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APPENDIX A
Appendix Part I

§A.1 Derivation of continuum frequency equations

Model 1. We give the derivation of (2.4)–(2.5) as the continuum limit of an individual-
based model when the size of the colonies tends to infinity. We start with the con-
tinuum limit of the Fisher-Wright model with (strong) seed-bank for a single-colony
model as defined in [12]. Subsequently we show how the limit extends to amulti-colony
model with seed-bank.

Single-colony model. The Fisher-Wright model with (strong) seed-bank defined
in [12] consists of a single colony with N ∈ N active individuals and M ∈ N dormant
individuals. Each individual can carry one of two types: ♡ or ♢. Let ϵ ∈ [0, 1] be
such that ϵN is integer and ϵN ≤M . Put δ = ϵN

M . The evolution of the population is
described by a discrete-time Markov chain that undergoes four transitions per step:

(1) From the N active individuals, (1 − ϵ)N are selected uniformly at random
without replacement. Each of these individuals resamples, i.e. it adopts the
type of an active individual selected uniformly at random with replacement,
and remains active.

(2) Each of the ϵN active individuals not selected first resamples, it adopts the
type of an active individual selected uniformly at random with replacement,
and subsequently becomes dormant.

(3) From the M dormant individuals, δM = ϵN are selected uniformly at random
without replacement, and each of these becomes active. Since these individuals
come from the dormant population they do not resample.

(4) Each of (1−δ)M dormant individuals not selected remains dormant and retains
its type.

Note that the total sizes of the active and the dormant population remain fixed.
During the evolution the dormant and active population exchange individuals. We
are interested in the fractions of individuals of type ♡ in the active and the dormant
population. For an example of the evolution see Fig. 1.3.

Let c = ϵN = δM , i.e., c is the number of pairs of individuals that change state.
Label the N active individuals from 1 to N and the M dormant individuals from 1
up to M . We denote by [N ] = {1, . . . , N} and by [M ] = {1, . . . ,M}. Let
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ξ(k) = (ξj(k))j∈[N ] ∈ {0, 1}[N ] be the random vector where ξj(k) = 1 if the j’th
individual is of type ♡ at time k and ξj(k) = 0 if the j’th individual is of type ♢
at time k. Similarly, we let η(k) = (ηj(k))j∈[M ] ∈ {0, 1}[M ] be the random vector
where ηj(k) = 1 if the j’th individual is of type ♡ at time k and ηj(k) = 0 if the j’th
individual is of type ♢ at time k. Let IN = {0, 1

N ,
2
N ,

3
N . . . , 1} and

IM = {0, 1
M , 2

M , 3
M . . . , 1}. Define the variables

XN (k) =
1

N

∑
j∈[N ]

1{ξj(k)=♡} on IN ,

Y N (k) =
1

N

∑
j∈[N ]

1{ηj(k)=♡} on IM .

(A.1)

Let Px,y denote the law of

(XN , Y N ) = (XN (k), Y N (k))k∈N0 (A.2)

given that (XN (0), Y N (0)) = (x, y) ∈ IN × IM . Then, as shown in [12],

px,y(x̄, ȳ) = Px,y(XN
1 = x̄, Y N1 = ȳ)

=

c∑
c′=0

Px,y(Z = c′)Px,y(U = x̄N − c′)Px,y(V = ȳM − yM + c′).
(A.3)

Here, Z denotes the number of dormant ♡-individuals in generation 0 that become
active in generation 1 (Lx,y(Z) = HypM,c,yM ), U denotes the number of active in-
dividuals in generation 1 that are offspring of active ♡-individuals in generation 0
(Lx,y(U) = BinN−c,x), and V denotes the number of active individuals in generation
0 that become dormant ♡-individuals in generation 1 (Lx,y(V ) = Binc,x).

Speed up time by a factor N . The generator GN for the process

((XN (⌊Nk⌋), Y N (⌊Nk⌋))k∈N0 (A.4)

equals

(GNf)(x, y) = N Ex,y
[
f(XN (1), Y N (1))− f(x, y)

]
,

(x, y) ∈ IN × IM ,
(A.5)

where the prefactor N appears because one step of the Markov chain takes time 1
N .

Inserting the Taylor expansion for f (which we assume to be smooth), using that
XN (1) = U+Z

N and Y N (1) = yM+V−U
M and letting N → ∞, we end up with the

limiting generator G given by

(Gf)(x, y) = c(y − x)
∂f

∂x
(x, y) +

c

K
(x− y)

∂f

∂y
(x, y) + 1

2x(1− x)
∂2f

∂x2
(x, y),

(x, y) ∈ [0, 1]× [0, 1],

(A.6)

where K = M
N is the relative size of the dormant population compared to the active

population. This is the generator of the Markov process in the continuum limit [32,
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Section 7.8]. It follows from the form of G that this limit is described by the system
of coupled stochastic differential equations

dx(t) = c [y(t)− x(t)] dt+
√
x(t)(1− x(t)) dw(t),

dy(t) =
c

K
[x(t)− y(t)] dt.

(A.7)

This is the version of (2.4)–(2.5) for a single colony (no migration) and exchange rate

e =
c

K
. (A.8)

Multi-colony model. First fix a number L ∈ N and consider |G| = L colonies.
The multi-colony version with migration is obtained by allowing the (1−ϵ)N selected
active individuals to undergo a migration in step (1):

(1) Each active individual at colony i ∈ G chooses colony j ∈ G with probability
1
N a(i, j) and adopts the type of a parent chosen from colony j. If an active
individual does not migrate, it adopts the type of a parent chosen from its own
population.

Using the same strategy as in the single-colony model, this results in (2.4)–(2.5), for
|G| = L. Subsequently we can let L→ ∞ and use convergence of generators to obtain
(2.4)–(2.5) for countable G.

Model 2. The same argument works for (2.12)–(2.13). Steps (1)-(4) are extended by
considering a seed-bank with colours labelled by N0. First we consider the truncation
where only finitely many colours are allowed, for which the argument carries through
with minor adaptations. Afterwards, we pass to the limit of infinitely many colours,
which is straightforward for a finite time horizon because large colours are only seen
after large times. See also [60].

Model 3. To get (2.18)–(2.19), also extend Step (3) by adding a displacement via
the kernel a†(·, ·) for each transition into the seed-bank.

§A.2 Alternative models

In this appendix we consider the Moran versions of models 1 and 2. What is written
below is based on [60]. In the Moran version each active individual resamples at rate
1 and becomes dormant at a certain rate, while each dormant individual does not
resample and becomes active at a certain rate. Since switches between active and
dormant are done independently, the sizes of the active and the dormant population
are no longer fixed and individuals change state without the necessity to exchange
state. In model 1 there are two Poisson clocks, in model 2 there are two sequences of
Poisson clocks, namely, two for each colour. In Appendices A.2.1–A.2.2 we compute
the scaling limit for the case where the number of colours is m = 1 and m = 2,
respectively. The extension to m ≥ 3 is given in Appendix A.2.3. Migration can be
added in the same way as is done in Appendix A.1.
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§A.2.1 Alternative for Model 1

To describe the Moran version of Model 1 we need the following variables.

� Total number of individuals: N ∈ N.

� Two types: ♡ and ♢.

� X(t) is the number of ♡-individuals in the active population at time t.

� Y (t) is the number of ♡-individuals in the dormant population at time t.

� Z(t) is the number of individuals in the active population at time t (either ♡
or ♢).

In the Moran model with seed-bank each active individual resamples at rate 1, each
active individual becomes dormant at rate ϵ and each dormant individual becomes
active at rate δ. Hence the transition rates for (X(t), Y (t), Z(t)) are:

� (i, j, k) → (i+ 1, j, k) at rate (k − i) ik .

� (i, j, k) → (i− 1, j, k) at rate i (k−i)k .

� (i, j, k) → (i− 1, j + 1, k − 1) at rate ϵi.

� (i, j, k) → (i+ 1, j − 1, k + 1) at rate δj.

� (i, j, k) → (i, j, k − 1) at rate ϵk−iN .

� (i, j, k) → (i, j, k + 1) at rate δN−k−j
N .

For the scaling limit we consider the variables

X̄(t) =
1

N
X(Nt), Ȳ (t) =

1

N
Y (Nt), Z̄(t) =

1

N
Z(Nt). (A.9)

Hence

(X̄(t), Ȳ (t), Z̄(t)) ∈ IN × IN × IN , IN =
{
0, 1

N ,
2
N , . . . ,

N−1
N , 1

}
. (A.10)

Since in (A.9) we speed up time by a factor N , we must also speed up the transition
rates by a factor N . To get a meaningful scaling limit, we assume that there exist
cA, cD ∈ (0,∞) such that (see [12, p. 8])

Nϵ = cA, Nδ = cD, N ∈ N. (A.11)
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We can then write down the generator GN :

(GNf)

(
i

N
,
j

N
,
k

N

)
= N(k − i)

i

k

[
f

(
i+ 1

N
,
j

N
,
k

N

)
− f

(
i

N
,
j

N
,
k

N

)]
+Ni

k − i

k

[
f

(
i− 1

N
,
j

N
,
k

N

)
− f

(
i

N
,
j

N
,
k

N

)]
+ cAi

[
f

(
i− 1

N
,
j + 1

N
,
k − 1

N

)
− f

(
i

N
,
j

N
,
k

N

)]
+ cDj

[
f

(
i+ 1

N
,
j − 1

N
,
k + 1

N

)
− f

(
i

N
,
j

N
,
k

N

)]
+ cA(k − i)

[
f

(
i

N
,
j

N
,
k − 1

N

)
− f

(
i

N
,
j

N
,
k

N

)]
+ cD(N − k − j)

[
f

(
i

N
,
j

N
,
k + 1

N

)
− f

(
i

N
,
j

N
,
k

N

)]

(A.12)

Assuming that f is smooth and Taylor expanding f around
(
i
N ,

j
N ,

k
N

)
, we get

(GNf)

(
i

N
,
j

N
,
k

N

)
=

i(k − i)

k

[(
1

N

)
∂2f

∂x2
+O

((
1

N

)2
)]

+ cAi

[(
−1

N

)
∂f

∂x
+

(
1

N

)
∂f

∂y
+

(
−1

N

)
∂f

∂z
+O

((
1

N

)2
)]

+ cDj

[(
1

N

)
∂f

∂x
+

(
−1

N

)
∂f

∂y
+

(
1

N

)
∂f

∂z
+O

((
1

N

)2
)]

+ cA(k − i)

[(
−1

N

)
∂f

∂z
+O

((
1

N

)2
)]

+ cD(N − k − j)

[(
1

N

)
∂f

∂z
+O

((
1

N

)2
)]

.

(A.13)

Next, suppose that

lim
N→∞

i

N
= x, lim

N→∞

j

N
= y, lim

N→∞

k

N
= z. (A.14)

Letting N → ∞ in (A.13), we obtain the limiting generator G:

(Gf)(x, y, z) = z
x

z

(
1− x

z

)(∂2f
∂x2

)
+ [cD y − cA x]

∂f

∂x

+ [cA x− cD y]
∂f

∂y
+
[
cD (1− z)− cA z

]∂f
∂z
.

(A.15)

Therefore the continuum limit equals

dx(t) =

√
z(t)

x(t)

z(t)

(
1− x(t)

z(t)

)
dw(t) +

[
cD y(t)− cA x(t)

]
dt,

dy(t) =
[
cA x(t)− cD y(t)

]
dt,

dz(t) =
[
cD (1− z(t))− cA z(t)

]
dt.

(A.16)
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Since z(t) is the fraction of active individuals in the population, 1−z(t) is the fraction
of dormant individuals in the population. Therefore the equivalent of the parameter
K in Appendix A.1 is K(t) = (1 − z(t))/z(t). Moreover, x(t)/z(t) is the fraction of
♡-individuals in the active population at time t and y(t)/(1 − z(t)) is the fraction
of ♡-individuals in the dormant population at time t. The last line of (A.16) is an
autonomous differential equation whose solution converges to

z∗ =
1

1 + cA

cD

(A.17)

exponentially fast. After this transition period we can replace z(t) by z∗, and we see
that K∗ = cA/cD.

Time is to be scaled by the total number of active and dormant individuals, instead
of the total number of active individuals only:

x(t) =
number of active individuals of type ♡

total number of individuals
,

y(t) =
number of dormant individuals of type ♡

total number of individuals
.

(A.18)

To compare the Moran model with a 1-colour seed-bank with the Fisher-Wright model
with a 1-colour seed-bank, we look at the variables

x̄(t) =

(
1 +

cA

cD

)
x

(
t

1 + cA

cD

)
, ȳ(t) =

(
1 +

cA

cD

)(
cD

cA

)
y

(
t

1 + cA

cD

)
. (A.19)

After a short transition period in which z(t) tends to z∗, we see that by setting

K = K∗ =
cA

cD
, e =

cD

cA
cAcD

cA + cD
, (A.20)

we obtain
dx̄(t) =

√
x̄(t)(1− x̄(t)) dw(t) +Ke [ȳ(t)− x̄(t)] dt,

dȳ(t) = e [x̄(t)− ȳ(t)] dt,
(A.21)

which is the single-colony version of (2.4)–(2.5) but without migration. Migration
can be added in the same way as was done in Appendix A.1.

§A.2.2 Alternative for Model 2: Two colours

We consider the following system:

� Total number of individuals: N ∈ N.

� Two types: ♡ and ♢.

� X(t) is the number of ♡-individuals in the active population at time t.

� Y1(t) is the number of ♡-individuals of colour 1 in the dormant population at
time t.

114



§A.2. Alternative models

A
p
p
e
n
d
ix

A

� Y2(t) is the number of ♡-individuals of colour 2 in the dormant population at
time t.

� ZD1(t) is the number of dormant individuals of colour 1 at time t (either ♡ or
♢).

� ZD2
(t) is the number of dormant individuals of colour 2 at time t. (either ♡ or

♢).

Note that the number of active individuals at time t (either ♡ or ♢) is given by
ZA(t) = N − ZD1

(t)− ZD2
(t). Since the number of individuals N is constant during

the evolution, ZA(t) can be derived from ZD1
(t) and ZD2

(t). Each active individual
resamples at rate 1, and becomes dormant at rate ϵ. When an individual becomes
dormant, it gets either colour 1 with probability p1 or colour 2 with probability p2,
where p1, p2 ∈ (0, 1) and p1 + p2 = 1. For ease of notation, we denote the rate to
become dormant with colour 1 by ϵ1 = ϵ · p1 and the rate to become dormant with
colour 2 by ϵ2 = ϵ · p2. A dormant individual with colour 1 becomes active at rate δ1,
a dormant individual with colour 2 becomes active at rate δ2. Thus, the transition
rates for (X(t), Y1(t), Y2(t), ZD1

(t), ZD2
(t)) are:

� (i, j, k, l,m) → (i+ 1, j, k, l,m) at rate (N − l −m− i) i
N−l−m .

� (i, j, k, l,m) → (i− 1, j, k, l,m) at rate i (N−l−m−i)
N−l−m .

� (i, j, k, l,m) → (i− 1, j + 1, k, l + 1,m) at rate ϵ1i.

� (i, j, k, l,m) → (i+ 1, j − 1, k, l − 1,m) at rate δ1j.

� (i, j, k, l,m) → (i− 1, j, k + 1, l,m+ 1) at rate ϵ2i.

� (i, j, k, l,m) → (i+ 1, j, k − 1, l,m− 1) at rate δ2k.

� (i, j, k, l,m) → (i, j, k, l + 1,m) at rate ϵ1(N − l −m− i).

� (i, j, k, l,m) → (i, j, k, l,m+ 1) at rate ϵ2(N − l −m− i).

� (i, j, k, l,m) → (i, j, k, l − 1,m) at rate δ1(l − j).

� (i, j, k, l,m) → (i, j, k, l,m− 1) at rate δ2(m− k).

Proceeding in the same way as for the 1-colour seed-bank, we define the scaled vari-
ables

X̄(t) =
1

N
X(Nt), Ȳ1(t) =

1

N
Y1(Nt), Ȳ2(t) =

1

N
Y2(Nt),

Z̄D1(t) =
1

N
ZD1(Nt), Z̄D2(t) =

1

N
ZD1(Nt).

(A.22)

We assume that there exist cA1 , c
A
2 , c

D
1 , c

D
2 ∈ (0,∞) such that

Nϵ1 = cA1 , Nϵ2 = cA2 , Nδ1 = cD1 , Nδ2 = cD2 , N ∈ N, (A.23)
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and further assume that

lim
N→∞

i

N
= x, lim

N→∞

j

N
= y1, lim

N→∞

k

N
= y2,

lim
N→∞

N − l −m

N
= zA lim

N→∞

N − l −m

N
= zD2

, lim
N→∞

N − l −m

N
= zD1

.

(A.24)

Using the same method of converging generators as for model 1, we obtain the fol-
lowing continuum limit:

dx(t) =

√
zA(t)

zA − x(t)

zA(t)

x(t)

zA(t)
dw(t)

+
[
cD1 y1(t)− cA1 x(t)

]
dt+

[
cD2 y2(t)− cA2 x(t)

]
dt,

dy1(t) =
[
cA1 x(t)− cD1 y1(t)

]
dt,

dy2(t) =
[
cA2 x(t)− cD2 y2(t)

]
dt,

dzA(t) =
[
cD1 zD1(t)− cA1 zA(t) + cD2 zD2(t)− cA2 zA(t)

]
dt,

dzD1
(t) =

[
cA1 zA(t)− cD1 zD1

(t)
]
dt,

dzD2
(t) =

[
cA2 zA(t)− cD2 zD2

(t)
]
dt.

(A.25)

Note that the equation for zA(t) = 1 − zD1(t) − zD2(t) follows directly from the
equations from zD1

(t) and zD2
(t). It is therefore redundant, but we use it for nota-

tional reasons. Again, we see that z(t) = (zA(t), zD1
(t), zD2

(t)) is governed by an
autonomous system of differential equations. Solving this system, we see that

lim
t→∞

zA(t) =
1

1 +
cA1
cD1

+
cA2
cD2

, lim
t→∞

zD1
(t) =

cA1
cD1

1 +
cA1
cD1

+
cA2
cD2

, lim
t→∞

zD2
(t)) =

cA2
cD2

1 +
cA1
cD1

+
cA2
cD2

.

(A.26)

To compare the Moran model with a 2-colour seed-bank with the Fisher-Wright
model with a 2-colour seed-bank, we look at the variables

x̄(t) =

(
1 +

cA1
cD1

+
cA2
cD2

)
x

 t

1 +
cA1
cD1

+
cA2
cD2

 ,

ȳ1(t) =

(
1 +

cA1
cD1

+
cA2
cD2

)(
cD1
cA1

)
y1

 t

1 +
cA1
cD1

+
cA2
cD2

 ,

ȳ2(t) =

(
1 +

cA1
cD1

+
cA2
cD2

)(
cD2
cA2

)
y2

 t

1 +
cA1
cD1

+
cA2
cD2

 .

(A.27)

Defining

Km =
cAm
cDm

, em =
cDm

1 +
cA1
cD1

+
cA2
cD2

, m ∈ {1, 2}, (A.28)
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we see that, after a short transition period, the system becomes

dx̄(t) =
√
x̄(t)(1− x̄(t)) dw(t) +K1e1 [ȳ2(t)− x̄(t)] dt+K2e2 [ȳ1(t)− x̄(t)] dt,

dȳ1(t) = e1 [x̄(t)− ȳ1(t)] dt,

dȳ2(t) = e2 [x̄(t)− ȳ2(t)] dt,
(A.29)

which is the single-colony version of (2.12)–(2.13) with 2 colours and without migra-
tion. Note, in particular, that after z(t) reaches the equilibrium point in (A.26), we
have

Km =
number of dormant individuals with colour m

number of active individuals
, m ∈ {1, 2}. (A.30)

It is instructive to show how the above result can also be derived with the help of
duality. The argument that follows easily extends to an n-coloured seed-bank for any
n ∈ N finite, to be considered in Appendix A.2.3. Recall from (A.25) that

dzA(t) =
[
cD1 zD1

(t)− cA1 zA(t) + cD2 zD2
(t)− cA2 zA(t)

]
dt,

dzD1(t) =
[
cA1 zA(t)− cD1 zD1(t)

]
dt,

dzD2
(t) =

[
cA2 zA(t)− cD2 zD2

(t)
]
dt.

(A.31)

Let

z̄A(t) =

(
1 +

cA1
cD1

+
cA2
cD2

)
zA(t),

z̄D1(t) =

(
1 +

cA1
cD1

+
cA2
cD2

)(
cD1
cA1

)
zD1(t),

z̄D2
(t) =

(
1 +

cA1
cD1

+
cA2
cD2

)(
cD2
cA2

)
zD2

(t).

(A.32)

Substitute (A.32) into (A.31), to obtain

dz̄A(t) = cA1 [z̄D1(t)− z̄A(t)] + cA2 [z̄D2(t)− z̄A(t)] dt,

dz̄D1
(t) = cD1 [z̄A(t)− z̄D1

(t)] dt,

dz̄D2
(t) = cD2 [z̄A(t)− z̄D2

(t)] dt.

(A.33)

To define a dual for the process (z̄A(t), z̄D1(t), z̄D2(t)))t≥0, let (M(t))t≥0 be the
continuous-time Markov chain on {A,D1, D2} with transition rates

A→ Dm at rate cAm, m ∈ {1, 2},
Dm → A at rate cDm, m ∈ {1, 2}.

(A.34)

Consider l independent copies of (M(t))t≥0, evolving on the same state space {A,D1, D2}.
Let (L(t))t≥0 = (LA(t), LD1(t), LD2(t))t≥0 be the process that counts how many cop-
ies of M(t) are on site {A}, {D1} and {D2} at time t. Let l = m + n1 + n2. Then
(L(t))t≥0 is the Markov process on N3

0 with transition rates

(m,n1, n2) →


(m− 1, n1 + 1, n2) at rate mcA1 ,

(m− 1, n1, n2 + 1) at rate mcA2 ,

(m+ 1, n1 − 1, n2) at rate n1c
D
1 ,

(m+ 1, n1, n2 − 1) at rate n2c
D
2 .

. (A.35)
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Note that LA(t) + LD1
(t) + LD2

(t) = LA(0) + LD1
(0) + LD2

(0) = m + n1 + n2 = l.
Define H : R3 × N3

0 → R by

H((z̄A, z̄D1 , z̄D2), (m,n1, n2)) := z̄mA z̄
n1

D1
z̄n2

D2
(A.36)

Using the generator criterion [48, Proposition 1.2], we see that, for all t ≥ 0,

E [H((z̄A(t), z̄D1
(t), z̄D2

(t)), (m(0), n1(0), n2(0)))]

= E [H((z̄A(0), z̄D1
(0), z̄D2

(0)), (m(t), n1(t), n2(t)))] .
(A.37)

Therefore (L(t))t≥0 and (z̄(t))t≥0 are dual to each other with duality function H.
Since (M(t))t≥0 is a irreducible and recurrent, we can define

πA = lim
t→∞

P(M(t) = A) =
1

1 +
cA1
cD1

+
cA2
cD2

,

πD1
= lim
t→∞

P(M(t) = D1) =

cA1
cD1

1 +
cA1
cD1

+
cA2
cD2

,

πD2
= lim
t→∞

P(M(t) = D2) =

cA2
cD2

1 +
cA1
cD1

+
cA2
cD2

.

(A.38)

Using the duality relation in (A.37) together with (A.38) and (A.32), we find

lim
t→∞

E[z̄A(t)] = πAz̄A(0) + πD1 z̄D1(0) + πD2 z̄D2(0)

=
1

1 +
cA1
cD1

+
cA2
cD2

z̄A(0) +

cA1
cD1

1 +
cA1
cD1

+
cA2
cD2

z̄D1
(0) +

cA2
cD2

1 +
cA1
cD1

+
cA2
cD2

z̄D2
(0)

= zA(0) + zD1
(0) + zD2

(0) = 1.
(A.39)

Using the duality relation in(A.37) once more, we get

lim
t→∞

E[z̄A(t)] = lim
t→∞

E[z̄D1
(t)] = lim

t→∞
E[z̄D2

(t)] = 1. (A.40)

Computing the limiting second moment limt→∞ E[z̄A(t)2] by duality, we obtain

lim
t→∞

E[z̄A(t)2] = lim
t→∞

∑
i,j∈

{A,D1,D2}

P(M1
t = i) z̄i(0)P(M2

t = j) z̄j(0)

=
∑

i∈{A,D1,D2}

πiz̄i(0)
∑

j∈{A,D1,D2}

πj z̄j(0) = 1.

(A.41)

Similarly, we find limt→∞ E[z̄D1
(t)2] = 1 and limt→∞ E[z̄D2

(t)2] = 1. Combining
(A.40) and (A.41), we find

lim
t→∞

z̄A(t) = lim
t→∞

z̄D1
(t) = lim

t→∞
z̄D2

(t) = 1. (A.42)
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Hence we conclude that

lim
t→∞

zA(t) =
1

1 +
cA1
cD1

+
cA2
cD2

, lim
t→∞

zD1
(t) =

cA1
cD1

1 +
cA1
cD1

+
cA2
cD2

, lim
t→∞

zD2
(t) =

cA2
cD2

1 +
cA1
cD1

+
cA2
cD2

.

(A.43)
Continuing as in (A.27), we again find the single-colony version of (2.12)-(2.13) with
2 colours and no migration.

§A.2.3 Alternative for Model 2: Three or more col-
ours

The argument in Appendix A.2.2 can be extended to an m ∈ N-colour seed-bank, by
introducing sequences of variables (Ym(t))mm=0 and (Zm(t))mm=0 that count the number
of ♡-individuals in the colour-m seed-bank at time t, respectively, the total number of
individuals in the colour-m seed-bank at time t. Let ϵ > 0 be the total rate at which
an active individual becomes dormant, and define a probability vector (pm)mm=0 such
that ϵm = ϵpm is the rate at which an active individual becomes dormant with colour
m. Let δm be the rate at which m-dormant individuals become active. Via the same
line of argument as in Appendix A.2.2, we see that the equivalent of (A.25) reads

dx(t) =

√
zA(t)

zA − x(t)

zA(t)

x(t)

zA(t)
dw(t) +

m∑
m=0

[
cDmym(t)− cAmx(t)

]
dt,

dym(t) =
[
cAmx(t)− cDmym(t)

]
dt,

dzA(t) =

m∑
m=0

[
cDmzDm

(t)− cAmzA(t)
]
dt,

dzDm(t) =
[
cAmzA(t)− cDmzDm(t)

]
dt, 0 ≤ m ≤ N.

(A.44)

Solving the autonomous system describing z(t) = (zA(t), (zDm
(t))Nm=0) via duality,

and subsequently substituting into (A.44) the variables

x̄(t) =

(
1 +

m∑
n=0

cAn
cDn

)
x

 t

1 +
∑m
n=0

cAn
cDn

 ,

ȳm(t) =

(
1 +

m∑
n=0

cAn
cDn

)(
cDm
cAm

)
ym

 t

1 +
∑m
n=0

cAn
cDn

 , 0 ≤ m ≤ N,

(A.45)

we find the single-colony version of (2.12)–(2.13) with N -colours and no migration.
Migration can be added as in Appendix A.1.

It is straightforward to derive the version (2.12)–(2.13) with N -colours and M
colonies. Afterwards we can let N,M → ∞ and use convergence of generators, to
find (2.12)–(2.13). The limit is unproblematic because we are interested in finite time
horizons only.
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§A.3 Successful coupling

To prove Lemma 3.2.11 we proceed as in [14], with minor adaptations. The notation
used in this appendix is the same as in Section 3.2.3. For model 1 we write down the
full proof. The proof holds works for model 2 and 3 by invoking the colours m ∈ N0

and the SSDE in (2.12)–(2.13), respectively, (2.18)–(2.19).

Proof of Lemma 3.2.11. The proof consists of 5 steps.

Step 1. If z ∈ E with xi = 0 and xk > 0 for some k ̸= i, then

Pz (∃ t∗ > 0 such that xi(t) = 0 ∀ t ∈ [0, t∗]) = 0. (A.46)

Proof. Suppose that z is such that xi = 0, but xk > 0 for some i, k ∈ G. By (2.4),

xi(t) =

∫ t

0

∑
j∈G

a(i, j)[xj(s)−xi(s)] ds+
∫ t

0

Ke[yi(s)−xi(s)] ds+
∫ t

0

√
g(xi(s)) dwi(s).

(A.47)
Suppose that there exists a T > 0 such that xi(t) = 0 for all t ∈ [0, T ], and therefore
g(xi(t)) = 0. Then we obtain for all t ∈ [0, T ] that∫ t

0

∑
j∈G

a(i, j)xj(s) ds+

∫ t

0

Keyi(s) ds = 0. (A.48)

Hence, by path continuity of (Z(t))t≥0, we see that yi(t) = 0 for all t ∈ [0, T ], as
well as xj(t) = 0 for all j ∈ G such that a(i, j) > 0. Repeating this argument, we
obtain by irreducibility of a(·, ·) that xk(t) = 0 for all k ∈ G and hence yk(t) = 0 for
all k ∈ G. By path continuity, this contradicts the assumption that xk(0) > 0. We
conclude that (A.46) holds. □

Step 2. If z̄ ∈ E × E and g(x1i ) ̸= g(x2i ), then for all j,

P̂z̄ (∃ t∗ > 0 such that ∆j(t) = 0 ∀ t ∈ [0, t∗]) = 0. (A.49)

Proof. Note that the SSDE in (2.4)–(2.5) can be rewritten as

dz(i,Ri)(t) =
∑

(j,Rj)∈G×{A,D}

b(1)((i, Ri), (j, Rj))[z(j,Rj)(t)− z(i,Ri)(t)] dt

+
√
g(z(i,Ri)(t)) 1{Ri=A} dwi(t),

∀ (i, Ri) ∈ G× {A,D},

(A.50)

with b(1)(·, ·) defined as in (2.31).
Suppose that z̄ is such that g(x1i ) ̸= g(x2i ). Suppose there exist a T > 0 such that

∆j(t) = 0 for all t ∈ [0, T ]. Then also
√
g(x1j (t)) −

√
g(x2j (t)) = 0 for all t ∈ [0, T ].
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Using (A.50) on ∆j(t) = z1(j,A)(t)− z2(j,A)(t), we obtain

0 =

∫ t

0

∑
(k,Rk)∈G×{A,D}

b(1)((j, A), (k,Rk))

×
[(
z1(k,Rk)

(s)− z2(k,Rk)
(s)
)
−
(
z1(j,Rj)

(s)− z2(j,Rj)
(s)
)]

ds.

(A.51)

Hence∑
(k,Rk)∈G×{A,D}

b(1)((j, A), (k,Rk))
[(
z1(k,Rk)

(t)− z2(k,Rk)
(t)
)
−
(
z1(j,Rj)

(t)− z2(j,Rj)
(t)
)]

= 0 ∀ t ∈ [0, T ].
(A.52)

Using (A.50), we can write the SDE for∑
(k,Rk)∈G×{A,D}

b(1)((j, A), (k,Rk))
[(
z1(j,Rj)

(t)− z2(j,Rj)
(t)
)
−
(
z1(i,Ri)

(t)− z2(i,Ri)
(t)
)]
,

(A.53)
which yields that, for all t ∈ [0, T ],

−
∫ t

0

∑
(k,Rk)∈G×{A,D}

b(1)((j, A), (k,Rk))
(√

g(z1k,Rk
(s))−

√
g(z2k,Rk

(s))
)
1{Rk=A} dwk(s)

=

∫ t

0

∑
(k,Rk)∈G×{A,D}

b(1),2((j, A), (l, Rl))

×
[(
z1(j,Rj)

(s)− z2(j,Rj)
(s)
)
−
(
z1(i,Ri)

(s)− z2(i,Ri)
(s)
)]

ds,

(A.54)
where b(1),2(·, ·) is the 2-step kernel of b(1)(·, ·).

The two process in the right-hand side form a process of bounded variation, while
the process in the left-hand side is a continuous square-integrable martingale, whose
quadratic variation is given by∫ t

0

∑
k∈G

a(j, k)2
(√

g(x1k(s))−
√
g(x2k(s))

)2

ds. (A.55)

Since a square-integrable martingale of bounded variation is constant, it follows that
(A.55) equals 0. Hence, for all k such that a(j, k) > 0, it follows that g(x1k(t)) =
g(x2k(t)) for all t ∈ [0, T ]. Moreover, the right-hand side of (A.54) is equal to 0.
Iterating the right-hand side of (A.54) further, we find by the irreducibility of a(·, ·)
that g(x1i (t)) = g(x2i (t)) for all t ∈ [0, T ], which contradicts the assumption on z̄ that
g(x1i (0)) ̸= g(x2i (0)). Hence we find that there does not exist a T > 0 such that
∆j(t) = 0 for all t ∈ [0, T ]. □

Step 3. If z̄ ∈ E×E, i, k ∈ G and g(x1i ) = g(x2i ) with ∆i < 0 and ∆k > 0 for some
k ̸= i, then

P̂z̄
(
∃ t∗ ∈ [0, 12 ] : ∆i(t

∗) < 0, ∆k(t
∗) > 0, g(x1i (t

∗)) ̸= g(x2i (t
∗))
)
> 0. (A.56)
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Proof. Note that by assumption we have x1i < 1 and x1k > 0. Let t0 ∈ [0, 14 ]. If x
1
i > 0,

then set t0 = 0. Otherwise, by Step 1 and path continuity, we find with probability 1
a t0 ∈ [0, 14 ] such that x1i (t0) > 0, ∆i(t0) < 0 and ∆k(t0) > 0. Let z̃ = z̄(t0). By the
existence of t0 and the Markov property, it is enough to prove that

P̂z̃
(
∃ t∗ ∈ [0, 14 ] : ∆i(t

∗) < 0, ∆k(t
∗) > 0, g(x1i (t

∗)) ̸= g(x2i (t
∗))
)
> 0 (A.57)

in order to prove (A.56). Define the following two martingales:

Mi(t) =

∫ t

0

√
g(x1i (s)) dwi(s), (A.58)

Mk(t) =

∫ t

0

(√
g(x1k(s))−

√
2g(x2k(s))

)
dwk(s). (A.59)

Their corresponding quadratic variation processes are given by

⟨Mi(t)⟩ =

∫ t

0

g(xi(s)) ds, (A.60)

⟨Mk(t)⟩ =

∫ t

0

(√
g(x1k(s))−

√
2g(x2k(s))

)2

ds. (A.61)

By Knight’s theorem (see [62, Theorem V.1.9 p.183]), we can write Mi(t) and Mk(t)
as time-transformed Brownian motions:

Mi(t) = wi (⟨Mi(t)⟩) , (A.62)

Mk(t) = wk (⟨Mk(t)⟩) . (A.63)

We may assume that g(x̃1i ) = g(x̃2i ), otherwise we can set t∗ = 0. Recall that 0 <
x̃1i < 1, ∆̃i < 0 and ∆̃k > 0, and, since 0 < g(x̃1i ) = g(x̃2i ), also x̃

2
i < 1. Choose an

ϵ ∈ (0, 1
15 ) such that x̃1i , x̃

2
i ∈ [5ϵ, 1 − 5ϵ], −∆̃i > 5ϵ and ∆̃k > 5ϵ. Let ξ ∈ (0, ϵ) be

such that g(ξ) < min{g(u) : ϵ ≤ u ≤ 1 − ϵ}, and set c1 = min{g(u) : ξ ≤ u ≤ 1 − ξ}
and c2 = ∥g∥. Then we can make the following estimates:

⟨Mi(t)⟩ ≤ c2t ⟨Mk(t)⟩ ≤ c2t, t ≥ 0, (A.64)

⟨Mi(t)⟩ ≥ c1t for t ≥ 0 such that xi(s) ∈ [ξ, 1− ξ] ∀ s ∈ [0, t]. (A.65)

Define c3 = min{ ξ
2Ke ,

ξ
2}. Fix T ∈ [0, c3] and define

Ω0 =

{
min

t∈[0,c1T ]
wi(t) < −1, max

t∈[0,c2T ]
wi(t) < ϵ, max

t∈[0,c2T ]
|wk(t)| < ϵ

}
,

Ω1 =
{
∃t∗ ∈ [0, 1] such that ∆i(t

∗) < 0, ∆k(t
∗) > 0, g(x1i (t

∗)) = g(x2i (t
∗))
}
.

(A.66)
Note that P(Ω0) > 0. Therefore it suffices that Ω0 ⊂ Ω1.

We start by checking the conditions ∆k. Using (2.4), we can write

∆k(t) = ∆k(0) +

∫ t

0

∑
l∈G

a(k, l)(∆l(s)−∆k(s)) ds+

∫ t

0

Ke [δk(s)−∆k(s) ds]

+

∫ t

0

(√
g(x1k(s))−

√
2g(x2k(s))

)2

dwk(s).

(A.67)
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Since |∆l(t)| ≤ 1, |δk(t)| ≤ 1 for all t ≥ 0, and Mk(t) = wk(⟨Mk(t)⟩) for t ∈ [0, T ], we
may estimate

∆k(t) > 5ϵ− 2c3 − 2Kec3 − ϵ = 2ϵ. (A.68)

So, on Ω0, ∆k(t) > 0 for all t ∈ [0, T ]. By expanding x1i (t), we find

x1i (t) = x1i (0) +

∫ t

0

∑
l∈G

a(i, l)(x1l (s)− x1i (s)) ds+

∫ t

0

Ke(y1i (s)− x1i (s)) ds+Mi(t),

(A.69)
so that on Ω0 we have, for t ∈ [0, T ],

x1i (t) < 1− 10ϵ+ c3 +Kec3 + ϵ = 1− 8ϵ. (A.70)

To check the conditions on x1i (t) and ∆i(t), we define the following random times:

σ = inf{t ≥ 0 : x1i (t) = ξ},
τ = inf

{
t > 0: g(x1i (t)) ̸= g(x2i (t))

}
.

(A.71)

We will prove that, on Ω0, we have σ < τ and x2i (τ) ≥ x1i (τ) + 3ϵ. To do so, we
first prove that σ < T . Assume the contrary σ ≥ T . Then by (A.70) we have
x1i (t) ∈ [ξ, 1 − ξ] for all t ∈ [0, T ], which implies that min[0,T ]Mi(t) < −1. Hence
there exists a κ such that, by (A.69),

x1i (κ) < 1− 10ϵ+ ϵ− 1 < 0. (A.72)

However, this contradicts the fact that x1i > 0 for all t ≥ 0. We conclude that σ < T .
Now suppose that τ > σ. Expanding ∆i, we get, for t < τ ,

∆i(t) = ∆i(0) +

∫ t

0

∑
l∈G

a(i, l)(∆l(s)−∆i(s)) ds+

∫ t

0

Ke[δi(s)−∆i(s)] ds, (A.73)

which can be rewritten as

x2i (t) = x1i (t)−x1i (0)+x2i (0)−
∫ t

0

∑
l∈G

a(i, l)[∆l(s)−∆i(s)] ds−
∫ t

0

Ke[δi(s)−∆i(s)] ds.

(A.74)
By (A.74), we obtain, for t ∈ [0, σ],

x2i (t) ≤ 1− 5ϵ+ 2ϵ+ 2ϵ = 1− ϵ,

x2i (t) ≥ x1i (t) + 5ϵ− 2ϵ ≥ 3ϵ,
(A.75)

so x2i (t) ∈ [ϵ, 1 − ϵ] for t ∈ [0, σ]. But then g(x1i (σ)) = g(ξ) < g(x2i (t)) by the
definition of ξ. Hence we obtain a contradiction and conclude that τ ≤ σ. From
(A.75) we obtain that ∆i(t) < 0 for all t ∈ [0, τ ], which concludes the proof that
Ω0 ⊂ Ω1. □
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Step 4. If z̄ ∈ E × E and ∆i < 0,∆j = 0, ∆k > 0 for some i, j, k, then

P̂z̄ (∃ t∗ ∈ [0, 1] : ∆i(t
∗) < 0,∆j(t

∗) ̸= 0,∆k(t
∗) > 0) > 0. (A.76)

Proof. Suppose that z̄ satisfies ∆i < 0, ∆j = 0, ∆k > 0. Define

Γ0 = {z̄ ∈ E × E : ∆i < 0,∆j ̸= 0,∆k > 0},
Γ1 = {z̄ ∈ E × E : ∆i < 0, g(x1i ) ̸= g(x2i ), ∆k > 0}.

(A.77)

By Step 3 and path continuity, there exists a T ∈ [0, 12 ] such that Pz̄ (z̄(T ) ∈ Γ1) > 0.
By the Markov property,

P̂z̃
(
∃ t∗ ∈ [0, 1] : z̄(t∗) ∈ Γ0

)
≥
∫
Γ1

P̂z̄(z̄(T ) ∈ dz̃) P̂z̃
(
∃t∗ ∈ [0, 12 ] : z̄(t

∗) ∈ Γ0

)
.(A.78)

By path continuity, we can find for z̄ ∈ Γ1 a t′ such that, for all t ≤ t′, ∆i(t) < 0,
∆k(t) > 0 and g(x1i (t)) ̸= g(x2i (t)). By Step 2 there exists a t∗ < t′ such that
z̄(t∗) ∈ Γ0. Hence both probabilities in the integral on the right-hand side of (A.78)
are positive. □

Step 5. Proof of Lemma 3.2.11.

Proof. Suppose that (3.147) holds for the pair i, j, and a(j, k) > 0, but (3.147) fails
for the pair i, k. This implies that there exist ϵ0 > 0, δ0 > 0 and a positive increasing
sequence (tn)n∈N of times with tn → ∞, such that

lim
t→∞

P̂z̄ ({∆i(t) < ϵ0,∆k(t) > ϵ0} ∪ {∆i(t) > ϵ0,∆k(t) < ϵ0}) > δ0. (A.79)

By compactness of E×E, there exists a subsequence tnk
such that L(z̄(tnk

)) converges
and (A.79) holds. Let ν̄ = limk→∞ L(z̄(tnk

)). Then

ν̄ ({∆i < ϵ0,∆j > ϵ0} ∪ {∆i > ϵ0,∆j < ϵ0}) = 0,

ν̄ ({∆j < ϵ0,∆k > ϵ0} ∪ {∆j > ϵ0,∆k < ϵ0}) = 0,

ν̄ ({∆i < ϵ0,∆k > ϵ0} ∪ {∆i > ϵ0,∆k < ϵ0}) > δ0.

(A.80)

Assume without loss of generality that ν̄ ({∆i < ϵ0,∆k > ϵ0}) > 0. Hence, by (A.80),

ν̄ ({∆i < ϵ0,∆k > ϵ0}) = ν̄ ({∆i < ϵ0,∆j ∈ (−ϵ0, ϵ0),∆k > ϵ0}) > 0. (A.81)

For each z̄ ∈ {∆i < ϵ0,∆j ∈ (−ϵ0, ϵ0),∆k > ϵ0}, Step 4 implies that

P̂z̄ (∃ t∗ ∈ [0, 1] : ∆i(t
∗) < 0,∆j(t

∗) ̸= 0,∆k(t
∗) > 0) > 0, (A.82)

and therefore, by (A.81),

P̂ν̄ (∃ t∗ ∈ [0, 1] : ∆i(t
∗) < 0,∆j(t

∗) ̸= 0,∆k(t
∗) > 0) > 0. (A.83)

By path continuity, we can find T ∈ [0, 1] and ϵ > 0 such that

P̂ν̄ (∆i(T ) < −ϵ, |∆j(T )| , ∆k(T ) > ϵ) > 0. (A.84)
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Let µ̄(tn) = L(z̄(tn)). Then, by the Markov property and (A.84),

lim inf
n→∞

P̂µ̄(tn) (∆i(T ) < −ϵ, |∆j(T )| > ϵ, ∆k(T ) > ϵ)

= lim inf
n→∞

P̂µ̄(0) (∆i(T + tn) < −ϵ, |∆j(T + tn)| > ϵ, ∆k(T + tn) > ϵ) > 0.
(A.85)

However, this violates (3.147) for either i, j or j, k. We conclude that (A.79) fails and
that (A.79) holds for i, k. By irreducibility, (A.79) holds for all i, k ∈ G. □

§A.4 Bounded derivative of Lyapunov function

Recall from Section 3.2.3 that

h(t) = 2
∑
j∈G

a(i, j) Ê
[
|∆j(t)| 1{sgn∆i(t) ̸=sgn∆j(t)}

]
+ 2Ke Ê

[(
|∆i(t)|+ |δi(t)|

)
1{sgn∆i(t) ̸=sgn δi(t)}

]
.

(A.86)

In this section we show that h′(t) exists for all t > 0 and is bounded. To do so, we
need to get rid of the indicator in the expectations.

Let
h1,j(t) = Ê

[
|∆j(t)| 1{sgn∆i(t) ̸=sgn∆j(t)}

]
(A.87)

and
h2(t) = 2Ke Ê

[(
|∆i(t)|+ |δi(t)|

)
1{sgn∆i(t) ̸=sgn δi(t)}

]
. (A.88)

Then h(t) = 2
∑
j∈G a(i, j)h1,j(t) + h2(t). We show that h1,j(t) is differentiable with

bounded derivative for j ∈ G. The proof of the differentiability of h2(t) is similar.
Fix t ≥ 0. Note that

Ê
[
|∆j(t)| 1{sgn∆i(t) ̸=sgn∆j(t)}

]
= Ê

[
|∆j(t)| 1{sgn∆i(t) ̸=sgn∆j(t)} | |∆i(t)| ≠ 0, |∆i(t)| ≠ 0

]
P (|∆i(t)| ≠ 0, |∆j(t)| ≠ 0)

+ Ê
[
|∆j(t)| 1{sgn∆i(t) ̸=sgn∆j(t)} | |∆i(t)| = 0 or |∆j(t)| = 0

]
× P (|∆i(t)| = 0 or |∆j(t)| = 0) .

(A.89)
Since ∆i(t) and ∆j(t) have zero local time, the second term vanishes and
P(|∆i(t)| ≠ 0, |∆j(t)| ≠ 0) = 1. By continuity of ∆i(t) and ∆j(t), we can define sets

Bn =
{
|∆i(r)| > 0 and |∆j(r)| > 0,∀r ∈ B(t, 1

n )
}
. (A.90)

Then
· · · ⊂ Bn ⊂ Bn+1 ⊂ Bn+2 ⊂ · · · , (A.91)

so

Bn =

n⋃
i=0

Bi (A.92)

and we define

B :=

∞⋃
i=0

Bn = lim
n→∞

Bn. (A.93)
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Since P(|∆i(t)| ≠ 0, |∆j(t)| ≠ 0) = 1, it follows that P(B) = 1.
For each Bn, we have

Bn = Cn ∪ Ccn, Cn =
{
ω ∈ Bn : 1{sgn∆i(r) ̸=sgn∆j(r)} = 1, ∀r ∈ B(t, 1

n )
}
,

(A.94)
and, by the definition of Bn,

· · · ⊂ Cn ⊂ Cn+1 ⊂ Cn+2 ⊂ · · · · · · ⊂ Ccn ⊂ Ccn+1 ⊂ Ccn+2 ⊂ · · · (A.95)

Let C =
⋃∞
i=0 Ci and Cc =

⋃∞
i=0 C

c
i be such that B = C ∪ Cc. Using (3.136), we

obtain

1

s
(h1,j(t+ s)− h1,j(t))

=
1

s

[
Ê
[
|∆j(t)| 1{sgn∆i(t+s) ̸=sgn∆j(t+s)}

]
− Ê

[
|∆j(t)| 1{sgn∆i(t) ̸=sgn∆j(t)}

]]
=

1

s

[
Ê

[
|∆j(t+ s)| 1{sgn∆i(t+s) ̸=sgn∆j(t+s)} − |∆j(t)| 1{sgn∆i(t) ̸=sgn∆j(t)}

∣∣∣∣∣B
]]

=
1

s

[
Ê

[
|∆j(t+ s)| − |∆j(t)|

∣∣∣∣∣C
]]

P(C)

=
1

s
Ê

∑
j∈G

a(i, j)

∫ t+s

t

sgn (∆i(r))[∆j(r)−∆i(r)] dr

∣∣∣∣∣C
 P(C)

+
1

s
Ê

[∫ t+s

t

sgn (∆i(r))

[√
g(x1i (r))−

√
g(x2i (r))

]
dwi(r)

∣∣∣∣∣C
]
P(C)

+
1

s
Ê

[
Ke

∫ t+s

t

sgn (∆i(r))
[
δi(r)−∆i(r)

]
dr

∣∣∣∣∣C
]
P(C)

=
∑
j∈G

a(i, j)Ê

[
1

s

∫ t+s

t

sgn (∆i(r))[∆j(r)−∆i(r)] dr

∣∣∣∣∣C
]
P(C)

+
1

s
Ê

[∫ t+s

t

sgn (∆i(r))

[√
g(x1i (r))−

√
g(x2i (r))

]
dwi(r)

∣∣∣∣∣C
]
P(C)

+ Ê

[
Ke

1

s

∫ t+s

t

sgn (∆i(r))
[
δi(r)−∆i(r)

]
dr

∣∣∣∣∣C
]
P(C).

(A.96)
In the last equality, the first and third term are bounded, because ∆i(t), δi(t) and
∆j(t) are continuous functions of t, and sgn (∆i) is constant since we conditioned
on the set C. Therefore, letting s → 0, it follows from the fundamental theorem of
calculus that these terms are bounded. The second term is more involved. Since, on
the set C,

sgn (∆i(r))

[√
g(x1i (r))−

√
g(x2i (r))

]
(A.97)

is a continuous function, we can rewrite the stochastic integral as a time-transformed
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Brownian motion:

1

s
Ê

[∫ t+s

t

sgn (∆i(r))

[√
g(x1i (r))−

√
g(x2i (r))

]
dwi(r)

∣∣∣∣∣C
]

=
1

s
Ê

[
W

(∫ t+s

0

[√
g(x1i (r))−

√
g(x2i (r))

]2
dr

)

−W

(∫ t

0

[√
g(x1i (r))−

√
g(x2i (r))

]2
dr

)∣∣∣∣∣C
]
.

(A.98)

Since the normal distribution is differentiable with respect to its variance, we are
done.
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