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APPENDIX B
Appendix Part II

§B.1 Computation of scaling coefficients

In Appendices B.1.1–B.1.2 we spell out a technical computation for the tail of the
wake-up time defined in (4.40)–(4.41) in the two parameter regimes given by (4.52)–
(4.53). In Appendix B.1.3 we carry out a computation that is needed in Section 5.1.

§B.1.1 Regularly varying coefficients

In (4.40), note that for large t in the sum over m only small values of em/N
m contrib-

ute, which means large m. Hence, by the Euler-MacLaurin approximation formula,
we have

P (τ > t) =
1

χ

∑
m∈N0

Km
em
Nm

e−(em/N
m)t ∼ 1

χ

∫ ∞

c

dmKm
em
Nm

e−(em/N
m)t, (B.1)

where c is a constant that identifies from which value of m onward terms contribute
significantly. Make the change of variable s = em

Nm . Since em ∼ Bm−β and Km ∼
Am−α as m→ ∞, we have

s ∼ Bm−βN−m (B.2)

and hence

log s ∼ logB − β logm−m logN,

log
1

s
= m logN

(
− B

m logN
+
β logm

m logN
+ 1

)
= [1 + o(1)]m logN,

(B.3)

which gives

m = [1 + o(1)]
log( 1s )

logN
. (B.4)

Thus,
1

s

ds

dm
= − logN − β

m
= −[1 + o(1)] logN, (B.5)

which implies
ds

dm
= −[1 + o(1)] s logN, (B.6)
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so that s(m) is asymptotically decreasing in m, and

dm

ds
= −[1 + o(1)] (s logN)

−1
. (B.7)

Note that if c ≤ m <∞, then asymptotically 0 < m−βN−m < c−βN−c = C2. Doing
the substitution, we get

P(τ > t) ∼ 1

χ

∫ C2

0

dsKms (s logN)
−1

e−st

∼ 1

χ

∫ C2

0

dsAm−α (logN)
−1

e−st

∼ 1

χ

∫ C2

0

dsA

(
log( 1s )

logN

)−α

(logN)
−1

e−st

∼ A

χ

(
1

logN

)−α+1 ∫ C2

0

ds log
(
1
s

)−α
e−st.

(B.8)

Next, put st = u, so s = u
t and ds

du = 1
t and 0 < u < tC2. Then

P(τ > t) ∼ A

χ

(
1

logN

)−α+1
1

t

∫ C2t

0

du log
(
t
u

)−α
e−u. (B.9)

We will show that

A

χ

(
1

logN

)−α+1
1

t

∫ C2t

0

du log
(

t
u

)−α
e−u ≍ A

χ

(
1

logN

)−α+1
1

t

∫ C2t

0

du log t−α e−u.

(B.10)

For α = 0 this claim is immediate. For α ∈ (−∞, 0), note that log
(
t
u

)−α
is a

decreasing function on (0, C2t). Therefore we can reason as follows:∫ C2t

0

du log
(
t
u

)−α
e−u

=

∫ 1

0

du log
(
t
u

)−α
e−u +

∫ C2t

1

du log
(
t
u

)−α
e−u

≤
∫ 1

0

du log
(
t
u

)−α
+

∫ C2t

1

du log t−αe−u

≤ 2−α
∫ 1

t

0

du log
(
1
u

)−α
+ 2−α

∫ 1

1
t

du log t−α + log t−α
[
1− e−1

]
≤ 2−αΓ(−α+ 1) + 2−α log t−α

[
1− 1

t

]
+ log t−α

[
1− e−1

]
= log t−α

[
2−α Γ(−α+1)

log t−α + 2−α
[
1− 1

t

]
+
[
1− e−1

]]
≍ log t−α.

(B.11)

For the lower bound, note that∫ C2t

0

du log
(
t
u

)−α
e−u ≥ log (t)

−α
∫ 1

0

du e−u + log( 1
C2

)−α
∫ C2t

1

du e−u

= log t−α

[
1− e−1 +

log( 1
C2

)−α

log t−α

]
≍ log t−α.

(B.12)
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For α ∈ (0, 1], note that the function log
(
t
u

)−α
is increasing in u. For the lower

bound estimate∫ C2t

0

du log
(
t
u

)−α
e−u ≥ lim

u→0
log
(
t
u

)−α
[1− e−1] + log t−α[e−1 − e−C2t]

= log t−α
[
0 + e−1 − e−C2t

]
≍ log t−α.

(B.13)

For the upper bound estimate∫ C2t

0

du log
(
t
u

)−α
e−u

≤ log t−α[1− e−1] + log

(
t√
C2t

)−α ∫ √
C2t

1

du e−u + log

(
1

C2

)−α ∫ C2t

√
C2t

du e−u

= log t−α[1− e−1] + ( 12 )
−α log

(
t

C2

)−α [
e−1 − e−

√
C2t
]

+ log

(
1

C2

)−α [
e−

√
C2t − e−C2t

]
= log t−α

[
1− e−1 + ( 12 )

−α
(
log t− logC2

log t

)−α [
e−1 − e−

√
C2t
]

+ log

(
1

C2

)−α
[
e−

√
C2t − e−C2t

]
log t−α

]
≍ log t−α.

(B.14)

§B.1.2 Pure exponential coefficients

In order to satisfy condition in (4.12), we must assume that Ke < N . Since K ≥ 1
for ρ = ∞, we also have e < N . We again use that for large t only large m contribute
to the sum. Hence, again by the Euler-MacLaurin approximation formula, we have

P (τ > t) =
1

χ

∑
m∈N0

Km
em
Nm

e−(em/N
m)t ∼

∫ ∞

M

dmKm
em
Nm

e−(em/N
m)t. (B.15)

Again we put s = em

Nm . Hence

log s = m log
( e
N

)
, m =

log s

log e
N

,
dm

ds
=

1

s log e
N

, (B.16)

and

Km ∼ Km ∼ e
log s log K

log e
N ∼ s

log K
log e

N . (B.17)

Since s(m) is decreasing in m, putting C = ( eN )M we obtain

P(τ > t) ∼
∫ C

0

dsKm
s

s log e
N

e−st ∼ 1

log e
N

∫ C

0

ds s
log K
log e

N e−st. (B.18)

333



B. Appendix Part II

A
p
p
e
n
d
ix

B

Substitute u = st, i.e., ut = s, to get

P(τ > t) ∼ 1

log e
N

t
−1− log K

log e
N

∫ Ct

0

duu
log K
log e

N e−u

∼ 1

log e
N

t
− log( e

N
)−log K

log e
N

∫ Ct

0

duu
log K
log e

N e−u ∼ 1

log e
N

t
−

log( N
Ke

)

log N
e

∫ Ct

0

duu
log K
log e

N e−u.

(B.19)
The last integral converges because logK

log( e
N ) > −1, and∫ Ct

0

duu
log K
log e

N e−u ≤
∫ ∞

0

duu
log K
log e

N e−u = Γ

(
logK

log( eN )
+ 1

)
. (B.20)

§B.1.3 Slowly varying functions

Return to Section 5.1. Note that t(s) = φ(s)−1sγ . Since this is the total time two
lineages are active up to time s, t(s) must be smaller than s. By (4.49), we have

φ(t)

φ(s)
= exp

[
−
∫ s

t(s)

du

u
ψ(u)

]
. (B.21)

Since we are interested in s → ∞, we may assume that s ≫ 1 and t(s) > 1, and
estimate

φ(t)

φ(s)
≤ exp

[∫ s

t(s)

du

u

C

log u

]
= exp

[
C(log log s− log log t(s))

]
= exp

[
C log

(
log s

log (φ(s)−1sγ)

)]
= exp

[
−C log

(
γ log s− logφ(s)

log s

)]
.

(B.22)

A similar lower bound holds with the sign reversed. Using that lims→∞
logφ(s)
log s = 0,

we get

γC ≤ lim inf
s→∞

φ(t)

φ(s)
≤ lim sup

s→∞

φ(t)

φ(s)
≤ γ−C . (B.23)

Both bounds above are positive, so indeed φ(t)
φ(s) ≍ 1.

§B.2 Meyer-Zheng topology

§B.2.1 Basic facts about the Meyer-Zheng topology

In the Meyer-Zheng topology we assign to each real-valued Borel measurable function
(w(t))t≥0 a probability law on [0,∞]× R̄ that is called the pseudopath ψw. Note that
the Borel-σ algebra on [0,∞]× R̄ is generated by sets of the form [a, b]×B for B ∈ B
and 0 < a < b. For A = [a, b]×B, set

ψw(A) =

∫
1A(t, w(t))e

−tdt =

∫ b

a

1B(w(t))e
−tdt, (B.24)
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i.e., ψw is the image measure of the mapping t → (t, w(t)) under the measure
λ(dt) = e−tdt. The set of all pseudopaths is denoted by Ψ. Note that a pseudo-
path corresponding to (w(t))t>0 is simply its occupation measure. The following
important facts are stated in [59]:

� If two paths w1 and w2 are the same Lebesgue a.e., then ψw1 = ψw2 .

� Denote by D the space of càdlàg paths on [0,∞]× R. The mapping
ψ : D → Ψ, w 7→ ψw is one-to-one on D and hence gives an embedding of D
into the compact space P̄, the space of probability measures on [0,∞]× R̄.

� Note if f is a function on [0,∞]× R and w ∈ D, then

ψw(f) =

∫ ∞

0

f(t, w(t)) e−tdt. (B.25)

Therefore we say that the sequence of pseudopaths induced by (wn) ⊂ D con-
verges to a pseudopath w if, for all continuous bounded function f(t, w(t)) on
[0,∞]× R̄,

lim
n→∞

∫ ∞

0

f(t, wn(t)) e
−tdt =

∫ ∞

0

f(t, w(t)) e−tdt. (B.26)

Since a pseudopath is a measure, convergence of pseudopaths is convergence of
measures.

� D endowed with the pseudopath topology is not a Polish space. Ψ endowed
with the pseudopath topology is a Polish space.

� According to [59][Lemma 1], the pseudopath topology on Ψ is convergence in
Lebesgue measure on D.

§B.2.2 Pseudopaths of stochastic processes on a gen-
eral metric separable space

In [53] the results of [59] on state space R are generalised to a general metric separable
space E. Let (Z(t))t>0 be a stochastic process with state space E. Then we assign a
random pseudopath to (Z(t)) as follows: for ω ∈ Ω and A = [a, b]×B, 0 ≤ a < b and
B ∈ B(E),

ψ(Z(t,ω))t≥0
(A) =

∫ b

a

1B(Z(t, ω)) e
−tdt. (B.27)

Hence ψ(Z(t))t≥0
is a random variable with state space Ψ, i.e., ψ(Z(t))t≥0

∈ M(Ψ), the
set of probability measures on pseudopaths. Note that

E
[
ψ(Z(t))t≥0

f
]
= E

[∫ ∞

0

f(t, Z(t, ω)) e−tdt

]
= E

[∫ ∞

0

f(t, Z(t)) e−tdt

]
. (B.28)
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Weak convergence in the Meyer-Zheng topology. Let (Zn(t))t≥0 and (Z(t))t≥0

be stochastic processes with state-space E. We say that

L [(Zn(t))t≥0] = L [(Z(t))t≥0] in the Meyer-Zheng topology (B.29)

if, for all f ∈ Cb(Ψ),

lim
n→∞

E[f(ψ(Zn(t))t≥0
)] = E[f(ψ(Z(t))t≥0

)]. (B.30)

Let Cm([0,∞)× E) ⊂ Cb([0,∞)× E) be the set of functions of the form

Cm([0,∞)× E) =
{
F ∈ Cb([0,∞)× E) : F (t, x(t)) =

m∏
i=1

∫ Ti

0

fi(t, x(t))dt,

m ∈ N, ∀1 ≤ i ≤ m, fi ∈ Cb([0,∞)× E), Ti > 0
}
.

(B.31)

Note that Cm is an algebra. Let ME [0,∞) be the space of measurable processes from
[0,∞) to E, so D ⊂ ME [0,∞). Note that Cm separates points in ME [0,∞). By
[53][Proposition 4.5], the set Cm is separating in the set of measures on ME [0,∞).
This means that if two stochastic processes (Z1(t))t>0 and (Z2(t))t≥0 satisfy

E[F (Z1)] = E[F (Z2)] ∀F ∈ Cm, (B.32)

then L[Z1] = L[Z2].
Define

F (ψ) =

∫
dψ

m∏
i=1

∫ Ti

0

fi(t, x(t)) dt. (B.33)

Recall that a pseudopath ψ is associated with a path w ∈ ME [0,∞). Hence this
becomes

F (ψw) =

m∏
i=1

∫ Ti

0

fi(t, w(t)) dt. (B.34)

Since each pseudopath ψ ∈ Ψ is associated with a path inME [0∞), Cm also separates
points on Ψ and hence Cm separates measures on Ψ. This implies that if

E[F (ψZ1
)] = E[F (ψZ2

)] ∀F ∈ Cm, (B.35)

then L[ψZ1 ] = L[ψZ2 ]. Therefore L[Z1] = L[Z2] if and only if L[ψZ1 ] = L[ψZ2 ].
The Meyer-Zheng topology is a weaker than the Skohorod topology.

Lemma B.2.1. Let (Zn(t))t≥0 n ∈ N and (Z(t))t≥0 be stochastic processes with
Polish state-space E. If

lim
n→∞

L [(Zn(t))t≥0] = L [(Z(t))t≥0] in the Skohorod topology, (B.36)

then

lim
n→∞

L [(Zn(t))t≥0] = L [(Z(t))t≥0] in the Meyer-Zheng topology. (B.37)
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Proof. Since we do not know whether Ψ is compact, the set Cm does not have to be
convergence determining. Therefore, via Skorohod’s theorem we construct the process
Z̃n and Z̃ on one probability space, such that L[Z̃n] = L[Zn] and L[Z̃] = L[Z], and

lim
n→∞

Z̃n = Z̃ a.s. (B.38)

This implies

lim
n→∞

ψZ̃n = ψZ̃ a.s. (B.39)

Consequently, for all f ∈ Cb(Ψ),

lim
n→∞

E[f(ψZ̃n)] = E[f(ψZ̃)]. (B.40)

Note that, since L[Z̃n] = L[Zn] and L[Z̃] = L[Z], we can use (B.32) and (B.35) to
see that the latter implies L[ψZn ] = L[ψZ̃n ] and L[ψZ ] = L[ψZ̃ ]. Hence (B.40) indeed
implies that

lim
n→∞

L[ψZn ] = L[ψZ ]. (B.41)

□

Convergence in probability in the Meyer-Zheng topology. Let (S, d) be a
metric space, B(S) denote the Borel-σ algebra on S, and P(S) the set of probability
measures on B(S). Recall (see e.g. [32, Chapter 3]) that the Prohorov metric dP on
the space P(S) is given by

dP (P,Q) = inf {ϵ > 0: P(A) ≤ Q(Aϵ) + ϵ ∀A ∈ C} , (B.42)

where C ⊂ B(S) is the set of all closed sets in S and Aϵ = {x ∈ S : infy∈A d(x, y) < ϵ}.
Recall the following theorem (see e.g.[[32, Theorem 3.1.2]])

Theorem B.2.2. Let (S, d) be separable and let P,Q ∈ P(S). Define M(P,Q) to
be the set of all µ ∈ P(S × S) with marginals P and Q, i.e., µ(A × S) = P(A) and
µ(S ×A) = Q(A) for all A ∈ B(S). Then

dP (P,Q) = inf
µ∈M(P,Q)

inf{ϵ > 0: µ({(x, y) : d(x, y) ≥ ϵ}) ≤ ϵ}. (B.43)

Moreover, [32, Theorem 3.3.1] states that convergence of measures in the Prohorov
distance, limn→∞ dP (Pn,P) = 0, is the same as weak convergence Pn ⇒ P. Hence,
since convergence of pseudopaths is weak convergence, we can endow the space of
pseudopaths Ψ with the metric dP .

Let (Ψ, dP ) be the pseudopath space metrized by the Prohorov distance. Let
(Zn(t))t>0, (Z(t))t>0 be stochastic processes on the state space E, where E is endowed
with the metric d(·, ·). Note that convergence in probability in the Meyer-Zheng
topology means that

∀ δ > 0: lim
n→∞

P [dP (ψZn , ψZ) > δ] = 0. (B.44)
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Tightness. Define the conditional variation for an R-valued process (U(t))t≥0 with
natural filtration (F(t))t≥0 as follows. For a subdivision
τ : 0 = t0 < t1 < · · · < tn = ∞, set

Vτ (U) =
∑

0≤i<n

E
[∣∣E[U(ti+1)− U(ti) | F (ti)]

∣∣] (B.45)

(with U(∞) = 0) and

V (U) = sup
τ
Vτ (U). (B.46)

If V (U) <∞, then U is called a quasi-martingale. Note that we can always stop the
process at some finite time and work with compact time intervals.

Lemma B.2.3 (Tightness in the Meyer-Zheng topology).
If (Pn)n∈N is a sequence of probability laws on D([0, T ],R) such that under Pn the
coordinate process (U(t))t≥0 is a quasi-martingale with a conditional variation Vn(U)
that is bounded uniformly in n, then there exists a subsequence (Pnk

)k∈N that con-
verges weakly in the Meyer-Zheng topology on D([0, T ],R) to a probability law P , and
(U(t))t≥0 is a quasi-martingale under P .

(See [59, Theorem 7] for the identification of the limiting semi-martingale.)

§B.2.3 Proof of key lemmas

• Proof of Lemma 6.2.19.

Proof. Fix δ > 0. Then

lim
n→∞

P [dP (ψZn
, ψZ) > δ]

= lim
n→∞

P
[

inf
µ∈M(ψZn ,ψZ)

inf{ϵ > 0: µ({(x, y) : d(x, y) ≥ ϵ}) ≤ ϵ} > δ

]
= lim
n→∞

P [∀µ ∈ M(ψZn , ψZ), inf{ϵ > 0: µ({(x, y) : d(x, y) ≥ ϵ}) ≤ ϵ} > δ]

= lim
n→∞

P [∀µ ∈ M(ψZn
, ψZ), µ({(x, y) : d(x, y) ≥ δ}) > δ] .

(B.47)

Let µn ∈ P(([0,∞]× E)2) be the measure defined by

µn(A) =

∫ ∞

0

1A ((t, Zn(t)), (t, Z(t))) e
−tdt, A ∈ B(([0,∞]× E)2), (B.48)

such that, for B ∈ B([0,∞]× E),

µn(B × S) =

∫ ∞

0

1B(t, Zn(t))1S((t, Z(t)) e
−tdt = ψZn(B), (B.49)

and similarly µn(S × B) = ψZ(B). Hence µn ∈ M(ψZn
, ψZ) for all n ∈ N, and we
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obtain from (B.47) that

lim
n→∞

P [dP (ψZn
, ψZ) > δ]

≤ lim
n→∞

P [µn({(x, y) : d(x, y) ≥ δ}) > δ]

≤ lim
n→∞

P
[∫ ∞

0

1{(x,y):d(x,y)≥δ} ((t, Zn(t)), (t, Z(t))) e
−tdt > δ

]
≤ lim
n→∞

P
[∫ ∞

0

1{d(Zn(t),Z(t))≥δ} e
−tdt > δ

]
≤ lim
n→∞

1

δ
E
[∫ ∞

0

d(Zn(t), Z(t)) e
−tdt

]
= lim
n→∞

1

δ

∫ ∞

0

E [d(Zn(t), Z(t))] e
−tdt = 0.

(B.50)

□

• Proof of Lemma 6.2.20.

Proof. We have to show that

lim
n→∞

L
[
ψ(Xn,Yn)

]
= L

[
ψ(X,c)

]
. (B.51)

Hence we must show that, for all f ∈ Cb(Ψ),

lim
n→∞

E[f(ψ(Xn,Yn))] = E[f(ψ(X,c))]. (B.52)

We can write

|E[f(ψ(Xn,Yn))− f(ψ(X,c))]|
≤ |E[f(ψ(Xn,Yn))− f(ψ(Xn,c))]|+ |E[f(ψ(Xn,c))− f(ψ(X,c))]|.

(B.53)

Since limn→∞ E[d(Yn(t), c)] = 0 implies limn→∞ E[d((Xn(t), Yn(t)), (Xn(t), c))] = 0,
it follows from Lemma 6.2.19 that, for all δ > 0,

lim
n→∞

P
[
dP
(
ψ(Xn,Yn), ψ(Xn,c)

)]
= 0. (B.54)

Hence, for all f ∈ Cb(Ψ),

lim
n→∞

|E[f(ψ(Xn,Yn))− f(ψ(Xn,c))]| = 0. (B.55)

To see that the second term in the right-hand side of (B.53) tends to zero, note that
we can define

f̃(ψx) = f(ψx,c). (B.56)

We show that f̃ is continuous.
Recall that convergence in the Meyer-Zheng topology is simply convergence in

Lebesgue measure. Hence, for two paths (t, xn(t)) and (t, x(t)) ∈ ME [0∞) we have
ψxn → ψx if and only if, for all δ > 0,

lim
n→∞

∫ ∞

0

1{d(xn(t),x(t))>δ} e
−tdt = 0. (B.57)
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Therefore ψxn
→ ψx implies that, for all δ > 0,

lim
n→∞

∫ ∞

0

1{d((xn(t),c),(x(t),c))>δ} e
−tdt = 0, (B.58)

and hence ψxn,c → ψx,c. Therefore

lim
n→∞

f̃(ψxn) = lim
n→∞

f(ψ(xn,c)) = f(ψ(x,c)) = f̃(ψx) (B.59)

and we conclude that f ∈ Cb(Ψ). Since L[Xn] = L[X] in the Meyer-Zheng topology,
we have, for all f ∈ Cb(Ψ),

lim
n→∞

|E[f(ψ(Xn,c))− f(ψ(X,c))]| = lim
n→∞

|E[f̃(ψ(Xn))− f̃(ψ(X))]| = 0. (B.60)

Therefore also the second term on the right-hand side of (B.53) tends to 0. □

• Proof of Lemma 6.2.21.

Proof. For part (a), suppose that limn→∞ ψxn
= ψx. Then, since convergence in

pseudopath space is convergence in measure, we have, for all δ > 0,

lim
n→∞

∫ ∞

0

1{d(xn(t),x(t))>δ} e
−tdt = 0. (B.61)

Since f is a continuous function, this implies that, for all ϵ > 0,

lim
n→∞

∫ ∞

0

1{d(f(xn(t)),f(x(t)))>ϵ} e
−tdt = 0. (B.62)

and we conclude that limn→∞ ψf(xn) = ψf(x). Hence h is indeed continuous.

For part (b), recall that

lim
n→∞

L[Xn] = L[X] in the Meyer-Zheng topology (B.63)

implies that, for all g ∈ Cb(Ψ),

lim
n→∞

E[g(ψXn
)] = E[g(ψX)]. (B.64)

Since h : Ψ → Ψ is continuous, we have for all g ∈ Cb(Ψ) that g ◦ h ∈ Cb(Ψ). Hence

lim
n→∞

E[g(ψf(Xn)] = lim
n→∞

E[g ◦ h(ψXn)] = E[g ◦ h(ψX)] = E[g(ψf(X))]. (B.65)

We conclude that

lim
n→∞

L[f(Xn)] = L[f(X)] in the Meyer-Zheng topology. (B.66)

□
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B. Appendix Part II

• Proof of Lemma 7.2.14.

Proof. Suppose that limn→∞ ψ(xn,yn) = ψ(x,y). Since convergence of pseudopaths is
convergence in Lebesgue measure, we have

lim
n→∞

∫ ∞

0

1{d[(xn,yn),(x,y)]>δ}e
−tdt = 0 (B.67)

and, consequently,

lim
n→∞

∫ ∞

0

1{d[xn,x]>δ}e
−tdt = 0. (B.68)

Therefore limn→∞ ψxn
= ψx. Suppose that f ∈ Cb(Ψ(E)), so f is bounded continuous

function on the space of pseudopaths on [0,∞] × E. Define the function f̃ on the
space of pseudopaths on [0,∞]× E2, i.e., f̃ is a function on Ψ(E2), by

f̃(ψ(x,y)) = f(ψx). (B.69)

Then f̃ ∈ Cb(Ψ(E2)) and

lim
n→∞

f̃(ψ(xn,yn)) = lim
n→∞

f(ψxn) = f(ψx) = f̃(ψ(xn,yn)). (B.70)

Hence f̃ is indeed a continuous function on Ψ(E2). Moreover, since f is bounded, it
follows that f̃ is bounded and we conclude that f̃ ∈ Cb(Ψ(E2)).

Therefore, if Xn, Yn are continuous-time stochastic processes on E and

lim
n→∞

L [(Xn(s), Yn(s))s>0] = L [(X(s), Y (s))s>0] in Meyer Zheng topology, (B.71)

then for all f ∈ Cb(Ψ(E2)) we have

lim
n→∞

E[f(ψ(Xn,Yn))] = E[f(ψ(X,Y ))]. (B.72)

Since for each f ∈ Cb(Ψ(E)) we can construct a function f̃ ∈ Cb(Ψ(E2)) as in (B.69),
we obtain for all f ∈ Cb(Ψ(E)) that

lim
n→∞

E[f(ψ(Xn))] = lim
n→∞

E[f̃(ψ(Xn,Yn))] = E[f̃(ψ(X,Y ))] = E[f̃(ψX)]. (B.73)

We conclude that

lim
n→∞

L[(Xn(s))] = L[(X(s))s>0] in Meyer-Zheng topology (B.74)

and, similarly,

lim
n→∞

L[(Yn(s))] = L[(Y (s))s>0] in Meyer-Zheng topology. (B.75)

□
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