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CHAPTER 9
Proofs of the hierarchical multi-scale

limit theorems

In this chapter we prove the hierarchical multi-scale limit theorems stated in The-
orem 4.4.2 and Theorem 4.4.4. In Section 9.1 we first introduce the finite-level
mean-field finite-systems scheme. In Section 9.2 we given an outline of how to prove
the finite-level mean-field finite-systems scheme. In Section 9.3 we show how Theor-
ems 4.4.2–4.4.4 can be obtained by a simple generalisation of the finite-level mean-field
finite-systems scheme. The proof of the finite-level mean-field finite-systems scheme
follows a similar line of argument as in Section 8.2 once we incorporate more levels.
Since the proofs for the finite-level mean-field systems scheme are similar as the proofs
in Section 8.3, we will not write out the full proof, but only give an outline and a
sketch.

§9.1 Finite-level mean-field finite-systems scheme and
interaction chain

In this section we extend the two-level three-colour system to a k-level (k+1)-colour
system with an “outside world” for any k ∈ N. This outside world allows also the
highest level, the k-block, to start from equilibrium. It is also needed to generalize
the results in this subsection to the infinite hierarchical group.

▶ Definitions. To set up the system, fix k ∈ N and consider the geographic space
Ωk+1
N obtained by truncating the hierarchical goup ΩN (recall (4.2)) after hierarchical

level k + 1, i.e., Ωk+1
N = Bk+1(0) the (k + 1)-block centred at the origin (recall

(4.2), (4.4) and Fig. 4.2). Note that the k + 1-block consists of N k-blocks i.e.,

Bk+1(0) =
⋃N
i=0Bk(i) and Bk+1(0) = [Nk+1]. The seed-bank in this model consists

of the k + 2 layers corresponding to colours {0, · · · , k} ∪ {k + 1}. On this space we
again consider a restricted version of the SSDE in (4.20) to the geographic space Ωk+1

N .

The migration kernel aΩN (·, ·) is restricted to Ωk+1
N by setting all migration outside

Bk+1(0) equal to 0, i.e.,

a[Ω
k+1
N ](ξ, η) =

k+1∑
l=1

1{
d
Ω
k+1
N

(ξ,η)≤l
} cl
N l−1

1

N l
, (9.1)
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where dΩk+1
N

is the hierarchical distance dΩN
restricted to the space Ωk+1

N . The colour-

l dormant population exchanges individuals with the active population at rates el
N l ,

Klel
N l for all 0 ≤ l ≤ k. We set the interaction of the active population with the colour
(k + 1)-dormant population equal to 0. This seed-bank is only needed later, namely
for the “outside world”.

The state space of the finite-level mean-field system is

S = (sk+1)Ω
k+1
N , sk+1 = [0, 1]× [0, 1]k+2, (9.2)

and the system is denoted by

ZΩk+1
N = (ZΩk+1

N (t))t≥0, ZΩk+1
N (t) = (z

Ωk+1
N

ξ (t))ξ∈Ωk+1
N

,

z
Ωk+1

N

ξ (t) = (x
Ωk+1

N

ξ (t), (y
Ωk+1

N

ξ,m (t))k+1
m=0).

(9.3)

The components evolve according to the SSDE

dx
Ωk+1

N

ξ (t) =

k∑
l=1

cl−1

N l−1

1

N l

∑
η∈Bl(ξ)

[
x
Ωk+1

N
η (t)− x

Ωk+1
N

ξ (t)

]
dt

+

√
g(x

Ωk+1
N

ξ (t)) dwξ(t) +

k∑
m=0

Kmem
Nm

[
y
Ωk+1

N

ξ,m (t)− x
Ωk+1

N

ξ (t)

]
dt,

dy
Ωk+1

N

ξ,m (t) =
em
Nm

[
x
Ωk+1

N

ξ (t)− y
Ωk+1

N

ξ,m (t)

]
dt, 0 ≤ m ≤ k,

dy
Ωk+1

N

ξ,m (t) = 0, ξ ∈ Ωk+1
N ,

(9.4)

with Bl(ξ) the ball of radius l around ξ ∈ Ωk+1
N .

Note that this system is the hierarchical SSDE in (4.20) with all interactions
at distance > k switched off (i.e., cl = 0 for l > k + 1), and also the exchange with
dormant populations of colourm > k is switched off. As before, by [67] the martingale
problem associated with (9.4) is well-posed, and for every initial state in S the SSDE
has a unique strong solution. We will analyse (9.4) on time scales 1, N,N2, · · · , Nk.
If for 0 ≤ l ≤ k time runs on time scale N l, then we write N ltl with tl > 0.

To study the k-level mean-field system, we analyse the equivalent of the block
averages defined in (4.2.3). For the k-level mean-field system these are given by

x
Ωk+1

N

l (t) =
1

N l

∑
η∈Bl(0)

x
Ωk+1

N
η (N lt),

y
Ωk+1

N

m,l (t) =
1

N l

∑
η∈Bl(0)

y
Ωk+1

N
η,m (N lt), 0 ≤ m ≤ k + 1, 0 ≤ l ≤ k.

(9.5)
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For 0 ≤ l ≤ k these block averages evolve according to the SSDE

dx
Ωk+1

N

l (t) =

k−(l−1)∑
n=1

cl+n−1

Nn−1

[
x
Ωk+1

N

l+n (N−nt)− x
Ωk+1

N

l (t)
]
dt

+

√√√√ 1

N l

∑
i∈Bl(0)

g(xi(N lt)) dwl(t) (9.6)

+

k∑
m=0

N lKmem
Nm

[
y
Ωk+1

N

m,l (t)− x
Ωk+1

N

l (t)
]
dt,

dy
Ωk+1

N

m,l (t) = N l em
Nm

[
x
Ωk+1

N

l (t)− y
Ωk+1

N

m,l (t)
]
dt, 0 ≤ m ≤ k, (9.7)

dy
Ωk+1

N

k+1,l(t) = 0, (9.8)

In the limit as N → ∞, the active l-block average feels a drift towards the active
(l+ 1)-block average, which is not moving on time scale N l, at rate cl. The diffusion
term for the l-block average becomes the average diffusion over the l-block. The drift
of the active l-block average towards the l-block average of m-dormant populations

y
Ωk+1

N

m,l with m > l vanishes in the limit as N → ∞. Therefore, the m > l m-dormant
populations are slow seed-banks on space-time scale l. The l-block average of the

colour-l dormant population y
Ωk+1

N

l,l has a non-trivial drift towards the active l-block

average, written x
Ωk+1

N

l . Therefore the l-dormant population is the effective seed-bank

on space-time scale l. For the colourm-dormant populations y
Ωk+1

N

m,l withm < l, we see
that infinite rates appear. Therefore the m-dormant populations with m < l are fast
seed-banks on space-time scale l. We again need the Meyer-Zheng topology to show

that limN→∞ y
Ωk+1

N

m,l = limN→∞ x
Ωk+1

N

l . On space-time scale l, the colour-l dormant
population is the effective seed-bank. To get rid of the infinite rates we again look at
combinations. From the above discussion and the SSDE in (9.6)–(9.6), we see that if
we consider the quantity

x
Ωk+1

N

l (t) +
∑l−1
m=0Kmy

Ωk+1
N

l,m (t)

1 +
∑l−1
m=0Km

, (9.9)

then all infinite rates cancel out. ThereforexΩk+1
N

l (t) +
∑l−1
m=0Kmy

Ωk+1
N

l,m (t)

1 +
∑l−1
m=0Km

, y
Ωk+1

N

l,l (t)


t>0

(9.10)

is called the effective process on space-time scale l. Like in the simpler mean-field
finite-systems scheme, the effective process allows us to analyse our system in path
space.

An important difference between the finite-level mean-field system in (9.6)–(9.7)
and the two-level three-colour mean-field system in Section (8.1) is that in the finite-
level mean-field system also the highest level k has a drift towards the outside world.
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This outside world is the active k + 1-block average, which does not evolve on time
scale Nk. This drift allows the finite-level mean-field system to equilibrate to a non-
trivial equilibrium. In the two-level mean-field system, the highest level, i.e., the
active 2-block average, does not feel a drift due to migration. Consequently, the
2-block averages will eventually cluster.

▶ Scaling limit. To state and prove the finite-level multi-scale limit, we need the
following three limiting processes. Recall (4.64) and (4.62). For 0 ≤ l ≤ k, let

(zl,(θ,(ym,l)
k+1
m=0)

(t))t≥0) = (xl(t), (ym,l(t))
k+1
m=0)t≥0) (9.11)

be the process evolving according to

dxl(t) = El

[
cl[θ − xl(t)] dt+

√
F (l)g(x1(t)) dw(t) +Klel [yl,l(t)− xl(t)] dt

]
,

ym,l(t) = xl(t), for 0 ≤ m < l

dyl,l(t) = el [xl(t)− yl,l(t)] dt,

ym,l(t) = ym,l, for l < m ≤ k + 1,

(9.12)

where θ ∈ [0, 1] and ym,l ∈ [0, 1] for l < m ≤ k + 1.
For 0 ≤ l ≤ k, let

(zaux
l,(θ,(ym,l)

k+1
m=l+1)

(t))t≥0 = (xauxl (t), (yauxm,l (t))
k+1
m=l+1)t≥0 (9.13)

be the process evolving according to

dxauxl (t) = El

[
cl[θ − xauxl (t)] dt+

√
F (l)g(xaux1 (t)) dw(t)

+Klel [y
aux
l,l (t)− xauxl (t)] dt

]
,

dyauxl,l (t) = el [x
aux
l (t)− yauxl,l (t)] dt,

yauxm,l (t) = ym,l, for l < m ≤ k + 1,

(9.14)

where θ ∈ [0, 1] and yauxm,l ∈ [0, 1], for l < m ≤ k + 1.
For 0 ≤ l ≤ k, let

(zeffl,θ(t))t≥0 =
(
xeffl (t), yeffl,l (t)

)
t≥0

(9.15)

be the effective process evolving according to

dxeffl (t) = El

[
cl [θ − xeffl (t)] dt+

√
(F (l)g)(xeffl (t)) dw(t) +Klel [y

eff
l,l (t)− xeffl (t)] dt

]
,

dyeffl,l (t) = el [x
eff
l (t)− yeffl,l (t)] dt.

(9.16)
Comparing (9.12) with (9.16), we see that the effective process looks at the non-trivial
components of the full process. The auxiliary process in (9.14) looks at the active
population, the effective seed-bank and the slow seed-banks.

To state and prove the finite-level multi-scale limit, we need the following list of
ingredients:
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(a) For t > 0 and for 0 ≤ l ≤ k, define the l-block estimators

Θ̄(l),Ωk+1
N (t) =

1

N l

∑
i∈Bl

x
Ωk+1

N
i (t) +

∑l−1
m=0Kmy

Ωk+1
N

i,0 (t)

1 +K0
,

Θ
(l),Ωk+1

N
x (t) =

1

N l

∑
i∈Bl

x
Ωk+1

N
i (t),

Θ
(l),Ωk+1

N
ym (t) =

1

N l

∑
i∈Bl

y
Ωk+1

N
i,m (t), 0 ≤ m ≤ k + 1,

(9.17)

and put

Θ(l),Ωk+1
N (t), =

(
Θ

(l),Ωk+1
N

x (t),
(
Θ

(l),Ωk+1
N

ym (t)
)k+1

m=0

)
,

Θaux,(l),Ωk+1
N (t) =

(
Θ̄(l),Ωk+1

N (t),

(
Θ

(l),Ωk+1
N

yl (t)

)k+1

m=l

)
,

Θeff,(l),Ωk+1
N (t) =

(
Θ̄(l),Ωk+1

N (t),Θ
(l),Ωk+1

N
yl (t)

)
.

(9.18)

We call (Θ(l),Ωk+1
N (t))t>0 the l-block estimator process, (Θaux,(l),Ωk+1

N (t))t>0 the

auxiliary l-block estimator process and (Θeff,(l),Ωk+1
N (t))t>0 the effective l-block

estimator process.

(b) For 0 ≤ l ≤ k, define the time scales N l such that

L[Θ̄(l),Ωk+1
N (N ltl − L(N)N l−1)− Θ̄(l),Ωk+1

N (N ltl)] = δ0 (9.19)

for all L(N) such that limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0, but

not for L(N) = N . In words, N is the time scale on which Θ̄(l),Ωk+1
N (·) starts

evolving, i.e.,
(
Θ̄(l),Ωk+1

N (N ltl)
)
tl>0

, is no longer a fixed process.

(c) The invariant measure for the evolution of the l-block average in (9.12), denoted
by

Γ
(l)
θ,yl

, yl = (ym,l)
k+1
m=0. (9.20)

The invariant measures of the auxiliary l-block process in (9.15) and the effective
l-block process in (9.16), denoted by, respectively,

Γ
(l),aux
θ,yl

, yl = (ym,l)
k+1
m=l+1 (9.21)

and
Γ
(l),eff
θ . (9.22)

(d) For 0 ≤ l ≤ k, let FEl,cl,Kl,el denote the renormalisation transformation acting
on G defined by

(FEl,cl,Kl,elg)(θ) =

∫
[0,1]2

g(x) Γ
(l)
θ (dx, (dy)k+1

m=0), θ ∈ [0, 1], (9.23)
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and define the iterates F (n), 0 ≤ n ≤ k, of the renormalisation transformation
as the compositions

F (l) = FEn−1,cn−1,Kn−1,en−1 ◦ · · · ◦ FE0,c0,K0,e0 , 0 ≤ l ≤ k. (9.24)

(Recall (4.76).)

(e) To give a detailed description of the multi-scale behaviour of the SSDE in (4.20),
define the interaction chain

(Mk
−l)−l=−(k+1),−k,...,0 (9.25)

as the time-inhomogeneous Markov chain on [0, 1]× [0, 1]k+1 with initial state

Mk
−(k+1) = (ϑk,

k+1 times︷ ︸︸ ︷
ϑk, · · · , ϑk, θy,k+1) (9.26)

that evolves according to the transition kernel Q[l] from time −(l + 1) to time
−l given by

Q[l](u,dv) = Γ(l)
u (dv), 0 ≤ l ≤ k. (9.27)

(Recall (4.77).)

We are now ready to state the scaling limit for the evolution of the averages in
(7.7).

Proposition 9.1.1. [Finite-level mean-field: finite-systems scheme] Suppose that the

initial state of the system in (9.4) is given by µ(0) = µ⊗[Ωk+1
N ] for some µ ∈ P([0, 1]×

[0, 1]k+2). Let L(N) be such that limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0, and

for tk, . . . , t0 ∈ (0,∞) set t̄ = L(N)Nk +
∑k
n=0 tnN

n.

(a) For every tk, . . . , t0 ∈ (0,∞),

lim
N→∞

L

[(
Θ(l),Ωk+1

N (t̄)

)
l=k+1,k,...,0

]
= L

[
(Mk

−l)−l=−(k+1),−k,...,0
]
, (9.28)

where (Mk
−l)−l=−(k+1),−k,...,0 is the interaction chain in (9.25) starting from

Mk
−(k+1) = (ϑk,

k+1 times︷ ︸︸ ︷
ϑk, · · · , ϑk, θy,k+1). (9.29)

(b) For all 0 ≤ l ≤ k,

lim
N→∞

L
[(

Θ(l),Ωk+1
N (t̄+ tlN

l)
)
tl>0

]
= L

[(
zl,Mk

−(l+1)
(tl)
)
tl>0

]
,

in the Meyer-Zheng topology,

(9.30)

where
(zl,Mk

−(l+1)
(tl))tl>0 (9.31)
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is the processes defined (9.12) with θ, (ym, l)
k+1
m=l+1 given by the corresponding

components in Mk
−(l+1) and with initial measure

L
[
zl,Mk

−(l+1)
(0)
]
= Γ

(l)

Mk
−(l+1)

Γ
(l)

Mk
−(l+1)

=

∫
sk+1

· · ·
∫
sk+1

∫
sk+1

Γ
(k)

Mk
−(k+1)

(duk)Γ
(k−1)
uk

(duk−1) · · ·Γ(l+1)
u2

(dul+2)Γ
(l)
ul+1

.

(9.32)

In Part (a), the limit does not depend on the choice of the times tk, . . . , t0, since we
let time start from a time larger than L(N)Nk, so that in the limit as N → ∞ all the
l-block averages with l ≤ k are already in quasi-equilibrium. In Part (b), for l < k the
center of the drift for the active population is random and is determined by the first
component of the interaction chain. Also the states of the m-dormant populations
with l < m ≤ k + 1 are determined by the interaction chain.

Remark 9.1.2. In contrast to Propositions 7.1.2–8.1.1, there are no assumptions on
the seed-bank behaviour in Proposition 9.1.1. This is because all the block-averages
that we consider are in equilibrium at time t̄. Consequently on space-time scales
l < m the m-dormant l-block average will equal the state of the m-dormant m-block
average at time t̄. Therefore we say that the state of the slow seed-banks is determined
by the space-time scaleon which this seed-bank is effective. Hence the state of the
slow seed-banks is determined by the interaction chain. ■

The proof of Proposition 9.1.1 will be given in Section 9.2.

§9.2 Proof of the mean-field finite-systems scheme:
finite-level

We give a sketch of the proof Proposition 9.1.1. The proof uses a similar scheme as
the proof of Proposition 8.1.1. We state the scheme and indicate at each step how it
can be proved.

1 Tightness of the auxiliary l-block estimator processes, for 0 ≤ l ≤ k,((
Θaux,(l),Ωk+1

N (N ltl)
)
tl>0

)
N∈N

. (9.33)

Proof. For each 0 ≤ l ≤ k we use the tightness criterion in [49, Proposition
3.2.3.]. □

2 Stability property of the 2-block estimators, i.e., for L(N) such that
limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0,

lim
N→∞

sup
0≤t≤L(N)

∣∣∣Θ̄(l),Ωk+1
N (N ltl)− Θ̄(l),Ωk+1

N (N ltl −N l−1t)
∣∣∣ = 0 in probability

(9.34)
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and, for all l ≤ m ≤ k + 1,

lim
N→∞

sup
0≤t≤L(N)

∣∣∣∣Θ(l),Ωk+1
N

ym (N ltl)−Θ
(l),Ωk+1

N
ym (N ltl −N l−1tl)

∣∣∣∣ = 0 in probability.

(9.35)

Proof. Use a similar computation as in the proof of Lemma 8.3.4. □

3 We analyse the behaviour of the slow seed-banks by proving the following
lemma.

Lemma 9.2.1. [Slow seed-banks in the multi-level system] Let Θ
(l)
ym,i

denote the

m-dormant l-block average containing colony i ∈ Ωk+1
N . Then for all i ∈ Ωk+1

N ,
m < k + 1, l < m and tl > 0,

lim
N→∞

[
y
Ωk+1

N
i,m (t̄+N ltl)−Θ

(m),Ωk+1
N

ym,i
(t̄+N ltl)

]
= 0 a.s. (9.36)

and hence

lim
N→∞

[
Θ

(l),Ωk+1
N

ym,i
(t̄+N ltl)−Θ

(m),Ωk+1
N

ym,i
(t̄+N ltl)

]
= 0 a.s. (9.37)

Proof. We can proceed as in the proof of Lemma 8.3.20, after adapting the

kernel b[N
2](·, ·) to the kernel bΩ

k+1
N (·, ·). Then we can use that, from each of

the m < k + 1 m-dormant populations, individuals wake up before time t̄ with
probability 1. For individuals starting from an m-dormant state, we define the
coupling event

H
m,Ωk+1

N
t = {RWΩk+1

N has migrated over distance m at least once up to time t}.
(9.38)

The migration over distancem is needed because we needm-dormant individuals
to be uniformly distributed over the m-block in order to almost surely equal the
state of the m-block. □

4 We prove the convergence of the single components. Recall that there are
Nk+1−l l-blocks in Ωk+1

N . Since tightness of components implies tightness of
the process, step 1 implies that for 0 ≤ l ≤ k the full l-block processes((

Θ
aux,(l),Ωk+1

N
i (t̄+N ltl)

)
tl>0, i∈[Nk+1−l]

)
N∈N

(9.39)

are tight. From the tightness in steps 1 we can construct a subsequence (Nn)n∈N
along which, for all 0 ≤ l ≤ k,

lim
n→∞

L

[(
Θ

aux,(1),Ωk+1
Nn

i (t̄+N l
ntl)

)
tl>0, i∈[Nk+1−l

n ]

]
(9.40)
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exists. Note that t̄ depends on the subsequence. For example, along the sub-
sequence (Nñ)ñ∈N,

t̄ = L(N)Nk +

k∑
n=0

tnN
n
ñ . (9.41)

We define the measure
ν
(0)
Θ =

∏
i∈N0

Γ
(0)
Θi

(t̄), (9.42)

where
Θi ∈ sk+1. (9.43)

In this step we show that along the same subsequence the single components
converge to the infinite system. We show that if

lim
n→∞

L[(Θaux,(1),Ωk+1
Nn (t̄))i∈[Nk

n ]] = P (1), (9.44)

then

lim
n→∞

L
[(
ZΩk+1

Nn (t̄+ t0)
)
t0≥0

]
= L

[
(Zν

(0)(t̄)(t0))t0≥0

]
, (9.45)

where

ν(0)(t̄) =

∫
ν(0)u P (1)(du). (9.46)

Here, (Zν
(0)(t̄)(t0))t0≥0 is the process starting from ν(0)(t̄) with components

evolving according to (8.18), where θ is now a random variable that inherits its
law from

lim
n→∞

L[(Θaux,(1),Ωk+1
Nn (t̄))i∈[Nk

n ]] (9.47)

and, similarly, the laws of ym,0, 1 ≤ l ≤ k + 1 in the limiting process

(Zν
(0)(t2)(t0))t0≥0 are determined by

lim
n→∞

L[(Θaux,(1),Ωk+1
Nn (t̄))i∈[Nk

n ]]. (9.48)

Note that we choose the subsequence (Nn)n∈N in such a way that we know that
the law P (1) in (9.44) exists.

Proof. Proceed as in the proof of Proposition 8.3.5. Note that the assumptions
on the seed-banks in Proposition 8.3.5 follow from the choice of the subsequence
and Lemma 9.2.1. □

5 Using the limiting evolution of the single colonies obtained in step 4, we can
identify the limiting l-block process along the same subsequence. For 1 ≤ l ≤ k,
we show that if

lim
n→∞

L[(Θaux,(l+1),Ωk+1
Nn (t̄))i∈[Nk

n ]] = P (l+1), (9.49)

then

lim
n→∞

L
[(

Θaux,(l),Ωk+1
Nn (t̄+N l

ntl)
)
tl>0, i∈[Nk+1−l

n ]

]
= L

[
(zauxl,Θ(l+1)(t))t≥0

]
,

(9.50)
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where Θ(l+1) = (Θ
(l+1)
x , (Θ

(l+1)
ym,l

)k+1
m=l+1) ∈ [0, 1]× [0, 1]k+2−(l+1),

L
[
zauxl,Θ(l)(0)

]
= Γ

(l),aux

Θ(l+1) ,

Γ
(l),aux

Θ(l+1) =

∫
[0,1]×[0,1]k+2−(l+1)

Γ(l),aux
u P (l+1)(du)

(9.51)

and (zaux
l,Θ(l+1)(t))t≥0 is the process evolving according to (9.14) with θ, (ym,l)

k+1
m=l

replaced by the random variables Θ
(l+1)
x , (Θ

(l+1)
ym,l

)k+1
m=l. Note that by the choice

of the subsequence (Nn)n∈N we know that for 1 ≤ l ≤ k the limiting laws in
(9.49) exist.

Proof. The proof goes by induction. Using the convergence of the single com-
ponents, we can proceed as in the proof of Proposition 8.3.10 to prove the
convergence of the 1-blocks averages

lim
n→∞

L

[(
Θ

aux,(1),Ωk+1
Nn

i (t̄+Nnt1)

)
t1>0, i∈[Nk+1−l

n ]

]
. (9.52)

Then, assuming that we have the convergence for all 0 ≤ l ≤ L, we get

lim
n→∞

L

[(
Θ

aux,(l),Ωk+1
Nn

i (t̄+N l
ntl)

)
tl>0, i∈[Nk+1−l

n ]

]
, (9.53)

and we prove the convergence of

lim
n→∞

L

[(
Θ

aux,(L+1),Ωk+1
Nn

i (t̄+N (L+1)
n t(L+1))

)
t(L+1)>0, i∈[N

k+1−(L+1)
n ]

]
. (9.54)

This is done using a similar proof strategy as in the proof of Proposition 8.3.10.
In particular, we need to derive the l-level equivalent of Lemma 8.3.13. Since
this lemma is also key to proving convergence in the Meyer-Zheng topology, we
state it explicitly below. □

Lemma 9.2.2 (l-block averages). Define

∆
(l),Ωk+1

N

Σ (N l−1tl−1)

=
Θ

(l),Ωk+1
N

x (N l−1tl−1) +
∑l−2
m=0KmΘ

(l),Ωk+1
N

ym (N l−1tl−1)

1 +
∑l−2
m=0Km

−Θ
(l),Ωk+1

N
yl−1 (N l−1tl−1)

(9.55)
and

Rl =
1 +

∑l−1
m=0Km

1 +
∑l−2
m=0Km

. (9.56)
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For t ≥ 0 set Θ̄(0)(t) = Θ
(0)
x (t) = x0(t). Then, for 1 ≤ l ≤ k,

E
[∣∣∣∣∆(l),Ωk+1

N

Σ (N l−1tl−1)

∣∣∣∣]

≤

√√√√E

[(
∆

(l),Ωk+1
N

Σ (0)

)2
]
e−elRltl−1

+

√∫ t1

0

ds 2elRle−2elRl(t1−s)E
[∣∣∣∣Θ̄(l−1),Ωk+1

N (N l−1s)−Θ
(l−1),Ωk+1

N
x (N l−1s)

∣∣∣∣]

+

√√√√ 1

N

1

2el(1 +
∑l−1
m=0Km)

[
k∑

n=l+1

cn−1

Nn−(l+1)
+

k∑
m=l

Kmem
Nm−l + El−1||g||

]
.

(9.57)

Proof. Proceed like in the proof of Lemma 8.3.13, using the SSDE in (9.4)
instead of the SSDE in (8.6). □

We obtain the following useful corollary from Lemma 9.2.2.

Corollary 9.2.3. For all 1 ≤ l ≤ k, s > 0 and l̃ ≥ l,

lim
N→∞

E
[∣∣∣∣Θ̄(l−1),Ωk+1

N (N l̃−1s)−Θ
(l−1),Ωk+1

N
x (N l̃−1s)

∣∣∣∣] = 0. (9.58)

Proof. We proceed by induction. The result for l = 1 is trivial. Suppose that
the result holds for l = L. Then for l = L+ 1 we obtain

E
[∣∣∣∣Θ̄(L),Ωk+1

N (NLs)−Θ
(L),Ωk+1

N
x (NLs)

∣∣∣∣]
≤ E

[∣∣∣∣∣Θ̄(L),Ωk+1
N (NLs)− 1

N

N−1∑
i=0

Θ̄
(L−1),Ωk+1

N
i (NLs)

∣∣∣∣∣
]

+
1

N

N−1∑
i=0

E
[∣∣∣∣Θ̄(L−1),Ωk+1

N
i (NLs)−Θ

(L−1),Ωk+1
N

x,i (NLs)

∣∣∣∣] .
(9.59)

Note that the second term in the right-hand side of (9.59) tends to 0 as N → ∞
by the induction hypothesis. For the first term in the right-hand side of (9.59),
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note that

E

[∣∣∣∣∣Θ̄(L),Ωk+1
N (NLs)− 1

N

N−1∑
i=0

Θ̄
(L−1),Ωk+1

N
i (NLs)

∣∣∣∣∣
]

= E

∣∣∣∣∣∣Θ
(L),Ωk+1

N
x (NLs) +

∑L−1
m=0KmΘ

(L),Ωk+1
N

ym (NLs)

1 +
∑L−1
m=0Km

−
Θ

(L),Ωk+1
N

x (NLs) +
∑L−2
m=0KmΘ

(L),Ωk+1
N

ym (NLs)

1 +
∑L−2
m=0Km

∣∣∣∣∣∣


=
KL−1

1 +
∑L−1
m=0Km

E
[∣∣∣∣Θ(L),Ωk+1

N
yL−1 (NLs)− Θ̄(L),Ωk+1

N (NLs)

∣∣∣∣] .

(9.60)

Invoking Lemma 9.2.2 and using the induction hypothesis, we see that for s > 0
and l̃ ≥ L indeed

lim
N→∞

E
[∣∣∣∣Θ̄(L),Ωk+1

N (N l̃s)−Θ
(L),Ωk+1

N
x (N l̃s)

∣∣∣∣] = 0. (9.61)

□

6 Show that the convergence in step 4 and step 5 actually holds along each sub-
sequence. Therefore we obtain the limiting evolution of the single colonies,
the auxiliary 1-block process and the effective 2-block process. This follows
from the fact that the auxiliary k-estimator process converges to the same limit
along every subsequence. Consequently, the same holds for the auxiliary k − 1-
estimator process. In this way we can traverse back through the levels to obtain
that all l-estimator process converges as N → ∞.

Define, for 0 ≤ l ≤ k,

sk+1
l = [0, 1]× [0, 1]k+2−l. (9.62)

We obtain, for 0 ≤ l ≤ k − 1,

lim
N→∞

L[(Θaux,(l+1),Ωk+1
N (t̄))]] = Γ

(l+1),aux

Θ(l+2) ,

Γ
(l+1),aux

Θ(l+2) =

∫
sk+1
l+2

· · ·
∫
sk+1
k

Γ
(k),aux
ϑk

(duk) · · ·Γ(l+2),aux
ul+3

(dul+2)Γ
(l+1),aux
ul+2

.
(9.63)

Therefore by step 5

lim
N→∞

L
[(

Θaux,(l),Ωk+1
N (t̄+N l

ntl)
)
tl>0, i∈[Nk+1−l]

]
= L

[
(zauxl,Θ(l+1)(t))t≥0

]
,

(9.64)

where Θ(l+1) = (Θ
(l+1)
x , (Θ

(l+1)
ym,l

)k+1
m=l) ∈ s

(k+1)
l are random variables with law

L
[
Θ(l+1)

]
= Γ

(l+1),aux

Θ(l+2) . (9.65)
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The initial state of the limiting process in (9.64) is given by

L
[
zauxl,Θ(l)(0)

]
= Γ

(l),aux

Θ(l+1) ,

Γ
(l),aux

Θ(l+1) =

∫
sk+1
l+2

· · ·
∫
sk+1
k

Γ
(k),aux
ϑ+k (duk) · · ·Γ(l+2),aux

ul+2
(dul+1)Γ

(l+1),aux
ul+1

(9.66)
and (zaux

l,Θ(l+1)(t))t≥0 is the process evolving according to (9.14) with θ,

(ym,l)
k+1
m=l+1 replaced by the random variables Θ

(l+1)
x , (Θ

(l+1)
ym )k+1

m=l+1. Recall
that, by Lemma 9.2.1, we have, for l + 1 ≤ m ≤ k + 1,

Θ(l+1)
ym = Θ(m)

ym . (9.67)

7 Use the Meyer-Zheng topology to obtain Proposition 9.1.1(b).

Proof. Note that Lemma 9.2.2 and Corollary 9.2.3 together imply

lim
N→∞

E
[∣∣∣∣Θ̄(l),Ωk+1

N (N ltl)−Θ
(l),Ωk+1

N
x (N ltl)

∣∣∣∣] = 0,

lim
N→∞

E
[∣∣∣∣Θ̄(l),Ωk+1

N (N ltl)−Θ
(l),Ωk+1

N
ym (N ltl)

∣∣∣∣] = 0, for 0 ≤ m ≤ l − 1.

(9.68)

Combining the result obtained in step 6 with the proof strategy followed in
Section 8.3.10, we get the claim. □

8 Finally, we prove Proposition 9.1.1(a).

Proof. Step 6 and step 7 yield the laws of the components L[Mk
l ] of the inter-

action chain (Mk
−l)

0
−l=−(k+1). Note that the state space ([0, 1]× [0, 1]k+2)k+2 is

compact, and therefore the sequence of random variables(Θ(l),Ωk+1
N (t̄)

)
l=k+1,k,...,0


N∈N

(9.69)

is tight. For any
f : ([0, 1]× [0, 1]k+2)n+2 → R,

f(x) =

n∏
i=1

fi(xi),

fi ∈ Cb([0, 1] → R),

(9.70)

we can use conditioning on the previous block average to obtain

lim
N→∞

E

f
(Θ(l),Ωk+1

N (t̄)

)
l=k+1,k,...,0

 = E
[
f
(
(Mk

−l)
0
−l=−(k+1)

)]
.

(9.71)
Using that the set of functions of the form (9.70) is separating, we obtain the
claim. □
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§9.3 Proof: of the hierarchical multi-scale limit the-
orems.

In this section we prove Theorems 4.4.2 and 4.4.4. We start by proving Theorem 4.4.4.
Theorem 4.4.2 will follow from Theorem 4.4.4 by projection onto the effective com-
ponents.

Proof of Theorem 4.4.2

Proof. Recall the estimators in (4.70). Like for the finite-level hierarchical mean-field
system, we can define the auxiliary estimator process by

Θ(l),aux,ΩN (t) =
(
Θ̄(l),ΩN (t),

(
Θ(l),ΩN
ym (t)

)∞
m=l

)
. (9.72)

For l, k ∈ N the processes (Θ(l),aux,ΩN (t̄+Nkt))t>0 evolve according to (recall, (4.114))

dΘ̄(l),ΩN (Nkt) = El

∞∑
n=l+1

cn−1

Nn−1−k

[
Θ(n),ΩN
x (Nkt)−Θ(l),ΩN

x (Nkt)
]
dt

+ El

√√√√Nk

N2l

∑
ξ∈Bl

g
(
xξ(Nkt)

)
dw(t)

+ El

∞∑
m=l

Kmem
Nm−k

[
Θ(l),ΩN
ym (Nkt)−Θ(l),ΩN

x (Nkt)
]
dt,

dΘ(l),ΩN
ym (Nkt) =

em
Nm−k

[
Θ(l),ΩN
x (Nkt)−Θ(l),ΩN

ym (Nkt)
]
dt, l ≤ m ≤ ∞.

(9.73)

Therefore, for l > k and all ϵ > 0,

P

[
sup

0≤t≤L(N)

∣∣∣∣∣Θ̄(l),ΩN (t̄)− Θ̄(l),ΩN (t̄+Nkt)

∣∣∣∣∣ > ϵ

]

= P

[
sup

0≤t≤L(N)

El

∣∣∣∣∣
∫ t̄+Nkt

t̄

dr

∞∑
n=l+1

cn−1

Nn−1

[
Θ(n),ΩN
x (r)−Θ(l),ΩN

x (r)
]

+

∫ t̄+Nkt

t̄

dr

∞∑
m=l

Kmem
Nm

[
Θ(l),ΩN
ym (r)−Θ(l),ΩN

x (r)
]

+

∫ t̄+Nkt

t̄

dwi(r)

√
1

N2l

∑
ξ∈Bl

g
(
xξ(r)

) ∣∣∣∣∣ > ϵ

]

≤ P

[
sup

0≤t≤L(N)

El

∣∣∣∣∣
∫ t̄+Nkt

t̄

dwi(r)

√
1

N2l

∑
ξ∈Bl

g
(
xξ(r)

) ∣∣∣∣∣
> ϵ− t

[ ∞∑
n=l+1

cn−1

Nn−1−k +

∞∑
m=l

Kmem
Nm−k

]]
.

(9.74)
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Note that, since l > k,

lim
N→∞

t

[ ∞∑
n=l+1

cn−1

Nn−1−k +

∞∑
m=l

Kmem
Nm−k

]
= 0. (9.75)

Hence, like in the proof of Lemma 8.3.4, we can use an optional stopping argument
to obtain

lim
N→∞

sup
0≤t≤L(N)

∣∣∣∣∣Θ̄(l),ΩN (t̄)− Θ̄(l),ΩN (t̄+Nkt)

∣∣∣∣∣ = 0 in probability. (9.76)

Using a similar computation as in (9.74), we can show

lim
N→∞

sup
0≤t≤L(N)

∣∣∣∣∣Θ̄(l),ΩN
ym (t̄)−Θ(l),ΩN

ym (t̄+Nkt)

∣∣∣∣∣ = 0 in probability. (9.77)

Hence we obtain that, on time scale Nk as N → ∞, the process (Θ(l),aux,ΩN (t̄ +
Nkt))t>0 does not evolve and therefore is still in its initial state(Θ(l),aux,ΩN (t̄)).

Using that the l-auxiliary estimator processes do not move for l > k, they function
like the “outside world” for the finite-level mean-field system in Section 9.1. Therefore
we can proceed as in the proof of Proposition 9.1.1 to prove the second and third line
in (4.88) in Theorem 4.4.2. The l-block estimator process (Θ(l),aux,ΩN (t̄ + N lt))t>0

evolves according to (9.73) with l = k. Note that the extra interactions due to
migration over larger blocks l > k and exchange with deeper seed-banks m > k in
(4.126) are of order O(1/N). Therefore these terms vanish as N → ∞, and we can
just proceed as in the scheme of Section 9.2, to obtain the second and third line in
(4.88) in Theorem 4.4.2. Using these results, we obtain that, for l > k,

Θ(l),aux,ΩN (t̄) = δMk
−(k+1)

. (9.78)

□
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