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CHAPTER 4
Models and main results

§4.1 Background, goals and outline

§4.1.1 Background

Single colony with seed-bank. In populations with a seed-bank, individuals can
temporarily become dormant and refrain from reproduction, until they can become
active again. In [10] and [12] the evolution of a population evolving according to
the two-type Fisher-Wright model with seed-bank was studied. Individuals move in
and out of the seed-bank at prescribed rates. Outside the seed-bank individuals are
subject to resampling, while inside the seed-bank their resampling is suspended. Both
the long-time behaviour and the genealogy of the population were analysed in detail.

Seed-banks are observed in many taxa, including plants, bacteria and other micro-
organisms. Typically, they arise as a response to unfavourable environmental condi-
tions. The dormant state of an individual is characterised by low metabolic activ-
ity and interruption of phenotypic development (see e.g. [55]). After a varying and
possibly large number of generations, a dormant individual can be resuscitated un-
der more favourable conditions and reprise reproduction after having become active
again. This strategy is known to have important implications for population per-
sistence, maintenance of genetic variability and stability of ecosystems. It acts as a
buffer against evolutionary forces such as genetic drift, selection and environmental
variability.

Multiple colonies with seed-bank. In [43] we considered a spatial version of
the two-type Fisher-Wright model with seed-bank in which individuals can migrate
between colonies, organised into a geographic space, each having a seed-bank consisting
of multiple layers, each with their own rate of moving in (becoming dormant) and
moving out (waking up). We found that the presence of the seed-bank enhances
genetic diversity compared to the spatial model without seed-bank. Interestingly,
we found that the seed-bank can affect the longtime behaviour of the system both
qualitatively and quantitatively.

In [43] we settled existence and uniqueness of the spatial model when the geo-
graphic space is Zd, d ∈ N. We proved convergence to equilibrium, showed that there
is a dichotomy between coexistence (= locally multi-type equilibria) and clustering
(= locally mono-type equilibria), and identified the parameter regime for both. We
found a change of the dichotomy due to the presence of the seed-bank. Without seed-
bank, for migration in the domain of attraction of Brownian motion, clustering occurs
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in d = 1, 2 and coexistence in d ≥ 3, i.e., the critical dimension for the dichotomy
is d = 2. With seed-bank, however, clustering becomes more difficult and occurs in
d = 2 only when the wake-up time of a typical individual in the seed-bank has finite
mean, and in d = 1 only when the wake-up time has a sufficiently thin tail. In other
words, the seed-bank has a tendency to lower the critical dimension.

In fact, in [43] we found that our technique of proof works for geographic spaces
that are arbitrary countable Abelian groups endowed with the discrete topology. The
reason is that the dichotomy can be formulated in terms of how the degree of the
random walk that underlies the migration balances with the exponent of the tail of
the typical wake-up time. This raises the question how we can better understand the
behaviour of spatial models with seed-bank close to criticality.

In [44] we established the so-called finite-systems scheme, i.e., we identified how a
finite truncation of the system (both in the geographic space and in the seed-bank)
behaves as both the time and the truncation level tend to infinity, properly tuned
together. We found that if the wake-up time has finite mean, then the scaling time is
proportional to the volume of the system and there is a single universality class for
the scaling limit, namely, the system moves through a succession of equilibria of the
infinite system with a density that evolves according to a Fisher-Wright diffusion. On
the other hand, we found that if the wake-up time has infinite mean, then the scaling
time grows faster than the volume of the system, and there are two universality classes
depending on how fast the truncation level of the seed-bank grows compared to the
truncation level of the geographic space.

§4.1.2 Goals

In the present paper we take as geographic space the hierarchical group ΩN of order
N . The reason for this choice is that ΩN allows for more detailed computations. At
the same time, migration on ΩN can be used to approximate migration on Zd in the
hierarchical mean-field limit N → ∞. In particular, by playing with the migration
kernel we can approximate two-dimensional migration in the sense of potential theory.
We consider migration kernels that in the limit as N → ∞ are critically recurrent,
i.e., the degree of the class of hierarchical migrations that we consider in the present
paper converges to 0, either from above or from below.

The present paper has three goals:

(1) We apply the results obtained in [43] to ΩN with N < ∞ fixed. We again find
that part of the coexistence regime without seed-bank shifts into the clustering
regime with seed-bank when the average wake-up time of a typical individual is
infinite.

(2) We analyse a space-time renormalised system in the limit as N → ∞. Namely,
we show that the block averages on successive space-time scales each perform
a diffusion with a renormalised diffusion function. In other words, we establish
a multi-scale version of the finite-systems scheme. Also, we compare the beha-
viour of the space-time renormalised system with seed-bank to the one analysed
in [21] and [20] without seed-bank.

(3) We exhibit universal behaviour in the clustering regime close to criticality. To
do so, we analyse the attracting orbits of the renormalisation transformation,
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acting on the space of diffusion functions, that connects successive hierarchical
levels. We show that, in the clustering regime and after appropriate scaling, the
renormalised diffusion function converges to the Fisher-Wright diffusion function
as we move up in the hierarchy, irrespective of the diffusion function controlling
the resampling. This convergence shows that the hierarchical system exhibits
universality on large space-time scales in terms of the scaling limit. For several
subclasses of parameters we identify the scaling of the renormalised diffusion
function, which reveals a delicate interplay between the parameters controlling
the migration and the seed-bank. This rate in turn determines the speed at
which mono-type clusters grow in space and time.

In the coexistence regime, universality does not hold and the equilibrium depends
on the diffusion function. Since the seed-bank enhances genetic diversity, it may be
expected that equilibrium correlations between far away colonies decay faster with
seed-bank than without seed-bank, an issue that will not be addressed.

Remark 4.1.1 (More general types). Throughout the paper we consider the two-
type Fisher-Wright model with seed-bank, in the continuum limit where the number of
individuals per colony tends to infinity. The extension to a general type space, called
the Fleming-Viot model (see [25]), requires only standard adaptations and will not be
considered here. In what follows, we only work with continuum models. However, we
motivate these models by viewing them as the large-colony-size limit of individual-
based models. For earlier work on hierarchically interacting Fisher-Wright diffusions
without seed-bank we refer the reader to [20, 21, 25, 22] and [5, 6, 26]. ■

§4.1.3 Outline

The present paper consist of two parts:

� Part I: Model and main results. Sections 4.2–4.5 collect the main propos-
itions and theorems. In Section 4.2 we define the hierarchical model and state
some basic properties: the well-posedness of the associated martingale problem
(Proposition 4.2.6), the duality relation (Proposition 4.2.7), and the clustering
criterion via duality (Proposition 4.2.12). These properties were all derived in
[43]. In Section 4.3 we state our main results for N <∞. In particular, we com-
pute the scaling of the wake-up time and the migration kernel (Theorem 4.3.2)
and identify the clustering regime in terms of the coefficients controlling the mi-
gration and the seed-bank under the assumption that these are asymptotically
polynomial or pure exponential (Theorem 4.3.3)). In Section 4.4 we state our
main results for N → ∞, the hierarchical mean-field limit. In particular, we in-
troduce block averages on successive hierarchical space-time scales, analyse their
limiting dynamics (Theorems 4.4.2 and 4.4.4), offer a heuristic explanation how
this limiting dynamics arises, introduce a path topology called the Meyer-Zheng
topology that is needed for a proper formulation, and introduce an object called
the interaction chain, which describes how the diffent hierarchical levels inter-
act with each other. In Section 4.5 we identify the orbit of the renormalisation
transformation in the clustering regime (Theorem 4.5.1), identify the rate of
scaling for the renormalised diffusion function (Theorem 4.5.3), and link this
scaling to the rate of growth of mono-type clusters.
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� Part II: Preparations and proofs. Chapters 5–10 provide the proofs of the
theorems stated in Part I. These proofs consist of a long series of propositions
and lemmas needed to build up the argument. In Chapter 5 we prove our main
results for N < ∞. In Chapter 6 we focus on the mean-field model (consisting
of a single hierarchy) and, respectively, state and prove a number of results that
serve as preparation. In Chapters 7–8 we consider extensions of the mean-field
model (consisting of finitely hierarchies), which serve as further preparation. In
Chapter 9 we use the results in Sections 6–8 to deal with the full hierarchical
model (consisting of infinitely many hierarchies), and prove our main results
for N → ∞. In Chapter 10 we analyse the orbit of the renormalisation trans-
formation controlling the multi-scaling. Appendix B.1 contains a technical com-
putation needed for the identification of the clustering regime. Appendix B.2
contains a basic introduction to convergence of paths in the Meyer-Zheng topo-
logy, which is needed for the main theorems.

Part I contains all the main results and their interpretations, and can be read without
reference to Part II.

§4.2 Introduction of model and basic properties

Section 4.2.1 introduces the model ingredients, Section 4.2.2 gives the evolution equa-
tions, Section 4.2.3 states the well-posedness, Section 4.2.4 introduces the dual and
states the duality relation, while Section 4.2.5 formulates the dichotomy between
clustering versus coexistence in terms of the dual.

§4.2.1 Model: geographic space ΩN , hierachical group
of order N

Single colony. Our building block is the single-colony Fisher-Wright model with
seed-bank defined in [12]. In that model, each individual in the population carries
one of two types, ♡ or ♢, and each individual can be either active or dormant. Active
individuals resample until they become dormant. Dormant individuals suspend res-
ampling until they become actieve again. The repository for the dormant individuals
is called the seed-bank. When an active individual resamples, it randomly chooses
another active individual and adopts its type. When an active individual becomes
dormant, it randomly chooses a dormant individual and forces it to becomes active,
i.e., the active and the dormant population exchange individuals (see Fig. 4.1). This
exchange guarantees that the sizes of the active and the dormant population stay
fixed over time. During the swap both the active and the dormant individual retain
their type.

The types of the active population evolve through resampling and through ex-
change with the dormant population. The types of the the dormant population evolve
only through exchange with the active population. It was shown in [12] that in the
large-colony-size limit, i.e., as the number of individuals per colony tends to infinity
and time is speeded up by the size of the colony, the two quantities

� x(t) = the fraction of active individuals of type ♡ at time t,

134



§4.2. Introduction of model and basic properties

C
h
a
p
t
e
r
4

� y(t) = the fraction of dormant individuals of type ♡ at time t,

satisfy the following system of coupled SDEs:

dx(t) = Ke [y(t)− x(t)] dt+
√
x(t)(1− x(t)) dw(t),

dy(t) = e [x(t)− y(t)] dt.
(4.1)

Here, e denotes the rate at which an active individual exchanges with a dormant
individual from the seed-bank, K denotes the relative size of the dormant population
with respect to the active population, and (w(t))t≥0 is a Brownian motion. The first
term in the first equation describes the flow from the dormant population to the
active population, the term in the second equation describes the flow from the active
population to the dormant population, while the second term in the first equation
describes the effect of resampling on the active population (see Fig. 4.1). Active
individuals resample at rate 1. Since dormant individuals do not resample, we do
not see such a term in the second equation. The formal derivation of the continuum
equations can be found in [12] and in [43, Appendix A].

A D

exchange

resampling

Ke

e

1

Figure 4.1: Active individuals resample at rate 1. Active and dormant individuals exchange
at rate e. The extra factor K arises from the fact that the dormant population is K times
as large as the active population. Dormant individuals suspend resampling.

Multi-colony. The present paper focuses on a multi-colony setting of the model
described above, where the underlying geographic space is the hierarchical lattice of
order N , given by (N0 = N ∪ {0})

ΩN =

{
ξ = (ξk)k∈N0

: ξk ∈ {0, 1, . . . , N − 1},
∑
k∈N0

ξk <∞

}
, (4.2)

which with addition modulo N becomes the hierarchical group of order N (see
Fig. 4.2). The hierarchical distance on ΩN is defined by

dΩN
(ξ, η) = dΩN

(0, ξ − η) = min {k ∈ N0 : ξl = ηl ∀ l ≥ k} , ξ, η ∈ ΩN , (4.3)
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and is an ultra-metric, i.e.,

dΩN
(ξ, η) ≤ max

{
dΩN

(ξ, ζ), dΩN
(η, ζ)

}
∀ ξ, η, ζ ∈ ΩN . (4.4)

The choice of ΩN as geographic space plays an important role for population
models, and was first exploited in [65] in an attempt to formalise ideas coming from
ecology. One interpretation is that the sequence (ξk)k∈N0 encodes the ‘address’ of
colony ξ: ξ0 is the ‘house’, ξ1 is the ‘street’, ξ2 is the ‘village’, ξ3 is the ‘province’, ξ4
is the ‘country’, and so on. To describe the system on the hierarchical group we need
three ingredients:

� Hierarchical migration.

� Layered seed-bank.

� Resampling rate.

Figure 4.2: Close-ups of a 1-block, a 2-block and a 3-block in the hierarchical group of
order N = 3. The elements of the group are the leaves of the tree (indicated by □’s). The
hierarchical distance between two elements in the group is the graph distance to the most
recent common ancestor in the tree: dΩ3(η, ζ) = 2 for η and ζ in the picture.

• Hierarchical migration

We construct a migration kernel aΩN (·, ·) on the hierarchical group ΩN built from a
sequence of migration rates

c = (ck)k∈N0
∈ (0,∞)N0 (4.5)

that do not depend on N . Individuals migrate as follows:

� For all k ∈ N, each individual chooses at rate ck−1/N
k−1 the block of radius k

around its present location and selects a colony uniformly at random from that
block. Subsequently it selects an individual in this colony uniformly at random
and adopts its type.

Note that the block of radius k contains Nk colonies, and that the migration kernel
is therefore given by

aΩN (η, ξ) =
∑

k≥dΩN
(η,ξ)

ck−1

Nk−1

1

Nk
, η, ξ ∈ ΩN , η ̸= ξ, aΩN (η, η) = 0, η ∈ ΩN .

(4.6)
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Throughout the paper, we assume that

lim sup
k→∞

1

k
log ck < logN. (4.7)

This guarantees that the total migration rate per individual is finite. Indeed, note
that for every η ∈ ΩN ,∑

ξ∈ΩN

aΩN (η, ξ) =
∑
ξ∈ΩN

∑
k≥dΩN

(η,ξ)

ck−1

N2k−1

=
∑
k∈N

 ∑
ξ∈ΩN

1{dΩN
(η,ξ)≤k}

 ck−1

N2k−1

=
∑
k∈N

ck−1

Nk−1
,

(4.8)

which is finite because of (4.7).

Remark 4.2.1 (Degree of random walk). For a random walk on an Abelian group
with time-t transition kernel aΩN

t (·, ·), the degree is defined as (see [19])

δ = sup

{
ζ ∈ (−1,∞) :

∫ ∞

0

dt tζaΩN
t (0, 0) <∞

}
. (4.9)

The degree is said to be δ+, respectively, δ− when the integral is finite, respectively,
infinite at the degree. If δ > 0, then δ is called the degree of transience. If δ ∈ (−1, 0),
then −δ is called the degree of recurrence. If the degree is 0−, then the random walk
is called critically recurrent. (It would be interesting to have a version of (4.9) that
includes a slowly varying function in front of the power tζ . However, such an extension
appears not to have been explored in the literature.) ■

By playing with c and letting N → ∞, we can approximate migration for which
the corresponding random walk is critically recurrent, i.e., δ− = 0. In that case both
the potential theory and the Green function for the hierarchical random walk have
the same asymptotics as the potential theory and the Green function for a critically
recurrent random walk on Z2 in the domain of attraction of Brownian motion. There-
fore, by tuning c properly, we can mimic migration on the geographic space Z2 (for
which δ− = 0), an idea that was exploited in [25], [22], [23], [41], [42].

• Layered seed-bank

To create a layered seed-bank, dormant individuals are labeled with a colour m ∈ N0.
An active individual that becomes dormant is assigned a colour m ∈ N0. When
an active individual becomes dormant with colour m, it exchanges with a dormant
individual of colour m. This dormant individual becomes active, loses its colour, but
retains its type. To describe the layered seed-bank we need two sequences

K = (Km)m∈N0
∈ (0,∞)N0 ,

e = (em)m∈N0 ∈ (0,∞)N0 ,
(4.10)

both not depending on N , which we interpret as follows:
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� Km is the relative size of the dormant population of colour m with respect to
the active population, i.e.,

Km =
size m-dormant population

size active population
. (4.11)

� At rate Km
em
Nm an active individual becomes dormant, is assigned colourm, and

retains its type. At the same time a dormant individual with colour m becomes
active, loses its colour, and retains its type. By defining the rates in this way,
the layered structure of the seed-bank is tuned to the hierarchical structure of
the geographic space.

By giving the seed-bank a layered structure, we are able to tune the distribution of
the wake-up time, i.e., the time an individual spends in the seed-bank before waking
up. In particular, we will see that a layered seed-bank enables us to model wake up
times with a fat tail, while at the same time preserving the Markov property of the
evolution.

Since active and dormant individuals exchange, Km remains constant over time
for all m ∈ N0. Throughout the paper we assume that

lim sup
m→∞

1

m
log(Kmem) < logN. (4.12)

This guarantees that the total rate of exchange per individual, given by

χ =
∑
m∈N0

Km
em
Nm

, (4.13)

is finite. On the other hand, the relative size of the dormant population with respect
to the active population

ρ =
∑
m∈N0

Km (4.14)

can be either finite or infinite. We will see that ρ < ∞ and ρ = ∞ represent two
different regimes.

• Resampling rate

To describe the resampling we use a diffusion function g that is taken from the set

G =
{
g(x) : [0, 1] → [0,∞) : g(0) = g(1) = 0, g(x) > 0 ∀x ∈ (0, 1), g Lipschitz

}
,

(4.15)
and think of h(x) = g(x)/x(1 − x) as the rate of resampling at type frequency x.
The choice g = dgFW, d ∈ (0,∞), with gFW(x) = x(1 − x), x ∈ [0, 1], corresponds
to Fisher-Wright resampling at rate d. We use a collection of independent Brownian
motions

W =
(
(wξ(t))t≥0

)
ξ∈ΩN

(4.16)

to describe the fluctuations of the type frequencies caused by the resampling in each
colony.
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§4.2.2 Evolution equations

• Evolution of single colonies

With the above three ingredients, we can now describe the evolution of the system.
For ξ ∈ ΩN , define

xξ(t) = the fraction of active individuals of type ♡ at colony ξ at time t,

yξ,m(t) = the fraction of m-dormant individuals of type ♡ at colony ξ and time t.
(4.17)

Note that xξ(t) ∈ [0, 1] and yξ,m(t) ∈ [0, 1] for all ξ ∈ ΩN , m ∈ N0, t ≥ 0. Therefore
the state space of a single colony is s = [0, 1] × [0, 1]N0 , and the state space of the
system is

S = sΩN . (4.18)

Our object of interest is the random process taking values in S, written

(XΩN (t), Y ΩN (t))t≥0, (XΩN (t), Y ΩN (t)) =
(
xξ(t), (yξ,m(t))m∈N0

)
ξ∈ΩN

, (4.19)

whose components evolve according to the following SSDE (= system of stochastic
differential equations):

dxξ(t) =
∑
η∈ΩN

aΩN (ξ, η)[xη(t)− xξ(t)] dt+
√
g(xξ(t)) dwξ(t)

+
∑
m∈N0

Kmem
Nm

[yξ,m(t)− xξ(t)] dt,

dyξ,m(t) =
em
Nm

[xξ(t)− yξ,m(t)] dt, m ∈ N0, ξ ∈ ΩN .

(4.20)

The first term in the first equation describes the evolution of the active population at
colony ξ due to migration, the second term due to the resampling. The third term in
the first equation and the term in the second equation describe the exchange between
the active and the dormant population at colony ξ (see Fig. 4.3). Since dormant
individuals are not subject to resampling or migration, the dynamics of the dormant
population is completely determined by the exchange with the active population. For
the initial state we assume that

L(XΩN (0), Y ΩN (0)) = µ⊗ΩN

with Eµ[xξ(0)] = θx, Eµ[yξ,m(0)] = θym with lim
m→∞

θym = θ for some θ ∈ [0, 1].

(4.21)
The last assumption in (4.21), which in [43] was referred to as µ being colour regular,
guarantees that for finite N the system in (4.20) converges to an ergodic equilibrium.

Remark 4.2.2. [Notation] Throughout the sequel we use lower case letters for single
components and upper case letters for systems of single components. We exhibit the
geographic space for the system, but suppress it from the components. ■
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A

D0

D1

Dm

exchangeresampling

migration

K0e0

e0
K1e1/N

e1/N

Kmem/N
m

em/N
m

h(x)

Figure 4.3: Active individuals (A) are subject to migration, resampling and exchange with
dormant individuals (D). When active individuals become dormant they are assigned a colour
(Dm, m ∈ N0), which they lose when they become active again. The resampling rate in the
active state at type-♡ frequency x equals h(x) = g(x)/x(1 − x) with g ∈ G (e.g. for the
standard Fisher-Wright diffusion the resampling rate is 1).

• Evolution of block averages

The choice of the migration kernel in (4.6) implies that, for every k ∈ N, at rate ≍ 1
Nk

individuals choose a space horizon of distance k+1 and subsequently choose a random
colony from that space horizon. Therefore, in order to see interactions over a distance
k+ 1, we need to speed up time by a factor Nk. A similar observation applies to the
interaction with the seed-bank. Dormant individuals with colour k become active at
rate ≍ 1

Nk . Therefore, in order to see interactions with the k-dormant population, we

need to speed up time by a factor Nk. To analyse the effective interaction on time
scale Nk, we introduce successive block averages labelled by k ∈ N0.

Definition 4.2.3 (Block averages). For k ∈ N0, let
Bk(0) = {η ∈ ΩN : dΩN

(0, η ≤ k} denote the k-block around 0. Define the k-block
average around 0 at time Nkt by

xΩN

k (t) =
1

Nk

∑
η∈Bk(0)

xη(N
kt),

yΩN

m,k(t) =
1

Nk

∑
η∈Bk(0)

yη,m(Nkt), m ∈ N0.

(4.22)

The k-block average represents the dynamics of the system on space-time scale k. ■

By translation invariance of the SSDE in (4.20), each ξ ∈ ΩN can serve as the origin.
In the remainder of the paper we consider without loss of generality the k-block
average around ξ = 0, and suppress the center 0 from the notation.
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Remark 4.2.4 (Notation). We use lower case letters for the block averages because
they live in the space of components s = [0, 1]× [0, 1]N0 . At the same time we exhibit
the geographic space ΩN for the block averages because they are functionals of the
system of components (recall Remark 4.2.2). ■

Using Definition 4.2.3 and inserting the specific choice of the migration kernel
defined in (4.6), we can rewrite (4.20) for ξ = 0 as follows (0-blocks are single com-
ponents):

dxΩN
0 (t) =

∑
l∈N

cl−1

N l−1

[
xΩN

l (N−lt)− xΩN
0 (t)

]
dt+

√
g
(
xΩN
0 (t)

)
dw(t)

+
∑
m∈N0

Kmem
Nm

[
yΩN
m,0(t)− xΩN

0 (t)
]
dt,

dyΩN
m,0(t) =

em
Nm

[
xΩN
0 (t)− yΩN

m,0(t)
]
dt, m ∈ N0.

(4.23)

From (4.23) we see that migration between colonies can be expressed as a drift towards
block averages at a higher hierarchical level.

The SSDE for the k-block average on time scale Nk reads as follows (recall (4.22)):

dxΩN

k (t) =
∑
l∈N

ck+l−1

N l−1

[
xΩN

k+l(N
−lt)− xΩN

k (t)
]
dt+

√√√√ 1

Nk

∑
i∈Bk(0)

g
(
xi(Nkt)

)
dwk(t)

+
∑
m∈N0

NkKmem
Nm

[
yΩN

m,k(t)− xΩN

k (t)
]
dt,

dyΩN

m,k(t) = Nk em
Nm

[
xΩN

k (t)− yΩN

m,k(t)
]
dt, m ∈ N0.

(4.24)
To deduce these equations from (4.20), we sum over ξ ∈ Bk, speed up time by a factor
Nk, insert the specific choice of the migration kernel in (4.6), and use the standard
scaling properties of Brownian motion: w(ct) =d

√
cw(t) and

√
aw(t) +

√
bw′(t) =d√

a+ bw′′(t), with w(t) and w′(t) independent Brownian motions, and with =d de-
noting equality in distribution. This computation is spelled out in Section 9.

Remark 4.2.5 (Separation space-time scales). The block averages and their evol-
ution equations in (4.24) will be key objects in the analysis of the hierarchical mean-
field limit N → ∞. We will see that the limit N → ∞ brings about considerable
simplifications. In Section 4.4 we discuss these simplifications in detail. In partic-
ular, a complete separation of space-time scales takes places, in which each block
average lives on its own time scale, effectively interacts with only one seed-bank, and
effectively feels a drift towards the block average one hierarchical level up. ■
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§4.2.3 Well-posedness

The generator of the system in (4.20) is given by

G =
∑
ξ∈ΩN

( ∑
η∈ΩN

aΩN (ξ, η)[xη(t)− xξ(t)]
∂

∂xξ
+

1

2
g(xξ(t))

∂2

∂x2ξ
(4.25)

+
∑
m∈N0

[
Kmem
Nm

[yξ,m(t)− xξ(t)]
∂

∂xξ
+

em
Nm

[xξ(t)− yξ,m(t)]
∂

∂yξ,m

])
.

Let

F =
{
f ∈ Cb([0,∞), S) : f depends on finitely many components

and is twice continuously differentiable in each component
}
.

(4.26)

Proposition 4.2.6 (Well-posedness). (a) The SSDE in (4.20) has a unique strong
solution in C([0,∞), S), whose law is the unique solution of the (G,F , δu)-
martingale problem for all u ∈ S.

(b) The process starting from u ∈ S is Feller and strong Markov. Consequently, the
SSDE in (4.20) defines a unique Borel Markov process starting from any initial
law on S.

Proof. Comparing with what is called model 2 in [43], we see that the Abelian group
is chosen as in (4.2), the transition kernel is chosen as in (4.6), and the rates in and
out of the seed-bank are em

Nm and Kmem
Nm for colour m. Hence the claim follows from

[67], in the same way as shown in the proof of [43, Theorem 2.1]. □

Henceforth we write P and E to denote probability and expectation with respect
to the random process in (4.19).

§4.2.4 Duality

If g = dgFW, then our model has a tractable dual, which turns out to play a crucial
role in the analysis of the long-time behaviour. In this section we introduce the dual
process following the same line of argument as in [43, Section 2.4]. There it was
shown that the spatial Fisher-Wright diffusion with seed-bank is dual to a so-called
block-counting process of a seed-bank coalescent. The latter describes the ancestral
lines of n ∈ N individuals sampled from the current population backwards in time
in terms of partition elements. At time zero the ancestral line of each individual
is represented by a partition element. Traveling backwards in time, two partition
elements merge as soon as their ancestral lines coalesce, i.e., two individuals have
the same ancestor from that time onwards. Hence the seed-bank coalescent divides
the ancestral lines of the n ∈ N individuals into subgroups of individuals with the
same ancestor (i.e., individuals that are identical by descent). Therefore the seed-
bank coalescent generates the ancestral lineages of the individuals evolving according
to a Fisher-Wright diffusion with seed-bank, i.e., generates their full genealogy. The
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coalescence
migration

emKm/N
m em/N

m

m-dormant

active

Figure 4.4: Transition scheme for an ancestral lineage in the dual, which moves according
to the transition kernel b(·, ·) defined in (4.31). Two active ancestral lineages that are at the
same colony coalesce at rate d.

corresponding block-counting process counts the number of partition elements that
are left when we travel backwards in time.

Formally, the spatial seed-bank coalescent is described as follows. Let

S = ΩN × {A, (Dm)m∈N0} (4.27)

be the effective geographic space. For n ∈ N the state space of the n-spatial seed-
bank coalescent is the set of partitions of {1, . . . , n}, where the partition elements are
marked with a position vector giving their locations. A state is written as π, where

π = ((π1, η1), . . . , (πn̄, ηn̄)), n̄ = |π|,
πℓ ⊂ {1, . . . , n}, {π1, · · ·πn̄} is a partition of {1, . . . , n},
ηℓ ∈ S, ℓ ∈ {1, . . . , n̄}, 1 ≤ n̄ ≤ n.

(4.28)

A marked partition element (πℓ, ηℓ) is called active if ηℓ = (ξ, A) and m-dormant if
ηℓ = (ξ,Dm) for some ξ ∈ ΩN . The n-spatial seed-bank coalescent is denoted by

(C(n)(t))t⩾0, (4.29)

and starts from

C(n)(0) = π(0), π(0) = {({1}, ηℓ1), . . . , ({n}, ηℓn)}, ηℓ1 , . . . , ηℓn ∈ S. (4.30)

The n-spatial seed-bank coalescent is the Markov process that evolves according
to the following two rules (see Figs. 4.4–4.5).

(a) Each partition element moves independently of all other partition elements ac-
cording to the transition kernel

bΩN ((ξ,Rξ), (η,Rη)) =


aΩN (ξ, η), if Rξ = Rη = A,
Km

em
Nm , if ξ = η, Rξ = A, Rη = Dm, for m ∈ N0,

em
Nm , if ξ = η, Rξ = Dm, Rη = A, for m ∈ N0,
0, otherwise,

(4.31)
where aΩN (·, ·) is the migration kernel defined in (4.6), Km, m ∈ N0 are the
relative sizes of the m-dormant population and the active population defined in
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t

Figure 4.5: Picture of the evolution of lineages in the spatial coalescent. The purple blocks
depict the colonies, the black lines the active lineages, and the coloured lines the dormant
lineages. Blue lineages can migrate. Two black lineages can coalesce when they are at the
same colony. Red dormant lineages first have to become black and active before they can
migrate or coalesce with other black and active lineages. Note that the dual runs backwards
in time.

(4.11), and em, m ∈ N0 are the coefficients controlling the exchange between the
active and the dormant population defined in (4.10). Thus, an active partition
element migrates according to the transition kernel aΩN (·, ·) and becomes m-
dormant at rateKm

em
Nm , while anm-dormant partition element can only become

active and does so at rate em
Nm .

(b) Independently of all other partition elements, two partition elements that are at
the same colony and are both active coalesce with rate d, i.e., the two partition
elements merge into one partition element.

Fig. 4.4 gives a schematic overview of the possible transitions of a single lineage,
while Fig. 4.5 gives an example of the evolution in the dual. The spatial seed-bank
coalescent (C(t))t≥0 is defined as the projective limit of the n-spatial seed-bank coales-
cents (C(n)(t))t≥0 as n → ∞. This object is well-defined by Kolmogorov’s extension
theorem (see [12, Section 3]).

For n ∈ N we define the block-counting process (L(t))t≥0 corresponding to the
n-spatial seed-bank coalescent as the process that counts at each site (ξ,Rξ) ∈ ΩN ×
{A, (Dm)m∈N0

} the number of partition elements of C(n)(t), i.e.,

L(t) =
(
L(ξ,A)(t),

(
L(ξ,Dm)(t)

)
m∈N0

)
ξ∈ΩN

,

L(ξ,A)(t) = L(ξ,A)(C(n)(t)) =

n̄∑
ℓ=1

1{ηℓ(t)=(ξ,A)},

L(ξ,Dm)(t) = L(ξ,Dm)(C(n)(t)) =

n̄∑
ℓ=1

1{ηℓ(t)=(ξ,Dm)}, m ∈ N0.

(4.32)

The state space of (L(t))t≥0 is S′ = (N0 × NN0
0 )ΩN . We denote the elements of S′

by sequences (mξ, (nξ,Dm)m∈N0)ξ∈ΩN
, and define δ(η,Rη) ∈ S′ to be the element of S′

that is 0 at all sites (ξ,Rξ) ∈ ΩN ×{A, (Dm)m∈N0}\(η,Rη), and 1 at the site (η,Rη).
From the evolution of C(n)(t) described below (4.29) we see that the block-counting
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process has the following transition kernel:

(mξ, (nξ,Dm
)m∈N0

)ξ∈ΩN
→

(mξ, (nξ,Dm
)m∈N0

)ξ∈ΩN
− δ(η,A) + δ(ζ,A), at rate mηa(η, ζ) for η, ζ ∈ ΩN ,

(mξ, (nξ,Dm
)m∈N0

)ξ∈ΩN
− δ(η,A), at rate d

(
mη

2

)
for η ∈ ΩN ,

(mξ, (nξ,Dm)m∈N0)ξ∈ΩN
− δ(η,A) + δ(η,Dm), at rate mηKm

em
Nm for η ∈ ΩN ,

(mξ, (nξ,Dm)m∈N0)ξ∈ΩN
+ δ(η,A) − δ(η,Dm), at rate nη,m

em
Nm for η ∈ ΩN .

(4.33)
The process (Z(t))t≥0 defined in (4.20) is dual to the block-counting process

(L(t))t≥0 with duality function H : S × S′ → R defined by

H
((
xξ, (yξ,m)m∈N0

)
ξ∈ΩN

,
(
mξ, (nξ,Dm

)m∈N0

)
ξ∈ΩN

)
=
∏
ξ∈ΩN

x
mξ

ξ

∏
m∈N0

y
nξ,Dm

ξ,m . (4.34)

Proposition 4.2.7 (Duality relation). Let H be as in (4.34). Then, for all
(xξ, (yξ,m)m∈N0

)ξ∈ΩN
∈ S and (mξ, (nξ,Dm

)m∈N0
)ξ∈ΩN

∈ S′,

E(
xξ,(yξ,m)m∈N0

)
ξ∈ΩN

[
H
((

xξ(t), (yξ,m(t))m∈N0

)
ξ∈ΩN

, (mξ, nξ)ξ∈ΩN

)]
= E(

mξ,(nξ,Dm )m∈N0

)
ξ∈ΩN

[
H
((

xξ, (yξ,m)m∈N0

)
ξ∈ΩN

,
(
L(ξ,A)(t), (L(ξ,Dm)(t))m∈N0

)
ξ∈ΩN

)]
(4.35)

with E the generic symbol for expectation (on the left over the original process, on the
right over the dual process).

Proposition 4.2.7 was proved in [43, Section 2.4]. Since the duality function H cap-
tures all the mixed moments of (Z(t))t≥0, the duality relation is that of a moment
dual.

Remark 4.2.8 (Duality relation in terms of the effective geographic space).
Interpreting (Z(t))t≥0 as a process on the effective geographic space
S = ΩN × {A, (Dm)m∈N0

}, we can rewrite (4.20) as

dz(ξ,Rξ)(t) =
∑

(ξ,Rξ)∈S

bΩN ((ξ,Rξ), (η,Rη))[z(η,Rη)(t)− z(ξ,Rξ)(t)] dt

+ 1{Rξ=A}

√
g(z(ξ,Rξ)(t)) dwξ(t), (ξ,Rξ) ∈ S,

(4.36)

where bΩN (·, ·) is the transition kernel defined in (4.31). If g = dgFW, then we can
write its dual process as follows. Let (L(t))t≥0 = (L(C(t))t≥0 be the block-counting
process that at each site (ξ,Rξ) ∈ S counts the number of partition elements of C(t),
i.e.,

L(t) = (L(ξ,Rξ)(t))(ξ,Rξ)∈S,

L(ξ,Rξ)(t) = L(ξ,Rξ)(C(t)) =
n̄∑
ℓ=1

1{ηℓ(t)=(ξ,Rξ)}.
(4.37)

Rewrite the duality function H in (4.34) as

H
(
(z(ξ,Rξ), l(ξ,Rξ))(ξ,Rξ)∈S

)
=

∏
(ξ,Rξ)∈S

z
l(ξ,Rξ)

(ξ,Rξ)
. (4.38)
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Then, for z ∈ S and l ∈ S′, the duality relation in (4.35) reads

Ez(ξ,Rξ)

[
H(z(ξ,Rξ)(t), l(ξ,Rξ))

]
= El(ξ,Rξ)

[
H(z(ξ,Rξ), L(ξ,Rξ)(t))

]
. (4.39)

Interpreting the duality relation in terms of the effective geographic space S, we see
that each ancestral lineage in the dual is a Markov process moving according to the
transition kernel b(·, ·) defined in (4.31). Interpreting the duality relation in terms
of the geographic space ΩN , we see that an ancestral lineage is a random walk on
ΩN , with internal states A and (Dm)m∈N0

. Both interpretations turn out to be useful
when we analyse the long-time behaviour of the system. ■

s s s s s s sσ1 τ1 σ2 τ2 σ3 τ3

Figure 4.6: Renewal process induced by a lineage in the dual moving according to the trans-
ition kernel b(·, ·). For k ∈ N, σk denotes the kth active period and τk the kth dormant
period.

Remark 4.2.9 (The renewal process induced by the dual process). The par-
tition elements describing the dual process give rise to a renewal process on the active
state A and the dormant state D =

⋃
m∈N0

Dm. Since the only transition a dormant
lineage can make is to become active, irrespectively of its colour, each dual lineage in-
duces a sequence of active and dormant time lapses. Let (σk)k∈N denote the successive
active time periods and (τk)k∈N the successive dormant time periods (see Fig. 4.6).
Then (σk)k∈N and (τk)k∈N are sequences of i.i.d. random variables with marginal laws
(recall (4.13))

P(σ1 > t) = e−χt, P(τ1 > t) =
∑
m∈N0

Km
em
Nm

χ
e−

em
Nm t, t ≥ 0. (4.40)

Remark 4.2.10 (Wake up times). The renewal process in Fig. 4.6 is key to un-
derstanding the long-time behaviour of the model (as we will see in Section 4.3). Note
that

τ = τ1 (4.41)

represents the typical wake-up time of a lineage in the dual. By choosing specific se-
quences (Km)m∈N0

and (em)m∈N0
we can mimic different wake-up time distributions.

In particular, if we allow ρ =
∑
m∈N0

Km = ∞ (recall (4.14)), then τ may have a
fat-tail (examples are given in Section 4.3). In other words, the internal structure of
the seed-bank allows us to model fat-tailed wake-up times without loosing the Markov
property of the evolution. ■

Note that even when there is no dual, i.e., g ∈ G with g ̸= dgFW, we can still define
τ by (4.41), since τ1 in (4.40) is a random variable that depends only on the sequences
(Km)m∈N0 and (em)m∈N0 , and we can still interpret τ as the typical wake-up time of
an individual in the population. ■
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§4.2.5 Clustering criterion

• Clustering criterion for Fisher-Wright diffusion function

In [43] we showed that the system exhibits a dichotomy between coexistence (= locally
multi-type equilibria) and clustering (= locally mono-type equilibria). The clustering
criterion is based on the dual and requires the notion of colour regularity. We call a
law translation invariant when it is invariant under the group action.

Definition 4.2.11 (Colour regular initial measures). We say that a translation
invariant initial measure µ(0) is colour regular when

lim
m→∞

Eµ(0)[y0,m] exists. (4.42)

This condition is needed because, as time progresses, lineages starting from slower
and slower seed-banks become active and bring new types into the active popula-
tion. Without control on the initial states of the slow seed-banks, there may be no
convergence to equilibrium. ■

The key clustering criterion is the following.

Proposition 4.2.12 (Clustering criterion). Suppose that µ(0) is translation in-
variant. If ρ = ∞ (recall (4.14)), then additionally suppose that µ(0) is colour reg-
ular. Let d ∈ (0,∞). Then the system with g = dgFW clusters if and only if in the
dual two partition elements coalesce with probability 1.

The idea behind Theorem 4.2.12 is as follows. If in the dual two partition elements
coalesce with probability 1, then a random sample of n individuals drawn from the
current population has a common ancestor some finite time backwards in time. Since
individuals inherit their type from their parent individuals, this means that all n
individuals have the same type. A formal proof was given in [43, Section 4.3]. The
proof is valid for any geographic space given by a countable Abelian group endowed
with the discrete topology, of which ΩN is an example.

• Clustering criterion for general diffusion function

For g ∈ G with g ̸= dgFW no dual is available and hence we cannot use the clustering
criterion in Proposition 4.2.12. However, as shown in [43], we can argue by duality
comparison arguments (see [43, Lemma 5.5 and Lemma 6.3]) that the system evolving
according to (4.20) with g ∈ G clusters if and only if the system with g = dgFW for
some d ∈ (0,∞) clusters. In particular, for g = dgFW, d ∈ (0,∞), whether or not the
system clusters does not depend on the resampling rate d.

§4.3 Main results: N < ∞, identification of cluster-
ing regime

In this section we identify the clustering regime, i.e., the range of parameters for which
the clustering criterion in Proposition 4.2.12 is met. In [43, Section 3.2, Theorem

147



4. Models and main results

C
h
a
p
t
e
r
4

3.3] we derived a necessary and sufficient condition for when clustering prevails, for
any geometric space given by a countable Abelian group endowed with the discrete
topology. Recall χ in (4.13), ρ in (4.14) and τ in (4.41),. From (4.40) it follows that

E[τ ] =
∑
m∈N0

Km

χ
=
ρ

χ
, (4.43)

and hence the mean wake-up time is finite if ρ < ∞ and infinite if ρ = ∞. In
Section 4.3.1 we look at ρ < ∞ and in Section 4.3.2 at ρ = ∞. In Section 4.3.3 we
summarise our findings and identify the clustering regime.

§4.3.1 Finite mean wake-up time

Suppose that the system evolving according to (4.20) has a translation invariant initial
measure µ(0) with density θ ∈ (0, 1). Then [43, Theorem 3.3] says that for ρ < ∞
clustering occurs if and only if ∫ ∞

1

dt aΩN
t (0, 0) = ∞. (4.44)

It is known that (4.44) holds for the hierarchical migration defined in (4.6) if and only
if [19, Section 3] ∑

k∈N0

1

ck
= ∞. (4.45)

Hence, for ρ < ∞, the clustering criterion depends on the migration kernel only and
the seed-bank has no effect.

s s s s s s s
s s s s s s s
σ1 τ1 σ2 τ2 σ3 τ3

σ′
1 τ ′1 σ′

2 τ ′2 σ′
3 τ ′3

. . .

Figure 4.7: Successive periods during which the two random walks are active and dormant
(recall (4.40) and Fig. 4.6). The time lapses between successive pairs of dotted lines represent
periods of joint activity.

In view of Proposition 4.2.12, if g = dgFW, then clustering prevails if and only if
two lineages in the dual coalesce with probability 1. Recall that two lineages in the
dual can only coalesce when they are at the same site and are both active. Since
the rate of coalescence is d ∈ (0,∞), each time this happens the two lineages have
a positive probability to coalesce before moving or becoming dormant. Therefore,
clustering prevails if and only if two lineages meet infinitely often while being active.
This happens exactly when (4.44) holds. The fact that the seed-bank plays no role
can be seen from the dual. Each lineage in the dual moves according to the transition
kernel b(·, ·) (recall (4.31)). Looking at the renewal process induced by the dual
process (recall Remark 4.2.9 and Fig. 4.7), we see that for ρ < ∞ the probability
that a lineage in the dual is active at time t is approximately 1

1+ρ for large t. The
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total activity time of a lineage up to time t is therefore approximately 1
1+ρ t for large

t. Hence the total time the two lineages in the dual are at the same site and are both
active is approximately ∫ ∞

1

dt

(
1

1 + ρ

)2

a2 1
1+ρ t

(0, 0), (4.46)

By Polya’s argument, if the integral in (4.46) is infinite, then two lineages in the
dual meet infinitely often while being active. After a variable transformation, (4.46)
becomes the integral in (4.44) up to a constant. (For a formal proof of the criterion in
(4.44), we refer to [43].) By the above argument, we can think of the integral in (4.44)
as the total hazard of coalescence of two dual lineages. To get the result for general
g ∈ G we must invoke the duality comparison arguments mentioned in Section 4.2.5.

In terms of the degree of the random walk (recall Remark 4.2.1), (4.44) corresponds
to hierarchical migration with degree 0−. The same criterion as in (4.44) was found in
[36] for interacting Fisher-Wright diffusions on the hierarchical lattice without seed-
bank (ρ = 0). Hence we conclude that for ρ < ∞ the seed-bank does not affect the
dichotomy.

§4.3.2 Infinite mean wake-up time

If ρ = ∞, then the seed-bank does affect the dichotomy. To apply the criterion
in [43, Theorem 3.3], we assume that the system evolving according to (4.20) has a
translation-invariant initial measure µ(0) with density θ ∈ (0, 1) that is colour regular.

The criterion for clustering that was derived in [43] for ρ = ∞ applies to wake-up
times τ (recall (4.41)) of the form

P(τ ∈ dt)

dt
∼ φ(t) t−(1+γ), t→ ∞, γ ∈ (0, 1], (4.47)

with φ slowly varying at infinity. Define

φ̂(t) =

{
φ(t), γ ∈ (0, 1),

E [τ ∧ t] γ = 1.
(4.48)

As shown in [8, Section 1.3], every slowly varying function φ may be assumed to be
infinitely differentiable and to be represented by the integral

φ(t) = exp

[∫ t

(·)

du

u
ψ(u)

]
(4.49)

for some ψ : [0,∞) → R such that limu→∞ |ψ(u)| = 0. From (4.47) we see that φ̂(t)
is also slowly varying. If we assume that |ψ(u)| ≤ C/ log u for some C <∞, then the
system clusters if and only if (see [43, Section 3.2])∫ ∞

(·)
dt φ̂(t)−1/γ t−(1−γ)/γ ât(0, 0) = ∞. (4.50)

Note that γ in (4.47) is the tail exponent of the typical wake-up time τ (recall Remark
4.2.9) and depends on the sequences e,K in (4.10) governing the exchange with the
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seed-bank. If g = dgFW, then in view of Theorem 4.2.12 the criterion in (4.50)
determines whether two lineages in the dual coalesce with probability 1.

In Section 5 we will use the renewal process induced by the dual (recall Re-
mark 4.2.9) to show that (4.50) indeed gives the total hazard of coalescence of two
dual lineages. Therefore the integral in (4.50) is the counterpart of (4.44). The rate
of coalescence again does not affect the dichotomy: in [43] a duality comparison ar-
gument was used to show that (4.50) gives the clustering criterion also for g ∈ G with
g ̸= dgFW. The effect of the seed-bank on the dichotomy is embodied by the term
φ̂(t)−1/γ t−(1−γ)/γ in (4.50). The criterion in (4.50) shows that there is a competition
between migration and exchange with the seed-bank.

For the special case where φ̂(t) ≍ 1, the criterion in (4.50) says that (recall Re-
mark 4.2.1)

clustering ⇐⇒ either δ− ≤ −1− γ

γ
or δ+ < −1− γ

γ
. (4.51)

Condition (4.50) implies that for γ ∈ (0, 12 ) no clustering is possible: the typical wake-
up time has such a heavy tail that with a positive probability two dual lineages do
not meet, irrespective of the migration.

Definition 4.3.1. In what follows we will focus on the following two specific para-
meter regimes:

• Asymptotically polynomial, i.e.,

Kk ∼ Ak−α, ek ∼ Bk−β , ck ∼ Fk−ϕ, k → ∞,

A,B, F ∈ (0,∞), α, β, ϕ ∈ R.
(4.52)

• Pure exponential, i.e.,

Kk = Kk, ek = ek, ck = ck, k ∈ N0, K, e, c ∈ (0,∞). (4.53)

Note that both (4.7) and (4.12) are satisfied for N → ∞. Also note that an infinite
seed-bank corresponds to α ∈ (−∞, 1], respectively, K ∈ [1,∞). □

The scaling of the wake-up time and the migration kernel in these parameter
regimes are as follows.

Theorem 4.3.2 (Scaling of wake-up time and migration kernel). Suppose that
ρ = ∞. Then

(a) Subject to (4.52),

γ = 1, φ(t) ≍ (log t)−α, φ̂(t) ≍

{
(log t)1−α, α ∈ (−∞, 1),

log log t, α = 1,

aΩN
t (0, 0) ≍ t−1 logϕ t.

(4.54)

(b) Subject to (4.53),

γ = γN,K,e =
log(N/Ke)

log(N/e)
, φ(t) ≍ 1, φ̂(t) ≍

{
1, K ∈ (1,∞),

log t, K = 1,

aΩN
t (0, 0) ≍ t−1−δN,c ,

(4.55)
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where

δN,c =
log c

log(N/c)
. (4.56)

Theorem 4.3.2 will be proved in Section 5.
Note that, by (4.55), γN,K,e = 1 for all N when K = 1, while γN,K,e < 1 for all

N when K > 1, but with γN,K,e ↑ 1 as N → ∞. Also note that, subject to (4.52),
(4.54) says that the degree of the random walk is 0− for ϕ ≥ −1 and 0+ for ϕ < −1,
while subject to (4.53), by (4.55), the degree of the random walk is δ−N,c, which is 0
for all N when c = 1, and tends to 0 as N → ∞ from above when c > 1 and from
below as c < 1. Thus, both (4.52) and (4.53) with N → ∞ correspond to a critically
recurrent migration and a critically infinite seed-bank.

§4.3.3 Clustering regime

Summarising the above discussion, we can now identify the clustering regime for both
finite and infinite seed-banks.

Theorem 4.3.3 (Clustering regime). (1) If ρ < ∞, then clustering prevails if
and only if ∑

k∈N0

1

ck
= ∞. (4.57)

(2) If ρ = ∞, then clustering prevails for N large enough

(a) Subject to (4.52) if and only if

−ϕ ≤ α ≤ 1. (4.58)

(b) Subject to (4.53) if and only if

Kc ≤ 1 ≤ K. (4.59)

Also Theorem 4.3.3 will be proved in Section 5.
Note that for ρ <∞ the clustering regime follows by combining (4.44) and (4.45),

while for ρ = ∞ the clustering regime follows by substituting into (4.50) the scaling
of the wake-up times and the migration kernel stated in Theorem 4.3.2.

Remark 4.3.4. Note that subject to (4.52), respectively, (4.53), ρ <∞ implies that
α > 1, respectively, K < 1, and so the clustering regime is −ϕ ≤ 1, respectively, c ≤ 1
(recall (4.57)), which are less stringent than (4.58), respectively, (4.59). ■

§4.4 Main results: N → ∞, renormalisation and
multi-scale limit

This section contains our multi-scale hierarchical limit theorems. The multi-scale hier-
archical limit theorems analyse the evolution of the block averages defined in Defini-
tion 4.2.3. In Section 4.4.1 we recall a path topology referred to as the Meyer-Zheng
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topology, which we will need in part of our multi-scale hierarchical limit theorems. In
Section 4.4.2 we present the conceptual ingredients needed for our theorems. In Sec-
tion 4.4.3 we state two versions of the hierarchical multi-scale limit (Theorems 4.4.2
and 4.4.4), and comment on how they are related to each other. In Section 4.4.4 we
explain how they arise from a heuristic analysis of the SSDE in (4.20).

§4.4.1 Intermezzo: Meyer-Zheng topology

Recall the block averages defined in (4.2.3) and their evolution equations in (4.24).
In the limit as N → ∞, some of the pre-factors in (4.24) diverge as a result of
the speeding up of time. This makes the processes increasingly more volatile: paths
becomes rougher and rougher during rarer and rarer times. Therefore we cannot work
with weak convergence on path space C([0,∞), E) w.r.t. the topology generated by
the sup-norm on compacts, or on path space D([0,∞), E) w.r.t. the Skorohod metric
on compacts. Rather we must follow the methodology used in [23, pp. 792–794]
and employ the so-called Meyer-Zheng topology on pseudopaths, (see [59]), which is
based on the following idea. Consider functions f : [0,∞) → E, with (E, d) a Polish
space, and sequences of functions (fn)n∈N that are càdlàg paths, i.e., functions in
the Skorohod space D([0,∞), E). Then (fn)n∈N converges to f in the Meyer-Zheng
topology if and only if

lim
n→∞

∫ b

a

dt
[
1 ∧ d(f(t), fn(t))

]
= 0 ∀ 0 ≤ a < b <∞. (4.60)

However, the topology induced by the metric in (4.60) does not turn D([0,∞), E)
into a closed space (while in order to apply the classical theory of weak convergence
of probability laws on path space we need the path space to be Polish).

To turn the idea from (4.60) into a manageable topology, we proceed by defining
a space of pseudopaths equipped with the Meyer-Zheng topology. If (E, d) is a Polish
space and s 7→ v(s) is a measurable map from [0,∞) to E, then the pseudopath ψv
is the probability measure ρ on [0,∞)× E, defined by

ρ((a, b)×B) =

∫ b

a

ds e−s 1B(v(s)), B ∈ B(E), (4.61)

Hence ψv is the image measure of e−tdt under the mapping t → (t, v(t)). In other
words, we consider the weighted occupation measure of the path in E in order to
describe paths that are regular representatives in the space of functions once we
take into account (4.60). Note that a piece-wise constant càdlàg path is uniquely
determined by its occupation measure. So is a continuous path with continuous local
times. The space of all pseudopaths is denoted by Ψ.

Since pseudopaths are measures on [0,∞] × E, convergence of pseudopaths is
defined as weak convergence of probability measures on [0,∞]×E. A sequence (vn)n∈N
of measurable maps from [0,∞)×E is said to converge in the Meyer-Zheng topology to
a measurable map v if limn→∞ ψvn = ψv, i.e., limn→∞ ψvnf = ψvf for all continuous
bounded functions f on [0,∞]× E.
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Remark 4.4.1 (Pseudopaths). The space Ψ of pseudopaths endowed with the
Meyer-Zheng topology is Polish, but the space D([0,∞), E) endowed with the Meyer-
Zheng topology is not Polish (see [59, p. 372]). ■

In what follows, each time convergence holds in the Meyer-Zheng topology we
will say so explicitly. If no topology is mentioned, then we mean convergence in
Cb([0,∞), [0, 1]). In Appendix B.2 we collect some basic facts about the Meyer-Zheng
topology taken from [59] and [53].

§4.4.2 Main ingredients for the hierarchical multi-
scale limit

Recall the definition of θx and θym in (4.21). Define

ϑk =
θx +

∑k
m=0Kmθym

1 +
∑k
m=0Km

, k ∈ N0. (4.62)

For ρ <∞, and for ρ = ∞ under the additional assumption of colour regularity (recall
Proposition 4.2.12), we have

lim
k→∞

ϑk = θ for some θ ∈ [0, 1]. (4.63)

Define the slowing-down constants (E0 = 1)

Ek =
1

1 +
∑k−1
m=0Km

, k ∈ N0. (4.64)

For l ∈ N0, let (
θ, (ym,l)m∈N0

)
(4.65)

be a sequence of random variables taking values in [0, 1], and let(
zl,(θ,(ym,l)m∈N0 )

(t)
)
t≥0

=
(
xl(t), (ym,l(t))m∈N0

)
t≥0

(4.66)

be the full process evolving according to

dxl(t) = El

[
cl[θ − xl(t)] dt+

√
(F (l)g)(xl(t)) dw(t) +Klel [yl,l(t)− xl(t)] dt

]
,

ym,l(t) = xl(t), 0 ≤ m < l,
dyl,l(t) = el [xl(t)− yl,l(t)] dt, m = l,
ym,l(t) = ym,l, m > l.

(4.67)
where F (l)g is an element of G, (recall (4.15)), that will be defined in (4.76) below.
By [72] the above SSDE has a unique solution for every initial measure. For l ∈ N0,
let

(zeffl,θ(t))t≥0 =
(
xeffl (t), yeffl,l (t)

)
t≥0

(4.68)
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be the effective process evolving according to

dxeffl (t) = El

[
cl [θ − xeffl (t)] dt+

√
(F (l)g)(xeffl (t)) dw(t) +Klel [y

eff
l,l (t)− xeffl (t)] dt

]
,

dyeffl,l (t) = el [x
eff
l (t)− yeffl,l (t)] dt.

(4.69)
Comparing (4.67) with (4.69), we see that the effective process looks at the non-trivial
components of the full process.

Apart from (4.66) and (4.68), we need the following list of ingredients to formally
state the multi-scale limit:

(a) For l ∈ N0 and t > 0, define the estimators for the finite system by

Θ̄(l),ΩN (t) =
1

N l

∑
ξ∈Bl

xΩN

ξ (t) +
∑l−1
m=0Kmy

ΩN

ξ,m(t)

1 +
∑l−1
m=0Km

,

Θ(l),ΩN
x (t) =

1

N l

∑
ξ∈Bl

xΩN

ξ (t),

Θ(l),ΩN
ym (t) =

1

N l

∑
ξ∈Bl

yΩN

ξ,m(t), m ∈ N0,

(4.70)

and put

Θ(l),ΩN (t) =
(
Θ(l),ΩN
x (t),

(
Θ(l),ΩN
ym (t)

)
m∈N0

)
,

Θeff,(l),ΩN (t) =
(
Θ̄(l),ΩN (t),Θ(l),ΩN

yl
(t)
)
.

(4.71)

We call (Θ(l),ΩN (t))t≥0 the full estimator process and (Θeff,(l),ΩN (t))t≥0 the

effective process. Note that Θ
(l),ΩN
x (t) is the empirical average of the active

components in the l-block, while Θ
(l),ΩN
ym (t), is the empirical average of the m-

dormant components in the l-block, both without scaling of time. Note that

Θ
(l),ΩN
x (N lt) = xΩN

l (t). The level-l estimator Θ̄(l),ΩN (t) will play an important
role in our analysis. Using (4.24), we can derive the evolution equations of
Θ̄(l),ΩN (N lt). We see that in the evolution of Θ̄(l),ΩN (N lt) no rates appear that

tend to infinity as N → ∞. However, in the evolution of Θ
(l),ΩN
x (N lt) and

Θ
(l),ΩN
ym (N lt) for m < l the rates describing the interaction between the active

and the dormant population tend to infinity as N → ∞.

(b) For l ∈ N0, consider time scales N ltl such that

L
[
Θ̄(l),ΩN (N ltl − L(N)N l−1)− Θ̄(l),ΩN (N ltl)

]
= δ0 (4.72)

for all L(N) satisfying limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0, but not
for L(N) = N . In words, N ltl is the time scale on which (Θ̄(l),ΩN (N ltl))tl>0 is
no longer a fixed process.

(c) For l ∈ N0 the invariant measure for the limiting evolution of the l-block aver-
ages in (4.67) is denoted by

Γ
(l)
(θ,yl)

, yl = (ym,l)m∈N0 . (4.73)
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(The existence of and convergence to this equilibrium will be proved in Sec-

tion 9.2.) Note that Γ
(l)
(θ,yl)

depends on choice of the rates El, cl,Kl, el in (4.67).

The invariant measure of the limiting evolution for the effective l-block process
in (4.69) is denoted by

Γ
eff,(l)
θ . (4.74)

Also Γ
eff,(l)
θ depends on the choice of the rates El, cl,Kl, el.

(d) For l ∈ N0, let FEl,cl,Kl,el denote the renormalisation transformation acting on
G defined by

(FEl,cl,Kl,elg)(θ) =

∫
[0,1]2

g(x) Γ
eff,(l)
θ (dx), θ ∈ [0, 1]. (4.75)

(In Section 6.3 we show that Fg ∈ G.) For k ∈ N0, define the iterate of the
renormalisation transformation as the composition

F (k) = FEk−1,ck−1,Kk−1,ek−1 ◦ · · · ◦ FE0,c0,K0,e0 . (4.76)

(e) For k ∈ N0, define the interaction chain [25]

(Mk
−l)−l=−(k+1),−k,...,0 (4.77)

as the time-inhomogeneous Markov chain on [0, 1]× [0, 1]N0 with initial state

Mk
−(k+1) = (ϑk,

k+1 times︷ ︸︸ ︷
ϑk, · · · , ϑk, θyk+1

, θyk+2
, · · · ) (4.78)

that evolves from time −(l + 1) to time −l according to the transition kernel
Q[l] on [0, 1]× [0, 1]N0 given by

Q[l](u,dv) = Γ(l)
u (dv). (4.79)

(See Fig. 4.9.) For k ∈ N0, define the effective interaction chain

(M eff,k
−l )−l=−(k+1),−k,...,0 (4.80)

as the time-inhomogeneous Markov chain on [0, 1]× [0, 1] with initial state

M eff,k
−(k+1) = (ϑk, θyk+1

) (4.81)

that evolves from time −(l + 1) to time −l according to the transition kernel
Q[l] on [0, 1]× [0, 1] given by

Qeff,[l](u,dv) = Γeff,(l)
ux

(dv), (4.82)

where ux denotes the first component of u = (ux, uy).(See Fig. 4.8.) We denote

the components of
(
M eff,k

−l

)
by

M eff,k
−l =

(
M eff,k

−l,x ,M
eff,k
−l,y

)
. (4.83)
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Mk,eff
−(k+1) = (ϑk, θk+1)

Mk,eff
−k = (xk(tk), yk,k(tk))

Mk,eff
−(k−1) = (xk−1(tk−1), yk−1,k−1(tk−1))

Q[k]
(
Mk,eff

−(k+1), (du, dv)
)
= Γeff

ϑk
(du, dv)

Q[k−1]
(
Mk,eff

−k , (du, dv)
)
= Γeff

xk(tk)
(du, dv)

Q[k−2]
(
Mk,eff

−(k−1), (du, dv)
)
= Γeff

xk−1(tk−1)
(du, dv)

Q[0]
(
Mk,eff

−1 , (du, dv)
)
= Γeff

x1(t1)
(du, dv)

Mk,eff
−1 = (x1(t1), y1,1(t1))

Mk,eff
0 = (x0(t0), y0,0(t0))

Figure 4.8: Effective interaction chain.

§4.4.3 Hierarchical multi-scale limit theorems

First we present and discuss the scaling of the effective process. Afterwards we do
the same for the full process.

• Effective process

We present one of our main theorems, the hierarchical mean-field limit for the effective
process. We will use the process and notation introduced in Section 4.4.2.

Theorem 4.4.2 (Hierarchical mean-field: the effective process). Suppose that
the initial state of the hierarchical system is given by (4.21). Let L(N) be such that
limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0. For k ∈ N and tk, . . . , t0 ∈ (0,∞),

set t̄ = NkL(N) +
∑k
n=0N

ntn.

(a) For k ∈ N,

lim
N→∞

L
[(
Θeff,(l),ΩN (t̄ )

)
l=k+1,k,...,0

]
= L

[
(M eff,k

−l )−l=−(k+1),−k,...,0

]
. (4.84)
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(b) For k ∈ N,

l > k : lim
N→∞

L
[(

Θeff,(l),ΩN (t̄+Nkt)
)
t>0

]
= δ(ϑl,θyl )

,

l = k : lim
N→∞

L
[(

Θeff,(l),ΩN (t̄+N lt)
)
t>0

]
= L

[(
zeff
k,Meff,k

−(k+1),x

(t)

)
t>0

]
,

l < k : lim
N→∞

L
[(

Θeff,(l),ΩN (t̄+N lt)
)
t>0

]
= L

[(
zeff
l,Meff,k

−(l+1),x

(t)

)
t>0

]
,

(4.85)
where the initial laws of the limiting processes are given by (see Fig. 4.8)

L
[
zeffk,Mk

−(k+1),x
(0)
]
= Γ

eff,(k)

Mk
−(k+1),x

,

L
[
zeffk,Mk

−(k+1),x
(0)
]
= Γ

eff,(k)

Mk
−(l+1),x

,

Γ
eff,(l)

Mk
−(l+1)

=

∫
[0,1]2

· · ·
∫
[0,1]2

Γ
eff,(k)

Mk
−(k+1)

(duk) · · ·Γeff,(l+1)
ul+2

(dul+1)Γ
eff,(l)
ul+1

(4.86)

Theorem 4.4.2 can be interpreted as follows. The statement in (a) shows that if
we look at the effective process on multiple space-time scales simultaneously, then
the joint distribution of the different block averages is the law of the two-dimensional
interaction chain defined in (4.80) and depicted in Fig. 4.8. Note that the process
(Θeff,(l),ΩN (t̄+N lt))t>0 has at each level a different colour seed-bank average as second
component, which is called the effective seed-bank. The statement in (b) describes the
law of the path on different time scales.

� On time scale t̄ + Nkt the l-block averages with l > k are not moving, i.e.,
(Θeff,(l),ΩN (t̄ + Nkt))t>0 converges to the constant process taking the value
(ϑl, θyl) = Θeff,(l),ΩN (0).

� On time scale t̄+Nkt the k-block averages have reached equilibrium. The full
k-block average feels a drift towards the full (k+1)-block average, which is still
in its initial state ϑk. Therefore migration between the k-blocks in the hierarch-
ical mean-field limit is replaced by a drift towards ϑk, and the k-blocks become
independent. This phenomenon is called decoupling (or ‘propagation of chaos’).
The resampling function for the full estimator converges to F (k)g (see (4.75)),
the average diffusion function of the k-blocks. Finally, the full k-block exchanges
individuals with the k-dormant population. Hence the k-dormant population is
the effective seed-bank on space-timescale k Both the migration and the renor-
malisation are qualitatively similar to that of the hierarchical system without
seed-bank [21]. However, the seed-bank still quantitatively affects the migration
and the resampling through the slowing-down factor Ek. (In Section 4.4.4 we
will see how the latter arises.)

� On time scale t̄+N lt the l-block averages with l < k are in a quasi-equilibrium.
The full l-block averages feel a drift towards the instantaneous value of the
(l + 1)-block average at time t̄. Therefore also the l-block averages decouple.

157



4. Models and main results

C
h
a
p
t
e
r
4

The (l+1)-block average is not moving on time scale t̄+N lt, and so for t = L(N)
we see that the l-block averages equilibrate faster than the (l+1)-block averages
moves. The resampling function is given by F (l)g, which is to be interpreted as
the average diffusion function of the l-blocks. The full average interacts with
the l-blocks of the l-dormant population, which is the effective seed-bank on
level l. Again the full l-block average feels a slowing-down factor El.

Note that Theorem 4.4.2 only describes the limiting process of the combined block

average Θ̄(l),ΩN and the effective seed-bank Θ
(l),ΩN
yl . It does not provide a full de-

scription of the system, which is in Theorem 4.4.4 below. We will see later that
Theorem 4.4.2 does describe all the non-trivial components of the system.

Remark 4.4.3 (Quasi equilibria). Note that Theorem 4.4.2 does not depend on
the choice of tk, . . . , t0 ∈ (0,∞). Since at each level 0 ≤ l ≤ k we start from time t̄,
the l-block averages have already reached a quasi-equilibrium. ■

Mk
−(k+1) = (ϑk, ϑk, · · · , ϑk, θyk+1

, θyk+2
, · · · )

k + 1 times

Mk
−k = (xk(tk), xk(tk), · · · , xk(tk), yk,k(tk), θyk+1

, θyk+2
, · · · )

Mk
−(k−1) =

(
xk−1(tk−1), xk−1(tk−1), · · · , xk−1(tk−1), yk−1,k−1(tk−1), yk,k(tk), θyk+1

, θyk+2
, · · ·

)

Q[k]
(
Mk

−(k+1),du
)
= ΓMk

−(k+1)
(du)

k times

k − 1 times

Q[k−1]
(
Mk

−k,du
)
= ΓMk

−k
(du)

Q[k−2]
(
Mk

−(k−1),du
)
= ΓMk

−(k−1)
(du)

Q[0]
(
Mk

−1,du
)
= ΓMk

−1
(du)

Mk
−1 =

(
x1(t1), x1(t1), y1,1(t1), y2,2(t2), · · · , yk−1,k−1(tk−1), yk,k(tk), θyk+1

, θyk+2
, · · ·

)

Mk
0 =

(
x0(t0), y0,0(t0), y1,1(t1), y2,2(t2), · · · , yk−1,k−1(tk−1), yk,k(tk), θyk+1

, θyk+2
, · · ·

)
Figure 4.9: Full interaction chain.

• Full process

To state our second main theorem, we will again use the process and the notation as
defined in Section 4.4.2.

Theorem 4.4.4 (Hierarchical mean-field: full process). Suppose that the ini-
tial state is given by (4.21). Let L(N) be such that limN→∞ L(N) = ∞ and
limN→∞ L(N)/N = 0. For k ∈ N and tk, . . . , t0 ∈ (0,∞), set t̄ = NkL(N) +∑k
n=0N

ntn.
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(a) For k ∈ N,

lim
N→∞

L
[(

Θ(l),ΩN (t̄ )
)
l=k+1,k,...,0

]
= L

[
(Mk

−l)−l=−(k+1),−k,...,0
]
. (4.87)

(b) For k ∈ N,

l > k : lim
N→∞

L
[(

Θ(l),ΩN (t̄+Nkt)
)
t>0

]
= δ(Mk

−(k+1)
),

l = k : lim
N→∞

L
[(

Θ(l),ΩN (t̄+N lt)
)
t>0

]
= L

[(
zk,Mk

−(k+1)
(t)
)
t>0

]
,

l < k : lim
N→∞

L
[(

Θ(l),ΩN (t̄+N lt)
)
t>0

]
= L

[(
zl,Mk

−(l+1)
(t)
)
t>0

]
,

in the Meyer-Zheng topology,

(4.88)

where the initial laws of the limiting processes are given by (see Fig. 4.9)

L
[
zk,Mk

−(k+1),x
(0)
]
= Γ

(k)

Mk
−(k+1)

,

L
[
zk,Mk

−(k+1),x
(0)
]
= Γ

(l)

Mk
−(l+1)

,

Γ
(l)

Mk
−(l+1)

=

∫
s

· · ·
∫
s

∫
s

Γ
(k)

Mk
−(k+1)

(duk)Γ
(k−1)
uk

(duk−1) · · ·Γ(l+1)
l+2 (du1)Γ

(l)
ul+1

(4.89)

Remark 4.4.5 (Convergence in the Meyer-Zheng topology). Note that The-
orem 4.4.4(b) is stated in the Meyer-Zheng topology. This topology is needed because
at time-scalesN lt rates occur in(4.24) that tend to infinity asN → ∞. In Section 4.4.4
we define the Meyer-Zheng topology and explain why it is neeeded. ■

The statement in (a) shows that if we look at multiple space-time scales simul-
taneously, then the joint distribution of the different block averages behaves like the
infinite-dimensional interaction chain defined in (4.77). The statement in (b) describes
the law of the path on different times scales.

� On time scale Nkt, the l-block averages with l > k are not moving, i.e.,
(Θ(l),ΩN (t̄ + Nkt))t>0 is a constant process. However, there is a difference
between seed-banks with colour m > k and seed-banks with colour 0 ≤ m ≤ k
in the way they interact with the active population. For m > k, even the m-
dormant single colonies have not yet moved at time t̄ + Nkt, and hence are
still in their initial states, with expectations (θym)∞m=l+1. Therefore, also the
l-block averages of m-dormant populations are still in their initial states, with
expectations (θym)∞m=l+1. For l ≤ k the m-dormant single colonies with m ≤ k

at time t̄+Nkt have already interacted with the active population. Due to this
interaction, for l > k the l-block averages ofm-dormant populations withm ≤ k
are in state ϑk instead of their initial state θym . However, on time scale t̄+Nkt
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l-block averages of m-dormant populations are not moving. (In Section 4.4.4
we explain how the shift from θym to ϑk occurs.) Also the l-block averages of
the active population are in state ϑk.

� On time scale t̄ + Nkt, the k-block averages have reached equilibrium. We
see that the active k-block average and the k-dormant k-block average evolve
together like the effective k-block process in Theorem 4.4.2. Therefore the evol-
ution of the active k-block average is slowed down by a factor Ek, the active
k-block feels a drift towards ϑk (the value of the active (k+1)-block average at
time t̄), resamples with diffusion function F (k)g, and exchanges individuals with
the k-dormant k-block. The k-dormant k-block average evolves only via inter-
action with the active k-block. The m-dormant k-block averages with colour
0 ≤ m < k equal the active k-block average and hence follow their evolution.
The m-dormant k-blocks with colour m > k are still in their initial states, since
on time scale t̄+Nkt even single colony seed-banks with colour m > k have not
yet started to interact with the active population.

� On time scale t̄ + N lt, for 0 ≤ l < k, the l-block averages are in a quasi-
equilibrium. Again, the active l-block and the l-dormant l-block average, which
is the effective seed-bank, behave as the effective process in 4.4.2. Hence, the
active l-block average feels a drift towards the instantaneous value of the active
(l + 1)-block average, which is given by the first component of the interaction
chainMk

−(l+1), resamples according to the renormalised diffusion function F (l)g,
and exchanges with the l-block of the l-dormant population. The evolution of
the active l-block average is slowed down by a factor El. The l-block of the
l-dormant population exchanges individuals with the active population. The
l-blocks of the m-dormant population with colours 0 ≤ m < l follow the active
population. The states of them-dormant population with colourm > l are given
by the corresponding components in the interaction chain Mk

−(l+1). Hence the
l-block averages with colours m > k are still in their initial states θym , because
on time scale t̄+N lt even the single dormant colonies with colour m > k have
not yet interacted with the active population. However, something interesting
is happening with the colours l < m ≤ k: they are in a state obtained on the
time scale in which they where effective, i.e., for l < m ≤ k the m-dormant
l-block average is in state ym,m(t̄ ). This happens because at time t̄ the single
colonies have already interacted with the active population, but on time scale
N lt they do not interact anymore with the active population. (Also this effect
will be further explained in Section 4.4.4.)

Remark 4.4.6 (Comparison to system without seed-bank). Comparing The-
orem 4.4.4 with the multi-scale limit theorems derived for the hierarchical system
without seed-bank [21], [20], [25], we see that the seed-bank affects the system both
quantitatively and qualitatively. First, the active population is slowed down by the
total size of the seed-banks it has interacted with, represented by the slowing-down
factors (El)l∈N0 . Second, the interaction with the effective seed-bank on each space-
time scale is special to the system with seed-bank. Still, the decoupling of the active
component and the renormalisation transformation for the diffusion function are sim-
ilar as in the system without seed-bank.
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Remark 4.4.7 (k → ∞ limit of the interaction chain). The result in (4.85)
raises the question how the hierarchical multi-scale limit behaves for large k. We find
the following dichotomy:

lim
k→∞

L
[
(Mk

−(k+1),−k,··· ,0)
]
= L [(M∞

k )k∈Z− ] , (4.90)

where in the clustering regime

L [(M∞
k )k∈Z− ] = θδ(1,1N0 )Z− + (1− θ)δ(0,0N0 )Z− (4.91)

and in the coexistence regime M∞ = (M∞
k )k∈Z− is a realisation of the unique entrance

law of the interaction chain at time −∞ with

lim
l→∞

M∞
−l = (θ, θ). (4.92)

In the latter case,M∞ corresponds to the equilibrium vector of block averages around
site 0, whose law agrees with that of the equilibrium block averages for the mean-field
model after we take the limit N → ∞ (see [25, Proposition 6.2 and 6.3]). ■

Remark 4.4.8 (Interaction field). Theorem 4.4.4 looks at the tower of block av-
erages over a fixed site, namely, 0. In order to study the cluster formation in the
clustering regime or the equilibria in the coexistence regime, we must analyse the de-
pendence structure between the towers of block averages over different sites. We can
show that, in the limit as N → ∞, an interacting random field emerges, indexed by a
tree with countably many edges coming out of every site at every level. This random
field has the property that the averages over any two points η, η′ with d(η, η′) = l,
follow a single interaction chain in equilibrium from k + 1 until l (or from −∞ until
l in the entrance law) and, conditional on the state in l, evolve independently as the
interaction chain beyond l. This corresponds to what is called propagation of chaos of
the (l−1)-block averages given the l-block average. For the model without seed-bank
such results are described in [25, Section 0(e)]. Using our results for the model with
seed-bank above, we can in principle follow an analogous line of argument. We refrain
from spelling out the details. ■

§4.4.4 Heuristics behind the multi-scale limit

The proofs of Theorems 4.4.2 and 4.4.4 written out in Sections 6.1–9, are long and
technical. In order to help the reader appreciate these proofs, we provide the heuristics
in this section.

• Evolution of the block-averages

Recall the block averages introduced in Definition 4.2.3 and their evolution defined
in (4.24). In the limit as N → ∞, we heuristically obtain from the SSDE in (4.24)
the following results for the k-block process

(xΩN

k (t), (yΩN

m,k(t))m∈N0
)t≥0. (4.93)
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� Migration. Recall that the migration is captured by the first term of the first
equation in (4.24), i.e., the first term of the evolution of the active part of the
population. Letting N → ∞, we see that in the sum over l only the term l = 1
contributes. Hence we expect that the effective migration felt by the active
k-block average is towards xΩN

k+1(0), the initial state of the active (k + 1)-block
average. Note that the migration term in (4.24) can be written as

∑
l∈N

ck+l−1

N l−1

[
xΩN

k+l(N
−lt)− xΩN

k (t)
]
=
∑
l∈N

ck+l−1

N l−1

 1

N l

N l−1∑
k=0

xΩN

k (t)− xΩN

k (t)

 .
(4.94)

The drift towards the (k+1)-block average is therefore also a drift towards the
current average of the k-blocks in the (k+1)-block. In the limit as N → ∞, the
latter can be approximated by E[xk(t)]. Effectively, as N → ∞, the k-blocks
become independent given the the value of xΩN

k+1(0), i.e., there is decoupling.

� Resampling. Recall that the diffusion term in the evolution equation of the
active population represents the resampling. Therefore we see that the active
k-block resamples at a rate that is the average resampling rate over the k-
block. For k = 1, the resampling rate of the 1-block is the average of the
resampling ratse of the single colonies. Therefore, in the limit N → ∞, due to
the decoupling described above, we expect that the resampling rate for the 1
block is given by E[g], where the expectation is w.r.t. the quasi-equilibrium of the
single colonies. This expectation is exaclty the renormalised diffusion function
Fg (see (4.75)). For the k-block, we may interpret the diffusion function to
be the average of the diffusion function for the (k − 1)-blocks. By “induction”
we assume that the (k − 1) blocks resample at rate F (k−1)g. Hence, due to
the decoupling of the (k − 1)-blocks as N → ∞, we expect the resampling
rate for the k blocks to equal E[F (k−1)g], where the expectation is w.r.t. the
quasi-equlibrium of the (k − 1)-blocks. This yields another iteration of the
renormalisation transformation (see (4.76)). Hence, we expect the diffusion
function for the k-blocks to converge to F (k)g.

� Exchange with the seed-bank. Recall that the last term of the first equation
in (4.24) and the second equation in (4.24) together describe the exchange of the
active k-block with the m-dormant k-block. To describe the limiting behaviour
as N → ∞, we distinguish three cases: 0 ≤ m < k, m = k, m > k.

– If 0 ≤ m < k, then we see that the rate of exchange between the active
k-block and the m-dormant k-block tends to infinity as N → ∞. We
therefore expect them to equalise, i.e.,

lim
N→∞

L
[(
xΩN

k (t)− yΩN

m,k(t)
)
t>0

]
= δ0, (4.95)

where 0 should be interpreted as the process equal to 0, (0)t>0. Hence we
see that m-dormant k-block follows the active k-block immediately. (To
formalise this fact, we need the Meyer-Zheng topology [59].)

– If m = k, then there is a non-trivial exchange between the active k-block
and the k-dormant k-block.
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– If m > k, then the exchange rate between the active k-block and the m-
dormant k-block tends to zero as N → ∞.

Thus, only the k-dormant k-block has a non-trivial interaction with the active
k-block. We express this by saying that on space-time scale k the k-dormant
population plays the role of the effective seed-bank.

• Limiting evolution of the block-averages

To determine the limiting evolution of the full block-averages process, we first have a
look at the limiting evolution of the effective process.

The effective process. To determine the limit as N → ∞ of (4.24), we need
to get rid of the diverging rates. Instead of only looking at the k-block process
(xΩN

k (t), (yΩN

m,k(t))m∈N0
)t≥0, which evolves according to (4.24), we look at the effective

k-block process defined as (
x̄ΩN

k (t), yΩN

k,k (t)
)
t≥0

, (4.96)

where we abbreviate

x̄ΩN

k (t) =
xΩN

k (t) +
∑k−1
m=0Kmy

ΩN

m,k(t)

1 +
∑k−1
m=0Km

. (4.97)

By (4.95) and the heuristic discussion given above, the process in (4.96) equals
(xΩN

k (t), yΩN

k,k (t))t≥0 in the limit as N → ∞, i.e., it describes the joint distribution
of the active k-block and the effective dormant k-block, which is the k-dormant k-
block. Using (4.24), we see that the process in (4.96) evolves according to the SSDE

dx̄ΩN

k (t) = Ek
∑
l∈N

ck+l−1

N l−1

[
xΩN

k+l(N
−lt)− xΩN

k (t)
]
dt

+ Ek

√√√√ 1

Nk

∑
ξ∈Bk(0)

g(xξ(Nkt)) dwk(t)

+ Ek

∞∑
m=k

NkKmem
Nm

[
yΩN

m,k(t)− xΩN

k (t)
]
dt,

dyΩN

k,k (t) = ek
[
xΩN

k (t)− yΩN

k,k (t)
]
dt.

(4.98)

In (4.98) no infinite rates appear anymore. In the limit as N → ∞, by (4.95) we can
approximate

xΩN

k (t) ≈ yΩN

m,k(t), 0 ≤ m < k, (4.99)

such that

xΩN

k (t) ≈ x̄ΩN

k (t). (4.100)
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We can therefore approximate (4.98) by

dx̄ΩN

k (t) = Ek
∑
l∈N

ck+l−1

N l−1

[
x̄ΩN

k+l(N
−lt)− x̄ΩN

k (t)
]
dt

+ Ek

√√√√ 1

Nk

∑
ξ∈Bk(0)

g
(
x̄ξ(Nkt)

)
dwk(t)

+ Ek

∞∑
m=k

NkKmem
Nm

[
yΩN

m,k(t)− x̄ΩN

k (t)
]
dt,

dyΩN

k,k (t) = ek
[
x̄ΩN

k (t)− yΩN

k,k (t)
]
dt.

(4.101)

Hence, in the limit as N → ∞, the process in (4.96) becomes autonomous. Moreover,
assuming that limN→∞ x̄ΩN

l+1(0) = ϑl, we see that (4.101) approaches the effective
process defined in (4.69), with

θ = ϑl, E = Ek, c = ck, e = ek, K = Kk, g = F (k)g. (4.102)

In particular, we see that the slowing-down constant Ek arises because the active
population is the only part of the first component of (4.96). Note that therefore only
a part, the active part, from the first component migrates, resamples and exchanges
with the seed-bank. Due to the infinite rates, the active population “drags along all
the fast seed-banks with total size

∑k−1
m=0Km”. This causes the slowing down factors

Ek.

Since there are no infinite rates in the evolution of the effective process, we can use
the classical path space topology. This allows us in the proof in Sections 6.1–9 to build
on techniques developed for the hierarchical mean-field model without seed-bank in
[20], [25]. It turns out that the effective process is very useful in our analysis.

From the effective process to the full process. For large N , by (4.99) and
(4.100), the evolution of our original process (xΩN

k (t), (yΩN

m,k(t))m∈N0)t≥0 can be ap-
proximated by

dx̄ΩN

k (t) ≈ Ek
∑
l∈N

ck+l−1

N l−1

[
x̄ΩN

k+l(N
−lt)− x̄ΩN

k (t)
]
dt

+ Ek

√√√√ 1

Nk

∑
ξ∈Bk(0)

g(x̄ξ(Nkt)) dwk(t)

+ Ek

∞∑
m=k

NkKmem
Nm

[
yΩN

m,k(t)− x̄ΩN

k (t)
]
dt,

yΩN

k,k (t) = x̄ΩN

k (t),

dyΩN

k,k (t) = ek
[
x̄ΩN

k (t)− yΩN

k,k (t)
]
dt,

yΩN

k,k (t) = yΩN

m,k(0).

(4.103)
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By the ergodic theorem for exchangeable measures, we can assume that

lim
N→∞

x̄ΩN

k+1(0) = ϑk a.s. (4.104)

We expect that (4.103) approaches (4.67) with

θ = ϑk, E = Ek, c = ck, e = ek, K = Kk, g = F (k)g. (4.105)

To prove that

lim
N→∞

L[yΩN

m,k(t)] = lim
N→∞

L[x̄ΩN

k (t)], 0 ≤ m < k − 1, (4.106)

we need the Meyer-Zheng topology explained in Section 4.4.1. In the proof in Sec-
tions 6.2–9 we show how the above approximations can be made rigorous.

Conserved quantities. Note that, by (4.24) and (4.94), for each k ∈ N0

E

[
xΩN

k (t) +
∑
m∈N0

Kmy
ΩN

k (t)

1 +
∑
m∈N0

Km

]
= θ, t ≥ 0, (4.107)

is a conserved quantity. For each k ∈ N we obtain that for l ≥ k

lim
N→∞

E

[
xΩN

k (t) +
∑l
m=0Kmy

ΩN

k (t)

1 +
∑l
m=0Km

]
= ϑl, (4.108)

is a conserved quantity. For the effective process, (4.101) implies that

d

dt
E[x̄ΩN

k (t)] = EkKkek

(
E[yΩN

k,k (t)]− E[x̄ΩN

k (t)]
)
,

d

dt
E[yΩN

k,k (t)] = ek

(
E[x̄ΩN

k (t)]− E[yΩN

k,k (t)]
)
.

(4.109)

Recall that

E[x̄ΩN

k (0)] = E

[
xΩN

k (0) +
∑k−1
m=0Kmy

ΩN

m,k(0)

1 +
∑k−1
m=0Km

]
= ϑk−1, E[yΩN

k,k (0)] = θyk . (4.110)

Therefore we can solve (4.109) explicitly as

E[x̄ΩN

k (t)] = ϑk +
EkKk

1 + EkKk
(ϑk−1 − θyk) e

−(EkKk+1)ekt,

E[yΩN

k,k (t)] = ϑk −
1

1 + EkKk
(ϑk−1 − θyk) e

−(EkKk+1)ekt.

(4.111)

The above computation shows what happens to E[x̄ΩN

k (t)] if we move one space-
time scale up in the hierarchy, namely, a new seed-bank starts interacting with the
active population. This causes that ϑk−1 is pulled a bit towards θyk , so that also

E[x̄ΩN

k (t)] changes a bit. Each new seed-bank that opens up changes the expectation
of the active population, which results in the sequence (θx, ϑ0, ϑ1, ϑ2, . . .) for the
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expectation of the active population on space-time scales {0, 1, 2, 3, · · · }. From (4.94)
we see that the drift of x̄ΩN

k (t) is towards

x̄ΩN

k+1(N
−1t) =

1

Nk

Nk−1∑
k=0

xΩN

k (t) ≈ E[x̄ΩN

k (t)], (4.112)

where the last approximation can be made because the k-blocks decouple. Hence, in
the limit as N → ∞, once the k-blocks are in a quasi-equilibrium we can replace the
drift towards x̄ΩN

k+1(N
−1t) by a drift towards E[x̄ΩN

k (t)] = ϑk.

Shifting averages. Recall the full estimator process (Θ(l),ΩN (t))t>0 defined in
(4.71). Equation 4.23 implies that the evolution of the estimator process is given
by

dΘ(l),ΩN
x (t) =

∞∑
n=l+1

cn−1

Nn−1
[Θ(n),ΩN
x (t)−Θ(l)

x (t)] dt

+

√
1

N2l

∑
ξ∈Bl

g
(
xξ(t)

)
dw(t)

+
∑
m∈N0

Kmem
Nm

[Θ(l),ΩN
ym (t)−Θ(1),ΩN

x (t)] dt,

dΘ(l),ΩN
ym (t) =

em
Nm

[Θ(l),ΩN
x (t)−Θ(l),ΩN

ym (t)] dt, m ∈ N0.

(4.113)

Looking at the estimator process (Θ(l),ΩN (t))t>0 on time scale Nkt, we see that

dΘ(l),ΩN
x (Nkt) =

∞∑
n=l+1

cn−1

Nn−1−k

[
Θ(n),ΩN
x (Nkt)−Θ(l),ΩN

x (Nkt)
]
dt

+

√√√√Nk

N2l

∑
ξ∈Bl

g
(
xξ(Nkt)

)
dw(t)

+
∑
m∈N0

Kmem
Nm−k

[
Θ(l),ΩN
ym (Nkt)−Θ(l),ΩN

x (Nkt)
]
dt,

dΘ(l),ΩN
ym (Nkt) =

em
Nm−k

[
Θ(l),ΩN
x (Nkt)−Θ(l),ΩN

ym (Nkt)
]
dt, m ∈ N0.

(4.114)

From (4.114) we get that, on time scale Nkt, for all l ≥ k + 1,

Θ(l),ΩN (Nkt) =
Θ

(l),ΩN
x (Nkt) +

∑l−1
m=0KmΘ

(l),ΩN
ym (Nkt)

1 +
∑l−1
m=0Km

, t ≥ 0, (4.115)

is a conserved quantity in the limit as N → ∞, and for t ≥ 0,

lim
N→∞

Θ(l),ΩN (Nkt) =
θx +

∑l−1
m=0Kmθym

1 +
∑l−1
m=0Km

= ϑl, in probability. (4.116)
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For m > k, also Θ
(l),ΩN
ym (Nkt) is a conserved quantity, and

lim
N→∞

Θ(l),ΩN
ym (Nkt) = θym , t ≥ 0. (4.117)

However, for l ≥ k+1, Θ
(l),ΩN
x (Nkt) and (Θ

(l),ΩN
ym (Nkt))km=0 are not conserved quant-

ities in the limit as N → ∞. Note that from 4.24 we heuristically see that the full
l-block estimator process (Θ(l),ΩN (Nkt))t≥0 with l > k converges to the process(

Θ(l)
x (t),

(
Θ(l)
ym(t)

)
m∈N0

)
t>0

, (4.118)

which evolves according to

dΘ(l)
x (t) = Ek−1Kkek[Θ

(l)
yk
(t)−Θ(l),ΩN

x (t)] dt,

Θ
(l)
ym(t) = Θ

(l)
x (t), m < k,

dΘ
(l)
yk (t) = ek[Θ

(l)
x (t)−Θ

(l)
yk (t)] dt, m = k,

Θ
(l)
ym(t) = θym , m > k.

(4.119)

This system can be explicitly solved as

Θ(l)
x (t) =

Θ
(l)
x (0) + Ek−1KkΘ

(l)
yk (0)

1 + Ek−1Kk

+
Ek−1Kk

1 + Ek−1Kk
[Θ(l),ΩN
x (0)−Θ(l)

yk
(0)] e−(Ek−1Kkek+ek)t,

Θ
(l)
ym(t) = Θ

(l)
x (t), m < k,

Θ
(l)
yk (t) =

Θ(l)
x (0)+Ek−1KkΘ

(l)
yk

(0)

1+Ek−1Kk

− 1
1+Ek−1Kk

[Θ
(l),ΩN
x (0)−Θ

(l)
yk (0)] e

−(Ek−1Kkek+ek)t, m = k,

Θ
(l)
ym(t) = θym , m > k.

(4.120)
The latter shows that, each time we enter a new space-time scale, all the large active
blocks interact with the large effective dormant blocks until they equalise. Thus, on
each space-time scale, all the active l-blocks and the dormant l-blocks of colour m ≤ l

move for a short period of time. As a consequence, the value of Θ
(l)
x (0) depends on

the scaling we choose. To illustrate this, we note that

lim
N→∞

Θ(l),ΩN
x (0) = θx,

lim
N→∞

Θ(l),ΩN
x (L(N) + t) = ϑ0,

lim
N→∞

Θ(l),ΩN
x ((L(N)Nn +Nnt)) = ϑn, 0 ≤ n ≤ k.

(4.121)

Hence under the scaling Nkt the limN→∞
L(N)Nn+Nnt

Nk = 0 and therefore for consist-
entcy one would like to have

lim
N→∞

Θ(l),ΩN
x (0) = lim

N→∞
Θ(l),ΩN
x

(
NkL(N) + t

Nk

)
= lim
N→∞

Θ(l),ΩN
x

(
NkL(N)Nn +Nnt

Nk

)
0 ≤ n ≤ k,

(4.122)
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but this contradicts with (4.121). Hence, if (t(N))N∈N is a sequence such that
limN→∞Nkt(N) = 0, then the value of the limit

lim
N→∞

Θ(l),ΩN
x (Nkt(N)) (4.123)

depends on (t(N))N∈N. Moreover, to obtain a limiting process for (Θ(l),ΩN (Nkt))t≥0

we need convergence also at time 0, while it is not clear what Nkt ↓ 0 means. To
circumvent these subtleties, we look at the process at times t > 0 and use as starting
time t̄ defined in Theorem 4.4.2.

From (4.120) it follows that, for l ≥ k,

lim
N→∞

Θ(l),ΩN
x (t̄ ) = ϑk, in probability,

lim
N→∞

Θ(l),ΩN
ym (t̄ ) = ϑk, m ≤ k, in probability,

lim
N→∞

Θ(l),ΩN
ym (t̄ ) = θym , m > k in probability.

(4.124)

Note that the shifting of averages mentioned earlier is closely related to the conserved
quantities discussed in Section 4.4.4 because, for large N ,

lim
N→∞

Θ(l),ΩN
x (t̄ ) ≈ E[xΩN

k ], (4.125)

where the expectation is taken in the quasi-equilibrium the k-blocks have attained
after scaling with time t̄.

• Formation of the interaction chain

In Section 4.4.4 we saw how subsequent space-time scales are connected via the mi-
gration term. In this section we show how the interaction chain arises from this
connection. We first show how the effective interaction chain arises for the effective
process. Then we show how the full interaction chain is formed, by studying the slow
seed-banks.

Connections between different space-time scales Let t̄ be as in Theorem 4.4.2.
From (4.113) it follows that the process (Θ(l),ΩN (t̄+N lt))t>0 evolves according to

dΘ(l),ΩN
x (t̄+N lt) =

∞∑
n=l+1

cn−1

Nn−1−l [Θ
(n),ΩN
x (t̄+N lt)−Θ(l)

x (t̄+N lt)] dt

+

√
1

N l

∑
ξ∈Bl

g
(
xξ(t̄+N lt)

)
dw(t)

+
∑
m∈N0

Kmem
Nm−l [Θ

(l),ΩN
ym (t̄+N lt)−Θ(1),ΩN

x (t̄+N lt)] dt,

dΘ(l),ΩN
ym (t̄+N lt) =

em
Nm−l [Θ

(l),ΩN
x (t̄+N lt)−Θ(l),ΩN

ym (t̄+N lt)] dt, m ∈ N0.

(4.126)
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Therefore, in the limit as N → ∞, the active population Θ
(l),ΩN
x (t̄+N lt) feels a drift

towards the (l + 1)-block average Θ
(l+1),ΩN
x (t̄+N l+1t). If l = k, then

lim
N→∞

L[Θ(k+1),ΩN (t̄+Nkt)] = lim
N→∞

L[Θ(k+1),ΩN (t̄)], (4.127)

since the (k + 1)-block has not yet started to move at time t̄+Nkt. From (4.124) it
follows that

lim
N→∞

Θ(k+1),ΩN
x (t̄+Nkt) = ϑk in probability. (4.128)

Therefore the drift of the active population Θ
(l),ΩN
x (t̄ + N lt) is towards ϑk. Since

t̄ > L(N)Nk, the process Θ(k),ΩN (t̄+Nkt) has, in the limit N → ∞, already reached
its equilibrium, which is denoted by Γϑ̄k

, where

ϑ̄k = (ϑk,

k+1 times︷ ︸︸ ︷
ϑk, · · · , ϑk, θyk+1

, θyk+2
, · · · ), (4.129)

so that we recognise (ϑ̄k) = Mk
−(k+1). From (4.124) with l = k + 1 we see that

(ϑ̄k) =Mk
−(k+1) represents the state of Θ(k+1),ΩN (t̄).

If we look on time scale t̄ + Nk−1t, then we see that the active (k − 1)-block
averages feels a drift towards the active k-block average. The active k-block does not
move on time scale Nk−1, but it has already moved at time t̄. At time t̄ the active

k-block has even reached its quasi-equilibrium, given by Γ
(k)
ϑk

. Thus, the drift of the
active (k − 1)-block average is towards the instantaneous state of the active k-block

average, which has distribution Γ
(k)

ϑ̄k
. This explains the first step in the interaction

chain.
For 0 ≤ l < k, the active l-block average feels a drift towards the (l + 1)-block

average. The latter does not evolve on time scaleN lt, but it has already moved at time

t̄. Therefore it is no longer in its initial state, but in a quasi-equilibrium Γ
(l+2)
u , where

u is the value of the active (l+1)-block averages determined via the interaction chain,
recall Figure 4.9. This explains how the different space-time scales are connected via
the active block averages. The states of the different seed-bank averages is a little bit
more complicated. Below we give a very short heuristic explanation of the different
seed-banks in the interaction chain.

For the effective process (Θeff,(l),ΩN (t))t>0 instead of the full process (Θ(l),ΩN (t))t>0,
we can consider in (4.113) only the active block average and the effective seed-bank
average with m = l (recall that the full block average equals the active block average).

According to the above explanation, we have to replace Γ
(k)

ϑ̄k
by Γ

eff,(k)
ϑk

and Γ
(l)
u by

Γ
eff,(l)
u . Hence we find the effective interaction chain defined in (4.80) and depicted in

Figure 4.8.

Slow seed-banks. From (4.124) we see that if l ≥ k and we use the scaling t̄,
then all l-blocks of seed-banks with colour 0 ≤ m ≤ k equal ϑk, and all l-blocks of
seed-banks with colour m > k equal their initial values θym . Something interesting
happens when we choose 0 ≤ l < k and use the scaling t̄+N lt. The single colonies of
seed-banks with colour 0 ≤ m < l on time scale t̄+N lt follow the active population,
and hence their l-block averages equal the l-block average of the active population.

169



4. Models and main results

C
h
a
p
t
e
r
4

The l-block average of the seed-bank with colour l has a non-trivial interaction with
the active l-block. The l-blocks of seed-banks with colour m > k have not yet moved
and hence are still in their initial states (θym)∞m=k+1. However, (4.126) implies that
the single colonies of the seed-banks with colour k ≥ m > l are not moving on time
scale t̄+N lt, even though they had already moved at time t̄. Therefore the l-blocks
averages of seed-banks with colour l < m ≤ k are no longer in their initial state at
time t̄. Note that they are also not in the state ϑk, since this is the state of their
k-block averages and not of their l-block averages. The single colony seed-banks with
colour l < m ≤ k are in the state given by

ym,0(t̄ ) =

∫ t̄

0

ds
em
Nm

[x0(s)− ym,0(s)]. (4.130)

Hence, for large N ,

ym,0(t̄) ≈
∫ L(N)Nk+Nktk+···+Nmtm

0

ds
em
Nm

[x0(s)− ym,0(s)]. (4.131)

Similarly, for the l-block average with colour m we have

Θ(l),ΩN
ym (t̄ ) =

∫ t̄

0

ds
em
Nm

[Θ(l),ΩN
x (s)−Θ(l),ΩN

ym (s)]

≈
∫ L(N)Nk+Nktk+···+Nmtm

0

ds
em
Nm

[Θ(l),ΩN
x (s)−Θ(l),ΩN

ym (s)].

(4.132)

Thus, we see that the state of Θ
(l),ΩN
ym (t̄) is completely determined at time L(N)Nk+

Nktk+ · · ·+Nmtm, i.e., the last time before t̄+N lt that the single colony seed-banks
of colour m had an opportunity to move. Up to time L(N)Nk +Nktk + · · ·+Nmtm,
the single colony seed-banks with colour m interact at a very slow rate with the active
single colonies, and similarly for the l-blocks. Therefore effectively the colour-m seed-
bank interacts with a “time-average on scale Nmtm” of the active population. On
time scale Nmtm, a single active colony migrates very fast in its (m− 1)-block. As a
consequence at time t̄+Nmtm individuals that start from a particular colony, e.g. site
0, are spread uniformly over the m-block containing this site. Hence the interaction of
a single m-dormant colony with the active population can be intuitively interpreted
as an interaction with the active m-block, and similarly for an m-dormant l-block.
Once we move to lower time scales, the m-dormant single colonies do not interact
with the active colony anymore. In the detailed proofs we show that one consequence
of this is that, for l < m,

Θ(l),ΩN
ym (t̄+N lt) ≈ Θ(l),ΩN

ym (L(N)Nk +Nktk + · · ·+Nmtm)

≈ Θ(m),ΩN
ym (L(N)Nk +Nktk + · · ·+Nmtm).

(4.133)

Thus, the l-block averages of colours l ≤ m ≤ k equal the state of the corresponding
m-block. This is the (m+ 2)-th component of the interaction chain at level l.

Conclusion. Combining the intuitive descriptions in Sections 4.4.4-4.4.4, we see
how Theorems 4.4.2 and Theorems 4.4.4 come about. Their proofs will rely on coup-
ling techniques and a detailed analysis of the SSDEs. This analysis will be done in
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several steps. In Sections 6.1–6.3 we first deal with a simplified system, the mean-field
model, for which we derive the McKean-Vlasov limit and the mean-field finite-systems
scheme. In Sections 7–9 we extend our analysis to finitely many hierarchical levels.
In particular, we go through the following list of systems of increasing complexity,
each being a simplified version of the system defined by (4.19) and each capturing a
key feature:

(a) Two-colour mean-field finite-systems scheme (Section 7.1).

(b) Two-level hierarchical mean-field system (Section 8.1).

(c) Finite-level mean-field system (Section 9.1).

In Section 9 we put the pieces together to prove the multi-scaling for the infinite-level
system given in Theorems 4.4.2 and 4.4.4.

§4.5 Main results N → ∞: Orbit and cluster forma-
tion

In the hierarchical mean-field limit we say that the system clusters when the colonies
gradually form larger and larger mono-type blocks. In Section 4.5.1 we determine
whether, in the hierarchical mean-field limit, the system clusters along successive
space-time scales. How this happens is captured by the interaction chain. We intro-
duce a sequence of scaling factors (Ak)k∈N0 , where Ak is defined in terms of the rates
(ck)k∈N0 , (ek)k∈N0 , (Kk)k∈N0 and the factors (Ek)k∈N0 . Using these scaling factors,
we analyse the orbit of the renormalisation transformation and establish universality :
AkF (k)g converges as k → ∞ to the Fisher-Wright diffusion function, irrespective of
the choice of g. In Section 4.5.2 we show how the scaling factors Ak are connected to
the growth of mono-type clusters. In Section 4.5.3 we identify the asymptotics of Ak
as k → ∞ in terms of the model parameters.

§4.5.1 Orbit of renormalisation transformations

To determine whether clustering occurs, we start from larger and larger time scales
and use the interaction chain to see whether mono-type clusters are formed in the
single colonies. Recall the kernels introduced in (4.79) that describe the connection
between subsequent hierarchical levels in the interaction chain. Define the following
composition of kernels (see Fig. 4.10):

Q(n) = Q[n] ◦ · · · ◦Q[0], n ∈ N. (4.134)

In words, Q(n)(zn,dz0) is the probability density to see the population of a single
colony in state z0 given that the (n+ 1)-block average equals zn.

In Section 4.3 we identified the clustering regime for fixed N <∞. In this section
we identify the clustering regime in the hierarchical mean-field limit. In the clustering
regime, in the hierarchical mean-field limit, an interesting question is to determine
how F (n)g (recall (4.76)) scales with n. We identify the scaling and show that it does
not depend on g (see Fig. 4.11).
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n− 1

n

n+ 1

0

1

Q(n) (zn+1, dz0)

Q[n] (zn+1, dzn)

Q[n−1] (zn, dzn−1)

Q[0] (z1, dz0)

k − 1

k

k + 1

Dk−1

Dk

Dk+1

0

1

0

1 1

0

F (k−1)g

F (k)g

F (k+1)g

Fg

g

Figure 4.10: Left: The interaction chain that connects successive hierarchical levels down-
wards. The arrows on the right correspond to (4.79), the arrow on the left corresponds to
(4.134). Right: The renormalisation transformation that connects successive hierarchical
levels upwards. The vertical arrows correspond to (4.76). The horizontal arrows represent
the interaction with the effective seed-bank. The arrows on the left represent the resampling
driven by the renormalised diffusion function.

To state the clustering result, abbreviate

ϑ̄(n) = (ϑn,

n+1 times︷ ︸︸ ︷
ϑn, · · · , ϑn, θyn+1

, θyn+2
, · · · ). (4.135)

Theorem 4.5.1 (Renormalised scaling). Let ck be as in (4.5), ek and Kk as in
(4.10) and Ek as in (4.64). Define

An =
1

2

n−1∑
k=0

Ek
ck

(Ekck + ek)

(Ekck + ek) + EkKkek
, n ∈ N. (4.136)

Then
lim
n→∞

Q(n)
(
ϑ̄(n), ·

)
= (1− θ) δ(0,0N0 ) + θ δ(1,1N0 ) (4.137)

if and only if
lim
n→∞

An = ∞. (4.138)

Moreover, if (4.138) holds, then for all g ∈ G,

lim
n→∞

AnF (n)g = gFW pointwise, (4.139)

with gFW(x) = x(1− x), x ∈ [0, 1].

The proof of Theorem 4.5.1 is given in Section 10. The scaling factors An can be
interpreted as clustering coefficients: in Section 4.5.2 we will show that the faster the
An grow to infinity, the faster we expect to see clusters grow. The property in (4.137)
corresponds to the clustering regime. According to (4.139), even though An depends
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on the choice of the sequences K, e, c in (4.5) and (4.10), the limit AnF (n)g as n→ ∞
is universal : irrespective of the choice of g ∈ G, the limit is the standard Fisher-Wright
diffusion function gFW. Thus, gFW is the global attractor of the renormalisation
transformation (see Fig. 4.11).

s

s
s s

s

s
g

A1F (1)g

A2F (2)g A3F (3)g

A4F (4)g

gFW

Figure 4.11: Flow of the iterates F (n)g, n ∈ N0, of the renormalisation transformation acting
on the class G. After multiplication by An, the flow is globally attracted by gFW.

§4.5.2 Growth of mono-type clusters

In the clustering regime we are interested in how fast mono-type clusters grow in
space over time. For the system on Zd and ΩN without seed-bank the growth rate
has been studied in detail. Different growth rates were found for strongly recurrent
and critically recurrent migration. Typical examples on ΩN are migrations with
coefficients ck = ck with c ∈ (0, 1), respectively, ck = C with C ∈ (0,∞). Typical
examples on Z, respectively, Z2 are migrations with zero mean and finite variance.
For these models the following behaviour occurs.

� In the strongly recurrent case, mono-type clusters grow fast and cover a volume
that increases at time t at a rate that is given by the Green function up to
time t of the underlying random walk, times a certain random constant that
can be determined explicitly and that is independent of the diffusion function
g ∈ G [33], [51]. The cluster growth is monitored by considering families of balls
growing in time at such a speed that, starting from a translation invariant and
ergodic initial state, the mean of the configuration in the ball is still close to
the starting mean but begins to move. Fast clustering means that the cluster
covers multiples of a scale that eventually lies in every finite family of balls with
the above property.

� In the critically recurrent case, the volume grows only moderately fast, like
N (1−U)t as t → ∞, with U ∈ [0, 1] a random variable. In other words, the
cluster sizes have random orders of magnitude, an effect known as diffusive
clustering. For ck = C ∈ (0,∞), k ∈ N0, the distribution of U can be identified
by studying the fraction of active individuals of type 1 in a ball of size N (1−u)t,
which can be shown to converge to V (log 1

1−u ) as t → ∞ with (V (s))s≥0 the
standard Fisher-Wright diffusion, irrespective of the choice of g ∈ G [35], [36].
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� For more general migration it is possible that mono-type clusters grow slower
than any positive power of t as t → ∞. This occurs for recurrent migration in
which the Green function up to time t grows like o(log t). For this regime only
few results are available [25].

From the perspective of explaining universality in g ∈ G in the hierarchical mean-
field limit N → ∞, the above type of behaviour has been studied in detail in [25] and
[41] for the Fleming-Viot model, respectively, the Cannings model without seed-bank.
The renormalisation analysis for the model with seed-bank allows us to study how
the seed-bank affects the cluster growth. In what follows we give a sketch of three
regimes of cluster growth.

Types of clustering. If a ball in ΩN lies in a mono-type cluster, then the block
average of the active and the dormant components in this ball are all close to either 0
or 1. We can therefore analyse the growth rate of mono-type clusters by analysing at
which hierarchical level block averages hit 0 or 1 in the limit as N → ∞. To that end,
we look at the interaction chain Mk

−l(k) for k → ∞, where the level scaling function

l : N0 → N0 is non-decreasing with limk→∞ l(k) = ∞ and is suitably chosen such that
we obtain a non-trivial clustering limiting law, i.e.,

lim
k→∞

L
[
Mk

−l(k)
]
= L

[
θ̂
]
, (4.140)

where the limiting sequence of random frequencies θ̂ satisfies

0 < P
(
θ̂ ∈ {0N0 , 1N0}

)
< 1. (4.141)

In line with [25] and [22], in order to analyse the growth of mono-type clusters on
multiple space-time scales in the hierarchical mean-field limit, it is natural to consider
a family of non-decreasing functions lχ : N0 → N0, χ ∈ I ⊆ [0,∞), called the cluster
scales, satisfying (4.140)–(4.141):

(1) Fast clustering: limk→∞ lχ(k)/k = 1 for all χ ∈ I.

(2) Diffusive clustering: limk→∞ lχ(k)/k = κ(χ) for all χ ∈ [0, 1], where χ 7→ κ(χ)
is continuous and non-increasing with κ(0) = 1 and κ(1) = 0.

(3) Slow clustering: limk→∞ lχ(k)/k = 0 for all χ ∈ I. (This regime borders with
the regime of coexistence.)

We write (M∞
χ )χ∈I with M∞

χ = limk→∞Mk
−lχ(k) to denote the cluster process.

Remark 4.5.2. Examples are:

(1) I = N0, lχ(k) = k − χ.

(2) I = [0, 1], lχ(k) = ⌊(1− χ)k⌋.

(3) I = [0, 1], lχ(k) = ⌊L(k1−χ)⌋ with L(0) = 0, L non-decreasing and sublinear.
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In words, the clusters cover blocks of level: (1) k−χ; (2) ⌊(1−χ)k⌋; (3) L(k1−χ). For
the model without seed-bank and with migration coefficients ck = ck with c ∈ (0, 1),
case (1) is realised with a Markov chain (M∞

l )l∈N0 as scaling limit, while for ck = C,
case (2) is realised with a time-transformed Fisher-Wright diffusion in χ as scaling
limit. (For finite N , this corresponds to the first and the second example given in the
first paragraph of this section.) For the model without seed-bank, these scales have
been shown to satisfy the required conditions. Case (3) also appears for the model
without seed-bank, but detailed information on scales and scaling limits is lacking. As
we will see below, seed-banks can slow down cluster growth, so case (3) is worthwhile
to be studied in more detail. ■

Recall (4.136). Fast clustering corresponds to Ak ≫ k, diffusive clustering to
Ak ≍ k, and slow clustering to Ak ≪ k for large k. Theorem 4.5.3 below shows that,
subject to (4.52) and (4.53), all three regimes are possible for the model with seed-
bank. The regimes are the same as for the model without seed-bank when ρ < ∞,
but different when ρ = ∞.

For systems without seed-bank, examples of the three types of clustering can be
found in the literature: diffusive clustering in [2], [16] (voter model on Z, respectively,
Z2) and in [20], [35], [25], [51] (interacting Fleming-Viot processes on ΩN withN <∞,
respectively, N → ∞), all types of clustering in [22], [52] , [71] (interacting Feller
diffusions on ΩN with N → ∞) and in [41], [42] (interacting Cannings processes on
ΩN in non-random and random environment with N → ∞).

For the model with seed-bank we have to use the asymptotics of (Ak)k∈N to identify
the set I and the family (lχ(·))χ∈I , and show that (Mk

−lχ(k))χ∈I converges as k → ∞
to a Markov process, which we want to identify.

Computations. In the following we demonstrate how we can carry out the above
task. The key idea is to study first and second moments of the interaction chain, as
well as sums of variances in order to get a handle on the quadratic variation process.
To that end we calculate

V k−l = the conditional variance of the active part of Mk
−l given M

k
−(l+1) (4.142)

and consider the sum of random variables Ak,n =
∑

−(k+1)≤−l≤−n V
k
−l, n ∈ N0. In

order for the system to cluster, we must have limk→∞Ak,n = 0 for every n ∈ N0. The
volatility profile is given by

(pχ(k))χ∈[0,1], pχ(k) = Ak,lχ(k)/Ak,0. (4.143)

This profile is a random variable that depends on the interaction chain up toMk
−lχ(k).

Since Ak,lχ(k) = Ak,0 − Alχ(k)−1,0, we have pχ(k) = (Ak,0 − Alχ(k)−1,0)/Ak,0. For
diffusive clustering, for instance, we want to show that

lim
k→∞

pχ(k) = 1− κ(χ), χ ∈ [0, 1], (4.144)

while for fast clustering the limit is 0 and for slow clustering the limit is 1. From
(4.139) we know that the scaled renormalised diffusion function AnF (n)(g) tends to
the standard Fisher-Wright diffusion function as n → ∞. Since the latter hits the
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boundary {0, 1} after some finite time, the coefficients An describe the speed at which
the interaction chain hits this boundary. We next make this idea precise and show
how it can be used to obtain information about the growth of mono-type clusters.

The kernels defined in Section 4.5.1 allow us to compute the first and second
moments of all the block averages, which will be done in Section 10.1 (Propositions
10.1.1–10.2.2). In particular, using the interaction chain starting between at −n and
running until −m with −n < −m ≤ 0, and considering the m-block averages on time
scale Nmt in the limit N → ∞, we find that the variance of the active component xnm
of Mn

−m equals

Var(xnm) = E
[
(xnm − ϑn)

2
]
= Anm(F (n+1)g)(ϑn), (4.145)

where

Anm =
1

2

n∑
k=m

Ek
ck

(Ekck + ek)

(Ekck + ek) + EkKkek
. (4.146)

(Note that An = An−1
0 .) On the other hand, since xnm ∈ (0, 1) we have Var(xnm) ∈

(0, 1) and Anm(F (n+1))(ϑn) ∈ (0, 1). Taking m = 0, we get (F (n+1)g)(ϑn) ∈ (0, 1
An

0
).

This implies that

(F (n+1)g)(ϑn) =

∫
[0,1]2

(Fmg)(xm)Q(n)
m ((ϑn, θy,n),dzm) ∈

(
0, 1

An
0

)
. (4.147)

Since limn→∞An(F (n+1)g) = gFW, for large enoughm,n we can approximate F (m)g ≈
gFW/A

m
0 . Therefore∫

gFW
Am0

(xm)Q(n)
m ((ϑn, θy,n),dzm) ∈

(
0, 1

An
0

)
, (4.148)

or, equivalently, ∫
[0,1]2

xm(1− xm)Q(n)
m ((ϑn, θy,n),dzm) ∈

(
0,

Am
0

An
0

)
. (4.149)

Hence, if Am0 /A
n
0 < ϵ with ϵ > 0 small, then we know that with high probability

the system on time scale n has clusters with a radius of size m. (Note that for the
interaction chain this means that the variance is almost entirely centred between n
and m.) Therefore the speed at which Am0 /A

n
0 converges to zero as m,n → ∞ says

something about the speed at which monotype clusters form.
To capture the cluster growth, we must decide how we let m,n→ ∞. For this we

look for clusters of radius lχ(n) with χ ∈ I. Put

fn(lχ(n)) =
A
lχ(n)
0

An0
, (4.150)

and define, for ϵ > 0,

Xn
ϵ = inf{χ ∈ I : fn(lχ(n)) < ϵ}. (4.151)

Then the three types of clustering correspond to:
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(1) Fast clustering: limn→∞ lXn
ϵ
(n)/n = 1.

(2) Diffusive clustering: limn→∞ lXn
ϵ
(n)/n = R for some random variable R taking

values in (0, 1).

(3) Slow clustering: limn→∞ lXn
ϵ
(n)/n = 0.

In terms of the interaction chain starting from −k with k → ∞, in view of (4.145)
this corresponds to the variance in the interaction chain being concentrated near the
beginning, being spread out or being concentrated near the end.

§4.5.3 Rates of scaling for renormalised diffusion func-
tion

For the system without seed-bank, we have Kk = ek = 0 and Ek = 1 for all k ∈ N0.
Hence

An =
1

2

n−1∑
k=0

1

ck
(4.152)

and (4.137) holds if and only if ∑
k∈N0

1

ck
= ∞. (4.153)

Various subcases were analysed in [5]. For the system with seed-bank because E0 = 1
and Ek < 1 (see (4.64)), it follows from (4.136) that

An <
1

2

n−1∑
k=0

1

ck
. (4.154)

Thus we see that the seed-bank weakens clustering, i.e., enhances genetic diversity,
even in the hierarchical mean-field limit.

We identify the clustering regime in the setting where the coefficients are asymp-
totically polynomial, as in (4.52), or are pure exponential, as in (4.53). It turns out
that there is a delicate interplay between the migration and the seed-bank, result-
ing in 4 different scalings for asymptotically polynomial coefficients and 8 different
scalings for pure exponential coefficients.

Theorem 4.5.3 (Rates of scaling for diffusion function). Let ρ be as defined
in (4.14).

(I) If ρ <∞, then (4.138) holds if and only (4.153) hold, and

An ∼ 1

2(1 + ρ)

k−1∑
m=0

1

ck
. (4.155)

(II) If ρ = ∞, then (4.138) holds in the following cases:
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• Subject to (4.52) if and only if −ϕ ≤ α ≤ 1, with

− ϕ < α < 1: An ∼ C1 n
α+ϕ,

− ϕ = α < 1: An ∼ C2 log n,

− ϕ < α = 1: An ∼ C3
n1+ϕ

log n
,

− ϕ = α = 1: An ∼ C4 log log n,

(4.156)

where

C1 = 1
2AF

1−α
α+ϕ , C2 = 1

2AF (1− α), C3 = 1
2AF

1
1+ϕ , C4 = 1

2AF .

(4.157)
The values of B, β play no role for the clustering, nor for the asymptotics.

• Subject to (4.53) if and only if Kc ≤ 1 ≤ K, with

c < Ke, Kc < 1: An ∼ Ĉ1 (Kc)
−(n−1),

c < Ke, Kc = 1: An ∼ C̄1 n,

c = Ke, Kc < 1: An ∼ Ĉ2 (Kc)
−(n−1),

c = Ke, Kc = 1: An ∼ C̄2 n,

c > Ke, Kc < 1: An ∼ Ĉ3 (Kc)
−(n−1),

c > Ke, Kc = 1: An ∼ C̄3 n,

c < 1 = K : An ∼ C̃1 n
−1 c−(n−1),

c = 1 = K : An ∼ C̃2 log n,

(4.158)

where

Ĉ1 = K−1
2K(1−Kc) , Ĉ2 = (K−1)2

2(2K−1)(1−Kc) , Ĉ3 = K−1
2(1−Kc) ,

C̄1 = K−1
2K , C̄2 = (K−1)2

2(2K−1) , C̄3 = K−1
2 ,

C̃1 = 1
2(1−c) , C̃2 = 1

2 .

(4.159)

The value of e plays no role for the clustering, but does for the asymptotics.

The proof of Theorem 4.5.3 is given in Section 10. Part (I) shows that for ρ < ∞
the clustering regime is the same as for the system without seed-bank. The scaling
of An is controlled by the migration and is reduced by a factor 1/(1+ ρ) with respect
to the seed-bank. Part (II) shows that for ρ = ∞ the clustering regime is different
from that for the system without seed-bank. Clustering is harder to achieve: since
limk→∞Ek = 0 the growth rate of An is strictly smaller than without seed-bank.

Furthermore, subject to (4.52), if −ϕ < α < 1, then the growth rate of An
drops down from ≍ n1+ϕ without seed-bank to ≍ nα+ϕ with seed-bank, while if
−ϕ = α = 1, then it drops down from ≍ log n to ≍ log log n. Similarly, subject
to (4.53), if Kc < 1 < K, then the growth rate of An drops down from ≍ c−n to
≍ (Kc)−n, while if c = K = 1, then it drops down from ≍ n to ≍ log n.
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Returning to the observations made in Section 4.5.2, we see that the three clus-
tering regimes also appear in the model with seed-bank, both for ρ <∞ and ρ = ∞,
and in the latter case are accompanied by different migration coefficients. The scaling
results mentioned in Section 4.5.2 can in principle be deduced from the asymptotics
of An as n → ∞ in Theorem 4.5.3. It would be interesting to work out the details
and to identify the limiting processes that control the cluster growth.
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