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Abstract 
Over the years, the field of bioorthogonal chemistry has developed many 
biocompatible ligation reactions or ‘click reactions’, that are highly suitable for 
detection of biomolecules of interest by fluorescence-based analysis techniques. 
Click reactions are very interesting for the visualization of intracellular bacteria, due 
to the various challenges that are encountered when studying these organisms in 
situ. This chapter describes the basics of applying bioorthogonal chemistry to the 
study of intracellular bacteria. 
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1.1 The biochemistry of a cell 
At the smallest level of organization, all life is built from cells. Cells are tiny 
compartments that exist to seclude the internal processes, that are essential to  life, 
from the outside, that is considered lifeless. Life is fundamentally driven by 
chemistry, primarily used to metabolize fuel into energy (catabolism) and build new 
biomolecules (anabolism).1 A cell consists of four major types of biological 
macromolecules; proteins, carbohydrates, lipids and nucleic acids. These 
macromolecules themselves are made from smaller biological building blocks, such 
as amino acids, sugars, fatty acids and nitrogenous bases.2 The biochemistry of a 
cell is highly complex, and it has been estimated that around a billion reactions 
occur per cell per second. There are six major classes of biochemical reactions; 
oxidation/reduction, hydrolysis/condensation, ligation/cleavage, functional group 
transfer, isomerization and the formation/removal of carbon-carbon double 
bonds.3 Due to their high activation energy and the relatively low temperature in a 
living cell, most biochemical reactions must be sped up by biological catalysts, 
called enzymes. Enzymes are usually proteins but in some cases RNA can function 
as an enzyme (ribozyme).4 Compartmentalization of biochemical reactions inside 
cells and subcellular compartments is thought to have been crucial for life to evolve 
to the complexity of multicellular organisms such as humans.5 

1.2 Bioorthogonal chemistry & click chemistry 
Bioorthogonal chemistry refers to chemical reactions that can be selectively 
performed within the complex environment of a living cell, without interacting or 
interfering with the biological system.1 The term bioorthogonal was coined by 
Bertozzi in 2003 and refers to orthogonality between the artificially introduced 
reaction and all biochemical reactions that occur within a living system (i.e. the 
cell).2,3 True bioorthogonality requires high selectivity, fast kinetics, 
biocompatibility of the reaction, biological and chemical inertness of the 
introduced functional group and the resulting product, as well as accessible 
engineering of the biomolecule.1,3,4 The first bioorthogonal reaction is arguably the 
Staudinger ligation, in which an organic azide is irreversibly ligated to a 
triphenylphosphine moiety to form an amide group (Figure 1A).5–7 Historically, 
various attempts were made to obtain bioorthogonality already in 1990 by the 
group of McCarthy8, with a condensation reaction between hydrazine and aldehyde 
moieties and in 1997 by the group of Bertozzi9, with a condensation reaction 
between hydrazide and levulinoyl moieties. However, since the functional groups 
used in these reactions are not unique in nature and the products of these reactions 
are instable, they cannot be considered truly bioorthogonal. 
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Although fundamentally different in nature, the terms bioorthogonal chemistry and 
click chemistry are often used interchangeably. The term click chemistry was coined 
by Sharpless in 1998 and refers to ligation reactions in which two functional groups 
can be joined selectively, quickly and with high yield in aqueous solution, producing 
a physiologically stable product without toxic byproducts.10 Although some click 
reactions can be performed in live cells, biocompatibility is not a requirement. Click 
reactions are ideally suited for the production of biologically active molecules in 
organic synthesis, as well as for biochemical ligation reactions, in which a reporter 
moiety is connected to a ‘click handle’-containing biomolecule of interest, to 
facilitate the analysis of said biomolecule.11 In practice, the reporter is usually a 
fluorophore for fluorescent measurements or a biotin for enrichment of the tagged 
biomolecule (e.g., for mass spectrometry analysis).12 Bioorthogonal reactions can 
be considered the ideal click reactions for ligations in living cells, due to their 
biocompatibility and bio-inertness of their click handles. 

The first reported click reaction was the Cu(I)-catalyzed azide-alkyne cycloaddition 
(CuAAC; Figure 1B), also known as the copper-catalyzed Huisgen cycloaddition 
(ccHc), discovered simultaneously but independently by the group of Sharpless13 
and the group of Meldal14. Although this reaction can be performed successfully in 
fixed cells (and live cells under special conditions15,16), this reaction cannot be 
considered as a true bioorthogonal reaction, due to cytotoxicity of the Cu(I)-
catalyst.17 To avoid this toxicity, Bertozzi and coworkers then went on to develop a 
copper-free click reaction, using the intrinsic ring-strain of cyclooctynes to 
overcome the activation energy of the azide-alkyne cycloaddition.18,19 This reaction 
is known as the Strain-Promoted Azide-Alkyne Cycloaddition (SPAAC; Figure 1C) or 
strain-promoted Huisgen cycloaddition (spHc). In order to overcome the 
suboptimal reaction kinetics of these cycloadditions, another copper-free click 
reaction was then developed, combining the ring-strain of a cyclooctyne with the 
stereoelectronic tunability of a nitrone moiety. This reaction was termed the Strain-
Promoted Alkyne-Nitrone Cycloaddition (SPANC; Figure 1D).20 

Although many other bioorthogonal reactions have been developed to date21,22, 
the most notable recent addition is the inverse electron demand Diels–Alder 
(IEDDA) reaction, due to its excellent reaction kinetics, chemical orthogonality and 
biocompatibility.23 The IEDDA reaction involves a cycloaddition between a 1,2,4,5-
tetrazine and a (strained) alkene group, and is often referred to as the tetrazine 
ligation reaction (Figure 1E).24,25 Both reaction partners of this reaction can be 
extensively tuned to optimize the reaction in terms of speed, selectivity and 
stability of the product. Several different strained alkenes have been developed, 
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including norbornene26, cyclopropene27, spirohexene28 and trans-cyclooctene 
(TCO)25,29. 

 

 

 

Figure 1. Overview of the most common bioorthogonal (click) reactions. (A) Staudinger ligation (a.k.a. 
Staudinger-Bertozzi ligation). (B) Cu(I)-catalyzed Azide-Alkyne Cycloaddition (CuAAC, a.k.a. copper-click 
reaction). (C) Strain-Promoted Azide-Alkyne Cycloaddition (SPAAC, a.k.a. copper-free click reaction). 
(D) Strain-Promoted Alkyne-Nitrone Cycloaddition (SPANC). (E) Inverse Electron-Demand Diels-Alder reaction 
(IEDDA), here showing the reaction between a tetrazine and a TCO (tetrazine ligation). 
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1.3 Bioorthogonal metabolic labeling 
Metabolic labeling (also known as metabolic engineering) involves the 
incorporation of a detectable chemical label into a biomolecule of interest, using 
the native metabolism of the organism.30 This is achieved by creating a synthetic 
analogue of a building block (e.g., an amino acid) that can be incorporated into 
larger biomolecules by the organism. The synthetic analogue needs to be 
sufficiently similar to the original, in order to be accepted by the cellular machinery, 
while containing a detectable label. Metabolic labeling can be achieved either by 
one-step labeling, in which the initial label can be detected directly (e.g. 
fluorophore or radioactive isotope), or two-step (direct) labeling, in which the initial 
label can be selectively ligated to a reporter molecule for detection (e.g. click 
handle), also known as bioorthogonal metabolic labeling.30 The main advantage of 
bioorthogonal metabolic labeling is its broad compatibility with common analysis 
methods such as fluorescence microscopy, flow cytometry and proteomics31 
without interfering with the cellular processes32, which is often observed for one-
step labeling approaches33. 

Bioorthogonal metabolic labeling was originally developed by the group of Bertozzi, 
in order to selectively label and modify cell surface glycans.9,34,35 In this study, a 
levulinoyl-analogue of N-acetylmannosamine (ManLev) was incorporated by the 
cells into the cell surface associated sialic acids. A hydrazide-functionalized biotin 
moiety could then be selectively ligated to the levulinoyl-modified sialic acids and 
subsequently visualized using a fluorophore-modified avidin moiety (which 
selectively binds to biotin).9 Switching to an azide-analogue of N-
acetylmannosamine (ManNAz), in combination with the more biocompatible 
Staudinger ligation, eventually made it possible to study cell surface glycans in living 
animals.36 Bertozzi then continued to modify this strategy, using SPAAC to visualize 
the azide-modified sialic acid, which proved possible in living animals as well.37 
Although CuAAC is insufficiently biocompatible to be performed in live cells, it 
proved possible to metabolically incorporate an alkyne-analogue of N-
acetylmannosamine (ManNAl) into living animals and perform the click reaction ex 
vivo after harvesting the organs.38 

At present, bioorthogonal metabolic labeling has been successfully achieved for 
virtually all biomolecules33, including carbohydrates39 as described above, but also 
proteins40, lipids41–43, nucleic acids44–46 and bacterial cell wall components47–49. 
Although the method originated with carbohydrates, bioorthogonal labeling of 
proteins has gained a lot of attention over the years.40 Some bioorthogonal 
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analogues of amino acids can be directly incorporated by an organism, when they 
are recognized by the native translational machinery (i.e. aminoacyl-tRNA 
synthetase).50 This technique was termed Bioorthogonal Non-Canonical Amino acid 
Tagging (BONCAT) and provides both an azide and an alkyne analogue of L-
methionine, that are readily incorporated into newly synthesized proteins.50,51 
BONCAT has been successfully applied to many different organisms including 
bacteria52,53, mammalian cells51,54, whole animals55–58, plants59, parasites60 and 
viruses61,62. 

1.4 Bioorthogonal metabolic labeling of intracellular bacteria 
One research field in which bioorthogonal metabolic labeling can be applied is the 
study of intracellular pathogenic bacteria and their interaction with the host cell. 
Both the extracellular and intracellular life cycle of pathogenic bacteria can be 
studied using bioorthogonal labeling to visualize the newly synthesized bacterial 
components, such as the membranes, cell wall or cytoplasmic content under 
various conditions. For example, the effect of antibiotics on peptidoglycan 
synthesis can be studied using D-alanine analogues63 or the effect of nutrient 
limitation on mycomembrane remodeling using trehalose analogues64. Another 
possibility is to study the metabolic activity of viable bacteria using BONCAT.65 
Finally, various bioorthogonal analogues can be used to label bacteria of interest 
and study their intracellular fate, after uptake by phagocytic immune cells such as 
macrophages or dendritic cells. This approach has previously been used to visualize 
degradation of non-pathogenic Escherichia coli (E. coli)66 and survival and 
proliferation of Salmonella enterica serovar Typhimurium (Stm)67. Additionally, this 
approach could be used to study more dangerous pathogenic intracellular bacteria 
such as Mycobacterium tuberculosis (Mtb) and the effect of antibiotics on the 
intracellular survival of those bacteria. 

The broad compatibility of bioorthogonal metabolic labeling allows for many 
fluorescence-based analysis methods to be used. For example, when using 
BONCAT, the incorporation of bioorthogonal amino acids into the bacterial proteins 
can be assessed using SDS-PAGE, followed by in-gel fluorescence analysis. 
Additionally, the average labeling efficiency per bacterium can be assessed using 
flow cytometry. Finally, several microscopy techniques can be used to visualize the 
fluorescently labeled bacteria, including confocal fluorescence microscopy, 
Stochastic Optical Reconstruction Microscopy (STORM) and Correlative Light-
Electron Microscopy (CLEM). Since STORM provides the best spatial resolution in 
terms of fluorescence and CLEM can provide the ultrastructural context of the host 
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cell, a combination of the two (STORM-CLEM) would provide the most detailed 
information on the intracellular bacterium, in situ. 

1.5 Aim of this thesis 
The aim of this thesis is to expand on the previously developed bioorthogonal CLEM 
technique for the study of intracellular bacteria. In chapter 2, the principle of 
bioorthogonal metabolic labeling for the study of intracellular bacteria is discussed 
in more detail and recent developments in the field are reviewed. In chapter 3, the 
stability of several commonly used click handles is tested within the chemically 
harsh intracellular environment of phagocytic immune cells, to confirm that they 
can be used to study the degradation or survival of intracellular bacteria. In chapter 
4, bioorthogonal metabolic labeling of Stm is optimized for the development of 
STORM-CLEM, to study intracellular pathogenic bacteria in more detail. In chapter 
5, dual bioorthogonal metabolic labeling of Mtb is presented and combined with a 
fluorescent protein. The resulting triple-label Mtb are studied using CLEM, and the 
effect of various first line antibiotics on the intracellular distribution and shape of 
Mtb is quantified. Additionally, the bioorthogonal label retention of intracellular 
Mtb is measured by flow cytometry, after retrieval of the bacteria by selective host 
cell lysis. In chapter 6, a summary of the previous chapters is provided, along with 
several future prospects which can be pursued, following the findings of this thesis. 
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