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APPENDIX B

Appendix Part [[I

§B.1 Computation of scaling coefficients

In Appendices we spell out a technical computation for the tail of the
wake-up time defined in (4.40)—(4.41)) in the two parameter regimes given by (4.52))—

(4.53)). In Appendix we carry out a computation that is needed in Section

§B.1.1 Regularly varying coefficients

In (4.40)), note that for large ¢ in the sum over m only small values of e,,, /N™ contrib-
ute, which means large m. Hence, by the Euler-MacLaurin approximation formula,
we have

o 1 E€m _(em/Nm,)t 1 > €Em —(6m,/N”L)t
P(T>t)—; > Ky @ ) dm Ko7 e . (B.1)
meNy g

where c is a constant that identifies from which value of m onward terms contribute
significantly. Make the change of variable s = . Since e, ~ Bm=F and K,, ~
Am~% as m — 0o, we have

s~Bm PN"™ (B.2)
and hence

log s ~ log B — flogm — mlog N,

1 B Blogm (B.3)
g T mios ( mlog N mlog]\fJr > [1+o(1)]m log N,
which gives
log(3)
m=[14 o(1)] og N’ (B.4)
Thus,
1 ds I3
;%——logN—%——[l-i-o(l)} log N, (B.5)
which implies
d
ﬁ = —[1 + o(1)] slog N, (B.6)
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so that s(m) is asymptotically decreasing in m, and

dm

ds

Note that if ¢ < m < oo, then asymptotically 0 < m~ PN~ < ¢ "#N—¢ = (5. Doing
the substitution, we get

—[1+0(1)] (slogN)™". (B.7)

1 [ !
P(r > t) ~ f/ ds K,,s(slog N)™ " e %t
X Jo

1 [ .
~ 7/ ds Am~*(log N) ™ e 5
X Jo

1 2 IOg(%) - -1 —st
N?/o dSA<logN (logN) " e

Al 1 atl rC _
Ak ety
0

Next, put st = u, so s = ¥ and ds = % and 0 < u < tCs. Then

A 1 a+1 1 Cot o
P(r>1t)~ (logN) Z/o du log (L)% e™". (B.9)

We will show that

—a+1 Cat —at1 Ot
A L 1/ dulog (L)% e™™ x 4 ! 1/ du logt™“e ™.
x \log N tJo w x \log N tJo

(B.10)
For a = 0 this claim is immediate. For a € (—o0,0), note that log (1) is a
decreasing function on (0, Cat). Therefore we can reason as follows:

Cot
/ du log (£) " e™

0

1 Cat
:/ du log (%)_ae_“—i—/ dulog (L)% e™
0 1

1 B Cot
S/ du log (£)™° +/ du logt™%e™"
1

. (B.11)
<27« / dulog ()" + 2_“/ du logt™* +logt™* [1 —e™ "]
1
<27°T(—a+1)+2 %logt™* [1 — 1] +1logt™[1 —e_l]
=logt ™™ [2711M+2 *[1-1]+[1-e ]]
= logt™ .
For the lower bound, note that
Cot _ 1 Cot
/ dulog ()" e ™ > log (t)fa/ due™ + log(c%)*a/ due ™
° ’ Lean (B.12)
1 log(ﬁ) “
=logt ™ |1l—e 4+ ——| x<logt™ .
logt—«
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For a € (0,1], note that the function log (%)70‘ is increasing in u. For the lower
bound estimate

Cgt
[ duton (&) e > tiylog (5 - e b loge et e

=logt ™ [0+e ! —e ] xlogt™™.

For the upper bound estimate

Cot
/ du log (%)ﬂl e !
0

. o\ Vet 1\~
<logt 1 —e ']+ log [ —— due ™ +log [ =
- tne{t)[ e (3)

=logt™*[1—e '+ (3) “log <(§2> {efl — e*\/@}

+ log <012> [e*\/CT’t - efczt}

logt —1 -
—logt™® [1 —e 4 (L) (Og Ogcz) [t —emverr]

Czt
/ due™
vV Czt

logt
e~V Caot efcgt:|

+1lo A [ = logt™®
& Cy logt— —ost

(B.14)

§B.1.2 Pure exponential coefficients

In order to satisfy condition in (4.12), we must assume that Ke < N. Since K > 1
for p = oo, we also have e < N. We again use that for large ¢ only large m contribute
to the sum. Hence, again by the Euler-MacLaurin approximation formula, we have

P(r >t) Z K ~(em/N™)t e~ (em/N™)  (B.15)

mGNo

Again we put s = £ . Hence

e log s dm 1
log s = m1 (7) - I L B.16
085 =M0s \y mn log % ds slog & ( )
and
log s 1254 b B
K,~Km"~e¢ N ~glsn, (B.17)

Since s(m) is decreasing in m, putting C = ()" we obtain

c s 1 C log K
P(r >t) ~ / ds Kpy————e % ~ - / dssls® e 5L, (B.18)
0 slog ~ log ~ Jo
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Substitute u = st, i.e., ¥ = s, to get

q_losK Ct log K
]P)(T > t) ~ = log £ ~ duulogW ef’u,
log 0
1 les(ilee K Ot log K 1 _les(gp) Ot tog K
~—t R / duu™F e ™~ ——t s / duu™ % e
log N 0 lOg ~N 0
(B.19)
The last integral converges because kl)‘;g(f) > —1, and
N
Ct log K log K 10 K
duu'=~ e_“</ duu's~ e~ —F( ge +1>. (B.20)
0 los(%)

§B.1.3 Slowly varying functions

Return to Section Note that t(s) = ¢(s)~'s7. Since this is the total time two
lineages are active up to time s, ¢(s) must be smaller than s. By (4.49), we have

zg)) — exp [— /t() OZ‘zp(u)] . (B.21)

Since we are interested in s — oo, we may assume that s > 1 and t(s) > 1, and
estimate

o) - o V du_C

t(s) w logu
log s ~vlog s — log ¢(s)
—exp |Clog [ ——22 )| = exp |-C1 .
o |08 (o )| = eov [-ooe (TR
A similar lower bound holds with the sign reversed. Using that lim,_,. 2620 — 0,

log s
we get
t t
79 < liminf () < limsupM <~ C.
s2oo o(s) T smeo @(s)

= exp [C(loglog s — loglogt(s))]

(B.22)

(B.23)

Both bounds above are positive, so indeed “"Etg = 1.

§B.2 Meyer-Zheng topology

§B.2.1 Basic facts about the Meyer-Zheng topology

In the Meyer-Zheng topology we assign to each real-valued Borel measurable function
(w(t))s>0 a probability law on [0, 0c] x R that is called the pseudopath t,,. Note that
the Borel-o algebra on [0, 0] x R is generated by sets of the form [a,b] x B for B € B
and 0 < a < b. For A = [a,b] x B, set

b
%(A):/lA(t,w(t))e*tdt:/ 1p(w(t))e tdt, (B.24)
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i.e., 1, is the image measure of the mapping ¢ — (¢,w(t)) under the measure
A(dt) = e~tdt. The set of all pseudopaths is denoted by ¥. Note that a pseudo-
path corresponding to (w(t))¢~o is simply its occupation measure. The following
important facts are stated in [59]:

o If two paths w; and ws are the same Lebesgue a.e., then 1, = ¥n,.

e Denote by D the space of cadlag paths on [0, 00] x R. The mapping
Yv: D = ¥, w1, is one-to-one on D and hence gives an embedding of D
into the compact space P, the space of probability measures on [0, 0o] x R.

e Note if f is a function on [0,00] x R and w € D, then

Yo (f) = /OOO flt,w(t)) e tde. (B.25)

Therefore we say that the sequence of pseudopaths induced by (w,,) C D con-
verges to a pseudopath w if, for all continuous bounded function f(t,w(t)) on
[0,00] X R,

lim Oof(t,wn(t))e*tdt = /OO flt,w(t)) e tdt. (B.26)

n—oo 0

Since a pseudopath is a measure, convergence of pseudopaths is convergence of
measures.

e D endowed with the pseudopath topology is not a Polish space. ¥ endowed
with the pseudopath topology is a Polish space.

e According to [59][Lemma 1], the pseudopath topology on ¥ is convergence in
Lebesgue measure on D.

§B.2.2 Pseudopaths of stochastic processes on a gen-
eral metric separable space

In [53] the results of [59] on state space R are generalised to a general metric separable
space E. Let (Z(t))¢=0 be a stochastic process with state space E. Then we assign a

random pseudopath to (Z(t)) as follows: for w € Q and A = [a,b] x B, 0 < a < b and
B e B(E),

b
D(z(tw))ise(A) = / 15(Z(t,w)) e dt. (B.27)

Hence ¢(z(1)),-, is a random variable with state space ¥, i.e., ¥(z(1)),», € M(T), the
set of probability measures on pseudopaths. Note that

E [¢(Z(t))t>0 |:/ f t Z t W) _tdt:| |:/ f t Z _tdt . (B28)
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Weak convergence in the Meyer-Zheng topology. Let (Z,,(t)):>0 and (Z(t))i>0
be stochastic processes with state-space . We say that

LU Z,(t))t>0] = LI(Z(t))>0] in the Meyer-Zheng topology (B.29)

if, for all f € Cp(V),
Jim E[f (dzn1))0)] = BIf ($(z(0))150)]- (B.30)

Let Cpn,([0,00) x E) C Cp([0,00) x E) be the set of functions of the form

Con([0,00) x E) = { F € Cy([0,00) x E) : F(t,x(t)) = " F(t 2())dt,
(0.0 % ) = {F €€o0.00) B Fita(t) = ] [ it o0 .

meN, V1 <i<m, fiECb([(),oo)xE),Ti>0}.

Note that C,, is an algebra. Let Mg[0, c0) be the space of measurable processes from
[0,00) to E, so D C Mg[0,00). Note that C,, separates points in Mg[0,00). By
[53][Proposition 4.5], the set Cy, is separating in the set of measures on Mg[0, o).
This means that if two stochastic processes (Z1(t))i>0 and (Z2(t)):>0 satisfy

E[F(Z1)] =E[F(Z;)]  VF €Cp, (B.32)
then ['[Zl] = [,[ZQ]
Define m o
Fw) = [ ]l | e (B.33)

Recall that a pseudopath 1 is associated with a path w € Mg[0,00). Hence this
becomes

m T;
o) =1 [ ftuwe)ar (B.34)

Since each pseudopath ¢ € W is associated with a path in Mg[0c0), C,, also separates
points on ¥ and hence C,,, separates measures on ¥. This implies that if

E[F(¢z,)] = E[F(¢Yz2,)]  VF €Cn, (B.35)

then L[Yz,] = L[Wz,]. Therefore L[Z1] = L[Zs] if and only if L[z, ] = L[V z,].
The Meyer-Zheng topology is a weaker than the Skohorod topology.

Lemma B.2.1. Let (Z,(t))i>0 n € N and (Z(t))i>0 be stochastic processes with
Polish state-space E. If

le L(Zy(t)i>0] = L(Z(t))i>0] in the Skohorod topology, (B.36)
then
1Lm L(Zn(t))i>0] = L[(Z(t))e>0] in the Meyer-Zheng topology. (B.37)
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Proof. Since we do not know whether ¥ is compact, the set C,, does not have to be
convergence determining. Therefore, via Skorohod’s theorem we construct the process

Z"™ and Z on one probability space, such that £[Z"] = L[Z"] and L[Z] = L[Z], and
lim Z, =2  a.s. (B.38)
n—oo

This implies
ILm Yon =105 a.s. (B.39)

Consequently, for all f € Cy(D),

Tim E[f(¥7.)] = EF(0)]. (B.40)
Note that, since £[Z"] = L[Z"] and L[Z] = L[Z], we can use (B.32)) and (B.35) to
see that the latter implies L[Yyzn] = L[t 5,.] and L[] = L[ ;]. Hence (B.40)) indeed
implies that

lim LRize] = Ll (B.41)

O

Convergence in probability in the Meyer-Zheng topology. Let (S,d) be a
metric space, B(S) denote the Borel-o algebra on S, and P(S) the set of probability
measures on B(S). Recall (see e.g. [32, Chapter 3]) that the Prohorov metric dp on
the space P(S) is given by

dp(P,Q) = inf {e > 0: P(A) < Q(A°) +eVAeC), (B.42)

where C C B(S) is the set of all closed sets in S and A = {z € S: infycad(z,y) < €}.
Recall the following theorem (see e.g.[[32, Theorem 3.1.2]])

Theorem B.2.2. Let (S,d) be separable and let P,Q € P(S). Define M(P,Q) to
be the set of all p € P(S x S) with marginals P and Q, i.e., u(A x ) = P(A) and
u(S x A) = Q(A) for all A € B(S). Then

dp(P,Q) = inﬁp inf{e > 0: p({(z,y): d(z,y) > €}) <e}. (B.43)

peEM(P,Q)

Moreover, [32] Theorem 3.3.1] states that convergence of measures in the Prohorov
distance, lim, o dp(P,,P) = 0, is the same as weak convergence P,, = P. Hence,
since convergence of pseudopaths is weak convergence, we can endow the space of
pseudopaths ¥ with the metric dp.

Let (U,dp) be the pseudopath space metrized by the Prohorov distance. Let
(Z™(t))t>0, (Z(t))r>0 be stochastic processes on the state space E, where E is endowed
with the metric d(-,-). Note that convergence in probability in the Meyer-Zheng
topology means that

Vd > 0: ILHI ]P)[dp (’(ﬁzn,ﬂiz) > (ﬂ = 0. (B.44)
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Tightness. Define the conditional variation for an R-valued process (U(t));>o with
natural filtration (F(¢))¢>o as follows. For a subdivision
T: 0=ty <ty <- - <t, =00, set

ViU) = Y E|[EU(tis) — Ut | Ft)]|] (B.45)
0<i<n
(with U(o0) = 0) and
V(U) =sup V,(U). (B.46)

If V(U) < oo, then U is called a quasi-martingale. Note that we can always stop the
process at some finite time and work with compact time intervals.

Lemma B.2.3 (Tightness in the Meyer-Zheng topology).

If (Pp)nen is a sequence of probability laws on D([0,T],R) such that under P, the
coordinate process (U(t))i>0 is a quasi-martingale with a conditional variation Vy,(U)
that is bounded uniformly in n, then there exists a subsequence (Pp,)ken that con-
verges weakly in the Meyer-Zheng topology on D([0,T],R) to a probability law P, and
(U(t))e>0 is a quasi-martingale under P.

(See [59, Theorem 7] for the identification of the limiting semi-martingale.)

§B.2.3 Proof of key lemmas
e Proof of Lemma [6.2.19]

Proof. Fix § > 0. Then

lim Pdp(vz,,%z) > 0]

n—oo
= lim P inf inf{e > 0: r,y): dlz,y) >€e}) <e} >4
Jm Pl e 00 (@) d(e) > o) < o )

= nan;OP[Vu € MYz, ,vz), inf{e > 0: pu({(z,y): d(z,y) > €}) < e} > ]
= nll)r{.lop[vﬂ € M(iﬁznﬂbz)’ ,U,({(S(},y)l d(l’,y) > 6}> > 6]

Let pin € P(([0,00] x E)?) be the measure defined by
) = [ LA Z0) (0 Z0)) et A€ B0, x B, (B
such that, for B € B([0,00] x B),
(B 5) = [ Tt Za)1s(( Z0) et = vpe(B), (BAY)

and similarly p, (S x B) = ¢z(B). Hence p, € M(¢z,,%z) for all n € N, and we
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obtain from (B.47]) that
nlLH;O]PJ [dp(l/)zn,wz) > 5]
< lim P lp,({(2,y) : d(z,y) > 6}) > ]

< lim P |:/ 1{(a:,y):d(z,y)25} ((t7 Zn(t))a (t7 Z(t))) etdt >0
0

n—oo

. * - B.50
< lim P [/ La(Za(0).2(0) 20 € dE > 5] (5:50)
n o0 0
1 > ¢
< nh%rrgo EE [/0 d(Z,(t), Z(t)) e dt}
N Y e —t
= 11_>m - E[d(Z,(t), Z(t))] e~*dt = 0.
n o0 0
O
e Proof of Lemma [6.2.20]
Proof. We have to show that
Jim L[, vl = £ [$ece] (B.51)
Hence we must show that, for all f € C,(P),
lim E[f (e, )] = E[f (¥x0))- (B.52)
We can write
|E[f(1/}(xn,yn)) - f(w(x,c))“ (B.53)

<IEf(Yix,.v) = F@x, )l + B (Y(x,.0) = F(ix.e0)ll-

Since lim,, o, E[d(Y,,(¢),¢)] = 0 implies lim,,—, o E[d((X,(¢), Yo (1)), (X, (t), )] = 0,
it follows from Lemma [6.2.19] that, for all 6 > 0,

nlL)H;OP [dp (Q;ZJ(X,I,,Y”)"I/}(X”,C))} =0. (B54)
Hence, for all f € Cp(),
im[E[f(x, v,) ~ Fbce, o)l =0 (B.55)

To see that the second term in the right-hand side of (B.53)) tends to zero, note that
we can define

fWz) = f(Ya,c). (B.56)

We show that f is continuous.

Recall that convergence in the Meyer-Zheng topology is simply convergence in
Lebesgue measure. Hence, for two paths (¢,2,(t)) and (¢, 2(t)) € Mg[0oo) we have
Yy, — Uy if and only if, for all 6 > 0,

oo

lim l{d(mn(t),w(t))>6} e tdt = 0. (B.57)

n— oo 0
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Therefore 1, — 1, implies that, for all § > 0,

lim Lid((an (1),0), (a(t),c)) >y € dt =0, (B.58)

n—oo 0

and hence ¥, . — ¥z .. Therefore

i
—00
and we conclude that f € Cp(¥). Since L[X,] = L][X] in the Meyer-Zheng topology,
we have, for all f € Cy(P),

lim [E[f(4(x,,.0) = [($x.)ll = lim E[f(4x,)) — f(x)]| = 0. (B.60)

n—oo

Therefore also the second term on the right-hand side of (B.53]) tends to 0. O

e Proof of Lemma [6.2.27]

Proof. For part (a), suppose that lim,, o %,, = .. Then, since convergence in
pseudopath space is convergence in measure, we have, for all § > 0,

o0

lim l{d(a;,,L(t)7:v(t))>6} e tdt = 0. (B.61)

n—oo 0

Since f is a continuous function, this implies that, for all € > 0,

o0

lim Lia(f (on(0)), fa(t)) >y € dE = 0. (B.62)

n—oQ 0

and we conclude that lim, ;o ¥z, ) = ¥y2)- Hence h is indeed continuous.
For part (b), recall that

lim £[X,] = L[X] in the Meyer-Zheng topology (B.63)

n—00

implies that, for all g € C,(¥),

lim Elg(¢x, )] = Elg(¢x)]- (B.64)

n—oQ

Since h: ¥ — ¥ is continuous, we have for all g € C(¥) that go h € Cp(¥). Hence

lim Elg(¢px,)] = lim E[goh(¥x,)] = Elg o h(yx)] = Elg(¢y(x))]- (B.65)

n—oo

We conclude that
lim L[f(X,)] = L[f(X)] in the Meyer-Zheng topology. (B.66)

n—oo

O
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e Proof of Lemma [7.2.14]

Proof. Suppose that lim, cc ¥ (s, y,) = Y(a,y)- Since convergence of pseudopaths is
convergence in Lebesgue measure, we have

I L, ). ) >aye At =0 (B.67)
and, consequently,
. —tap _
nll}n;o . 1{d[$m$]>5}e dt = 0. (B68)

Therefore lim,, ;o ¥z, = 9. Suppose that f € Cy(¥(E)), so f is bounded continuous
function on the space of pseudopaths on [0,00] x E. Define the function f on the

space of pseudopaths on [0,00] x E?, i.e., f is a function on ¥(E?), by

Then f € Cy(¥(E?)) and
Hm f(Wa,g) = Hm @) = fW) = F@e, 0.): (B.70)

Hence f is indeed a continuous function on \I/(EQN) Moreover, since f is bounded, it
follows that f is bounded and we conclude that f € Cp,(¥(E?)).
Therefore, if X,,,Y,, are continuous-time stochastic processes on F and

lim L£[(Xn(s),Yn(s))s>0] = L(X(5),Y(s))s>0] in Meyer Zheng topology, (B.71)

n—oo

then for all f € C,(¥(E?)) we have

lim E[f(¥(x, v,))] = Elf (¥x,v)]- (B.72)

n— oo

Since for each f € Cp(¥(E)) we can construct a function f € Cy(¥(E?)) as in (B.69),
we obtain for all f € Cp(¥(E)) that

lim E[f(¢(x,))] = lim E[f(¢(x, v.)] = E[f(¢x.v))] = E[f (¥x)]- (B.73)

n—oo n—oo

We conclude that

lim L[(X,(s))] = L](X(s))s>0] in Meyer-Zheng topology (B.74)

n—oo

and, similarly,

lim L[(Y,(s))] = L[(Y(s))s>0] in Meyer-Zheng topology. (B.75)

n—roo
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