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CHAPTER

Proofs of the hierarchical multi-scale
limit theorems

In this chapter we prove the hierarchical multi-scale limit theorems stated in The-
orem and Theorem 4.4l In Section we first introduce the finite-level
mean-field finite-systems scheme. In Section [0.2] we given an outline of how to prove
the finite-level mean-field finite-systems scheme. In Section we show how Theor-
ems[£.4.2H4.4.4) can be obtained by a simple generalisation of the finite-level mean-field
finite-systems scheme. The proof of the finite-level mean-field finite-systems scheme
follows a similar line of argument as in Section [8.2] once we incorporate more levels.
Since the proofs for the finite-level mean-field systems scheme are similar as the proofs
in Section [8.3] we will not write out the full proof, but only give an outline and a
sketch.

§9.1 Finite-level mean-field finite-systems scheme and
interaction chain

In this section we extend the two-level three-colour system to a k-level (k + 1)-colour
system with an “outside world” for any k£ € N. This outside world allows also the
highest level, the k-block, to start from equilibrium. It is also needed to generalize
the results in this subsection to the infinite hierarchical group.

» Definitions. To set up the system, fix £ € N and consider the geographic space
Q]fvﬂ obtained by truncating the hierarchical goup Qn (recall ) after hierarchical
level k + 1, ie., Q5 = Byy1(0) the (k + 1)-block centred at the origin (recall
, and Fig. . Note that the k + 1-block consists of N k-blocks i.e.,
Bj+1(0) = Uilio By (i) and By11(0) = [N**1]. The seed-bank in this model consists
of the k + 2 layers corresponding to colours {0,---,k} U {k + 1}. On this space we
again consider a restricted version of the SSDE in to the geographic space Q’fvﬂ.
The migration kernel a‘*¥ (-,-) is restricted to Q’fvﬂ by setting all migration outside
By+1(0) equal to 0, i.e.,

k+1
Cy 1

] — _a -
(&n) = ; l{dﬂw(g,n)sz} NI-1 N (9-1)
= N

k+1
a2



CHAPTER 9

9. Proofs of the hierarchical multi-scale limit theorems

where dgr+1 is the hierarchical distance dg,, restricted to the space Q]fv“. The colour-
N
[ dormant population exchanges individuals with the active population at rates 4

NI
% for all 0 <1 < k. We set the interaction of the active population with the colour

(k + 1)-dormant population equal to 0. This seed-bank is only needed later, namely
for the “outside world”.

The state space of the finite-level mean-field system is
S = (MW SR = [0,1] x [0,1]5+2, (9-2)

and the system is denoted by

k+1 k+1 k41 Qk+1
ZQN — (ZQN (t))tZ()v ZQN ( ) (Zf (t))feﬂﬁfl’
Qk+1 Qk+1 Qllc\,+1 Kl (93)
Z§ (t) (xg (t)’(yfﬂn (t))m:O)'
The components evolve according to the SSDE
Qk+1 k Qk+1 Qk+1
=Y fEw O A0 0]
=1 WGBL(f)
Qk+1 mem Qk+1 Qk‘*'l
+g(ze™ (1) dwe(t) + Z A [ Yem () =2 (B)] dt, (g )
k+1 k+1 k41
@%AﬂZﬁﬁP?(ﬂ—ﬁm(ﬂ&,Oéméh
Qk«l»l

dy % ()=0,  £eQf,

with Bj(€) the ball of radius I around ¢ € Q5.

Note that this system is the hierarchical SSDE in with all interactions
at distance > k switched off (i.e., ¢ = 0 for [ > k + 1), and also the exchange with
dormant populations of colour m > k is switched off. As before, by [67] the martingale
problem associated with is well-posed, and for every initial state in S the SSDE
has a unique strong solution. We will analyse on time scales 1, N, N2, ...  N¥.
If for 0 < I < k time runs on time scale N, then we write N'¢; with ¢; > 0.

To study the k-level mean-field system, we analyse the equivalent of the block
averages defined in (4.2.3]). For the k-level mean-field system these are given by

Qk+1 1 Qkt1
(1) = N Z ay ™ (N't),
n€B(0)
Qk+1 ]_ Qk+1 . (95)
Uy ()= Yo (N'),  0<m<k+1, 0<I<k
n€B(0)

302



§9.1. Finite-level mean-field finite-systems scheme and interaction chain

For 0 <1 < k these block averages evolve according to the SSDE

k41 k—(—1) k41 k41
Qn Qn QU

Cl4n—1 -n
dz; ™ (t) = ]\;_n—l [z (N7 — 2™ ()] dt
n=1
1
+ 7 D 9(@i(N)) dwy(t) (9.6)
1€ B (0)
k
K. k+1 k+1
O NSEE  (0—a (] dr,
m=0
k41 k+1 k41
dyy () = N'ZE[N O -y ]d, 0<m<k (97)
Qk+1
dykfl,z(t) = 0, (9-8)

In the limit as N — oo, the active I-block average feels a drift towards the active
(I 4+ 1)-block average, which is not moving on time scale N', at rate ¢;. The diffusion
term for the [-block average becomes the average diffusion over the I-block. The drift

of the active [-block average towards the [-block average of m-dormant populations
k+1
yf@”l with m > [ vanishes in the limit as N — co. Therefore, the m > | m-dormant
populations are slow seed-banks on space-time scale [. The I-block average of the
k41
colour-/ dormant population lelN has a non-trivial drift towards the active I-block
k+1
average, written x?N . Therefore the I-dormant population is the effective seed-bank
k+1
on space-time scale . For the colour m-dormant populations yf}%’\; with m < [, we see
that infinite rates appear. Therefore the m-dormant populations with m < [ are fast

seed-banks on space-time scale [. We again need the Meyer-Zheng topology to show
k+1 k+1
that limy 0¥, = limy oo leN . On space-time scale [, the colour-l dormant

population is the effective seed-bank. To get rid of the infinite rates we again look at

combinations. From the above discussion and the SSDE in 7, we see that if
we consider the quantity

Qk+1 l*l Qk+l
N () 4 Yo Kmyy g (1) (9.9)
1+ Z:io K ’ '
then all infinite rates cancel out. Therefore
k+1 k+1
g () + L Ky (1) g
-1 Y (t) (9.10)
14+> -0 Km

t>0

is called the effective process on space-time scale [. Like in the simpler mean-field
finite-systems scheme, the effective process allows us to analyse our system in path
space.

An important difference between the finite-level mean-field system in f
and the two-level three-colour mean-field system in Section is that in the finite-
level mean-field system also the highest level £ has a drift towards the outside world.
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This outside world is the active k + 1-block average, which does not evolve on time
scale N*. This drift allows the finite-level mean-field system to equilibrate to a non-
trivial equilibrium. In the two-level mean-field system, the highest level, i.e., the
active 2-block average, does not feel a drift due to migration. Consequently, the
2-block averages will eventually cluster.

» Scaling limit. To state and prove the finite-level multi-scale limit, we need the
following three limiting processes. Recall (4.64]) and (4.62)). For 0 <1 <k, let

(21,00, (g 0yt 1y ())e20) = (@1(8)s (Y 1 ()0 )e0) (9.11)

be the process evolving according to

d(L’l(t) =FE|qg [9 — l’l(t” de + ]:(l)g(xl(t)) dw(t) + K¢ [yl,l(t) — .’[l(t)] de¢ s

Ymi(t) = z1(t), for0 <m <1 (9.12)
dyri(t) = e [z(t) —yia(t)] dt,

Ym 1 (t) = Ym 1, forl <m<k+1,

where 0 € [0,1] and yy,; € [0,1] for I <m <k + 1.
For 0 <1 <k, let

(0 s (O)iz0 = @0, T ()5 ro (9.13)

be the process evolving according to

alf — 2™ ()] dt + /[ FOg(§™(t)) dw(t)

+ Kieg [y (t) — "™ (t)] dt} , (9.14)

dx?“x (t) = El

yri (@) = e [z7™() — gy (0)] dt,

aux

Yt (1) = Yt forl<m<k+1,

where 0 € [0,1] and yp'f € [0,1], for [ <m <k + 1.
For 0 <1 <k, let

(=5 (®)ez0 = (@50, 577 (1)) 1 (9.15)

be the effective process evolving according to
e (t) = By e [0 — 2§ (1)) dt + \/(FOg) (a7 (1)) dw(t) + Kieg [yf] (8) — 27" ()] dt |

Ayt (8) = e [o5 () — i (0)] d.
(9.16)
Comparing with , we see that the effective process looks at the non-trivial
components of the full process. The auxiliary process in looks at the active
population, the effective seed-bank and the slow seed-banks.
To state and prove the finite-level multi-scale limit, we need the following list of
ingredients:
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§9.1. Finite-level mean-field finite-systems scheme and interaction chain

(a) For t > 0 and for 0 <1 < k, define the [-block estimators

R L RORD Yoy S ()
ORI () iy g
l )
1€EB; L+ KO
k41 k+1
eg)’QN N Z Q (9.17)
i1€B;
k+1 k41
CH NlZyQ @), 0<m<k+1,
1€B;
and put
& k+1 k+1 k
OV (1) = (952)’% (t), (0™ (t))m+_10> :
k+1 k+1
@aux,(l),&]lf\;rl( ) <@(l 2k+1 (t), <®?(Jll)’QN (t)) , (918)
m=l

OOy (1) = (eum’fv“(t), @é?’wl(t)) '

We call (6(1)*Q?V+l(t))t>o the I-block estimator process, (@aux’(l)’g?v+l(t))t>o the
auziliary l-block estimator process and (@em(l)’ﬂ?\fﬂ(t))bo the effective I-block
estimator process.

(b) For 0 <1 < k, define the time scales N' such that
L[OWON" (N, — L(N)N'™Y) — W2 (Nt))] = 6, (9.19)

for all L(N) such that limy_ 0o L(N) = oo and limy_0o L(N )/N = 0, but
not for L(N) = N. In words, N is the time scale on which ©(1):¢ () starts
evolving, i.e., (@(l QHl(Nltl)) , is no longer a fixed process.
t; >0
(¢) The invariant measure for the evolution of the I-block average in ((9.12)), denoted
by

l
Tonr o= (ma)hs. (9.20)

The invariant measures of the auxiliary I-block process in (9.15)) and the effective
I-block process in (9.16]), denoted by, respectively,

l),aux
F‘(g7)111 ! ) Y = (ym l)ﬁj I+1 (9.21)
and
Ty (9.22)

(d) For 0 <1<k, let FEuenKier denote the renormalisation transformation acting
on G defined by

(FEenKictg) () = / g(o) T (A (), 6efo.1],  (923)
[0,1]2
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and define the iterates F (”), 0 < n < k, of the renormalisation transformation
as the compositions

]:(l) = FBn-1en-1.Kn-1.8n-1 5 ... o ]:EO,CO,KO,EO’ 0<I<k. (9'24)

(Recall (4.76).)

(e) To give a detailed description of the multi-scale behaviour of the SSDE in (4.20)),
define the interaction chain

(Mfz)—zz—(kﬂ),—k,...,o (9.25)
as the time-inhomogeneous Markov chain on [0, 1] x [0, 1]**! with initial state

k41 times

M* = (9%, O, -+ , 0%, 0 9.26
Zoerny = W, ks oo+ 0k, Oy geg1) (9.26)

that evolves according to the transition kernel Q¥ from time —(I + 1) to time

—[ given by
QU(u,dv) =TV (dv), 0<I<k. (9.27)
(Recall ({4.77).)
We are now ready to state the scaling limit for the evolution of the averages in

(7.7).

Proposition 9.1.1. [Finite-level mean-field: finite-systems scheme] Suppose that the
initial state of the system in is given by u(0) = 12N for some p € P([0,1] x
[0,1]5+2). Let L(N) be such that limy_,oo L(N) = 00 and limy_,o, L(N)/N =0, and
for ti, ... to € (0,00) set t = L(N)N* + ZZ:O t,N™.

(a) For everyty, ...ty € (0,00),

N—oc0

. k+1
lim £l<@(lm” (ﬂ) ] = L[(ME) e (hs1) k0] s (9:28)
I=k+1,k,...,0

where (Mfl)_l:_(k+1)7_k7___,o is the interaction chain in (9.25)) starting from

k+1 times

MF = (O, Op,- -+ , U, 0 9.29
—(k+1)7( kyVk, sy Vks y,k—i—l)' ( )

(b) For all0 <1<k,

) 0,05+ 7 . _
N £ {(@ Vo aN ))tl>0] £ |:<ZZ’ME(Z+1)(tl))tl>O:| ’

in the Meyer-Zheng topology,

(9.30)

where
(Zl,Mﬁ(l+1)(tl))tl>o (9.31)
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§9.2. Proof of the mean-field finite-systems scheme: finite-level

is the processes defined (9.12)) with 6, (y,ml)ﬁj;ll+1 given by the corresponding
components in ME(Z_H) and with initial measure

(1)
£ [zl’Mk(lH) (0)} FM —(+1)
(l) / / / (k) duk)rgi_l)(dukfl) e 'stz-'—l)(dul+2)rgz)+1'
—(l+1) sk+1 sk+1 Jgk+1 —(k+1)
(9.32)
In Part (a), the limit does not depend on the choice of the times ¢, ..., to, since we

let time start from a time larger than L(N)N*, so that in the limit as N — oo all the
I-block averages with | < k are already in quasi-equilibrium. In Part (b), for I < k the
center of the drift for the active population is random and is determined by the first
component of the interaction chain. Also the states of the m-dormant populations
with [ <m < k 4 1 are determined by the interaction chain.

Remark 9.1.2. In contrast to Propositions there are no assumptions on
the seed-bank behaviour in Proposition [0.1.1} This is because all the block-averages
that we consider are in equilibrium at time ¢. Consequently on space-time scales
[ < 'm the m-dormant [-block average will equal the state of the m-dormant m-block
average at time ¢. Therefore we say that the state of the slow seed-banks is determined
by the space-time scaleon which this seed-bank is effective. Hence the state of the
slow seed-banks is determined by the interaction chain. |

The proof of Proposition will be given in Section

§9.2 Proof of the mean-field finite-systems scheme:
finite-level
We give a sketch of the proof Proposition The proof uses a similar scheme as

the proof of Proposition We state the scheme and indicate at each step how it
can be proved.

1 Tightness of the auxiliary I-block estimator processes, for 0 <1 < k,
<(®aux,(l)7Q’;V+l (Nltl)) ) . (9.33)
>0/ NeN

Proof. For each 0 < [ < k we use the tightness criterion in [49, Proposition
3.2.3.]. O

2 Stability property of the 2-block estimators, i.e., for L(N) such that
limpy 00 L(N) = 00 and limpy o0 L(N)/N =0,

lim  sup (:)(l)’Qlfc\fH(Nltl) - (:)(l)’Q?VH(Nltl — N'"1¢)| = 0 in probability
N—=00 0<t<L(N)
(9.34)

307

6 YALIVH))



CHAPTER 9

9. Proofs of the hierarchical multi-scale limit theorems

308

and, forall ] <m <k + 1,

k+1 k+1
lim  sup @?(j,l’ﬂN (N't) *@;liﬂN (

N't; — N'=1t;)| = 0 in probability.
N—=00 0<t<L(N)

(9.35)
Proof. Use a similar computation as in the proof of Lemma [8:3.4] O
We analyse the behaviour of the slow seed-banks by proving the following
lemma.

Lemma 9.2.1. [Slow seed-banks in the multi-level system] Let 63(121 denote the

m-dormant [-block average containing colony i € Q’]“VH. Then for all i € Q?V'H,
m<k+1,1<mandt; >0,

- okt - Ly am)akt - Ly
A}lm Yim E+NHG)—0O, TN (E+Nt)| =0 as. (9.36)
—00 ’ me
and hence
k+1 m).Qk+l
lim {@;27% (F+ N't) — oy (t+Nltl)} ~0 as. (9.37)

Proof. We can proceed as in the proof of Lemma after adapting the
kernel b[NQ](-7 -) to the kernel I)QIZCVH(-7 -). Then we can use that, from each of
the m < k + 1 m-dormant populations, individuals wake up before time ¢ with
probability 1. For individuals starting from an m-dormant state, we define the
coupling event
m, QR+t QF+1 . . .
H,”™ ={RW"~ has migrated over distance m at least once up to time ¢}.
(9.38)
The migration over distance m is needed because we need m-dormant individuals
to be uniformly distributed over the m-block in order to almost surely equal the
state of the m-block. O

We prove the convergence of the single components. Recall that there are
NF+1=1 [ blocks in Q’]“VH. Since tightness of components implies tightness of
the process, step 1 implies that for 0 < < k the full [-block processes

k+1
((@j“"’(”’% (it Nltl))

are tight. From the tightness in steps 1 we can construct a subsequence (N, )nen
along which, for all 0 <1 < k,

(9.39)
t;>0,i€[Nk+t1-1] NEN

n—oo

. aux,(l),Q’;;,+1 _ 1
lim £ |(© " (T+ NLt) (9.40)
>0, ie[NET1=1



§9.2. Proof of the mean-field finite-systems scheme: finite-level

exists. Note that ¢ depends on the subsequence. For example, along the sub-

sequence (Np)aen,
k

t=L(N)N*+> t,Np. (9.41)
n=0

Y =T rd@. (9.42)

1€Np

We define the measure

where
Q; € s (9.43)

In this step we show that along the same subsequence the single components
converge to the infinite system. We show that if

lim_£[(© VO (5)r] = PO, (9.44)
then y o o - Zu“”(f)
Jm £[(29% () L= £[@ O] (9.45)
where

0 / 2O PO (dy). (9.46)

Here, (Z”(O)(t_) (to))ty>0 is the process starting from v(9)(f) with components
evolving according to , where 6 is now a random variable that inherits its
law from

lim £[(@ M (7)), k] (9.47)

n—oo
and, similarly, the laws of yp, 0, 1 <1 < k+ 1 in the limiting process
(Z"(O)(t2)(to))t020 are determined by

lim £[(@ M (7)), vil- (9.48)

n—oo

Note that we choose the subsequence (IV,, )nen in such a way that we know that

the law P in ([9.44) exists.

Proof. Proceed as in the proof of Proposition Note that the assumptions
on the seed-banks in Proposition [8:3.5] follow from the choice of the subsequence
and Lemma [0.2.7] O

Using the limiting evolution of the single colonies obtained in step 4, we can
identify the limiting [-block process along the same subsequence. For 1 <1 < k,
we show that if

lim £[(© ) (0) ] = PUTY, (9.49)
n—oo
then
. aux,(1),Q l _ aux
nh—>Holo£ [(@ (t + N, tl))tpo,ie[N’é“’]] =L [(Zl @(l+1)(t))t20:| )
(9.50)
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where (1) = (O, (@)1, 1) € [0,1] x [0, 18+ 4D,

aux l),aux
L [%@(z)(o)} = F(@)uim

(1),aux 1 1+1 (951)
F@(7z+1) :/ F;)yauxp( + )(du)
[0,1]x[0,1]k+2=(+D)

and (zz‘g‘(Hl) (t))s>0 is the process evolving according to (9.14)) with 6, (y,, )+

m=l
replaced by the random variables @SEZH), (@;lyjll))fj:ll Note that by the choice

of the subsequence (N, )nen we know that for 1 < | < k the limiting laws in

(19.49) exist.

Proof. The proof goes by induction. Using the convergence of the single com-
ponents, we can proceed as in the proof of Proposition [8.3.10| to prove the
convergence of the 1-blocks averages

aux k1
lim £ <®j (D, (t+Nnt1)> (9.52)
o t1>0,i€[NFT17Y
Then, assuming that we have the convergence for all 0 <[ < L, we get
aux,(l ,Qk’+1 —
lim £ (@i O (7 4 Nﬁbtl)> , (9.53)
nee >0, i€[NET1)
and we prove the convergence of
aux, ,Qk+1 _
lim £ (@i EADEN Ty N,SL“)t(LH))) . (9.54)
n—o00 t(L+1)>O,i€[N§+17(L+1>]

This is done using a similar proof strategy as in the proof of Proposition [8.3.10]
In particular, we need to derive the I-level equivalent of Lemma [8:3.13] Since
this lemma is also key to proving convergence in the Meyer-Zheng topology, we
state it explicitly below. O

Lemma 9.2.2 (I-block averages). Define

kit B
ALY (NI )
k+1 k+1
O (N ) + 3002 KOt (N ) mekt
- 11y K -0y N (N 1)
m=0 m
(9.55)
and
-1
1 K,,
R =~ Zm=oBm 2750 . (9.56)
1+Zm:O Km



§9.2. Proof of the mean-field finite-systems scheme: finite-level

Fort >0 set ) (t) = ol (t) = zo(t). Then, for 1 <1<k,

2
(Ag),ﬂlfvﬂ(o)) ]e_elmt“

ty
4 \/ / ds 26y Re~2et i (11 —9)E H@u-n,ammls) — ol (i1
0

|

k

1 1 Cn—1 mem
Z Jrz +Ez—1||g||]~
n—(1 m—I1
N 2e;(1+ Em 0 Km) L_l+1 Nr=(HD N
(9.57)

Proof. Proceed like in the proof of Lemma [8.3.13] using the SSDE in (9.4))
instead of the SSDE in . ]

We obtain the following useful corollary from Lemma [0.2.2]

Corollary 9.2.3. Forall1 <1<k, s>0 and l~2 l,

_ - _ k41
lim EHe“l)’Wl(N”s)—@Ef DT (NI )

N—o00

} =0. (9.58)

Proof. We proceed by induction. The result for [ = 1 is trivial. Suppose that
the result holds for [ = L. Then for [ = L + 1 we obtain

|

N—1
_ : 1 _ k41
OO (NLs) — ¥ O N (NEs)
=0

— k+1
E H@@%Q?v“(zv%) — e (NLs)

<E

] (9.59)
] |

Note that the second term in the right-hand side of ((9.59)) tends to 0 as N — oo
by the induction hypothesis. For the first term in the right-hand side of (9.59)),

N-1

1 k+1 _ k+1
]EH EDENT (NEg) — @D (L)

1=0
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note that
(L),Qk+1 oL 1= 5(L—1),Q8" L
Ell© (N¥s) = & > 6, (N*s)
i=0
o | (O ) + S KO0 ()
IAPMIEES (9.60)
+1 k+1 .
O (NLs) + L2 K, 0N (NLs)
L—2
1 + Zm:O K
B Kr_1 (L)% op 5(L),Q5 (ArL
—m ®yL 1 (N S)—@ N (N 8) .
m=0

Invoking Lemma and using the induction hypothesis, we see that for s > 0
and [ > L indeed

_ 1 - k+1 -
lim E H@@W?v+ (N's) — @~ (le)H =0. (9.61)

N—o0

O

6 Show that the convergence in step 4 and step 5 actually holds along each sub-
sequence. Therefore we obtain the limiting evolution of the single colonies,
the auxiliary 1-block process and the effective 2-block process. This follows
from the fact that the auxiliary k-estimator process converges to the same limit
along every subsequence. Consequently, the same holds for the auxiliary k£ — 1-
estimator process. In this way we can traverse back through the levels to obtain
that all [-estimator process converges as N — oo.

Define, for 0 <1 < k,
sith =10,1] x [0, 1]k (9.62)

We obtain, for 0 <[ <k —1,

lim L@ DO (B)]] = TGl

N—o00 et+2)
N X (9.63)
Fél)-(*'li)z)au /H—l / F(k) X () - FSLIZJr?)’aUX(dul+2)rg;?’aux

l+2

Therefore by step 5

. aux,(l),Qﬁfrl T 1 — au
fm £ [(9 (t+ Nntl))tl>0,i€[Nk+1l]:| £ {(zl 9(’“)“))’20} ’

N—o00
(9.64)
where @(+1) = (@UH) (@;lvﬁ))ﬁ;ll) € sl(k+1) are random variables with law
L {@WU} IR (9.65)
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The initial state of the limiting process in (9.64) is given by
aux 1),aux
L {Zl,(-)(l) (0)] Fga)wm
(1),aux (k),aux 1+2),aux 1+1),aux
Fedrn = / / P2 (dug) - T2 (duy DD
l+2
(9.66)

and (2] (1))e=0 is the process evolving according to with 6,

(ym7l)51+=11+1 replaced by the random variables @™ (@g:l))ﬁfllﬂ Recall
that, by Lemma we have, for [ +1 < m <k+1,

I+1) _
et =e(m. (9.67)

Use the Meyer-Zheng topology to obtain Proposition b).
Proof. Note that Lemma [9.2.2) and Corollary [0.2.3] together imply

N—o00

— 1 k+1
lim E H@UW%+ (N't) — o (Nltl)H —0,
. . (9.68)
lim E H@“Ww (N't)) —©,~ (Nltl)H =0, for0<m<I1—1.

N—o0

Combining the result obtained in step 6 with the proof strategy followed in
Section [8.3.10] we get the claim. O

Finally, we prove Proposition a).

Proof. Step 6 and step 7 yield the laws of the components E[Mlk] of the inter-
action chain (M*))?,_ ;). Note that the state space ([0,1] x [0, 1]*7%)"*? is
compact, and therefore the sequence of random variables

<®(l>79?v“ (t‘)) (9.69)
l=k+1,k

NeN

is tight. For any
£ ([0,1] x [0,1]F2)"*? 5 R,

=[] fit=o), (9.70)
i=1
fi S Cb([o, 1] — R),

we can use conditioning on the previous block average to obtain

lim E |f <®<l o <f>> =E |7 (5% 1)) ]
l=k+1,k,...,0

N—o0
(9.71)
Using that the set of functions of the form (9.70) is separating, we obtain the
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§9.3 Proof: of the hierarchical multi-scale limit the-
oremns.
In this section we prove Theorems[{.4.2]and [£.4.4] We start by proving Theorem [£.4.4]

Theorem will follow from Theorem [£.4.4] by projection onto the effective com-
ponents.

Proof of Theorem [4.4.2]

Proof. Recall the estimators in (4.70]). Like for the finite-level hierarchical mean-field
system, we can define the auxiliary estimator process by

@A (1) — (é(l)7QN (t), (@(Z)VQN (t))‘” ). (9.72)

Ym m=l

For [, k € N the processes (@128~ (F4 N¥1)), o evolve according to (recall, (4.114)))

_ i Cp— n
detax (th) = E Z Nn—11_k [egc )’QN(th) - @:(El)7QN (th)} dt
n=I[+1
Nk
+ B |5 > 9(ze(NFt)) dw(t)
£EB (9.73)

+Ei Z Sl [ (N*r) — 02 (V1) dt,

e
dO- (NFt) = Nme [egmw (N*t) — egym(m)} dt, 1<m<oo.

Therefore, for [ > k and all € > 0,

P sup  |©WN(F) — W2 (F 4 NFY)| > €
0<t<L(N)
t+N"t 0 Crt
=P sup E; / dr "‘71 [@;n),ﬂzv(r) _ @;l),QN(T)}
0<t<L(N) i Bl N7

Nt — Kme 1,9 1,9

m=l

TN (9.74)
+/, dw;(r N2l Z 1
t £eB;
I+NFt
<P sup Ej / dw;(r
0<t<L(N) T N2 gl

- Cn—1 mEm
>€_tl Nn1k+ZNmk]]

n=Il+1
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Note that, since | > k,

. - Cn—1 mEm
hmt[Zank—i—ZNm k]:o. (9.75)

N —o0
n=Il+1

Hence, like in the proof of Lemma [8.3.4] we can use an optional stopping argument
to obtain

lim  sup |O@ON(F) - 0WN (F 4 NFt)| =0 in probability.  (9.76)

N—=00g<t<L(N)

Using a similar computation as in (9.74)), we can show

lim  sup [0 (F) — 01N (F+ N*)| =0  in probability.  (9.77)

N—=00 g<t<L(N)

Hence we obtain that, on time scale N* as N — oo, the process (@120 (f 1
NF¥t))¢s0 does not evolve and therefore is still in its initial state(@®®)-2w2n (7)),
Using that the l-auxiliary estimator processes do not move for [ > k, they function
like the “outside world” for the finite-level mean-field system in Section[9.1] Therefore
we can proceed as in the proof of Proposition [0.1.1] to prove the second and third line
in in Theorem The I-block estimator process (@ 122N (£ 4 Nt)), 0
evolves according to (9.73) with [ = k. Note that the extra interactions due to
migration over larger blocks | > k and exchange with deeper seed-banks m > k in
are of order O(1/N). Therefore these terms vanish as N — oo, and we can
just proceed as in the scheme of Section [9.2] to obtain the second and third line in

in Theorem 2l Using these results, we obtain that, for [ > k,

OWAON (7) = 6 (9.78)

—(kt1)

]
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