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CHAPTER 7
Two-colour mean-field system

In this chapter we extend the results obtained in Section 6.2.1 to a mean-field system
where the seed-bank consists of two colours, one colour that interacts on the slow
time scale and one colour that interacts on the fast time scale. To do so we follow the
set-up used in Chapter 4.4. In particular, we highlight the role of the second colour.
Section 7.1 builds up the setting and states the main scaling result: Proposition 7.1.2.
Section 7.2 provides the proof of this proposition based on a series of lemmas, which
are stated and proved first.

§7.1 Two-colour mean-field finite-systems scheme

Setup. In this section we consider a simplified version of our SSDE in (4.20) on the
finite geographic space

[N ] = {0, 1, . . . , N − 1}, N ∈ N. (7.1)

The migration kernel aΩN (·, ·) is replaced by the migration kernel a[N ](i, j) = c0N
−1

for all i, j ∈ [N ], where c0 ∈ (0,∞) is a constant. The seed-bank consists of two
colours, labeled 0 and 1. The exchange rates between the active and the colour-0
dormant population are given by K0e0, e0. The exchange rates between active and
the colour-1 dormant population are given by K1e1

N , e1N . The state space is

S = s[N ], s = [0, 1]× [0, 1]2, (7.2)

and the system, consisting of three components, is denoted by

Z [N ](t) =
(
X [N ](t), (Y

[N ]
0 (t), Y

[N ]
1 (t))

)
t≥0

,(
X [N ](t), (Y

[N ]
0 (t), Y

[N ]
1 (t))

)
=
(
xi(t), (yi,0(t), yi,1(t))

)
i∈[N ]

.
(7.3)

The components of (Z [N ](t))t≥0 evolve according to the SSDE

dx
[N ]
i (t) =

c0
N

∑
j∈[N ]

[x
[N ]
j (t)− x

[N ]
i (t)] dt+

√
g(x

[N ]
i (t)) dwi(t)

+K0e0 [y
[N ]
i,0 (t)− x

[N ]
i (t)] dt+

K1e1
N

[y
[N ]
i,1 (t)− x

[N ]
i (t)] dt,

dy
[N ]
i,0 (t) = e0 [x

[N ]
i (t)− y

[N ]
i,0 (t)] dt,

dy
[N ]
i,1 (t) =

e1
N

[x
[N ]
i (t)− y

[N ]
i,1 (t)] dt, i ∈ [N ],

(7.4)
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which is a special case of (4.20). The initial state is µ(0) = µ⊗[N ] for some µ ∈
P([0, 1]3). The SSDE in (7.4) has a unique weak solution coming from a well-posed
martingale problem [67, Theorem 3.1]. By [67, Theorem 3.2], (7.4) has a unique
strong solution for every deterministic initial state Z [N ](0). Therefore the solutino of
(7.4) is Feller and Markov for any initial law. The SSDE in (7.4) can alternatively be
written as

dx
[N ]
i (t) = c0

 1

N

∑
j∈[N ]

x
[N ]
j (t)− x

[N ]
i (t)

 dt+

√
g
(
x
[N ]
i (t))

)
dwi(t)

+K0e0 [y
[N ]
i,0 (t)− x

[N ]
i (t)] dt+

K1e1
N

[y
[N ]
i,1 (t)− x

[N ]
i (t)] dt,

dy
[N ]
i,0 (t) = e0 [x

[N ]
i (t)− y

[N ]
i,0 (t)] dt,

dy
[N ]
i,1 (t) =

e1
N

[x
[N ]
i (t)− y

[N ]
i,1 (t)] dt, i ∈ [N ].

(7.5)

So the migration term for a single colony can be interpreted as a drift towards the
average of the active population. We are interested in L[(Z [N ](t)))t≥0] in the limit as
N → ∞, on time scales t and Ns. Heuristically, analysing the SSDE in (7.5), we can
foresee the following results, which are made precise in Proposition 7.1.2.

• On time scale 1 = N0 (space-time scale 0), in the limit as N → ∞ the colour-1

dormant population (Y
[N ]
1 (t))t≥0 in (7.4) converges to a constant process, since the

single components yi,1 do not move on time scale t. The components of

(X [N ](t), Y
[N ]
0 (t))t≥0 converge to i.i.d. copies of the single-colony McKean-Vlasov pro-

cess in (6.1), where in the corresponding SSDE the parameters c, e,K are replaced
by c0, e0,K0 and E = 1. So on time scale t we only see the colour-0 dormant popu-
lation interacting with the active population, and the colour-1 dormant population is
not yet coming into play. Therefore the colour-0 dormant population is the effective
seed-bank on time scale 1, and the process

z
eff,[N ]
0 (t) = (x

[N ]
0 (t), y

[N ]
0,0 (t))t≥0 (7.6)

is called the effective process on level 0. Note that the active population has a drift
towards 1

N

∑
j∈[N ] xj(t), which in the McKean-Vlasov limit is replaced by E[x(t)]

given by (4.111).

• On time scale N (space-time scale 1), we look at the averages

(z
[N ]
1 (s))s>0 =

(
x
[N ]
1 (s), (y

[N ]
0,1 (s), y

[N ]
1,1 (s))

)
s>0

=

 1

N

∑
i∈[N ]

x
[N ]
i (Ns),

 1

N

∑
i∈[N ]

y
[N ]
i,0 (Ns),

1

N

∑
i∈[N ]

y
[N ]
i,1 (Ns)


s>0

.

(7.7)
Again the lower index 1 indicates that the average is the analogue of the 1-block
average defined in (4.22). Using (7.4), we see that the dynamics of the system in (7.7)
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is given by the SSDE

dx
[N ]
1 (s) =

√√√√ 1

N

∑
i∈[N ]

g(x
[N ]
i (Ns)) dw(s) +NK0e0

[
y
[N ]
0,1 (s)− x

[N ]
1 (s)

]
ds

+K1e1

[
y
[N ]
1,1 (s)− x

[N ]
1 (s)

]
ds,

dy
[N ]
0,1 (s) = Ne0

[
x
[N ]
1 (s)− y

[N ]
0,1 (s)

]
ds,

dy
[N ]
1,1 (s) = e1

[
x
[N ]
1 (s)− y

[N ]
1,1 (s)

]
ds.

(7.8)

Thus, as in the mean-field system with one-colour, on time scale N infinite rates ap-
pear in the interaction of the active population with the colour-0 dormant population.
Therefore in the limit as N → ∞ the path becomes rougher and rougher at rarer and

rarer times. Using the Meyer-Zheng topology we can prove that limN→∞ y
[N ]
0,1 (s) =

limN→∞ x
[N ]
1 (s) most of the time. On the other hand, on time scale N , x

[N ]
1 (s) has

a non-trivial interaction with y
[N ]
1,1 (s), and therefore we say that on time scale N the

colour-1 dormant population is the effective seed-bank. Note that for the evolution of

the average
x
[N]
1 (s)+K0y

[N]
0,1 (s)

1+K0
the rates with a factor N in front cancel out. We will use

the quantity
x
[N]
1 (s)+K0y

[N]
0,1 (s)

1+K0
to obtain results in the classical path-space topology.

We call

(z
[N ],eff
1 (s))s>0 =

(
x
[N ]
1 (s) +K0y

[N ]
0,1 (s)

1 +K0
, y1,1(s)

)
s>0

(7.9)

the effective process on space-time scale 1. We will call space-time scale 1 also level
1.

Scaling limit. To describe the limiting dynamics of the system in (7.4), we need
the infinite-dimensional process

(Z(t))t≥0 =
(
(zi(t))t≥0

)
i∈N0

=
(
(xi(t), (yi,0(t), yi,1(t)))t≥0

)
i∈N0

(7.10)

with state space ([0, 1]3)N0 that evolves according to

dxi(t) = c0[θ − xi(t)] dt+
√
g(xi(t)) dwi(t) +K0e0 [yi,0(t)− xi(t)] dt,

dyi,0(t) = e0 [xi(t)− yi,0(t)] dt,

yi,1(t) = yi,1, i ∈ N0.

(7.11)

Here, θ ∈ [0, 1] and yi,1 ∈ [0, 1] for all i ∈ N0. We will also need the limiting effective
process

(Zeff(t))t≥0 =
(
(zeffi (t))t≥0

)
i∈N0

=
(
(xeffi (t), yeffi,0(t))t≥0

)
i∈N0

(7.12)

with state space ([0, 1]2)N0 that evolves according to

dxeffi (t) = c0[θ − xeffi (t)] dt+
√
g
(
xeffi (t)

)
dw(t) +K0e0 [y

eff
i,0(t)− xeffi (t)] dt,

dyeffi,0(t) = e0 [x
eff
i (t)− yeffi,0(t)] dt, i ∈ N0.

(7.13)
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Like for the one-colour mean-field finite-systems scheme, we need the following list
of ingredients to formally state our multi-scaling properties:

(a) For positive times t > 0, we define the so-called estimators for the finite system
by:

Θ̄(1),[N ](t) =
1

N

∑
i∈[N ]

x
[N ]
i (t) +K0y

[N ]
i,0 (t)

1 +K0
,

Θ(1),[N ]
x (t) =

1

N

∑
i∈[N ]

x
[N ]
i (t),

Θ(1),[N ]
y0 (t) =

1

N

∑
i∈[N ]

y
[N ]
i,0 (t),

Θ(1),[N ]
y1 (t) =

1

N

∑
i∈[N ]

y
[N ]
i,1 (t).

(7.14)

We abbreviate

Θ(1),[N ](t) =
(
Θ(1),[N ]
x (t),Θ(1),[N ]

y0 (t),Θ(1),[N ]
y1 (t)

)
,

Θeff,(1),[N ](t) =
(
Θ̄(1),[N ](t),Θ(1),[N ]

y1 (t)
)
.

(7.15)

We refer to (Θeff,(1),[N ](t))t≥0 as the effective estimator process and to
(Θ(1),[N ](t))t≥0 as the estimator process.

(b) The time scale Ns is such that L[Θ̄[N ](Ns − L(N)) − Θ̄[N ](Ns)] = δ0 for all
L(N) satisfying limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0, but not for
L(N) = N . In words, Ns is the time scale on which Θ̄[N ](·) starts evolving, i.e.,
(Θ̄[N ](Ns))s>0 is no longer a fixed process. When we scale time by Ns, we will
use s as a time index, which indicates the “fast time scale”. The “slow time
scale” will be indicated by t. Thus, the time scales for the two-colour mean-field
system are the same as the time scales for the one-colour mean-field system.

Remark 7.1.1 (Notation). The upper index 1 in Θ̄(1) and Θ
(1)
y1 is used to

indicate that we are working with a system of level 1, so the system that lives
on space-time scale 1. This can later be easily generalized to levels 2 and k. ■

(c) The invariant measure (i.e., the equilibrium measure) for the evolution of a
single colony in (7.11), written

Γθ,θ,y1 , (7.16)

and the invariant measure of the infinite system in (7.11), written νθ,θ,y1
=

Γ⊗N0

θ,θ,y1
with θ ∈ [0, 1] and y1 ∈ [0, 1]N0 a random variable. The existence of

the invariant measure νθ and the convergence of L[Z(t)t≥0] towards νθ will be
shown in the proof of Proposition 7.1.2.

(d) The invariant measure of the effective process in (7.13),

Γeff
θ , (7.17)

and the invariant measure for the full process, νeffθ = (Γeff
θ )⊗N0 .
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(e) The renormalisation transformation F : G → G,

(Fg)(θ) =
∫
([0,1]2)N0

g(x0) ν
eff
θ (dx0,dy0,0), θ ∈ [0, 1], (7.18)

where Γeff
θ is the equilibrium measure of (7.16). Note that this is the same

transformation as defined in (4.75), but for the truncated system. Since νeffθ is
a product measure, we can write

(Fg)(θ) =
∫
[0,1]2

g(x) Γeff
θ (dx,dy0), θ ∈ [0, 1], (7.19)

(f) The limiting 1-block process (z1(s))s>0 = (x1(s), (y0,1(s), y1,1(s)))s>0 evolving
according to

dx1(s) =
1

1 +K0

[√
(Fg)

(
x1(s)

)
dw(s) +K1e1 [y1,1(s)− x1(s)] ds

]
,

y0,1(s) = x1(s),

dy1,1(s) = e1 [x1(s)− y1,1(s)] ds,

(7.20)

where Fg is defined in (7.20). The effective process
(zeff1 (s))s>0 = (xeff1 (s), yeff1,1(s))s>0 on space-time scale 1,

dxeff1 (s) =
1

1 +K0

[√
(Fg)(xeff1 (s)) dw(s) +K1e1 [y

eff
1,1(s)− xeff1 (s)] ds

]
,

dyeff1,1(s) = e1 [x
eff
1 (s)− yeff1,1(s)] ds.

(7.21)

We are now ready to state the scaling limit for the evolution of the averages in (7.7),
which we refer to as the mean-field finite-systems scheme with two colours.

Proposition 7.1.2 (Mean-field: two-colour finite-systems scheme).
Suppose that L[Z [N ](0)] = µ⊗[N ] for some µ ∈ P

(
[0, 1]× [0, 1]2

)
. Let

ϑ0 = Eµ
[
x+K0y0
1 +K0

]
, θy1 = Eµ [y1] . (7.22)

(a) For the effective estimator process defined in (7.15),

lim
N→∞

L
[(

Θeff,(1),[N ](Ns)
)
s>0

]
= L

[(
zeff1 (s)

)
s>0

]
, (7.23)

where the limit is determined by the unique solution of the SSDE (7.21), with
initial state

zeff1 (0) =
(
xeff1 (0), yeff1 (0)

)
= (ϑ0, θy1) . (7.24)

(b) Assume for the 1-dormant single components that

lim
N→∞

L
[
Y

[N ]
1 (Ns)

∣∣∣Θ(1),[N ](Ns)
]
= P

z1(s)
Y1(s)

. (7.25)
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Define

Γeff
(ϑ0,θy1 )

(s) =

∫
[0,1]2

Ss
(
(ϑ0, θy1),d(ux, uy)

)
Γeff
ux

∈ P([0, 1]2), (7.26)

where Ss((ϑ0, θy1), ·) is the time-s marginal law of the process (zeff1 (s))s>0 start-
ing from (θ0, θy1) ∈ [0, 1]2 and Γeff

ux
is the equilibrium distribution of the system

in (7.13) with θ = ux (note that Γeff
ϑ0,θy1

(0) = Γeff
ϑ0
). Let (zeff,Γ(ϑ0,θy1

)(s)(t))t≥0

be the process with initial law zeff,Γ(ϑ0,θy1
)(s)(0) drawn according to Γeff

(ϑ0,θy1 )
(s)

(which is a mixture of random processes in equilibrium) that, conditional on
xeff1 (s) = θ, evolves according to (7.13). Then, for every s ∈ (0,∞),

lim
N→∞

L
[(
z
eff,[N ]
0 (Ns+ t)

)
t≥0

]
= L

[
(z

Γeff
(ϑ0,θy1

)(s)(t))t≥0

]
. (7.27)

(c) For the averages in (7.7),

lim
N→∞

L
[(
z
[N ]
1 (s)

)
s>0

]
= L

[
(z1(s))s>0

]
in the Meyer-Zheng topology,

(7.28)

where the limit process is the unique solution of the SSDE in (7.20) with initial
state

z1(0) = (x1(0), y0,1(0), y1,1(0)) = (ϑ0, ϑ0, θy1) . (7.29)

(d) Assume 7.25 and define

ν(s) =

∫
[0,1]3

Ss
(
(ϑ0, ϑ0, θy1),d(ux, ux, uy1)

) ∫
[0,1]N0

P
(ux,ux,uy1

)

Y1(s)
(dy1) νux,y1 ,

(7.30)
where Ss((ϑ0, ϑ0, θy1), ·) is the time-s marginal law of the process (z1(s))s>0 in
(7.20), starting from (ϑ0, ϑ0, θy1) ∈ [0, 1]3, and νux,y1 is the equilibrium dis-
tribution of the system in (7.11) with θ = ux and (yi,1)i∈N0 = y1, (note that
ν(0) = νϑ0,(yi,1(0))i∈N0

). Let (zν(s)(t))t≥0 be the process on ([0, 1]3)N0 with ini-

tial measure zν(s)(0) drawn according to ν(s) (which is a mixture of random
processes in equilibrium) that conditional on x1(s) = θ and Y1(s) = y1 evolves
according to (7.11) with θ = ux and (yi,1)i∈N0

= y1. Then, for every s ∈ (0,∞),

lim
N→∞

L
[(
Z [N ](Ns+ t)

)
t≥0

]
= L

[
(zν(s)(t))t≥0

]
. (7.31)

Remark 7.1.3 (Law of 1-dormant single components). Note that(
L
[
Y

[N ]
1 (Ns)

∣∣∣ (Θ̄[N ](Ns),Θ[N ]
y1 (Ns)

)])
N∈N0

(7.32)

is a tight sequence of measures. Hence there exist weak limit points. In Section 8 we
will see that if there is a higher layer in the hierarchy, then we can show that all weak
limit points of (7.32) are the same and we can identify the limit. For Theorems 4.4.2
and 4.4.4 we do not need this assumption, since there will alwyas be multiple higher
levels. ■
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§7.2 Proof of the two-colour mean-field finite-systems
scheme

The proof of Proposition 7.1.2, the finite-systems scheme with one level and two
colours, follows the strategy used in Section 6.3 for the proof of Proposition 6.2.1.
Like for the one-colour finite-systems scheme, we denote the slow time scale by t and
the fast time scale by s. The proof consists of the following 6 steps:

1 Tightness of the effective estimator processes defined in (7.15).(
(Θeff,(1),[N ](Ns))s>0

)
N∈N (7.33)

2 Stability property of (Θeff,(1),[N ](Ns+ t))t>0, i.e., for L(N) satisfying
limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0, and all ϵ > 0,

lim
N→∞

P

[
sup

0≤t≤L(N)

∣∣∣Θ̄(1),[N ](Ns)− Θ̄(1),[N ](Ns− t)
∣∣∣ > ϵ

]
= 0. (7.34)

and

lim
N→∞

P

[
sup

0≤t≤L(N)

∣∣∣Θ(1),[N ]
y1 (Ns)−Θ(1),[N ]

y1 (Ns− t)
∣∣∣ > ϵ

]
= 0. (7.35)

3 Equilibrium of the infinite system and the one-dimensional distribution of the
effective single components (Z(Ns+ t))t>0, analogous to Proposition 6.2.4.

4 Limiting evolution of the effective processes ((Θeff,(1),[N ](Ns))s>0)N∈N.

5 Evolution of the 1-blocks in the Meyer-Zheng topology.

6 Proof of Proposition 7.1.2.

Step 1: Tightness of the 1-block estimators.

Lemma 7.2.1 (Tightness of the 1-block estimator). Let

(Θeff,(1),[N ](Ns))s>0 (7.36)

be defined as in (7.14). Then (L[(Θeff,(1),[N ](Ns))s>0])N∈N is a tight sequence of
probability measures on C((0,∞), [0, 1]2).

Proof. To prove tightness of ((Θeff,(1),[N ](Ns))s>0)N∈N, we will prove for all ϵ > 0
that the set of measures ((Θeff,(1),[N ](Ns))s≥ϵ)N∈N is tight. To do so, fix ϵ > 0. We
will again use [49, Proposition 3.2.3]. From (7.4) we find that the 1-block averages
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(Θeff,(1),[N ](Ns))s>0 evolve according to

dΘ̄(1),[N ](Ns) =
1

1 +K0

[√√√√ 1

N

∑
i∈[N ]

g
(
x
[N ]
i (Ns)

)
dwi(s)

+K1e1

Θ(1),[N ]
y1 − 1

N

∑
i∈[N ]

x
[N ]
i (Ns)

 ds

]
,

dΘ(1),[N ]
y1 (Ns) = e1

 1

N

∑
i∈[N ]

x
[N ]
i (Ns)−Θ(1),[N ]

y1 (Ns)

 ds.

(7.37)

To use [49, Proposition 3.2.3], we define C∗ as the set of polynomials on ([0, 1]2). Note
that (Θeff,(1),[N ](Ns))s≥ϵ is a semi-martingale. Applying Itô’s formula, we get

f
(
Θeff,(1),[N ](Ns)

)
= f

(
Θeff,(1),[N ](Nϵ)

)
+

∫ s

ϵ

dwi(r)
1

1 +K0

√√√√ 1

N

∑
i∈[N ]

g
(
x
[N ]
i (Nr)

) ∂f
∂x

(
Θeff,(1),[N ](Nr)

)

+

∫ s

ϵ

dr
K1e1
1 +K0

Θ(1),[N ]
y1 (Nr)− 1

N

∑
i∈[N ]

x
[N ]
i (Nr)

 ∂f
∂x

(
Θeff,(1),[N ](Nr)

)

+

∫ s

ϵ

dr e1

 1

N

∑
i∈[N ]

x
[N ]
i (Nr)−Θ(1),[N ]

y1 (Nr)

 ∂f

∂y

(
Θeff,(1),[N ](Nr)

)
+

∫ s

ϵ

dr
1

2(1 +K0)2
1

N

∑
i∈[N ]

g
(
x
[N ]
i (Nr)

) ∂2f
∂x2

(
Θeff,(1),[N ](Nr)

)
(7.38)

for all f ∈ C∗. Hence, if we define the operator

G
(1),[N ]
† : (C∗, [0, 1]2, [ϵ,∞),Ω) → R,

G
(1),[N ]
† (f, (x, y), s, ω) =

K1e1
1 +K0

y − 1

N

∑
i∈[N ]

x
[N ]
i (Ns, ω)

 ∂f
∂x

+ e1

 1

N

∑
i∈[N ]

x
[N ]
i (Ns, ω)− y

 ∂f
∂y

+
1

2(1 +K0)2
1

N

∑
i∈[N ]

g(x
[N ]
i (Ns, ω))

∂2f

∂x2
,

(7.39)

then we see that the process (Θeff,(1),[N ](Ns))s≥ϵ is a D-semi-martingale for all ϵ >
0. For all ϵ > 0 the conditions H1, H2, H3 are satisfied as before. Therefore we
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conclude from [49, Proposition 3.2.3] that the sequence ((Θeff,(1),[N ](Ns))s≥ϵ)N∈N is
tight. Since this is true for all ϵ > 0, we conclude that (L[(Θeff,(1),[N ](Ns))s>0])N∈N
is tight. □

Step 2: Stability of the 1-block estimators.

Lemma 7.2.2 (Stability property of the 1-block estimator). Let Θeff,(1),[N ](t)
be defined as in (7.14). For any L(N) satisfying limN→∞ L(N) = ∞ and
limN→∞ L(N)/N = 0,

lim
N→∞

sup
0≤t≤L(N)

∣∣∣Θ̄(1),[N ](Ns)− Θ̄(1),[N ](Ns− t)
∣∣∣ = 0 in probability (7.40)

and

lim
N→∞

sup
0≤t≤L(N)

∣∣∣Θ(1),[N ]
y1 (Ns)−Θ(1),[N ]

y1 (Ns− t)
∣∣∣ = 0 in probability. (7.41)

Proof. Fix ϵ > 0. From the SSDE (7.4) we obtain that, for N large enough,

P

(
sup

0≤t≤L(N)

∣∣∣∣∣Θ̄(1),[N ](Ns)− Θ̄(1),[N ](Ns− t)

∣∣∣∣∣ > ϵ

)

= P

(
sup

0≤t≤L(N)

1

1 +K0

∣∣∣∣∣
∫ Ns

Ns−t
dr

K1e1
N

Θ(1),[N ]
y1 (r)− 1

N

∑
i∈[N ]

x
[N ]
i (r)


+

∫ Ns

Ns−t
dwi(r)

1

N

∑
i∈[N ]

√
g
(
x
[N ]
i (r)

) ∣∣∣∣∣ > ϵ

]

≤ P

(∣∣∣∣∣L(N)2K1e1
N(1 +K0)

∣∣∣∣∣+ sup
0≤t≤L(N)

∣∣∣∣∣ 1

1 +K0

∫ Ns

Ns−t
dwi(r)

1

N

∑
i∈[N ]

√
g(x

[N ]
i (r))

∣∣∣∣∣ > ϵ

)

= P

(
sup

0≤t≤L(N)

∣∣∣∣∣ 1

1 +K0

∫ Ns

Ns−t
dwi(r)

1

N

∑
i∈[N ]

√
g
(
x
[N ]
i (r)

) ∣∣∣∣∣ > ϵ− L(N)2K1e1
N(1 +K0)

)

≤ P

(
sup

0≤t≤L(N)

∣∣∣∣∣ 1

1 +K0

∫ Ns

Ns−t
dwi(r)

1

N

∑
i∈[N ]

√
g
(
x
[N ]
i (r)

) ∣∣∣∣∣ > ϵ

2

)
.

(7.42)
Applying the same optional stopping argument as used in the proof of Lemma 6.2.15,
we find (7.40). For (7.41), note that

P

(
sup

0≤t≤L(N)

∣∣∣∣∣Θ(1),[N ]
y1 (Ns)−Θ(1),[N ]

y2 (Ns− t)

∣∣∣∣∣ > ϵ

)

= P

(
sup

0≤t≤L(N)

1

1 +K0

∣∣∣∣∣
∫ Ns

Ns−t
dr

e1
N

Θ(1),[N ]
y1 (r)− 1

N

∑
i∈[N ]

x
[N ]
i (r)

 ∣∣∣∣∣ > ϵ

)

≤ P

(
2e1L(N)

(1 +K0)N
> ϵ

)
.

(7.43)
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Let N → ∞ to obtain (7.41). □

Step 3: Equilibrium for the infinite system. To derive the equilibrium of
the single components in the infinite system, we derive the following analoque of
Proposition 6.2.4. Recall that the finite system is denoted by Z [Nk] in (7.3), and
recall the list of ingredients in Section 7.1.

Proposition 7.2.3 (Equilibrium for the infinite 2-colour system). Let (Nk)k∈N
be a sequence in N. Fix s > 0. Let L(N) satisfy limN→∞ L(N) = ∞ and
limN→∞ L(N)/N = 0, and suppose that

lim
k→∞

L
[
Θeff,(1),[Nk](Nks)

]
= PΘeff(s),

lim
k→∞

L
[
Y

[Nk]
1 (Nks)

∣∣∣Θeff,(1),[Nk](Nks)
]
= P

Θeff,(1)(s)
Y1(s)

,

lim
k→∞

L

[
sup

0≤t≤L(Nk)

∣∣∣Θ̄[Nk](Nks)− Θ̄[Nk](Nks− t)
∣∣∣+ ∣∣∣Θ[Nk]

y1 (Nks)−Θy1
[Nk](Nks− t)

∣∣∣]
= δ0,

lim
k→∞

L
[
Z [Nk](Nks)

]
= ν(s).

(7.44)
Then ν(s) is of the form

ν(s) =

∫
[0,1]2

PΘeff (s)(dθ,dθy)

∫
[0,1]N0

P
(θ,θy)

Y1(s)
(dy1) νθ,y1 , (7.45)

where y1 = (yi,1)i∈N0
is a sequence with elements in [0, 1], and νθ,y1 is the equilibrium

measure of the process in (7.10) evolving according to (7.11) with (yi,1)i∈N0
given by

the sequence y1 =.

Preparation for the proof of Proposition 7.2.3. The proof of Proposition 7.2.3
follows the same line of argument as used in the proof of Proposition 6.2.4. We
need lemmas that are similar to Lemmas 6.2.5-6.2.11, but this time in the setting
of the two-colour hierarchical mean-field finite-systems scheme. Afterwards we prove
Proposition 7.2.3.

Lemma 7.2.4 (Convergence for the infinite system). Let µ be an exchangeable
probability measure on ([0, 1]3)N0 . Then for the system (Z(t))t≥0 given by (7.10) with
L[Z(0)] = µ,

lim
t→∞

L[Z(t)] = νθ,y1 , (7.46)

where νθ,y1 is of the form

νθ,y1 =
∏
i∈N0

Γθ,yi,1 (7.47)

with Γθ,yi,1 the equilibrium of the ith single-component process in (7.11).

Proof. For each component of the infinite system in (7.10) the 1-dormant single com-
ponent process (yi,1(t))t≥0 does not move on time scale t. Hence, given the states
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of 1-dormant single components, we can use a similar argument as in the proof of
Proposition 6.1.2 (see Section 6.1.3) to show that the single components converge to
an equilibrium measure Γθ,yi,1 . Since the single components do not interact, the claim
in Lemma 7.2.4 follows. □

The second lemma establishes the continuity of the equilibrium with respect to θ,
its center of drift.

Lemma 7.2.5 (Continuity of the equilibrium). Let P(([0, 1]3)N0) denote the
space of probability measures on ([0, 1]3)N0 . The mapping

[0, 1]× [0, 1]N0 → P(([0, 1]3)N0)

(θ,y1) 7→ νθ,y1
(7.48)

is continuous. Furthermore, if h is a Lipschitz function on [0, 1], then also Fh defined
by

(Fh)(θ) = Eνθ,y1 [h(·)] =
∫
([0,1]3)N0

νθ,y1(dz)h(x0) (7.49)

is a Lipschitz function on [0, 1], whose values are independent of y1.

Proof. Lemma 7.2.5 follows from the proof of Lemma 7.2.9. □

The third lemma characterises the speed at which the estimators (Θ
[N ]
x (t))t≥0 and

(Θ
[N ]
y (t))t≥0 converge to each other when N → ∞ and t→ ∞.

Lemma 7.2.6 (Comparison of empirical averages). Let (Θ
(1),[N ]
x (t))t≥0 and

(Θ
(1),[N ]
y0 (t))t≥0 be defined as in (7.14). Then

E
[∣∣∣Θ(1),[N ]

x (t)−Θ(1),[N ]
y0 (t)

∣∣∣] ≤√E
[(

Θ
(1),[N ]
x (0)−Θ

(1),[N ]
y0 (0)

)2]
e−(K0e0+e0)t

+

√
2

K0e0 + e0

[
||g||
N

+
4K1e1
N

]
.

(7.50)

Proof. From (7.4) it follows via Itô-calculus that

d

dt
E
[(

Θ(1),[N ]
x (t)−Θ(1),[N ]

y0 (t)
)2]

= −2(K0e0 + e0)E
[(

Θ(1),[N ]
x (t)−Θ(1),[N ]

y0 (t)
)2]

+ h[N ](t),
(7.51)

where

h[N ](t) = E
[
2K1e1
N

(
Θ(1),[N ]
x (t)−Θ(1),[N ]

y0 (t)
) [

Θ(1),[N ]
y1 (t)−Θ(1),[N ]

x (t)
]]

+
2

N2

∑
i∈[N ]

E
[
g
(
x
[N ]
i (r)

)]
.

(7.52)
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Hence

E
[(

Θ(1),[N ]
x (t)−Θ(1),[N ]

y0 (t)
)2]

= E
[(

Θ(1),[N ]
x (0)−Θ(1),[N ]

y0 (0)
)2]

e−2(K0e0+e0)t

+

∫ t

0

dr e−2(K0e0+e0)(t−r)h[N ](r).

(7.53)
Take the square root on both sides and use Jensen’s inequality to get (7.50). □

Like for the mean-field system with one colour, we need to compare the finite
system in (7.3) with an infinite system. To derive the analogue of Lemma 6.2.9, let
L(N) satisfy limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0. Define the measure µN
on ([0, 1]3)N0 by continuing the configuration of

Z [N ](Ns− L(N)) =
(
X [N ](Ns− L(N)),

(
Y

[N ]
0 (Ns− L(N)), Y

[N ]
1 (Ns− L(N))

))
(7.54)

periodically to ([0, 1]3)N0 . Let

Θ̄(1),[N ] =
1

N

∑
i∈[N ]

x
[N ]
i (Ns− L(N)) +K0y

[N ]
i,0 (Ns− L(N))

1 +K0
. (7.55)

Let

(ZµN (t))t≥0 =
(
XµN (t), (Y µN

0 (t), Y µN

1 (t))
)
t≥0

(7.56)

be the infinite system evolving according to

dxµN

i (t) = c0 [Θ̄
(1),[N ] − xµN

i (t)] dt+
√
g
(
xµN

i (t)
)
dwi(t) +K0e0 [y

µN

i,0 (t)− xµN

i (t)] dt,

dyµN

i,0 (t) = e0 [x
µN

i (t)− yµN

i,0 (t)] dt,

yµN

i,1 (t) = yµN

i,1 (0), i ∈ N0,

(7.57)
starting from initial distribution µN . Then the following lemma is the equivalent of
Lemma 6.2.9 for the two-colour mean-field system.

Lemma 7.2.7 (Comparison of finite and infinite systems). Fix s > 0, and let
L(N) satisfy limN→∞ L(N) = ∞ and limN→∞ L(N)/N . Suppose that

lim
N→∞

sup
0≤t≤L(N)

∣∣∣Θ̄(1),[N ](Ns)− Θ̄(1),[N ](Ns− t)
∣∣∣ = 0 in probability. (7.58)

Then, for all t ≥ 0,

lim
k→∞

∣∣∣E [f(ZµN (t)
)
− f

(
Z [N ](Ns− L(N) + t)

)]∣∣∣ = 0 ∀ f ∈ C
(
([0, 1]3)N0 ,R

)
.

(7.59)
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Proof. We proceed as in the proof of Lemma 6.2.9. We rewrite the SSDE in (7.4) as

dx
[N ]
i (t) = c0

[
Θ(1),[N ] − x

[N ]
i (t)

]
dt

+ c0
[
Θ̄(1),[N ](t)−Θ(1),[N ]

]
dt+ c0

[
Θ(1),[N ]
x (t)− Θ̄(1),[N ](t)

]
dt

+

√
g
(
x
[N ]
i (t)

)
dwi(t)

+K0e0
[
y
[N ]
i,0 (t)− x

[N ]
i (t)

]
dt+

K1e1
N

[
y
[N ]
i,1 (t)− x

[N ]
i (t)

]
dt,

dy
[N ]
i,0 (t) = e0

[
x
[N ]
i (t)− y

[N ]
i,0 (t)

]
dt,

dy
[N ]
i,1 (t) =

e1
N

[
x
[N ]
i (t)− y

[N ]
i,1 (t)

]
dt, i ∈ [N ].

(7.60)

As before, we consider the finite system in (7.60) as a system on ([0, 1]3)N0 by
periodic continuation, and we couple the finite system in (7.60) and the infinite
system in (7.59) via there Brownian motions. We denote the coupled process by

z̃(t) = (z̃i(t))i∈N0 = (z̃
[N ]
i (t), z̃µN

i (t))i∈N0 , where z̃
[N ]
i (t) = (x̃

[N ]
i (t), ỹ

[N ]
i,0 (t), ỹ

[N ]
i,1 (t))

and z̃µN

i (t) = (x̃µN

i (t), ỹµN

i,0 (t), ỹ
µN

i,1 (t)). We define

∆
[N ]
i,0 (t) = x̃

[N ]
i (t)− x̃µN

i (t),

δ
[N ]
i,0 (t) = ỹ

[N ]
i,0 (t)− ỹµN

i,0 (t),

δ
[N ]
i,1 (t) = ỹ

[N ]
i,1 (t)− ỹµN

i,1 (t).

(7.61)

As in the proof of Lemma 6.2.9, we have to show that, for all t ≥ 0,

lim
N→∞

E[|∆[N ]
i (t)|] = 0, lim

N→∞
E[|δ[N ]

i,0 (t)|] = 0, lim
N→∞

E[|δ[N ]
i,1 (t)|] = 0. (7.62)

To prove the third limit in (7.63), note that, by (7.57), (7.60) and the choice of
the initial measure in the coupling,

y
[N ]
i,1 (t) = y

[N ]
i,1 (0)+

e1
N

∫ t

0

dr
[
x
[N ]
i (r)−y[N ]

i,1 (r)
]
= yµN

i,1 (t)+
e1
N

∫ t

0

dr
[
x
[N ]
i (r)−y[N ]

i,1 (r)
]
.

(7.63)
Hence

lim
N→∞

E[|δ[N ]
i,1 (L(N))|] = 0. (7.64)

To prove the first two limits in (7.63), we argue as in the proof of Lemma 6.2.9,
but we need to add extra drift terms towards the first seed-bank. Using Itô-calculus,
we obtain

d

dt
E[|∆[N ]

i (t)|+K|δ[N ]
i,0 (t)|]

= −cE[∆[N ]
i (t)]

− 2K0e0 E
[
[|∆[N ]

i (t)|+ |δ[N ]
i (t)|] 1{sgn∆

[N]
i (t)̸=sgn δ

[N]
i,0 (t)}

]
+ c sgn∆

[N ]
i (t)

[
Θ̄(1),[N ](t)− Θ̄(1),[N ]

]
+ c sgn∆

[N ]
i (t)

[
Θ̄(1),[N ]
x (t)− Θ̄(1),[N ](t)

]
+
K1e1
N

sgn∆
[N ]
i (t)

[
δ
[N ]
i,1 (t)−∆

[N ]
i (t)

]
.

(7.65)
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This can be rewritten as

0 ≤ E[|∆[N ]
i (t)|+K0|δ[N ]

i,0 (t)|]

≤ E[|∆[N ]
i (0)|+K|δ[N ]

i,0 (0)|]− c

∫ t

0

drE[∆[N ]
i (r)]

− 2K0e0

∫ t

0

drE
[
[|∆[N ]

i (r)|+ |δ[N ]
i,0 (r)|] 1{sgn∆

[N]
i (t)̸=sgn δ

[N]
i,0 (t)}

]
+ c

∫ t

0

dr |Θ̄(1),[N ](r)−Θ(1),[N ]|

+ c

∫ t

0

dr |Θ̄(1),[N ]
x (r)− Θ̄(1),[N ](r)|

+
K1e1
N

∫ t

0

dr
∣∣∣δ[N ]
i,1 (r)−∆

[N ]
i (r)

∣∣∣ .

(7.66)

By the construction of the measure µN , we have

lim
N→∞

E[|∆[N ]
i (0)|+K0|δ[N ]

i (0)|] = 0. (7.67)

Therefore, for all t ≥ 0,

lim
N→∞

E[|∆[N ]
i (t)|+K0|δ[N ]

i,0 (t)|] = 0. (7.68)

Combine this with (7.64) and use that Lipschitz functions are dense in the set of
bounded continuous functions. Then, as in the proof of Lemma 6.2.9, we get the
claim in (7.59). □

Before we can prove that the infinite system (XµN (t), Y µN

0 (t), Y µN

1 (t))t≥0 con-
verges to a limiting system as N → ∞, we need the following regularity property for

the estimators (Θ̄[N ],Θ
[N ]
y1 ).

Lemma 7.2.8 (Stability of the estimator for the conserved quantity). Define
µN as in Lemma 7.2.7. Let (xNi , y

N
i,0, y

N
i,1)i∈[N ] be distributed according to the ex-

changeable probability measure µN on ([0, 1]3)N0 restricted to ([0, 1]3)[N ]. Suppose that
limN→∞ µN = µ for some exchangeable probability measure µ on ([0, 1]3)N0 . Define
the random variable ϕ on (µ, ([0, 1]3)N0) by putting

ϕ = (ϕ1, ϕ2),

ϕ1 = lim
n→∞

1

n

∑
i∈[n]

xi +Kyi,0
1 +K

, ϕ2 = lim
n→∞

1

n

∑
i∈[n]

yi,1,
(7.69)

and the random variable ϕ[N ]on (µN , ([0, 1]
3)N0) by putting

ϕ[N ] = (ϕ
[N ]
1 , ϕ

[N ]
2 )

ϕ
[N ]
1 =

1

N

∑
i∈[N ]

xNi +KyNi,0
1 +K

, ϕ
[N ]
2 =

1

N

∑
i∈[N ]

yNi,1.
(7.70)

Then
lim
N→∞

L[ϕ[N ]] = L[ϕ]. (7.71)
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Proof. We can use a similar argument as in the proof of Lemma 6.2.10. Define

D[N ](Z) =

 1

N

∑
j∈[N ]

xj +K0yj,0
1 +K0

,
1

N

∑
j∈[N ]

yi,1

 . (7.72)

Then we can proceed as in the proof of Lemma 6.2.10, using Fourier analysis for both
components of D[N ](Z) separately. □

In the fifth and final lemma we state the convergence of
L[(XµN (t), Y µN

0 (t), Y µN

1 (t))] to the law of a limiting system as N → ∞.

Lemma 7.2.9 (Uniformity of the ergodic theorem for the infinite system).
Let µN be defined as in (7.56). Since (µN )N∈N is tight, it has convergent subsequences.
Let (Nk)k∈N be a subsequence such that µ = limk→∞ µNk

. Define

Θ = lim
N→∞

1

N

∑
i∈[N ]

xµi +Kyµi,0
1 +K

in L2(µ). (7.73)

Let Zµ(t) =
(
Xµ(t), Y µ0 (t), Y µ1 (t)

)
t≥0

be the infinite system evolving according to

dxµi (t) = c [Θ− xµi (t)] dt+
√
g(xµi (t)) dwi(t) +Ke [yµi,1(t)− xµi (t)] dt,

dyµi,0(t) = e [xµi (t)− yµi,1(t)] dt,

dyµi,1(t) = yµi,1(0), i ∈ N0.

(7.74)

and let ZµNk (t) = (XµNk (t), Y
µNk
0 (t), Y

µNk
1 (t))t≥0 be the infinite system defined in

(7.56). Then

(a) For all t ≥ 0,

lim
k→∞

∣∣E[f(ZµNk (t)
)]

− E
[
f
(
Zµ(t)

)]∣∣ = 0 ∀ f ∈ C
(
([0, 1]2)N0 ,R

)
. (7.75)

(b) There exists a sequence L̄(N) satisfying limN→∞ L̄(N) = ∞ and
limN→∞ L̄(N)/N = 0 such that

lim
k→∞

∣∣E[f(Z [Nk](Nks− L(Nk) + L̄(Nk))
)
− f

(
ZµNk (L̄(Nk))

)∣∣]
+
∣∣E[f(ZµNk (L̄(Nk))

)]
− E

[
f
(
Zµ(L̄(Nk))

)]∣∣ = 0 ∀ f ∈ C
(
([0, 1]2)N0 ,R

)
.

(7.76)

Proof. As in the proof of Lemma 6.2.11, we can construct (zµN

i )i∈N0
and (zµi )i∈N0

on
one probability space. Then

lim
N→∞

yµN

i,1 (0) = yµi,1(0) a.s. (7.77)

and
lim
N→∞

E[|Θ̄[N ] −Θ|] = 0. (7.78)

239



7. Two-colour mean-field system

C
h
a
p
t
e
r
7

Via a similar coupling as in Lemma (7.2.7), it follows via Itô-calculus that (7.75) holds.
Combining (7.64), (7.68), (7.77) and (7.78), we obtain, via a similar construction as
in the proof of Lemma 6.2.11, a sequence L̄(N) such that

lim
N→∞

E[|∆N
i (L̄(N))|+K0|δNi,0(L̄(N))|] +K1|δNi,1(L̄(N))|]

+ E[|∆µN

i (L̄(N))|+K0|δµN

i,0 (L̄(N))|] +K1|δµN

i,1 (L̄(N))|] = 0.
(7.79)

As in the proof of Lemma 6.2.11, we can again use Lipschitz functions to conclude
(7.76). □

Lemma 7.2.10 (Coupling of finite systems). Let

Z [N ],1 = (X [N ],1, Y
[N ],1
0 , Y

[N ],1
1 ) (7.80)

be the finite system evolving according to (7.4) starting from an exchangeable initial
measure. Let µ[N ],1 be the measure obtained by periodic continuation of the configur-
ation of Z [N ],1(0). Similarly, let

Z [N ],2 = (X [N ],2, Y
[N ],2
0 , Y

[N ],2
1 ) (7.81)

be the finite system evolving according to (7.4) starting from an exchangeable initial
measure. Let µ[N ],2 be the measure obtained by periodic continuation of the con-
figuration of Z [N ],2(0). Let µ̃ be any weak limit point of the sequence of measures
(µ[N ],1 × µ[N ],2)N∈N. Define the random variables Θ̄[N ],1 and Θ̄[N ],2 on (([0, 1]3)N0 ×
([0, 1]3)N0 , µ[N ],1 × µ[N ],2) and Θ̄1 and Θ̄2 on (([0, 1]3)N0 × ([0, 1]3)N0 , µ̄) by

Θ̄[N ],1 =
1

N

∑
i∈[N ]

x
[N ],1
i +K0y

[N ],1
i,0

1 +K0
, Θ̄[N ],2 =

1

N

∑
i∈[N ]

x
[N ],2
i +K0y

[N ],2
i,0

1 +K0
,

Θ̄1 = lim
n→∞

1

n

∑
i∈[n]

x1i +K0y
1
i,0

1 +K0
, Θ̄2 = lim

n→∞

1

n

∑
i∈[n]

x2i +K0y
2
i,0

1 +K0
,

(7.82)

and let (Θ̄(1),[N ],1(t))t≥0 and (Θ̄(1),[N ],2(t))t≥0 be defined as in (7.14) for Z [N ],1, re-
spectively, Z [N ],2. Suppose that

lim
N→∞

sup
0≤t≤L(N)

(∣∣∣Θ̄[N ],k(0)− Θ̄[N ],k(t)
∣∣∣) = 0 in probability, k ∈ {1, 2}, (7.83)

and suppose that µ̃({Θ̄1 = Θ̄2, Y
1
1 = Y 2

1 }) = 1. Then, for any t(N) → ∞,

lim
N→∞

E
[
|x[N ],1
i (t(N))− x

[N ],2
i (t(N))|+K0|y[N ],1

i,0 (t(N))− y
[N ],2
i,0 (t(N))|

+K1|y[N ],1
i,1 (t(N))− y

[N ],2
i,1 (t(N))|

]
= 0.

(7.84)
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Proof. Via standard Itô-calculus we obtain from (7.4) that

d

dt
E
[
|x[N ],1
i (t)− x

[N ],2
i (t)|+K0|y[N ],1

i,0 (t)− y
[N ],2
i,0 (t)|+K1|y[N ],1

i,1 (t)− y
[N ],2
i,1 (t)|

]
= −2c

N

∑
j∈[N ]

E
[
|x[N ],1
j (t)− x

[N ],2
j (t)|1{sgn (x

[N],1
j (t)−x[N],2

j (t)) ̸=sgn (x
[N],1
i (t)−x[N],2

i (t))}

]
− 2K0e0 E

[
|x[N ],1
i (t)− x

[N ],2
i (t)|+K|y[N ],1

i,0 (t)− y
[N ],2
i,0 (t)|

× 1{sgn (x
[N],1
i (t)−x[N],2

i (t)) ̸=sgn (y
[N],1
i,0 (t)−y[N],2

i,0 (t))}

]
− 2

K1e1
N

E
[
|x[N ],1
i (t)− x

[N ],2
i (t)|+K1|y[N ],1

i,0 (t)− y
[N ],2
i,0 (t)|

× 1{sgn (x
[N],1
i (t)−x[N],2

i (t)) ̸=sgn (y
[N],1
i,1 (t)−y[N],2

i,1 (t))}

]
.

(7.85)
Therefore, for all N ∈ N,

t 7→ E
[
|x[N ],1
i (t)− x

[N ],2
i (t)|+K0|y[N ],1

i,0 (t)− y
[N ],2
i,0 (t)|+K1|y[N ],1

i,1 (t)− y
[N ],2
i,1 (t)|

]
(7.86)

is a decreasing function. Hence we can use the same strategy as in the proof of
Lemma 6.2.13 to finish the proof. □

• Proof of Proposition 7.2.3

Proof. We follow a similar argument as in the proof of Proposition 6.2.4. Let L(N)
satisfy limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0. Let µN be the measure
on ([0, 1]3)N0 obtained by periodic continuation of L[Z [N ](Ns − L(N))]. Note that
([0, 1]3)N0 is compact. Hence, letting (Nk)k∈N be the subsequence in Proposition 7.2.3,
we can pass to a possibly further subsequence and obtain

lim
k→∞

µNk
= µ. (7.87)

Since we assumed that L[Z [N ](0)] is exchangeable and the dynamics preserve ex-
changeability, the measures µNk

are translation invariant and also the limiting law µ
is translation invariant.

Let ϕ = (ϕ1, ϕ2) be defined as in (7.69) in Lemma 7.2.8. Then we can condition
on ϕ = (ϕ1, ϕ2) and write

µ =

∫
[0,1]2

µρ dΛ(ρ), (7.88)

where Λ(·) = L[ϕ] = L[(ϕ1, ϕ2)] and ρ = (ρ1, ρ2). By assumption we know that

lim
k→∞

L
[
Θeff,(1),[Nk](Nks)

]
= PΘeff (s)(·) (7.89)
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and

lim
k→∞

L

[
sup

0≤t≤L(Nk)

∣∣∣Θ̄[Nk](Nks)− Θ̄[Nk](Nks− t)
∣∣∣+ ∣∣∣Θ[Nk]

y1 (Nks)−Θy1
[Nk](Nks− t)

∣∣∣]
= δ0.

(7.90)

Hence

lim
k→∞

L
[
Θeff,(1),[Nk](Nks− L(Nk))

]
= PΘeff (s)(·). (7.91)

Recall that

Λ(·) = L

 lim
n→∞

 1

n

∑
i∈[n]

xi +Kyi,0
1 +K

,
1

n

∑
i∈[n]

yi,1

 on (µ, ([0, 1]2)N0). (7.92)

By Lemma 6.2.10, if

ϕNk = (ϕNk
1 , ϕNk

2 ) =

 1

Nk

∑
i∈[Nk]

xi +Kyi,0
1 +K

,
1

Nk

∑
i∈[Nk]

y
[Nk]
i,1

 on (µNk
, ([0, 1]3)N0),

(7.93)
then limk→∞ L[ϕNk ] = L[ϕ]. Taking the subsequence (µNk

)k∈N, we get Λ(·) =
PΘeff (s)(·), and hence

µ =

∫
[0,1]

µρ dPs(ρ). (7.94)

Let L̄(N) be the sequence constructed in Lemma 7.2.9[b]. By construction we can
require that L̄(N) ≤ L(N) for all N ∈ N. Write

L
[
Z [Nk](Nks− L(Nk) + L̄(Nk))

]
= L

[
Z [Nk](Nks− L(Nk) + L̄(Nk))

]
− L

[
ZµNk (L̄(Nk))

]
,

+ L
[
ZµNk (L̄(Nk))

]
− L

[
Zµ(L̄(Nk))

]
+ L

[
Zµ(L̄(Nk))

]
.

(7.95)

By Lemma 7.2.9 the first and second differences tend to zero as k → ∞. Hence

lim
k→∞

L
[
Z [Nk](Nks− L(Nk) + L̄(Nk))

]
= L

[
Zµ(L̄(Nk))

]
. (7.96)

By (7.88),

L
[
Zµ(L̄(Nk))

]
=

∫
[0,1]2

L
[
Zµρ(L̄(Nk))

]
PΘeff (s)(dρ). (7.97)

For the infinite system (Zµρ(t))t≥0 =
(
Xµρ(t), Y

µρ

0 (t), Y
µρ

1 (t)
)
t≥0

we have

Y µ1 (t) = Y µ1 (0) a.s. (7.98)

and hence, since limk→∞ L̄(Nk)/Nk = 0 by (7.44),

lim
k→∞

L[Y µρ

1 (L̄(Nk))] = L[Y µρ

1 (0)] ∀ ρ ∈ [0, 1]. (7.99)
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Therefore
lim
k→∞

L[Y µρ

1 (L̄(Nk))] = P ρY1(s)
(·) (7.100)

and
L
[
Xµρ(L̄(Nk)), Y

µρ

0 (L̄(Nk)), Y
µρ

1 (L̄(Nk))
]

=

∫
L
[
X
µρ

1 (L̄(Nk)), Y
µρ

0 (L̄(Nk)),y1

]
dP ρY1(s)

(dy1).
(7.101)

Hence, since limk→∞ L̄(Nk) = ∞, by Lemma 6.2.5 we have

lim
k→∞

L
[
Zµρ(L̄(Nk))

]
= lim
k→∞

L
[
X
µρ

1 (L̄(Nk)), Y
µρ

0 (L̄(Nk)), Y
µρ

1 (L̄(Nk))
]

=

∫
νρ,y1

P ρY1(s)
(dy1).

(7.102)

Therefore, by (6.109), (7.97) and Lemma 6.2.6,

lim
k→∞

L
[
Z [Nk](Nks− L(Nk) + L̄(Nk))

]
=

∫
[0,1]

PΘeff (s)(dρ)

∫
νρ,y1

P ρY1(s)
(dy1).

(7.103)
To finish the proof, we proceed as in the proof of Proposition 6.2.4 and invoke

Lemma 7.2.10. Let Z [N ],1 = (X [N ],1, Y
[N ],1
0 , Y

[N ],1
1 ) be the finite system starting

from

L
[
Z [N ](Ns− L(N))

]
= L

[
X [N ](Ns− L(N)), Y

[N ]
0 (Ns− L(N)), Y

[N ]
1 (Ns− L(N))

]
.

(7.104)
Let (L̄(N))N∈N be the sequence constructed in Lemma 7.2.9. Let

Z [N ],2 = (X [N ],2, Y
[N ],2
0 , Y

[N ],2
1 ) be the finite system starting from

L
[
X [N ](Ns−L̄(N))

]
= L

[
X [N ](Ns− L̄(N)), Y

[N ]
0 (Ns− L̄(N)), Y

[N ]
1 (Ns− L̄(N))

]
.

(7.105)
Choose for t(N) in Lemma 7.2.10 the sequence L̄(N). Let µ[N ],1 be defined by the
periodic continuation of the configuration of Z [N ](Ns− L(N)) and µ[N ],2 be defined
by periodic continuation of the configuration of Z [N ](Ns − L̄(N)). Define Θ1 and
Θ2 according to (6.85), where under µ[N ],2 we replace L(N) by L̄(N). Then, by the
assumptions in (7.44),

lim
k→∞

|Θ(1),[Nk],1 −Θ(1),[Nk],2| = lim
k→∞

|ΘNk(Nks− L(Nk))−ΘNk(Nks− L̄(Nk))|

= 0 in probability.
(7.106)

Using 7.63 we see that also, for all i ∈ [N ],

lim
k→∞

|y[Nk],1
i,1 (0)− y

[Nk],2
i,1 (0)| = lim

k→∞
|y[Nk]
i,1 (Nks− L(Nk))− y

[Nk]
i,1 (Nks− L̄(Nk))|

= 0 in probability.
(7.107)

Therefore, if µ is any weak limit point of the sequence
(
µ[Nk],1 × µ[Nk],2

)
k∈N, then

µ({Θ1 = Θ2, Y
1
1 = Y 2

1 }) = 1. (7.108)
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Hence, by possibly passing to a further subsequence, we can now apply Lemma 7.2.10
to obtain, for all i,

lim
k→∞

E
[
|x[Nk],1
i (L̄(Nk))− x

[Nk],2
i (L̄(Nk))|

+K0 |y[Nk],1
i,0 (L̄(Nk))− y

[Nk],2
i,0 (L̄(Nk))|

+K1 |y[Nk],1
i,1 (L̄(Nk))− y

[Nk],2
i,1 (L̄(Nk))|

]
= 0.

(7.109)

Hence

lim
N→∞

(
L[Z [N ],1(L̄(Nk))]− L[Z [N ],2(L̄(Nk))]

)
= δ0 (7.110)

and therefore

lim
k→∞

L
(
Z [Nk](Nks)

)
=

∫
[0,1]

PΘeff (s)(dρ)

∫
νρ,y1

P ρY1(s)
(dy1). (7.111)

This concludes the proof of Proposition 7.2.3. □

Like for the one-colour mean-field system, Proposition 7.2.3 and Lemmas 7.2.4–
7.2.10 give rise to the following corollary, which will be important to derive the evol-
ution of the 1-blocks on time scale Ns.

Corollary 7.2.11. Fix s > 0. Let µN be the measure obtained by periodic continu-
ation of

Z [N ](Ns−L(N)) = (X [N ](Ns−L(N)), Y
[N ]
0 (Ns−L(N)), Y

[N ]
1 (Ns−L(N))), (7.112)

and let µ be a weak limit point of the sequence (µN )N∈N. Let

Θ = lim
N→∞

1

N

∑
i∈[N ]

xµi +Kyµi
1 +K

in L2(µ), (7.113)

and let (ZνΘ(t))t>0 = (XνΘ(t), Y νΘ0 (t), Y νΘ1 (t))t>0 be the infinite system evolving ac-
cording to (7.74) starting from its equilibrium measure. Consider the finite system
Z [N ] as a system on ([0, 1]3)N0 by periodic continuation. Construct (Z [N ](t))t>0 and
(ZνΘ(t))t>0 on one probability space. Then, for all t ≥ 0,

lim
N→∞

E
[∣∣∣x[N ]

i (Ns+ t)− xνΘi (t)
∣∣∣]+K0 E

[∣∣∣y[N ]
i,0 (Ns+ t)− yνΘi,0 (t)

∣∣∣]
+K1 E

[∣∣∣y[N ]
i,1 (Ns+ t)− yνΘi,1 (t)

∣∣∣] = 0 ∀ i ∈ [N ].
(7.114)

Proof. Proceed as in the proof of Corollary 6.3.1, but use the setup of the two-
colour mean-field system and therefore replace Proposition 6.2.4, Lemma 6.2.11 and
Lemma 6.2.13 by, respectively Proposition 7.2.3, Lemma 7.2.9 and Lemma 7.2.10. □

Step 4: Limiting evolution of the 1-blocks.
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Lemma 7.2.12 (Limiting evolution of the 1-blocks). Let (zeff1 (s))s>0 be the pro-
cess defined in (7.21) with initial state

zeff1 (0) = (ϑ0, θy1). (7.115)

Then

lim
N→∞

L
[(
Θeff,(1),[N ](Ns)

)
s>0

]
= L

[
(zeff1 (s))s>0

]
. (7.116)

Proof. By [72], the SSDE in (7.21) has a unique strong solution. Therefore the process
(zeff1 (s))s>0 is Markov. Its generator G is given by

G =
K1e1
1 +K0

(y − x)
∂

∂x
+ e1(x− y)

∂

∂y
+

1

(1 +K0)2
(Fg)(x) ∂2

∂x2
, (7.117)

and hence (zeff1 (s))s≥0 solves the martingale problem for G. We will use [49, Theorem
3.3.1], to prove that (7.116) holds.

Define

(ϑN0 , ϑ
N
y1) =

(
Θ̄(1),[N ](0),Θ(1),[N ]

y1 (0)
)
. (7.118)

Since we start from an i.i.d. law, by the law of large numbers we have that

lim
N→∞

Θeff,(1),[N ](0) = lim
N→∞

(ϑN0 , ϑ
N
y1) = (ϑ0, θy1) a.s. (7.119)

By the SSDE in (7.37) and an optional sampling argument, we have, for all N ∈ N,

lim
s↓0

(
Θ̄(1),[N ](Ns),Θ(1),[N ](Ns)

)
= (ϑN0 , ϑ

N
y1) a.s. (7.120)

Therefore we can continuously extend the process (Θeff,(1),[N ](Ns))s>0 to 0 and, in
particular,

lim
N→∞

L
[
Θeff,(1),[N ](0)

]
= L

[
zeff1 (0)

]
. (7.121)

Since we already showed that the processes(
Θeff,(1),[N ](Ns)

)
s>0

(7.122)

are D-semimartingales, and are trivially bounded, we are left to show that

lim
N→∞

∫ s

0

drE
[∣∣∣G(1),[N ]

†
(
f,Θeff,(1),[N ](Nr), r, ·

)
− (Gf)

(
Θeff,(1),[N ](Nr)

)∣∣∣] = 0.

(7.123)

Here, G
(1),[N ]
† is the operator defined in (7.39). Since we are working on the space C∗

of polynomials on [0, 1]2, all derivatives of f ∈ C∗ are bounded. Hence, by dominated
convergence, it is enough to prove that, for all s > 0,

lim
N→∞

E[N ]
[∣∣∣G(1),[N ]

†
(
f,Θeff,(1),[N ](Ns), s, ·

)
− (Gf)

(
Θeff,(1),[N ](Ns)

)∣∣∣] = 0. (7.124)
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Note that

E
[∣∣∣G(1),[N ]

†
(
f,Θeff,(1),[N ](Ns), s, ·

)
− (Gf)

(
Θeff,(1),[N ](Ns)

)∣∣∣]
= E

[∣∣∣∣∣ K1e1
1 +K0

[
Θ(1),[N ]
y1 (Ns)− 1

N

∑
i∈[N ]

xi(Ns, ω)
] ∂f
∂x

(
Θeff,(1),[N ](Ns)

)
+ e1

[ 1
N

∑
i∈[N ]

xi(Ns, ω)−Θ(1),[N ]
y1 (Ns)

]∂f
∂y

(
Θeff,(1),[N ](Ns)

)
+

1

(1 +K0)2
1

N

∑
i∈[N ]

g(xi(Ns, ω))
∂2f

∂x2
(
Θeff,(1),[N ](Ns)

)
− K1e1

1 +K0

[
Θ(1),[N ]
y1 (Ns)− Θ̄(1),[N ](Ns)

] ∂f
∂x

(
Θeff,(1),[N ](Ns)

)
− e1

[
Θ̄(1),[N ](Ns)−Θ(1),[N ]

y1 (Ns)
] ∂f
∂y

(
Θeff,(1),[N ](Ns)

)
− 1

(1 +K0)2
(Fg)(Θ̄(1),[N ](Ns))

∂2f

∂x2
(
Θeff,(1),[N ](Ns)

)∣∣∣∣∣
]
.

(7.125)

Hence

lim
N→∞

E
[∣∣∣G(1),[N ]

†
(
f,Θeff,(1),[N ](Ns), s, ·

)
− (Gf)

(
Θeff,(1),[N ](Ns)

)∣∣∣]
≤ lim

N→∞
E

 K1e1
1 +K0

∣∣∣∣∣∣Θ̄(1),[N ](Ns)− 1

N

∑
i∈[N ]

xi(Ns, ω)

∣∣∣∣∣∣
∣∣∣∣∂f∂x (Θeff,(1),[N ](Ns)

)∣∣∣∣


+ lim
N→∞

E

e1
∣∣∣∣∣∣ 1N

∑
i∈[N ]

xi(Ns, ω)− Θ̄(1),[N ](Ns)

∣∣∣∣∣∣
∣∣∣∣∂f∂y (Θeff,(1),[N ](Ns)

)∣∣∣∣


+ lim
N→∞

E

 1

(1 +K0)2

∣∣∣∣∣∣ 1N
∑
i∈[N ]

g(xi(Ns, ω))− (Fg)
(
Θ̄(1),[N ](Ns)

)∣∣∣∣∣∣
∣∣∣∣∂2f

∂x2

(
Θeff,(1),[N ](Ns)

)∣∣∣∣
 .

(7.126)

Note that each of the derivatives is bounded by aconstant because we work on C∗.
The first and the second term tend to zero by Lemma 7.2.6. For the third term we
can use a similar argument as used in (6.198), since we showed Lemmas 7.2.4–7.2.10
for the single components in the mean-field system with two colours. □

Step 5: Evolution of the averages in the Meyer-Zheng topology. In this
section we prove the following proposition

Proposition 7.2.13 (Convergence in the Meyer-Zheng topology). Suppose that
the effective estimator process defined in (7.15) satisfies

lim
N→∞

L
[(

Θeff,(1),[N ](Ns)
)
s>0

]
= L

[(
zeff1 (s)

)
s>0

]
. (7.127)
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Then for the averages in (7.7),

lim
N→∞

L
[(
z
[N ]
1 (s)

)
s>0

]
= L

[
(z1(s))s>0

]
in the Meyer-Zheng topology,

(7.128)

where the limiting process (z1(s))s>0 is defined as in (7.20).

To prove Proposition 7.2.13 we need the following characterisation of continuous
functions in the Meyer-Zheng topology

Lemma 7.2.14 (Convergence of marginals in the Meyer-Zheng topology).
Let (E, d) be a Polish space with metric d. Suppose that (Xn(s), Yn(s))s>0 is a
stochastic process with state space E2. If

lim
n→∞

L [(Xn(s), Yn(s))s>0] = L [(X(s), Y (s))s>0] in the Meyer-Zheng topology,

(7.129)
then the marginals also converge in the Meyer-Zheng topology, i.e.,

lim
n→∞

L [(Xn(s))s>0] = L [(X(s))s>0] in the Meyer-Zheng topology,

lim
n→∞

L [(Yn(s))s>0] = L [(Y (s))s>0] in the Meyer-Zheng topology.
(7.130)

The proof of Lemma 7.2.14 is given in Appendix B.2.3.

Proof of Proposition 7.2.13. By Lemma 7.2.6, we have that, for all s > 0,

lim
n→∞

E
[∣∣∣Θ̄[N ](Ns)− x

[N ]
1 (s)

∣∣∣] = 0 (7.131)

and
lim
n→∞

E
[∣∣∣Θ̄[N ](Ns)− y

[N ]
0,1 (s)

∣∣∣] = 0. (7.132)

Applying Lemmas 6.2.19, 6.2.20 and 6.2.21, like in the proof of Proposition 6.2.18,
we obtain

lim
N→∞

L
[(
x
[N ]
1 (s), y

[N ]
0,1 (s), Θ̄

[N ](Ns),Θ[N ]
y1,1(Ns)

)
s>0

]
= L

[(
xeff1 (s), xeff1 (s), xeff1 (s), yeff1 (s)

)
s>0

]
in the Meyer-Zheng topology.

(7.133)

Applying Lemma 7.2.14, we get the claim. □

Step 6: Proof of the two-colour mean-field finite-systems scheme.

Proof. The proof of Proposition 7.1.2(a) follows directly from Lemma 7.2.12. The
proof of Proposition 7.1.2(b) is a consequence of Proposition 7.1.2(d). The proof of
Prosition 7.1.2(c) follows from Proposition 7.1.2(a) by applying Proposition 7.2.13.
The proof of Proposition (7.1.2)(d) follows by the same argument as used in the
proof Proposition 6.2.1(c) in Section 6.3.4. In this argument we have to replace the
two-component system Z [N ](Ns+ t) = (X [N ](Ns+ t), Y [N ](Ns+ t))t≥0 by the three-

component system Z [N ](Ns + t) = (X [N ](Ns + t), Y
[N ]
0 (Ns + t), Y

[N ]
1 (Ns + t))t≥0
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and use the infinite system defined in 7.11 instead of the infinite system defined in
(6.42). We now use the two-dimensional transition kernel in (7.30), which controls the

transition probabilities of the two-dimensional process (Θ̄(1)(s),Θ
(1)
y1 (s))s>0, instead

of the one-dimensional transition kernel in (6.59). □
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