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CHAPTER 5
Proofs long-time behaviour N < ∞

In this chapter we prove Theorems 4.3.2–4.3.3. The integral criterion for ρ = ∞
in (4.50) is explained in Section 5.1. Theorem 4.3.2 is proved in Section 5.2 and
Theorem 4.3.3 in Section 5.3.

§5.1 Explanation of clustering criterion for infinite
seed-bank

Recall Fig. 4.6. Suppose that g = dgFW, so that we have a dual. We will show that
the integral criterion in (4.50) determines whether or not two dual lineages coalesce
with probability 1. Since two lineages in the dual can only coalesce when they are
active at the same site, we need to keep track of the probabilities that the lineages are
active at a given time. Because the lineages can only migrate when they are active,
we also need to keep track of the total time they are active up to a given time.

Recall the renewal interpretation of the dual process (see Remark 4.2.9). We argue
heuristically as follows. If ρ = ∞, then the activity times σk are much smaller than
the sleeping times τk, and we may assume that τk + σk ≍ τk, k → ∞. Discretising
time, we can use the results from [1] for the intersection of two independent renewal
processes. Then the integral criterion in (4.50) can be interpreted as follows:

� If γ ∈ (0, 1), then the probability for each of the lineages to be active at time s
decays like ≍ φ(s)−1s−(1−γ) [1]. Hence the total time they are active up to time
s is ≍ φ(s)−1sγ . Because the lineages only move when they are active, the prob-

ability that the two lineages meet at time s is ≍ a
(N)
φ(s)−1sγ (0, 0). Hence the total

hazard is ≍
∫∞
1

ds [φ(s)−1s−(1−γ)]2 a
(N)
φ(s)−1sγ (0, 0). After the transformation

t = t(s) = φ(s)−1sγ , the latter turns into the integral in (4.50), modulo a con-
stant. When carrying out this transformation, we need that sφ′(s)/φ(s) → 0,
which follows from (4.49), and φ(t(s))/φ(s) ≍ 1, which follows from the bound
we imposed on ψ in (4.49) together with the fact that logφ(s)/ log s→ 0. This
computation is spelled out in Appendix B.1.

� If γ = 1, then the probability for each of the lineages to be active at time
s decays like φ̂(s)−1 [1], and so the total time they are active up to time s is
≍ sφ̂(s)−1. Recall from (4.48) that φ̂(t) = E[τ∧t] is also slowly varying.) Hence

the total hazard is ≍
∫∞
1

ds [φ̂(s)−1]2 a
(N)
φ̂(s)−1s(0, 0). After the transformation
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t = t(s) = φ̂(s)−1s (for which we can use the same type of computation as in
Appendix B.1), the latter turns into the integral in (4.50), modulo a constant.

§5.2 Scaling of wake-up time and migration kernel
for infinite seed-bank

We can prove Theorem 4.3.2 by direct computation via assumptions (4.52)–(4.53).
We start by computing γ. Afterwards we compute φ̂(t) and aΩN

t (0, 0).

Computation of γ. Recall (4.40), which reads

P(τ > t) =
1

χ

∑
m∈N0

Km
em
Nm

e−(em/N
m)t. (5.1)

Since we are interested in the asymptotic behaviour of P(τ > t) as t → ∞, we need
to consider only large values of t. For large values of t, only large values of m (for
which em

Nm is small) contribute to the sum in (5.1). Hence we can estimate the latter
by an integral and insert the assumptions made in (4.52)–(4.53). Subsequently, using
the change of variable s = em

Nm and taking the logarithm to express m in terms of s,
we obtain the following values of γ after extracting the t-dependence:

(4.52) =⇒ γ = 1, φ(t) ≍ (log t)−α,

(4.53) =⇒ γ = γN,K,e =
log(N/Ke)

log(N/e)
, φ(t) ≍ 1.

(5.2)

In order to guarantee that ρ = ∞, we must require that α ∈ (−∞, 1], respectively,
K ∈ [1,∞) (while β, respectively, e play no role). Subject to (4.52),

φ̂(t) ≍

{
(log t)1−α, α ∈ (−∞, 1),

log log t, α = 1,
(5.3)

while subject to (4.53),

φ̂(t) ≍

{
1, K ∈ (1,∞),

log t, K = 1.
(5.4)

Computation of aΩN
t (0, 0). To compute aΩN

t (0, 0), we first rewrite the migration
kernel aΩN (·, ·) in (4.6) as

aΩN (0, η) =
r∥η∥

N∥η∥−1(N − 1)
(5.5)

with

r∥η∥ =
1

D(N)

N − 1

N

∑
l≥∥η∥

cl−1

N l−1

1

N l−∥η∥ , (5.6)
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where D(N) is a renormalisation constant such that
∑
j∈N rj = 1. For transition

kernels of the form (5.5), the time-t transition kernel aΩN
t (·, ·) was computed in [35]

with the help of Fourier analysis, see also [19]. Namely,

aΩN
t (0, η) =

∑
j≥k

Kjk(N)
exp[−hj(N)t]

N j
, t ≥ 0, η ∈ ΩN : dΩN

(0, η) = k ∈ N0,

(5.7)
where

Kjk(N) =

 0, j = k = 0,
−1, j = k > 0,
N − 1, otherwise,

j, k ∈ N0, (5.8)

and

hj(N) =
N

N − 1
rj(N) +

∑
i>j

ri(N), j ∈ N. (5.9)

The expressions in (5.6)–(5.9) simplify considerably in the limit as N → ∞,
namely, the term with i = j dominates and

hj(N) ∼ rj(N) ∼ cj−1

D(N)N j−1
, j ∈ N, D(N) ∼ c0. (5.10)

We show why this is true for hj(N) (the argument for rj(N) and D(N) is similar).
Write

hj(N) =
N

N − 1
rj(N) +

∑
i>j

ri(N)

=
1

D(N)

∑
l≥j

cl−1

N l−1

1

N l−j +
N − 1

N

∑
l>j

cl−1

N l−1

∑
i<j≤l

1

N l−i


=

1

D(N)

cj−1

N j−1

1 +

[
1 +O

(
1

N

)] ( cj−1

N j−1

)−1∑
l>j

cl−1

N l−1

 .

(5.11)

Hence it suffices to show that

lim sup
N→∞

( cj−1

N j−1

)−1∑
l>j

cl−1

N l−1
= 0, j ∈ N. (5.12)

To do so, note that, since lim supk→∞
1
k log ck < logN by (4.7), for N large enough

we have
sup
k∈N0

c
1/k
k < N. (5.13)

Let N̄ = inf{N ∈ N : supk∈N0
c
1/k
k < N}. Then

lim sup
N→∞

( cj−1

N j−1

)−1∑
l>j

cl−1

N l−1
≤ lim sup

N→∞

1

cj−1

∑
l>j

N̄ l−1

N l−1
N j−1

=
N̄ j−1

cj−1
lim sup
N→∞

N̄
N

1− N̄
N

= 0, j ∈ N,

(5.14)
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which settles (5.12).
To understand what (5.9) gives for finite N , note that for asymptotically polyno-

mial coefficients (recall (4.52))( cj−1

N j−1

)−1∑
l>j

cl−1

N l−1
= [1 + o(1)]

N j−1

F (j − 1)−ϕ

∑
l>j

F (l − 1)−ϕ

N l−1

= [1 + o(1)]
∑
l>j

(l − 1)−ϕ

(j − 1)−ϕ
N−(l−j)

= [1 + o(1)]
∑
k≥1

(
1 +

k

j − 1

)−ϕ

N−k, j ∈ N.

(5.15)

For ϕ ≥ 0 the right-hand side is bounded from above by
∑
k≥1N

−k = 1
N−1 and

for ϕ < 0 by N−1
∑
k≥1(1 + k)−ϕN−(k−1) ≤ N−1Cϕ. On the other hand, for pure

exponential coefficients (recall (4.53)),( cj−1

N j−1

)−1∑
l>j

cl−1

N l−1
=
∑
k≥1

( c
N

)−k
=

c

N − c
. (5.16)

Hence, for both choices of coefficients we have the following:

For N → ∞ the quantities hj(N), rj(N) are bounded from above
and below by positive finite constants times the right-hand side of
(5.10) uniformly in j ∈ N.

(5.17)

Picking η = 0 (k = 0) in (5.7), we obtain

aΩN
t (0, 0) =

∑
j∈N

(N − 1)
exp[−hj(N)t]

N j
. (5.18)

Since we are interested in the asymptotic behaviour of aΩN
t (0, 0), only large values

of j are relevant and we can estimate the sum in (5.18) by an integral. To do so,
we change variables by putting s = hj(N) and exploit (5.17). Take the logarithm to
express j in terms of s, compute ds/dj, and extract the t-dependence. This gives

(4.52) =⇒ aΩN
t (0, 0) ≍ t−1 logϕ t,

(4.53) =⇒ aΩN
t (0, 0) ≍ t−1−δN,c ,

(5.19)

where

δN,c =
log c

log(N/c)
. (5.20)

§5.3 Hierarchical clustering

In this section we prove Theorem 4.3.3 by substituting the results of Theorem 4.3.2
into the clustering criterion in (4.50).

Combining (4.51), (5.2)–(5.4) and (5.19)–(5.20), we find the following clustering
criterion for fixed N and infinite seed-bank:
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� Subject to (4.52), clustering prevails if and only if

−ϕ ≤ α ≤ 1. (5.21)

� Subject to (4.53), clustering prevails if and only

δN,c ≤ −1− γN,K,e
γN,K,e

. (5.22)

In view of (5.2) and (4.56), the condition in (5.22) amounts to

logN × log(Kc) ≤ log c× log(K2e), (5.23)

where we use that c < N and Ke < N (recall (4.7) and (4.12)). The condition in
(5.23) holds for all N when

Kc = 1 with

 c = 1, K2e ∈ (0,∞),
c > 1, K2e ≥ 1,
c < 1, K2e ≤ 1.

(5.24)

It also holds for N large enough when Kc < 1 and fails for N large enough when
Kc > 1. Thus, for infinite seed-bank, clustering prevails for N large enough if and
only if

Kc ≤ 1 ≤ K, (5.25)

which is the analogue of (5.21).
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