Universiteit Leiden
 The Netherlands

Spatial populations with seed-bank

Oomen, M.

Citation

Oomen, M. (2021, November 18). Spatial populations with seed-bank.
Retrieved from https://hdl.handle.net/1887/3240221

Version:	Publisher's Version Licence agreement concerning inclusion of doctoral
License:	thesis in the Institutional Repository of the University of Leiden
Downloaded from:	$\underline{\text { https://hdl.handle.net } / 1887 / 3240221}$

Note: To cite this publication please use the final published version (if applicable).

APPENDIX

B

Appendix Part II

§B. 1 Computation of scaling coefficients

In Appendices B.1.1 B.1.2 we spell out a technical computation for the tail of the wake-up time defined in (4.40)-4.41) in the two parameter regimes given by 4.52)4.53). In Appendix B.1.3 we carry out a computation that is needed in Section 5.1.

§B.1.1 Regularly varying coefficients

In 4.40, note that for large t in the sum over m only small values of e_{m} / N^{m} contribute, which means large m. Hence, by the Euler-MacLaurin approximation formula, we have

$$
\begin{equation*}
P(\tau>t)=\frac{1}{\chi} \sum_{m \in \mathbb{N}_{0}} K_{m} \frac{e_{m}}{N^{m}} \mathrm{e}^{-\left(e_{m} / N^{m}\right) t} \sim \frac{1}{\chi} \int_{c}^{\infty} \mathrm{d} m K_{m} \frac{e_{m}}{N^{m}} \mathrm{e}^{-\left(e_{m} / N^{m}\right) t} \tag{B.1}
\end{equation*}
$$

where c is a constant that identifies from which value of m onward terms contribute significantly. Make the change of variable $s=\frac{e_{m}}{N^{m}}$. Since $e_{m} \sim B m^{-\beta}$ and $K_{m} \sim$ $A m^{-\alpha}$ as $m \rightarrow \infty$, we have

$$
\begin{equation*}
s \sim B m^{-\beta} N^{-m} \tag{B.2}
\end{equation*}
$$

and hence

$$
\begin{align*}
\log s & \sim \log B-\beta \log m-m \log N \\
\log \frac{1}{s} & =m \log N\left(-\frac{B}{m \log N}+\frac{\beta \log m}{m \log N}+1\right)=[1+o(1)] m \log N \tag{B.3}
\end{align*}
$$

which gives

$$
\begin{equation*}
m=[1+o(1)] \frac{\log \left(\frac{1}{s}\right)}{\log N} \tag{B.4}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\frac{1}{s} \frac{\mathrm{~d} s}{\mathrm{~d} m}=-\log N-\frac{\beta}{m}=-[1+o(1)] \log N \tag{B.5}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{\mathrm{d} s}{\mathrm{~d} m}=-[1+o(1)] s \log N \tag{B.6}
\end{equation*}
$$

so that $s(m)$ is asymptotically decreasing in m, and

$$
\begin{equation*}
\frac{\mathrm{d} m}{\mathrm{~d} s}=-[1+o(1)](s \log N)^{-1} \tag{B.7}
\end{equation*}
$$

Note that if $c \leq m<\infty$, then asymptotically $0<m^{-\beta} N^{-m}<c^{-\beta} N^{-c}=C_{2}$. Doing the substitution, we get

$$
\begin{align*}
\mathbb{P}(\tau>t) & \sim \frac{1}{\chi} \int_{0}^{C_{2}} \mathrm{~d} s K_{m} s(s \log N)^{-1} \mathrm{e}^{-s t} \\
& \sim \frac{1}{\chi} \int_{0}^{C_{2}} \mathrm{~d} s A m^{-\alpha}(\log N)^{-1} \mathrm{e}^{-s t} \\
& \sim \frac{1}{\chi} \int_{0}^{C_{2}} \mathrm{~d} s A\left(\frac{\log \left(\frac{1}{s}\right)}{\log N}\right)^{-\alpha}(\log N)^{-1} \mathrm{e}^{-s t} \tag{B.8}\\
& \sim \frac{A}{\chi}\left(\frac{1}{\log N}\right)^{-\alpha+1} \int_{0}^{C_{2}} \mathrm{~d} s \log \left(\frac{1}{s}\right)^{-\alpha} \mathrm{e}^{-s t}
\end{align*}
$$

Next, put $s t=u$, so $s=\frac{u}{t}$ and $\frac{\mathrm{d} s}{\mathrm{~d} u}=\frac{1}{t}$ and $0<u<t C_{2}$. Then

$$
\begin{equation*}
\mathbb{P}(\tau>t) \sim \frac{A}{\chi}\left(\frac{1}{\log N}\right)^{-\alpha+1} \frac{1}{t} \int_{0}^{C_{2} t} \mathrm{~d} u \log \left(\frac{t}{u}\right)^{-\alpha} \mathrm{e}^{-u} \tag{B.9}
\end{equation*}
$$

We will show that

$$
\begin{equation*}
\frac{A}{\chi}\left(\frac{1}{\log N}\right)^{-\alpha+1} \frac{1}{t} \int_{0}^{C_{2} t} \mathrm{~d} u \log \left(\frac{t}{u}\right)^{-\alpha} \mathrm{e}^{-u} \asymp \frac{A}{\chi}\left(\frac{1}{\log N}\right)^{-\alpha+1} \frac{1}{t} \int_{0}^{C_{2} t} \mathrm{~d} u \log t^{-\alpha} \mathrm{e}^{-u} \tag{B.10}
\end{equation*}
$$

For $\alpha=0$ this claim is immediate. For $\alpha \in(-\infty, 0)$, note that $\log \left(\frac{t}{u}\right)^{-\alpha}$ is a decreasing function on ($0, C_{2} t$). Therefore we can reason as follows:

$$
\begin{align*}
& \int_{0}^{C_{2} t} \mathrm{~d} u \log \left(\frac{t}{u}\right)^{-\alpha} \mathrm{e}^{-u} \\
& =\int_{0}^{1} \mathrm{~d} u \log \left(\frac{t}{u}\right)^{-\alpha} \mathrm{e}^{-u}+\int_{1}^{C_{2} t} \mathrm{~d} u \log \left(\frac{t}{u}\right)^{-\alpha} \mathrm{e}^{-u} \\
& \leq \int_{0}^{1} \mathrm{~d} u \log \left(\frac{t}{u}\right)^{-\alpha}+\int_{1}^{C_{2} t} \mathrm{~d} u \log t^{-\alpha} \mathrm{e}^{-u} \tag{B.11}\\
& \leq 2^{-\alpha} \int_{0}^{\frac{1}{t}} \mathrm{~d} u \log \left(\frac{1}{u}\right)^{-\alpha}+2^{-\alpha} \int_{\frac{1}{t}}^{1} \mathrm{~d} u \log t^{-\alpha}+\log t^{-\alpha}\left[1-\mathrm{e}^{-1}\right] \\
& \leq 2^{-\alpha} \Gamma(-\alpha+1)+2^{-\alpha} \log t^{-\alpha}\left[1-\frac{1}{t}\right]+\log t^{-\alpha}\left[1-\mathrm{e}^{-1}\right] \\
& =\log t^{-\alpha}\left[2^{-\alpha} \frac{\Gamma(-\alpha+1)}{\log t^{-\alpha}}+2^{-\alpha}\left[1-\frac{1}{t}\right]+\left[1-\mathrm{e}^{-1}\right]\right] \\
& \asymp \log t^{-\alpha}
\end{align*}
$$

For the lower bound, note that

$$
\begin{align*}
\int_{0}^{C_{2} t} \mathrm{~d} u \log \left(\frac{t}{u}\right)^{-\alpha} \mathrm{e}^{-u} & \geq \log (t)^{-\alpha} \int_{0}^{1} \mathrm{~d} u \mathrm{e}^{-u}+\log \left(\frac{1}{C_{2}}\right)^{-\alpha} \int_{1}^{C_{2} t} \mathrm{~d} u \mathrm{e}^{-u} \\
& =\log t^{-\alpha}\left[1-e^{-1}+\frac{\log \left(\frac{1}{C_{2}}\right)^{-\alpha}}{\log t^{-\alpha}}\right] \asymp \log t^{-\alpha} \tag{B.12}
\end{align*}
$$

For $\alpha \in(0,1]$, note that the function $\log \left(\frac{t}{u}\right)^{-\alpha}$ is increasing in u. For the lower bound estimate

$$
\begin{align*}
\int_{0}^{C_{2} t} \mathrm{~d} u \log \left(\frac{t}{u}\right)^{-\alpha} \mathrm{e}^{-u} & \geq \lim _{u \rightarrow 0} \log \left(\frac{t}{u}\right)^{-\alpha}\left[1-\mathrm{e}^{-1}\right]+\log t^{-\alpha}\left[\mathrm{e}^{-1}-e^{-C_{2} t}\right] \tag{B.13}\\
& =\log t^{-\alpha}\left[0+\mathrm{e}^{-1}-\mathrm{e}^{-C_{2} t}\right] \asymp \log t^{-\alpha}
\end{align*}
$$

For the upper bound estimate

$$
\begin{align*}
& \int_{0}^{C_{2} t} \mathrm{~d} u \log \left(\frac{t}{u}\right)^{-\alpha} \mathrm{e}^{-u} \\
& \begin{array}{l}
\leq \log t^{-\alpha}\left[1-\mathrm{e}^{-1}\right]+\log \left(\frac{t}{\sqrt{C_{2} t}}\right)^{-\alpha} \int_{1}^{\sqrt{C_{2} t}} \mathrm{~d} u e^{-u}+\log \left(\frac{1}{C_{2}}\right)^{-\alpha} \int_{\sqrt{C_{2} t}}^{C_{2} t} \mathrm{~d} u \mathrm{e}^{-u} \\
=\log t^{-\alpha}\left[1-\mathrm{e}^{-1}\right]+\left(\frac{1}{2}\right)^{-\alpha} \log \left(\frac{t}{C_{2}}\right)^{-\alpha}\left[\mathrm{e}^{-1}-\mathrm{e}^{-\sqrt{C_{2} t}}\right] \\
\quad+\log \left(\frac{1}{C_{2}}\right)^{-\alpha}\left[\mathrm{e}^{-\sqrt{C_{2} t}}-\mathrm{e}^{-C_{2} t}\right] \\
=\log t^{-\alpha}\left[1-\mathrm{e}^{-1}+\left(\frac{1}{2}\right)^{-\alpha}\left(\frac{\log t-\log C_{2}}{\log t}\right)^{-\alpha}\left[\mathrm{e}^{-1}-\mathrm{e}^{-\sqrt{C_{2} t}}\right]\right. \\
\left.\quad \quad+\log \left(\frac{1}{C_{2}}\right)^{-\alpha} \frac{\left[\mathrm{e}^{-\sqrt{C_{2} t}}-\mathrm{e}^{-C_{2} t}\right]}{\log t^{-\alpha}}\right] \asymp \log t^{-\alpha} .
\end{array}
\end{align*}
$$

§B.1.2 Pure exponential coefficients

In order to satisfy condition in 4.12, we must assume that $K e<N$. Since $K \geq 1$ for $\rho=\infty$, we also have $e<N$. We again use that for large t only large m contribute to the sum. Hence, again by the Euler-MacLaurin approximation formula, we have

$$
\begin{equation*}
P(\tau>t)=\frac{1}{\chi} \sum_{m \in \mathbb{N}_{0}} K_{m} \frac{e_{m}}{N^{m}} \mathrm{e}^{-\left(e_{m} / N^{m}\right) t} \sim \int_{M}^{\infty} \mathrm{d} m K_{m} \frac{e_{m}}{N^{m}} \mathrm{e}^{-\left(e_{m} / N^{m}\right) t} \tag{B.15}
\end{equation*}
$$

Again we put $s=\frac{e^{m}}{N^{m}}$. Hence

$$
\begin{equation*}
\log s=m \log \left(\frac{e}{N}\right), \quad m=\frac{\log s}{\log \frac{e}{N}}, \quad \frac{\mathrm{~d} m}{\mathrm{~d} s}=\frac{1}{s \log \frac{e}{N}}, \tag{B.16}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{m} \sim K^{m} \sim \mathrm{e}^{\log \frac{\log K}{\log \frac{e}{N}}} \sim s^{\frac{\log K}{\log \frac{e}{N}}} . \tag{B.17}
\end{equation*}
$$

Since $s(m)$ is decreasing in m, putting $C=\left(\frac{e}{N}\right)^{M}$ we obtain

$$
\begin{equation*}
\mathbb{P}(\tau>t) \sim \int_{0}^{C} \mathrm{~d} s K_{m} \frac{s}{s \log \frac{e}{N}} \mathrm{e}^{-s t} \sim \frac{1}{\log \frac{e}{N}} \int_{0}^{C} \mathrm{~d} s s^{\frac{\log K}{\log \frac{e}{N}}} \mathrm{e}^{-s t} \tag{B.18}
\end{equation*}
$$

Substitute $u=s t$, i.e., $\frac{u}{t}=s$, to get

$$
\begin{align*}
& \mathbb{P}(\tau>t) \sim \frac{1}{\log \frac{e}{N}} t^{-1-\frac{\log K}{\log \frac{e}{N}}} \int_{0}^{C t} \mathrm{~d} u u^{\frac{\log K}{\log \frac{e}{N}}} \mathrm{e}^{-u} \\
& \sim \frac{1}{\log \frac{e}{N}} t^{\frac{-\log \left(\frac{e}{N}\right)-\log K}{\log \frac{e}{N}}} \int_{0}^{C t} \mathrm{~d} u u^{\frac{\log K}{\log \frac{e}{N}}} \mathrm{e}^{-u} \sim \frac{1}{\log \frac{e}{N}} t^{-\frac{\log \left(\frac{N}{K e}\right)}{\log \frac{N}{e}}} \int_{0}^{C t} \mathrm{~d} u u^{\frac{\log K}{\log \frac{e}{N}}} \mathrm{e}^{-u} . \tag{B.19}
\end{align*}
$$

The last integral converges because $\frac{\log K}{\log \left(\frac{e}{N}\right)}>-1$, and

$$
\begin{equation*}
\int_{0}^{C t} \mathrm{~d} u u^{\frac{\log \frac{K}{\log } \frac{e}{N}}{}} \mathrm{e}^{-u} \leq \int_{0}^{\infty} \mathrm{d} u u^{\frac{\log \frac{K}{\log } \frac{e}{N}}{} \mathrm{e}^{-u}=\Gamma\left(\frac{\log K}{\log \left(\frac{e}{N}\right)}+1\right)} \tag{B.20}
\end{equation*}
$$

§B.1.3 Slowly varying functions

Return to Section 5.1. Note that $t(s)=\varphi(s)^{-1} s^{\gamma}$. Since this is the total time two lineages are active up to time $s, t(s)$ must be smaller than s. By 4.49), we have

$$
\begin{equation*}
\frac{\varphi(t)}{\varphi(s)}=\exp \left[-\int_{t(s)}^{s} \frac{\mathrm{~d} u}{u} \psi(u)\right] \tag{B.21}
\end{equation*}
$$

Since we are interested in $s \rightarrow \infty$, we may assume that $s \gg 1$ and $t(s)>1$, and estimate

$$
\begin{align*}
\frac{\varphi(t)}{\varphi(s)} & \leq \exp \left[\int_{t(s)}^{s} \frac{\mathrm{~d} u}{u} \frac{C}{\log u}\right]=\exp [C(\log \log s-\log \log t(s))] \tag{B.22}\\
& =\exp \left[C \log \left(\frac{\log s}{\log \left(\varphi(s)^{-1} s^{\gamma}\right)}\right)\right]=\exp \left[-C \log \left(\frac{\gamma \log s-\log \varphi(s)}{\log s}\right)\right]
\end{align*}
$$

A similar lower bound holds with the sign reversed. Using that $\lim _{s \rightarrow \infty} \frac{\log \varphi(s)}{\log s}=0$, we get

$$
\begin{equation*}
\gamma^{C} \leq \liminf _{s \rightarrow \infty} \frac{\varphi(t)}{\varphi(s)} \leq \limsup _{s \rightarrow \infty} \frac{\varphi(t)}{\varphi(s)} \leq \gamma^{-C} \tag{B.23}
\end{equation*}
$$

Both bounds above are positive, so indeed $\frac{\varphi(t)}{\varphi(s)} \asymp 1$.

§B. 2 Meyer-Zheng topology

§B.2.1 Basic facts about the Meyer-Zheng topology

In the Meyer-Zheng topology we assign to each real-valued Borel measurable function $(w(t))_{t \geq 0}$ a probability law on $[0, \infty] \times \overline{\mathbb{R}}$ that is called the pseudopath ψ_{w}. Note that the Borel- σ algebra on $[0, \infty] \times \mathbb{R}$ is generated by sets of the form $[a, b] \times B$ for $B \in \mathcal{B}$ and $0<a<b$. For $A=[a, b] \times B$, set

$$
\begin{equation*}
\psi_{w}(A)=\int 1_{A}(t, w(t)) \mathrm{e}^{-t} \mathrm{~d} t=\int_{a}^{b} 1_{B}(w(t)) e^{-t} \mathrm{~d} t \tag{B.24}
\end{equation*}
$$

i.e., ψ_{w} is the image measure of the mapping $t \rightarrow(t, w(t))$ under the measure $\lambda(\mathrm{d} t)=\mathrm{e}^{-t} \mathrm{~d} t$. The set of all pseudopaths is denoted by Ψ. Note that a pseudopath corresponding to $(w(t))_{t>0}$ is simply its occupation measure. The following important facts are stated in [59:

- If two paths w_{1} and w_{2} are the same Lebesgue a.e., then $\psi_{w_{1}}=\psi_{w_{2}}$.
- Denote by \mathbf{D} the space of càdlàg paths on $[0, \infty] \times \mathbb{R}$. The mapping $\psi: \mathbf{D} \rightarrow \Psi, w \mapsto \psi_{w}$ is one-to-one on \mathbf{D} and hence gives an embedding of \mathbf{D} into the compact space $\overline{\mathcal{P}}$, the space of probability measures on $[0, \infty] \times \overline{\mathbb{R}}$.
- Note if f is a function on $[0, \infty] \times \mathbb{R}$ and $w \in \mathbf{D}$, then

$$
\begin{equation*}
\psi_{w}(f)=\int_{0}^{\infty} f(t, w(t)) \mathrm{e}^{-t} \mathrm{~d} t \tag{B.25}
\end{equation*}
$$

Therefore we say that the sequence of pseudopaths induced by $\left(w_{n}\right) \subset \mathbf{D}$ converges to a pseudopath w if, for all continuous bounded function $f(t, w(t))$ on $[0, \infty] \times \overline{\mathbb{R}}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{\infty} f\left(t, w_{n}(t)\right) \mathrm{e}^{-t} \mathrm{~d} t=\int_{0}^{\infty} f(t, w(t)) \mathrm{e}^{-t} \mathrm{~d} t \tag{B.26}
\end{equation*}
$$

Since a pseudopath is a measure, convergence of pseudopaths is convergence of measures.

- D endowed with the pseudopath topology is not a Polish space. Ψ endowed with the pseudopath topology is a Polish space.
- According to [59][Lemma 1], the pseudopath topology on Ψ is convergence in Lebesgue measure on \mathbf{D}.

§B.2.2 Pseudopaths of stochastic processes on a general metric separable space

In [53] the results of [59] on state space \mathbb{R} are generalised to a general metric separable space E. Let $(Z(t))_{t>0}$ be a stochastic process with state space E. Then we assign a random pseudopath to $(Z(t))$ as follows: for $\omega \in \Omega$ and $A=[a, b] \times B, 0 \leq a<b$ and $B \in \mathcal{B}(E)$,

$$
\begin{equation*}
\psi_{(Z(t, \omega))_{t \geq 0}}(A)=\int_{a}^{b} 1_{B}(Z(t, \omega)) \mathrm{e}^{-t} \mathrm{~d} t \tag{B.27}
\end{equation*}
$$

Hence $\psi_{(Z(t))_{t \geq 0}}$ is a random variable with state space Ψ, i.e., $\psi_{(Z(t))_{t \geq 0}} \in \mathcal{M}(\Psi)$, the set of probability measures on pseudopaths. Note that

$$
\begin{equation*}
\mathbb{E}\left[\psi_{(Z(t))_{t \geq 0}} f\right]=\mathbb{E}\left[\int_{0}^{\infty} f(t, Z(t, \omega)) \mathrm{e}^{-t} \mathrm{~d} t\right]=\mathbb{E}\left[\int_{0}^{\infty} f(t, Z(t)) \mathrm{e}^{-t} \mathrm{~d} t\right] . \tag{B.28}
\end{equation*}
$$

Weak convergence in the Meyer-Zheng topology. Let $\left(Z_{n}(t)\right)_{t \geq 0}$ and $(Z(t))_{t \geq 0}$ be stochastic processes with state-space E. We say that

$$
\begin{equation*}
\mathcal{L}\left[\left(Z_{n}(t)\right)_{t \geq 0}\right]=\mathcal{L}\left[(Z(t))_{t \geq 0}\right] \text { in the Meyer-Zheng topology } \tag{B.29}
\end{equation*}
$$

if, for all $f \in \mathcal{C}_{b}(\Psi)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{E}\left[f\left(\psi_{\left(Z^{n}(t)\right)_{t \geq 0}}\right)\right]=\mathbb{E}\left[f\left(\psi_{(Z(t))_{t \geq 0}}\right)\right] \tag{B.30}
\end{equation*}
$$

Let $\mathcal{C}_{m}([0, \infty) \times E) \subset \mathcal{C}_{b}([0, \infty) \times E)$ be the set of functions of the form

$$
\begin{align*}
\mathcal{C}_{m}([0, \infty) \times E)=\{ & F \in \mathcal{C}_{b}([0, \infty) \times E): F(t, x(t))=\prod_{i=1}^{m} \int_{0}^{T_{i}} f_{i}(t, x(t)) \mathrm{d} t \tag{B.31}\\
& \left.m \in \mathbb{N}, \forall 1 \leq i \leq m, f_{i} \in \mathcal{C}_{b}([0, \infty) \times E), T_{i}>0\right\}
\end{align*}
$$

Note that \mathcal{C}_{m} is an algebra. Let $M_{E}[0, \infty)$ be the space of measurable processes from $[0, \infty)$ to \mathbb{E}, so $\mathbf{D} \subset M_{E}[0, \infty)$. Note that \mathcal{C}_{m} separates points in $M_{E}[0, \infty)$. By [53] [Proposition 4.5], the set \mathcal{C}_{m} is separating in the set of measures on $M_{E}[0, \infty)$. This means that if two stochastic processes $\left(Z_{1}(t)\right)_{t>0}$ and $\left(Z_{2}(t)\right)_{t \geq 0}$ satisfy

$$
\begin{equation*}
\mathbb{E}\left[F\left(Z_{1}\right)\right]=\mathbb{E}\left[F\left(Z_{2}\right)\right] \quad \forall F \in \mathcal{C}_{m}, \tag{B.32}
\end{equation*}
$$

then $\mathcal{L}\left[Z_{1}\right]=\mathcal{L}\left[Z_{2}\right]$.
Define

$$
\begin{equation*}
F(\psi)=\int \mathrm{d} \psi \prod_{i=1}^{m} \int_{0}^{T_{i}} f_{i}(t, x(t)) \mathrm{d} t \tag{B.33}
\end{equation*}
$$

Recall that a pseudopath ψ is associated with a path $w \in M_{E}[0, \infty)$. Hence this becomes

$$
\begin{equation*}
F\left(\psi_{w}\right)=\prod_{i=1}^{m} \int_{0}^{T_{i}} f_{i}(t, w(t)) \mathrm{d} t \tag{B.34}
\end{equation*}
$$

Since each pseudopath $\psi \in \Psi$ is associated with a path in $M_{E}[0 \infty), \mathcal{C}_{m}$ also separates points on Ψ and hence \mathcal{C}_{m} separates measures on Ψ. This implies that if

$$
\begin{equation*}
\mathbb{E}\left[F\left(\psi_{Z_{1}}\right)\right]=\mathbb{E}\left[F\left(\psi_{Z_{2}}\right)\right] \quad \forall F \in \mathcal{C}_{m} \tag{B.35}
\end{equation*}
$$

then $\mathcal{L}\left[\psi_{Z_{1}}\right]=\mathcal{L}\left[\psi_{Z_{2}}\right]$. Therefore $\mathcal{L}\left[Z_{1}\right]=\mathcal{L}\left[Z_{2}\right]$ if and only if $\mathcal{L}\left[\psi_{Z_{1}}\right]=\mathcal{L}\left[\psi_{Z_{2}}\right]$.
The Meyer-Zheng topology is a weaker than the Skohorod topology.
Lemma B.2.1. Let $\left(Z_{n}(t)\right)_{t \geq 0} \quad n \in \mathbb{N}$ and $(Z(t))_{t \geq 0}$ be stochastic processes with Polish state-space E. If

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{L}\left[\left(Z_{n}(t)\right)_{t \geq 0}\right]=\mathcal{L}\left[(Z(t))_{t \geq 0}\right] \text { in the Skohorod topology, } \tag{B.36}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{L}\left[\left(Z_{n}(t)\right)_{t \geq 0}\right]=\mathcal{L}\left[(Z(t))_{t \geq 0}\right] \text { in the Meyer-Zheng topology. } \tag{B.37}
\end{equation*}
$$

Proof. Since we do not know whether Ψ is compact, the set \mathcal{C}_{m} does not have to be convergence determining. Therefore, via Skorohod's theorem we construct the process \tilde{Z}^{n} and \tilde{Z} on one probability space, such that $\mathcal{L}\left[\tilde{Z}^{n}\right]=\mathcal{L}\left[Z^{n}\right]$ and $\mathcal{L}[\tilde{Z}]=\mathcal{L}[Z]$, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \tilde{Z}_{n}=\tilde{Z} \quad \text { a.s. } \tag{B.38}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \psi_{\tilde{Z}^{n}}=\psi_{\tilde{Z}} \quad \text { a.s. } \tag{B.39}
\end{equation*}
$$

Consequently, for all $f \in \mathcal{C}_{b}(\Psi)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{E}\left[f\left(\psi_{\tilde{Z}^{n}}\right)\right]=\mathbb{E}\left[f\left(\psi_{\tilde{Z}}\right)\right] \tag{B.40}
\end{equation*}
$$

Note that, since $\mathcal{L}\left[\tilde{Z}^{n}\right]=\mathcal{L}\left[Z^{n}\right]$ and $\mathcal{L}[\tilde{Z}]=\mathcal{L}[Z]$, we can use B.32 and B.35) to see that the latter implies $\mathcal{L}\left[\psi_{Z^{n}}\right]=\mathcal{L}\left[\psi_{\tilde{Z}^{n}}\right]$ and $\mathcal{L}\left[\psi_{Z}\right]=\mathcal{L}\left[\psi_{\tilde{Z}}\right]$. Hence B.40) indeed implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{L}\left[\psi_{Z^{n}}\right]=\mathcal{L}\left[\psi_{Z}\right] \tag{B.41}
\end{equation*}
$$

Convergence in probability in the Meyer-Zheng topology. Let (S, d) be a metric space, $\mathcal{B}(S)$ denote the Borel σ algebra on S, and $\mathcal{P}(S)$ the set of probability measures on $\mathcal{B}(S)$. Recall (see e.g. [32, Chapter 3]) that the Prohorov metric d_{P} on the space $\mathcal{P}(S)$ is given by

$$
\begin{equation*}
d_{P}(\mathbb{P}, \mathbb{Q})=\inf \left\{\epsilon>0: \mathbb{P}(A) \leq \mathbb{Q}\left(A^{\epsilon}\right)+\epsilon \forall A \in \mathcal{C}\right\} \tag{B.42}
\end{equation*}
$$

where $\mathcal{C} \subset \mathcal{B}(S)$ is the set of all closed sets in S and $A^{\epsilon}=\left\{x \in S: \inf _{y \in A} d(x, y)<\epsilon\right\}$.
Recall the following theorem (see e.g.[[32, Theorem 3.1.2]])
Theorem B.2.2. Let (S, d) be separable and let $\mathbb{P}, \mathbb{Q} \in \mathcal{P}(S)$. Define $\mathcal{M}(\mathbb{P}, \mathbb{Q})$ to be the set of all $\mu \in \mathcal{P}(S \times S)$ with marginals \mathbb{P} and \mathbb{Q}, i.e., $\mu(A \times S)=\mathbb{P}(A)$ and $\mu(S \times A)=\mathbb{Q}(A)$ for all $A \in \mathcal{B}(S)$. Then

$$
\begin{equation*}
d_{P}(\mathbb{P}, \mathbb{Q})=\inf _{\mu \in \mathcal{M}(\mathbb{P}, \mathbb{Q})} \inf \{\epsilon>0: \mu(\{(x, y): d(x, y) \geq \epsilon\}) \leq \epsilon\} \tag{B.43}
\end{equation*}
$$

Moreover, [32, Theorem 3.3.1] states that convergence of measures in the Prohorov distance, $\lim _{n \rightarrow \infty} d_{P}\left(\mathbb{P}_{n}, \mathbb{P}\right)=0$, is the same as weak convergence $\mathbb{P}_{n} \Rightarrow \mathbb{P}$. Hence, since convergence of pseudopaths is weak convergence, we can endow the space of pseudopaths Ψ with the metric d_{P}.

Let $\left(\Psi, d_{P}\right)$ be the pseudopath space metrized by the Prohorov distance. Let $\left(Z^{n}(t)\right)_{t>0},(Z(t))_{t>0}$ be stochastic processes on the state space E, where E is endowed with the metric $d(\cdot, \cdot)$. Note that convergence in probability in the Meyer-Zheng topology means that

$$
\begin{equation*}
\forall \delta>0: \quad \lim _{n \rightarrow \infty} \mathbb{P}\left[d_{P}\left(\psi_{Z^{n}}, \psi_{Z}\right)>\delta\right]=0 \tag{B.44}
\end{equation*}
$$

Tightness. Define the conditional variation for an \mathbb{R}-valued process $(U(t))_{t \geq 0}$ with natural filtration $(\mathcal{F}(t))_{t \geq 0}$ as follows. For a subdivision
$\tau: 0=t_{0}<t_{1}<\cdots<t_{n}=\infty$, set

$$
\begin{equation*}
V_{\tau}(U)=\sum_{0 \leq i<n} \mathbb{E}\left[\left|\mathbb{E}\left[U\left(t_{i+1}\right)-U\left(t_{i}\right) \mid F\left(t_{i}\right)\right]\right|\right] \tag{B.45}
\end{equation*}
$$

(with $U(\infty)=0$) and

$$
\begin{equation*}
V(U)=\sup _{\tau} V_{\tau}(U) \tag{B.46}
\end{equation*}
$$

If $V(U)<\infty$, then U is called a quasi-martingale. Note that we can always stop the process at some finite time and work with compact time intervals.

Lemma B.2.3 (Tightness in the Meyer-Zheng topology).

If $\left(P_{n}\right)_{n \in \mathbb{N}}$ is a sequence of probability laws on $D([0, T], \mathbb{R})$ such that under P_{n} the coordinate process $(U(t))_{t \geq 0}$ is a quasi-martingale with a conditional variation $V_{n}(U)$ that is bounded uniformly in n, then there exists a subsequence $\left(P_{n_{k}}\right)_{k \in \mathbb{N}}$ that converges weakly in the Meyer-Zheng topology on $D([0, T], \mathbb{R})$ to a probability law P, and $(U(t))_{t \geq 0}$ is a quasi-martingale under P.
(See [59, Theorem 7] for the identification of the limiting semi-martingale.)

§B.2.3 Proof of key lemmas

- Proof of Lemma 6.2.19,

Proof. Fix $\delta>0$. Then

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \mathbb{P}\left[d_{P}\left(\psi_{Z_{n}}, \psi_{Z}\right)>\delta\right] \\
& =\lim _{n \rightarrow \infty} \mathbb{P}\left[\inf _{\mu \in \mathcal{M}\left(\psi_{Z_{n}}, \psi_{Z}\right)} \inf \{\epsilon>0: \mu(\{(x, y): d(x, y) \geq \epsilon\}) \leq \epsilon\}>\delta\right] \tag{B.47}\\
& =\lim _{n \rightarrow \infty} \mathbb{P}\left[\forall \mu \in \mathcal{M}\left(\psi_{Z_{n}}, \psi_{Z}\right), \inf \{\epsilon>0: \mu(\{(x, y): d(x, y) \geq \epsilon\}) \leq \epsilon\}>\delta\right] \\
& =\lim _{n \rightarrow \infty} \mathbb{P}\left[\forall \mu \in \mathcal{M}\left(\psi_{Z_{n}}, \psi_{Z}\right), \mu(\{(x, y): d(x, y) \geq \delta\})>\delta\right] .
\end{align*}
$$

Let $\mu_{n} \in \mathcal{P}\left(([0, \infty] \times E)^{2}\right)$ be the measure defined by

$$
\begin{equation*}
\mu_{n}(A)=\int_{0}^{\infty} 1_{A}\left(\left(t, Z_{n}(t)\right),(t, Z(t))\right) \mathrm{e}^{-t} \mathrm{~d} t, \quad A \in \mathcal{B}\left(([0, \infty] \times E)^{2}\right) \tag{B.48}
\end{equation*}
$$

such that, for $B \in \mathcal{B}([0, \infty] \times E)$,

$$
\begin{equation*}
\mu_{n}(B \times S)=\int_{0}^{\infty} 1_{B}\left(t, Z_{n}(t)\right) 1_{S}\left((t, Z(t)) \mathrm{e}^{-t} \mathrm{~d} t=\psi_{Z^{n}}(B)\right. \tag{B.49}
\end{equation*}
$$

and similarly $\mu_{n}(S \times B)=\psi_{Z}(B)$. Hence $\mu_{n} \in \mathcal{M}\left(\psi_{Z_{n}}, \psi_{Z}\right)$ for all $n \in \mathbb{N}$, and we
obtain from (B.47) that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \mathbb{P}\left[d_{P}\left(\psi_{Z_{n}}, \psi_{Z}\right)>\delta\right] \\
& \leq \lim _{n \rightarrow \infty} \mathbb{P}\left[\mu_{n}(\{(x, y): d(x, y) \geq \delta\})>\delta\right] \\
& \leq \lim _{n \rightarrow \infty} \mathbb{P}\left[\int_{0}^{\infty} 1_{\{(x, y): d(x, y) \geq \delta\}}\left(\left(t, Z_{n}(t)\right),(t, Z(t))\right) \mathrm{e}^{-t} \mathrm{~d} t>\delta\right] \\
& \leq \lim _{n \rightarrow \infty} \mathbb{P}\left[\int_{0}^{\infty} 1_{\left\{d\left(Z_{n}(t), Z(t)\right) \geq \delta\right\}} \mathrm{e}^{-t} \mathrm{~d} t>\delta\right] \tag{B.50}\\
& \leq \lim _{n \rightarrow \infty} \frac{1}{\delta} \mathbb{E}\left[\int_{0}^{\infty} d\left(Z_{n}(t), Z(t)\right) \mathrm{e}^{-t} \mathrm{~d} t\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{\delta} \int_{0}^{\infty} \mathbb{E}\left[d\left(Z_{n}(t), Z(t)\right)\right] \mathrm{e}^{-t} \mathrm{~d} t=0 .
\end{align*}
$$

- Proof of Lemma 6.2.20.

Proof. We have to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{L}\left[\psi_{\left(X_{n}, Y_{n}\right)}\right]=\mathcal{L}\left[\psi_{(X, c)}\right] . \tag{B.51}
\end{equation*}
$$

Hence we must show that, for all $f \in \mathcal{C}_{b}(\Psi)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{E}\left[f\left(\psi_{\left(X_{n}, Y_{n}\right)}\right)\right]=\mathbb{E}\left[f\left(\psi_{(X, c)}\right)\right] \tag{B.52}
\end{equation*}
$$

We can write

$$
\begin{align*}
& \left|\mathbb{E}\left[f\left(\psi_{\left(X_{n}, Y_{n}\right)}\right)-f\left(\psi_{(X, c)}\right)\right]\right| \tag{B.53}\\
& \leq\left|\mathbb{E}\left[f\left(\psi_{\left(X_{n}, Y_{n}\right)}\right)-f\left(\psi_{\left(X_{n}, c\right)}\right)\right]\right|+\left|\mathbb{E}\left[f\left(\psi_{\left(X_{n}, c\right)}\right)-f\left(\psi_{(X, c)}\right)\right]\right| .
\end{align*}
$$

Since $\lim _{n \rightarrow \infty} \mathbb{E}\left[d\left(Y_{n}(t), c\right)\right]=0$ implies $\lim _{n \rightarrow \infty} \mathbb{E}\left[d\left(\left(X_{n}(t), Y_{n}(t)\right),\left(X_{n}(t), c\right)\right)\right]=0$, it follows from Lemma 6.2.19 that, for all $\delta>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}\left[d_{P}\left(\psi_{\left(X_{n}, Y_{n}\right)}, \psi_{\left(X_{n}, c\right)}\right)\right]=0 \tag{B.54}
\end{equation*}
$$

Hence, for all $f \in \mathcal{C}_{b}(\Psi)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\mathbb{E}\left[f\left(\psi_{\left(X_{n}, Y_{n}\right)}\right)-f\left(\psi_{\left(X_{n}, c\right)}\right)\right]\right|=0 \tag{B.55}
\end{equation*}
$$

To see that the second term in the right-hand side of (B.53) tends to zero, note that we can define

$$
\begin{equation*}
\tilde{f}\left(\psi_{x}\right)=f\left(\psi_{x, c}\right) . \tag{B.56}
\end{equation*}
$$

We show that \tilde{f} is continuous.
Recall that convergence in the Meyer-Zheng topology is simply convergence in Lebesgue measure. Hence, for two paths $\left(t, x_{n}(t)\right)$ and $(t, x(t)) \in M_{E}[0 \infty)$ we have $\psi_{x_{n}} \rightarrow \psi_{x}$ if and only if, for all $\delta>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{\infty} 1_{\left\{d\left(x_{n}(t), x(t)\right)>\delta\right\}} \mathrm{e}^{-t} \mathrm{~d} t=0 \tag{B.57}
\end{equation*}
$$

Therefore $\psi_{x_{n}} \rightarrow \psi_{x}$ implies that, for all $\delta>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{\infty} 1_{\left\{d\left(\left(x_{n}(t), c\right),(x(t), c)\right)>\delta\right\}} \mathrm{e}^{-t} \mathrm{~d} t=0 \tag{B.58}
\end{equation*}
$$

and hence $\psi_{x_{n}, c} \rightarrow \psi_{x, c}$. Therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \tilde{f}\left(\psi_{x_{n}}\right)=\lim _{n \rightarrow \infty} f\left(\psi_{\left(x_{n}, c\right)}\right)=f\left(\psi_{(x, c)}\right)=\tilde{f}\left(\psi_{x}\right) \tag{B.59}
\end{equation*}
$$

and we conclude that $f \in \mathcal{C}_{b}(\Psi)$. Since $\mathcal{L}\left[X_{n}\right]=\mathcal{L}[X]$ in the Meyer-Zheng topology, we have, for all $f \in \mathcal{C}_{b}(\Psi)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\mathbb{E}\left[f\left(\psi_{\left(X_{n}, c\right)}\right)-f\left(\psi_{(X, c)}\right)\right]\right|=\lim _{n \rightarrow \infty}\left|\mathbb{E}\left[\tilde{f}\left(\psi_{\left(X_{n}\right)}\right)-\tilde{f}\left(\psi_{(X)}\right)\right]\right|=0 \tag{B.60}
\end{equation*}
$$

Therefore also the second term on the right-hand side of B.53 tends to 0 .

- Proof of Lemma 6.2.21.

Proof. For part (a), suppose that $\lim _{n \rightarrow \infty} \psi_{x_{n}}=\psi_{x}$. Then, since convergence in pseudopath space is convergence in measure, we have, for all $\delta>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{\infty} 1_{\left\{d\left(x_{n}(t), x(t)\right)>\delta\right\}} \mathrm{e}^{-t} \mathrm{~d} t=0 \tag{B.61}
\end{equation*}
$$

Since f is a continuous function, this implies that, for all $\epsilon>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{\infty} 1_{\left\{d\left(f\left(x_{n}(t)\right), f(x(t))\right)>\epsilon\right\}} \mathrm{e}^{-t} \mathrm{~d} t=0 \tag{B.62}
\end{equation*}
$$

and we conclude that $\lim _{n \rightarrow \infty} \psi_{f\left(x_{n}\right)}=\psi_{f(x)}$. Hence h is indeed continuous.
For part (b), recall that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{L}\left[X_{n}\right]=\mathcal{L}[X] \text { in the Meyer-Zheng topology } \tag{B.63}
\end{equation*}
$$

implies that, for all $g \in \mathcal{C}_{b}(\Psi)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{E}\left[g\left(\psi_{X_{n}}\right)\right]=\mathbb{E}\left[g\left(\psi_{X}\right)\right] \tag{B.64}
\end{equation*}
$$

Since $h: \Psi \rightarrow \Psi$ is continuous, we have for all $g \in \mathcal{C}_{b}(\Psi)$ that $g \circ h \in \mathcal{C}_{b}(\Psi)$. Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{E}\left[g\left(\psi_{f\left(X_{n}\right)}\right]=\lim _{n \rightarrow \infty} \mathbb{E}\left[g \circ h\left(\psi_{X_{n}}\right)\right]=\mathbb{E}\left[g \circ h\left(\psi_{X}\right)\right]=\mathbb{E}\left[g\left(\psi_{f(X)}\right)\right]\right. \tag{B.65}
\end{equation*}
$$

We conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{L}\left[f\left(X_{n}\right)\right]=\mathcal{L}[f(X)] \text { in the Meyer-Zheng topology. } \tag{B.66}
\end{equation*}
$$

- Proof of Lemma 7.2.14,

Proof. Suppose that $\lim _{n \rightarrow \infty} \psi_{\left(x_{n}, y_{n}\right)}=\psi_{(x, y)}$. Since convergence of pseudopaths is convergence in Lebesgue measure, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{\infty} 1_{\left\{d\left[\left(x_{n}, y_{n}\right),(x, y)\right]>\delta\right\}} \mathrm{e}^{-t} \mathrm{~d} t=0 \tag{B.67}
\end{equation*}
$$

and, consequently,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{\infty} 1_{\left\{d\left[x_{n}, x\right]>\delta\right\}} \mathrm{e}^{-t} \mathrm{~d} t=0 \tag{B.68}
\end{equation*}
$$

Therefore $\lim _{n \rightarrow \infty} \psi_{x_{n}}=\psi_{x}$. Suppose that $f \in \mathcal{C}_{b}(\Psi(E))$, so f is bounded continuous function on the space of pseudopaths on $[0, \infty] \times E$. Define the function \tilde{f} on the space of pseudopaths on $[0, \infty] \times E^{2}$, i.e., \tilde{f} is a function on $\Psi\left(E^{2}\right)$, by

$$
\begin{equation*}
\tilde{f}\left(\psi_{(x, y)}\right)=f\left(\psi_{x}\right) . \tag{B.69}
\end{equation*}
$$

Then $\tilde{f} \in \mathcal{C}_{b}\left(\Psi\left(E^{2}\right)\right)$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \tilde{f}\left(\psi_{\left(x_{n}, y_{n}\right)}\right)=\lim _{n \rightarrow \infty} f\left(\psi_{x_{n}}\right)=f\left(\psi_{x}\right)=\tilde{f}\left(\psi_{\left(x_{n}, y_{n}\right)}\right) \tag{B.70}
\end{equation*}
$$

Hence \tilde{f} is indeed a continuous function on $\Psi\left(E^{2}\right)$. Moreover, since f is bounded, it follows that \tilde{f} is bounded and we conclude that $\tilde{f} \in \mathcal{C}_{b}\left(\Psi\left(E^{2}\right)\right)$.

Therefore, if X_{n}, Y_{n} are continuous-time stochastic processes on E and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{L}\left[\left(X_{n}(s), Y_{n}(s)\right)_{s>0}\right]=\mathcal{L}\left[(X(s), Y(s))_{s>0}\right] \text { in Meyer Zheng topology } \tag{B.71}
\end{equation*}
$$

then for all $f \in \mathcal{C}_{b}\left(\Psi\left(E^{2}\right)\right)$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{E}\left[f\left(\psi_{\left(X_{n}, Y_{n}\right)}\right)\right]=\mathbb{E}\left[f\left(\psi_{(X, Y)}\right)\right] \tag{B.72}
\end{equation*}
$$

Since for each $f \in \mathcal{C}_{b}(\Psi(E))$ we can construct a function $\tilde{f} \in \mathcal{C}_{b}\left(\Psi\left(E^{2}\right)\right)$ as in B.69, we obtain for all $f \in \mathcal{C}_{b}(\Psi(E))$ that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{E}\left[f\left(\psi_{\left(X_{n}\right)}\right)\right]=\lim _{n \rightarrow \infty} \mathbb{E}\left[\tilde{f}\left(\psi_{\left(X_{n}, Y_{n}\right)}\right)\right]=\mathbb{E}\left[\tilde{f}\left(\psi_{(X, Y)}\right)\right]=\mathbb{E}\left[\tilde{f}\left(\psi_{X}\right)\right] \tag{B.73}
\end{equation*}
$$

We conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{L}\left[\left(X_{n}(s)\right)\right]=\mathcal{L}\left[(X(s))_{s>0}\right] \text { in Meyer-Zheng topology } \tag{B.74}
\end{equation*}
$$

and, similarly,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{L}\left[\left(Y_{n}(s)\right)\right]=\mathcal{L}\left[(Y(s))_{s>0}\right] \text { in Meyer-Zheng topology. } \tag{B.75}
\end{equation*}
$$

