetic wavenumber,
k1. To compensate for the discrete k-resolution in Fourier space, the location of
the weighted average k1 :=

(∑
k kS (k)

)
/
(∑

k S (k)
)

was computed over all rings
that formed part of the peak and contained more than 70% of the peak power.

The patterns were characterized in terms of level and orientation of anisotropy
(i.e., direction orthogonal to the long axis of the bands) following [34]. The av-
erage pattern orientation was studied using the circular mean direction weighted

by the power spectrum values, θ̄ :=
1
2

arctan2(S ,C), where

S :=

∑
k

2kx,y sin θx,y

 / ∑
k

k


and

C :=

∑
k

2kx,y cos θx,y

 / ∑
k

k

 .
The norm of the resultant vector, R̄ :=

√
S 2 + C2/

(∑
k k

)
, was used as an index of

pattern anisotropy. The division by the sum of periodogram amplitudes ensures
bounding between zero (perfect isotropy) and one (all variance concentrated in
one direction, i.e., perfect bands). Pattern orientation features were extracted
from the power spectrum, within the frequency ring characterizing periodic
vegetation patterns, i.e., between 0.4 and 2.5 cycles 100m−1 for both the Haul and
the Sool site, to exclude anisotropy sources resulting from large scale gradients
or small scale (anthropogenic) features.
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2.D.2 Pattern classification
The vegetation cover of each window was quantified by converting the gray-scale
intensity image to a binary image using the Otsu thresholding method [116].
Windows with less than 15% vegetation cover were considered as bare soil and
discarded. Windows with dominant patterns within the acceptable range (i.e.,
between 0.4 and 2.5 cycles 100m−1 for both sites) and with anisotropy index
above 0.2 were considered as banded patterns.

2.D.3 Cross-spectral analysis and migration speed
Scale specific comparisons between pairs of periodic 2D signals – in this case,
images taken at different dates – can be performed through 2D Fourier cross-
spectral analysis. In principle, this means identifying the frequencies and ori-
entations of patterns dominating in any two images as well as possible shifts
among them. Correction of radiometric variability between dates is not required
since Fourier coefficients are invariant to linear rescaling of gray-scale levels.
A detailed mathematical development of the analysis can be found in [8]. The
procedure can be summarized as follows [33, 66].

To assess band migration distance for each temporal pair of image windows,
a coherency spectrum and a phase spectrum were computed. The coherency
spectrum expresses the correlation between the frequency components of the
Fourier spectra of the pair of windows. For each spatial frequency, the co-
herency value is interpreted in a similar way to the classical Pearson’s coefficient
but in absolute values, because the sign of the correlation is expressed by the
phase spectrum. For each window pair, the maximum value of coherency and its
associated frequency were recorded along the direction of maximal anisotropy
computed for the first acquisition date. Window pairs with a maximum co-
herency below 0.9 were rejected from the analysis, because this indicates that
pattern characteristics (wavelength and orientation) changed between the dates.
Rejected windows often corresponded to man-made perturbations or ephemeral
patterns, which are not the subject of this study. The obtained frequency value
therefore corresponds to a pattern of constant scale and orientations dominating
at both acquisition dates. The corresponding phase-spectrum value provides
the phase difference, i.e., the angular distance, between the selected frequency
components at both dates in the maximal anisotropy direction. This value is
defined between −180 and 180 degrees, with the sign representing the forward
(+) vs. backward (−) displacement, with the direction of reference as the upslope
direction. Angular distances were then converted into meters by multiplying the
phase difference by the wavelength, which in turn were converted to an average
migration speed for the time period. This conversion allows for inter-site com-
parisons independent of varying time intervals. An inherent limitation to this
procedure is that only migration distances not exceeding half the wavelength
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will be correctly estimated (phase saturation). This condition was verified by
visual inspection prior to image analysis.

2.D.4 Assessment of uncertainty in calculations of slope gra-
dient and aspect from topographical data

As the digital raster elevation model contains errors, these will propagate into
derived estimates of slope gradient and aspect. Ideally, one would use ground
observations (e.g. using differential global navigation satellite systems) to as-
sess the magnitude of these errors (e.g. [119]). Since such observations are
not available for our study areas, we used a simulation method to evaluate the
propagation of error from the elevation data to the estimates of slope gradient
and aspect. Specifically, we created artificial elevation grids with a fixed (from
here referred to as ‘true’) slope and aspect, and added to these grids (normally
distributed) random errors with a similar standard deviation as observed in the
AW3D30 dataset. The resulting elevation values were rounded to the nearest
integers, as this is also done in the AW3D30 dataset. Then, utilizing the same
procedures as described above (see section 2.C2.C.1), we derived slope gradients
and aspects from these simulated grids. Comparison of this ‘observed’ slope
and aspect and the ‘true’ slope and aspect of the grid yielded insight in the
propagation of errors from the elevation model to the calculated metrics. Seven
fixed slope levels were considered: 0; 0.025; 0.05; 0.1; 0.2; 0.3 and 0.4%. For
each level, we simulated 10, 000 replicate grids of errors that were added to the
fixed slope level. For each replicate, the aspect was a randomly assigned value
between 0 and 360 degrees.

Following the above procedure, we found that the distributions of errors in
the calculated slope gradients and aspects were relatively small, for all slope lev-
els considered (Figure 2.D.3). Because the estimated slope is bounded between
zero and positive infinity, a small positive bias was observed for slopes less than
0.1%. For slopes of 0.025% and higher, the RMSE is 0.010% and 95% of the
observed errors for slopes of 0.1% or higher are within ± 0.016% (5th and 95th

percentiles). For aspect, the magnitude of errors was inversely proportional to
the magnitude of the slopes (abscissa; Figure 2.D.3). For slopes of 0.2% and
higher, the RMSE is 2.9 degrees or lower, and 95% of the observed errors are
within ±4.8 degrees (5th and 95th percentiles). These results show that the errors
in calculated slopes and aspects were relatively small compared to the observed
range in the dataset. Hence, it is unlikely that correlations between pattern met-
rics and slope gradients, as observed in the main text, are strongly affected by
the errors originating from the underlying topographical database.

Moreover, it should be noted that the above procedure may even be over-
estimating the errors associated with the AW3D30 dataset (from here referred
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to as the 30m elevation dataset). To generate the simulated errors, we used the
global average standard deviation of the difference between the original AW3D
5m elevation dataset (from here referred to as the 5m dataset), from which the
30m dataset has been derived, and a reference LiDAR dataset. This standard
deviation is 1.73m for gently sloping terrain (below 17.6%) [148]. However, as
the 30m elevation dataset was produced by averaging non-overlapping windows
of 7 by 7 pixels of the 5m elevation dataset, the resulting standard deviation will
be lower [147]. Additionally, the ground slope in our study areas is at the lower
end of the 0-17.6% range, namely below 1.5%, and therefore likely to suffer
from smaller errors than reported for the whole range. Finally, the Somalian
area we are studying displays relatively small errors in elevation measurements
compared to other areas of the world [148].

2.D.5 Assessment of uncertainty in estimation of pattern fre-
quency from optical imagery

The estimation of the dominant pattern frequency using a Fourier windowing
technique introduces an unknown uncertainty in these estimations. This un-
certainty stems from the decomposition of the signal into a discrete set of fre-
quencies and from the noise in the analyzed (non-stationary) signal. To asses
the model’s uncertainty in the wavenumber estimations, we have used a simu-
lation method. Specifically, we simulated 200 synthetic images, representing a
two-dimensional sinusoid of each frequency class between 0.4 and 2.4 cycles
100m−1, with step size of 0.2. The directions of the sinusoidal waves were se-
lected randomly and the signal was standardized to have zero mean and standard
deviation of one. To mimic real images of vegetation patterns, we have added
red noise with zero mean and standard deviation of 0.5 to each simulated signal.
Red noise is a self-similar, or fractal, random spatial structure; this is a desirable
property here because these are common in nature and especially in natural land-
scapes [89]. The noise was created using the Fourier synthesis technique with
an energy spectrum exponent of 0.5 [36]. Finally, in order to account for the fact
that reflectance values are constant over the width of both vegetated and bare
bands, the signal was converted to binomial values; that is, values between 0
and 1 were rounded to the nearest integer value. Several examples of simulated
bands are presented in Figure 2.D.5.

Using the characteristics of the optical image windows of the Haud site (cell-
size of 2.36m and windows 317 by 317 cells), the root-mean-square error of the
estimated frequency was 0.082 cycles 100m−1. For the Sool (cell-size of 2.36m
and windows 425 by 425 cells), the root-mean-square error was 0.044 cycles
100m−1. The magnitude of this error is significantly less than the observed
variability in frequency in both sites (for every slope bin of Figure 3 in the
main text, Levene’s test, P < 0.001), showing significance of the observed
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wavenumber spread in both study sites.
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Figure 2.D.1: Locations of the study sites and rainfall gradient in the Horn of Africa.
The ‘Haud’ site (8◦0′14′′ to 8◦15′11′′N; 47◦11′54′′ to 47◦31′4′′E) has a mean annual
rainfall of 210–270mm yr−1 whilst the ‘Sool’ site (9◦18′49′′ to 9◦34′34′′N; 48◦8′15′′ to
48◦43′15′′E) has a mean annual rainfall of 100–140mm yr−1. The distribution of periodic
vegetation pattern shown in green is adapted from [32]. Precipitation data was extracted
from Climate Hazards Group InfraRed Precipitation with Stations [59] and is averaged
over the years 1981–2013.
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Figure 2.D.2: The distribution of the measured banded pattern’s wavenumber over the
Haud site (a) and the Sool site (b). Here, darker red indicates a lower wavenumber and
lighter yellow a higher wavenumber. On the x- and y-axes the UTM coordinates of the
locations are given.
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Figure 2.D.3: Slope (a) and aspect (b) estimation error from simulated topographical
surfaces. Median errors are shown as horizontal bars with 25th-75th percentile ranges
(boxes) and 5th and 95th percentile outlier cutoffs (whiskers). Note that aspect error could
range from −180 to +180 degrees but has been cropped to largest measured error for
visual purpose.
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Figure 2.D.4: Examples of simulated vegetation patterns with frequency decreasing from
left (2.4 cycles 100m−1) to right (0.4 cycles 100m−1).
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Figure 2.D.5: Pattern frequency estimation error for the Haud (a) and the Sool (b) sites.
Actual frequency of the simulated patterns and the corresponding estimation of these
frequencies is shown by the blue dots. The straight line represents the perfect estimation
line.
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3
The existence of localized

vegetation patterns in a
systematically reduced model

for dryland vegetation

In this chapter we consider the 2-component reaction-diffusion model that
was recently obtained by a systematic reduction of the 3-component Gilad
et al. model for dryland ecosystem dynamics [62]. The nonlinear struc-
ture of this model is more involved than other more conceptual models,
such as the extended-Klausmeier model, and the analysis a priori is more
complicated. However, the present model has a strong advantage over
these more conceptual models in that it can be more directly linked to eco-
logical mechanisms and observations. Moreover, we find that the model
exhibits a richness of analytically tractable patterns that exceeds that of
Klausmeier-type models. Our study focuses on the 4-dimensional dynam-
ical system associated with the reaction-diffusion model by considering
traveling waves in 1 spatial dimension. We use the methods of geomet-
ric singular perturbation theory to establish the existence of a multitude
of heteroclinic/homoclinic/periodic orbits that ‘jump’ between (normally
hyperbolic) slow manifolds, representing various kinds of localized veg-
etation patterns. The basic 1-front invasion patterns and 2-front spot/gap
patterns that form the starting point of our analysis have a direct ecological
interpretation and appear naturally in simulations of the model. By exploit-
ing the rich nonlinear structure of the model, we construct many multi-front
patterns that are novel, both from the ecological and the mathematical point
of view. In fact, we argue that these orbits/patterns are not specific for the
model considered here, but will also occur in a much more general (singu-
larly perturbed reaction-diffusion) setting. We conclude with a discussion
of the ecological and mathematical implications of our findings.
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1 Introduction

Ecosystems consist of organisms that interact among themselves and with their
environment. These interactions involve various kinds of feedback processes that
may combine to form positive feedback loops and instabilities when environ-
mental conditions change [107, 108]. In many ecosystems – drylands, peatlands,
savannas, mussel beds, coral reefs, and ribbon forests – the leading feedback
processes have different spatial scales: a short-range facilitation by local modifi-
cation of the environment versus a long-range competition for resources [126].
Like the well-established activator-inhibitor principle in bio-chemical systems
[113], the combination of these scale-dependent feedback mechanisms can in-
duce instabilities that result in large-scale spatial patterns, which are similar to a
wide variety of vegetation patterns observed in drylands, peatlands, savannas and
undersea [13, 32, 61, 66, 125, 128, 134]. Varying climatic conditions and human
disturbances may continue to propel ecosystem dynamics. Ecosystem response
to decreasing rainfall, for example, may take the form of abrupt collapse to a
nonproductive ‘desert state’ [125, 130, 161], or involve gradual desertification,
consisting of a cascade of state transitions to sparser vegetation [12, 146], or
gradual vegetation retreat by front propagation [14, 174]. Understanding the dy-
namics of spatially extended ecosystems has become an active field of research
in the last two decades – within communities of ecologists, environmental scien-
tists, mathematicians and physicists. Apart from its obvious environmental and
societal relevance, the phenomena exhibited pose fundamental challenges to the
research field of pattern formation.

Several models of increasing complexity have been proposed in the past two
decades. Of these, the models that have received most attention are the one-
component model by Lefever and Lejeune [97], the two-component models by
Klausmeier [90] and von Hardeberg et al. [161], and the three-component mod-
els by Rietkerk et al. [124] and Gilad et al. [62]. A basic difference between
these models is the manner by which they describe water dynamics. The Lefever-
Lejeune model does not describe water dynamics at all, the Klausmeier model
does describe water dynamics but does not make a clear distinction between soil
water and surface water [155], while the von Hardenberg et al. model only takes
soil water into account. The Rietkerk model and the Gilad et al. model describe
both soil water and surface water dynamics and, therefore, capture more aspects
of real dryland ecosystems. A major difference between these two models is the
inclusion of water conduction by laterally spread roots, as an additional water-
transport mechanism, in the Gilad et al. model.

Despite these differences, all models appear to share a similar bifurcation struc-
ture, as analytical and numerical-continuation studies reveal [38, 67, 98, 173],
except the Klausmeier model. This structure includes, in particular, a stationary
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uniform instability (i.e., involving the monotonic growth of spatially uniform
perturbations) of the bare soil (zero biomass) state as the precipitation rate ex-
ceeds a threshold value. The Klausmeier model fails to capture that instability,
leaving the bare soil state stable at all precipitation values. This behavior limits
the applicability of the Klausmeier model to ecological contexts where the bare
soil state is stabilized at relatively high precipitation rates, e.g. by high evapora-
tion rates. Nevertheless, of all models, the Klausmeier model and its extension to
include water diffusion have been studied to a greater extent [21, 135, 139, 155],
partly because the extended form coincides with the much studied Gray-Scott
model for autocatalytic chemical reactions – see [11, 24, 133] and the references
therein.

All models have been analyzed mathematically to various extents. Two main
analytical approaches can be distinguished in these studies (see however Goto
et al. [64]); linear stability and weakly nonlinear analysis near instability points
[30, 56, 65, 67, 98, 155], and singular perturbation analysis, based on the dis-
parate length scales associated with biomass (short) and water (long) [11, 21, 24,
133]. Studies of the first category are strictly valid only near instability points,
although they do capture essential parts of the bifurcation structure even far from
these points and are quite insightful in this respect. By contrast, studies of the
second category apply to the strongly nonlinear ‘far-from-equilibrium’ regime,
where desertification transitions take place, and are, potentially, of higher eco-
logical interest. So far, however, these studies have been limited to the simpler
and less realistic Klausmeier model.

In this chapter we apply a geometric singular perturbation analysis to a reduced
version of the Gilad et al. model in order to study the existence of various forms
of localized patterns. Singular perturbation theory has already been applied to
three-component models – see for instance [46, 159] – and could be applied,
in principle, to the non-local three-component Gilad et al. model. Here we
choose to consider ecological contexts that allow to reduce that model to a local
two-component model for the vegetation biomass and the soil water content.
Specifically, we assume soil types characterized by high infiltration rates of
surface water into the soil, such as sandy soil, and plant species with laterally
confined root zones (see 3.A for more details). These conditions are met, for
example, by Namibian grasslands showing localized and extended gap patterns
(‘fairy circles’) [175]. We further simplify the problem by assuming one space
dimension. The reduced model reads:


∂B̃
∂T

= ΛW̃B̃(1 − B̃/K)(1 + EB̃) − MB̃ + DB
∂2B̃
∂X̃2

,

∂W̃
∂T

= P − N(1 − RB̃/K)W̃ − ΓW̃B̃(1 + EB̃) + DW
∂2W̃
∂X̃2

,

(3.1)
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where B̃(X̃,T ) ≥ 0 and W̃(X̃,T ) ≥ 0 represent areal densities of biomass and
soil water, respectively, and X̃ ∈ R, T ∈ R+ are the space and time coordinates.
In the biomass (B̃) equation, Λ represents the biomass growth rate coefficient,
K the maximal standing biomass, E is a measure for the root-to-shoot ratio, M
the plant mortality rate and DB the seed-dispersal or clonal growth rate, while
in the water (W̃) equation, P represents the precipitation rate, N the evaporation
rate, R the reduction of the evaporation rate due to shading, Γ the water-uptake
rate coefficient and DW the effective soil water diffusivity. Notice that the power
of the factor (1 + EB̃) in both equations is unity, whereas in the reduced model
in [175] the power is two. This difference stems from the consideration in this
study of one space dimension rather than two (see 3.A).

From the ecological point of view, the advantage in studying model (3.1) over
the much analyzed Klausmeier model lies in the fact that it has been systemati-
cally derived from a more extended model that better captures relevant ecolog-
ical processes, such as water uptake by plant roots (controlled by E), reduced
evaporation by shading (controlled by R), and late-growth constraints, such as
self-shading (controlled by K) – see [62, 63, 106, 134]. As a consequence,
(mathematical) insights in (3.1) can be linked to ecological observations and
mechanisms in a direct fashion. Naturally, there also is a disadvantage to an-
alyzing a model that incorporates concrete ecological mechanisms: the more
involved – algebraically more complex – nonlinear structure of (3.1) a priori
makes it less suitable for an analytical study than the Klausmeier model (or other
more conceptual models). However, that apparent disadvantage turned around
into an advantage: we will find that the reduced model transcends by far the
Klausmeier model in terms of richness of analytically tractable pattern solutions.

The model equations (3.1) represent a singularly perturbed system, because
of the low seed-dispersal rate as compared with soil water diffusion, that is,
DB � DW [63, 155, 175]. To make this explicit and to simplify (3.1) as much as
possible, we introduce the following scalings,

B =
B̃
α
, W =

W̃
β
, t = δT, x = γX̃, (3.2)

and set,

α = K −
1
E
, β =

MK
α2ΛE

, γ =

√
α2βΛE
KDB

, δ =
α2βΛE

K
. (3.3)

By also introducing our main parameters,

a =
KE

(KE − 1)2 , ε2 =
DB

DW
� 1, (3.4)
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Figure 3.1: The 4 basic patterns exhibited by numerical simulations of model (3.5): a
traveling (heteroclinic) invasion front (Theorem 3.4), a stationary, homoclinic, 2-front
vegetation spot (Theorem 3.11), a stationary homoclinic, 2-front vegetation gap (Theorem
3.13), and a stationary, spatially periodic multi-front spot/gap pattern (Theorem 3.15) –
see Remark 4.1 for the precise parameter values.

we arrive at,


Bt = (aW − 1) B + WB2 −WB3 + Bxx,

Wt = Ψ −
[
Φ + ΩB + ΘB2

]
W +

1
ε2 Wxx,

(3.5)

in which,

Ψ =
α2PΛE

M2K
, Φ =

N
M
, Ω =

α

M

(
Γ −

R
K

)
, Θ =

α2ΓE
M

. (3.6)

A more detailed derivation of the scaled equations (3.5) from (3.1) is given in
3.B. Since the signs of the parameters in (3.5) will turn out to be crucial in the
upcoming analysis, we note explicitly that a,Ψ,Φ,Θ ≥ 0 while Ω ∈ R, i.e., Ω

may be negative.

We study pattern formation in (3.1) by analyzing (3.5) using the methods of
(geometric) singular perturbation theory [83, 86] and thus ‘exploit’ the fact that
ε � 1 (3.4). In fact – apart from some observations in section 2.3 and the
discussion section 4.2 – we focus completely on the ‘spatial’ 4-dimensional
dynamical system that is obtained from (3.5) by considering ‘simple’ solutions
that are stationary in a co-moving frame traveling with constant speed c. More
specifically, in this chapter we study the existence of traveling (and stationary)
solutions – in particular localized (multi-)front solutions connecting a (uniform)
bare soil state to a uniform vegetation state, or a bare soil state to itself (with
a ‘passage’ along a vegetated state), etc. – by taking the classical approach of
introducing a (uniformly) traveling coordinate ξ = x − ct, with speed c ∈ R an
a priori free O(1) parameter (w.r.t. the asymptotically small parameter ε). By

setting (B(x, t),W(x, t)) = (b(ξ),w(ξ)) and introducing p = bξ and q =
1
ε

wξ,
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PDE (3.5) reduces to

bξ = p,

pξ = wb3 − wb2 + (1 − aw)b − cp,

wξ = εq,

qξ = ε
(
−Ψ +

[
Φ + Ωb + Θb2

]
w
)
− ε2cq.

(3.7)

Fig. 3.1 shows four basic patterns that naturally appear in simulations of (3.5)
and have identifiable ecological counterparts: vegetation fronts (ecotones), iso-
lated vegetation spots and gaps, and periodic patterns [49, 55, 61, 109]. These
patterns are rigorously constructed by the methods of singular perturbation the-
ory in section 3. From the geometrical point of view, these constructions are
natural and thus relatively straightforward: all patterns in Fig. 3.1 ‘jump’ be-
tween two well-defined slow manifolds (of (3.7)) – see Theorems 3.4, 3.11, 3.13,
and 3.15. Therefore, the main work in establishing these results lies in resolving
technical issues (which can be done by the preparations of section 2). However,
the preparations of section 2 also form the origin of the construction of a surpris-
ingly rich ‘space’ of traveling and/or stationary patterns that goes way beyond
those exhibited in Fig. 3.1 – see for instance the sketches of Fig. 3.2. These are
novel patterns, at least from the point of view of explicit rigorous mathematical
constructions in multi-component reaction-diffusion equations. However, simi-
lar patterns have been analyzed as (perturbations of) heteroclinic networks in a
more abstract framework – see [120, 121] and the references therein. Moreover,
patterns similar to those of Fig. 3.2 have been observed in simulations of the
Klausmeier-Gray-Scott model [172], although with parameter settings beyond
that for which the mathematical singular-perturbation approach can be applied.

Here, our motivation to study these patterns is primarily ecological; however,
we claim that patterns like these must also occur generically in the setting of a
completely general class of singularly perturbed 2-component reaction-diffusion
systems – as we will motivate in more detail in section 4.2. Thus, our explicit
analysis of model (3.5) provides novel mathematical insights beyond that of the
present ecological setting. The driving mechanism behind these patterns origi-
nates from the perturbed integrable flow on the slow manifolds associated with
(3.7) – see sections 2.2 and 2.4. The perturbation terms are generically intro-
duced by the O(ε) differences between the slow manifold and its ε → 0 limit,
and they transform the (Hamiltonian) integrable reduced slow flow to a (pla-
nar) ‘nonlinear oscillator with nonlinear friction’ that can be studied by explicit
Melnikov methods. Typically, one for instance expects (and finds: Theorem
2.4) persistent periodic solutions on the slow manifold. Associated with these
persisting periodic solutions, one can subsequently construct heteroclinic 1-front
connections between a critical point – representing the uniform bare soil state in
the ecological setting – and such a periodic pattern (Theorems 3.5 and 3.9 and
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Figure 3.2: Four sketches of ‘higher order’ localized patterns constructed in this chapter.
(a) A secondary traveling 1-front, the second one in a countable family of traveling
1-fronts between the bare soil state and a uniform vegetated state – all traveling with
different speeds – that starts with the primary 1-front of Fig. 3.1(a) (Theorem 3.6).
(b) The limiting orbit of the family sketched in (a): a 1-front connection between the
bare soil state and a spatially periodic vegetation state (Theorem 3.5). (c,d) The first 2
representations of a (countable) ‘higher order’ family of localized (stationary, homoclinic
2-front) spot patterns with an increasing number of ‘spatial oscillations’ (Theorem 3.12).

Fig. 3.2b) and a countable family of ‘higher order’ heteroclinic 1-fronts between
critical points that limits on these orbits (Theorem 3.6 and Fig. 3.2a – where we
note that Fig. 3.1a represents the very first – primary – member of this family).
In the case of (stationary) localized spot patterns, one can construct a countable
family of connections that follow the periodic orbit for arbitrarily many ‘spatial
oscillations’ (Theorem 3.12 and Fig. 3.2c, 3.2d). Combining these insights with
the ideas of [44], one may even construct many increasingly complex families of
spatially periodic and aperiodic multi-spot/gap patterns (Corollary 3.16 and sec-
tion 3.6). Moreover, we can explicitly study the associated bifurcation scenarios:
in section 3.3 we present a scenario of cascading saddle-node bifurcations of
heteroclinic 1-front connections starting from no such orbits to countably many
– all traveling with different speed (Theorem 3.6 and Figs. 3.1a, 3.2a and 3.2b)
– back to 1 unique 1-front pattern (of the type presented in Fig. 3.1a) – see Fig.
3.9 in section 3.3.

Finally, we illustrate our analytical findings by several numerical simulations of
PDE model (3.1)/(3.7) – see also Fig. 3.1. We did not systematically investigate
the question whether all heteroclinic/homoclinic/periodic (multi-)front orbits of
(3.7) constructed here indeed may be (numerically) observed as stable patterns
in (3.7), either for general parameter combinations in (3.5) or for the more re-
stricted class of ecologically relevant parameter combinations. This will be the
subject of future work, as will be the analytical question about the spectral stabil-
ity of the constructed patterns. These issues will be discussed more extensively
in section 4.2, where we will also discuss further implications of our findings –
both from the mathematical as well as from the ecological point of view.

The set-up of this chapter is as follows. Section 2 is a preparatory section:
in section 2.1 and 2.2 we consider the fast and slow reduced problems associated
with (3.7), followed by a brief section – section 2.3 – in which we discuss the
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nature (and stability) of the critical points of (3.7) as uniform vegetated states
in (3.5); in section 2.4 we study the full, perturbed, slow flow on the slow mani-
folds (leading to Theorem 2.4). All localized patterns are constructed in section
3, which begins with (another) preparatory section – section 3.1 – in which we
set up the geometry of orbits ‘jumping’ between slow manifolds. The primary
traveling 1-front patterns of Fig. 3.1a are constructed in section 3.2, the asso-
ciated higher order 1-fronts of Figs. 3.2a and 3.2b in section 3.3. Stationary
patterns are considered in 3.4 – on 1-fronts – and 3.4 – on 2-fronts of spot and
gap type as shown in Figs. 3.1b, 3.1c and Fig. 3.2(c,d); various families of
spatially periodic multi-front patterns – including the basic ones of Fig. 3.1d –
are constructed in section 3.6. Section 4 begins with section 4.1 in which we
show various numerically obtained patterns – some of them beyond the analysis
of the present chapter – and ends with discussion section 4.2.

Remark 1.1. While the original model (3.1) has 8 parameters – (Λ,Γ,R,K,
E,M,N, P) – (neglecting DB,DW which are represented by ε), rescaled model
(3.5) has only 5 parameters – (a,Ψ,Φ,Ω,Θ). We will formulate our results by
stipulating conditions on (a,Ψ,Φ,Ω,Θ) and refrain from giving a corresponding
range for the original parameters. Moreover, we notice that we have implicitly
assumed that α > 0, i.e., that EK > 1 (3.3). This is a technical assumption
(and not unrealistic from ecological point of view), the case 0 < EK < 1 can be
treated in a completely analogous way – see 3.B.

2 Set-up of the existence problem
We first notice that (3.7) is the ‘fast’ description of the ‘spatial ODE’ associated
with (3.5). By introducing X = εξ (= ε(x − ct)) we obtain its equivalent slow
form, 

εbX = p,

εpX = wb3 − wb2 + (1 − aw)b − cp,

wX = q,

qX = −Ψ +
[
Φ + Ωb + Θb2

]
w − εcq.

(3.8)

Note that these systems possess a c→ −c symmetry that reduces to a reversibility
symmetry for c = 0,

(c, ξ, p, q)→ (−c,−ξ,−p,−q) or (c, X, p, q)→ (−c,−X,−p,−q). (3.9)

2.1 The fast reduced problem
The fast reduced limit problem associated to (3.7) is a two-parameter family of
planar systems that is obtained by taking the limit ε→ 0 in (3.7),

bξξ = w0b3 − w0b2 + (1 − aw0)b − cbξ, (w, q) ≡ (w0, q0) ∈ R2. (3.10)
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These planar systems can have up to 3 (families of) critical points (parameterized
by (w0, q0)) given by,

(b0, p0) = (0, 0), (b±, p±) = (b±(w0), 0) =

1
2
±

√
a +

1
4
−

1
w0
, 0

 . (3.11)

Clearly, (b0,w0) represents the (homogeneous) bare soil state B(x, t) ≡ 0, the
other two solutions correspond to uniform vegetation states and only exist for
w0 > 4/(1 + 4a). The critical points also determine 3 two-dimensional invariant
(slow) manifolds, M0

0 and M±
0 ,

M0
0 =

{
(b, p,w, q) ∈ R4 : b = 0, p = 0

}
,

M±
0 =

(b, p,w, q) ∈ R4 : b = b±(w) =
1
2
±

√
a +

1
4
−

1
w
, p = 0

 .
(3.12)

A straightforward analysis yields that the critical points (b+, 0) are saddles for
all c ∈ R and that the points (b0, p0) = (0, 0) are saddles for all c as long as
w0 < 1/a. Therefore, we consider in this chapter w0 such that,

w0 ∈ Ua =

{
w0 ∈ R |

4
1 + 4a

< w0 <
1
a

}
, (3.13)

so that (parts of) the manifolds M0
0 and M+

0 are normally hyperbolic for all w0
that satisfy (3.13) (and thus persist as ε becomes nonzero [83, 86]); moreover,
all stable and unstable manifolds W s,u(M0

0) and W s,u(M+
0 ) are 3-dimensional.

(In this chapter, we do not consider the manifold M−
0 for several reasons: (i)

it is not normally hyperbolic in the crucial case of stationary patterns (i.e., for
c = 0, under the – natural – assumption that the water concentration w0 does not
become negative), (ii) critical points for the full system (3.7) that limit on M−

0
as ε → 0 cannot correspond to stable homogeneous states of PDE (3.5) – see
section 2.3.)

The manifolds W s,u(M0
0) and W s,u(M+

0 ) are determined by the stable and un-
stable manifolds of (0, 0) and (b+, 0). By the (relatively) simple cubic nature
of (3.10) we do have explicit control over these manifolds in the relevant cases
that they collide, i.e., that there is a heteroclinic connection between (0, 0) and
(b+, 0). Although this is a classical procedure – see [113] – we provide a brief
sketch here.

We assume that a heteroclinic solution of (3.10) between (0, 0) and (b+, 0) can
also be written as a solution of the first order equation

bξ = nb(b+(w0) − b), (3.14)

where n is a free pre-factor (and we know that this assumption provides all
possible heteroclinic connections). Taking the derivative (w.r.t. ξ) yields an
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equation for bξξ that must equal (3.10) – that we write as bξξ = w0b(b − b−)(b −
b+) − cbξ. Working out the details yield explicit expressions for n and c,

n = n±(w0) = ±

√
1
2

w0,

c = c±(w0) = ±

√
1
2

w0

3 √
a +

1
4
−

1
w0
−

1
2

 . (3.15)

Thus, for a given c, there is a heteroclinic connection between M0
0 and M+

0 at
the ‘level’ w0 = w±h (c) if w0 solves (3.15). A direct calculation yields that c±(w0)
are strictly monotonic function of w0 with inverse

w±h (c) =
4(9 + 2c2)2(

3
√

2c2(1 + 4a) + 4(2 + 9a) ∓
√

2c
)2 . (3.16)

We conclude that for a given c, there may be ‘parabolic’ – by the relation be-
tween b and p (3.14) – two-dimensional intersections Wu(M0

0) ∩W s(M+
0 ) and

W s(M0
0) ∩Wu(M+

0 ) explicitly given by,

Wu(M0
0) ∩W s(M+

0 ) =
{
0 < b < b+(w+

h ), p = n+(w+
h )b(b+(w+

h ) − b),w = w+
h

}
,

W s(M0
0) ∩Wu(M+

0 ) =
{
0 < b < b+(w−h ), p = n−(w−h )b(b+(w−h ) − b),w = w−h

}
(3.17)

(where we recall that q = q0 ∈ R is still a free parameter). See Lemma 3.2 for a
further discussion and analysis (for instance on the allowed c-intervals for which
the heteroclinic connections exist: w±h (c) must satisfy (3.13)).

In the case of stationary patterns (c = 0), fast reduced limit problem (3.10)
is integrable, with Hamiltonian H f given by,

H f (b, p; w0) =
1
2

p2 −
1
2

(1 − aw0)b2 +
1
3

w0b3 −
1
4

w0b4, (3.18)

which is gauged such that H f (0, 0; w0) = 0. This system has a heteroclinic con-
nection between (0, 0) and (b0

+, 0) for w0 = w±h (0) such that H f (b+(w0), 0; w0) =

H f (0, 0; w0) = 0. It follows by (3.11) and (3.18) that w+
h (0) = w−h (0) = 9/(2+9a)

(which agrees with (3.16)) – see Fig. 3.3.

2.2 The slow reduced limit problems
The slow reduced limit problem is obtained by taking the limit ε→ 0 in (3.8). It
is a planar problem in (w, q),

wXX = −Ψ +
[
Φ + Ωb + Θb2

]
w. (3.19)
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Figure 3.3: Numerical simulations of dynamics of the fast reduced system (3.7) for

a =
1
4

and two choices of w0 ∈ Ua (3.13), both featuring a heteroclinic orbit between
the saddle points (0, 0) and (b+(w0), 0): (i) w0 = 9/(2 + 9a), c = c±(w0) = 0; (ii) w0 =

9/(2 + 9a) + 0.1, c = c+(w0) ≈ 0.17.

restricted to (p, b) such that,

p = 0, wb3 − wb2 + (1 − aw)b = 0

i.e., (3.19) describes the (slow) flow on the (slow) manifolds M0
0 and M±

0 (3.12).
The flow on M0

0 is linear,

wXX = −Ψ + Φw, (3.20)

with critical point P0
0 = (0, 0,Ψ/Φ, 0) ∈M0

0 of saddle type – that corresponds
to the uniform bare soil state (B(x, t),W(x, t)) ≡ (0,Ψ/Φ) of (3.5) – that has the
stable and unstable manifolds (on M0

0) given by

W s(P0
0)|M0

0
:= `s

0 =

{
(b, p,w, q) ∈M0

0 : q = −
√

Φ

(
w −

Ψ

Φ

)}
,

Wu(P0
0)|M0

0
:= `u

0 =

{
(b, p,w, q) ∈M0

0 : q =
√

Φ

(
w −

Ψ

Φ

)} (3.21)

Since we focus on orbits – patterns – that ‘jump’ between M0
0 and M+

0 (in the
limit ε → 0), we do not consider the flow on M−

0 but focus on (the flow on)
M+

0 ,

wXX = −A + (B + aΘ) w + Cw

√
a +

1
4
−

1
w
, (3.22)

where

A = Ψ + Θ ≥ 0, B = Φ +
1
2

Ω +
1
2

Θ ∈ R, C = Ω + Θ ∈ R, (3.23)
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and we notice explicitly that B and C may be negative (since Ω may be negative).
For w satisfying (3.13), we define,

W =

√
a +

1
4
−

1
w
≥ 0, D = B + aΘ −

(
a +

1
4

)
A ∈ R, (3.24)

and conclude that the critical points P+, j
0 = (b+(w+, j

0 ), 0,w+, j
0 , 0) ∈ M+

0 are
determined as solutions of the quadratic equation,

AW2 + CW + D = 0. (3.25)

Thus, the points P+, j
0 exist for parameter combinations such that C2 − 4AD > 0.

There are 2 critical points if additionally C < 0 and D > 0 and only 1 if D < 0.

Clearly, the flow (3.22) is integrable, with Hamiltonian given by

H+
0 (w, q) =

1
2

q2 + Aw −
1
2

(B + aΘ) w2 − CJ +
0 (w), (3.26)

with, for ã = a +
1
4

,

J +
0 (w) =

1
4ã

(2ãw − 1)
√

ãw2 − w −
1

8ã
√

ã
ln

∣∣∣∣∣12 (2ãw − 1) +
√

ã
√

ãw2 − w
∣∣∣∣∣.

(3.27)
Hence, if non-degenerate, the critical points P+, j

0 are either centers – P+,c
0 – or

saddles – P+,s
0 . Notice that, except the uniform bare soil state (0,Ψ/Φ), all critical

points correspond to uniform vegetation states (B(x, t),W(x, t)) ≡ (B̄, W̄) in (3.5)
– see section 2.3. In the case that there is only 1 critical point P+

0 ∈M+
0 , it can

either be of saddle or center type: P+
0 is a saddle if,

E = B + aΘ +
1
2
C

W +

a +
1
4

W

 > 0 (3.28)

where W > 0 is the solution of (3.25). We notice that the stable and unstable
manifolds (restricted to M+

0 ) of the saddle point P+,s
0 ∈M+

0 are represented by,

W s(P+,s
0 )∪Wu(P+,s

0 )|M+
0

=
{
(b, p,w, q) ∈M+

0 : H+
0 (w, q) ≡ H+,s

0 := H+
0 (w+,s

0 , 0)
}
.

(3.29)
In the upcoming analysis, we will be especially interested in the case of 2 critical
points P+,s

0 , P+,c
0 ∈ M+

0 , therefore we investigate this situation on some more
detail. First, we introduce DS N and σ ≥ 0 by setting,

D(σ2) = DS N −Aσ2 =
C2

4A −Aσ
2 > 0 : σ =

√
D −DS N

A , (3.30)
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Figure 3.4: Phase portrait of the unperturbed flow (3.22) on M+
0 for parameters

(a,Ψ,Φ,Ω,Θ) such that (3.40) holds.

so that the solutions of (3.25) are given by W = WS N ± σ = −
C

2A ± σ. We
rewrite (3.22) in terms of (a,A, C,D)

wXX = −A +

(
D +

(
a +

1
4

)
A

)
w + Cw

√
a +

1
4
−

1
w
. (3.31)

Clearly, σ = 0 corresponds to the degenerate saddle-node case in which P+,s
0 and

P+,c
0 merge,

PS N
0 =

(
b+(wS N

0 ), 0,wS N
0 , 0

)
(3.32)

with

wS N
0 =

4A2

(1 + 4a)A2 − C2 , (1 + 4a)A2 − C2 , 0, (3.33)

where we note that wS N
0 satisfies (3.13) for 0 < C2 < A2 (independent of a).

In fact, we can consider the unfolding of the saddle-node bifurcation by the
additional assumption that 0 < σ � 1,

w+, j
0 = wS N

0 ± wS N
1 σ + O(σ2) = wS N

0 ± 2WS N(wS N
0 )2σ + O(σ2), (3.34)

( j = 1, 2), where the ” + ”-case represents the saddle P+,s
0 and the ” − ”-case the

center P+,c
0 : w+,c

0 < w+,s
0 – see Fig. 3.4. In this parameter region, the slow reduced

system (3.22) features a homoclinic orbit (whom, qhom) to P+,s
0 and a family of

periodic solutions around the center point P+,c
0 (Fig. 3.4).

Remark 2.1. We conclude from (3.31) that the reduced slow flow on M+
0 is

fully determined by the values of (a,A,B,D). Clearly, the (linear) mapping
(Ψ,Φ,Ω,Θ) 7→ (A,B,D) has a kernel: we can vary one of the parameters – for
instance Φ – and determine (Ψ,Ω,Θ) such that this does not have an effect on the
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reduced flow (3.31) on M+
0 (by choosing (Ψ(Φ),Θ(Φ),Ω(Φ)) such that (A,B,D)

are kept at a chosen value). We will make use of this possibility extensively in
section 3.

2.3 Critical points and homogeneous background states

Since the critical points P j = (b j, p j,w j, q j) of the full ε , 0 system (3.7) must
have p j = q j = 0, their (b,w) coordinates are determined by the intersections of
the b- and w-nullclines,

wb3 − wb2 + (1 − aw)b = 0, −Ψ +
[
Φ + Ωb + Θb2

]
w = 0, (3.35)

where we recall that the b-nullcline determines the slow manifolds M0
0 and M±

0
– see Fig. 3.5. Hence, all critical points P j must correspond to critical points of
the slow reduced flows on either one of the (unperturbed) slow manifolds M0

0,
M+

0 or M−
0 . This immediately implies that P1 = P0

0 = (0, 0,Ψ/Φ, 0) ∈M0
0. The

(potential) critical points on M−
0 can be determined completely analogously to

P+, j
0 ∈M+

0 in section 2.2 – the only difference is that the term +CW in (3.25)
must be replaced by −CW . Thus, we conclude that there are two additional
critical points P2 and P3 if C2−4AD ≥ 0 (and that P1 = P0

0 is the unique critical
point if C2 − 4AD ≤ 0). Moreover, if C2 − 4AD ≥ 0 then,
• if D < 0, then P2 = P−0 ∈M−

0 and P3 = P+
0 ∈M+

0 ;
• if D > 0 and C > 0, then P2 = P−,1, P3 = P−,2 and both P−, j ∈M−

0 ;
• if D > 0 and C < 0, then P2 = P+,1, P3 = P+,2 and both P+, j ∈M+

0 .

Naturally, the critical points P j correspond to homogeneous background states
(B(x, t),W(x, t)) ≡ (B̄ j, W̄ j) of the full PDE (3.5). In this chapter, we focus on the
existence of patterns in (3.5) and do not consider the stability of these patterns
(which is the subject of work in progress). However, there is a strong relation
between the local character of critical points P j in the spatial system (3.7) and
their (in)stability as homogeneous background pattern in (3.5) – see for instance
[39]. Therefore, we may immediately conclude,
• the bare soil state (B̄, W̄) = (0,Ψ/Φ) is stable as solution of (3.5) for Ψ/Φ <
1/a, i.e., as long as (0,Ψ/Φ) corresponds to a critical point on the normally hy-
perbolic part of M0

0 (3.13);
• background states (B̄, W̄) that correspond to critical points on M−

0 are unsta-
ble;
• a background state (B̄, W̄) that corresponds to a center point on M+

0 is unsta-
ble;
• a background state (B̄, W̄) that corresponds to a saddle point on M+

0 is stable
as solution of (3.5) if one additional (technical) condition on the parameters of
(3.5) is satisfied.



2. Set-up of the existence problem 69

0 0.2 0.4 0.6 0.8 1

1

1.05

1.1

1.15

1.2

1.25

1.3

(a) No intersections of
the w-nullcline with ei-
ther M−

0 or M+
0 (a =

0.75,Ψ = 0.1131,Ω =

0.0369,Φ = 0.1, Θ =

0.2131).

0 0.2 0.4 0.6 0.8 1

1.4

1.5

1.6

1.7

1.8

1.9

2

(b) A unique intersec-
tion of the w-nullcline with
both M−

0 and M+
0 (a =

0.1,Ψ = 1.9,Ω = 0.1,Φ =

0.3, Θ = 0.5).

0 0.2 0.4 0.6 0.8 1

1

1.05

1.1

1.15

1.2

1.25

1.3

(c) Two intersections of
the w-nullcline with M+

0
and none with M−

0 (a =

0.75,Ψ = 0.2983,Ω =

−0.4517,Φ = 0.5, Θ =

0.2017).

Figure 3.5: Various relative configurations of the nullclines (3.35) and the associated
critical points for w ∈ Ua (3.13).

Of course this motivates our choice to study homoclinic and heteroclinic connec-
tions between the saddle points on M0

0 and M+
0 in this chapter.

Remark 2.2. The singular perturbation point of view also immediately provides
insight in the possible occurrence of a Turing bifurcation in (3.5). In the setting
of (3.7) – with c = 0 – a Turing bifurcation corresponds to a reversible 1 : 1
resonance Hopf bifurcation [76], i.e., the case of a critical point with 2 collid-
ing pairs of purely imaginary eigenvalues. By the slow/fast nature of the flow
of (3.7), such a critical point cannot lay inside one of the 3 possible reduced
slow manifolds M0

0, M−
0 or M+

0 (critical points not asymptotically close to the
boundaries must have 2 O(ε) and 2 O(1) eigenvalues). Thus, critical points that
may undergo a Turing/reversible 1 : 1 Hopf bifurcation have to be asymptoti-
cally close to the edge of M+

ε where it approaches M−
ε (where we note that we

a priori do not claim that M−
ε persists). Indeed, the bifurcation appears in that

region – although we refrain from going into the details. See Fig. 3.18a for a
thus found spatially periodic Turing pattern in (3.5).

Remark 2.3. By directly focusing on (3.35) – and thus by not following the path
indicated by the singularly perturbed structure of (3.7) – the uniform vegetation
background states can also be computed in a more straightforward way: assum-

ing b , 0, yields w = −
1

b2 − b − a
, which implies that (Θ + Ψ)b2 + (Ω − Ψ)b +

(Φ − aΨ) = 0. Hence it follows (for (Ω − Ψ)2 − 4(Θ + Ψ)(Φ − aΨ) ≥ 0) that

(b1,2,w1,2) =

−(Ω − Ψ) ±
√

(Ω − Ψ)2 − 4(Θ + Ψ)(Φ − aΨ)
2(Θ + Ψ)

,−
1

b2
1,2 − b1,2 − a

 .



70
3. The existence of localized vegetation patterns in a systematically

reduced model for dryland vegetation

2.4 The slow flows of the ε , 0 system

Condition (3.13) was chosen such that the points (0, 0,w, q) ∈M0
0 and

(b+(w), 0,w, q) ∈M+
0 are saddles for the fast reduced limit problem (3.10) (so

that the associated background states may be stable as trivial, homogeneous, pat-
terns of (3.5) – section 2.3). Thus, where (3.13) holds, M0

0 and M+
0 are normally

hyperbolic and they thus persist as M0
ε and M+

ε for ε , 0 [83, 86]. Clearly, M0
0

is also invariant under the flow of the full system (3.7): M0
ε = M0

0. Moreover,
the flow on M0

ε is only a slight – O(ε) – (linear) perturbation of the unperturbed
flow (3.20) on M0

0 – due to the (asymmetric) −εcq term. As a consequence,
only the orientation of the (un)stable manifolds W s,u(P0

0)|M0
ε

= `s,u
ε undergoes

an O(ε) change w.r.t. `s,u
0 (3.21).

The situation is very different for M+
ε . A direct perturbation analysis yields,

M+
ε =

{
(b, p,w, q) ∈ R4 : b = b+(w) + εcqb1(w) + O(ε2), p = εqp1(w) + O(ε2)

}
,

(3.36)
with

p1(w) =
1

2w2

√
a +

1
4
−

1
w

, b1(w) =
p1(w)

2wb+(w)

√
a +

1
4
−

1
w

(3.37)

and b+(w) as defined in (3.11). Since we only consider situations in which there
are critical points (of the full flow) P+, j on M+

0 , and thus on M+
ε , we know (and

use) that M+
ε is determined uniquely. The slow flow on M+

ε is given by

wXX = −A + (B + aΘ) w + Cw

√
a +

1
4
−

1
w

+ εcqρ1(w) + O(ε2), (3.38)

(cf. (3.22)), with

ρ1(w) = (Ω + 2b+(w)Θ) wb1(w) − 1 =

C + 2Θ

√
a +

1
4
−

1
w

 wb1(w) − 1.

(3.39)
Thus, for c , 0 the flow on M+

ε is a perturbed integrable planar system with
‘nonlinear friction term’ εcqρ1(w). In the case that there is only one critical
point P+,s of saddle type on M+

0 – and thus on M+
0 – the impact of this term is

asymptotically small. The situation is comparable to that of the flow on M0
ε w.r.t.

the flow on M0
0. The stable and unstable manifolds of P+,s restricted to the slow

manifolds remain close: Wu,s(P+,s)|M+
ε

is O(ε) close to Wu,s(P+,s)|M+
0

(for O(1)
values of (w, q)) and the span Wu,s(P+,s) ∪Wu,s(P+,s)|M+

ε
has becomes slightly

asymmetric – cf. (3.29). This is drastically different in the case that there are
2 critical points P+,c – the center – and P+,s – the saddle – on M+

ε . We deduce
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by classical dynamical system techniques – such as the Melnikov method (see
for instance [72]) – the following (bifurcation) properties of (3.38), and thus of
(3.10).

Theorem 2.4. Let parameters (a,Ψ,Φ,Ω,Θ) of (3.7) be such that there is a
center P+,c = (b+(w+,c), 0,w+,c, 0) and a saddle P+,s = (b+(w+,s), 0,w+,s, 0) on
M+

ε and assume that the unperturbed homoclinic orbit
(whom,0(X), qhom,0(X)) to P+,s of (3.19) on M+

0 lies entirely in the w-region in
which both M0

0 and M+
0 are normally hyperbolic. More explicitly, assume that,

C2 − 4AD > 0, C < 0,D > 0 and
4

1 + 4a
< wh,0 < w+,c < w+,s <

1
a

(3.40)

(3.23), (3.24), (3.13), where (wh,0, 0) is the intersection of
(whom,0(X), qhom,0(X)) with the w-axis – see Fig. 3.4. Then, for all c , 0 (but
O(1) w.r.t. ε) and ε sufficiently small,
• there is a co-dimension 1 manifold RHopf = RHopf(a,Ψ,Φ,Ω,Θ) such that
a periodic solution (dis)appears in (3.38) – and thus in (3.7) – for parameters
(a,Ψ,Φ,Ω,Θ) that cross through RHopf; moreover, RHopf is at leading order (in
ε) determined by ρ1(w+,c) = 0 (3.39);
• there is a co-dimension 1 manifold Rhom = Rhom(a,Ψ,Φ,Ω,Θ) such that for
(a,Ψ,Φ,Ω,Θ) ∈ Rhom, the unperturbed homoclinic solution
(whom,0(X), qhom,0(X)) on M+

0 persists as homoclinic solution to P+,s of
(3.38)/(3.7); moreover, Rhom is at leading order determined by,

∆Hhom = c
∫ w+,s

wh,0

ρ1(w)
√

2H+,s
0 − 2Aw + (B + aΘ) w2 + 2CJ +

0 (w) dw = 0.

(3.41)
with H+,s

0 , J +
0 (w) as defined in (3.29), (3.27).

• there is an open region Sper in (a,Ψ,Φ,Ω,Θ)-space – with RHopf ∪ Rhom ⊂

∂Sper – such that for all (a,Ψ,Φ,Ω,Θ) ∈ Sper, one of the (restricted) periodic
solutions (wp,0(X), qp,0(X)) of the integrable flow (3.22) on M+

0 persists as a
periodic solution (bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) of (3.38)/(3.7) on M+

ε ; the
stability of the periodic orbit on M+

ε is determined by (the sign of) c.
The flow on M+

ε is reversible for c = 0: there always is a one-parameter family
of periodic solutions on M+

ε enclosed by a homoclinic loop if (3.40) holds, i.e.,
the phase portrait remains as in the ε = 0 case of Fig. 3.4, it is not necessary to
restrict parameters (a,Ψ,Φ,Ω,Θ) to Sper or to Rhom for c = 0.

Proof. A periodic solution (wp,0(X), qp,0(X)) of the unperturbed flow (3.22)
on M+

0 is described by the value H+
p,0 of the Hamiltonian H+

0 (w, q) (3.26), where
necessarily H+

p,0 ∈ (H+,c
0 ,H+,s

0 ) – with H+,c
0 < H+,s

0 the values of H+
0 (w, q) at

the center P+,c
0 , resp. saddle P+,s

0 (cf. (3.29)). We define Lp,0 = Lp,0(H+
p,0) as

the period – or wavelength – of (wp,0(X), qp,0(X)) and wp,0 = wp,0(H+
p,0) and

wp,0 = wp,0(H+
p,0) as the minimal and maximal values of wp,0(X), i.e wp,0 ≤
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wp,0(X) ≤ wp,0 – see Fig. 3.4.

Hamiltonian H+
0 (w, q) (3.26) becomes a slowly varying function in the perturbed

system (3.38),
dH+

0

dX
(w, q) = εcq2ρ1(w) + O(ε2).

Thus, unperturbed periodic solution (wp,0(X), qp,0(X)) on M+
0 persists as peri-

odic solution (wp,ε(X), qp,ε(X)) of (3.38) on M+
ε – with |Lp,ε−Lp,0|, |wp,ε−wp,0| =

O(ε) and, by definition, wp,ε = wp,0 – if,∫ Lp,ε

0

dH+
0

dX
(wp,ε(X), qp,ε(X)) dX = εc

∫ Lp,ε

0
(qp,ε(X))2ρ1(wp,ε(X)) dX+O(ε2) = 0.

(3.42)
The approximation of (wp,ε(X), qp,ε(X)) by (wp,0(X), qp,0(X)) yields, together
with (3.26),∫ Lp,ε

0
(qp,ε(X)2ρ1(wp,ε(X)) dX

=

∫ Lp,0

0
qp,0(X)2ρ1(wp,0(X)) dX + O(ε)

= 2
∫ wp,0

wp,0

ρ1(w)
√

2H+
p,0 − 2Aw + (B + aΘ) w2 + 2CJ +

0 (w) dw + O(ε).

(3.43)

Thus, unperturbed periodic solution/pattern (wp,0(X), qp,0(X)) persists as periodic
solution on M+

ε for parameter combinations such that,

∆H(H+
p,0) = c

∫ wp,0(H+
p,0)

wp,0(H+
p,0)

ρ1(w)
√

2H+
p,0 − 2Aw + (B + aΘ) w2 + 2CJ +

0 (w) dw

= 0. (3.44)

Note that this expression does not depend on the speed c – see however Remark
2.8 – but that (the sign of) c indeed determines the stability of (wp,ε(X), qp,ε(X))
on M+

ε . For given H+
p,0 ∈ (H+,c

0 ,H+,s
0 ), condition (3.44) determines a co-

dimension 1 manifold Rper(H+
p,0) in (a,Ψ,Φ,Ω,Θ)-space for which a periodic

orbit (bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) on M+
ε exists. Clearly

Sper ⊂ ∪H+
p,0∈(H

+,c
0 ,H+,s

0 )Rper(H+
p,0).

Moreover, wp,0(H+
p,0) ↑ w+,c and wp,0(H+

p,0) ↓ w+,c as H+
p,0 ↓ H

+,c
0 , so that (3.44)

indeed reduces to ρ1(w+,c) = 0 as H+
p,0 ↓ H

+,c
0 : RHopf = Rper(H+,c

0 ). Note that
ρ1(w)→ −∞ as w ↓ 4/(1 + 4a) – recall that C < 0 – and that

ρ1

(
1
a

)
= a2 (Ω + 2Θ) − 1 = −

(
1 − a2C

)
+ a2Θ
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can be made positive by choosing Θ sufficiently large: ρ1(w) must change
sign for Θ not too small (in fact, it can be shown by straightforward analy-
sis of (3.39) that ρ1(w) may change sign twice (at most)). It thus follows that
RHopf , ∅ and consequentially that Sper is nonempty. Since wp,0(H+

p,0) ↓ wh,0
and wp,0(H+

p,0) ↑ w+,s as H+
p,0 ↑ H+,s

0 , it follows that ∆H(H+
p,0) → ∆Hhom and

thus that Rhom = Rper(H+,s
0 ), which also can be shown to be non-empty – see

Lemma 2.6. �

Of course, Theorem 2.4 has a direct interpretation in terms of traveling waves in
the full PDE (3.5),

Corollary 2.5. Let the conditions formulated in Theorem 2.4 hold, then for all
c ∈ R O(1) w.r.t. ε,
• there is a traveling spatially periodic wave (train) solution
(Bp,ε(ε(x − ct)),Wp,ε(ε(x − ct)) of (3.5) for (a,Ψ,Φ,Ω,Θ) ∈ Sper;
• there is a traveling pulse (Bhom,ε(ε(x − ct)),Whom,ε(ε(x − ct)) in (3.5) – homo-
clinic to the background state (B̄+,s, W̄+,s) = (b+(w+,s),w+,s) – for
(a,Ψ,Φ,Ω,Θ) ∈ Rhom.

It is possible to (locally) get full analytical control over the set Sper and its
boundary manifolds RHopf and Rhom in (a,Ψ,Φ,Ω,Θ)-space by considering the
unfolding of the saddle-node bifurcation on M+

ε as in section 2.2 (cf. (3.34)).

Lemma 2.6. Let the conditions formulated in Theorem 2.4 hold, introduceσ > 0
as in (3.30) and consider σ sufficiently small (but still O(1) w.r.t. ε). Then,
system (3.38)/(3.7) has a periodic solution
(bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) on M+

ε for all (a,Ψ,Φ,Ω,Θ) such that,

5
7
σwS N

1 ρ′1(wS N
0 ) + O(σ2) < ρ1(wS N

0 ) < σwS N
1 ρ′1(wS N

0 ) + O(σ2), (3.45)

where ρ1(w), σ, wS N
0 and wS N

1 are explicitly given in terms of the parameters
(a,Ψ,Φ,Ω,Θ) in (3.39), (3.30), (3.34) (with (3.23),(3.24)): Sper is given by (3.45)
and its boundaries RHopf and Rhom by the upper, respectively lower, boundary
of (3.45).

Proof. For D O(σ2) close to DS N (3.30), the unperturbed flow (3.22) on
M+

0 can be given locally, i.e., in an O(σ) neighborhood of the critical points
P+,c = (b+(w+,c

0 ), 0,w+,c
0 , 0) and P+,s = (b+(w+,s

0 ), 0,w+,s
0 , 0) with w+,c

0 = w+,1
0 <

w+,2
0 = w+,s

0 (3.34), be given by its quadratic approximation,

wXX = α̃(w − w+,c
0 )(w − w+,s

0 ) + O(σ3) = α̃
(
(w − wS N

0 )2 − σ2(wS N
1 )2

)
+ O(σ3),

(3.46)
(3.34), where α̃ > 0 is the second derivative of the right-hand side of (3.22)
evaluated at wS N

0 . Thus, the integral H+
0 (3.26) can locally be given by,

H+
0 (w, q) =

1
2

q2 − α̃

(
1
3

(w − wS N
0 )3 − σ2(wS N

1 )2w
)

+ O(σ4). (3.47)
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Direct evaluation yields that the stable/unstable manifolds of P+,s (restricted to
M+

0 ) are given by,

H+
0 (w, q) = H+,s

0 = α̃σ2(wS N
1 )2

(
wS N

0 +
2
3
σwS N

1

)
+ O(σ4) (3.48)

(cf. (3.29)), which implies that the (second) intersection with the w-axis of the
homoclinic orbit connected to P+,s (in M+

0 ) is given by,

wh,0 = wS N
0 − 2σwS N

1 + O(σ2)
(
< w+,c

0 = wS N
0 − σwS N

1 + O(σ2)
)

(3.49)

(cf. Theorem 2.4)). Now, we consider parameter combinations such that ρ1(w)
has a zero O(σ) close to wS N

0 , i.e., we set

ρ1(w) = β̃
(
w − (wS N

0 + σµ)
)

+ O(σ2),

where σµ represents the position of the zero and β̃ = ρ′1(wS N
0 ). Hence, the

condition ∆Hhom = 0 (3.41) – that determines the manifold Rhom – is at leading
order (in σ) given by,

cβ̃
∫ w+,s

wh,0

(
w − (wS N

0 + σµ)
) √

2H+,s
0 + 2α̃

(
1
3

(w − wS N
0 )3 − σ2(wS N

1 )2w
)

dw = 0

(3.50)
(3.48). Introducing ω by w = wS N

0 + σω and using (3.34), (3.49), we reduce
(3.50) to,

β̃σ3

√
2
3
α̃σ
√
σ

∫ wS N
1

−2wS N
1

(ω − µ)
√
ω3 − 3(wS N

1 )2ω + 2(wS N
1 )3 dω = 0.

Thus, the homoclinic orbit to P+,s (in M+
0 ) persists for µ such that,∫ wS N

1

−2wS N
1

(ω − µ)(ω − wS N
1 )

√
ω + 2wS N

1 dω = 0

(at leading order in σ (and in ε)). Straightforward integration yields that µ =

µhom = −
5
7
ωS N

1 + O(σ), i.e., that on Rhom, the zero of ρ1(w) must be at wS N
0 −

5
7
σwS N

1 + O(σ2) > w+,c
0 = wS N

0 − σwS N
1 + O(σ2).

We conclude that for σ (and ε) sufficiently small, the boundaries RHopf and
Rhom of the domain Sper are given by ρ1(wS N

0 − σwS N
1 + O(σ2)) = 0 (first bul-

let of Theorem 2.4), respectively ρ1(wS N
0 −

5
7
σwS N

1 + O(σ2)) = 0 – which is
equivalent to the boundaries of (3.45) by Taylor expansion (in σ). Finally, we
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notice that for parameter values between RHopf and Rhom, i.e., for which (3.45)
holds, one of the periodic orbits between the center point and the homoclinic
loop must persist – in other words, for parameter combinations that satisfy (3.45),
∆H(H+

p,0) = 0 (3.44) for certain H+
p,0 ∈ (H+,c

0 ,H+,s
0 ). �

Remark 2.7. Lemma 2.6 ‘rediscovers’ the periodic solutions associated to a
Bogdanov-Takens bifurcation. In 3.C we present a brief embedding of our result
into the normal form approach to the Bogdanov-Takens bifurcation scenario.

Remark 2.8. A higher order perturbation analysis yields that the O(ε) correc-
tions to RHopf and Rhom – and thus to Sper – explicitly depend on c.

Remark 2.9. Of course one can also establish the persistence of periodic orbits
of the slow reduced flow – as in Theorem 2.4 – under the assumption that there
is only one critical point P+,c of center type on M+

0 , instead of focusing on the
present case in which the reduced slow flow (3.19) has a homoclinic orbit on M+

0
(Theorem 2.4). Since we decided to focus on situations in which there is a saddle
point on M+

0 – that is potentially stable as homogeneous background state in
(3.5) (section 2.3) – we do not consider this possibility here. Note however that
the analysis of this case is essentially the same as presented here. See also
Remark 3.7.

3 Localized front patterns

In this section we use the slow-fast geometry of the phase space associated to
(3.7) to establish a remarkably rich variety of localized vegetation patterns (po-
tentially) exhibited by model (3.5). First, we consider various kinds of traveling
and stationary ‘invasion fronts’ that connect the bare soil state to a uniform or an
‘oscillating’ vegetation state and their associated bifurcation structures (sections
3.2, 3.3 and 3.4), next we study stationary homoclinic 2-front spot and gap pat-
terns (section 3.5) and finally spatially periodic multi-front (spot/gap) patterns
(section 3.6). As starting point, we need to control the intersection of Wu(P0)
and W s(M+

ε ).

Remark 3.1. We start by considering localized patterns that correspond to or-
bits in Wu(P0), i.e., patterns that approach the bare soil state (B̄, W̄) = (0,Ψ/Φ)
of (3.5) as x→ −∞. In fact, the upcoming results on 1-fronts are all on orbits in
(3.7) that connect P0 ∈M0

ε either to a critical point or to a persisting periodic
orbit in M+

ε (Theorem 2.4): all constructed 1-fronts originate from the uniform
bare soil state. The existence of 1-front patterns that approach (B̄, W̄) = (0,Ψ/Φ)
as t → +∞ is embedded in these results through the application of the symmetry
(3.9).
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3.1 Wu(P0) ∩W s(M+
ε ) and its touch down points on M+

ε

A (traveling) front pattern between the bare soil state (0,Ψ/Φ) and a (potentially
stable) uniform vegetation state (B̄, W̄) of (3.5) corresponds to a heteroclinic
solution γh(ξ) = (wh(ξ), ph(ξ), bh(ξ), qh(ξ)) of (3.7) between the critical points
P0 = P0

0 = (0, 0,Ψ/Φ, 0) ∈M0
ε and P+,s = (b+(w+,s), 0,w+,s, 0) ∈M+

ε – see sec-
tion 2.3. We know by Fenichel’s second Theorem that, by the normal hyperbol-
icity M0

0 and M+
0 , their stable and unstable manifolds W s,u(M0

0) and W s,u(M+
0 )

persist as W s,u(M0
ε) and W s,u(M+

ε ) for ε , 0 as w ∈ (1/(a + 1/4), 1/a) (3.13),
[83, 86]. Thus, γh(ξ) ⊂ Wu(P0) ∩W s(P+,s) ⊂ Wu(M0

ε) ∩W s(M+
ε ) – where we

note that the manifolds Wu(P0) and W s(P+,s) are 2-dimensional, while Wu(M0
ε)

and W s(M+
ε ) are 3-dimensional (and that the intersections take place in a 4-

dimensional space).

We know by (3.17) that Wu(M0
0) and W s(M+

0 ) intersect transversely – and thus
that Wu(M0

0)∩W s(M+
0 ) is 2-dimensional. Since Wu(M0

ε) and W s(M+
ε ) are C1-

O(ε) close to Wu(M0
0) and W s(M+

0 ), it immediately follows that Wu(M0
ε) and

W s(M+
ε ) also intersect transversely, that Wu(M0

ε) ∩W s(M+
ε ) is 2-dimensional

and at leading order (in ε) given by (3.17). Since Wu(P0) ⊂ Wu(M0
ε), Wu(P0) ∩

W s(M+
ε ) is a 1-dimensional subset of Wu(M0

ε) ∩ W s(M+
ε ) – i.e., an orbit –

that follows Wu(P0)|M0
ε

= `u
ε (3.21) exponentially close until its w-component

reaches w+
h (c) (3.16) at which it ‘takes off’ from M0

ε to follow the fast flow
along the ‘parabolic’ manifold given by (3.17), all at leading order in ε – see
sections 2.1, 2.4. Since w, q only vary slowly (3.7), the (w, q)-components of the
orbit Wu(P0) ∩W s(M+

ε ) remain constant at leading order during its fast jump:
it ‘touches down’ on M+

ε with (at leading order) the same (w, q)-coordinates
(Remark 3.3). Therefore, we define the touch down curve Tdown(c) ⊂M+

ε as the
set of touch down points of the orbits Wu(P0) ∩W s(M+

ε ) that take off from M0
ε

exponentially close to the intersection `u
ε ∩ {w = w+

h (c)} (3.16), parameterized by
c; it is at leading order (in ε) given by,

Tdown(c) =

{(
b+(w+

h (c)), 0,w+
h (c),

√
Φ

(
w+

h (c) −
Ψ

Φ

))}
(3.51)

In terms of the projected (w, q)-coordinates by which the dynamics on M+
ε are

described (3.38), Tdown(c) describes a smooth 1-dimensional manifold Idown =

{(wdown(c), qdown(c))} parameterized by c with boundaries (its endpoints): the
family of base points of the Fenichel fibers of Wu(P0) ∩ W s(M+

ε ) on M+
ε –

Remark 3.3; at leading order in ε, Idown is a straight interval with endpoints
determined by the bounds (3.13) on w = w+

h (c).

Lemma 3.2. At leading order in ε,

Idown =

{(
w+

h (c),
√

Φ

(
w+

h (c) −
Ψ

Φ

))
, c ∈ [−

1
√

2(1 + 4a)
,

1
√

2a
]
}
.



3. Localized front patterns 77

The map [−
1

√
2(1 + 4a)

,
1
√

2a
]→ Idown is bijective and

w+
h

(
−

1
√

2(1 + 4a)

)
=

4
1 + 4a

, w+
h (0) =

9
2 + 9a

, w+
h

(
1
√

2a

)
=

1
a
.

Expression (3.16) a priori does not exclude the possibility that w+
h has sev-

eral extremums as function of c, in fact
d
dc

w+
h (−

1
√

2(1 + 4a)
) = 0. The proof –

derivation – of this lemma thus requires some careful, but straightforward, anal-
ysis. We refrain from going into the details here.

We conclude this section by noticing that heteroclinic connections γh(ξ) be-
tween P0 ∈ M0

ε and P+,s ∈ M+
ε directly correspond to intersections Idown ∩

W s(P+,s)|M+
ε

(Remark 3.3). However, the coordinates of this intersection deter-
mine c (through Idown), while W s(P+,s)|M+

ε
also varies as function of c. More-

over, by the perturbed integrable nature of the flow on M+
ε (3.38), there can a

priori be (countably) many intersections Idown ∩ W s(P+,s)|M+
ε
. Thus, the anal-

ysis is more subtle and richer than (perhaps) expected – as we shall see in the
upcoming sections.

Remark 3.3. We (for instance) refer to [41] for a more careful treatment of
‘take off’ and ‘touch down’ points/manifolds. In fact, these points/manifolds
correspond to base points of Fenichel fibers (that persist under perturbation
by Fenichel’s third Theorem [83, 86]). By construction/definition, an orbit that
touches down at a certain (touch down) point on a slow manifold is asymptotic
to the orbit of the slow flow that has this point as initial condition. Therefore,
if an orbit touches down on a stable manifold of a critical point on the slow
manifold, it necessarily is asymptotic to this critical point.

3.2 Traveling 1-front patterns – primary orbits
Our first result – on the existence of primary heteroclinic orbits – can be de-
scribed in terms of the slow reduced flow on M+

0 , or more precise, on inter-
sections of the touch down manifold Idown and the restricted stable manifold
W s(P+,s)|M+

0
⊂ {H+

0 (w, q) = H+,s
0 } (3.29) of the reduced slow flow (3.22) on

M+
0 . However, it is a priori unclear whether such intersections may exist and

how many of such intersections may occur: the many parameters of system (3.7)
have a ‘nontrivial’ effect on Idown and W s(P+,s)|M+

0
and thus on their relative

positions. To obtain a better insight in this, we ‘freeze’ the flow of (3.22) by

fixing a,A, C,D at certain values. Since B + aΘ = D + (a +
1
4

)A (3.24), this

indeed fixes all coefficients of the reduced slow flow (3.22) on M+
0 . At the same

time, this leaves a 1-parameter freedom in the parameters Φ,Ψ,Ω,Θ. Defining,

χ =
1
a

(
1
4
A − 1

2
C + D

)
, (3.52)
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we see that for all Φ, the choices

Ψ =
1
a

Φ − χ, Θ = A − 1
a

Φ + χ, Ω = C −A +
1
a

Φ − χ (3.53)

yield identical slow reduced flows (3.22). On the other hand, the (leading order)
interval Idown clearly varies as function of Φ,

Idown(Φ) =

{
q =
√

Φ

(
w −

(
1
a
−
χ

Φ

))
, w ∈

(
4

1 + 4a
,

1
a

)}
. (3.54)

Note that for χ > 0, the intersection of Idown with the w-axis can be varied
between the critical w values 4/(1+4a) and 1/a by increasing Φ from a(1+4a)χ
to ∞. In fact, χ > 0 necessarily holds in case there are 2 critical points on M+

ε

(since in that case A,D > 0, C < 0), while χ can also be chosen to be positive in
the case that there is only 1 critical point on M+

ε . Thus, by choosing Ψ,Ω,Θ as
in (3.53) and varying Φ we can control Idown ∩W s(P+,s)|M+

0
.

Theorem 3.4. Let P+,s = (b+(w+,s), 0,w+,s, 0) ∈M+
0 be a critical point of (3.7)

that is a saddle point for the slow reduced flow (3.22) on M+
0 , and consider

the touch down manifold Idown at leading order given in Lemma 3.2 and the
restricted stable manifold W s(P+,s)|M+

0
of the reduced slow flow (3.22). If there

is a non-degenerate intersection point (w̄prim,0, q̄prim,0) ∈ Idown ∩ W s(P+,s)|M+
0
,

then, for ε sufficiently small, there exists for c = cprim a primary heteroclinic
orbit
γprim(ξ) = (wprim(ξ), pprim(ξ), bprim(ξ), qprim(ξ)) ⊂ Wu(P0) ∩ W s(P+,s) of (3.7)
connecting P0 ∈ M0

ε to P+,s ∈ M+
ε – where cprim = cprim,0 + O(ε) and cprim,0

is the unique solution of w+
h (c) = w̄prim,0 (3.16). Departing from P0 (and at

leading order in ε), γprim(ξ) first follows `u
0 ⊂ M0

0 (3.21) until it reaches
the take off point (0, 0, w̄prim, q̄prim) from which it jumps off from M0

0 and fol-
lows the fast flow along Wu(M0

0) ∩ W s(M+
0 ) (3.17) to touch down on M+

0 at
(b+(w̄prim), 0, w̄prim, q̄prim) ∈ W s(P+,s)|M+

0
; from there, it follows W s(P+,s)|M+

0
to-

wards P+,s. Moreover,
• if P+,s is the only critical point on M+

ε , i.e., if C2 − 4AD > 0, D < 0, E > 0
(3.28), there is an open region S1

s−prim in (a,Ψ,Φ,Ω,Θ) parameter space for
which Idown and W s(P+,s)|M+

0
intersect transversely; however, there is at most

one intersection (w̄prim, q̄prim) ∈ Idown ∩W s(P+,s)|M+
0

and thus at most one pri-
mary heteroclinic orbit γprim(ξ); in fact, this is the only possible heteroclinic
orbit between P0 and P+,s;
• if there are two critical points on M+

ε , the center P+,c and saddle P+,s, i.e., if
C2 − 4AD > 0, C < 0, D > 0, then there are open regions S1

cs−prim, respectively
S2

cs−prim, in (a,Ψ,Φ,Ω,Θ) parameter space for which Idown and W s(P+,s)|M+
0

have 1, resp. 2, (transversal) intersections, so that there can be (up to) 2 dis-
tinct primary heteroclinic orbit γ j

prim(ξ) that travel with different speeds, i.e.,
c2

prim < c1
prim.
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Figure 3.6: Sketches of the intersections of Idown and W s(P+,s)|M+
0

in M+
0 , i.e., the

leading order configurations as described by the (integrable) slow reduced flow (3.22), in
the 2 cases considered in Theorem 3.4: there is one critical point P+,s of saddle type on
M+

0 or there is a center P+,c and a saddle P+,s on M+
0 .

A primary heteroclinic orbit γprim(ξ) = (wprim(ξ), pprim(ξ), bprim(ξ), qprim(ξ)) cor-
responds to a (localized, traveling, invasion) 1-front pattern
(B(x, t),W(x, t)) = (bprim(x − cprimt),wprim(x − cprimt)) in PDE (3.5) that con-
nects the bare soil state (B̄, W̄) = (0,Ψ/Φ) to the uniform vegetation state
(B̄, W̄) = (b+(w+,s),w+,s).

In the case of 2 critical points on M+
ε , we shall see that the primary orbits

may only be the first of many ‘higher order’ heteroclinic orbits – see section
3.3. We refer to Fig. 3.6 for sketches of the constructions in M0

ε that yield
the primary heteroclinic orbits γprim(ξ) and to Figs. 3.1a, 3.13 and 3.14b for
the associated – numerically obtained – primary 1-front patterns in (3.5)– see
especially Fig. 3.13b in which the the slow-fast-slow structure of a (numerically
obtained) heteroclinic front solutions of (3.5) is exhibited by its projection in the
3-dimensional (b,w, q)-subspace of the 4-dimensional phase space associated to
(3.7).

Proof. The existence of the heteroclinic orbit γprim(ξ) follows by construc-
tion – Remark 3.3 – from an intersection of Idown and W s(P+,s)|M+

ε
. Thus, we

first need to show that a (non-degenerate) intersection Idown ∩W s(P+,s)|M+
0

im-
plies an intersection Idown ∩ W s(P+,s)|M+

ε
. More precise, since W s(P+,s)|M+

ε

varies with c, i.e., since W s(P+,s)|M+
ε

= W s(P+,s)|M+
ε
(c), we need to determine

c∗ such that W s(P+,s)|M+
ε
(c∗) intersects Idown = {(w̄down(c), q̄down(c))} exactly at

(w̄down(c∗), q̄down(c∗)).

By the assumption that (w̄prim,0, q̄prim,0) ∈ Idown∩W s(P+,s)|M+
0

is a non-degenerate
intersection point, we know that the intersection is transversal, and thus that
W s(P+,s)|M+

ε
(c̃) – i.e., W s(P+,s)|M+

ε
for (3.38) with c = c̃ – also intersects Idown

transversally as c̃ is varied around cprim,0 in an O(1) fashion. Thus, for c̃ suffi-
ciently (but O(1)) close to cprim,0, Idown ∩W s(P0)|M+

ε
(c̃) = (w̄down(ci), q̄down(ci))

determines a curve ci = ci(c̃) by ci = w̄down(ci). Since the flows of (3.22) and
(3.38) are O(ε) close, we know that



80
3. The existence of localized vegetation patterns in a systematically

reduced model for dryland vegetation

‖(w̄prim,0, q̄prim,0) − (w̄down(ci), q̄down(ci))‖ = O(ε), which implies that
ci(c̃) = cprim,0 + O(ε). Hence, the O(1) variation of c̃ through cprim,0 yields at
leading order (in ε) a horizontal line ci(c̃) ≡ cprim,0: there must be a unique
intersection ci(c̃∗) = c̃∗, and thus, by construction, Idown ∩ W s(P+,s)|M+

ε
(c̃∗) =

(w̄down(c̃∗), q̄down(c̃∗)): c̃∗ = cprim.

If P+,s is the only critical point on M+
ε – i.e., if C2−4AD > 0, D < 0, E > 0 – we

freeze the flow of (3.22) with A, C,D such that χ > 0 (3.52) and define Φ = Φ+,s

such that Ψ(Φ)/Φ = 1/a − χ/Φ = w+,s, the w-coordinate of the saddle P+,s on
M+

0 – see (3.53), (3.54). Since q is an increasing function of w on Idown and
W s(P+,s)|M+

ε
is decreasing near P+,s – see Fig 3.6a – it follows that there must be

a transversal intersection Idown ∩W s(P+,s)|M+
0

for values of Φ in an (open) inter-
val around Φ+,s. Transversality implies that the intersection persists under vary-
ing A, C,D around their initially frozen values, which establishes the existence of
the open region S1

s−prim in (a,Ψ,Φ,Ω,Θ)-space for which Idown and W s(P+,s)|M+
0

intersect. Moreover, the manifold W s(P+,s)|M+
0
⊂ {H+

0 (w, q) = H+,s
0 } (3.29) is

given by a (strictly) decreasing function q+,s|M+
0
(w) for all w ∈ (4/(1 + 4a), 1/a)

since it cannot have extremums: zeroes of
d

dw
q+,s|M+

0
(w) correspond to zeroes

of
∂

∂w
H+

0 (w, q) (3.26) and thus to critical points of (3.22). By assumption, there

are no critical points besides P+,s, which yields that there indeed can be maxi-
mally one intersection Idown ∩W s(P+,s)|M+

0
.

To control the case with a center P+,c and saddle P+,s on M+
0 , we again con-

sider the unfolded saddle-node case of Lemma 2.6 and define Φ = Φ+,c such that
Ψ(Φ)/Φ = 1/a − χ/Φ = w+,c, the w-coordinate of the center P+,c. The level set
{H+

0 (w, q) = H+,s
0 } forms a small (w.r.t. the unfolding parameter σ) homoclinic

loop around P+,c that intersects Idown (transversally) in two points (w̄ j,0
prim, q̄

j,0
prim),

j = 1, 2 – see Fig. 3.6(b). By varying Φ around Φ = Φ+,c and A, C,D around
their initially frozen values, we find the open region S2

cs−prim in (a,Ψ,Φ,Ω,Θ)-
space for which both elements of the intersection Idown ∩ W s(P+,s)|M+

0
per-

sist: for (a,Ψ,Φ,Ω,Θ) ∈ S2
cs−prim, (3.7) has 2 (distinct) primary heteroclinic

orbits γ j
prim(ξ), j = 1, 2, that correspond to 1-front patterns traveling with

speeds c1
prim , c2

prim – where c j,0
prim is the unique solution of w+

h (c) = w̄ j,0
prim.

Finally, we note that the existence of the open set S1
cs−prim follows by considering

Idown ∩W s(P+,s)|M+
0

for values of Φ > Φ+,s (as defined above). �
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3.3 Traveling 1-front patterns by the perturbed integrable
flow on M+

ε

As in Theorem 2.4, we assume throughout this section that there is a center
P+,c = (b+(w+,c), 0,w+,c, 0) and a saddle P+,s = (b+(w+,s), 0,w+,s, 0) on M+

ε and
– for simplicity – that the unperturbed homoclinic orbit (whom,0(X), qhom,0(X)) to
P+,s of (3.22) on M0

0 – that is a subset of W s(P+,s)|M+
0
⊂ {H+

0 (w, q) = H+,s
0 } –

lies entirely in the w-region in which both M0
0 and M+

0 are normally hyperbolic,
i.e., we assume that (3.40) holds.

The homoclinic orbit (whom,0(X), qhom,0(X)) of (3.22) typically breaks open under
the perturbed flow of (3.38), and W s(P+,s)|M+

ε
either spirals inwards in back-

wards ‘time’, i.e., as ξ → −∞, or not. In the former case, there will be (typically
many) further intersections Idown ∩W s(P+,s)|M+

0
– see Fig. 3.7. Of course, this

is determined by the sign of ∆Hhom (3.41): if

∆Hhom = c
∫ w+,s

wh,0

ρ1(w)
√

2H+,s
0 − 2Aw + (B + aΘ) w2 + 2CJ +

0 (w) dw > 0

(3.55)
(at leading order in ε), we may expect further heteroclinic connections γh, j in
(3.7) connecting P0 ∈M0

ε to P+,s ∈M+
ε beyond the primary orbits γprim(ξ) es-

tablished in Theorem 3.4. In fact, it follows directly that γ1
prim(ξ) and γ2

prim(ξ) are
the only heteroclinic orbits between P0 and P+,s if (3.55) does not hold. If (3.55)
does hold, the (spiraling part of) W s(P+,s)|M+

0
clearly must limit – for ξ → −∞

– on either the center P+,c or, if (a,Ψ,Φ,Ω,Θ) ∈ Sper, on the persistent periodic
solution (bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) ⊂ M+

ε (Theorem 2.4). Therefore,
we first formulate a result on the existence of heteroclinic connections between
P0 ∈ M0

ε and (bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) ⊂ M+
ε . Like in Theorem 3.4,

this can be done in terms of the unperturbed flow in M+
0 .

Theorem 3.5. Assume that (3.40) holds and that (a,Ψ,Φ,Ω,Θ) ∈ Sper. Let
(wp,0(X), qp,0(X)) ⊂ {H+

0 (w, q) = H+
p,0} with H+

p,0 ∈ (H+,c
0 ,H+,s

0 ) (3.26) be the
periodic solution of (3.22) that persists (on M+

ε ) as periodic solution
(bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) on M+

ε of (3.7). Then there is an open set
Sh−p ⊂ Sper∩S2

cs−prim – with S2
cs−prim defined in Theorem 3.4 – such that there are

2 (non-degenerate) intersection points (w̄ j
h−p, q̄

j
h−p) ∈ Idown ∩ {H+

0 (w, q) = H+
p,0},

j = 1, 2, that correspond – for ε sufficiently small – to 2 distinct heteroclinic
orbits γ j

h−p(ξ) = (b j
h−p(ξ), p j

h−p(ξ),w j
h−p(ξ), q j

h−p(ξ)) of (3.7) – in which c = c j
h−p –

between the critical point P0 ∈M0
ε and the periodic orbit

(bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) ⊂ M+
ε ; at leading order in ε, c j

h−p is deter-

mined by w+
h (c) = w̄ j

h−p, with c2
prim < c2

h−p < c1
h−p < c1

prim (Theorem 3.4).

The orbits γ j
h−p(ξ) correspond traveling 1-front patterns

(B(x, t),W(x, t)) = (b j
h−p(x − c j

h−pt),w j
h−p(x − c j

h−pt)) in PDE (3.5) that connect
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1

a
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W s(P+,s)
���
M+

"
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Idown
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4

1 + 4a
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Figure 3.7: A sketch of the flow (3.38) on M+
ε for (a,Ψ,Φ,Ω,Θ) ∈ Sh−p (Theorem

3.5) and c = c1
prim (Theorem 3.4) in the case that (3.55). Since W s(P+,s)|M+

ε
‘wraps

around’ the persistent periodic solution (bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) (Theorem 3.5)
– in backwards time – and since Idown intersects this orbit in 2 points (by assumption),
there are two countable sets of intersections Idown ∩W s(P+,s)|M+

ε
.

the bare soil state (B̄, W̄) = (0,Ψ/Φ) to the traveling wave train (Bp,ε(ε(x −
c j

h−pt)),Wp,ε(ε(x − c j
h−pt)) of Corollary 2.5.

Notice that this result is independent of condition (3.55), i.e., Theorem 3.5
holds independent of the sign of ∆Hhom. Moreover, we could formulate similar
limiting result concerning heteroclinic 1-front connections between P0 ∈ M0

ε

and P+,c ∈M+
ε for (a,Ψ,Φ,Ω,Θ) on a certain co-dimension 1 manifold. Since

the background state associated to P+,c cannot be stable – section 2.3 – we re-
frain from going into the details.

Proof. The proof goes exactly along the lines of that of Theorem 3.4. �

Theorem 3.5 provides the foundation for a result on the existence of multiple – in
fact countably many – distinct traveling 1-front connections between P0 ∈M0

ε

and P+,s ∈M+
ε for an open set in parameter space – see also the sketches in Figs.

3.2a and 3.2b.

Theorem 3.6. Assume that the conditions of Theorem 3.5 hold and let
(a,Ψ,Φ,Ω,Θ) ∈ Sh−p. If c j

h−p and c j
prim have the same sign (for either j = 1 or

2) and if (3.55) holds for c of this sign, then – for ε sufficiently small – there are
countably many distinct heteroclinic orbits γ j,k

h (ξ) = (b j,k
h (ξ), p j,k

h (ξ),w j,k
h (ξ), q j,k

h (ξ)),
k ≥ 0, of (3.7) with c = c j,k

h connecting P0 ∈ M0
ε to P+,s ∈ M+

ε . Moreover,
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γ
j,0
h (ξ) = γ

j
prim(ξ), |c1,k+1

h − c1,k
h | = O(ε), and,

j = 1 : c1
h−p < ... < c1,k

h < ... < c1,1
h < c1,0

h = c1
prim, c1,k

h ↓ c1
h−p for k → ∞,

j = 2 : c2
prim = c2,0

h < c2,1
h < ... < c2,k

h < ... < c2
h−p, c2,k

h ↑ c2
h−p for k → ∞.

(3.56)
Each orbit γ j,k

h (ξ) corresponds to a (localized, traveling, invasion) 1-front pattern
(B(x, t),W(x, t)) = (bk, j

h (x − ck, j
h t),wk, j

h (x − ck, j
h t)) in PDE (3.5) that connects the

bare soil state (B̄, W̄) = (0,Ψ/Φ) to the uniform vegetation state (B̄, W̄) =

(b+(w+,s),w+,s).

As in the proofs of Theorems 2.4 and 3.4, we can verify that there indeed are
open regions in (a,Ψ,Φ,Ω,Θ)-space for which c j

h−p and c j
prim have the same sign

(for either j = 1, 2 or for both) and such that (3.55) holds, by considering the un-
folded saddle-node case of Lemma 2.6. In fact, we know from Lemma 3.2 that c
changes sign as the w-coordinate of the intersection point on Idown∩W s(P+,s)|M+

0

passes through 9/(2 + 9a). Thus (and for instance), all 4 values c j
h−p and c j

prim,
j = 1, 2, must have the same sign as the entire homoclinic orbit spanned by
W s(P+,s)|M+

0
either is to the left or to the right of w = 9/(2 + 9a) – more precise,

if either (wh,0,w
+,s) ⊂ (4/(1 + 4a), 9/(2 + 9a)) or (wh,0,w

+,s) ⊂ (9/(2 + 9a), 1/a)
(cf. (3.40)). Note that it follows from (3.32) that wS N

0 = 9/(2 + 9a) implies
that C2 = A2/9 (independent of a), so that we can indeed move the homoclinic
loop associated to the unfolded saddle-node – i.e., σ � 1 as in (3.34) – through
w = 9/(2 + 9a) by increasing C2 ∈ (0,A2) through A2/9. On the other hand, it
is certainly also possible that c j

h−p and c j
prim do not have the same sign. Hence,

apart from the PDE point of view – from which it is natural to consider station-
ary patterns – this gives us an additional motivation to study the sign-changing
stationary case c = 0 in more detail, as we will briefly do in Remark 3.10 in
section 3.4.

Proof. We only consider the case j = 1, i.e., we assume that c1
h−p and c1

prim

have the same sign and that (3.55) holds for c = c1
h−p, c

1
prim. The proof for j = 2

goes exactly along the same lines.

For c = c1
prim, W s(P+,s)|M+

ε
by assumption spirals inwards in backwards ‘time’

and ‘wraps around’ the (perturbed) periodic orbit (wp,ε(X), qp,ε(X)) on (the pro-
jection of) M+

ε – see Fig. 3.7. Since (a,Ψ,Φ,Ω,Θ) ∈ Sh−p, W s(P+,s)|M+
ε

must intersect Idown countably many times. We define (w̄1,1
i , q̄1,1

i ) as the next
intersection of W s(P+,s)|M+

ε
(c1

prim) with Idown beyond the 2 primary intersection

points: it is the first non-primary intersection point and has q̄1,1
i > 0. As before,

(w̄1,1
i , q̄1,1

i ) ∈ Idown = {(w̄down(c), q̄down(c))} determines the value c1,1
i through

w̄down(c) = w̄1,1
i – where we know that c1,1

i < c1
prim since the w-component of

Idown is a monotonically increasing function of q (Lemma 3.2). Since the pertur-
bation term in (3.38) is O(ε), it follows that ‖(w̄1

prim, q̄
1
prim) − (w̄1,1

i , q̄1,1
i )‖ = O(ε)
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and thus that c1
prim − c1,1

i = O(ε). An O(ε) change in c yields an O(ε2) change
in the flow of (3.38), hence for all c̃ O(ε) close to c1

prim, the first non-primary in-

tersection of W s(P+,s)|M+
ε
(c̃) and Idown – denoted by (w̄1,1

i (c̃), q̄1,1
i (c̃)) – must be

O(ε2) close to (w̄1,1
i , q̄1,1

i ) ∈ Idown ∩W s(P+,s)|M+
ε
(c1

prim). Thus, the speed c1,1
i (c̃)

associated to this intersection – by w̄down(c) = w̄1,1
i (c̃) – must also be O(ε2) close

to c1,1
i . The situation is therefore similar to that in the proof of Theorem 3.4:

an O(ε) variation of c̃ around c1,1
i in (3.38) yields only an O(ε2) change in the

c-coordinate associated the first non-primary intersection Idown∩W s(P+,s)|M+
ε
(c̃)

so that there must be an unique c̃ = c1,1
h such that Idown ∩W s(P+,s)|M+

ε
(c1,1

h ) =

(w̄down(c1,1
h ), q̄down(c1,1

h )). This establishes the existence of the first non-primary
heteroclinic 1-front orbit γ1,1

h (ξ) for c = c1,1
h in (3.7).

We can now iteratively consider the first intersection in backwards ‘time’ – de-
noted by (w̄1,2

i , q̄1,2
i ) – of W s(P+,s)|M+

ε
(c1,1

h ) with Idown beyond
(w̄down(c1,1

h ), q̄down(c1,1
h )) with q̄1,2

i > 0 – so that the speed c1,2
i associated to

this intersection is O(ε) close to c1,1
h . Completely analogous to the above ar-

guments, we deduce the existence of an unique c = c1,2
h such that Idown ∩

W s(P+,s)|M+
ε
(c1,2

h ) = (w̄down(c1,2
h ), q̄down(c1,2

h )), which establishes the existence
of the next non-primary 1-front orbit γ1,2

h (ξ) of (3.7) with 0 < c1,1
h − c1,2

h = O(ε).
Next, we construct γ1,3

h (ξ) in (3.7) with 0 < c1,2
h − c1,3

h = O(ε) through the inter-
section Idown ∩W s(P+,s)|M+

ε
(c1,3

h ) = (w̄down(c1,3
h ), q̄down(c1,3

h )), etc.

Theorem 2.4 holds independent of c, which implies that W s(P+,s)|M+
ε
(c) wraps

around the periodic orbit periodic orbit (wp,ε(X), qp,ε(X)) of (3.38) (in backwards
‘time’) for all c with the same sign as c1

h−p and c1
prim (cf. Fig. 3.7). Thus, there

must be countably many heteroclinic orbits γ1,k
h (ξ) – every W s(P+,s)|M+

ε
(c) inter-

sects Idown countably many times – and the associated speeds c1,k
h must all be

between c1
h−p and c1

prim. Moreover, the decreasing sequence {c1,k
h }
∞
k=1 must have a

limit that cannot differ from c1
h−p: c1,k

h ↓ c1
h−p as k → ∞. �

By establishing the existence of countably many distinct heteroclinic connec-
tions between P0 and P+,s, Theorem 3.6 in a sense considers (one of) the most
complex case(s), which is quite far removed from situations in which there are
no such connections. To obtain insight in the bifurcations that occur ‘in be-
tween’, we can again freeze the reduced slow flow and vary Idown = Idown(Φ) by
increasing Φ (from a(1 + 4a)χ to∞ (3.52), (3.53), (3.53)). We consider the most
simple case and assume that the homoclinic orbit of the frozen flow lies entirely
in the w-region (4/(1 + 4a), 9/(2 + 9a)) – so that all c j,k

h ’s of Theorem 3.6 are
positive – and that Idown(Φ)∩W s(P+,s)|M+

0
= ∅ at Φ = a(1+4a)χ (this can easily

be achieved by the unfolded saddle-node approach). As Φ increases, Idown(Φ)
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becomes steeper and the intersection Idown(Φ) ∩ {q = 0} moves over the entire
interval determined by (3.13), i.e., from 4/(1+4a) to 1/a. Thus, Idown(Φ) moves
through the homoclinic loop spanned by W s(P+,s)|M+

0
and through the enclosed

persistent periodic orbit established by Theorem 2.4. We tune the parameters
such that during the passage of the latter, (3.55) holds and (a,Ψ,Φ,Ω,Θ) ∈ Sh−p,
i.e., that Theorem 3.6 can be applied – which is also possible. It should be
noticed that although the reduced flow (3.22) is frozen, this is not the case for
the perturbed flow (3.38), since ρ1(w) varies with Θ (3.39) and Θ = Θ(Φ) (3.53),
thus the persistent periodic orbit established in Theorem 2.4 is not frozen, but
also varies with Φ – this is represented in the sketches of Fig. 3.8 by the decreas-
ing size of the limiting periodic orbit on M+

ε .

Fig. 3.8 exhibits sketches of 3 configurations of Idown(Φ) and W s(P+,s)|M+
0

for increasing Φ, the associated bifurcation scenario is sketched in Fig. 3.9. In
Fig. 3.8a, Φ has already passed through the first bifurcation value Φprim at which
the first 2 primary heteroclinic orbits γ j

prim(ξ), j = 1, 2 of Theorem 3.4 are cre-
ated, and through a second one, Φb

S N,1 – O(ε) close Φprim – at which the first 2
secondary orbits appear. This bifurcation is followed by countably subsequent
saddle-node bifurcations until Φ reaches Φb

per at which the 2 limiting heteroclinic
orbits between P0 and the persistent periodic solution of Theorem 3.5 appear
and we enter into the realm of Theorem 3.6. These orbits next disappear at
Φe

per, Fig. 3.8(b) is similar to Fig. 3.7 and represents the 2 countable families of
heteroclinic orbits that exist for Φ ∈ (Φb

per,Φ
e
per) (Theorem 3.6). All these orbits

step-by-step disappear in pairs as Φ is increased further: Fig. 3.8c shows the
situation with only 5 left – 4 of these will disappear just before Φ reaches Φ+,s

at which Idown(Φ) passes through P+,s.

We refrain from giving all rigorous details on which the above sketched sce-
nario is based – this is in essence a matter of following the lines set out in the
proofs of the preceding results. Moreover, we also refrain from working out
all possible alternative bifurcation scenarios that may occur – there are many
(sub)cases to consider, some more simple, others more complex than that of Fig.
3.9. Nevertheless, we do briefly come back to this in the upcoming section –
where we consider stationary, sign-changing, case c = 0 case.

Remark 3.7. As in Remark 2.9, we note that a result like Theorem 3.5 on the
existence of heteroclinic connections between P0 and a periodic orbit on M+

ε

can also be established under the assumption that there is only one critical point
P+,c of center type on M+

0 . Similar remarks can be made about the upcoming
Theorems 3.9, 3.12 and Corollary 3.16. We note – also as in Remark 2.9 –
that the analysis of these additional cases is essentially the same as already
presented.
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P+,s
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Figure 3.8: Sketches of 3 relative configurations of Idown(Φ) and W s(P+,s)|M+
0

for in-
creasing Φ that represent 3 distinct stages in the bifurcation scenario of Fig. 3.9.

3.4 Stationary 1-front patterns
In this section, we construct stationary heteroclinic 1-front patterns that are sim-
ilar to those constructed in Theorems 3.4 and 3.5. We immediately note that
if the reduced flow on M+

0 has an unperturbed homoclinic loop W s(P+,s)|M+
0
∩

W s(P+,s)|M+
0

– as in Fig. 3.4 – that it persists as homoclinic solution of (3.7) on
M+

ε for ε , 0 – since (3.7) with c = 0 is a reversible system (see also Theorem
2.4). Thus, we a priori deduce that there cannot be any further non-primary
heteroclinic 1-front connections between P0 ∈M0

ε and P+,s ∈M+
ε as those of

Theorem 3.6 for c , 0 (see however also Remark 3.10 for a result similar to
Theorem 3.6). In the subsequent sections, we will proceed to construct homo-
clinic and periodic multi-front patterns – i.e., solutions of (3.7) that jump up and
down between M0

ε and M+
ε – and show that there is a richness in these kinds of

patterns similar to that of Theorem 3.6.

As in the previous sections, we approach the bifurcation analysis by freezing the
flow on M+

ε . Thus, we choose Ψ,Ω,Θ as in (3.53) and vary Φ. We know by
Lemma 3.2 and (3.54) that for c = 0, the touch down point of Wu(P0)∩W s(M+

ε )
is represented by a vertical line/half line Js−d in the (w, q)-plane

Js−d =

{
Js−d(Φ) = (ws−d(Φ), qs−d(Φ)) =

(
9

2 + 9a
,
√

Φ

(
χ

Φ
−

2
a(2 + 9a)

))
,Φ > 0

}
(3.57)

(at leading order in ε). Clearly, a 1-front connection between P0 and P+,s corre-
sponds to those values of Φ for which Js−d(Φ) ∈ W s(P+,s)|M+

0
.

Theorem 3.8. Let c = 0 and let ε be sufficiently small. Then, there is a co-
dimension 1 set Rs−1f in (a,Φ,Ψ,Ω,Θ)-space for which (stationary) 1-front
heteroclinic orbits γs−1f(ξ) ⊂ Wu(P0) ∩ W s(P+,s) exists in (3.7). More precise,
let Ψ,Ω,Θ as in (3.53), then:
(A) If P+,s = (w+,s, 0) is the only critical point on (the projection of) M+

ε , i.e., if
C2 − 4AD > 0, D < 0, E > 0 (3.28), then,
• if χ > 0, then there is a unique value Φs−1f such that there is a 1-front hetero-
clinic orbit γs−1f(ξ) ⊂ Wu(P0) ∩W s(P+,s) in (3.7);
• if χ < 0, w+,s < ws−d = 9/(2 + 9a) (3.57) and there are Φ such that
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Figure 3.9: A sketch of the bifurcation scenario as function of Φ representing the ap-
pearance in a saddle-node bifurcation of the 2 primary heteroclinic 1-front orbits γ j

prim(ξ),
j = 1, 2, of Theorem 3.4, followed by further saddle-node bifurcations leading to the situ-
ation governed by Theorem 3.6 in which countably many 1-front orbits exist; these orbits
subsequently disappear in another cascade of saddle-node bifurcations eventually leaving
only one (primary) 1-front orbit behind (Theorem 3.4). The relative configurations of
Idown(Φ) and W s(P+,s)|M+

0
sketched in Fig. 3.8 occur at the Φ-values indicated by the

vertical (a), (b) and (c) lines.

H+
0 (ws−d(Φ), qs−d(Φ)) < H+,s

0 (3.18), (3.29), then there are 2 values Φ
j
s−1f ,

j = 1, 2 for which 1-front heteroclinic orbits γs−1f(ξ) ⊂ Wu(P0) ∩ W s(P+,s)
exist in (3.7);
• if χ < 0 and either one of the above additional conditions does not hold, then
there is no such stationary 1-front orbit.
(B) If there are two critical points on M+

ε , the center P+,c and saddle P+,s, i.e.,
if C2 − 4AD > 0, C < 0, D > 0, then,
• if wh,0 < 9/(2 + 9a) < w+,s – with wh,0 as defined in Theorem 2.4 – then
there are 2 values Φ1

s−1f < Φ2
s−1f for which 1-front heteroclinic orbits γs−1f(ξ) ⊂

Wu(P0) ∩W s(P+,s) exist in (3.7);
• if 9/(2+9a) > w+,s there is a unique value Φs−1f such that a 1-front heteroclinic
orbit γs−1f(ξ) ⊂ Wu(P0) ∩W s(P+,s) exists in (3.7);
Every heteroclinic orbit γs−1f(ξ) = (ws−1f(ξ), ps−1f(ξ), bs−1f(ξ), qs−1f(ξ)) corre-
sponds to a stationary 1-front pattern
(B(x, t),W(x, t)) = (bs−1f(x),ws−1f(x)) in PDE (3.5) that connects the bare soil
state (0,Ψ/Φ) to the uniform vegetation state (b+(w+,s),w+,s).

We refer to Fig. 3.14a for an example of a numerical simulation of (3.5)
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3. The existence of localized vegetation patterns in a systematically

reduced model for dryland vegetation

exhibiting a stationary 1-front pattern. Moreover, we notice that – by symmetry
(3.9) of (3.7) with c = 0 – the heteroclinic orbit γs−1f(ξ) ⊂ Wu(P0) ∩W s(P+,s)
has a counterpart ⊂ Wu(P+,s) ∩W s(P0), i.e., an orbit from P+,s to P0. Together,
these obits form a heteroclinic cycle between the saddles P+,s to P0.

Proof. The result follows directly by studying the possible intersections of
W s(P+,s)|M+

ε
and the (vertical) line Js−d in combination with the observation

that the range of qs−d(Φ) is R for χ > 0, while it’s bounded from above by a
negative number for χ < 0 (3.57). See Fig. 3.10.

Since all periodic orbits on M+
ε persist for c = 0 (Theorem 2.4), we also

‘automatically’ obtain a result similar to Theorem 3.5 on the existence of het-
eroclinic connections γ j

s−p(ξ) = (b j
s−p(ξ), p j

s−p(ξ),w j
s−p(ξ), q j

s−p(ξ)) of (3.7) be-
tween the critical point P0 ∈ M0

ε and one of the periodic orbits γp,ε(X) =

(bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) ⊂ M+
ε determined by H+

p,0 ∈ (H+,c
0 ,H+,s

0 )
(3.26) – note that this orbit is O(ε2) close to the level set H+

0 (w, q) = H+
p,0 (cf.

(3.38) with c = 0).

Theorem 3.9. Let c = 0, Ψ,Ω,Θ as in (3.53) such that (3.40) holds, let
(bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) ⊂ M+

ε be a periodic solution of (3.7) de-
termined by H ∈ (H+,c

0 ,H+,s
0 ) and let ε be sufficiently small. Assume that

wh,0 < 9/(2 + 9a) < w+,s and define

Φs−t =
1
2

a(2 + 9a)χ ∈
(
Φ1

s−1f ,Φ
2
s−1f

)
, (3.58)

H+
s−t = H+

0 (ws−d(Φs−t), qs−d(Φs−t)) = H+
0

(
9

2 + 9a
, 0

)
(3.59)

with Φ
1,2
s−1f as defined in Theorem 3.8, (ws−d(Φ), qs−d(Φ)) as in (3.57) and H+

s−t >

H+,c
0 (unless P+,c =

(
9

2 + 9a
, 0

)
(restricted to M+

0 ) – see Fig. 3.10c). For all

H ∈ (H+
s−t,H+,s

0 ), there are 2 values Φ
1,2
p−1f = Φ

1,2
p−1f(H) – with Φ1

s−1f < Φ1
p−1f <

Φs−t < Φ2
p−1f < Φ2

s−1f – that determine 2 distinct heteroclinic orbits γ j
s−p(ξ;H) of

(3.7) between the critical point P0 ∈M0
ε and the periodic orbit

(bp,ε(X), pp,ε(X),wp,ε(X), qp,ε(X)) ⊂M+
ε

(and γ
j
s−p(ξ;H) = (b j

s−p(ξ;H), p j
s−p(ξ;H),w j

s−p(ξ;H), q j
s−p(ξ;H))). The orbits

γ
j
s−p(ξ;H) ( j = 1, 2) correspond to stationary 1-front patterns (B(x),W(x)) =

(b j
s−p(x;H),w j

s−p(x;H)) in PDE (3.5) that connect the bare soil state (0,Ψ/Φ) to
the spatially periodic pattern (bp,ε(X),wp,ε(X)).

Remark 3.10. Together, Theorems 3.8 and 3.9 provide the possibility to estab-
lish a result similar to that of Theorem 3.6 in the case that c j

h−p and c j
prim do not
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Figure 3.10: Sketches of 3 configurations of the line Js−d (3.57) and W s(P+,s)|M+
0

as
consider in Theorem 3.8: (a) P+,s is the only critical point on M+

ε and χ > 0; (b) P+,s

is the only critical point on M+
ε and χ < 0; (c) a center and a saddle on M+

ε with
wh,0 < 9/(2 + 9a) < w+,s.

have the same signs. Assume we have – for a certain parameter combination
(a,Ψ,Φ,Ω,Θ) such that (3.40) holds – that c1

h−p < 0 < c1
prim. This implies that

the point Js−d(Φ) on Tdown – Lemma 3.2 – must lie between the intersections of
Tdown with the unperturbed homoclinic orbit that determines c1

prim > 0 (Theorem
3.8) and the persisting periodic orbit that determines c1

h−p < 0 (Theorem 3.9).
Thus, Js−d(Φ) determines a level set H+

0 (w, q) = H+
0 (ws−d(Φ), qs−d(Φ)) = H̄ ∈

(H+,c
0 ,H+,c

0 ) and we know by Theorem 3.9 that Φ = Φ2
p−2f(H̄): (ws−d(Φ), qs−d(Φ))

is the touchdown point of a heteroclinic orbit between the bare soil state and the
persisting (stationary) periodic orbit determined by the level set H+

0 (w, q) = H̄.
It then follows by arguments similar to those in the proof of Theorem 3.6 that
there are countably many c-values 0 < ... < c1,k

h < ... < c1,1
h < c1,0

h = c1
prim with

c1,k
h ↓ 0 for k → ∞ for which non-primary heteroclinic connections between

P0 and P+,s exist – as in Theorem 3.6. The main difference with Theorem 3.6
is that c = 0 determines a stationary orbit and not an attracting one: for c
slightly above c = 0, the unstable manifold W s(P+,s)|M+

ε
only spirals inwards

very weakly (in backward time). As a consequence, the number of intersections
W s(P+,s)|M+

ε
∩ Tdown with H+

0 (w, q) > H̄ increases (without bound) as c ↓ 0.

3.5 Stationary homoclinic 2-front patterns: vegetation spots
and gaps

In this section we construct stationary 2-front patterns that correspond to vege-
tation spots or vegetation gaps – the latter sometimes also interpreted as fairy
circles. These patterns are observed in nature and appear as stable patterns in sim-
ulations of (3.1)/(3.5) – see [175] and Figs. 3.14c and 3.15a. The patterns/orbits
to be constructed are symmetric with respect to the reversibility symmetry in
(3.5) that persists as (3.9) into (3.7) – with c = 0. As a consequence, we may
expect that these patterns are generic, in the sense that they exist in open regions
within parameter space – see for instance [39]. Notice that this is unlike the
stationary – but non-symmetric – 1-front patterns of the previous section, that
only exist for (a,Φ,Ψ,Ω,Θ) ∈ Rs−1f , an explicitly determined co-dimension 1
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Figure 3.11: Sketches of 3 (projected) ‘skeleton structures’ of stationary 2-fronts ho-
moclinic to P0: (a) (b) Two examples of the 2 skeleton structures Γs-2f as considered
in Theorem 3.11; (c) The extended skeleton Γext

s−2f of Theorem 3.12 and an associated
higher order 2-front homoclinic with an additional full extra ‘spatial oscillation’ during
its passage along M+

ε .

manifold (Theorem 3.8).

We first consider the (localized) spots: localized vegetated regions embedded
within bare soil. Thus, these spots correspond to solutions of (3.7) that are ho-
moclinic to the bare soil state P0. Singularly perturbed models of the type (3.7),
can have homoclinic (pulse) solutions of various types. The localized vegetation
(spot) patterns constructed in [11, 133] in the context of the extended-Klausmeier
model – also called generalized Klausmeier-Gray-Scott model [155] – make a
fast excursion away from the slow manifold that contains the critical point asso-
ciated to the bare soil state following a homoclinic solution of the fast reduced
system. As a consequence these spots are ‘narrow’, their size scales with ε.
Although such pulses are also exhibited by the present model – see Fig. 3.15b
and Remark 3.14 – we focus here on 2-front patterns, i.e., orbits homoclinic
to P0 that ‘jump’ from M0

ε to M+
ε , follow the slow flow on M+

ε over an O(1)
distance and jump back again – by its second fast reduced heteroclinic front
– to M0

ε. Since the extended-Klausmeier model only has one slow manifold
[11, 133], such orbits cannot exist in that model. Moreover, these patterns have
a well-defined width that does not decrease to 0 as ε ↓ 0, a property that appears
to be natural in observed ecosystems [175].

The construction of the most simple – primary, cf. section 3.2 – singular
‘skeleton structure’ Γs−2f ⊂ R

4 – the phase space of (3.7) – of a stationary
homoclinic 2-front orbit γs−2f(ξ) to P0 of (3.7) is relatively straightforward (but
somewhat involved/technical). Since the homoclinic orbit γs−2f(ξ) ⊂ Wu(P0), it
follows `u along M0

ε, takes off from M0
ε by following the fast reduced flow

and touches down on M+
ε near an element of Idown – see section 3.1. In

fact, since we consider stationary spots, the touch down point is near a point
Js−d ∈ Js−d (3.57) – where we note that γs−2f(ξ) cannot exactly touch down on
Idown/Js−d since γs−2f(ξ) < W s(M+

ε ) – see the proof of (upcoming) Theorem
3.11. The touch down point Js−d determines (at leading order) a level set Hs−d
of the Hamiltonian H+

0 (w, q) (3.26) of the slow reduced flow (3.22) on M+
ε :
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Hs−d = Hs−d(Φ) = H+
0 (ws−d(Φ), qs−d(Φ)). As long as it remains (exponentially)

close to M+
ε , the homoclinic orbit-to-be-constructed remains asymptotically

close to the level set H+
0 (w, q) = Hs−d. This construction provides the first half

of skeleton Γs−2f , the second part follows by the symmetry (3.9) – with c = 0.
Completely analogous to Idown, one can define Ioff as the points on M+

ε that
determine the evolution of orbits in W s(P0) ∩ Wu(M+

ε ) after their jump from
`s ⊂M0

ε through the fast field in backwards time. In fact, it follows by the sym-
metry (3.9) that Ioff and its stationary counterpart Js−o correspond exactly to
the reflections of Idown and Js−d with respect to the q-axis – where we consider
Idown/Js−d and Idown/Js−d within the (projected) 2-dimensional representation
of M+

ε as in Lemma 3.2 and in (3.57). Thus, for a given Φ, the take off point
Js−d is given by Js−o(Φ) = (ws−d(Φ),−qs−d(Φ)); this point also lies on the level
set Hs−d – since H+

0 (w, q) (of course) also is symmetric in q→ −q.

We define the region Ss−2 f in (a,Ψ,Φ,Ω,Θ)-space for which the point Js−d
(and thus Js−o) can be constructed (as above) and there is a solution of the slow
reduced flow (3.22) on M+

ε that connects Js−d to Js−o – so that Γs−2f indeed
exists as closed singular ‘loop’. Obviously, Ss−2 f , ∅ – see also Fig. 3.11 –
however, the fact that both Js−d, Js−o ∈ {H+

0 (w, q) = Hs−d} does not necessarily
imply that (a,Ψ,Φ,Ω,Θ) ∈ Ss−2 f for all values for which these points exist on
M+

ε . For instance, in the case that the saddle P+,s is the only critical point on
M+

ε , Js−d and Js−o are not connected by a solution of (3.22) if Hs−d > H+,s
0 – the

value of H+
0 (w, q) at P+,s – see Fig. 3.11a. Moreover, if Hs−d < H+,s

0 there is
an additional condition on Φ that is determined by the relative positions of w+,s

(the w-coordinate of P+,s), 9/(2 + 9a) (the w-coordinate of Js−d/Js−o) and Ψ/Φ
(the w-coordinate of the bare soil state associated to P0). Here, we refrain from
working out the full ‘bookkeeping’ details by which (the boundary of) Ss−2 f is
determined – see also a further brief discussion following Theorem 3.11. We
refer to Fig. 3.11a for a case w+,s < 9/(2 + 9a) < Ψ/Φ (and implicitly χ > 0)

for which Js−d can only be connected to Js−o if Φ < Φs−t =
1
2

a(2 + 9a)χ (3.58) –
since we need that qs−d(Φ) < 0. Notice that the sketch in Fig. 3.11a in principle
also covers a (sub)case of the situation with two critical points P+,c and P+,s on
M+

ε and that Fig. 3.11b considers the case 9/(2 + 9a) < w+,s < Ψ/Φ for this
situation. Clearly, there are no further restrictions on Φ if Hs−d < H+,s

0 if there
are two critical points P+,c and P+,s on M+

ε , since the orbits on the level set
associated to Hs−d(Φ) are periodic, while one again has to impose Φ < Φs−t to
have a connection between Js−d and Js−o for level sets outside the homoclinic
loop, i.e., for Hs−d > H+,s

0 . Finally, we note that the skeleton structure Γs−2f can
in principle also be constructed for (a,Ψ,Φ,Ω,Θ) such that there is no critical
point on M+

ε , or only one critical point that is not a saddle but a center (in the
limit ε→ 0).

Summarizing, the (open) region Ss−2 f is defined such that for parameter combi-
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nations (a,Ψ,Φ,Ω,Θ) ∈ Ss−2 f , a singular skeleton Γs−2f ⊂ R
4 can be constructed

as above. In the limit ε → 0, Γs−2f is spanned by a piece of `u ⊂M0
0 from P0

up to the (ε → 0 limit of the) take off point from M0
0 (that has the same (w, q)-

coordinates as Js−d in the limit ε→ 0), the jump through the fast field along (a
piece of) Wu(M0

0) ∩W s(M+
0 ) (3.17) towards the ε→ 0 limit of the (projected)

touch down point Js−d ∈ M+
0 , the connection along M+

0 to Js−d by the slow
reduced flow (on the level set {H+

0 (w, q) = Hs−d}) up to (the ε → 0 limit of)
the take off point Js−o, followed by a fast jump backwards along (a piece of)
W s(M0

0) ∩Wu(M+
0 ) to M0

0 and a final piece of `s (up to P0) – see Figs. 3.11a
and 3.11b for 2 sketches of projections of Γs−2f on M+

0 that skip both jumps
through the fast field. The proof of the persistence of Γs−2f for ε , 0 relies
heavily on the reversibility symmetry of (3.7) with c = 0 (3.9).

Theorem 3.11. Let (a,Ψ,Φ,Ω,Θ) ∈ Ss−2 f and Γs−2f ⊂ R
4 be the singular skele-

ton constructed above. Then, there is for ε > 0 sufficiently small a symmetric
homoclinic 2-front orbit
γs−2f(ξ) = (bs−2f(ξ), ps−2f(ξ),ws−2f(ξ), qs−2f(ξ)) ⊂ Wu(P0) ∩W s(P0) of (3.7) with
c = 0 that merges with Γs−2f as ε ↓ 0. The associated stationary pattern
(B(x, t),W(x, t)) = (bs−2f(x),ws−2f(x)) in (3.5) represents a stationary localized
vegetation spot embedded in bare soil.

We refer to Figs. 3.1b and 3.14c for numerical observations of these 2-front spot
patterns. In Fig. 3.16, the projection of the 2-front orbit on the (w, b)-plane is
given; it clearly shows the slow-fast-slow-fast-slow nature of the pattern: it first
follows M0

ε (slowly), jumps to M+
ε , follows the slow flow on M+

ε , jumps back
to M0

ε and slowly returns to P0.

To get some insight in the boundaries of Ss−2 f – and thus is the bifurcations
of γs−2f(ξ) – we can (as usual) ‘freeze’ the flow on M+

0 by choosing Ψ,Ω,Θ
as in (3.53) and vary Φ. We need to be aware though that `u,s and P0 do vary
with Φ (i.e., they are not frozen). In the situation sketched in Fig. 3.11a – thus
with w+,s < 9/(2 + 9a) < Ψ/Φ and χ > 0 – we see that the distance between
the 2 fronts of γs−2f(ξ) approaches ∞ as Φ ↓ Φs−1f < Φs−t as defined in The-
orems 3.8 and 3.9: γs−2f(ξ) obtains the character of the superposition of the
1-front heteroclinic orbit γs−1f(ξ) of Theorem 3.8 between P0 and P+,s and its
symmetrical counterpart – (3.9) – connecting P+,s back to P0. The other bound-
ary corresponds to Φ ↑ Φs−t: the distance traveled along M+

ε decreases to 0
and γs−2f(ξ) detaches from M+

ε . However, since the angle between `u and `s

is determined by
√

Φ (3.21), this can only happen as also Ψ/Φ ↓ 9/(2 + 9a),
i.e., as the ‘projected triangle’ of Fig. 3.11a that represents the skeleton Γs−2f
entirely contracts to a point – see also Remark 3.14. The bifurcational struc-
ture associated to the situation sketched in Fig. 3.11b is quite different: as Φ

decreases towards Φ1
s−1f < Φs−t, γs−2f(ξ) does not merge with a (superposition

of 2) 1-front(s) γs−1f(ξ) of Theorem 3.8. In fact, γs−2f(ξ) does not bifurcate at
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all, the distance between the 2 fronts of γs−2f(ξ) remains bounded as Φ passes
through Φ1

s−1f (the main difference between the cases Φ > Φ1
s−1f and Φ < Φ1

s−1f
is the sign of Hs−d −H+,s

0 : γs−2f(ξ) follows an orbit of (3.22) outside the homo-
clinic loop for Φ < Φ1

s−1f). Moreover, as Φ increases towards Φs−t, the distance
γs−1f(ξ) travels along M+

ε also does not go to 0, in fact γs−1f(ξ) (almost) follows
the entire periodic orbit of the level set {H+

0 (w, q) = Hs−d(Φs−t) = Hs−t}, the
critical/limiting orbit of Theorem 3.9. Again, this can only happen if also the
projection of P0 on M+

ε merges with this periodic orbit. We refrain from going
any further into the details of these – and other – bifurcations of γs−2f(ξ).

Proof of Theorem 3.11. The proof follows the geometrical approach devel-
oped in [41, 42], equivalently the more analytical approach of [84] could be
employed. The construction of γs−2f(ξ) is based on the ‘intermediate’ orbit
γi−1f(ξ) ⊂ Wu(P0) ∩W s(M+

ε ), the heteroclinic connection between P0 and M+
ε

that touches down on Js−d ∈M+
ε ; γi−1f(ξ) follows the slow flow along M+

ε and
is thus asymptotically close to the skeleton Γs−2f up to the take off point Js−o
(γi−1f(ξ) ⊂ W s(M+

ε ) and thus cannot take off from M+
ε ). The homoclinic orbit

γs−2f(ξ) is constructed as a symmetric orbit – i.e., an orbit that passes through
the plane {p = q = 0} at its ‘midpoint’ – that is exponentially close to γi−1f(ξ) up
to the point it takes off from M+

ε .

Since b−(w) < 1/2 < b+(w) (3.11), γi−1f(ξ) intersects the hyperplane {b = 1/2}
transversally in the point Pi−1f – by definition. We define for some sufficiently
smallσ (independent of ε), the (bounded) 1-dimensional curve Cσ

i−1f ⊂ {b = 1/2}
as the (first, transversal) intersection of Wu(P0) and {b = 1/2} that is at a dis-
tance of maximal σ away from Pi−1f ; in other words, Cσ

i−1f = Wu(P0) ∩ {b =

1/2} ∩ {|(b, p,w, q) − Pi−1f | ≤ σ}. By choosing γ(0) ∈ Cσ
i−1f , the curve Cσ

i−1f
provides a parametrization of orbits γ(ξ) in Wu(P0) near γi−1f(ξ). In fact, the
saddle structure of the fast flow around M+

ε cuts Wu(P0), and thus Cσ
i−1f , exactly

in two along γi−1f(ξ) ⊂ W s(M+
ε ): orbits γ(ξ) ⊂ Wu(P0) with (by definition)

γ(0) ∈ Cσ,r
i−1f cross through the plane {p = 0} near M+

ε so that their b-coordinate
changes direction; the b-coordinates of γ(ξ)’s with γ(0) in Cσ

i−1f \ Cσ,r
i−1f do not

change direction, these γ(ξ)’s pass along M+
ε without the possibility of return-

ing to M0
ε. Thus, we may uniquely parameterize orbits γ(ξ) ⊂ Wu(P0) that

pass through {p = 0} near by M+
ε that are σ-close to γi−1f(ξ) by the distance

d between their initial point γ(0) ∈ Cσ,r
i−1f and Pi−1f (∈ ∂Cσ,r

i−1f) – where we have
implicitly used the fact that Wu(M0

ε) ⊃ Wu(P0) is C1 −O(ε) close to its ε→ 0
limit Wu(M0

0) [83, 86]. We denote these γ(ξ)’s by γ(ξ; d).

Since the flow on M+
ε is O(ε) slow, orbits γ(ξ; d) with γ(0) ∈ Cσ,r

i−1f can only
follow M+

ε over an O(1) distance (w.r.t. ε) for d exponentially small; in fact it
is necessary that d = O(exp(−λ f ,+(9/(2 + 9a))/ε), where
λ f ,+(w0) =

√
w0b+(w0) + 2aw0 − 2, the unstable eigenvalue of the reduced fast
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flow (3.10) – with c = 0 – associated to the critical point (b+(w0), 0), and
w0 = 9/(2 + 9a) is the (leading order) w-coordinate of Js−d (3.57). As d de-
creases, the ‘time’ (i.e., distance) γ(ξ; d) remains exponentially close to M+

ε

increases monotonically (as follows from a direct perturbation analysis – for
instance along the lines of [22]). Equivalently, the distance between Js−d and the
(projected) point on M+

ε at which γ(ξ; d) crosses through the {p = 0}-plane also
increases monotonically with decreasing d – where we note that this point marks
the transition between γ(ξ; d) approaching the ‘fast saddle’ M+

ε exponentially
close to W s(M+

ε ) and moving away from M+
ε exponentially close to Wu(M+

ε ).
Clearly, for d ‘too large’ γ(ξ; d) passes through {p = 0} before the slow flow
on M+

ε – and thus γ(ξ) itself (since it is exponentially close to M+
ε ) – passes

through {q = 0} – Fig. 3.11. However, by decreasing d, we can delay the passage
of γ(ξ; d) through {p = 0} until after it passes through {q = 0}. It follows that
there must be a d∗ such that the associated orbit γ(ξ; d∗) passes through {p = 0}
and {q = 0} simultaneously: γ(ξ; d∗) ∩ {p = q = 0} , ∅.

The orbit γs−2f(ξ) coincides with γ(ξ; d∗): by the reversibility symmetry (3.9) –
with c = 0 – it is symmetric around the ‘midpoint’ at which it passes through
{p = q = 0} , so that indeed γs−2f(ξ) ⊂ Wu(P0) ∩W s(P0), a homoclinic 2-front
orbit to P0 (asymptotically close to the skeleton Γs−2f). �

The orbit γs−2f(ξ) is only the first of a countable family of homoclinic 2-front
orbits if the slow piece of the skeleton Γs−2f is part of a closed orbit, i.e., if
the connected part of the level set {H+

0 (w, q) = Hs−d} that contains the (ε → 0
limits of the) touch down and take off points Js−d and Js−o is a closed orbit. In
this case, the intermediate heteroclinic 1-front γi−1f(ξ) ⊂ Wu(P0) ∩ W s(M+

ε )
introduced in the proof of Theorem 3.11 coincides with one of the 2 hetero-
clinic orbits γ j

s−p(ξ;Hs−d) between the critical point P0 ∈M0
ε and the periodic

orbit γp,ε(X) ⊂ M+
ε established in Theorem 3.9. Thus, in this case γi−1f(ξ)

passes countably many times through the plane {q = 0}. By steadily decreasing
d, we can now determine a sequence of critical values di

∗, i = 0, 1, 2, ... such
that the associated orbits γ(ξ; di

∗) pass through {p = q = 0} after i preceding
passages through {q = 0}. Thus, the primary orbits γs−2f(ξ) of Theorem 3.11
correspond to γ(ξ; d0

∗) and the ‘higher order’ (stationary) homoclinic 2-front or-
bits γi

s−2f(ξ) ⊂ Wu(P0) ∩W s(P0) coincide with the orbits γ(ξ; di
∗) for i ≥ 1. By

the symmetry (3.9) – with c = 0 – these orbits are also symmetric around the
‘midpoint’ at which they pass through {p = q = 0}: γi

s−2f(ξ) traces i full circuits
over the closed orbit determined by the level set {H+

0 (w, q) = Hs−d} during its
passage along M+

ε – see the sketches in Fig. 3.2(c,d).

Theorem 3.12. Let (a,Ψ,Φ,Ω,Θ) ∈ Ss−2 f such that (3.40) holds, and let Γext
s−2f ⊂

R4 be the extension of the singular skeleton Γs−2f of Theorem 3.11 that includes
the entire closed orbit on M+

ε determined by the level set {H+
0 (w, q) = Hs−d}.

Then, for ε > 0 sufficiently small, there is a countable family of symmetric 2-front
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orbits
γi

s−2f(ξ) = (bi
s−2f(ξ), pi

s−2f(ξ),w
i
s−2f(ξ), q

i
s−2f(ξ)) ⊂ Wu(P0) ∩ W s(P0) of (3.7)

with c = 0 (i = 0, 1, 2, ...) that merges with Γext
s−2f as ε ↓ 0 for all i ≥ 1

(γ0
s−2f(ξ) = γs−2f(ξ) of Theorem 3.11 merges with Γs−2f as ε ↓ 0). The associ-

ated stationary patterns (B(x, t),W(x, t)) = (bi
s−2f(x),wi

s−2f(x)) in (3.5) represent
stationary localized vegetation spots embedded in bare soil with an increasing
number of spatial oscillations in the vegetated area.

The construction of stationary homoclinic 2-front gap patterns – localized bare
soil areas surrounded by vegetation – goes along exactly the same lines as the
above construction of localized spot patterns. The main difference is that the
homoclinic orbits-to-be-constructed are ⊂ Wu(P+,s) ∩W s(P+,s) so that the struc-
ture of orbits taking off and touching down now has to start out from the saddle
P+,s ∈ M+

ε . Nevertheless, the construction of the skeleton structure Γg−2f is
completely similar to that of Γs−2f . Therefore, we only provide the essence of
the construction of Γg−2f .

First, we need to assume that there is a critical point P+,s ∈M+
0 of saddle type.

The skeleton structure Γg−2f consists of a piece of Wu(P+,s) ⊂M+
0 from P+,s up

to the (ε → 0 limit of the) take off point J+,0
g−o from M+

0 , followed by (a piece
of) Wu(M+

0 ) ∩W s(M0
0) (3.17) up to the (ε→ 0 limit of the) touch down point

J+,0
g−d ∈M0

0 (that has the same (w, q)-coordinates as J+,0
g−o in the limit ε→ 0). Note

that the take off/touch down points J+,0
g−0/J+,0

g−d differ essentially from their counter-
parts as Js−d/Js−0 (3.57) considered so far: while Js−d/Js−0 concerned the evolu-
tion of Wu(P0)∩W s(M+

ε )/W s(P0)∩Wu(M+
ε ) along M+

ε in forwards/backwards
‘time’, J+,0

g−0/J+,0
g−d govern the orbits of Wu(P+,s) ∩W s(M0

ε)/W
s(P+,s) ∩Wu(M0

ε)
along M0

ε. Nevertheless, the coordinates of all take off/touch down points are at
leading order determined by their ε → 0 limits (3.17) with w±h (0) = 9/(2 + 9a)
(3.16). The next piece of Γg−2f consists of a symmetric part of a (cosh-type) orbit
along M0

0 of the (linear) slow reduced flow (3.20) up to the (ε → 0 limit of
the) take off point J0,+

g−o, which is again followed by a fast jump backwards along
(a piece of) W s(M+

0 ) ∩Wu(M0
0) to the (ε → 0 limit of the) touch down point

J0,+
g−d ∈M+

0 . The final piece is the symmetrical counterpart of the first piece: the
flow of (3.22) along M+

0 from the final touch down point back towards P+,s –
see Fig. 3.12a for a sketch of a projection of Γs−2f (without its fast jumps).

The (open) region Sg−2 f is defined by those (a,Ψ,Φ,Ω,Θ)-combinations for
which Γg−2f can be constructed. We note that there cannot be points in the in-
tersection of Ss−2 f as defined in Theorem 3.11 and Sg−2 f : the (projections of
the) take off/touch down points Js−d/Js−0 lie on the level set {H+

0 (w, q) = Hs−d}

for which Hs−d < H+,s
0 , the value of H+

0 (w, q) for P+,s and its (un)stable man-
ifolds (3.29). By construction, J+,0

g−0, J
+,0
g−d ⊂ {H+

0 (w, q) = H+,s
0 } – compare
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Fig. 3.11a to Fig. 3.12a. This also implies that Ss−2 f ∩ Sg−2 f , ∅, in fact,
∂Ss−2 f ∩ ∂Sg−2 f ⊃ Rs−1f as defined in Theorem 3.8: both the homoclinic spots
γs−2f(ξ) of Theorem 3.11 and the gaps γg−2f(ξ) of (upcoming) Theorem 3.13
merge with the heteroclinic cycle spanned by the standing 1-front γs−1f(ξ) of
Theorem 3.8 and its symmetrical counterpart as Ss−2 f ∪ Sg−2 f approaches Rs−1f .

Theorem 3.13. Let (a,Ψ,Φ,Ω,Θ) ∈ Sg−2 f and Γg−2f ⊂ R
4 be the singular

(gap) skeleton constructed above. Then, there is for ε > 0 sufficiently small a
symmetric 2-front orbit
γg−2f(ξ) = (bg−2f(ξ), pg−2f(ξ),wg−2f(ξ), qg−2f(ξ)) ⊂ Wu(P+,s) ∩W s(P+,s) of (3.7)
with c = 0 that merges with Γg−2f as ε ↓ 0. The associated stationary pattern
(B(x, t),W(x, t)) = (bg−2f(x),wg−2f(x)) in (3.5) represents a stationary localized
bare soil gap embedded in vegetation.

Of course the proof of this Theorem goes exactly along the lines of the proof of
Theorem 3.11. The main difference between the cases of (stationary, symmetric,
homoclinic) 2-front spots and (stationary, symmetric, homoclinic) 2-front gaps
is that there cannot be periodic orbits on M0

ε – the slow reduced flow (3.20) on
M0

0 is linear – so that there cannot be any higher order localized gap patterns
(as in Theorem 3.12 for localized spots). We refer to Figs. 3.1c and 3.15a for
numerical observations of – (most likely) stable – localized 2-front spot and gap
patterns in PDE (3.5).

Remark 3.14. We refer to [91, 92] for studies of the process of a homoclinic
2-front orbit between a slow manifold M1

ε and a second slow manifold M2
ε

detaching from M2
ε to become a slow-fast homoclinic to M1

ε that only makes 1
homoclinic excursion through the fast field (instead of 2 fast heteroclinic jumps
between M1

ε and M2
ε). The focus of [91] is on the (exchange of) stability

between these 2 types of homoclinic patterns and the associated bifurcations
– especially as localized stripes in 2 space dimensions. In the present work
the situation is somewhat more involved than in [91, 92], since the skeleton
structures as sketched in Figs. 3.11 and 3.12a must become asymptotically small
in this transition – which is not necessary in the setting of [91, 92]. Notice that
this implies that here the W-component of the homoclinic pulse becomes ‘small’
– a certain well-defined magnitude in ε – during this transition, but that this is
not the case for the B-component since the orbit still has to make (almost) a full
jump between M0

ε and M+
ε . See Figs. 3.14c, 3.15b and 3.16 in section 4.1.

3.6 Spatially periodic multi-front patterns

A stationary, non-degenerate, symmetric homoclinic pulse solution of a (re-
versible) reaction-diffusion system (defined for x ∈ R) – such as the spots and
gaps of Theorems 3.11 and 3.13 – must be the ‘endpoint’ (within phase space)
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<latexit sha1_base64="FZ08uAJ0jMNBXwUoPiIWZWjri0A=">AAAB6nicbVDLSsNAFL2pr1pfVZduBovgqiRaqu4KblzWRx/QxjKZTtqhk0mYmQgl9BPcuFDErV/kzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8rypmgLc00p91IUhx4nHa8yWXqdx6oVCwUd3oaUTfAI8F8RrA20m3z3h6UK3bVzoAWiZOTCuRoDsof/WFI4oAKTThWqufYkXYTLDUjnM5K/VjRCJMJHtGeoQIHVLlJduoMHRlliPxQmhIaZerPiQQHSk0Dz3QGWI/VXy8V//N6sfbP3YSJKNZUkPkiP+ZIhyj9Gw2ZpETzqSGYSGZuRWSMJSbapFPKQrhIUf9+eZG0T6rOabV2Xas0bvI4inAAh3AMDpxBA66gCS0gMIJHeIYXi1tP1qv1Nm8tWPnMPvyC9f4F6ZKNvg==</latexit> ls

<latexit sha1_base64="B9JT8+mOZspSEKV/45EH0jF4+yE=">AAAB6nicbVDLSsNAFL2pr1pfVZduBovgqiRaqu4KblzWRx/QxjKZTtqhk0mYmQgl9BPcuFDErV/kzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8rypmgLc00p91IUhx4nHa8yWXqdx6oVCwUd3oaUTfAI8F8RrA20i2/V4Nyxa7aGdAicXJSgRzNQfmjPwxJHFChCcdK9Rw70m6CpWaE01mpHysaYTLBI9ozVOCAKjfJTp2hI6MMkR9KU0KjTP05keBAqWngmc4A67H666Xif14v1v65mzARxZoKMl/kxxzpEKV/oyGTlGg+NQQTycytiIyxxESbdEpZCBcp6t8vL5L2SdU5rdaua5XGTR5HEQ7gEI7BgTNowBU0oQUERvAIz/BicevJerXe5q0FK5/Zh1+w3r8AedWOHQ==</latexit>

lu
<latexit sha1_base64="M3qv0WGfwq9zEQnDtaTE8/LSKjo=">AAAB6nicbVDLSsNAFL2pr1pfVZduBovgqiRaqu4KblzWRx/QxjKZTtqhk0mYmQgl9BPcuFDErV/kzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8rypmgLc00p91IUhx4nHa8yWXqdx6oVCwUd3oaUTfAI8F8RrA20i2/jwflil21M6BF4uSkAjmag/JHfxiSOKBCE46V6jl2pN0ES80Ip7NSP1Y0wmSCR7RnqMABVW6SnTpDR0YZIj+UpoRGmfpzIsGBUtPAM50B1mP110vF/7xerP1zN2EiijUVZL7IjznSIUr/RkMmKdF8aggmkplbERljiYk26ZSyEC5S1L9fXiTtk6pzWq1d1yqNmzyOIhzAIRyDA2fQgCtoQgsIjOARnuHF4taT9Wq9zVsLVj6zD79gvX8BfN2OHw==</latexit>
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2 + 9a
<latexit sha1_base64="Cbl0uXFcEYwCdhbrY2t8XyqKUDk=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSIIQklrUXsrePFYwX5AG8tmu2mXbjZhd6OUkP/hxYMiXv0v3vw3btIgan0w8Hhvhpl5bsiZ0rb9aS0tr6yurRc2iptb2zu7pb39jgoiSWibBDyQPRcrypmgbc00p71QUuy7nHbd6VXqd++pVCwQt3oWUsfHY8E8RrA20t3Ak5jEjSSunTZwMiyV7YqdAS2Sak7KkKM1LH0MRgGJfCo04VipftUOtRNjqRnhNCkOIkVDTKZ4TPuGCuxT5cTZ1Qk6NsoIeYE0JTTK1J8TMfaVmvmu6fSxnqi/Xir+5/Uj7V06MRNhpKkg80VexJEOUBoBGjFJieYzQzCRzNyKyASbILQJqpiF0Ehx/v3yIunUKtWzSv2mXm7W8zgKcAhHcAJVuIAmXEML2kBAwiM8w4v1YD1Zr9bbvHXJymcO4Bes9y8A2pJI</latexit>

P+,s
<latexit sha1_base64="B9fz20TURybKywgTtv9I5dnI/BM=">AAAB73icbVDLSsNAFL2pr1pfVZduBosgKCXR4GNXcOOygn1AG8tkOmmHTiZxZiKU0J9w40IRt/6OO//GSRtErQcuHM65l3vv8WPOlLbtT6uwsLi0vFJcLa2tb2xulbd3mipKJKENEvFItn2sKGeCNjTTnLZjSXHoc9ryR1eZ33qgUrFI3OpxTL0QDwQLGMHaSO36XXp0rCalXrliV+0p0DxxclKBHPVe+aPbj0gSUqEJx0p1HDvWXoqlZoTTSambKBpjMsID2jFU4JAqL53eO0EHRumjIJKmhEZT9edEikOlxqFvOkOsh+qvl4n/eZ1EBxdeykScaCrIbFGQcKQjlD2P+kxSovnYEEwkM7ciMsQSE20imoVwmeHs++V50jypOqdV98at1Nw8jiLswT4cggPnUINrqEMDCHB4hGd4se6tJ+vVepu1Fqx8Zhd+wXr/AhI0j24=</latexit> P 0

<latexit sha1_base64="FZ08uAJ0jMNBXwUoPiIWZWjri0A=">AAAB6nicbVDLSsNAFL2pr1pfVZduBovgqiRaqu4KblzWRx/QxjKZTtqhk0mYmQgl9BPcuFDErV/kzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8rypmgLc00p91IUhx4nHa8yWXqdx6oVCwUd3oaUTfAI8F8RrA20m3z3h6UK3bVzoAWiZOTCuRoDsof/WFI4oAKTThWqufYkXYTLDUjnM5K/VjRCJMJHtGeoQIHVLlJduoMHRlliPxQmhIaZerPiQQHSk0Dz3QGWI/VXy8V//N6sfbP3YSJKNZUkPkiP+ZIhyj9Gw2ZpETzqSGYSGZuRWSMJSbapFPKQrhIUf9+eZG0T6rOabV2Xas0bvI4inAAh3AMDpxBA66gCS0gMIJHeIYXi1tP1qv1Nm8tWPnMPvyC9f4F6ZKNvg==</latexit> ls
<latexit sha1_base64="B9JT8+mOZspSEKV/45EH0jF4+yE=">AAAB6nicbVDLSsNAFL2pr1pfVZduBovgqiRaqu4KblzWRx/QxjKZTtqhk0mYmQgl9BPcuFDErV/kzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8rypmgLc00p91IUhx4nHa8yWXqdx6oVCwUd3oaUTfAI8F8RrA20i2/V4Nyxa7aGdAicXJSgRzNQfmjPwxJHFChCcdK9Rw70m6CpWaE01mpHysaYTLBI9ozVOCAKjfJTp2hI6MMkR9KU0KjTP05keBAqWngmc4A67H666Xif14v1v65mzARxZoKMl/kxxzpEKV/oyGTlGg+NQQTycytiIyxxESbdEpZCBcp6t8vL5L2SdU5rdaua5XGTR5HEQ7gEI7BgTNowBU0oQUERvAIz/BicevJerXe5q0FK5/Zh1+w3r8AedWOHQ==</latexit>

lu
<latexit sha1_base64="M3qv0WGfwq9zEQnDtaTE8/LSKjo=">AAAB6nicbVDLSsNAFL2pr1pfVZduBovgqiRaqu4KblzWRx/QxjKZTtqhk0mYmQgl9BPcuFDErV/kzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8rypmgLc00p91IUhx4nHa8yWXqdx6oVCwUd3oaUTfAI8F8RrA20i2/jwflil21M6BF4uSkAjmag/JHfxiSOKBCE46V6jl2pN0ES80Ip7NSP1Y0wmSCR7RnqMABVW6SnTpDR0YZIj+UpoRGmfpzIsGBUtPAM50B1mP110vF/7xerP1zN2EiijUVZL7IjznSIUr/RkMmKdF8aggmkplbERljiYk26ZSyEC5S1L9fXiTtk6pzWq1d1yqNmzyOIhzAIRyDA2fQgCtoQgsIjOARnuHF4taT9Wq9zVsLVj6zD79gvX8BfN2OHw==</latexit>

�+
p

<latexit sha1_base64="mvDUwRjqKp+QGU2dzCl9laXrcDg=">AAAB/nicbVDLSsNAFJ3UV62vqLhyEyyCIISkj0R3BRe6rGIf0NYymU7boTNJmJmIJQT8FTcuFHHrd7jzb5ykRXwduHA4517uvccLKRHSsj603MLi0vJKfrWwtr6xuaVv7zRFEHGEGyigAW97UGBKfNyQRFLcDjmGzKO45U3OUr91i7kggX8tpyHuMTjyyZAgKJXU1/e655AxeBMfJ/24y7zgLg6TpK8XLdO1XbvsGJZZqlolp6qIbbuOIrZpZSiCOep9/b07CFDEsC8RhUJ0bCuUvRhySRDFSaEbCRxCNIEj3FHUhwyLXpydnxiHShkYw4Cr8qWRqd8nYsiEmDJPdTIox+K3l4r/eZ1IDk96MfHDSGIfzRYNI2rIwEizMAaEYyTpVBGIOFG3GmgMOURSJVbIQjhN4Xy9/Jc0S6ZdNiuXlWLtah5HHuyDA3AEbOCCGrgAddAACMTgATyBZ+1ee9RetNdZa06bz+yCH9DePgFeM5ad</latexit>

�0
p

<latexit sha1_base64="DFsSIULfRQnlMLS/+RgGwiidvtc=">AAAB/nicbVDLSsNAFJ3UV62vqLhyEyyCq5D0keiu4EKXVWwrNLVMptN26EwSZiZiCQF/xY0LRdz6He78GydpEV8HLhzOuZd77/EjSoS0rA+tsLC4tLxSXC2trW9sbunbO20RxhzhFgppyK99KDAlAW5JIim+jjiGzKe4409OM79zi7kgYXAlpxHuMTgKyJAgKJXU1/e8M8gYvEmstJ94zA/vkihN+3rZMl3btauOYZmVulVx6orYtusoYptWjjKYo9nX371BiGKGA4koFKJrW5HsJZBLgihOS14scATRBI5wV9EAMix6SX5+ahwqZWAMQ64qkEaufp9IIBNiynzVyaAci99eJv7ndWM5PO4lJIhiiQM0WzSMqSFDI8vCGBCOkaRTRSDiRN1qoDHkEEmVWCkP4SSD8/XyX9KumHbVrF3Uyo3LeRxFsA8OwBGwgQsa4Bw0QQsgkIAH8ASetXvtUXvRXmetBW0+swt+QHv7BGYDlqI=</latexit>

w0
p

<latexit sha1_base64="pBkzcIcR/HB/boUHqbs2rm79DcI=">AAAB+XicbVDLSsNAFJ3UV62vqEs3wSK4Ckkfie4KblxWsQ9oY5hMJ+3QyYOZSbWE/IkbF4q49U/c+TdO0iK+Dlw4nHMv997jxZRwYRgfSmlldW19o7xZ2dre2d1T9w+6PEoYwh0U0Yj1PcgxJSHuCCIo7scMw8CjuOdNL3K/N8OMkyi8EfMYOwEch8QnCAopuap6d5samZsOAy+6T+Msc9WqodumbdYtzdBrTaNmNSUxTduSxNSNAlWwRNtV34ejCCUBDgWikPOBacTCSSETBFGcVYYJxzFEUzjGA0lDGGDupMXlmXYilZHmR0xWKLRC/T6RwoDzeeDJzgCKCf/t5eJ/3iAR/pmTkjBOBA7RYpGfUE1EWh6DNiIMI0HnkkDEiLxVQxPIIBIyrEoRwnkO6+vlv6Rb08263rhqVFvXyzjK4Agcg1NgAhu0wCVogw5AYAYewBN4VlLlUXlRXhetJWU5cwh+QHn7BNjklKg=</latexit>

W s(P+,s)
<latexit sha1_base64="TdaGZHYUFklcqWberMyO0gRw3D8=">AAAB9XicbVDJSgNBEK2JW4xb1KOXxiBElDCjweUW8OIxilkgmYSeTk/SpGehu0cJw/yHFw+KePVfvPk39kyCqPFBweO9KqrqOSFnUpnmp5FbWFxaXsmvFtbWNza3its7TRlEgtAGCXgg2g6WlDOfNhRTnLZDQbHncNpyxlep37qnQrLAv1OTkNoeHvrMZQQrLfVavVgm5XovPjqWyWG/WDIrZgY0T6wZKcEM9X7xozsISORRXxGOpexYZqjsGAvFCKdJoRtJGmIyxkPa0dTHHpV2nF2doAOtDJAbCF2+Qpn6cyLGnpQTz9GdHlYj+ddLxf+8TqTcCztmfhgp6pPpIjfiSAUojQANmKBE8YkmmAimb0VkhAUmSgdVyEK4THH2/fI8aZ5UrNNK9aZaqt3O4sjDHuxDGSw4hxpcQx0aQEDAIzzDi/FgPBmvxtu0NWfMZnbhF4z3L7Wbki8=</latexit>

Wu(P+,s)
<latexit sha1_base64="5MBJnnTgNmy5GvlgXMn2crppK90=">AAAB9XicbVDJSgNBEK2JW4xb1KOXxiBElDCjweUW8OIxilkgmYSeTk/SpGehu0cJw/yHFw+KePVfvPk39kyCqPFBweO9KqrqOSFnUpnmp5FbWFxaXsmvFtbWNza3its7TRlEgtAGCXgg2g6WlDOfNhRTnLZDQbHncNpyxlep37qnQrLAv1OTkNoeHvrMZQQrLfVavThKyvVefHQsk8N+sWRWzAxonlgzUoIZ6v3iR3cQkMijviIcS9mxzFDZMRaKEU6TQjeSNMRkjIe0o6mPPSrtOLs6QQdaGSA3ELp8hTL150SMPSknnqM7PaxG8q+Xiv95nUi5F3bM/DBS1CfTRW7EkQpQGgEaMEGJ4hNNMBFM34rICAtMlA6qkIVwmeLs++V50jypWKeV6k21VLudxZGHPdiHMlhwDjW4hjo0gICAR3iGF+PBeDJejbdpa86YzezCLxjvX7i3kjE=</latexit>

J0,+
<latexit sha1_base64="Rl8cBd4erFQyx6JdAICnAuS18uk=">AAAB7nicbVDJSgNBEK1xjXGLevTSGARBCTMu6DHgRTxFMQskY+jp9CRNenqG7hohDPkILx4U8er3ePNv7CwHTXxQ8Hiviqp6QSKFQdf9dhYWl5ZXVnNr+fWNza3tws5uzcSpZrzKYhnrRkANl0LxKgqUvJFoTqNA8nrQvx759SeujYjVAw4S7ke0q0QoGEUr1W8fM/fkeNguFN2SOwaZJ96UFGGKSrvw1erELI24QiapMU3PTdDPqEbBJB/mW6nhCWV92uVNSxWNuPGz8blDcmiVDgljbUshGau/JzIaGTOIAtsZUeyZWW8k/uc1Uwyv/EyoJEWu2GRRmEqCMRn9TjpCc4ZyYAllWthbCetRTRnahPI2BG/25XlSOy15Z6WLu/Ni+X4aRw724QCOwINLKMMNVKAKDPrwDK/w5iTOi/PufExaF5zpzB78gfP5A17Mjv4=</latexit>

J+,0
<latexit sha1_base64="CiUW/dnTSMi2GSxNTzsChv4LNco=">AAAB7nicbVDJSgNBEK1xjXGLevTSGARBCTMu6DHgRTxFMQskY+jp9CRNenqG7hohDPkILx4U8er3ePNv7CwHTXxQ8Hiviqp6QSKFQdf9dhYWl5ZXVnNr+fWNza3tws5uzcSpZrzKYhnrRkANl0LxKgqUvJFoTqNA8nrQvx759SeujYjVAw4S7ke0q0QoGEUr1W8fs+MTd9guFN2SOwaZJ96UFGGKSrvw1erELI24QiapMU3PTdDPqEbBJB/mW6nhCWV92uVNSxWNuPGz8blDcmiVDgljbUshGau/JzIaGTOIAtsZUeyZWW8k/uc1Uwyv/EyoJEWu2GRRmEqCMRn9TjpCc4ZyYAllWthbCetRTRnahPI2BG/25XlSOy15Z6WLu/Ni+X4aRw724QCOwINLKMMNVKAKDPrwDK/w5iTOi/PufExaF5zpzB78gfP5A17Cjv4=</latexit>

Figure 3.12: Sketches of 2 skeleton structures of multi-front patterns: (a) The stationary
homoclinic 2-front gap pattern of Theorem 3.13. (b) The spatially periodic multi-front
spot/gap pattern of Theorem 3.15 as (projected) closed orbit.

of a continuous family – a ‘band’ – of spatially periodic patterns (as the pe-
riod/wavelength→ ∞) – see for instance [39]. Systems (3.5) and (3.7) indeed
have large families of spatially periodic solutions.

Theorem 3.15. Let (a,Ψ,Φ,Ω,Θ) ∈ Ss−2 f ∪ Sg−2 f ∪ Rs−1f (Theorems 3.11,
3.13 and 3.8) and let c = 0. Let there be a ρ ∈ R, ρ , 0, such that there is a
solution of the reduced slow flow (3.20) on M0

0 that connects (ρ, 9/(2 + 9a)) to
(−ρ, 9/(2+9a)) over the branch Γ0

ρ (by definition) and a solution of the (projected)
reduced flow (3.22) on M+

0 that connects (−ρ, 9/(2 + 9a)) back to (ρ, 9/(2 + 9a))
over Γ+

ρ – see Fig. 3.12b. Then, for ε > 0 sufficiently small, there is a periodic
solution γmf,ρ(ξ) = (bmf,ρ(ξ), ρmf,ρ(ξ),wmf,ρ(ξ), qmf,ρ(ξ)) of (3.7) that merges in
the limit ε → 0 with the skeleton structure spanned by Γ0

ρ, the fast jump over
Wu(M0

0) ∩W s(M+
0 ) with w+

h = 9/(2 + 9a), q = −ρ (3.17), Γ0
ρ and the fast jump

back over Wu(M+
0 ) ∩ W s(M0

0) with w−h = 9/(2 + 9a), q = ρ. The associated
stationary pattern (B(x, t),W(x, t)) = (bmf,ρ(x),wmf,ρ(x)) in (3.5) represents a
stationary spatially periodic multi-pulse spot/gap pattern.

Note that if γmf,ρ(ξ) exists for a certain ρ∗, there clearly must be a neighborhood
of ρ∗ for which γmf,ρ(ξ) also exists: the periodic solutions of (3.5)/(3.7) indeed
come in continuous families/bands [39]. Typically, there is a ‘subband’ of stable
periodic patterns – see Figs. 3.1d and 3.17 for examples of numerically stable
patterns (bmf,ρ(x),wmf,ρ(x)) in (3.5).

Proof of Theorem 3.15. This proof can be set up very much along the lines
of the proofs of similar results – the existence of spatially periodic patterns in
the (generalized) Gierer-Meinhardt equation – in [44], therefore we restrict our-
selves to the essential ingredients of the proof here.
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3. The existence of localized vegetation patterns in a systematically

reduced model for dryland vegetation

The approach is similar to that of the proof of Theorem 3.11: we construct
an orbit that intersects the plane {p = q = 0} and apply the reversibility symme-
try (3.9) – with c = 0. However, unlike for the homoclinic orbits in Theorem
3.11, we do not ‘start out’ – as ξ → −∞ – at the critical point P0 ∈ M0

ε, but
choose the initial condition of the orbit-to-be-constructed at the – exponentially
short – interval Ib = {p = q = 0,w = w0

ρ, b = b ∈ (0, bM)}, where w0
ρ is the

midpoint of Γ0
ρ, i.e., (w0

ρ, 0) = Γ0
ρ ∩ {q = 0} and bM is exponentially small in ε,

so that orbits γρ,b(ξ) with γρ,b(0) ∈ Ib remain exponentially close to M0
ε over

O(1) distances in b, p and O(1/ε) ‘time’ ξ (more precise, and as in the proof of
Theorem 3.11: b = O(exp(−λ f ,0(w0

ρ)/ε) with λ f ,0(w0) =
√

1 − aw0, the unstable
eigenvalue of the reduced fast flow (3.10) – with c = 0 – associated to (0, 0)).
Consider the 2-dimensional ‘strip’ Tρ,b spanned by all γρ,b(ξ), b ∈ (0, bM): as
it takes off from M0

ε, it is exponentially close to Wu(M0
ε) and thus intersects

W s(M+
ε ) transversely along the orbit γ

ρ,b
∗ (ξ) (the intersection Tρ,b ∩W s(M+

ε ) is
1-dimensional and thus an orbit of (3.7)).

Clearly, W s(M+
ε ) cuts Tρ,b into 2 parts – distinguished by b ≶ b

∗
– due to

the ‘fast saddle’ structure of M+
ε (as in the proof of Theorem 3.11). Orbits

γρ,b(ξ) ⊂ T r
ρ,b
⊂ Tρ,b cross through {p = 0}, turn around (in their b-components)

and return back towards M0
ε; the b-components of orbits γρ,b(ξ) ⊂ Tρ,b\T r

ρ,b
–

the complement of T r
ρ,b

– increase beyond M+
ε . It depends on the relative mag-

nitudes of w0
ρ and 9/(2 + 9a) whether T r

ρ,b
is determined by b ∈ (0, b

∗
) or by

b ∈ (b
∗
, bM). If w0

ρ > 9/(2 + 9a) – as in Fig. 3.12 – orbits γρ,b(ξ) that take off

‘too soon’ – i.e., with b > b
∗

– have w > 9/(2 + 9a) at take off (Fig. 3.12). Since
the unstable manifold Wu((0, 0)) of the (planar) fast reduced system (3.10) with
w0 > 9/(2 + 9a) contains a closed homoclinic orbit, it follows that orbits γρ,b(ξ)

with b > b
∗

follow such a homoclinic orbit through the fast field (at leading
order in ε). Hence, they pass through {p = 0} and turn back towards M+

ε : T r
ρ,b

is

spanned by γρ,b(ξ) with b ∈ (b
∗
, bM). For simplicity, we only consider this case

(the arguments run along exactly the same lines in the case that w0
ρ < 9/(2 + 9a)

and T r
ρ,b

is determined by b ∈ (0, b
∗
)).

We can now copy the main (geometrical) argument of the proof of Theorem
3.11: if γρ,b(ξ) ⊂ T r

ρ,b
is too far removed from – but still exponentially close to –

γ
ρ,b
∗ (ξ) ⊂ W s(M+

ε ) – i.e., if b− b
∗

is too large – it will follow M+
ε – and thus Γ+

ρ

– over a relatively short distance (Fig. 3.12), take off again from M+
ε and thus

cross through {p = 0} before reaching {q = 0}. By decreasing b − b
∗
, one can

keep γ
ρ,b
∗ (ξ) sufficiently long close to M+

ε that it first passes through {q = 0} be-

fore crossing {p = 0}: there is a value b = bρ such that γρ,bρ(L/2) ∈ {p = q = 0}
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for certain L > 0 (in fact, L = O(1/ε)). It follows by (3.9) – with c = 0 – that
γmf,ρ(ξ) = γρ,bρ (ξ), a periodic orbit with period L. �

As in the case of the homoclinic spots patterns – Theorem 3.12 – we may im-
mediately conclude that there are countably many (families of) higher order
periodic patterns if Γ+

ρ (as defined in Theorem 3.15) is part of a periodic orbit on
M+

0 (determined by the level set {H+
0 (w, q) = Hρ}) – see Fig. 3.11c. By steadily

decreasing |b − b
∗
|, the orbit γρ,b(ξ) ⊂ T r

ρ,b
can be made to pass arbitrarily many

times through {q = 0} before taking off from M+
ε .

Corollary 3.16. Let (a,Ψ,Φ,Ω,Θ) ∈ Ss−2 f ∪ Sg−2 f ∪ Rs−1f such that (3.40)
holds. Let ρ, Γ0

ρ ⊂ M0
0 and Γ+

ρ ⊂ M+
0 be as defined in Theorem 3.15, with

Γ+
ρ such that it is part of a closed orbit on M+

ε determined by the level set
{H+

0 (w, q) = Hρ}. Then, for ε > 0 sufficiently small, there is a countable family
of symmetric multi-front periodic orbits
γi

mf,ρ(ξ) = (bi
mf,ρ(ξ), pi

mf,ρ(ξ),w
i
mf,ρ(ξ), q

i
mf,ρ(ξ)) of (3.7) with c = 0 (i = 1, 2, ...)

that merges in the limit ε → 0 with the extended skeleton structure spanned by
Γ0
ρ, the fast jump over Wu(M0

0) ∩W s(M+
0 ) with w+

h = 9/(2 + 9a), q = −ρ (3.17),
the full closed orbit of {H+

0 (w, q) = Hρ} that contains Γ+
ρ and the fast jump back

over Wu(M+
0 )∩W s(M0

0) with w−h = 9/(2+9a), q = ρ. The associated stationary
patterns (B(x, t),W(x, t)) = (bi

mf,ρ(x),wi
s−2f(x)) in (3.5) are symmetric periodic

spot/gap patterns with an increasing number of oscillations in the vegetated
areas.

Finally, we note that the families of ‘higher order’ periodic patterns γi
mf,ρ(ξ)

are only the first of further – more complex – families containing periodic (and
aperiodic) patterns of increasing complexity. We refer to [44] for the precise
settings and proofs, here we only give a sketch of one specific example. How-
ever, this sketch provides the main ideas by which all further orbits may be
constructed.

Let bi
ρ ∈ (0, bM) be such that the i-th periodic pattern γi

mf,ρ(ξ) of Corollary

3.16 is given by γρ,b(ξ) with b = bi
ρ (see the proof of Theorem 3.15). We can

now choose b so close to bi
ρ that γρ,b(ξ) ⊂ T r

ρ,b
follows γi

mf,ρ(ξ) along its i circuits

over M+
ε – with i ≥ 1 – and its jump back to M0

ε. Since b , bi
ρ, γρ,b(ξ) does

not close as it passes along Ib, instead it keeps on following γi
mf,ρ(ξ) as it makes

it second jump towards M+
ε . By the approach of the proofs of Theorems 3.11

and 3.15, we can now tune b so that it has its second take off from M+
ε precisely

and that it passes through {p = q = 0} while following Γ+
ρ (without making any

further circuits over the periodic orbit on M+
ε that contains Γ+

ρ ). It follows by
the application of the reversibility symmetry (3.9) that for this value of b, γρ,b(ξ)
is a symmetric periodic orbit that ‘starts’ at Γ0

ρ ⊂M0
ε, jumps to M+

ε to make i
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circuits along M+
ε , jumps back again to M0

ε, follows Γ0
ρ ⊂M0

ε to return again
to M+

ε where it follows Γ+
ρ and subsequently immediately jumps back again to

M0
ε – from which it repeats the same path, etc.. Note that the associated periodic

pattern in (3.5) consists of an alternating array of 2 different types of localized
vegetation spots. Clearly, this procedure can be further refined to establish the
existence of patterns containing arbitrary arrays of arbitrarily many different
types of vegetation spots – under the conditions of Corollary 3.16.

Remark 3.17. We decided to focus in this chapter on stationary 2- and multi-
front patterns. Of course, (3.5) also exhibits traveling multi-front patterns – see
for instance Fig. 3.14d in which a vegetation spot travels towards a stationary,
stable (and attracting) spot of the type established by Theorem 3.11. System (3.7)
can also have homoclinic orbits to P0 for (certain specific values of) c , 0, i.e.,
vegetation spots may be traveling with constant speed (without changing shape).
An approach along the lines of [45] indicates that bifurcations to traveling
spots appear when the touch down manifold Idown (Lemma 3.2) is tangent to
a level set {H+

0 (w, q) = H} of the slow reduced flow on M+
0 with c = 0 at

the (non-transversal) intersection Idown ∩ {H+
0 (w, q) = H} (recall that Idown is

parameterized by c). A similar property holds for bifurcations of stationary
spatially periodic multi-front patterns into traveling spatially periodic (wave
train) patterns. A simple investigation of the relative orientations of Idown and
the various possible phase plane configurations of the slow reduced flow on M+

0
shows that there indeed are parameter combinations (a,Ψ,Φ,Ω,Θ) at which
these bifurcations into traveling 2-/multi-fronts must occur. This bifurcation may
have relevant ecological implications, nevertheless, we refrain from going into
the details here (and leave this to future work) – see also section 4.2.

4 Simulations and discussion

4.1 Simulations
The motivation for the numerical simulations presented in this section is three-
fold: 1) to illustrate some of the analytic results of the previous sections (without
doing a systematic search for all constructed patterns) 2) to give a brief outlook
beyond the worked out analysis to solution types that may be constructed by
the geometric set-up developed here and, finally, 3) to give a flavor of the rich
dynamics that PDE (3.1)/(3.5) exhibits. All numerical simulations have been
carried using MATLAB’s ‘pdepe’ routine. The corresponding parameter settings
are specified in the captions of the figures. Almost all figures show a snapshot
in time of the spatial profile of the PDE solution/pattern after it converged to a
stationary or uniformly traveling solution.

The opening figure of this section, Fig. 3.13a, can be seen as a binding ele-
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Figure 3.13: (a) Spatial profiles of the B- and W-components of a traveling front solution
of the original, unscaled model (3.1) – corresponding to a heteroclinic orbit of (3.7) as
established by Theorem 3.4 – together with the 3 background states. (b) The profile from
(a) as a projection in (b,w, q)-space where q was computed by numerical differentiation.
Parameter settings in (3.1): P = 180,Λ = 0.9,K = 0.4, E = 18,M = 15,N = 15,R =

0.7, Γ = 12,DW = 150,DB = 1.2, corresponding to ε2 = 0.008, a ≈ 0.187,Ψ ≈ 3.84,Φ =

1,Ω ≈ 0.235,Θ ≈ 1.71 in (3.5).

ment between the chapters that have a more ecological emphasis and motivated
the present work – see [174, 175] and the references therein – and the analysis
here. It displays a traveling front solution as established by Theorem 3.4 for
a parameter regime comparable to the one from [175] (with slight adjustment
in the parameters to compensate for the choice of a 1-D model – 3.A). This
profile is then shown in Fig. 3.13b as a projection in (b,w, q)-space to illustrate
that it indeed starts on the slow manifold M0

ε and then jumps to the M+
ε slow

manifold. As established by the analysis, the solution first follows the unstable
manifold associated to the bare soil state (B̄0, W̄0) (as a solution of (3.7)), makes
a fast excursion through the fast field to then touch down on M+

ε following the
stable manifold associated to the uniform vegetation state (B̄+, W̄+). Note, of
course, that this figure contains two approximations: first, the manifold M+

ε is
only accurate up to second order in ε – see section 2.4 – while the flows on M0

ε

and M+
ε are computed numerically (using MATLAB routines).

As demonstrated in section 3, heteroclinic 1-front orbits can occur both as
traveling – Theorem 3.4 – or stationary patterns – Theorem 3.8. We confirm
this numerically in Figs. 3.14a and 3.14b. Note that these fronts may either
represent the retreat of vegetation by the invasion of the bare soil state into the
homogeneous vegetation state – c > 0 – or the expansion of a (homogeneously)
vegetated area into the bare soil state – c < 0. In fact, in order to find the
stationary 1-front, we need to tune a single parameter – Φ in the statement of
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(a) a = 0.0008,Φ = 0.3,Ω = 0.1,Θ =

0.2, ε =
√

0.005 and Ψ = Ψs−1f =

1.6226 (so that (a,Φ,Ψs−1f ,Ω,Θ) ∈

Rs−1f , Theorem 3.8).
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(b) a = 0.0008,Φ = 0.3,Ω = 0.1,Θ =

0.2, ε =
√

0.005 and Ψ+c = 1.6205 <

Ψs−1f , Ψ−c = 1.6248 > Ψs−1f .
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(c) a = 0.032,Ψ = 1.3714,Φ =

0.3,Ω = 0.1,Θ = 0.2, ε =
√

0.005.
(d) a = 0.00175,Ψ = 1.6762,Φ =

0.3,Ω = 0.1,Θ = 0.7, ε =
√

0.1.

Figure 3.14: (a) A heteroclinic stationary 1-front pattern of (3.5); (b) Two traveling
1-front patterns connecting the bare soil state to a homogeneous vegetation state, one
invading the bare soil (c < 0), the other the vegetation state (c > 0); (c) A homoclinic
stationary 2-front spot pattern; (d) Evolution of the middles of the 2 interacting fronts of
an evolving 2-front pattern.

Theorem 3.8 and Ψ in Fig. 3.14 – to the border point between the ranges of
left-traveling and right-traveling 1-fronts (the ‘Maxwell point’ [14] described by
the co-dimension 1 set Rs−1f in Theorem 3.8).

The existence of the homoclinic stationary 2-front pattern depicted in Fig. 3.14c
was established in Theorem 3.11. Note that the level of vegetation on the plateau
that determines the spot remains relatively far away from the value B̄+ of the
uniform vegetation state (B̄+, W̄+). This is caused by the fact that the homoclinic
orbit associated to the spot pattern follows an orbit on the slow manifold M+

ε of
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(3.7) that does not approach the critical point associated to (B̄+, W̄+) on M+
ε –

see the sketch of the skeleton structure in Fig. 3.11. From the ecological point
of view, a vegetation spot benefits from soil water diffusion from the adjacent
water-rich bare soil areas – see the W-profile in Fig. 3.13a – besides direct
rainfall, and therefore has higher biomass density as compared with uniform
vegetation. This also explains (in ecological terms) why the biomass density
at the edge of a front, a spot or a gap is higher – a property also exhibited by
‘fairy circles’ [168, 175]. See also the upcoming discussion below of 2-front
vegetation gaps (Fig. 3.15a). In Fig. 3.14d, we show the dynamics of the 2
interacting fronts of an evolving 2-front pattern: the distance between the fronts
slowly increases while it settles into a stationary standing spot – see Remark
3.17 and the discussion in section 4.2.

One of the original motivations to analyze far-from-equilibrium patterns in the
Gilad et al. model, was to gain a fundamental understanding of ‘fairy circles’
– a somewhat subtle phenomenon (for instance) observed in western Namibia
[168, 175]. The homoclinic stationary 2-front gap patterns of (3.5) established
by Theorem 3.13 and shown in Fig. 3.15a indeed have the strongly localized na-
ture of observed fairy circles. Moreover, the spot/gap patterns of Theorem 3.15
represent the observed (nearly) periodic arrays of fairy circles (see Fig. 3.17a
and notice that the ratio between the lengths of the vegetated state and the bare
soil patches typically varies from 0 to∞ in this family (section 3.6)). As noted,
fairy circle gap patterns have an excess of vegetation at the edge of the gap as
distinctive feature – see for instance the images in [168, 175]. In mathematical
terms, this means that the connecting fronts are non-monotonous. In the context
of the present model, this non-monotonicity is caused by the orientation and
curvature of the slow manifold M+

ε relative to the path traced by the gap pattern
over M+

ε – see the projection in Fig. 3.16a for a representation of this ‘geomet-
rical mechanism’ for spot patterns. We refer to [55] for a 1-component model in
which the non-monotonicity of the fronts originates from nonlocal effects.

In section 3.5 – and especially in Remark 3.14 – we discussed the bifurcation
of the homoclinic slow-fast-slow-fast-slow 2-front spot pattern of Theorem 3.11
into a homoclinic slow-fast-slow pulse pattern as it ‘detaches’ from M+

ε . Such
a (numerically stable) ‘detached’ spot pattern of pulse type is shown Fig. 3.15b.
In Fig. 3.16, the detachment process is shown by projections of both the 2-front
spot pattern of Fig. 3.14c and the pulse pattern of Fig. 3.15b on the (w, b)-plane:
as the parameter Ψ – which is linearly related to the rainfall P in the original
model (3.6) – is decreased below a critical value Ψ∗ = 1.2952 the vegetated
plateau disappears and the 2-front spot solution transforms into a 1-pulse solu-
tion. Note that this 1-pulse solution is of the ‘classical’ Klausmeier-Gray-Scott
(and/or Gierer-Meinhardt [41]) type already discussed in the introduction of sec-
tion 3.5: its existence may be established by the methods of [41, 46] and the
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(a) a = 0.032,Ψ = 1.2762,Φ =

0.3,Ω = 0.1,Θ = 0.2, ε =
√

0.005.
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(b) a = 0.032,Ψ = 1.2762,Φ =

0.3,Ω = 0.1,Θ = 0.2, ε =
√

0.005.

Figure 3.15: (a) A stationary homoclinic vegetation gap pattern (of fairy circle type)
that is asymptotic to the stable homogeneous vegetation state (B̄+, W̄+). (b) A stationary
homoclinic spot solution of (classical) 1-pulse Gierer-Meinhardt/Gray-Scott type.

references therein. We also found that the spatially periodic spot/gap patterns
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Figure 3.16: Projections into the (w, b)-plane of the homoclinic 2-front and 1-pulse
solutions of Figs. 3.14c and 3.15b together with the slow manifolds M0

ε and M±
ε . Note

that the trajectories are symmetric around the middle of the 2-front/1-pulse – due to the
reversibility symmetry (3.9) of (3.5)/(3.7) – which results in the red branches shown.

of Theorem 3.15 may have quite a large domain of attraction: Fig. 3.17b shows
the evolution of a traveling vegetation front into the bare soil state that leaves
behind a spatially periodic spot/gap pattern – Fig. 3.17a. This behavior may
possibly be related to the existence of a Turing bifurcation – see Remark 2.2 –
of the uniform vegetation state and calls for further studies. Finally, we show
in Fig. 3.18a such a numerically obtained, almost sinusoidal, small amplitude
Turing pattern that bifurcated from a (destabilized) uniform vegetation state and
note that there are paths through parameter space on which this Turing pattern
evolves into a (periodic) multi-pulse pattern – built from homoclinic 1-pulses
of Gierer-Meinhardt/Gray-Scott type as in Fig. 3.15b and typically observed in
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Klausmeier-type models [133, 146, 155] – that subsequently touches down on
M+

ε like the solitary pulses of Figs. 3.15b and 3.14c, to indeed take the shape of
the periodic fairy circle-type spot/gap pattern of Theorem 3.15 and Fig. 3.17a.
By further tuning parameters it may also happen that the stationary, spatially
periodic, Turing pattern undergoes a Hopf bifurcation (in time), resulting in an
oscillating pattern that is periodic both in space and in time – see Fig. 3.18b.
(Note, however, that it is not clear whether this may occur for ecologically feasi-
ble parameters – see [151].)
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Figure 3.17: (a) The standing asymptotic (for t → ∞) spatially periodic spot/gap pattern
generated by the invasion dynamics of Fig. 3.17b. (b) A time/space plot of a vegetation
front that invades the bare soil state and leaves the spatially periodic pattern of Fig. 3.17a
behind. In both plots: a = 0.032,Ψ = 1.619,Φ = 0.3,Ω = 0.1,Θ = 0.5, ε =

√
0.01.
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(b) a = 0.25,Ψ = 0.38539,Φ =

0.059,Ω = 0.4,Θ = 0.5, ε =
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Figure 3.18: (a) A small amplitude stationary spatially periodic solution generated by
a Turing bifurcation (see Remark 2.2. (b) A pattern that is periodic in space and time
that appeared by decreasing Ψ from the Turing pattern of Fig. 3.18a through a Hopf
bifurcation (in time).
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Remark 4.1. The basic configurations shown in Fig. 3.1 have been obtained by
the same procedures as used in this section, with the following parameter settings.
The traveling 1-front: a = 0.0008,Ψ = 1.6248,Φ = 0.3,Ω = 0.1,Θ = 0.2, ε =√

0.005; the stationary homoclinic 2-front vegetation spot: a = 0.032,Ψ =

1.3714,Φ = 0.3,Ω = 0.1,Θ = 0.2, ε =
√

0.005; the stationary homoclinic
2-front vegetation gap: a = 0.032,Ψ = 1.2762,Φ = 0.3,Ω = 0.1,Θ = 0.2, ε =√

0.005; the stationary spatially periodic multi-front: a = 0.032,Ψ = 1.619,Φ =

0.3,Ω = 0.1,Θ = 0.5, ε =
√

0.01.

4.2 Discussion
Of course, the potential relevance of the various singular slow/fast patterns con-
structed in this chapter is ultimately determined by their stability as solutions of
PDE (3.1)/(3.5). In general, this is a seriously hard problem to study analytically.
However, the singularly perturbed nature of the patterns considered here enables
us to explicitly and rigorously analyze the (spectral) stability of the constructed
(multi-)front patterns. In fact, the explicit ‘control’ we established on the slow-
fast structure of the (multi-)fronts provides the perfect (and necessary) starting
point for a spectral stability analysis along the lines of (for instance) [20, 43] and
[31] (for the spatially periodic patterns). This is especially the case for the basic
front/spot/gap/periodic patterns of Theorems 3.4, 3.8, 3.11, 3.13, 3.15 shown in
Fig. 3.1.

However, the question whether the non-basic, ‘higher order’ patterns (for in-
stance) sketched in Fig. 3.2 can be stable also requires novel mathematical
insights and methods. All constructed higher order patterns involve the exis-
tence of persisting periodic solutions on the slow manifold M+

ε – see Theorems
3.5, 3.6, 3.9, 3.12 and Corollary 3.16. Therefore, the structure of the spectrum
associated to the stability of the higher order patterns essentially depends on the
preliminary question about the spectrum and stability of the persistent periodic
solutions on the slow manifold of Theorem 2.4 – and especially of their homo-
clinic (or heteroclinic) limits also considered in Theorem 2.4. In fact, this issue
is not (at all) specific for the explicit model here. We claim that higher order
patterns of the type sketched in Fig. 3.2 will generically appear as potentially
stable solutions in a fully general class of singularly perturbed reaction-diffusion
models that includes (3.5), Ut = Uxx + F(U,V),

Vt =
1
ε2 Vxx + G(U,V).

(3.60)

By going into a traveling framework – and thus introducing ξ = x − ct, U(x, t) =

u(ξ), V(x, t) = v(ξ), p(ξ) = uξ(ξ), q = vξ(ξ)/ε as in section 1 – (3.60) is reduced
into the 4-dimensional form of (3.7). By taking the ε→ 0 limit, we find that the
2-dimensional (reduced) slow manifolds are determined by F(v0, u) = 0 (and
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p = 0, (v0, q0) ∈ R2) – see section 2 – which generically determines J ≥ 1
branches, locally given by graphs,

M j
0 = {(u, p, v, q) ∈ R4 : u = f j(v), p = 0}, j = 1, 2, ..., J,

with f j(v) such that F( f j(v), v) ≡ 0 (cf. (3.12) and note that J = 3 for (3.5)). For
those (parts of) M j

0 that are normally hyperbolic, M j
0 persists as M j

ε, that is
approximately given by,

M j
ε = {(u, p, v, q) ∈ R4 : u = f j(v) + εcqu j

1(v) + O(ε2), p = εqp j
1(v) + O(ε)2}

with
u j

1(v) = − f ′j (v)/
∂F
∂u

( f j(v), v), p j
1(v) = f ′j (v).

(cf. (3.36), (3.37)). Thus, completely analogous to the analysis in section 2.4, we
find that the slow flow on a persisting, normally hyperbolic 2-dimensional slow
manifold M j

ε is given by a planar Hamiltonian system perturbed by a nonlinear
friction term,

vXX + G( f j(v), v) + εcq
[
1 −

∂G
∂u

( f j(v), v)u j
1(v)

]
= O(ε2),

with X = εξ (cf. (3.38)). Typically, the unperturbed ε→ 0 limit vXX +G( f j(v), v)
– i.e., the reduced slow flow on M j

0 – is nonlinear and has families of peri-
odic solutions and homoclinic or heteroclinic orbits to critical points on M j

ε

that correspond to (potentially stable [39]) homogeneous background states
(U(x, t),V(x, t) ≡ (Ū, V̄) of PDE (3.60) – as is the case for (3.22) on M+

0 .
Thus, indeed, the situation is completely similar to that of section 2.4: using
Melnikov-type arguments persistence results equivalent to Theorem 2.4 may be
deduced, also in the present general setting. The geometric framework of or-
bits ‘jumping up and down’ between two (normally hyperbolic) slow manifolds
M j

ε and Mk
ε presented in section 3.1 is based on the persistence of both the

stable and unstable manifolds W s,u(M j,k
ε ) of M j,k

ε and thus of the intersections
Wu(M j

ε) ∩W s(Mk
ε) and W s(M j

ε) ∩Wu(Mk
ε). Therefore, we may use the argu-

ments, methods and insights of section 3 to deduce the equivalents of the ‘higher
order’ existence Theorems 3.5, 3.6, 3.9, 3.12 and Corollary 3.16 in the setting
of general system (3.60). Moreover, this also implies that bifurcation scenarios
as sketched in Fig. 3.9 appear generically (where we notice that the sketch in
Fig. 3.9 was just a first example – many other scenarios may occur). In fact, the
geometrical setting allows us to (for instance) explicitly establish the existence
of heteroclinic networks of orbits jumping between various slow manifolds M j

ε

and (slowly) following periodic orbits on M j
ε in between its fast jumps – like

the networks considered in [120, 121] and the references therein. Thus, the
above noted preliminary (and essential) issue of the spectrum associated to the
stability of the persisting periodic and homoclinic solutions on M+

ε of Theorem



108
3. The existence of localized vegetation patterns in a systematically

reduced model for dryland vegetation

2.4 also has a fully general – and thus fundamental – counterpart, with a similar
relevance for the higher order patterns (almost) heteroclinic to these orbits. In
other words, insight in the spectrum associated to the stability of the orbits on
M j

ε established by a generalization of Theorem 2.4 for (3.60) is expected to
yield explicit insight in the stability and bifurcations of the higher order patterns
in PDE (3.60) established by the generalizations of Theorems 3.5, 3.6, 3.9, 3.12,
etc. and the subsequent more complex ‘networks’.

This will be the subject of future work, both in the setting of explicit system
(3.5) – which will also include a systematic numerical search for the higher or-
der patterns sketched in Fig. 3.2 – and in the general setting of (3.60).

To optimally embed the present analysis in the ecological context, we first need
to obtain insight in the ranges of the (scaled) parameters (a,Ψ,Φ,Ω,Θ) of (3.5)
that may correspond to ecologically realistic settings of the unscaled model.
Finding such parameter ranges is possible (more than in the Klausmeier model)
since (3.1) is directly linked to the more elaborate 3-component model of Gilad
et al. [62] – [175], 3.A – and thus to concrete underlying ecological mecha-
nisms [63, 106, 134]. A crucial question for the potential ecological relevance
of the above discussed higher order patterns is whether there are realistic values
of (Λ,K, E,M, P,N,R,Γ) for which there are 2 critical points on M+

ε , i.e., for
which C2 − 4AD > 0, C < 0,D > 0 (section 2.3) – where (A, C,D) is related to
(Λ,K, E,M, P,N,R,Γ) in a rather nonlinear fashion by (3.3), (3.5), (3.6) (3.23),
(3.24). Naturally, this will be part of our upcoming work on (3.5).

Each of the higher order invasion fronts established by Theorem 3.6 and sketched
in Figs. 3.2a and 3.2b travels with a different speed – in fact, the (discrete) fam-
ily may even limit on a stationary front pattern (Remark 3.10). Thus, when
stable, these invasion fronts may introduce the possibility of slowing down grad-
ual desertification. Moreover, stationary multi-front patterns may bifurcate into
traveling patterns with the same structure – see Remark 3.17 for a brief sketch
of the underlying geometrical mechanism. When stable, the appearance of such
traveling multi-front patterns – either localized spots or spatially periodic wave
trains – may have a similar ecological interpretation and relevance: localized
vegetated states may even reverse desertification by invading bare soil – see
[172, 174, 176]. Together, the various traveling 1-front patterns and traveling
multi-spots form an interacting group of invasion patterns within the transition
zone between the bare soil state and a homogeneous vegetation state; in princi-
ple all entities in this group travel with different speed. Understanding pattern
formation in this zone – and especially also understanding the translation and/or
expansion of this zone in terms of the parameters in the model – may have a
direct ecological significance. In mathematical terms, such a study may also
be performed by a front interaction analysis along the lines of [25, 26, 157] –
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although the dynamics generated by (3.5) in this ecological transition zone is
expected to be richer than that of the generalized FitzHugh-Nagumo model con-
sidered there.

To truly obtain ecological relevance, we must consider the model in 2 space
dimensions. Clearly, the extension to more than 1 space dimension does pose
fundamental challenges, moreover 2-dimensional systems show much richer dy-
namical behaviors associated with propagating fronts – see for instance [73, 74].
However, the results obtained here form a foundation upon which aspects of the
step from 1 to 2 space dimensions can be taken – see for instance [143, 159,
162, 165] and the references therein. By extending the patterns constructed here
trivially in the second spatial direction, the above mentioned stability analysis
can be directly extended to include the stability (and bifurcations) of planar
(multi-)fronts/interfaces (where we for simplicity neglect the (technical) fact that
(3.5) takes a somewhat different form in R2, [106, 175], 3.A). Unlike in the
extended-Klausmeier model [133, 143], localized stripes are of 2-front type and
may thus be expected to possibly be stable – see [9] for a rigorous treatment in
a generalized Klausmeier type model (posed on a sloped terrain without a diffu-
sion term for the water component – like the original Klausmeier model [90]).
Naturally, the interfaces will evolve and their curvature driven dynamics may be
studied analytically along the lines of [111]. Especially in the above discussed
multi-front transition region between bare soil and homogeneous vegetation, the
ecosystem dynamics generated by the model may be very rich and complex –
see for instance [73–75].

As a final direction of possible future research, we note that our results may
be used to establish the existence – and later stability – of localized patterns in
the original 3-component model of Gilad et al. [62]. Since (3.1) and thus (3.5) –
is obtained from the nonlocal, 3-component model of Gilad et al. (see (3.A.61))
in a systematic way – i.e., by taking several limits ([106, 175], 3.A) – it may be
expected that it is possible to establish the persistence of patterns constructed
here into the nonlocal, 3-component setting, especially since these patterns are
constructed geometrically through transversal intersections of invariant mani-
folds. Once again, this is interesting and relevant both from mathematical and
ecological point of view: (asymptotically) small nonlocal and topographical
terms may have a significant effects, even on the most simple – ‘basic’ – (vege-
tation) patterns exhibited by a model [10, 49].
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Appendices

3.A Derivation of the model equations in one spa-
tial dimension

We follow [175] to briefly show how model (3.1) is derived from the original
model introduced in [63] and given by

∂T B = GBB(1 − B/K) − MB + DB∇
2B,

∂T W = IH − N(1 − RB/K)W −GWW + DW∇
2W,

∂T H = P − IH + DH∇
2(H2) + 2DH∇H · ∇Z + 2DH H∇2Z,

(3.A.61)

where

GB(X,T ) = Λ

∫
Ω

G(X,X′,T )W(X′,T )dX′ (3.A.62a)

GW (X,T ) = Γ

∫
Ω

G(X′,X,T )B(X′,T )dX′ (3.A.62b)

G(X,X′,T ) =

 1√
2πS 2

0


2

exp
− |X − X′|2

2S 2
0(1 + EB(X,T ))2

 (3.A.62c)

I = A
B(X,T ) + Q f
B(X,T ) + Q

(3.A.62d)

with X = (X,Y) the spatial coordinates of the 2-dimensional system. The last
equation in (3.A.61) describes overland water flow with H being the height of a
thin layer of surface water above ground level given by the topography function
Z. We consider the case of a flat terrain , for which Z = constant, and of high
infiltration rates I, both in bare soil and vegetated areas (no infiltration contrast),
for which I can be assumed to be independent of B. Both conditions are met in
the Namibian fairy-circles ecosystems that consist of sandy soil. Since H varies
on time scales much shorter than those of W and B, these conditions imply fast
equilibration of surface water at H = P/I. Insertion of this equilibrium value in
the equation for W results in the elimination of the surface water equation.
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A further simplification we make is related to the nonlocal forms of the biomass
growth rate, GB, and the water uptake rate, GW , in (3.A.61). We assume, con-
sistently with the plant species in the Namibian fairy-circles ecosystems, that
the roots, described by the root kernel G(X,X′,T ), are laterally confined. We
employ this assumption by taking the lateral root extension of a seedling, S 0, to
be very small. Using the limit S 0 → 0 in the integrals in (3.A.62c) we obtain,
for a 1-dimensional system, the simpler algebraic expressions

GB(X,T ) = Λ

∫
Ω

lim
S 0→0

1√
2πS 2

0

exp
− |X − X′|2

2S 2
0(1 + EB(X,T ))2

 B(X′,T )dX′

= Λ (1 + EB(X,T )) B(X,T ). (3.A.63)

Similarly,

GW (X,T ) = Γ (1 + EB(X,T )) W(X,T ). (3.A.64)

Inserting these expressions in (3.A.61) we obtain the 2-component model (3.1).
Finally, we note that in [175] this reduction was performed in 2 space dimensions
and that the general n-dimensional situation is considered in [106].

3.B The derivation of the scaled model
Introducing the scalings (3.2) into (3.1) yields, αδBt = αβΛWB(1 − αB/K)(1 + αEB) − αMB + αγ2DBBxx,

βδWt = P − NβW(1 − αRB/K) − αβΓWB(1 + αEB) + βγ2DWWxx,
(3.B.65)

which can be brought into the form,
δK

α2βΛE
Bt =

(
K
α2E

W −
MK

α2βΛE

)
B +

K
αE

(
E −

1
K

)
WB2 −WB3 +

γ2K
α2βΛE

DBBxx

δK
α2βΛE

Wt =
PK

α2β2ΛE
−

K
α2βΛE

[
N

(
1 −

αR
K

B
)

+ αΓB(1 + αEB)
]

W +
γ2K
α2βΛE

DWWxx.

(3.B.66)
By choosing δ and γ as in (3.3), we arrive at,

Bt =

(
K
α2E

W −
MK

α2βΛE

)
B +

1
α

(
K −

1
E

)
WB2 −WB3 + Bxx,

Wt =
PK

α2β2ΛE
−

K
α2βΛE

[
N

(
1 −

αR
K

B
)

+ αΓB(1 + αEB)
]

W +
DW

DB
Wxx.

(3.B.67)
Next, we use our freedom in α and β to simplify the B-equation and scale the
factors of the B- and WB2-terms (to −1 and to +1 respectively) – which is
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achieved by the choices in (3.3),
Bt =

(
KE

(KE − 1)2 W − 1
)

B + WB2 −WB3 + Bxx,

Wt =
α2PΛE

M2K
−

[
N

(
1 −

αR
K

B
)

+ αΓB(1 + αEB)
] W

M
+

DW

DB
Wxx.

(3.B.68)

This is equivalent to (3.5) by definitions (3.4) and (3.6).

Note that our choice to scale the factor of the term WB2 in the B-equation to +1
implies – together with the (implicit, natural) assumption that B̃ and B have the
same signs (3.2) – that we have chosen to consider EK > 1. Of course, it may
happen that 0 < EK ≤ 1. In these cases, either the term WB2 disappears from
the equation – in the ‘non-generic’ case EK = 1 – or its pre-factor can be scaled
to −1. All of the analysis in this work can also be performed for EK ≤ 1, without
any conceptual differences. However, we chose to focus of EK > 1 – and thus
on a +WB2 term in (3.5) – to not further complicate the necessary ‘algebra’.

3.C Lemma 2.6 and the Bogdanov-Takens bifurca-
tion scenario

A planar ODE of the form yX̃ = z ,

zX̃ = β1 + β2y + y2 + syz + G(y, z). ,

for β1, β2 ∈ R, s = +1 is known to possess two fixed points - a saddle and a
focus - with an unstable periodic orbit (that emerged from the focus in a Hopf
bifurcation in the open parameter region)

SBT =

{
(β1, β2) | β2 < 0 , β1 < −

6
25
β2

2 + o(β2
2)
}
,

The right border {β2 < 0, β1 = 0} marks the Hopf bifurcation, while the left

border {β2 < 0 , β1 = −
6
25
β2

2 + o(β2
2)} describes the region where a homoclinic

orbit emerged from the periodic orbit (whose period tends to infinity towards
that border).

Here, we denote the slow system (3.38) by wX = q ,

qX = F(w) + εcqρ1(w) + G(w, q)
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where F(w) = −A+(B + aΘ) w+Cw

√
a +

1
4
−

1
w

and G accounts for the higher

order term, and assume that the parameters are chosen such that both fixed points
are on M+

ε , D is close (but beyond) the saddle-node bifurcation point, that is,

D =
C2

4A −σ
2A , 0 < σ � 1 and the w-coordinate of both emerging fixed points

is well within the strip (4/(1 + 4a), 1/a). For σ sufficiently small, there is a
neighborhood of wS N

0 such that the slow ODE has the form wX = q ,

qX = µ1 + µ2w + µ3w2 + δq + µ4wq + G̃(w, q)
(3.C.69)

where

µ1 = F(wS N
0 ) , µ2 = F′(wS N

0 ) , µ3 =
1
2

F′′(wS N
0 ) , δ = εcρ1(wS N

0 ) , µ4 = εcρ′1(wS N
0 ) ,

and µ j = µ j(σ2), δ = δ(σ2). By assuming the non-degeneracy condition

µ3(σ2)µ4(σ2) , 0, performing a shift and scaling q = q̃ −
δ(σ)
β4(0)

(assuming that

δ(0) , 0 for simplicity), w =
µ3(σ2)
µ4(σ2)2 y, X̃ =

∣∣∣∣∣∣µ3(σ2)
µ4(σ2)

∣∣∣∣∣∣ X, we bring (3.C.69) into

the form  yX̃ = z ,

zX̃ = β1 + β2y + y2 + syz + G(y, z). ,

where

β1(σ2) =
µ4

4(σ2)

µ3
3(σ2)

µ1(σ2) , β2(σ2) =

(
µ4(σ2)
µ3(σ2)

)2

µ2(σ2) ,

and s = sign(β3(σ2)β4(σ2)). Hence, in order to conclude the corresponding
scenario as described for SBT for our original system, it remains to analyze the
mapping σ2 7→ (β1(σ2), β2(σ2)), which we refrain from doing here.



4
Outlook

At first glance, Chapter 2 and Chapter 3 do not appear connected in a cohesive
way, but together they certainly endeavor to lay the foundations of understanding
the mathematical mechanisms driving the formation and nonlinear evolution of
ecosystems and the observations thereof. While achieving this, they consolidate
the universality of distinct features that bridge the gap between mathematics and
ecology.

This thesis constitutes a constant interplay and wavering between two paral-
lel, yet complementary worlds: a fundamental and a realistic one. Both Chapter
2 and Chapter 3 have shown the importance of ecological background in un-
derstanding the nature of patterns exhibited by reaction-diffusion models. Ad-
ditionally, the scope of patterns we were initially interested in was broadened.
By posing the relevant ecological questions, the underlying mathematical mech-
anisms unrolled themselves into a realm of expected and unexpected patterns
and geometrical constructions. Rigorous analysis of reaction-diffusion models
in return demarcates the possible outcomes and sceneries an ecosystem can have
as well as its spatio-temporal evolution. A real ecosystem is typically not close
to onset, i.e., features parameters µ that are not close to the critical parameter
value µc, thereby yielding patterns exhibited by (1.20–1.21–2.1–3.1) that are ‘far-
from-equilibrium’. This allows for these patterns to be studied by the methods
of geometric singular perturbation theory (as has been done in this thesis).

This is a mere recapitulation of the longer call we have stated in the intro-
duction, that, trying to understand natural complex phenomena such as climate
change and soil degradation, requires the fusing of these two fields of research. It
has become clear throughout this thesis that in the study of ecosystem dynamics
the knowledge of both ecology and mathematics needs to be combined in order
to optimize the posed research questions and the models that are used in order
to describe the processes at play. As data acquisition and sampling methods
develop and expand by the minute, the areas of ecosystem modeling and model
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assessment are just set out. Along this development, a multitude of follow-up
research questions arise from the studies done in this thesis, from the establish-
ment of the Busse balloon in Chapter 2 to the geometric singular perturbation
theory tools of Chapter 3.

As outlined in Chapter 1.2, the models studied differ in their approach by
their different ecological settings, one being more conceptual and the other trying
to include more realistic parameters and environmental constraints. Studying the
most conceptual model, the extended-Klausmeier model, and its Busse balloon
in Chapter 2, and laying it next to real state-of-the-art acquired dryland vegeta-
tion data, confirmed that ecological systems are more resilient on a fundamental
level than previously thought and that various patterns can co-exist simultane-
ously for the same parameter values. In an analogous way, in Chapter 3, we have
found the Turing bifurcation in model (3.1) and we have constructed by means
of geometric singular perturbation theory several classes of spatially periodic
far-from equilibrium patterns as seen in Figures (3.17a,3.18a) of Chapter 3.6.
These represent sections of the Busse balloon of the model of Chapter 3, and
form a basis to build upon in completing the Busse balloon in parameter-space
and thus for the existence of the Busse balloon and the multistability of periodic
patterns for this model.

Along the lines of parameter-space and parameters, the more realistic model
of Chapter 3, may also also have been used to analyze the data of Chapter 2
from a quantitative perspective. With the abundance of ecological parameters
within this model, this would have gone beyond qualitatively establishing the
fundamental phenomenon of increased resilience through multistability. Thus,
this may be a relevant extension of the study of these sites, by providing a more
qualitative interpretation of the latter. For this, a meticulous study of the eco-
logical literature is required to acquire realistic values of the parameters present.
In model (3.1), the Busse balloon of the model of Chapter 3 can be determined
explicitly. The model of Chapter 3 can also easily incorporate an advection term
to account for the topological variations (which was initially done in the 3D
Gilad et al. version [61]) that were present on site. This would be an interesting
next step: to put both models side by side in order to analyze and compare their
predictions. Actual model comparison, to my knowledge, has not been done
systematically as the parameters’ choices of each model are often hard to retrace,
therefore making one-on-one correlation a challenge. Nevertheless, a qualitative
comparison of both models and their predictions with respect to actual obser-
vations would be a natural follow-up, in order to also fine-tune the ecological
parameters that have been worked with for years within Klausmeier-type models.

A fundamental challenge that we did not touch upon is, of course, the direct
relevance of the 1D model analyses of Chapters 2 and 3 in the realistic setting
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2-dimensional (spatial) domains. Naturally, extrapolating the patterns found in
the one dimensional case to the 2-dimensional case using the symmetry in the
y-direction results in trivial straight stripes. Moreover, perfectly circular sym-
metric patterns can also be studied by the 1D-methods of this thesis – see for
instance [158] and the references therein. However, these idealized two dimen-
sional shapes are, for example, very different from the realistic ecological case,
where we have a broad range of patterns that are far from being perfectly sym-
metric: fairy circles, labyrinths, gaps, curved stripes as can be seen in Figure 4.1.
Thus, a mere extension of the 1D analysis of our models to a two dimensional
space is too simplistic (in fact, it should even be noted that the precise nature
of the interaction terms in the model may be different in 2-space dimensions –
see Chapter 3, and [106]). However, the patterns exhibited in Figure 4.1 also
suggest that the analysis of realistic patterns may be developed by a perturbative
approach that starts out from perfectly symmetrical intrinsically 1D patterns.
Moreover, even if one would restrict oneself to perhaps the most simple start-up
problem, the evolution of curved interfaces, a problem that has been extensively
studied in the mathematical literature (see for instance [23] and the references
therein), the mathematical challenge should not be underestimated: unlike the
evolving interfaces generally considered in the literature, ecologically relevant
stripes and interfaces may be destabilized by their evolution or through their in-
teractions with other stripes/interfaces – see for instance [11] for examples in one
space dimension. Nevertheless, we may conclude that the 1D analysis applied
and further developed in this thesis does provide a first stepping stone towards
understanding the evolution and dynamics of ecologically relevant patterns in
2D.

(a) Fairy circles in the Namibian desert
[1].

(b) A site displaying curved banded veg-
etation patterns in the Western Creek
Basin southwest of Newman, Australia
(−23.5◦N, 119.5◦E). Picture taken from
[60].

Figure 4.1: Two dimensional vegetation patterns in nature.

The dimensionality of an ecosystem model is not the only place where space
and spatial coordinates play a key role in the type of patterns exhibited and their
behavior. A research question that has not yet been thoroughly explored is the
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role of topography and its effect, even on a small scale, on the family of pat-
terns that the models can exhibit and that can be observed. Model predictions
in Chapter 2 regarding the role of slope with respect to migration speed was
not corroborated by the empirical data analyzed, suggesting that the inclusion
of small-scale topographical heterogeneities is a promising avenue for future
model analysis, something that was further researched in [10] Including slope
into model of Chapter 3 would be a next step into incorporating the topograph-
ical effect into the analysis of ecosystem dynamics. The curvature of the slow
manifolds has played a crucial role in the asymmetrical type of connections
that we encountered, starting with the ’basic’ connections between bare soil and
vegetated state. Including advection into the model, that is, breaking of the re-
versibility symmetry (u(x, t), v(x, t))→ (u(−x,−t), v(−x,−t)) of the system will
at the very least affect the profile of the connections established, if not completely
reshape the family of periodic patterns found on the slow manifolds, as these
are symmetric stationary solutions and breaking of the reversibility symmetry
would disrupt these constructions. Such modifications have, for example, been
researched in [9] for a 2-component extended Klausmeier-type model, the basic
connections between bare soil and vegetated stated will be altered from being
completely symmetric in the case of a pulse and a gap to the new patterns that
can be seen in Figure 4.2.

Figure 4.2: Shown are the different patterned solutions of an extended Klausmeier-type
model. Presented figures show 1D cross-sections u(x) (blue) and v(x) (red) of direct
numerical simulations. Figures from [9] – where water diffusion has been omitted for
simplicity.
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Aside from the possible model extensions and further ecological applica-
tions, a natural next step building on the existence proofs of Chapter 3 is to study
the stability of the new found orbits and connections in both one and two di-
mensions. This is, besides its mathematical importance, of high relevance to the
ecological community as the only observable patterns in nature are those that are
mathematically stable. As the model of Chapter 3 encapsulates a ‘new’ variety
of slow localized patterns, that are completely embedded in a slow manifold of
the singularly perturbed spatial dynamical system, further stability analysis is
required, by performing the corresponding spectral stability analysis. In [40], a
very first step in this direction has been taken.

One overall clear takeaway from this thesis is that the practical applicability
of geometrical singular perturbation theory transcends specific model formula-
tion. Given a reaction-diffusion system that incorporates spatial scale separation,
a successful geometric singular perturbation analysis will make clear which
patterns exist, what they look like, what their period is (if present), and how
these properties depend on the model parameters [41, 44]. Given that patterns
in real ecosystems are singularly perturbed by definition [113], as biomass and
water diffuse with very different speeds, geometric singular perturbation theory
is an excellent tool to go with in order to investigate the different vegetation
patterns exhibited. The existence and properties of orbits are directly related
to the shape and transversal intersection of the geometrical objects (stable and
unstable manifolds) introduced in Chapter 1 and Chapter 3 in phase space. This
has, from a model perspective, two consequences. First, recent insight shows
that the existence and properties of several important types of special orbits can
be established [31, 40, 46] using only general properties of the reaction terms
f (u) : Rm → Rm in (1.8)- that is, patterns such as pulses or periodic orbits, and
their properties, can be found for general classes of reaction-diffusion systems.
For a specific reaction-diffusion system, one only needs to check whether its
reaction terms obey certain (mild) conditions; if so, the pattern properties are
explicitly given in terms of integrals involving the reaction terms, and certain
solutions to lower-dimensional differential equations. A second, and related, con-
sequence of the geometric approach is that because the specific functional form
of the reaction terms f (u) is not important, the reaction terms can be directly
defined for instance through an (experimentally obtained) response curve. Only
the geometric shape of this curve determines the existence and properties of
pattern solutions, not the specific algebraic implementation of this shape. There-
fore, patterns obtained by a geometric singular perturbation construction are
structurally stable. Thus, geometric singular perturbation theory is an extremely
suitable ‘tool’ by which we can understand ecosystem models – even the more
realistic and thus complex ones. However, the present state-of-the-art theory
is still insufficiently developed (especially concerning the stability of patterns):
ecology will keep on driving the development of the theory for quite a number
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of years.
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Klimaatverandering heeft flinke gevolgen voor zowel natuur als mens. Een van
de verschijnselen hiervan is het proces van verwoestijning, dat in vele, grote
gebieden met weinig neerslag plaatsvindt. Deze gebieden bedekken nu al meer
dan 40% van de landoppervlakte op de wereld en huisvesten meer dan 2 miljard
mensen. Verwoestijning is een vorm van landdegradatie waar onder meer de
kwaliteit van de bodem sterk afneemt evenals de hoeveelheid aanwezige vege-
tatie. Deze afname van de vegetatie hoeft niet op een egale manier te gebeuren,
waardoor er bijvoorbeeld gaten of strepen zonder vegetatie kunnen ontstaan. Dit
leidt tot patronen in het landschap.

Het bestuderen van deze vegetatiepatronen op een wiskundige manier kan
helpen bij het begrijpen van het verwoestijningsproces. Hiervoor wordt het
proces vertaald naar een model, in meerdere of mindere mate van realisme en
complexiteit. Het proces kan hiermee in grote lijnen beschreven worden, op
een conceptuele manier, of op een realistischere manier, door meer factoren
te beschouwen in het model. Door het proces op een conceptuele manier te
benaderen kunnen de voornaamste gedragingen van het proces of van een ecol-
ogisch systeem in kaart worden gebracht en daarmee al enige voorspellingen
worden gedaan over fundamentele aspecten van het gedrag in de werkelijkheid.
De ecologische achtergrond van zowel een conceptueel als een realistischer
model worden geïntroduceerd in hoofdstuk 1, evenals de wiskundige concepten
en technieken die gebruikt worden bij het bestuderen hiervan.

Hoofdstuk 2 buigt zich over een conceptueel model waarbij er gekeken wordt
naar het intrinsieke gedrag van een ecosysteem. Dit gedrag is vergeleken met
satellietmetingen aan vegetatiepatronen, in het bijzonder strepen, in Somalië.
Zo werd er gekeken naar de theoretische voorspellingen van het model betref-
fende de variatie van afstand tussen de vegetatiestrepen (periode), de relatieve
aanwezige hoeveelheid vegetatie (biomassa) en verandering van patronen door
verplaatsing of verdwijning (migratiesnelheid) en daarna vergeleken met de
data. Een nieuw inzicht van deze studie is het concept van ‘multistabiliteit’:
de bestudeerde gebieden worden niet gekenmerkt door een specifiek patroon
met een unieke periode maar er bestaat een breed spectrum aan verschillende
patronen die tegelijkertijd bestaan. Dit betekent dat een verandering van het
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klimaat of de omgeving van een ecosysteem minder drastische gevolgen heeft
dan tot nu toe werd aangenomen en dat het landschap minder snel verandert in
een kale woestijn. Dit komt doordat het ecosysteem zich makkelijker kan aan-
passen door, bij een verstoring, over te gaan van het ene patroon in het andere,
omdat er meer dan één specifiek patroon mogelijk is. De multistabiliteit van
de bestudeerde gebieden betekent dat deze veel veerkrachtiger zijn dan eerder
gedacht.

In hoofdstuk 3 wordt er gekeken naar een realistischer model, waarbij de
manier waarop het ecosysteem gemodelleerd is complexer en gedetailleerder is.
Hierin lag de focus bij het wiskundig bewijzen van de existentie van verschil-
lende vegetatiepatronen die in de natuur geobserveerd zijn en ook in numerieke
simulaties van het model terug te vinden zijn. Stap voor stap wordt er in hoofd-
stuk 3 ‘gebouwd’ aan verschillende mogelijke structuren en patronen. Door
middel van geometrische technieken wordt er gekeken naar de kenmerken van
het verwoestijningsproces en de verschillende vegetatiepatronen die het model
vertoont. Zo is er begonnen met een simpele overgang van gebied met vegetatie
(begroeid) naar een kaal gebied (onbegroeid), naar een gat in de vegetatie, en-
zovoort (zie linkerhelft bijgevoegd figuur 4.3). Deze patronen worden daarna ge-
bruikt als bouwstenen om de existentie van nieuwe vegetatiepatronen die ook in
algemene dynamische systemen voorkomen te bewijzen (zie rechterhelft figuur
4.3). Hiermee wordt een groot spectrum aan bestaande en nieuwe vegetatiepa-
tronen bestudeerd en wordt de basis voor verder onderzoek hiernaar gelegd.

Tot slot worden in hoofdstuk 4 de overeenkomsten tussen en verdere uitbrei-
dingen en onderzoeksvragen omtrent beide voorgaande hoofdstukken besproken.

Figure 4.3: Linkerhelft : Twee basis vegetatiepatronen van het bestudeerde model van
hoofdstuk 3: een overgang van begroeid naar kaal gebied en een gat in een begroeid
gebied. Rechterhelft: Twee schetsen van ‘nieuwe’ gebouwde gelokaliseerde vegetatiepa-
tronen: een enkele overgang tussen een kaal gebied en een begroeid gebied en een lapje
begroeing omringd door kale grond.
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