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CHAPTER ]. O

Orbit of the renormalisation
transtformation

In this chapter we analyse the orbit of the renormalisation transformation and show
that it has the Fisher-Wright diffusion as a global attractor. In Section [I0.1] we
write down moment relations for the equilibrium defined in (4.67)) for single colonies
(Proposition and for block averages (Proposition [10.1.2). In Section [10.2| we
derive the iterates of these moment relations for single colonies (Proposition [10.2.]]

and for blocks (Proposition [10.2.2). In Section [10.3] we prove clusterlng Pr0p051-

tions [10.3.1H10.3.2)). In Section we prove Theorems [4.5.1] and [4.5.3} and work

out the dichotomy of a finite seed—bank (p < 00) versus infinite seed—bank (p = ).

§10.1 Moment relations

We use Ito-calculus to compute the mixed moments. Recall 6, (6,,,) as defined in

[@21), 9, as defined in ([#62) and 9*) [@.135). Also recall Ej as defined in (&.64).

Abbreviate

1< E} (Ekck + ek)
Al = — — , n €N, 10.1
0 2 kZ:O (Ekck + e;c) + ELKpey ( )

and
B3

51
07 2 (Eoco + o) + EoKoeo'

(10.2)

In the following proposition, the first five equations are first and second moment
relations, while the last equation is the definition of the renormalisation transforma-
tion. Later we will see that this set of equations can be iterated.

Proposition 10.1.1 (Moment relations: single colonies).

Let Yo be as defined in (4.62)), and let I’Eﬂ)o W = I‘%Cofif)o,Ko,eo be the equilibrium of

(4.67) measure defined in (4.73) with k =0, with g € G, ¢y € (0,00), Eg € [0,1] and
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Ky, eqg € (0,00). Then the following moment relations hold:

/[0 11x[0 1]]\'0 ?ﬂfoyzc)o HHoco (dzo) = 9o, (10.3)
/[o 1[0, 1]No gﬂnylC)o o) = W, (10.4)
/[o xioafo 00 Tloay ™" (o) = /[o 1)x[0,1]% Y0 Doy (o), (10.5)
/[O R 25 Doy 0% (d20) = 05 + AG(Fg) (Do), (10.6)
/[0 o Y00 Do 70 (@20) = 96+ (45 = Bo)(Fo) (Do), (10.7)
/[O x(o] 9(wo) Tty ™0 (dzo) = (Fg)(Do). (10.8)

Proof. For ease of notation we write x, yo instead of xg, yo,0 for the single colonies. We
use It0’s formula to compute the first and second moments, and invoke the equilibrium
condition to get the above formulas, except for the last formula, which is the definition

of F in (4.75)).
1. We begin with the first moments of x and yo. For £ = 0, (4.67) becomes

de(t) = E [co[ﬂo—x(t)] dt + \/g(x(t)) dwo(t) (10.9)
+Koeo [yo(t) — z(t)] dt],
duo(t) = eolalt) — wo(t)] (10.10)
dym(t) = 0.
In equilibrium the distribution of x(t) is constant in time, and so LE[z(t)] = 0,

where E denotes expectation w.r.t. T9 050 " Integrating (10.9) and taking the
expectation, we get

Efz(t) — z(0)]

o [E { /0 s co[do — 2(5)] + Koeo /0 " ds [yo(s) — x(s)]” ,
Eo [/t dsE[eo[io — a(5)] + Koeo[yo(s) - x(s)]H . (10.11)

0

where in the second equation we use Fubini. Turning back to differential notation,

we see from (10.11]) that
d
dt
and it follows that

E[z(0)] = 0 = E, {E[CO [90 — (t)] + Koeo[yo(t) — z(t)}] } , (10.12)

]E[CO [’190 — ZIZ] + Koeg [yo - Z‘H =0. (1013)
In the same way it follows from that

E [eo [z — yo]} —0. (10.14)
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§10.1. Moment relations

Therefore we obtain from (10.13])—(10.14)) that

Elz] = Elyo] = vo. (10.15)

2. We next compute the second moments. By It6’s formula,

d(z(t))? = 22(t) dz(t) + (da(t))? (10.16)

= 2cox(t) Eo[do — z(t)] dt + 2x(t) Eg+/ g(x(t)) dwp(t)
+ E() [2K()€() x(t)yo(t) — 2K0€0 .T%] dt + Egg(x(t)) dt.

Taking expectations and using that we are in equilibrium, we get
0 = 2co¥% — 2¢E[2?] + 2KoeoElzyo] — 2KoeoE[2?] + EoE[g(z)]. (10.17)
Using E[g(z)] = (Fg) (), we find

Co Koeo
E[z?] = 2 E
[27] (co + Koeg) ° * (co + Koeo) [yol +

—(Fg)(¥o).  (10.18)

In the same way we find
E[ys] = Elzyo), (10.19)

and for the mixed second moment

(10.20)

Substituting (10.20) into (10.18)), we find E[z?] and hence also E[y] and E[zgyo]. This
finishes the proof of Proposition [10.1.1 g

Similar moment relations can be derived for the equilibrium measures of the block
averages. Define

1 FE Erer +e
Ay =5 ,;n ?: (Ekck(+ke:)tr EkiKkek’ m € Np, n €N, (10.21)
and
B, = %(Emcm n emE)?n—i- B Koo m € Np. (10.22)
Recall the definition of F(™ in .
Proposition 10.1.2 (Moment relations: blocks).
Let 9,, be as defined in , and let I‘Eglﬂ)“ym) = I’g:));j)”“Em’K"“em be the equi-

librium measure of (4.67) with k = m, with g € G, ¢y € (0,00), Ey € [0,1] and
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Ky, eqg € (0,00). Then the following moment relations hold:

(m) Crms e
/[le[o1] m Dty (dzn) = O, (10.23)
X0 Ymm p@(:f;:f;mvcm,Km,em (dzm) = Dpm, (10.24)
s 1 X

(m)
T, Ty, Smemtomen (dz,,) (10.25)
1x[0,1]%o ’

_ 2 F™ g B o Ko sem
_/[ oo P @) " (dzm),
0,1]x[0,1

/ 2 ]:( )g Epmycm,Km,em (dzm) (10.26)

1x[0,1]"% (ﬁm,ym)

=92 + Am(f<m+1> ) (9 ), (10.27)

m

[0,1]N F@(m',)ygr’g"“c"“}{m)em (dzm) (10.28)
>< 0
= 02, + (A2 = Bp)(F" ) (01n),
/ (FOg) ) Tg, e e (dzp) - (10.29)
[0,1]x[0,1]No e
_ (}.(m+1)g)(19m). (10.30)

Proof. The proof follows the same line of argument as the proof of Proposition [10.1.1
O

§10.2 Iterate moment relations

Recall the kernels deﬁned 1n , the iterates of the kernels defined in (4.134) and
9™ Recall that Q™) (J(" dzo) is the probability density to see the population of a
single colony in state zo given that the (n + 1)-block averages equal 9,

Proposition 10.2.1 (Iterated moment relations: single components). Forn €

N07
/ 2o QMW@™ dz) = W, (10.31)
(0,11%[0,1]
/ Yoo QMW dz) = Un, (10.32)
[0,1]x[0,1]
/ 22 QI dz) = 02+ AR (FOHg)(0,), (10.33)
(0,1]x[0,1]

/[ g W0 @O a2) 92 + (A} — Bo)(F™g)(9,),  (10.34)
0,1]x[0,1

/ Zoyo0 Q™ dzo) / Yo Q™) (9,,dz),  (10.35)
(0,1]x[0,1] [0,1]x[0,1]

/[ Ix[0.1]" 9(z) QM@ dz0) = (F" ) (@) (10.36)
0,1 0,1]70
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§10.3. Clustering

Proof. We prove the claim for x3 only. The other relations follow in a similar way.
The proof proceeds by induction. The result for n = 0 follows directly from Proposi-
tion [I0.1.1} Assume the result holds true for n = n, for n = n + 1 we write

/ 22 Q) (9 FD dz) (10.37)
[0,1]x[0,1]No
N / 23 (Q 1 0 QM) (9, dz)
[0,1]x[0,1]N

:/[0 1% [0,1]" /[o xoo 0 o QU@ dzp41) Q) (241, d20)
;1 X 10, ;1 X0,

-/ [ / 23 Q<”>(zn+1,dzO)] QHIE™ D, dz, i)
(0,1]x[0,1]% |./[0,1]x[0,1]%

= L [+ 48 PO @) [Py (@)
X No

=051+ A (FU9)(01) + AT (FODg) (0ni1)
=01 + AT (FODg) (D).

The first and second equality use the definition in (4.134)), the third equality uses
Fubini, the fourth equality is the induction step, the fifth equality uses Proposi-

tion [10.1.2} in particular, (10.26)) and ([10.29). O

Similar iterate moment relations hold for blocks. Define, for m,n € Ny with
n >m,

Qgs) = Q[n] 0---0 Q[m]_ (10.38)

Proposition 10.2.2 (Iterated moment relations: blocks of components). For
n,m € Ng with n > m,

/ T QU (07 dzm) = Oy, (10.39)

[0,1]x[0,1]No

/ Ymm Q) (0™, dzp) =, (10.40)
(0,1]x[0,1]

02 + A, (F D g) (9,), (10.41)

/ x Q(")( q(n) ,dzm)
[0,1]x[0,1]No

/ W QO (B, dzn) 92 + (A%, — B )(F) g)(9,),(10.42)
[0,1]x[0,1]

/ T Ym,m Q4 (0, dzm) / Yrm QD (0™, d2,,10.43)
[0,1]%[0,1] [0,1]%[0,1]

/M o (F ) (@m) Q™ dzp) = (F"g)(0). (10.44)

Proof. Follow a similar induction argument as in the proof of Proposition [10.2.1] O

§10.3 Clustering

To prove Theorem we proceed as in [5]. The following clustering property holds
for the kernels associated with single colonies.
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Proposition 10.3.1 (Clustering: single colonies). Assume

lim 9, = 6. (10.45)
n—oo
Then ~
ll)m Q(n) (19(71)’ {(x()?y(0,0)) = (07 0)}) =1- 97
e ") () (10.46)
nh—>HoloQ " (19 " a{(any(0,0)) = (la 1)}) = 9)
if and only if
nh_)rréo A = oo. (10.47)
Consequently,
nh—>Holo Q(n) (19(71)7 { (2o, 9070)}’ ¢ {(0,0), (1, 1)}) =0. (10.48)

Proof. The proof exploits the iterated moment relations. First assume (10.47))
1. By Proposition

/[ 1x[0.1] o(1 = 20) QU (9™, dzg) = D (1 — V) — AGF(F"HVg)(9).  (10.49)
0,1]x[0,1]No

Because zo(1 — zg) > 0 for = € [0,1], we have
(1 —0,) > AN(FPYg)(9,)  VYneN. (10.50)

Since lim,, oo A} = 00, it follows that lim,, . (F"*Yg)(d,) = 0. On the other
hand,

F )0, = [ 0) Q) (91", dz0) (10.51)

[0,1]x[0,1]No

and, because g(z) > 0 for z € (0,1), Q" (9,,,dz) puts all its mass on 2y = 0 and
2o = 1 in the limit as n — co. Let

Q(n) (5(71)’ {xO =0or Ty = 1}) = / 1{.’1)0:0 or zo=1} (ZO) Q(n) (Qg(n)a dZO)a
[0,1]%[0,1]%0
(10.52)
then
lim QM (W™ {zg=0or z; =1}) = L. (10.53)

The first moment of x¢ converges to (recall (4.63]))

lim 20 QM (W™, dz) = lim ¥, = 6. (10.54)
n—oo [O,l]X[O,l]NO n—oo
Hence ~
lim QM (9™ {xy=0})=1-06,
e _ (10.55)
lim QM (W™ {zo=1}) =0,
n—oo
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§10.3. Clustering

and
lim 22QM W™ dz)
=90 J10,1]x[0,1]No
= hm iEg (1{1} (QIJO) + 1{0} ({,C()) + 1{(071)}(‘10)) Q(n) (’5(")7 dZ[)) = 9
=0 J10,1]x[0,1]No (10.56)
On the other hand,
lim 22 QM W™ dzo) = 02 4+ lim AZ(F"Vg)(9), (10.57)
n— 00 [0,1]x[0,1]No n—00
and so, combining (|10.56))—(10.57]), we obtain
lim AR(FHg)(0) = 6(1 —6). (10.58)
2. We know also that
lim z0y0.0 Q™ (9™ dzp) (10.59)
n=20 J10,1]x[0,1]No
= lim 92 + ( Aj — Eo (F D g)(9,)
n—oo 0 FEycg + eg + EgKpeg "
=0°+0(1-0)=0
and
lim 2y0 QU (9™ dzg) (10.60)
n=20 J10,1]x[0,1]No
= lim Z0Y0,0 (1{1}(950) + 10y (w0) + 1{(0,1)}(%)) QM (9™, dzo)
n=2 J10,1]x[0,1]No
= lim Y00 113 (20) Q™ (9™, dz).
n=2 J10,1]x[0,1]No
Therefore
nh—>Holo [0,1]x[0,1]M0 boo 11y (@) Q@™ dz) = nh—>nolo Un =6, (10.61)
and hence
lim (1= y(0,0) L1} (20) QM (9™, d2p) = 0 — 0 = 0. (10.62)

n= J10,1]x[0,1]No

Since 1 —y(0,0) = 0, we conclude that if z¢o = 1, then QM (9™ dzy) puts all its mass
on yo,0 = 1 in the limit as n — oco. Hence

lim Q™ (9™, {(29,0,0) = (1,1)}) = 0. (10.63)

n—oo
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From Proposition [10.2.2] it also follows that

lim (1 —20)(1 = yo,0) QU™ (9™, dzp) (10.64)

77799 J[0,1]%[0,1]%
12
Eoco + ep + EoKoeg

=1-60-0+6>+ lim (Ag

n— oo

) (FO g)(0,)
=1-20.

On the other hand,

lim (1 —20)(1 = y0,0) Q™ (9™, dzp)
=0 J10,1]x[0,1]No
= lim (1 —20)(1 - yo,0) (1{1}(960) + 140y (20) + 1{(0,1)}(960))
n=%0 J10,1]x[0,1]No 10.65
~ Q(n) (g(n), dzo) (10.65)
= lim (1 — y()’()) 1{0}(17()) Q(n) (6(n), dZ())
=0 J10,1]x[0,1]No
=1-0.
Since y € [0, 1] and
lim 110y (20) Q™ (9™, dzg) = 1 - 0, (10.66)
=0 J10,1]%[0,1]No
it follows that
lim Y0,01 0y (20) QM (9™, dzo) = 0. (10.67)

=0 J10,1]x[0,1]No

This implies that if 2o = 0, then QU (9™ dz) puts all its mass on oo = 0 in the
limit as n — co. Hence

lim Q™ (9™, {(z0,50,0) = (0,0)}) =1 -9,
_ 10.68
lim Q(n) (19(71), {(l‘o,y()’()) = (1, 1)}) = 9 ( )

n—oo

Now assume ((10.46]). Then (10.56) still holds. On the other hand, also (10.57) still
holds by Proposition [10.2.1} Therefore we obtain ((10.58). On the other hand, by

(110.46])

lim F g = lim 9(20)Q™ (9™ dzy) = 0. (10.69)
n— 00 n—00 [0,1]x[0,1]Yo
Hence ((10.47)) holds. O

A similar clustering property holds for the kernels associated with blocks.
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Proposition 10.3.2 (Clustering: blocks). Assume

lim 9, = 6. (10.70)
n— o0
Then B
) (3 ) (10.71)
Jim Q) (07 {(@ms Ymmy) = (1, 1)}) = 6,
if and only if
lim A} = oco. (10.72)
n—o0
Consequently,
lim QY (9, {(@m, ym.m)} & {(0,0), (1,1)}) = 0. (10.73)
Proof. We can proceed exactly as in the proof of Proposition O

Finally, we can prove Theorem

Proof. Note that (10.47) implies (10.72)). Recall that single colonies of deep seed-
banks that have already interacted and reached their quasi-equilibrium equal the
block average of the level on which they interact (see Theorem |4.4.4)). It follows that,
for m € Ny,

lim Q™ (9, (20, yo.m) = (1,1)) =0,

n— oo

lim Q™ (9™, (20, yo,m) = (0,0)) =1 — 6.

n— oo

Therefore, for N € Ny,

(10.74)

N
lim Q™ <q§(n)7 ﬂ {(xo,yo,m) = (1,1) or (zo, Yo,m) = (0,0)})

n—oo
m=0

N
=1- lim Q" (9™, | {(z0,y0.m) € 0, 1]2\{(070),(1,1)}}>

n—oo
m=0

m=0
(10.75)
Note that
B N
lim Q™ (W, (M {@o,yo.m) = (1.1) or (0, y0.m) = (0,0)}>
m=0
, N 10.76
= 1im Q) (9, {(zo, (yo.m)o<men) = (0,07*) (10.76)
or (o, (Yo,m)o<m<n) = (1, 1N+1)}) =1
On the other hand,
lim Q" (ﬁ(n)’ {(z0, (Yo,m)o<men) = (1, 1N+1)})
nreo ~ (10.77)
< lim Q(n) (ﬁ(n)> {(:L'Oa Z/0,0) = (1, 1)}) =0
n— o0
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and
lim Q™ (@(n), {(x0, (Yo,m)o<m<n) = (070N+1)})
n—veo i (10.78)
< lim Q™ (9™, {(x0,50,0) = (0,0)}) =1 - 6.
Hence we conclude that
i Q™ (’?(n)v {(zo, (Yo.m)o<men) = (1, 1N+1)}> =0 (10.79)
and ~
lim Q) (9%, {(zo, (yom)o<msn) = (0,0N+1)}) =1-0. (10.80)

We can do the same for all finite-dimensional distributions. Since [0,1] x [0, 1] is

compact, the process zg = (o, (Yo,m)men, ) is tight. Therefore, by (10.79)—(10.80) we
find for every converging subsequence

lim Q) (Wk), ) — (1= 6) 50,0 + 061,17 (10.81)
We conclude that

lim QM (9™, dz) = (1= 0) 80,0 + 05117, (10.82)
which is the claim in (4.137)). O

§10.4 Dichotomy finite versus infinite seed-bank

In this section we prove Theorem

Proof. We investigate for what choices of the sequences ¢, K, e defined in (4.5) and
4.10) we meet the clustering criterion lim, ., A, — oo in (4.138]). Recall from
4.64) and (4.136) that

n—1
1 E FErci + e 1
=3 e e P T
ek (Excr + ex) + EpKrep L+ >0 Km

(10.83)
k=0
We distinguish between three regimes as k — oco:
(a) Eyxck +er > EpKpeg.
(b) Excr + er < ErKyey.
(¢) Excp + ex < ExKyey.
These regimes correspond to the following scaling for A,, as n — oo:
(a) An~ 3 X000 -
(b) An = 345 2.
(c) An~ § Y52y Hegptes,

Recall from that (4.14]) that
p=> K. (10.84)

m&ENy

Different behaviour shows up for finite seed-bank (p < oo) and infinite seed-bank
(p=00).
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§10.4. Dichotomy finite versus infinite seed-bank

(I) p < co. Note that k — FEj is non-increasing and converges to 1/(1 + p) > 0.
Since Fy < 1, we have limg_,, Fx K = 0 and hence we are in regime 1. Therefore

1
Apv s> —, n o0, (10.85)

21+ p) =

and clustering occurs if and only if keNo i = 00, which is the same criterion as for
the system without seed-bank.

(II) p = co. We focus on the settings in (4.52)) and (4.53), which fall in regimes 1
and 2.

Asymptotically polynomial. Suppose that

Ky~ Ak~ k— 00, A€ (0,00), a € (—00,1). (10.86)
Then
l—« _(1_0{) 11—« —1
Ep ~ k 7y Ep Ky ~ k s k — oo. (1087)
Hence we are in regime 1. Suppose that
ek ~Fk™®, k— o0, Fe(0,0),¢cR. (10.88)
Then )
10N~ 1rate
Ap ~ e kZ:lk . n— oo, (10.89)

and clustering occurs if and only if —¢ < a < 1. In this case

11—«
—¢p<a: Anwin(”‘ﬁ7

fAF (a+9) (10.90)
-«
—¢o=a: Anwm logn
The case o = 1 can be included. Then (10.87) becomes
1 1
By~ — Ey Ky ~ ———— k 10.91
™ Alog k'’ R g b = %0 (10.91)
so that we are again in regime 1. Now (10.89)) becomes
n—1
k®
n~ﬁ2ﬂ7 n — oo, (10.92)
=1 08
and clustering occurs if and only if —¢ < 1. In this case
1 ntte
— ¢ <1: A, ~ )
" 2%11F(1 +¢) logn (10.93)
—¢p=1: A, ~ ——= loglogn.

2AF
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Pure exponential. Suppose that

Kp,=K" keNy, K € (1,00).

Then
B 1 1 K-1
1_,_2:;:10[(771 1+f§('”:11 Kk4+ K —2

Suppose that
er=¢e" cx=c" keNyece (0, 00).

Then
K-1 . . K-1 k k
Brevten=qaig o T e = e e

and so

k
&%+%~UF4N%)+&7 ExKpen ~ (K —1)e*, k- .

For ¢ < Ke we are in regime 2, and hence

1 D)
~ 5; ><§'C+Kek’ e

which simplifies to

n—1 1 1
Ke < 1: ~ Ke)=(=b),
¢ pors (Kc)k 1—Kc( 2
n—1
1
Kc=1: ~ 7.
c (Ko n
k=0

n — oo,

for which we can again use ((10.101]).
The case K =1 can be included. Then Ej = 1/k and (10.98) becomes

1 1
Eicp +ep ~ %ck +e”, E.Kiey, ~ Eek, k — oo,
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§10.4. Dichotomy finite versus infinite seed-bank

we are again in regime 1. Hence

1 1
A, ~ 3 E ok n — 00, (10.104)
and clustering occurs if and only if ¢ < 1. In that case

1 1
c<1l: A, ~ 31— n (=),
(L=¢)n (10.105)

1
c=1: An~§ log n.

|
In the above computations, only regimes 1 and 2 arise. Regime 3 arises, for

instance, when

lim — log K, = lim Kpep/cx = 0. (10.106)
k k—o00

k—o0

Indeed, the first condition implies that Ey ~ 1/Kji_; and EpK; > 1, while the
second implies that Ey Krer > Erci. There are two subcases:

. 1
K qer < cp: ~ 5 E
k=0 k‘](k 16k‘

n—1

(10.107)

1
Ki_qep>cp: A, ~ % Kka.

By picking, for instance, e, = 1/K,Kj_1, we find that A, ~ n in the first subcase
and A, > n in the second subcase. By picking, alternatlvely, ¢, = 1/K}, we find
that A,, > n in the first subcase and A,, ~ %n in the second subcase.
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