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Abstract
Read-across is one of the most frequently used alternative tools for hazard assessment, in particular for complex endpoints 
such as repeated dose or developmental and reproductive toxicity. Read-across extrapolates the outcome of a specific 
toxicological in vivo endpoint from tested (source) compounds to “similar” (target) compound(s). If appropriately applied, 
a read-across approach can be used instead of de novo animal testing. The read-across approach starts with structural/
physicochemical similarity between target and source compounds, assuming that similar structural characteristics lead to 
similar human hazards. In addition, similarity also has to be shown for the toxicokinetic and toxicodynamic properties of 
the grouped compounds. To date, many read-across cases fail to demonstrate toxicokinetic and toxicodynamic similarities. 
New concepts, in vitro and in silico tools are needed to better characterise these properties, collectively called new approach 
methodologies (NAMs). This white paper outlines a general read-across assessment concept using NAMs to support hazard 
characterization of the grouped compounds by generating data on their dynamic and kinetic properties. Based on the over-
arching read-across hypothesis, the read-across workflow suggests targeted or untargeted NAM testing also outlining how 
mechanistic knowledge such as adverse outcome pathways (AOPs) can be utilized. Toxicokinetic models (biokinetic and 
PBPK), enriched by in vitro parameters such as plasma protein binding and hepatocellular clearance, are proposed to show 
(dis)similarity of target and source compound toxicokinetics. Furthermore, in vitro to in vivo extrapolation is proposed to 
predict a human equivalent dose, as potential point of departure for risk assessment. Finally, the generated NAM data are 
anchored to the existing in vivo data of source compounds to predict the hazard of the target compound in a qualitative and/
or quantitative manner. To build this EU-ToxRisk read-across concept, case studies have been conducted and discussed with 
the regulatory community. These case studies are briefly outlined.

Introduction

Grouping/category approaches for read-across have evolved 
over the last decades as important risk assessment tools to 
attempt filling data gaps without performing additional ani-
mal studies, e.g., starting with the OECD HPV programme 
(OECD 2004). Read-across is used to close data gaps, most 
often for complex endpoints such as toxicity after repeated 
exposure or developmental and reproductive toxicity (ECHA 
2014).

While read-across at a first glance may appear as a 
straightforward and logical concept, its realization is more 
complicated and depends on many factors such as avail-
ability and reliability of grouped compound data. In this 
article, the use of new approach methodology (NAM) data 
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will be described to increase the confidence in a read-across 
approach. Moreover, we introduce the concept of biological 
similarity as the basis for a successful read-across approach, 
which goes beyond using only structural similarity.

Read-across requires a similarity assessment of the 
grouped compounds with regard to toxicokinetic and toxico-
dynamic properties. In many read-across cases, it is difficult 
to prove similar toxicokinetic and toxicodynamic properties 
within the grouped compounds, e.g., because of a sparse 
in vivo data matrix. It is also often a challenge to conclude 
on a similar adverse toxicological effect pattern, as the apical 
findings might vary with regard to type, severity and lowest 
observed adverse effect level (LOAEL) within the grouped 
compounds (Judson et al. 2017). The apical findings in vivo 
do in the majority of cases not allow for a deep insight into 
the mechanisms underlying the observed adverse outcomes. 
As an example, liver fibrosis can result from different molec-
ular, cellular and organ responses (Cong et al. 2012; Hor-
vat et al. 2017; Nikota et al. 2017). Here, we will illustrate 
how NAMs could strengthen a read-across assessment by 
evaluation of the toxicokinetic as well as the toxicodynamic 
behaviour of compounds in the human organism.

Terminology

In the following, we will use the term “read-across” to 
describe a category or an analogue approach as defined in 
the Read-Across Assessment Framework (RAAF) (ECHA 
2017).

Compound(s) with relevant in vivo data will be named 
source compound(s) (SCs), whereas compounds, lack-
ing experimental data are named target compounds (TCs). 
Within a read-across approach, endpoint data of source com-
pounds are used to estimate the same endpoint for the target 
compound in a qualitative and/or quantitative way.

Depending on the similarity of the grouped compounds, 
the reading-across of endpoint data can be described as 
inter- or extrapolation. The definition of the relative simi-
larity of grouped compounds to each other is not in the focus 
of this publication, therefore we will use the general term 
“prediction” instead of inter/extrapolation.

The term “category approach” refers to a grouping in 
which the data of many source compounds are used to 
predict the hazard of one target compound (many to one 
read-across) or many target compounds (many to many read-
across). The term “analogue approach” refers to the predic-
tion from one or very few source chemicals to one or many 
target compounds.

The properties of the grouped compounds within a cat-
egory have to be similar or follow a consistent trend. As out-
lined in this article, read-across has to demonstrate that SC 
and TCs likely will cause a similar toxicological response in 
the human organism. The assessment of similarity, therefore, 

is crucial for relevant properties usually starting with chemi-
cal similarity (structural and physicochemical parameters), 
but also including similarity of toxicodynamic and kinetic 
properties; ‘similarity’ here is a qualitative statement on the 
relative sameness of the properties under consideration.

A critical effect in this article is a primary adverse effect 
(as opposed to secondary effects occurring as a consequence 
of primary effects, e.g., extramedullary hematopoiesis, e.g., 
in spleen or liver and all the related haematology effects 
secondary to the primary effect aplastic anaemia). The defi-
nition of adversity is beyond the scope of this article. The 
term “lead effect” in this article refers to a critical effect 
which is likely to determine the point of departure (PoD) for 
risk assessment (e.g., NOAEL/LOAEL) in the in vivo study.

Read‑across workflow

The read-across idea is simple and initially relies on the 
hypothesis that a (quantitative) structure activity relation-
ship ((Q)SAR) exists. Essentially, it is assumed that struc-
turally similar compounds will act via the same mode of 
action and through this cause a similar hazard in vivo. If 
this hypothesis is true, the hazard of a target compound can 
be predicted from the existing toxicity data of one or many 
source compounds.

In reality, the selection of source compounds and the defi-
nition of “similarity” are complex. Beside structural proper-
ties, more aspects have to be carefully considered to assess 
similarity with regard to toxicokinetic and toxicodynamic 
properties within the grouped compounds. Toxicokinetics 
consider absorption, distribution, metabolism and excretion 
(ADME) properties. Differences in the ADME properties of 
compounds may result in variable bioavailability, as well as 
variable systemic (plasma) and target organ exposure. Dif-
ferences in phase 1 and phase 2 metabolism might lead to 
detoxification or generation of toxic/reactive metabolites.

The toxicodynamic properties of a compound result in 
the disturbance of an organism on different levels (e.g., bio-
chemical pathways, signalling, tissue or organ homeostasis, 
interaction and binding with cellular structures) and may 
lead to an apical effect which can be differentiated from 
background variation and ultimately adversely affects the 
health of the organism. Toxicodynamic similarity is always 
connected to the endpoint under investigation (e.g., acute 
toxicity, specific organ toxicity, mutagenicity). It is, for 
example, not possible to use acute toxicity study results from 
source compounds to predict systemic toxicity after repeated 
exposure. Related endpoint data can be used as supporting 
information, e.g., studies with subacute exposure can be 
considered to pinpoint main target organs when addressing 
toxicity after subchronic exposure.

A read-across analysis will typically start with struc-
tural similarity and then consider data on (i) ADME and/
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or physicochemical (PC) properties, (ii) the critical adverse 
effects observed in the in vivo studies, and (iii) the corre-
sponding LOAEL or BMD values. In addition, (Q)SAR pro-
filers are applied to alert for potential problematic properties/
dissimilarities such as binding to (plasma)proteins, chemi-
cal reactivity, genotoxicity, etc. The evaluation of all these 
data leads in an iterative way to a read-across hypothesis, to 
a selection of the most appropriate source compounds and 
finally to a threshold value for the target compound.

In the majority of cases, there is no information about 
the mechanism(s) underlying the observed adverse effect(s) 
in vivo. It is, therefore, often a challenge to conclude on 
a similar toxicological hazard of the grouped compounds 
mainly based on apical findings. In vivo data inherit a cer-
tain variability, because of, e.g., small differences in the 
study design of the animal studies [e.g., species, strains, dose 
selection, dose spacing, route (Judson et al. 2017; Escher 
et al. 2019)] or inter-individual variability of the tested spe-
cies. A better understanding of the mechanism(s) that causes 
an adverse outcome will, therefore, be helpful to conclude on 
similarity and by this, strengthen the read-across hypothesis.

Adverse outcome pathways (AOPs) might help to first 
illustrate and then guide the testing of underlying mecha-
nisms, e.g., using different NAMs. The concept of AOPs 
conceptualises a toxicological mechanism to a series of 
chemical-agnostic sequential events starting with a molecu-
lar initiation event (MIE), followed by a limited number of 
key events and key event relationships, which lead to cellular 
as well as organ responses and the final adverse outcome in 
the organism (Leist et al. 2017). An AOP is a useful tool to 
structure critical steps within a complex biological process 
(Ankley et al. 2010). The key events are essential for the 
progression towards the adverse outcome and can ideally be 
assessed by relevant in vitro or in silico models (Villeneuve 
et al. 2014; Ball et al. 2016). The integration of a shared 
AOP, e.g., verified by NAM data can therefore strengthen a 
grouping approach.

Objective of EU‑ToxRisk

The EU-ToxRisk project is dedicated to the development of 
integrated approaches to testing and assessment (IATAs), 
which will be used for human safety assessment of chemi-
cals. IATAs are tailored to specific problem formulations 
within risk assessment. The starting point is to gather rel-
evant existing information/data and then, where needed, 
additional information is generated.

In an IATA context, EU-ToxRisk evaluates different types 
of NAMs, e.g., human in vitro assays of different complexity 
ranging from high-throughput assays, 2 or 3D cellular mod-
els, human tissue slices to organ-on-a-chip approaches. The 
in vitro models focus on human-derived cell or tissue material 
to overcome species differences and are centered around the 

target organs liver, kidney, lung and the neuronal target sys-
tems to predict systemic repeated dose toxicity (RDT) as well 
as specific in vitro models to predict developmental and repro-
ductive toxicity (DART). EU-ToxRisk NAMs also include in 
silico approaches such as (Q)SAR models or physiologically 
based toxicokinetic (PBTK) modelling and simulation.

The overall aim of EU-ToxRisk is to replace and reduce 
animal testing with regard to the endpoints repeated dose 
and reproductive toxicity. Since this is a broad topic, we 
developed practical examples to gain experience on the 
applicability and limitations of NAMs regarding sensitiv-
ity, specificity and remaining uncertainty with respect to the 
addressed endpoint.

In this publication, we describe the EU-ToxRisk read-
across approach, which integrates mechanistic knowledge in 
human hazard assessment (Leist et al. 2017). We will illustrate 
how MIEs and KEs from in vitro assays together with in silico 
model and simulation tools can be used to prove (dis)similar-
ity or a consistent trend within a read-across assessment and 
by this reduce the uncertainty of the prediction for the target 
compound. The generated NAM data are compared to the 
anchoring in vivo data of the source compounds and used to 
extrapolate the hazard of the source compound(s) to the target 
compound in a qualitative and/or quantitative manner. This 
paper will first give a very brief overview on the current read-
across guidances and will point to typical challenges in a read-
across assessment using illustrative examples. We will then 
outline how the read-across concepts could be improved using 
NAMs as, e.g., being developed in the EU-ToxRisk project.

EU-ToxRisk initiated collaborations with regulators from 
national and European regulatory authorities such as BfR 
and RIVM, and ECHA, EMA, EFSA, respectively. This 
cooperation resulted in the improved mutual understanding 
of the requirements and pitfalls of read-across approaches 
supported by NAMs, from a scientific, academic and regu-
latory perspective. In our opinion, a dialogue on how best 
to integrate NAMs into risk assessment is one of the most 
important steps towards a better read-across practice and 
will contribute to regulatory acceptance of NAM supported 
read-across. In this context, an inventory of the existing 
guidance for NAMs-based read-across reporting was made. 
This resulted in a document with recommendations on the 
reporting templates, which are used for case studies in this 
project. The experiences with the reporting of case studies 
are foreseen for a future publication.

Overview on guidance documents 
and read‑across workflows

A need for guidance was recognised when registering 
chemicals under REACH, as the majority of read-across 
justifications in the dossiers did not obtain acceptance upon 
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regulatory scrutiny (Ball et al. 2016). The four main reasons 
for rejection in disseminated compliance check decisions 
published by ECHA were (i) unclear substance identity of 
the target compound (mainly UVCBs); (ii) lack of data for 
analogues; (iii) read-across to inappropriate data and (iv) 
lack of scientific plausibility. Lack of scientific plausibil-
ity in this assessment means that data presented were not 
supportive of the outlined arguments, disagreed with the 
read-across hypothesis, contained too much uncertainty or 
lacked sufficient evidence/information.

One of the first guidance documents on building chemical 
categories and applying read-across was published in 2004 
by the OECD (OECD manual for the assessment of chemi-
cals, Sect. 3.2, 2004) and updated in 2014 (OECD 2014). In 
2012, the European Center for Ecotoxicology and Toxicol-
ogy of Chemicals (ECETOC) reviewed published literature 
and regulatory guidance documents describing the devel-
opment of chemical categories (ECETOC 2012) followed 
by several other peer-reviewed publications on structured 
workflows for read-across assessments (e.g., Patlewicz et al. 
2018; Schultz et al. 2015; Lizarragad et al. 2015; Blackburn 
and Stuard 2014). Most recently, ECHA published the read-
across assessment framework (RAAF), originally developed 
to guide the regulators, to also support applicants with the 
assessment of grouped compounds (ECHA 2017).

All these approaches have in common, that they consider 
structural similarity as the starting point of the grouping 
approach. Grouped compounds have to show similar PC and 

(eco)toxicological properties or these properties have to fol-
low a consistent trend across the group, e.g., a toxicological 
property increases with increasing carbon side chain length.

The read-across evaluation comprises six main assess-
ment steps, which are in some circumstances iteratively 
linked (Fig. 1, blue boxes). NAM can be integrated into the 
approach in many ways as illustrated with examples in sec-
tion “A read-across workflow integrating NAMs” (Fig. 2, 
green boxes). The traditional six main assessment steps are: 

	Step 1.	 Problem formulation

The problem formulation accounts for the regulatory con-
text (pharmaceuticals, chemicals, cosmetics, etc.) and use 
scenario, including exposure considerations, as well as for 
possible specific information requirements of that process/
scenario, e.g., such as those provided in the Annexes VI–XI 
of the REACH regulation. A problem formulation is defined 
as “a technically oriented process that assists assessors in 
operationally structuring the assessment” (NAS 2009; 
Borghardt et al. 2015). Another aspect of problem formula-
tion is identifying the context of the decision making based 
on the read-across assessment. The scope and decision con-
text determine the amount of uncertainty that is tolerable in 
the final read-across result. Read-across estimates might be 
used, e.g.:

Fig. 1   Overview on the six main assessment steps of a typical read-
across workflow (blue boxes), with indicated typical assessment 
elements (grey boxes). The problem formulation (step 1) gives the 
context of the read-across approach, also defining the level of accept-
able uncertainty (step 5). The assessment of characteristic properties 
of the target compound (TC, step 2) leads to an “initial read-across 
hypothesis” (light blue boxes). This hypothesis guides the identifica-

tion of relevant source compounds (SCs, step 3). Within the evalua-
tion of the toxicokinetic and dynamic properties of the SC (step 4), 
dissimilarities might result in a refinement of the SCs, adaptation of 
the inclusion criteria and potentially also changing the read-across 
hypothesis. This iterative process results in an overarching read-
across hypothesis based on which the data gap filling and uncertainty 
assessment is done (color figure online)
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•	 to establish a final threshold value for allowable lifetime 
exposures in a human health risk assessment;

•	 to establish a benchmark value for comparison to esti-
mated exposures in a screening level assessment;

•	 for prioritization and screening of compounds, and/or
•	 for classification and labelling.

	Step 2.	 Characterisation of the target compound(s) and 
development of an initial read-across hypothesis.

The read-across assessment continues with the characterisa-
tion of the target compound (TC), with the aim to generate 

Fig. 2   Integration of NAM data into the read-across workflow. Exist-
ing NAM data can be considered within steps 2, 3 and 4 and con-
tribute to the toxicological effect pattern of the grouped compounds 
leading to an overarching read-across hypothesis. For this read-across 
hypothesis, we distinguish three different scenarios, which deter-
mines the scope of NAM testing: Case (1): an AOP/AOP network 
is known—this leads to targeted testing of MIEs and selected KEs 
from this AOP; Case (2): analogues share (a) specific toxicological 
effect(s)—this leads to targeted testing of NAMs, which mimics the 
organ response(s); Case (3): analogues share (an) unspecific toxi-

cological effect(s) or no effects up to the highest tested dose—this 
leads to a broad, termed untargeted, testing of NAMs with the aim 
to build a read-across hypothesis. The assessment of toxicokinetics 
aims to address (dis)similarities within the grouped compounds and 
to derive a human equivalent dose using a quantitative in  vitro to 
in vivo extrapolation (QIVIVE) model. QIVIVE needs an assessment 
of in vitro biokinetics (left side) and an estimate of the bioavailability 
per compound in the human organism (right side). The latter is based 
on an IVIVE-PBPK model
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a first read-across hypothesis. This workflow assumes that 
the target compound has a defined and known structure and 
therefore cannot be applied to mixtures or UVCBs (sub-
stances with unknown or variable composition, complex 
reaction products or biological materials).

The characterisation of the target compound considers 
all relevant existing experimental or predicted data usually 
starting with structural and PC properties. PC properties and 
in vivo ADME data indicate the bioavailability of the TC 
or alert to possible bioaccumulation in the human organ-
ism. (Q)SAR models will alert for critical properties such 
as chemical reactivity (binding to proteins, skin sensitisa-
tion, genotoxicity) or bioaccumulation. If available, the data 
matrix will also comprise data for “related” in vivo end-
points. This is endpoint specific, e.g., related in vivo data for 
a subchronic in vivo study with oral exposure could com-
prise repeated dose studies with a shorter exposure period 
or other routes of exposure. The evaluation of the TC will 
lead to a first read-across hypothesis, which guides the selec-
tion of an initial set of SCs. If the TC undergoes biotrans-
formation, the read-across hypothesis may be based on the 
metabolite(s), if critical, and the characterisation may have 
to be repeated with the metabolite(s) as target compound(s).

	Step 3.	 Selection of an initial set of source compounds

The selection of source compounds starts with an initial 
set of structurally similar compounds. Structural similarity 
can be assessed using different structural descriptors and 
algorithms or also by systematic variation of one to several 
key feature(s) (Croni et al. 2013). The selection of the most 
suitable approach is case and endpoint dependent. In any 
case, care needs to be taken to avoid selection bias, i.e., 
in- or exclusion of possible congeners should follow pre-
defined, rigorous and transparent rules. For structurally simi-
lar source compounds, the same data types as for the TC 
are added to the data matrix. It is critical that some of the 
selected source compounds have in vivo data on the endpoint 
to be read-across. The in vivo data of the source compounds 
serve as a basis for the formulation of the overarching read-
across hypothesis (result of step 4) and for anchoring the 
generated NAM data (steps 5 and 6).

	Step 4.	 Evaluation of source compounds leading to the for-
mulation of an overarching read-across hypothesis

This step characterises the hazard of the grouped SCs to dis-
cover (dis)similarity and/or (in)consistency/ies with regard 
to their toxicodynamic and -kinetic properties. In traditional 
read-across, i.e., not integrating NAM data, analogues with 
relevant in vivo endpoints data will be considered, and their 

in vivo ADME data (if available), PC properties and (Q)
SAR predictions will be assessed. Existing relevant in vitro 
data might in addition be used to alert for a certain mode of 
action. Evaluation of the in vivo effect pattern and kinetic 
data might lead to a refined list of SCs (e.g., excluding SCs 
with dissimilar properties) and read-across hypothesis. Step 
3 and step 4 may, thus, undergo several iterations (Fig. 1). 
Again, in- and exclusion criteria have to be described in 
detail to assure full transparency of the approach and to 
avoid a biased selection of SCs.

The chapter “A read across workflow integrating NAMs” 
will introduce a concept to generate NAM data based on 
the overarching read-across hypothesis. In contrast to gen-
erating new in vivo animal data, NAM testing is feasible 
within reasonable timeframes and resources for a broad set 
of structural analogues, allowing the assessment of effects 
of slight structural modifications within the category in a 
systematic way.

	Step 5.	 Data gap filling

Read-across extrapolates the in vivo data of the finally 
selected source compounds to the target compound. Based 
on problem formulation and regulatory context, the user will 
have to fulfil different requirements. Based on problem for-
mulation and regulatory context, the user will have to fulfil 
different requirements. For example, in the context of adapt-
ing REACH standard information requirements, in vivo data 
of the source compounds need to allow for risk assessment 
and classification/labelling in the same way as the in vivo 
animal outcome of the target compound meant to be waived.

Data gap filling must be linked to the overarching read-
across hypothesis. Acceptance of a read-across will only 
be achieved, if the read-across hypothesis tells a coherent 
“story”, i.e., if all pieces of evidence combined in the read-
across are linked to the problem formulation such that it 
becomes clear that both individually and collectively they 
are adequate, reliable and relevant to answer the regulatory 
question at hand.

A category read-across usually assumes that data for the 
target compound can be interpolated between source com-
pounds of higher and lower potency. In a generic scheme, 
there are three general options for PoD derivation:

–	 a worst-case approach, basically meaning that the TC is 
judged to be as toxic as the most toxic compound in the 
group;

–	 a trend analysis, meaning that a consistent trend is 
observed, and a regression analysis can be used;

–	 a nearest neighbour approach, meaning that one SC is 
described as most similar to the TC, and only this SC’s 
endpoint data will be read across to the TC.
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	Step 6.	 Uncertainty assessment

An uncertainty assessment needs to be carried out for all 
steps of the read-across approach. Excellent guidance doc-
uments are published on how to assess the uncertainty of 
in vivo data, and to account for data quality and data gaps in 
a weight of evidence approach (EFSA 2017, 2019). In addi-
tion to traditional uncertainty assessment of the available 
in vivo data, a read-across approach will have to provide an 
uncertainty assessment addressing (i) the selection of the 
final source compounds (e.g., outlining uncertainties aris-
ing from in/exclusion criteria), (ii) the number of source 
compounds, (iii) the toxicological effect pattern within 
the grouped compounds (e.g., addressing infrequent api-
cal findings/or data gaps) and (iv) kinetic properties. The 
uncertainty assessment will probably also guide the choice 
of the data gap filling approach (step 5), e.g., indicating that 
the available data justify the worst-case but not the nearest 
neighbour approach. The uncertainty of the finally predicted 
value/property for the TC is the result of all these steps.

Uncertainty might be described in a semi-quantitative 
way, e.g., classifying the magnitude of uncertainty as low, 
moderate or high (Blackburn and Stuard 2014). Each clas-
sification will have to provide an appropriate explanation. 
EFSA recently proposed eight types of uncertainty assess-
ments ranging from unqualified conclusion with no expres-
sion of uncertainty (type 1) to fully quantitative analyses 
using a two-dimensional probability distribution (type 8, 
EFSA 2019).

Read‑across examples and challenges

Excellent reviews about the basic steps and recent 
approaches with regard to the read-across process are 
already available (Patlewicz et al. 2018). A major challenge 
in the read-across assessment is the confirmation that aside 
from structural and PC properties, grouped compounds 
also share biological properties, in particular that they will 
induce similar toxicological adverse effects, with different 
or comparable potency. This chapter discusses a few exam-
ples to illustrate where NAMs could contribute to the read-
across assessment, subsequently addressing the homogene-
ity of in vivo data (Mangelsdorf et al. 2016) and some of 
the first attempts to support the read-across hypothesis by 
alternative data such as (i) metabolomic data from in vivo 
studies (van Ravenzwaay et al. 2016), (ii) NAMs for linear 
aliphatic alcohols (Schultz et al. 2017; Przybylak et al. 2017) 
and (iii) in vitro data on estrogenicity for alkylated phenols 
(OECD IATA case studies). The principle of so-called activ-
ity cliffs is described (Guha and Van Drie 2008). Finally, 

new approaches for data integration and visualisation are 
briefly introduced.

Guide values for indoor air were proposed for glycol 
ethers and esters based on the evaluation of a data-rich cat-
egory of 47 structurally very similar glycols (Mangelsdorf 
et al. 2016). The authors assessed in vivo data from repeated 
dose toxicity (RDT) studies in rodents with inhalation and 
oral exposure as well as reproductive studies. Although the 
category was relatively data rich with 147 RDT studies and 
67 reproductive toxicity studies, it was a challenge to con-
clude on a shared toxicological effect pattern. The in vivo 
data showed some predominately shared toxic effects, but 
also a number of individual effects at several dose levels. 
This finding could be the result of differences in tested 
strains or species, study design (e.g., selection of doses and 
dose spacing), scope of examination or testing in different 
laboratories/years (Escher et al. 2019; Judson et al. 2017). 
As in vivo data do not directly indicate the underlying MoA, 
it is often a challenge to define categories based solely on 
apical in vivo findings. In vitro models could benefit the 
read-across assessment by illustrating a shared mode of 
action/AOPs across all grouped compounds. All compounds 
are metabolised to one critical metabolite, the alkoxy acid. 
Quantitative kinetic data were, however, not available. Ori-
ented to precautionary principles, according to the goal 
to derive a guide value for indoor air, the lowest observed 
adverse effect concentration was used to derive a general 
guidance value for inhalation exposure for all members 
of the category. Here, NAM models could have provided 
more evidence on (dis)similar kinetic properties, allow-
ing to derive compound-specific guidance values as PBPK 
modelling accounts for differences between compounds with 
regard to bioavailable concentrations in the plasma or target 
organs in humans.

Van Ravenzwaay et al. published an example on alterna-
tive in vivo data, which illustrates the value of metabolomics 
data for the substantiation of a read-across approach (van 
Ravenzwaay et al. 2016). The phenoxy-carboxylic acid her-
bicide 2-(4-chloro-2-methylphenoxy)propionic acid (MCPP) 
was selected as the target substance and 2-methyl-4-chlo-
rophenoxyacetic acid (MCPA) and 2-(2,4-dichlorophenoxy 
propionic acid) (2,4-DPA) as structurally closely related 
source substances. The evaluation of the plasma metabo-
lome of rats treated for 28 days with the source substances 
indicated liver and kidney as the target organs. Metabolome 
evaluation of the target substance provided the same infor-
mation. An overall similarity assessment of the metabolomic 
profiles indicated that 2,4-DPA was more closely related to 
the TC. The data of the 90-day oral rat study for 2,4-DPA 
were thus used to predict the sub-chronic toxicity of MCPP. 
The results of the evaluation of the overall metabolomics 
profile strength indicate that MCPP and MCPA have a 
similar potency with regard to effect, whereas 2,4-DPA was 
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slightly weaker in potency. The NOEL therefore would have 
been expected to be below the value of 2,4-DPA (< 500 ppm) 
and in the range of that of MCPA (150 ppm). From a quali-
tative point of view, the predictions are very similar to the 
results of the actual 90-day study in rats performed with 
the target substance MCPP, which induced reduced food 
consumption and body weight gain; weight increased with 
concomitant clinical-pathology changes in liver/kidney and 
reduced red blood cell values. From a quantitative point of 
view, the predicted NOEL of 150 ppm is in the range of that 
of the actual study (NOEL 75 ppm).

To date, only few examples integrate NAM data from 
in vitro assays into read-across approaches. Schultz et al. 
predicted the NOAEL of a 90-day oral repeated dose study 
for a category of nine aliphatic n-alcohols, with a chain 
length ranging from C5 to C13 (Schultz et al. 2017). Very 
little experimental toxicokinetic data were available for 
the compounds in this category. 1-octanol was found to be 
rapidly absorbed after oral exposure. It is further known 
that some alcohols in this category form glucuronic acid 
conjugate and are excreted in the urine (Kamil et al. 1953). 
β-Oxidation is described to be the most common process in 
n-alkane metabolism. Data on the rate of metabolism were 
absent, so that compounds in this category still could have 
different kinetics. Two short length analogues, 1-pentanol 
and 1-hexanol, had experimental 90-day oral repeated dose 
toxicity data which exhibit qualitative and quantitative con-
sistency. 1-heptanol, 1-undecanol and 1-dodecanol had sup-
porting data from repeated dose toxicity studies for males 
with 54-day exposure (OECD TG 422). Typical findings 
included non-specific symptoms like decreased body weight 
and slightly increased liver weight which, in some cases, 
were accompanied by clinical chemical and haematological 
changes but generally without concurrent histopathological 
effects at the lowest observed effect level (LOEL). ToxCast 
data were available for the majority of the category com-
pounds, however, to a different extent. The existing in vitro 
data from ToxCast and in silico prediction on nuclear recep-
tor binding supported the read-across hypothesis, that the 
grouped compounds do not have an activity associated with 
a specific mode of action. This read-across case shows how 
to integrate data from in vitro and in silico models into the 
assessment in a qualitative way. It would, however, have 
been beneficial in this assessment to have (i) a consistent 
data matrix with similar NAM data for all compounds of the 
category, (ii) experimental data on ADME properties and 
(iii) data from in vitro tests designed to test the read-across 
hypothesis.

Another illustrative read-across example from the OECD 
IATA project is a case study developed by the US-EPA and 
Health Canada on the estrogenicity of alkylated phenols. 
Substances were screened for estrogenic potential by means 
of in silico and in vitro data. The data provided also aimed 

to estimate the in vivo point of departure doses. (Q)SAR 
predictions and in vitro high-throughput screening data from 
multiple assays were combined into a consensus prediction 
of estrogenic potential. Extrapolation of the in vitro bioactiv-
ity to an estimated human equivalent dose was performed 
through the application of reverse dosimetry. For the target 
substance that showed estrogenic potential, the calculated 
human equivalent dose was compared to effect levels from 
in vivo animal studies.1

One of the biggest challenges in read-across is to assure 
that a so-called “activity cliff” will not occur. An activity 
cliff describes a large difference in activity of paired com-
pounds, which are similar with regard to their structural 
features (Guha and Van Drie 2008). This concept originates 
from the development of quantitative structure–property 
(QSPR) and structure–activity (QSAR) relationships. Activ-
ity cliffs are analysed within the training sets and test sets of 
these models to characterise their uncertainty. An activity 
cliff within the grouped compounds of a read-across evalua-
tion will thus lead to an inappropriate prediction and failure 
of the read-across approach. Caution with respect to activity 
cliffs is probably one reason for which read-across evalua-
tions are currently seldom accepted by authorities (Ball et al. 
2016) and that for all analogues toxicodynamic and kinetic 
properties have to be proven similar.

We believe that NAM data can be used to alert for activity 
cliffs, as the testing of large series of analogues will enable 
the evaluation of structure–activity relationships more com-
prehensively compared to the current situation, where the 
number of source compounds is usually restricted to those 
with relevant in vivo endpoint data. Furthermore, mecha-
nistic data like AOPs might be more suitable to identify 
activity cliffs compared to the analysis of toxicological effect 
patterns. New challenges follow the integration of NAM data 
though, for example, with respect to determining the scope 
of NAM testing or the calculation of human equivalent dos-
ing, which will be described in the next section.

The assessment of biological data from NAM assays 
results in a need for integration and visualisation of complex, 
multivariate datasets. One example is the chemical–biologi-
cal read-across (CBRA) approach, which intends to be a 
hazard classification and visualisation method. CBRA inte-
grates chemical similarity and comparison of biological 
responses from multiple NAM assays into the assessment 
(Low et al. 2013). This approach was further developed into 
a more general approach, which predicts the toxicity of a 
target chemical using a similarity weighted activity of near-
est neighbours and is now implemented within the EPA’s 

1  http://www.oecd.org/offic​ialdo​cumen​ts/publi​cdisp​laydo​cumen​
tpdf/?cote=ENV/JM/MONO(2018)26&docLa​nguag​e=En.

http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2018)26&docLanguage=En
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2018)26&docLanguage=En
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CompTox Chemicals Dashboard (Shah et al. 2016; Helman 
et al. 2019).

EU‑ToxRisk read‑across framework

The EU-ToxRisk project investigates the use of NAMs 
in read-across and also more general hazard assessment 
approaches. It introduces the possibility to include bio-
logical similarity in a read-across assessment context, next 
to structural similarity. It also allows to verify this for the 
target using appropriate NAMs, when knowledge on the 
mechanism underlying the toxic effects in source chemicals 
is available, thereby reducing the uncertainty of the read-
across hypothesis and the overall assessment.

In contrast to in vivo testing, NAM data can be gener-
ated within reasonable timeframes and costs for large sets 
of analogues within a category. The testing of a series of 
analogues will enable the illustration of trends or similarity 
in toxicokinetic and toxicodynamic properties.

The option to test a variety of NAM also results in new 
challenges, which are (i) how to define the scope of NAM 
testing; (ii) how to guide the selection of specific (relevant) 
NAMs, (iii) how to assess data from different NAM models, 
that may introduce conflicting results, and, finally, (iv) how 
to integrate NAM data with regard to a qualitative and/or 
quantitative read-across prediction.

A read‑across workflow integrating NAMs

In the next section, a read-across workflow is again 
described, now focusing on the consequences of introduc-
ing NAMs. The workflow describes a generic read-across 
approach and can in principle be applied to any endpoint. 
The application and integration of NAMs with subsequent 
uncertainty assessment and data gap filling will be described 
in more detail in the following, together with illustrative 
examples (example 1 to 7).

NAMs can help to characterise the biological properties 
of SC and TC, thereby reducing the uncertainty of the dif-
ferent steps in the read-across workflow (Fig. 2). Existing 
in vitro data, although seldom available, can be considered 
within step 2 (characterisation of target compound), e.g., to 
alert to a specific mode of action, e.g., receptor (ant)ago-
nism. NAMs will mainly contribute to step 4, the evaluation 
and confirmation of the overarching read-across hypothesis 
by evaluating toxicodynamic and -kinetic properties of all 
grouped compounds. The workflow introduces the concept 
that the scope of NAM testing depends on the problem for-
mulation, the endpoint for which a read-across is performed, 
and the read-across hypothesis.

Step 1: problem formulation

As mentioned above, a central aspect of problem formula-
tion is identifying the context of the decision making based 
on the read-across assessment. Under REACH, for example, 
read-across can be used to adapt the standard testing regime 
(Annex XI, 1.5 to the REACH regulation). Alternative mod-
els such as read-across have to provide information that is 
needed for classification and labelling and risk assessment.

The decision context determines the amount of uncer-
tainty tolerable in the final read-across result and helps 
to select the NAM models and data, including in silico 
approaches, acceptable to support the decision. The read-
across problem formulations can span a continuum from a 
restricted to a broad scope. An example of a restricted scope 
could be “Estimate the point of departure for a specific end-
point in a repeat-dose oral exposure study for a metabolite 
of pesticide A”. An example of a wider scope could be to 
“Identify and characterise the hazard of compound B”.

Fig. 3   2D structure of 4-methylbenzoic acid (4-MBA, CAS 99-94-5)

Example 1: Problem formulation

As an example, we define 4-methylbenzoic acid (4-MBA, 
CAS 99-94-5) as the target compound (Fig. 3), for which 
we would like to predict the outcome of a subchronic oral 
in vivo study (this leads to step 2).

Step 2: characterization of target compound 
(TC) and development of an initial read‑across 
hypothesis

The read-across assessment continues with the characteriza-
tion of the target compound (TC), which is a legal require-
ment, e.g., under REACH. Characteristic properties of the 
TC will also help to generate a first read-across hypothesis 
(Fig. 2). To complete the picture, existing in vitro data can 
be considered, e.g., to alert for a specific mode of action like 
receptor (ant)agonism. If known, this mode of action will 
then have to be considered for the characterisation of the 
source compounds (Step 3).
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Example 2: Characterization of TC leads to initial 
read‑across hypothesis

4-MBA consists of a benzene ring, with a methyl and 
carboxylic acid in para position (Fig. 3). The TC is a 
weak acid (pKa 4.4), water soluble (340 mg/l), not vola-
tile (vapour pressure 6.8 × 10−5 hPa) and has a low prob-
ability to accumulate in fatty tissues (logPow 2.3). The 
(Q)SAR profiles of the OECD toolbox do not indicate any 
alert for genotoxicity or protein binding, which is used as 
a first (negative) indication regarding chemical reactivity.

In this example, biotransformation to a critical metab-
olite is assumed not to be relevant for the TC. In vivo 
ADME data are not available.

An initial search for in vitro data in CHEMBL shows 
22 bioactivities for 4-MBA (CHEMBL ID 21708), e.g., 
four single protein targets like aldehyde dehydrogenase 
1A1; nuclear factor erythroid 2-related factor 2; thiopu-
rine S-methyltransferase and survival motor neuron pro-
tein. The relevance of these protein targets with regard 
to the toxicological effects of the TC cannot be assessed 
based on the available data at this stage.

In absence of any (Q)SAR alerts and relevant in vitro 
data, the initial read-across hypothesis for 4-MBA is 
structure and PC property based. We assume that aro-
matic carboxylic acids with similar PC properties/or fol-
lowing a consistent trend can be selected as a start set 
of analogues. Less prioritized analogues are those with 
additional functional groups such as halogens, thiols, 
nitro, nitroso, amines, aldehydes or alcohols, as well as 
aliphatic carboxylic acids. The risk assessor might still 
consider closely related functional groups like amides to 
be relevant. Source compounds might differ with regard 
to the length and/or position (ortho, meta or para) of the 
alkyl side chain, relative to the carboxylic acid (see Step 
3). A first hypothesis on a mode of action is not possible 
based on the available in vivo or in vitro data.

very heterogeneous with regard to further substituents. 
This approach can be applied in cases where a sub-
structure is known to cause a certain toxic effect. One 
example is anilines, which cause methemoglobinemia 
in vivo after biotransformation to nitrenium ions.

Option 3.	 Structure similarity this method needs a set of 
descriptors, which characterise the presence/absence 
of structural features. The number of shared and indi-
vidual structural features is then used to calculate a 
similarity index between the TC and each SC. A simi-
larity threshold needs to be set to select the “most” 
similar analogues. It is advisable to explore different 
descriptors (in form of well-established fingerprints 
(e.g., RDKit) and algorithms (Tanimoto, Dice etc.).

Step 3: source compounds identification

The selection of source compounds usually starts with struc-
tural similarity. Structural similarity can be assessed using 
different structural descriptors and algorithms or also by 
systematic variation of one to several key feature(s) (Cronin 
et al. 2013). Three approaches can be followed:

Option 1.	 Manual selection this method selects analogues 
by systematic variation of key properties of the TC.

Option 2.	 Substructure search this method will identify all 
compounds that contain a certain relevant structural 
feature (in our example benzoic acid, Step 3 grey box). 
The resulting list of compounds can be structurally 

Example 3: Selection of source compounds

Option 1 The systematic variation of the chain length, posi-
tion and number of aliphatic side chain results in 46 poten-
tial structural analogues (Fig. 4). Benzoic acid (BA) and 
toluene only have one out of the two characteristic struc-
tural features of the TC. Several di- and multi-substituted 
analogues are possible, only di-substituted methyl and ethyl 
analogues are considered in this example. Similarity scores, 
calculated using atom pair fingerprint (RDkit) and the Tani-
moto algorithm, decrease from 100% (methyl-substituted 
analogue in meta position) to 40% (Toluene). Toluene and 
4-tert-butylbenzoic acid have high-quality subchronic tox-
icity studies with oral exposure (green), whereas 3-methyl 
benzoid acid and benzoic acid have supporting in vivo data 
from repeated dose toxicity studies with shorter study dura-
tion or inhalation exposure (Fig. 4, light green; sources of 
in vivo data: RepDose/ToxRef/Hess databases).

Alternatively, a similarity or substructure search can 
be done.

Option 2 The number of analogues depends on the 
inventory, in which the substructure search is performed. 
A search for compounds comprising the substructure “ben-
zoic acid (BA)” in, e.g., CHEMBL reveals 110 potential 
analogues (Fig. 5). The list of the ten structurally most 
similar analogues (determined with atom pair fingerprint 
(RdKit) and Tanimoto algorithm) comprises alkylated 
benzoic acids such as 4-ethyl benzoic acid. In addition, 
it contains dicarboxylated (1,4-benzenedicarboxylic acid) 
or halogenated (5-bromo-2,3,4-trimethylbenzoic acid) 
analogues as well as methylester (4-methylbenzoic acid 
methyl ester) and one benzaldehyde (methyl 4-formylb-
enzoate, 4-formylbenzoic acid) (Fig. 6). 1,4-Benzenedi-
carboxylic acid has two in vivo studies with sub-chronic 
duration, none of the other analogues have in vivo data 
(source of in vivo data: RepDose/ToxRef/Hess databases).
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Step 4: source compounds evaluation to derive 
an overarching read‑across hypothesis

NAM data may provide information about shared mechanis-
tic or kinetic properties, but are, up to now, only seldom used 
in read-across. In case existing in vitro data are available, the 
relevance and accuracy of such data with regard to the pre-
dicted in vivo endpoint need to be addressed. The evaluation 
of the effect pattern from all existing data (in vivo studies for 
the endpoint under investigation, related in vivo endpoints, 
in vivo ADME studies, PC properties, in silico predictions 
and results from relevant human in vitro models) then leads 
to the overarching read-across hypothesis. Within a category 
approach, we may have different toxicological profile situa-
tions, i.e., the category members may show (Fig. 2):

1.	 one common lead effect that has an established AOP 
(Case 1);

2.	 one common lead effect for which mode of action 
knowledge is not available (Case 2);

3.	 several shared lead effects, e.g., several effects in more 
than one target organ observed (Case 2)

4.	 no clear common lead effects, e.g., non-specific effects 
(Case 3);

5.	 no clear lead effect at all: an absence of effects is 
observed up to the highest in vivo tested dose groups, 
the members appear non-toxic chemicals or chemicals 
with very low potency and possibly non-specific in 
nature (Case 3).

Based on the read-across hypothesis; new NAM data can 
be generated (Case 1–3) to prove biological similarity of the 
grouped compounds.

Fig. 4   A overview on structurally similar compounds obtained by 
systematic variation of the aliphatic side chain (Example 3; Option 
1). Similarity scores range from 40% for toluene to 100% for 3-meth-
ylbenzoic acid (3-Methyl BA, similarity scores are indicated in 

orange); compounds with in  vivo endpoints data are indicated in 
green, with supporting evidence from related in  vivo endpoints in 
light green (color figure online)
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dehydrogenases are enzymes involved in the oxidation of 
aldehydes to carboxylic acids, a biotransformation that is 
not relevant for carboxylic acids.

Toxicokinetics

ADME properties have to be assessed to inform on dif-
ferences in the bioavailability of in vivo doses. Experi-
mental in vivo data such as plasma concentration–time 
profiles, Cmax or elimination half-life were not available 
for the five compounds. The fraction absorbed from the 
gut (fa) and the steady-state volume of distribution (Vss; 
L/kg) were predicted based on PC properties and tissue 
composition data (Table 1). These parameters inform on 
the fraction of the ingested dose that will be absorbed 
from the gut lumen, and the extent to which the com-
pound will distribute into tissues from the systemic cir-
culation, respectively.

The predicted data indicate that the oral absorption of 
3-methylbenzoic acid is similar to the TC, whereas greater 
differences are observed with respect to other analogues 
4-tert-butylbenzoic acid and 1,4-benzenedicarboxylic acid 
as the result of a combination of differences in logPow and 
ionisation. 4-tert-butylbenzoic acid showed higher values 
for fa indicating that this compound will be more exten-
sively absorbed from the gut. 1,4-benzenedicarboxylic acid 
has a lower predicted fa than the TC. Predicted Vss val-
ues are comparable for all SCs and the TC; this indicates 
that none of these compounds will extensively distribute 
into tissues but will predominantly remain in the plasma 
instead. Beside similarity assessment, such data can be 
taken into consideration within the read-across assessment 
correcting for the LOAEL and from this to the PoD.

Overarching read‑across hypothesis

The observed in vivo findings show that kidney and liver 
as well as reproductive cells are potential targets within 
the grouped compounds. The toxicological effect pattern 
is, however, heterogeneous and it is therefore not possible 
to conclude on a shared mode of action. The predicted 
data on ADME properties indicate that 3-methylbenzoic 
acid is more closely related to the TC than the other ana-
logues. Differences in ADME properties will need to be 
considered when extrapolating the LOAEL of analogues 
to the TC. As 3-methylbenzoic acid does not have appro-
priate in vivo endpoint data, a one-to-one prediction is 
not possible.

In this example, a read-across approach based on the 
four identified analogues which have in vivo data would 
inherit a relative high uncertainty. NAM data, e.g., based 
on in vitro testing and in silico models could be used 

https​://www.ebi.ac.uk/chemb​l/.

Example 4: Evaluation of source compounds

Toxicodynamics

The five compounds with in vivo endpoint data are con-
sidered to set up the read-across hypothesis (Step 3, 
option 1 and 2). The analysis of PC parameters indicates 
that all analogues are weak acids, except for toluene. 
Lipophilicity increases with alkylated side chain length/
absence of carboxylic acid as indicated by the logPow 
values. Overall, 3-methylbenzoic acid as well as benzoic 
acid is more similar to 4-methylbenzoic acid with regard 
to PC and structural properties than the other analogues. 
However, both compounds do not have appropriate 
in vivo studies for read-across, whereas 1,4-benzenedi-
carboxylic acid and 4-tert-butylbenzoic acid have sub-
chronic in vivo studies of high quality. Toluene is not 
considered to be an appropriate analogue because of the 
missing carboxylic acid substituent (Table 1).
tert-Butylbenzoic acid shows effects in the kidney (necro-
sis) and testes (damage and atrophy at LOEL) followed 
by several mid-dose effects such as neurological symp-
toms (hind limb paralysis) and high-dose effects such as 
liver steatosis and osteoporosis (secondary effect to kid-
ney dysfunction). 1,4-benzenedicarboxylic acid induced 
hyperplasia in kidney and bladder as well as a reduction 
in sperm counts after subchronic exposure in rats. Sup-
porting information are available from 3-methylbenzoic 
acid, which showed mainly periportal hepatocellular vac-
uolar degeneration at LOAEL and degeneration of germ 
cells at high dose in male rats within a gavage study of 
44 days prior to mating. A subchronic inhalation study 
with benzoic acid does not provide any supporting infor-
mation on systemic target organs.

In addition, in  vitro data might be considered to 
describe a toxicological effect pattern and to support 
the read-across hypothesis. In CHEMBL,2 we identified 
110 potential analogues with a benzoic acid substructure 
(Step 3; Option 2). Inspecting the pharmacological pro-
files of these 110 compounds (considering single protein 
measurements with nM unit only, Fig. 5), it becomes 
obvious that these in vitro data are too sparse to indicate a 
clear shared biological pattern. Some tendencies are visi-
ble, such as the preferred inactivity on aldehyde dehydro-
genase 1A1. The ten structurally most similar analogues 
(Step 3, option 2) show the same trend with four out of 
five inactive measurements on aldehyde dehydrogenase 
1A1 (Fig. 6). In this example, the observed inactivity to 
aldehyde dehydrogenase is considered to be of low rel-
evance for building a read-across hypothesis. Aldehyde 

https://www.ebi.ac.uk/chembl/
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Table 1   Physico-chemical parameters and structural similarity scores of the source compounds with in vivo endpoint data and the target com-
pound

Experimental values from SRC PhysProp Database
a Predicted value
b Predicted fraction absorbed from the gut following oral exposure, Simcyp mechanistic passive permeability predictor (MechPeff; v18r1; Pade 
et al. 2017)
c Predicted steady-state volume of distribution (Vss; method 2, Simcyp v18r1; Rodgers et al. 2005; Rodgers and Rowland 2006)

Type Similarity 
score (%)

Name Vapour pres-
sure (hPa)

Water solubil-
ity (mg/l)

logPow pKa fab Vc
ss (L/kg)

SC 100 3-Methylbenzoic acid 3.2 E−04 980 2.4 4.3 0.33 0.11
TC 100 4-Methylbenzoic acid 6.8 E−05 340 2.4 4.4 0.38 0.11
SC 90 Benzoic acid 9.3 E−04 3400 1.9 4.2 0.19 0.11
SC 66 4-tert-Butylbenzoic acid 8.5 E−04a 28 3.9 4.4 0.75 0.10
SC 65 1,4-Benzenedicarboxylic acid 1.2 E−05 15 2 3.5, 4.5 7.2E−4 0.10
Exclude 40 Toluene 37 526 2.7 No data – –

Fig. 5   A heat map showing the 
pharmacological effect pattern 
of single protein measurements 
for the target compound 4-meth-
ylbenzoic acid and its 110 sub-
structural analogues extracted 
from ChEMBL (version 24). 
Red cells indicate active meas-
urements; blue cells indicate 
inactive measurements (cutoff 
set to 10 µM). Only measure-
ments on single protein targets 
and with a nM unit were consid-
ered. For visualisation purposes, 
targets with measurements for 
at least 5% of the compounds 
are shown (13 out of 78 targets) 
(color figure online)

to gain more insight in the MoA and the differences in 
ADME properties. In this example, the target organs are 
kidney, liver and testes, which indicate testing in NAM 
models that mimic the respective organ response. As the 
observed effects are not very specific, broader testing 
including, e.g., transcriptomic data is advisable (case 
3, next chapter). The assessment of toxicokinetic differ-
ences would include measurement of intrinsic hepatic 
clearance and binding to human plasma proteins in vitro. 
The assessment of an effective in vitro concentration and 
modelling of an oral equivalent dose is explained in more 
detail in the chapter “toxicokinetics”.

Hypothesis‑driven generation of NAM data

The previous chapters describe how to define a list of source 
compounds and formulate a read-across hypothesis based on 
already existing experimental and in silico data. The next 
chapters outline the concept how newly generated NAM 
data can be used to substantiate the read-across by testing 
in a systematic way toxicodynamic and -kinetic properties. 
The scope of NAM testing is guided by the overarching 
read-across hypothesis (Fig. 2). Trends might be detected 
as NAM testing opens the floor to evaluating trends/or simi-
larity for a broad set of structural analogues (Fig. 4, 46 ana-
logues possible),
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read-across differs accordingly. The EU-ToxRisk frame-
work distinguishes three cases: case 1—a shared AOP is 
known; case 2—shared specific apical findings are observed 
and case 3—no specific apical effects or no toxic effects are 
observed up to the highest in vivo tested dose (Fig. 2).

Case 1

If the AOP for a set of chemicals is known, NAM testing will 
go along this AOP and it will explore key events (KEs) or 
molecular initiation events (MIEs). This strategy is termed 
targeted testing (Fig. 2). The objective is to generate mech-
anism-related data for all grouped compounds, to confirm 
either (dis)similarity or a consistent trend. The data can then 
substantiate the read-across hypothesis, i.e., reduce uncer-
tainties about potential cliffs or divergent MoAs. In vivo 
studies usually show several effects and the number of api-
cal findings increases with higher dosing. It might therefore 
be, that more than one critical shared lead effect is observed, 
with, e.g., known AOP, which needs in vitro testing. Human 
risk assessment usually does not consider unspecific high-
dose effects/or adaptive changes, e.g., weight changes or 
effects attributed to prominent cell death, to derive a point of 
departure or a classification and labelling. Those effects will 
have to be addressed within the evaluation of the group but 
will not lead to NAM testing. In cases, in which a specific 
adverse effect is observed in the category at doses slightly 
higher than the LOAEL (e.g., with a dose spacing of 2 or 3), 
this might also lead to additional NAM testing.

Toxicodynamics

NAM can be used to provide data on (i) test compound haz-
ard (types of adverse outcomes expected), (ii) mode of action 
(pathways and targets affected), and (iii) relative potencies 
of effects observed in (i) and (ii). In addition, absence of a 
certain mechanism or effect may be tested (or low potency 
for a certain test endpoint be explored).

The selection of the appropriate test battery (including 
both experimental systems and in silico models) is a chal-
lenge that requires a detailed analysis of available data, a 
comprehensive definition of gaps to be filled, and a clear 
read-across hypothesis. From the preceding assessment 
steps, it is clear what kind of read-across situation we are 
confronted with, i.e., which source chemicals have been 
assessed as being adequate for this read-across substantia-
tion, and which kind of toxicity profile is concerned. These 
elements define the scope of NAM testing. For the explicit 
definition of the test battery, it is particularly important 
whether a compound is expected to trigger a single specific 
adverse effect or rather has multiple target organs/toxici-
ties. Specific toxicity can be defined as an (adverse) effect 
on a defined target structure in an animal that can be clearly 
defined and attributed to the tested compound (e.g., dose-
dependent induction of hepatocellular necrosis). In case of 
a single observed specific effect, it is important whether the 
mode of action and the underlying AOP are known.

The selection strategy for NAMs to be used for the char-
acterisation of toxicodynamics and kinetic properties for 

Fig. 6   A heat map showing 
the pharmacological pattern of 
4-methylbenzoic acid and ten 
structurally most similar ana-
logues extracted from ChEMBL 
(version 24). Red cells indicate 
active measurements; blue cells 
indicate inactive measurements 
(cutoff set to 10 µM) (color 
figure online)
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Example 5: Illustrating case 1: targeted testing 
of models harbouring MIEs and KEs

If the mechanism or AOP leading to the specific adverse 
effect is known, an in vitro test battery can be designed that 
tests the deregulation/activation of these specific KEs or 
MIEs.

One example is drug-induced liver cholestasis, for 
which an AOP is described (Vinken et al. 2013) (Fig. 7). 
A central molecular initiation event in the development 
of liver cholestasis is the inhibition of the bile salt export 
pump (BSEP). BSEP transporter protein is a prominent 
adenosine triphosphate-binding cassette transporter located 
at the canalicular pole of the hepatocyte membrane, which 
transports bile acids from the hepatocyte cytosol into the 
bile canaliculi. Inhibition of BSEP potentially causes an 
increase of intrahepatic bile acids with subsequent cell 
injury. In addition to bile acid accumulation, several KEs 
can be measured by NAMs on the cellular level, e.g., the 
induction of inflammation and oxidative stress and the acti-
vation of nuclear receptors like the pregnane X receptor 
(PXR), the farnesoid X receptor (FXR) and constitutive 
the androstane receptor (CAR, Fig. 7).

Two further examples illustrate the power of mech-
anism-based testing to predict adverse outcomes on the 
basis of NAM data: (i) the inhibition of thyroid peroxidase 
(TPO), the enzyme that catalyses thyroid hormone biosyn-
thesis, leads more or less invariably to thyroid hypertrophy, 
and this can eventually lead to non-genotoxic tumour devel-
opment (Mcclain 1992; Divi and Doerge 1996). With such 
clear mechanistic knowledge, TPO-based assays can predict 

Fig. 7   AOP for liver cholestasis (adapted from Vinken et  al. 2013)—
the AOP is simplified to display only MIEs (dark blue) and KE (green), 
which can be measured by NAMs. BESP inhibition (MIE) will cause 
bile acid accumulation, which triggers a massive perturbation of cel-
lular responses, accompanied by inflammation and oxidative stress. 

This leads to membrane damage (results are indicated in orange) and 
the release of cytosolic enzymes. In parallel, adaptive compensatory 
responses are triggered (nuclear receptor activation), which can result 
in jaundice/bilirubinemia and bilirubinuria at the organ level. The 
adverse effects in the organism is cholestasis (color figure online)

thyroid pathology. (ii) Cardiotoxicity can be caused by the 
inhibition of the hERG channel, a potassium channel of 
high importance for the synchronisation of cardiomyocyte 
contraction across the whole organ. It has been shown that 
several drug classes, such as various neuroleptics or also 
modern tyrosine kinase inhibitors (TKIs) inhibit hERG and 
cause arrhythmias (Chaar et al. 2018). Again, the mecha-
nistic events measurable by NAM have good predictivity 
for organ- or organism-level adverse outcomes.

Case 2

A specific toxicological effect may be observed such as tis-
sue necrosis, where the underlying mechanisms/AOPs are 
unknown. This situation is true for the majority of adverse 
apical findings in animal studies.

In this case, the battery of NAM must be chosen in a way 
to capture all (or at least as many as possible) of the poten-
tial underlying mechanisms. A straightforward approach is 
to select test systems that broadly reflect target cell/organ 
biochemistry and physiology and to choose test endpoints 
that are affected by the modification of many targets and 
pathways (e.g., overall cell viability, or an integrated organ 
function such as solute transport in proximal tubule kidney 
cells). With the help of the EU-ToxRisk case studies (see 
chapter “Proof of concept—overview on ongoing case stud-
ies”), we will learn to which extent target cell/organ-specific 
testing is needed, having in mind that the in vitro testing 
battery will not aim to test all organs of the human organism 
for safety and risk evaluation.
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Example 6: Illustrating case 2: targeted testing 
of selected models mimicking organ responses

Adverse effects like inflammatory responses can be 
induced by many different ways/AOPs. It may thus not be 
possible to test a MIE or very early KE, if all mechanistic 
information is absent. Nevertheless, there are several com-
plex in vitro test systems which allow testing of the key 
processes of inflammation itself. If the source compounds 
induce inflammation as the primary toxicological effect 
(i.e., most sensitive), “targeted testing” will use models 
that mimic the target organ response, e.g., lung or brain 
slices that include inflammatory cells. Alternatively, the 
combination of toxicants and inflammatory mediators, 
such as chemokines, may be used on potential target cells 
to investigate response modifications by toxicants.

differ. These differences prevent a conclusion on a consist-
ently shared toxicological effect pattern within the grouped 
compounds. Differences in apical findings can indicate true 
toxicological differences, and in this case the read-across fails. 
They might, however, also be the result of dissimilar study 
designs (dose selection and spacing, tested species/strain, 
study duration, route) or of the variability in the in vivo data. 
In such cases, NAM-based data can provide clarifications. 
NAMs may also be used to reduce uncertainties when animal 
studies indicate infrequent hazardous events. This situation is 
difficult to interpret. Where study design is the reason under-
lying high variability of the in vivo models, testing appropri-
ate in vitro or silico models for all grouped compounds (under 
similar conditions) may clarify the situation.

Toxicokinetics

In vivo ADME data are most often not available for indus-
trial chemicals. Therefore, there is a need for better models 
describing the relationship between external dose, internal 
tissue or blood concentrations, or excreted amounts for both 
parent compounds and possible transformation products. 
Physiologically based pharmacokinetic (PBPK) modelling 
and simulation can be used to predict bioavailability and 
systemic/tissue exposure in humans, and model species.

EU-ToxRisk incorporates the use of in vitro to in vivo 
extrapolation (IVIVE) PBPK modelling. IVIVE-PBPK models 
are parametrised using data generated in vitro, such as intrinsic 
hepatic clearance (CLinthep) in primary human hepatocytes, and 
plasma protein binding, to calculate the total hepatic clearance 
and extrapolate to the in vivo situation (Howgate et al. 2006). 
High-throughput assays for determining these parameters 
experimentally are well established, and certain parameters 
can be predicted using QSAR models (e.g., fraction unbound 
in plasma, blood to plasma ratio). While QSAR models for 
CLinthep have been published, they show only limited success, 
as such intrinsic hepatic clearance still represents an experi-
mental necessity in the development of IVIVE-PBPK models. 
IVIVE-PBPK models in EU-ToxRisk were developed in line 
with the World Health Organization PBPK guidance (IPCS 
2010). In addition, the approach adopted here assumes that 
in vivo kinetic data are available for at least one source com-
pound to verify the predictive performance and justify model 
assumptions across the grouped compounds.

It is important to note that in this context, the objective of 
PBPK modelling and simulation is not the fully mechanistic 
recovery of the toxicokinetics of the read-across compounds, 
but to establish models for the comparison of systemic and 
target organ exposure across the grouped compounds based on 
available data. Since a focus of NAMs is to obviate the need 
for experimentation in animals, additional dosing studies in 
preclinical species to support read-across are not conducted. 
However, PBPK models for the prediction and cross-species 

Case 3

If the grouped compounds share an adverse toxicological 
finding that is not very specific (e.g., weight loss), or if the 
compounds have very low toxicity, then targeted or specific 
testing cannot be performed. Here, NAMs would be used for 
broad untargeted testing to (i) either generate a read-across 
hypothesis based on shared in vitro effects or (ii) to prove 
the absence of effects (up to concentrations corresponding 
to those obtained in man in realistic exposure situations).

An unspecific effect would, e.g., be given by a dose-
dependent significant decrease in body weight gain accompa-
nied by a significant relative liver weight increase without any 
histopathological correlation and/or not clearly adverse effects 
like hepatocellular hypertrophy. As specific, effect-related 
test methods cannot be applied, models will have to be used 
that generate broad general data sets (such as omics data). 
Alternatively, broad in vitro screening batteries may be used 
that cover dozens to hundreds of MIEs and early KEs. These 
data will be used to generate a hypothesis for the underlying 
mechanism. Alternatively, they may be used to test whether 
grouped compounds show similar biological responses. It 
is still unclear what extent of potential biological pathways 
and processes needs to be covered by a screening battery, 
if one wants to claim the absence of an effect. EU-ToxRisk 
is currently starting with case studies addressing low-toxic 
compounds and will explore the scope of NAM testing and 
appropriate tiered testing strategies.

Concerning the relevance of cases 1, 2, and 3 described 
above, it can be expected that most read-across cases are 
somewhere in between case 1 and 2. The assessment of the 
available in vivo data will potentially show some shared 
toxicological findings, eventually pointing to a shared mode 
of action, but often some effects and/or target organs will 
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comparison of exposures can still be developed using an 
IVIVE approach based on legacy in vitro data using species 
relevant material (i.e., primary rat hepatocytes). Alternatively, 
a reverse translation (Rostami-Hodjegan 2018) approach may 
also be employed, deriving CLinthep from legacy toxicokinetic 
data in preclinical species, based on principles of pharmaco-
toxicokinetics [e.g., the well-stirred liver model (Dong and 
Park 2018)]. If neither species-specific in vitro data, nor 
in vivo toxicokinetic data are available, established predictive 
IVIVE-PBPK models for human exposure can be used to sim-
ulate in vivo clearance in human. Predicted in vivo clearance 
in humans can then be allometrically scaled to the preclinical 
species of interest to provide a cross-species comparison if 
required. The species differences in specific TK mechanisms, 
such as enterohepatic recirculation, must be further assessed 
in case these mechanisms are needed to accurately describe 
the available in vivo data.

IVIVE-PBPK enables the integration and evaluation of 
ADME properties throughout the grouped compounds and 
high concentration differences between grouped compounds 
will need to be considered in the data gap filling step, e.g., 
by a worst-case approach or by trend analysis. The IVIVE-
PBPK model can be used to eventually derive a human 
equivalent dose. In this approach, the free concentration in 
in vitro test systems is translated to a human equivalent dose 
based on the relevant route of exposure, biokinetic modelling 
of the in vitro assays (Fisher et al. 2019), and PBPK simula-
tion (Fig. 2). Finally, the dose of the in vivo animal study 
that the read-across aims to waive can be predicted based on 
PBPK simulation in the relevant preclinical species.

have also been previously generated in several rat stud-
ies, providing a concentration time profile for SC1 in rat 
plasma. Using these available toxicokinetic profiles, a rat 
PBPK model is generated based on reverse translation, 
calculating in vivo clearance from the observed profile 
and then scaling this to the intrinsic hepatic clearance 
to parameterise the PBPK model. The predictive per-
formance of the rat SC1 PBPK model is then verified 
against remaining data not used to derive model param-
eters. Having established a verified rat PBPK model for 
SC1, the oral dosing study from which a LOAEL was 
determined can be simulated and the maximum unbound 
concentrations (Cumax) in plasma and liver determined. 
For SC1, the unbound concentration in plasma was deter-
mined to be 2.5 mM. Based on this, a concentration range 
of 0.125–8 mM is selected for the in vitro NAM test-
ing of SC/TC RAX compounds. Such a model-informed 
approach provides an objective, data-driven strategy for 
and in vitro study design.

Translate in  vitro NAMs to  in  vivo human In the next 
step, it is necessary to establish a human PBPK model 
to translate in vitro effective concentrations of grouped 
compounds to human in vivo oral doses. For all SCs/TCs, 
data on physicochemical properties [i.e., logPow, pKa, 
PSA (Å2), HBD], solubility and volatility, are required to 
parametrise the PBPK models. These data are gathered 
from publications or databases of experimental values, 
or predicted using in silico tools (e.g., QSARs). Other 
essential model parameters such as the fraction unbound 
in plasma (fu), blood-to-plasma ratio (BP), and hepatic 
intrinsic clearance (µl/min/106 cells) are determined 
experimentally, using established in vitro methods. Here, 
data on the plasma concentrations following dosing in 
humans (at several dosing levels) were available for one 
of the SCs. Using these data, the predictive performance 
of the PBPK model for this SC is verified and used to 
justify the assumptions of the modelling strategy. Verifi-
cation of the predictive performance of the human PBPK 
model for this SC confirmed the suitability of the in vitro 
system used to determine CLint and the applicability of 
the IVIVE-PBPK approach to this group of compounds.

In vitro biokinetic modelling is used to predict the 
intracellular concentrations corresponding to the nominal 
effective concentrations determined in the NAMs in vitro 
(Fisher et al. 2019). Based on these predicted intracel-
lular effective concentrations, reverse dosimetry using 
the human PBPK models is performed to predict oral 
equivalent doses (OEDs; mg/kg) in humans for all SCs/
TCs. Specifically, the oral dose (mg/kg bw/day) required 
to achieve a target organ (hepatic) Cmax equal to the effec-
tive intracellular concentration identified in in vitro NAMs 

Example 7: PBPK

PBPK modelling and simulation can be useful in the RAX 
workflow at various points. Where NOAEL/LOAEL and 
toxicokinetic data from in vivo studies in the same spe-
cies are available, a PBPK model can be used to predict 
the effective concentrations in plasma and target tissues. 
These predicted effective concentrations can then be 
used to determine the range of test concentrations to be 
applied in vitro. Having established effective concentra-
tions in vitro, these can be translated to in vivo equivalent 
external doses using reverse dosimetry on human IVIVE-
PBPK models. The example below outlines a hypothetical 
RAX in place of a 90-day repeat-dose toxicity study in rats 
to assess hepatoxicity.

How to select the concentration range for in vitro NAM 
testing? In vivo rat NOAEL/LOAEL studies determined 
a LOAEL of 500 mg/kg bw/d for hepatic steatosis for 
one of the SCs (SC1) in the RAX. Toxicokinetic data 
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many sources. It is also in line with EFSA’s definition. A further 
sharpening is expected in the future, but at present the disci-
pline of uncertainty research is only at its beginning. Therefore, 
nowadays realistic uncertainty assessment has to focus mainly 
on a description of uncertainty sources. This means that the 
assessment of different uncertainties is still mainly qualitative 
(semi-quantitative at best), and methods for a full uncertainty 
quantification still need to be developed and evaluated. Within 
the EU-ToxRisk project, Bayesian networks have been con-
sidered for overall uncertainty extrapolation (still under evalu-
ation), and Dempster–Shafer analysis has been employed to 
combine different types of information, and to produce quanti-
tative estimates on their combined prediction accuracies.

This chapter will briefly list types of uncertainty to be 
considered. Some of them refer to toxicological tests in 
general. However, there are uncertainties that are more pro-
nounced when using non-guideline NAMs, and there is also 
a group of uncertainties specific for read-across approaches.

General uncertainties comprise the limited accuracy of 
methods as well as the issues linked to the method’s preci-
sion (= prediction accuracy). Limited accuracy is linked to 
the variability of data (heterogeneity of values over time, 
space or different members of a population, including sto-
chastic variability (noise). Accuracy is quantified in terms of 
robustness/reproducibility of the method. Limited precision 
is linked to the fact that a method’s outcome data (even if 
they are highly accurate) may not correlate well with effects 
that are (or would be) seen in humans. Precision is quantified 
in terms of predictivity and relevance of the method.

Non-guideline NAMs often have undergone little formal 
evaluation concerning robustness, relevance and predictiv-
ity. For their use in a regulatory context, readiness criteria 
have been elaborated (Pamies et al. 2018; Bal-Price et al. 
2018a; Hartung et al. 2019) that are used in the context of 
EU-ToxRisk. All methods have been documented, following 
an extensive questionnaire. The questions cover all issues 
laid out by the OECD guidance document GD211 (docu-
mentation of non-guideline methods (OECD 2017), and 

Table 2   Structured overview of uncertainties

Level Type of uncertainty Examples and comments

1 Source data Variability, completeness and heterogeneity of raw and summary data; data base reliability, etc
2 Mode of action (MoA) How robust is the read-across hypothesis? Uncertainty about activity cliffs, and about additional/other MoA
3 Source compounds Uncertainties about (un)biased selection of SCs. Uncertainty arising from potentially low number of adequate 

SCs
4 NAM data Refers to experimental hazard and ADME tests: readiness and validation status; acceptability criteria, and 

reliability of data provider. For in silico models such as QSARs aspects like relevance for the in vivo end-
point, prediction accuracy and applicability domain need to be considered

5 Data integration Integration of hazard data, mechanistic endpoints and ADME data.
6 Scope Here the uncertainty refers to the type of study results to be predicted (e.g., comprehensive 90-day study; or 

single organ effect in a 28-day study)
7 Gaps/inconsistencies Major data gaps, and contradictory data need to be considered and pointed out in overall uncertainty analysis

is calculated. The human in vivo hazard can be assessed 
based on the in vitro hazard data, contextualised with com-
pound-specific toxicokinetics. Since the aim of the RAX 
is to waive the need for the repeat-dose study in animals, 
PBPK can be used to simulate the results of the waived 
study in terms of NOAEL/LOAEL dose-level predictions. 
In the absence of animal clearance data, in vivo clearance 
predictions for all SCs/TCs from human PBPK can be allo-
metrically scaled to the relevant model species. Using this 
approach, a rat PBPK model for the TC was constructed 
and used to simulate a study with repeated dosing.

Step 5: uncertainty assessment

EU-ToxRisk explores the use of NAMs in risk assessment 
and in particular in a read-across context. Only few NAMs 
have undergone full validation and incorporation into 
OECD test guidelines. The NAMs used in EU-ToxRisk are 
mainly the so-called “non-guideline methods”. The qual-
ity, relevance and predictivity of such NAMs are sometimes 
less clearly defined than for standard animal-based testing 
according to OECD test guidelines. This results in different 
types of uncertainties, and requires a comprehensive uncer-
tainty assessment.

As suggested by the EFSA guidance document on “uncer-
tainty” (EFSA 2019), we use this term here in a broad sense 
as “referring to all types of limitations in available knowledge 
that affect the range and probability of possible answers to 
an assessment question”. Available knowledge refers here to 
“the knowledge (evidence, data, etc.) available to assessors at 
the time the assessment is conducted and within the time and 
resources agreed for the assessment”. The term ‘uncertainty’ is 
used both to refer to a source of uncertainty, and to its impact on 
the conclusion of an assessment. This definition is admittedly 
very broad, but it reflects well the situation that uncertainty 
for NAM-based read-across can arise at many levels and from 
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the information is available in a transparent way in a public 
database (https​://eu-toxri​sk.dougl​ascon​nect.com/publi​c/).

Uncertainties specific for read-across mainly arise from 
the need (i) to integrate several types of information to arrive 
at an overall conclusion, and (ii) to establish a scientific 
hypothesis (read-across hypothesis) that drives the overall 
evaluation process. Concerning (i), it is a scientific problem 
not yet solved, how uncertainties from largely different types 
of information (e.g., validity of the read-across hypothesis; 
suitability of the chemical similarity measures chosen; test 
data from NAM; predictions of metabolism) can be com-
bined in a quantitative way. Concerning (ii) measures for 
the quality of a hypothesis may be adopted from other fields. 
However, this would not solve the issue of translating the 
hypothesis quality into a toxicologically relevant uncertainty 
measure. At present, the description of the relevant prob-
lems and uncertainties is the state of the art (e.g., Cronin 
et al. 2019 and also used in EU-ToxRisk). Further advances 
towards quantitative measures will require massive scientific 
efforts and financial resources.

A structured description of uncertainties and a transparent 
display is an objective of EU-ToxRisk. This requires various 
types of uncertainties to be considered at several levels of 
complexity (Table 2).

Some brief notes below further reflect the different lev-
els. A more detailed discussion would be beyond the scope 
of this general read-across document, and EU-ToxRisk is 
preparing other documents on high-quality method docu-
mentation, and on an internal validation study, examining 
the performance of the hazard-related NAM used for the 
case studies.

Level 1 refers not only to NAM data, but also to the 
in vivo data used as anchoring and source points. Concern-
ing level 4 (tests), uncertainties may refer to predictivity, 
relevance, reliability and applicability domains. With respect 

to level 5 (integration), quantitative tools are emerging such 
as the Dempster–Shafer analysis presented below, for the 
integration of different hazard prediction tests. Moreover, 
the traditionally more qualitative integration of ADME data 
with hazard data is getting more and more quantitative (Punt 
2018) through the use of tools allowing quantitative in vitro 
to in vivo extrapolations. Level 6 has two major aspects: (i) 
uncertainty of potency prediction (in extreme cases, either 
only hazard as such is predicted, or a defined human NOEL 
with a measure of variance for the average population or 
specific subgroups is derived); (ii) uncertainty of the range 
of endpoints to be predicted; a specific subcase is the predic-
tion of non-toxicity, where the uncertainty of being wrong is 
particularly problematic. Level 7 also includes a summariz-
ing discussion of all other levels in a balanced weight-of-
evidence (WoE) approach.

Ideally, a fully quantitative system would be available to 
express and compare uncertainties. This could be used to 
drive the improvement of the read-across procedure, and to 
select the most appropriate NAMs for it. At present, a tool 
to quantify overall read-across uncertainty in a mathemati-
cal way is not available. This is in part different for read-
across as compared to (Q)SAR (Cronin et al. 2019). Statis-
tical QSAR models can be tested and validated by the use 
of test data which were not part of the training data, while 
read-across relies on expert judgement for the description, 
weighing and integration of very different types of uncer-
tainties. Rule-based QSAR models, however, also include 
expert knowledge, nevertheless their performance can be 
tested with test data.

The most common approach to document uncertainty for 
the different levels described above is a description of the 
situation, followed by a WoE judgement to classify uncer-
tainty as low, medium or high (Blackburn and Stuard 2014). 
However, at least for some types of uncertainty, (semi)

Table 3   Table of the outcomes 
for the assays on ten source 
compounds and one target 
compounds

Note that the DST software applied for this example calculation was developed in the EU-ADR project 
(ICT-215847)

Id Effect Assay Type

1 2 3 4 5 6 7 8 9 10 11 12

cmpd1 Toxic 1 1 0 1 1 0 0 1 1 1 0 1 Source
cmpd2 Toxic 0 0 0 0 0 0 0 0 0 0 1 0 Source
cmpd3 Toxic 1 1 0 1 0 1 1 0 1 1 0 1 Source
cmpd4 Toxic 0 1 0 1 1 0 0 1 0 1 0 1 Source
cmpd6 Toxic 1 1 1 1 1 1 1 1 1 1 0 1 Source
cmpd7 Non-toxic 0 0 0 0 0 0 0 0 0 0 0 0 Source
cmpd8 Non-toxic 1 1 0 1 1 0 1 0 0 1 0 1 Source
cmpd9 Non-toxic 0 0 0 1 0 0 0 1 0 0 1 0 Source
cmpd10 Non-toxic 0 0 0 1 0 0 1 0 1 1 0 0 Source
cmpd11 Non-toxic 0 0 0 1 1 0 0 1 1 1 0 0 Source
cmpd5 Unknown 1 1 0 1 1 0 0 1 0 1 0 1 Target

https://eu-toxrisk.douglasconnect.com/public/
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quantitative tools are available already now, and more pro-
gress is expected for the future. For instance, scores have 
been developed for test readiness (Bal-Price et al. 2018b) 
and this allows to quantify the accuracy and prediction 
uncertainties of tests. Moreover, the Dempster–Shafer theory 
(DST) (Shafer 1976; Dempster 1967; Rathman et al. 2018), 
a Bayesian-based decision theory approach, allows the fully 
quantitative combination of various types of test data, taking 
into account the individual test performances/uncertainties, 
and to derive likelihoods of test data being correct. Thus, 
DST-based algorithms can provide probability estimates 
based on the combined quality and reliability of the NAM 
data. This applies mainly to the combination of NAM hazard 
data. Incorporation of other categories of data (e.g., chemi-
cal similarity or ADME data) will necessitate modifications 
and extensions. The example described below is used to 
illustrate the application of DST to a read-across approach. 
DST needs positive compounds, e.g., all showing in vivo 
certain toxicity and one to several negative compounds, 
which do not show this toxicity in vivo. The information it 
provides on data reliability can support regulatory decisions.

compound did not show this in vivo toxicity (termed non-
toxic, Table 3). The effect pattern from the NAM data does 
not at a glance allow the conclusion that the target com-
pound (cmpd 5) belongs to the toxic or non-toxic group. 
For instance, assays 1 + 2 would suggest that the target 
compound is toxic, while assays 3 + 6 suggest that it is 
not toxic (Table 3). This is a typical case where evidence 
from all assays needs to be combined in a way that includes 
background data as to how much we trust each given assay.

The actual study data (within this example) are used 
for evaluation of the test performance. This is possible 
here because of the high number of compounds with 
known toxicity and non-toxicity (in vivo). Based on this, 
it is possible to determine the false negatives (FN), false 
positives (FP), etc., for each test and to derive character-
istics of the test prediction models such as the specific-
ity, sensitivity and the balanced accuracy (BA) (Table 4). 
These data suggest that there should be different degrees 
of reliance on the data from the twelve tests, and here the 
DST provides an optimal tool to combine results of target 
compound testing (cmpd 5) in all assays, with the con-
fidence measure on all twelve assays as obtained above 
(see Table 4).

The DST combines the above information but not in a 
classical probabilistic way (e.g., ANOVA or other hypoth-
esis contrast tests). DST combines the given test data and 
assay quality estimates into a belief with respect to a ‘prop-
osition’. The proposition in this example is: “compound 5 

Table 4   Overview on assay 
performance: Each test is 
characterised by the true 
positive (tp)/true negative (tn) 
rate, the false positive (fp)/
false negative (fn) rate, as well 
as thereof derived values like 
sensitivity, specificity and 
balanced accuracy (BA)

True and false positives and negatives, respectively: tp, fp, tn, fn
Specificity: tn/(tn + fp); sensitivity: tp/(tp − fn); BA = (specificity + sensitivity)/2

Assay tp fn fp tn Specificity Sensitivity BA

assay12 4 1 1 4 0.80 0.80 0.80
assay2 4 1 1 4 0.80 0.80 0.80
assay1 3 2 1 4 0.80 0.60 0.70
assay6 2 3 0 5 1.00 0.40 0.70
assay10 4 1 3 2 0.40 0.80 0.60
assay3 1 4 0 5 1.00 0.20 0.60
assay5 3 2 2 3 0.60 0.60 0.60
assay8 3 2 2 3 0.60 0.60 0.60
assay9 3 2 2 3 0.60 0.60 0.60
assay11 1 4 1 4 0.80 0.20 0.50
assay4 4 1 4 1 0.20 0.80 0.50
assay7 2 3 2 3 0.60 0.40 0.50

Table 5   Results from DST on target compound

Name Belief Plausibility DST prediction Comment

cmpd5 0.915 0.926 Toxic All assays used for 
prediction

Example 8: Quantifying combined uncertainties 
(data reliability) using the Dempster–Shafer 
theory (DST)

This read-across is performed using a set of twelve in vitro 
assays for which we assume that data are available from 
in vitro tests. In this example, ten source compounds 
have been tested, as well as one target compound. The 
biological properties of source compounds are known 
from in vivo studies: five of them showed an adverse 
effect (termed toxic), whereas five chemically related 
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is toxic”. The DST calculation results in two output param-
eters: belief (BEL) and plausibility (PL). BEL indicates 
the strength of evidence in support of the proposition, on 
a scale of 0 (no certainty) to 1 (certainty). This means that 
the outcome of BEL = 0.915 (Table 5) means that there is 
91.5% certainty that compound 5 is toxic.

The counter-proposition would be: “compound 5 is 
non-toxic”. As mentioned above, some of the tests also 
delivered arguments to support this. The strength of belief 
into the counter-proposition is given by the plausibility 
parameter in the following way: if one subtracts PL from 1, 
then the resultant number is the belief that the compound 
is non-toxic. Within our example (see Table 5: results 
from DST on target compound), there is a probability of 
1–0.926 = 0.074, i.e., there is 7.4% evidence that the target 
compound is non-toxic. If one adds up 7.4% and 91.5%, 
then 98.9% of outcome beliefs are covered. The remaining 
1.1% is the difference in PL-BEL. In general, the term PL-
BEL (here 0.011 = 1.1%) expresses the potential that the 
proposition is correct, beyond the certainty given by BEL. 
In this example, there is 91.5% certainty that the target 
compound is toxic. Altogether, there is a 92.6% potential 
that compound 5 is toxic, while there is only 7.4% counter-
factual evidence (the uncertainty is 7.4–8.5%).

This example illustrates the outcome of the DST anal-
ysis. Moreover, it demonstrates how the input data are 
used to derive quantitative data on belief and uncertainty. 
It also shows the potential for more extensive use: for 
instance, the analysis may be performed for subsets of 
tests, and this could yield data on which tests contribute 
to certainty or uncertainty. Moreover, sensitivity analysis 
may be performed with this tool to identify areas that 
particularly contribute to uncertainty and need optimisa-
tion in the future.

waived standard in vivo assays, which essentially means 
that the in vivo data of the source compounds, together 
with the NAM data of source and target compounds have 
to predict the in vivo animal outcome of the target com-
pound, all required as a basis for classification/labelling 
as well as risk assessment. Under REACH, the registrant 
will in general use the available in vivo data for the deri-
vation of the NOAEL/PoD for the TC. In this case, NAM 
data of source and target compounds can be used to reduce 
the uncertainty of the read-across by illustrating a shared 
mode of action (AOPs), similar ADME properties, or a 
consistent trend.

Other regulatory contexts will allow for the direct 
replacement of in vivo data by appropriate and reliable 
in vitro data. As outlined above, in vitro assays can be used 
to derive benchmark dose levels which indicate the onset of 
a certain toxicological/biological effect, e.g., activation of 
MIEs or KEs, inflammatory processes, etc. PBPK model-
ling converts this effective in vitro concentration into human 
equivalent oral doses. The human equivalent doses provide 
information on a PoD for the target and source compounds 
and can be used as replacement for the PoDs derived from 
in vivo animal data.

Next challenge: biological read‑across

The NAM-based process as described above would also be 
applicable to target and source compounds, which share 
the same AOP/mode of action but are structurally diverse. 
Such a read-across hypothesis is termed biological read-
across. As described under cases 1 and 2, hazard charac-
terisation of the known AOP/mode of action by selected 
relevant NAM models is feasible, as well as an educated 
guess on differences on internal dose levels using IVIVE-
PBPK modelling.

As compared to the classical read-across based on struc-
tural similarity, here SCs are identified on the basis of simi-
larity between SCs and TC regarding a certain biological 
profile, e.g., on biological activity or gene expression pro-
files (Guha and Bender 2012; Zhu et al. 2014).

The biological read-across concept is, however, not yet at 
a stage to be considered for risk assessment. It remains, for 
example, questionable to which extent structurally diverse 
compounds may have additional and dissimilar toxicological 
properties and how the most critical effects can be detected 
using NAMs. Besides targeted testing, additional NAMs 
will have to cover a broad enough toxicological space to 
ensure that critical adverse effects will not be overlooked 
(e.g., through omics methodologies using an appropriately 
representative selection of different cell systems).

Also, compared to a classical read-across based on struc-
tural similarity, it has to be noted that the uncertainty for the 

Step 6: data gap filling supported by NAM data

Read-across extrapolates the data of the source com-
pounds to the target compound. NAM data will strengthen 
the grouping approach by illustrating trends or similarity 
between the grouped compounds. NAM will indicate how 
far TC and SCs share common toxicological mechanisms/
AOP or induce similar responses in test systems mimicking 
critical organ responses. PBPK modelling, being informed 
by suitable in vitro parameters, will help to detect differences 
in ADME properties and can be used to refine the selection 
of most relevant source compounds.

Based on the problem formulation and the regulatory 
context, the user will have to fulfil different requirements.

For example, in a REACH context, a read-across has to 
provide information equivalent to that available from the 
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purely biologically based read-across might be considered 
higher, thereby ignoring that biological activity is not always 
proportionally correlated with structure.

Proof of concept: overview on ongoing case 
studies

To enhance the transition of moving from assessments based 
on in vivo data to application of NAMs, the OECD is run-
ning the Integrated Approach to Testing and Assessment 
project (http://www.oecd.org/chemi​calsa​fety/risk-asses​
sment​/iata-integ​rated​-appro​aches​-to-testi​ng-and-asses​
sment​.htm#newca​sestu​dies), where case studies are being 
developed. These case study assessments vary as they start 
from problem formulation under different regulations, which 
therefore comprise, for example, defined approaches, prior-
itization and hazard characterization and a handful of read-
across cases.

In addition, the project EU-ToxRisk developed several 
case studies illustrating the applicability of NAMs within 
a read-across context, and is now further advancing to case 
studies in which analogues with anchoring in vivo data are 
not available, termed ab initio approaches. The majority of 
the case studies comprise structurally similar compounds 
and show how NAMs can be used to substantiate a read-
across hypothesis.

The case studies always contain some analogues with 
in vivo endpoint data, so that predictivity and accuracy of 
the NAM data can be verified. For the same reason, some 
structurally relatively similar compounds are included, that 
do not show the shared toxicological effect pattern/AOP in 
the in vivo data which determines the read-across hypoth-
esis. NAM data will be used to better define the boundaries 
of the categories, also showing absence or decrease of tox-
icity within the grouped compounds. In addition, the use 
of NAMs for biological read-across is under investigation. 
The EU-ToxRisk case studies are briefly summarized in the 
following section.

Microvesicular liver steatosis: a read‑across case 
study with branched carboxylic acids

19 (un)branched aliphatic carboxylic acid is tested in 
selected in vitro assay systems for their ability to induce 
MIEs or KEs, which are described in an AOP network for 
liver steatosis. IVIVE-PBPK modelling is used to calcu-
late in vivo equivalent oral doses using the most sensitive 
in vitro outcome per compounds. The Dempster–Shafer 
decision theory was used to quantify the uncertainty associ-
ated with the combination of a variety of in vitro results and 
furthermore helped to identify the minimal amount of assays 
needed for the overall conclusion.

Read‑across‑based filling of developmental 
and reproductive toxicity data gap for methyl 
hexanoic acid (MHA)

MHA has a data gap for developmental and reproductive 
toxicity. We used five structurally related two-branched ali-
phatic carboxylic acids that have this data to inform on MHA 
in a category approach. We also included less structurally 
related carboxylic acids as positive and negative controls, 
and tested all for (neuro)developmental toxicity in a bat-
tery consisting of zebrafish embryo test, mouse embryonic 
stem cell test, iPSC-based neurodevelopmental model, and 
a series of CALUX Reporter assays, that we combined with 
toxicokinetic models to calculate effective cellular concen-
trations and associated in vivo exposure doses, to identify 
MHA’s toxicity gap profile. This in vitro and in vivo data 
were analysed using various statistical approaches, to con-
clude on the developmental and reproductive toxicity for 
MHA, as well as to quantify the uncertainty in the data.

Liver toxicity of hydroquinones

Six hydroquinones or resorcinols are tested for their ability 
to induce oxidative stress via redoxcycling in several in vitro 
systems. This oxidative stress is considered to be the mode 
of action leading to adverse liver effects in anchoring in vivo 
studies. The main experimental challenge in this case study 
turned out to be the instability of phenol derivatives in in vitro 
assays, together with volatility of the case compounds.

Prediction of parkinsonian‑like liabilities based on AOP 
aligned testing linked to mitochondrial toxicity

A panel of 22 pesticides that target the mitochondrial respir-
atory chain and inhibit complex I, II or III were evaluated for 
their ability and potency to induce parkinsonian-like health 
effects related to inhibition of complex I. In this context, 
the AOP that describes this adverse outcome and has been 
validated by the OECD (Terron et al. 2018; Bal-Price et al. 
2018b) was used as a template to establish an integrated test-
ing strategy and integrate different test methods that allow 
quantitative assessment of the different key events of this 
AOP and translation to an in vivo situation using IVIVE-
PBPK modelling. We have assessed the application of such 
a testing strategy in a read-across approach using a small 
panel of structurally similar rotenoids that inhibit complex 
I as well as a panel of structural similar strobilurins that 
inhibit complex III.

Peroxisome proliferation and kidney toxicity of herbicides

The phenoxy acetic/propionic acid herbicides form a group 
of structurally similar herbicides that have been shown to 

http://www.oecd.org/chemicalsafety/risk-assessment/iata-integrated-approaches-to-testing-and-assessment.htm#newcasestudies
http://www.oecd.org/chemicalsafety/risk-assessment/iata-integrated-approaches-to-testing-and-assessment.htm#newcasestudies
http://www.oecd.org/chemicalsafety/risk-assessment/iata-integrated-approaches-to-testing-and-assessment.htm#newcasestudies
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induce similar systemic toxicity in rat studies. Main toxi-
cological effects observed are liver toxicity due to peroxi-
some proliferation as well as kidney toxicity associated with 
oxidative stress. Inhibition and/or saturation of renal tubular 
transport has been linked to a prolongation of compound 
elimination, thus extending the duration of bioavailability 
in the blood. Within case study 5, different test systems and 
read-outs (e.g., CALUX reporter gene assays, HepG2 metab-
olomics and stress response, RPTEC/TERT1 stress response 
as well as transcriptomics in the different cell systems) will 
be used to show biological similarity in vitro, which can 
be used for a NAM-based read-across. Further environmen-
tally and clinically relevant peroxisome proliferators (such 
as DEHP and its active metabolite, fibrates or glitazones) 
have been included into the testing programme. The first 
experimental phases have been finalized and data from the 
CALUX assays, HepG2 metabolomics and stress responses 
show that the biological effects observed can be linked to the 
toxicological mode of action in the liver.

Prediction of pulmonary fibrosis: a read‑across case study 
with diketones

Several aliphatic, short chain α, β and ψ-diketones and 
two ketones are tested for their ability to induce interstitial 
pulmonary fibrosis. In vitro models like precision cut lung 
slices and primary bronchial epithelial cells are exposed 
via air–liquid application using the Fraunhofer Expo-Cube. 
QIVIVE will be used to translate the in vitro effect concen-
tration to a human equivalent dose, which can be used as 
starting point for risk assessment.

Parabens

The parabens case study is an example in the field of 
repeated dose systemic toxicity and is realized as a collabo-
ration between EU-ToxRisk and Cosmetics Europe. This 
case study explores whether NAMs can be used in a read-
across for low-toxicity compounds with low general toxicity 
and weak endocrine activity. Parabens with existing safety 
reviews widely used in Cosmetics with available data (leg-
acy, internal exposure data) with a dermal route of exposure 
were selected. Data from methyl-, ethyl- and butyl-parabens 
are used in read-across to fill this data gap for reproductive 
toxicity for propylparaben.

Different systemic endpoints are evaluated quantitatively 
(based on dose response) including repeated dose general 
target organ toxicity, reproductive toxicity, and developmen-
tal toxicity. This assessment includes evaluation of these 
related systemic endpoints for the target and source chemi-
cals and utilizes traditional in vivo data as well as data from 
new approach methodologies (NAM). The NAM data are 

used with the aim to add to the weight of evidence for a 
scientifically robust read-across.

Drug‑induced liver injury

In this case study, a test system was established that deter-
mines the probability of hepatotoxicity associated with spe-
cific oral doses and blood concentrations of test compounds. 
The technique can be applied to test whether structurally 
similar compounds would increase the risk of hepatotoxicity 
to a similar extent.
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